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Advances in the development of technology have led to microrobots applications in medical
¯elds. Drug delivery is one of these applications in which microrobots deliver a pharmaceutical
compound to targeted cells. Chemotherapy and its side e®ects can then be minimized by this
method. Two major constraints, however, must be considered: the robot's onboard energy
supply and the time needed for drug delivery. Furthermore, a microrobot must avoid biological
restricted areas which we treat as obstacles in the path. The main objectives of this work were to
¯nd optimal paths to targeted cells and avoid collision with obstacles in the paths under a
dynamic environment. In this study, we controlled motion of microrobots based on the concept
of swarm intelligence. Arti¯cial Bee Colony (ABC), the Best-so-far ABC, and the Particle
Swarm Optimization (PSO) methods were employed to implement the collision detection and
the boundary distance detection modules. Forces that drove or resisted blood °ow as well as
pressure in blood vessels were considered to approximate the e®ects of the environment on the
microrobots. Numerical experiments were conducted using various obstacle environments. The
results con¯rm that the proposed approaches were successful in avoiding obstacles and opti-
mizing the energy consumption used to reach the target.

Keywords: Target ¯ndingandobstacle avoiding; drugdelivery;microrobots; optimization; swarm
intelligence; arti¯cial bee colony (ABC); best-so-far ABC; particle swarm optimization (PSO).

1. Introduction

Advances in the ¯eld of nanotechnology and microtechnology have led to the

adoption of microrobots in medical applications, speci¯cally in the ¯eld of
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nanomedicine.1–3 Microrobots are machines or devices whose components are at or

close to the micrometer scale. The importance of a microrobot is increasing as today's

biomedical technologies require innovative systems to replace di±cult procedures.

Many diagnostic tools based on a microrobot have emerged in the past few dec-

ades. Dario et al.4 proposed the concept and described the design and fabrication of a

new system for colonoscopy, an important procedure for the diagnosis of various

pathologies, based on a microrobot capable of propelling semi-autonomously along

the colon. Since a low invasive treatment is very important, Ishiyama et al.5 pre-

sented magnetic micromachines, a tiny magnetically driven spinning screw, to treat

infected tissues or even to burrow into tumors and kill them with heat instead of

having a surgery. An Electromagnetic-based Actuation (EMA) system for three-

dimensional locomotion and drilling by a microrobot was introduced by Yu et al.6

for a treatment of cardiovascular diseases.

In addition, there are many promising applications7 for microrobots in the

circulatory system including performing targeted drug delivery, removing plaque

(rotational atherectomy), destroying blood clots (thrombolysis), acting as stents

(a smallmesh tube that is used to treat narrow orweak arteries), acting as occlusions to

intentionally starve a region of nutrition, and administering therapy for aneurysms.

In a drug delivery process, microrobots generally travel inside a blood vessel with

the goal of administering a pharmaceutical compound directly onto targeted cells,

i.e., the cancerous or infected cells. The direct delivery process improves the medical

e±cacy and minimizes risks introduced by chemotherapy.2 In optimizing the paths,

microrobots have to consider the shortest distance between two points while

avoiding obstacles in the paths. Obstacles are biological restricted areas.

Many researchers have addressed the above-mentioned issues. To plan trajecto-

ries for a mobile robot in partially known environments, Stentz8 proposed the \D*"

algorithm. \D*" resembles the \A*" algorithm, a heuristic search algorithm using a

best-¯rst search on a least-cost path, except that it is dynamic in the sense that

the arc cosine parameter can be changed during the search process. In this work,8 the

problem space was formulated as a set of states denoting robot locations connected

by directional arcs, each of which has an associated cost. The robot started at a

particular state and moved across arcs (incurring the cost of traversal) to other states

until it reached the goal state. Tsuzuki et al.9 applied the Simulated Annealing (SA),

a generic probabilistic method inspired by annealing in metallurgy, as the path-

planning algorithm. The path can be represented as linear, Bezier, or interpolated

spline trajectories. Each step of the SA algorithm attempted to ¯nd the new position

of robot by a random solution. The new solution might then be accepted with a

probability that depended both on the di®erence between the corresponding objec-

tive values and also on the function of time. The Genetic Algorithm (GA), a heuristic

search that mimics the process of natural evolution, was proposed by Tao and

Zhang10 for online and o®line path planning based on area coverage.

In recent years, algorithms based on swarm intelligence have been applied to solve

the path ¯nding problem. Brand et al.11 worked with the Ant Colony Optimization
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(ACO) algorithm, which is inspired by the ant foraging behavior. The ACO could

¯nd the shortest and collision free route in a grid network for robot path planning.

Obstacles with various shapes and sizes were considered to simulate a dynamic

environment in this work. Ganganath et al.12 proposed an ACO-based o®-line path

planner algorithm that can be realized with most real-world robots, which are ki-

nematically constrained. The Particle Swarm Optimization (PSO) algorithm,

mimicking a bird °ock or a ¯sh school, was also proposed for path planning by

Qin et al.,13 Chen and Li,14 and Zhang and Li.15 Moreover, to avoid obstacles, self-

organized trajectory planning based on PSO was introduced by Hla et al.16 who

simpli¯ed the problem by considering only circular shaped obstacles. Zhang et al.17

introduced a constrained multi-objective PSO algorithm to solve the robot path

planning problem, in which the robots must evade the uncertain danger sources.

PSO-based motion planner was presented by Deepak et al.18 for an autonomous

mobile robot in avoiding obstacles and generating feasible trajectories within its

unknown environments. To improve the e±ciency of microrobots' path ¯nding, the

quorum sensing technique, which is the ability of bacteria swarms to communicate

and coordinate via molecule signaling, was initiated by Chandrasekaran and Hou-

gen.19 Hossain and Ferdous20 explored the bacterial foraging optimization algorithm

to the problem of mobile robot navigation in order to determine the shortest feasible

path to move from any current position to the target position in an unknown en-

vironment with moving obstacles. A cuckoo search-based approach was presented by

Mohanty and Parhi21 for mobile robot navigation in an unknown environment

populated by a variety of obstacles.

However, consideration of the distance of the microrobot traveling alone may not

be su±cient for the drug delivery process. Two major constraints should be con-

sidered. One is that the robot can become inactive and thus not deliver the drug to

the target if its energy is not su±cient and the other is that the e±ciency of the drug

will be dropped if it cannot be delivered to the target cells within a certain time

period.1,3 In this study, we have extended our scope from the previous work13,15,22

and found the optimal path with an obstacle avoidance mechanism that considers

the energy consumption and time taken by the microrobots to travel to the target

cell. The Arti¯cial Bee Colony (ABC) algorithm,23 the Best-so-far ABC algorithm,24

and the PSO algorithm25 have been employed for path planning. The techniques for

collision detection and the boundary distance detection, as well as their avoidance on

both static and dynamic obstacles will be described. In addition, the drag force

experienced by a microrobot during its trajectory will be addressed. Forces that drive

or resist blood °ow as well as pressure in blood vessels will be considered to mimic a

more realistic environment in this work.

The paper is organized as follows. Section 2 describes the circulation environment

used in our drug delivery framework. Section 3 presents the problem statement.

Section 4 provides the microrobots model including microrobots movement, obstacle

detection and avoiding techniques. Section 5 proposes the adoption of swarm intel-

ligence algorithms in drug delivery process. Section 6 describes the numerical

Drug Delivery Based on Swarm Microrobots
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experiments and discusses simulation results. Section 7 summarizes conclusions

of the work.

2. Circulation Environment

In this section, we will provide the background knowledge that was used in our drug

delivery framework including the °uid °ow concept for blood circulation in arteries

and the drag force acting on microrobots when they moved through the °uid to the

target cell.

There are two types of °uid °ow26: laminar and turbulent. While the direction of

the laminar °ow is parallel to the vessel wall, the direction of the turbulent °ow is not

parallel to the vessel wall and blood °ows in di®erent directions. There is a consid-

erable turbulent °ow at the branches of large arteries. However, in small vessels,

blood °ow is predominantly laminar.

Reynolds number (ReÞ is a dimensionless number that gives a measure of the ratio

of inertial forces to viscous forces and consequently quanti¯es the relative importance

of these two forces for given °ow conditions. Reynolds number can be calculated by

Re ¼
inertial force

visous force
¼ ��d

�
; ð1Þ

where

� ¼ the density of the °uid (kg/m3Þ,
� ¼ the average speed of the °uid over the cross section of the tube (m/s),

d ¼ the tube diameter (m),

� ¼ the dynamic °uid viscosity (Pa�s or kg/m�s).
For two-dimensional laminar °ow, the velocity increases toward the center of

a tube. The velocity pro¯le as a function of radius illustrated in Fig. 1 can be

described by

� ¼ � 1

2�

�P

L
ðh2 � y2Þ; ð2Þ

2h
y

P2 P1

Li

ν

Fig. 1. Velocity pro¯le for laminar °ow in circular tube.26
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where

L ¼ length of the vessel (m),

�P ¼ pressure drop in a segment of blood vessel of length L(Pa),

h ¼ internal radius of the tube (m),

y ¼ radial coordinate of a point (m).

When a microrobot moves through a °uid, it will experience the \drag force"

(FDÞ27 as shown in Fig. 2.

This is the force that resists the motion of an object through the °uid. The drag

force on a submerged object has two components and can be calculated by using

Eq. (3).

. A pressure drag (form drag) Fp:

The integration of components in the direction of motion of all the pressure forces

exerted on the surface of the body.

. A friction drag (surface drag) Ff :

FD Frobot

Fig. 2. Drag force on a microrobot.27

Fig. 3. Drag force in blood.28

Drug Delivery Based on Swarm Microrobots
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The friction of the °uid against the surface of the object that is moving through it:

FD ¼ Fp þ Ff ¼ 1

2
��2

RCdA; ð3Þ

where

FD ¼ drag force (N),

�R ¼ velocity of the object relative to the °uid (m/s),

Cd ¼ drag coe±cient (a dimensionless parameter),

A ¼ frontal area of the moving object (m2Þ.
A typical value of drag force taken from Ref. 28 is shown in Fig. 3.

3. Problem Statement

The following three constraints on the microrobot's ability for a drug delivery process

were considered within the scope of this work:

. The robot's onboard energy supply is limited. Once the available energy has been

consumed, the robot can become inactive and thus not deliver the drug to the

target.

. The time used by robots to deliver the drug to the target.

. Avoidance of the biological obstacles in blood vessel is mandatory.

In the work described here, we studied a two-dimensional problem as the ¯rst

step; its generalization to three-dimensional problem will be considered in a future

work. The microrobots were assumed to move in this space under the following

assumptions:

. The starting and target positions with respect to a given reference coordinate

system were known.

. Microrobots were not allowed to move outside the blood vessel boundary.

. Microrobots might occupy the same location with respect to the reference coor-

dinate system.

. Microrobots did not have power outage.

. There were two types of obstacles: static obstacles and dynamic obstacles. The

static obstacles could be described as polygons with boundaries represented by

linear equations while the dynamic obstacles could be described as circular. In the

circulation environment, the static obstacles and the dynamic obstacles repre-

sented platelets adhered to the wall of a vessel and the red blood cells, respectively.

. Velocity of each dynamic obstacle as a function of time was known to microrobots.

. The speed of each dynamic obstacle was constant and randomly generated at the

beginning of the analysis.

. The speed of all microrobots was greater than the speed of all dynamic obstacles in

each time step.

A. Banharnsakun, T. Achalakul & R. C. Batra
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Based on Eqs. (2) and (3), when a microrobot moved from one point to another

inside the blood vessel as shown in Fig. 4, the objective function used in optimizing

the energy consumption of microrobots for traveling to the target cell as a ¯tness

value was given by Eq. (4).

From

�WR;t ¼ FD;R;t ��dR;t;

�WR;t ¼
1

2
�CdAðvR;t � vBÞ2

vR;t � vB

vR;t � vB

�� �� ��dR;t;

�WR;t ¼
1

2
�CdA vR;t �

1

2�

�P

L
ðh2 � y2

R;tÞ
� �

2 vR;t � vB

vR;t � vB

�� �� ��dR;t:

Then

Minimize

WR ¼
XS
t¼1

1

2
�CdA vR;t �

1

2�

�P

L
ðh2 � y2

R;tÞ
� �

2 vR;t � vB

vR;t � vB

�� �� ��dR;t

 !
; ð4Þ

subject toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxT � xR;tÞ2 þ ðyT � yR;tÞ2

q
¼ 0 when t ¼ S;

xlb < xR;t < xub for t ¼ 1; 2; 3; . . . ;S;

ylb < yR;t < yub for t ¼ 1; 2; 3; . . . ;S;

dRo;t � " for o ¼ 1; 2; 3; . . . ;M for all t;

where

WR¼ sum of energy consumption from starting point to target point

for robot R (J),

S¼number of robot's steps,

M ¼number of obstacles,

�dR;t¼ incremental displacement of robot R at time t (m),

xR;t¼x-coordinate of robot R at step t,

yR;t¼ ycoordinate of robot R at step t,

xT ¼x-coordinate of target,

R

R

Fig. 4. Microrobot movement from one point to another inside the blood vessel.
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yT ¼ y-coordinate of target,

xlb¼ lower bound for x-coordinate in the search space,

xub¼upper bound for x-coordinate in the search space,

ylb¼ lower bound for y-coordinate in the search space,

yub¼upper bound for y-coordinate in the search space,

dRo;t¼distance between robot R and obstacle o at step t (m),

"¼ threshold distance value (m).

4. Microrobot Model

In a microrobot model designed for drug delivery, factors to be considered include the

following: how the microrobot is powered, how the microrobot ¯nds the target cells,

what the communication methods are, and how microrobots can be removed when

the job is ¯nished. This section brie°y reviews the technology that can potentially

address these questions.

Research3,29–31 has suggested some possible sources of energy for microrobots. The

Adenosine Triphosphate (ATP) synthase enzyme, which can be applied in rotary

bio-molecular motor-powered nanodevices, is an example of the energy source. Other

examples include the remote inductive power presented by Takeuchi and Shi-

moyama,30 and the use of CMOS for active telemetry and power supply for

implanted devices introduced by Sauer et al.31

Chemical and biochemical sensors1,3,10 can be used to sense the environment and

detect the target cells and obstacles. The sensors detect changes in volume, con-

centration, displacement and velocity, pressure, or temperature of cells to identify

the target.

Radio frequency identi¯cation device (RFID) technology32 can be used to locate

and track objects or even to remotely control human biological functions. RFID is

thus often mentioned in microrobots communication methods.

In order to excrete the microrobots when their task has been completed, the

microrobots must be created with disposable materials. An alternative is to create a

microrobot that can anchor itself to a blood vessel for easier surgical removals.3,10,33

However, in order to design the microrobot for the simulation, the mathematical

model used to simulate the movement of a microrobot and the mechanism used to

recognize the obstacles must be described. The following subsections provide the

model and the methods to support these requirements.

4.1. Microrobot movement

The movement of microrobots from one point to another inside the blood vessels can

be modeled as shown in Fig. 5.

Let ðxi;s; yi;sÞ be the position of robot i at time s, �i be the angle describing the

direction of motion of robot i, �i;s be the velocity of robot i at time s, and �t be the

A. Banharnsakun, T. Achalakul & R. C. Batra
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time step. Then

xi;s ¼ xi;s�1 þ �i;s�1 cos �i �t; ð5Þ
yi;s ¼ yi;s�1 þ �i;s�1 sin �i �t: ð6Þ

4.2. Obstacle detection and avoiding techniques

In real applications, microrobots should be able to detect obstacles in their paths

using their chemical and/or biochemical sensors. However, under the simulated en-

vironment, there exists the need to design a computational algorithm to recognize

obstacles. In this paper, three computational methods are proposed: the collision

detection, the boundary distance detection, and the obstacle avoiding.

4.2.1. Collision detection

To detect a collision between a microrobot and an obstacle, the point of intersection

of a robot trajectory with an object boundary is identi¯ed. In Fig. 6, the intersected

coordinate point ðxcross; ycrossÞ from a microrobot trajectory line and a boundary of

the static obstacle is calculated. If this point is located between the lower bound and

(xoj1,yoj1)

(xoj2,yoj2)(xi-1,yi-1)

(xi,yi)

Rob
ot 

tra
jec

tor
y

Static Obstacle 
Boundary

(xcross,ycross)

y

x

Fig. 6. Collision detection on a static obstacle.

(xi,s , yi,s)

(xi,s-1 , yi,s-1)

vi,s-1

θi

X

Y

0

Fig. 5. Schematic sketch of microrobot positions.
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the upper bound on both of these two lines, the collision is detected. The point of

intersection ðxcross; ycrossÞ can be calculated with the following algorithm.

Let ðxi�1; yi�1Þ be a robot position at time i� 1, ðxi; yiÞ be a robot position at

time i, yo ¼ moxo þ co be a linear equation of a static obstacle boundary, and yr ¼
mrxr þ cr be a linear equation of the robot's trajectory. Then

xcross ¼
�ðco � crÞ
mo �mr

; ð7Þ

ycross ¼ moxcross þ co: ð8Þ
The robot and the static obstacle will collide if the following criteria are satis¯ed:

ðxoj1 � xcross � xoj2 ^ xi�1 � xcross � xiÞ;
and

ðyoj2 � ycross � yoj1 ^ yi�1 � ycross � yiÞ:
In Fig. 7, the point of intersection ðxcross; ycrossÞ of a microrobot trajectory and a

boundary of the dynamic obstacle is shown; the algorithm to ¯nd ðxcross; ycrossÞ is

given below.

Let r2 ¼ ðyo � yocÞ2 þ ðxo � xocÞ2 be the boundary of a circular dynamic obstacle.

Then

xcross1 ¼ ð�2ðmrcr �mryoc � xocÞ � ðð2ðmrcr �mryoc � xocÞÞ2
� 4ðm2

r þ 1Þððcr � yocÞ2 þ x2
oc � r2ÞÞ1=2Þ=2ðm2

r þ 1Þ; ð9Þ
ycross1 ¼ mrxcross1 þ cr: ð10Þ

and

xcross2 ¼ ð�2ðmrcr �mryoc � xocÞ þ ðð2ðmrcr �mryoc � xocÞÞ2
� 4ðm2

r þ 1Þððcr � yocÞ2 þ x2
oc � r2ÞÞ1=2Þ=2ðm2

r þ 1Þ; ð11Þ
ycross2 ¼ mrxcross2 þ cr: ð12Þ

(xocj,yocj)

(xi-1,yi-1)

(xi,yi)

Rob
ot 

tra
jec

tor
y

Dynamic Obstacle 
Boundary

r

(xcross,ycross)

Fig. 7. Collision detection on a dynamic obstacle.
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The robot and the dynamic obstacle will collide if the following criteria are

satis¯ed:

ðxi�1 � xcross1 � xi ^ yi�1 � ycross1 � yiÞ
^ ðr2 ¼ ðycross1 � yocÞ2 þ ðxcross1 � xocÞ2Þ;

or

ðxi�1 � xcross2 � xi ^ yi�1 � ycross2 � yiÞ
^ ðr2 ¼ ðycross2 � yocÞ2 þ ðxcross2 � xocÞ2Þ:

4.2.2. Boundary distance detection

Amicrorobot is required to have a minimum distance from boundaries of an obstacle.

The distance, dios; between a microrobot position and boundary line of a static

obstacle, shown in Fig. 8, is given by Eq. (13).

Let

moj12 ¼
yoj2 � yoj1
xoj2 � xoj1

;

coj12 ¼ yoj1 �moj12xoj1;

moub ¼ molb ¼
�1

moj12

;

coub ¼ yoj1 �moubxoj1;

colb ¼ yoj2 �molbxoj2:

Then

dios ¼
jmoj12xi � yi þ coj12jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
oj12 þ 1

q : ð13Þ

(xoj1,yoj1)

(xoj2,yoj2)(xi,yi)

Static Obstacle 
Boundary

diosRobot position

yolb = molbx+colb

youb = moubx+coub
yo = moj12x+coj12

Fig. 8. Boundary distance detection on the static obstacle.

Drug Delivery Based on Swarm Microrobots
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The robot's current position must satisfy the following criteria:

yi � molbxi þ colb ^ yi � moubxi þ coub:

For a circular obstacle, the distance, diod, between a microrobot position and its

boundary, shown in Fig. 9, is calculated by

diod ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xocjÞ2 þ ðyi � yocjÞ2

q
� roj: ð14Þ

4.2.3. Avoiding obstacles

This section describes a method used to avoid obstacles. The next-step position of a

microrobot is analyzed with all positions of static obstacles and all next-step positions

of dynamic obstacles in order to avoid any collision using the following pseudo-code:

for all obstacles

while (collision(robot's next-step position, static obstacle's position)

^ collision(robot's next-step position, dynamic obstacle's next-step position)

^ distance(robot's next-step position, static obstacle's position) < diod

(xi,yi)

Dynamic Obstacle 
Boundary

diod

roj

(xocj,yocj)

Robot position

Fig. 9. Boundary distance detection on a dynamic obstacle.

Static
Obstacle

1

2
R

R

Next step position of 
dynamic obstacle 1

Next step position of 
dynamic obstacle 2

Next step of 
microrobotCurrent step position of 

microrobot

Static
Obstacle

Fig. 10. Schematic sketch of avoiding obstacles.
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^ distance(robot's next-step position, dynamic obstacle's next-step position)

< dios)

f
Find robot's next step()

g
Figure 10 illustrates an example of avoiding method by the microrobot when it

encounters obstacles. The microrobot will try to ¯nd the next-step position by

avoiding any collision and maintaining the distance between its next-step position

and the positions of all obstacles. The details of ¯nding the microrobot's next-step

position will be provided in Sec. 5.

5. Adoption of Swarm Intelligence Algorithms in Drug Delivery

This section proposes three algorithms: (i) the ABC algorithm, (ii) the Best-so-far

ABC algorithm, and (iii) the PSO algorithm to control mechanism of microrobots in

drug delivery process. The following subsections provide a brief background on each

algorithm.

5.1. Arti¯cial bee colony algorithm

The ABC algorithm introduced by Karaboga23 is one of the popular approaches used

to ¯nd an optimal solution. This algorithm is inspired by the behavior of honey bees

when seeking a quality food source.34 The performance of ABC algorithm has been

compared with that of other optimization methods such as the GA, the Di®erential

Evolution (DE) algorithm, Evolution Strategies (ES), PSO, and Particle Swarm

Inspired Evolutionary Algorithm (PS-EA). The comparison of results35 for several

optimization problems has shown that the ABC algorithm can produce better op-

timal solutions and thus is more e®ective than other methods. The ABC algorithm

uses a set of computational agents called honey bees to ¯nd the optimal solution. The

honey bees can be categorized into three groups: employed bees, onlooker bees and

scout bees. Each solution in the search space consists of a set of optimization para-

meters which represent a food source position. The number of employed bees is equal

to the number of food sources. In other words, there is only one employed bee

investigating each food source. The quality of food source is called its \¯tness value"

and is associated with its position.

In the algorithm, the employed bees will be responsible for investigating their food

sources (using ¯tness values) and sharing the information to recruit the onlooker bees.

The onlooker bees will make a decision to choose a food source based on this infor-

mation. A food source with a higher quality will have a larger probability of being

selected by onlooker bees. An employed bee whose food source is rejected by employed

and onlooker bees will change to a scout bee to search for new food sources randomly.

This process of a bee swarm seeking, advertising, and eventually selecting the

best-known food source is used to ¯nd the optimal solution. Notice that the food

sources are selected based on group decision making by the swarm. Independence and

Drug Delivery Based on Swarm Microrobots
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interdependence in collective decisionmaking are important factors in thismechanism.

Figure 11 illustrates the °ow chart of the algorithm developed for ¯nding the paths.

First, initial solutions consisting of a speed ð�Þ and the direction of motion (�) for

each microrobot are generated. These parameters set are treated as the food sources.

Each food source is used to move the microrobot from the current position to the

next position in a search space.

The food sources will be updated by the employed bees. The choices are based on

the neighborhood of the previously selected food sources. The position of the new

food source can be calculated from

x 0
ij ¼ xij þ �ijðxij � xkjÞ: ð15Þ

In Eq. (15), x 0
ij is the new feasible food source, which is selected by comparing the

previous food source ðxijÞ and the randomly selected food source from the neighboring

food source ðxkjÞ. �ij is a random number between [�1, 1] which is used to adjust the

old food source to become the new food source in the next iteration. k 2
f1; 2; 3; . . . ;SNg ^ k 6¼ i and j 2 f1; 2; 3; . . . ;Dg and are randomly chosen indices.

The microrobots use the food sources generated by the employed bees to update

their positions. Collision detection will be performed and the objective score will be

calculated using Eq. (14). If the new candidate position does not collide with any

obstacle and gives a better objective value than the old position, the microrobot will

move to the new position.

The onlooker bees will then select food sources from the employed bees. Food

sources of better objective values have higher chances of being selected. The prob-

ability that a food source will be selected is given by

Pi ¼
fitiPN
n¼1 fiti

; ð16Þ

whereN is the number of food sources and ¯ti is the ¯tness value of the food source i.

A smaller objective score indicates a better ¯tness value.

Check Collision

Collision ?

Ini al all parameters

 Start

Update v and  of all robots 
by employed bees

Keep be er trajectory

Each onlooker bee select v and 
from employed bees and update it

Calculate new candidate 
posi ons of robots

Calculate new candidate 
posi ons of robots

Check Collision

Collision ?

Keep be er trajectory

Yes Yes

NoNo

ABC End

Stuck on obstacles ?

Found target ?

Show Results

Backward to previous step
by scout bee

Yes

Yes

No

No

Fig. 11. Flow chart of microrobots control mechanism using ABC.
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The onlooker bees will then select the food sources that produce better ¯tness

values and update those food sources using the same algorithm as the employed bees.

Microrobots will use these food sources to update their positions. The collision de-

tection and the objective scoring processes will be performed repeatedly so that the

microrobots will keep moving to new positions.

The microrobot that cannot avoid an obstacle within a certain period of time will

backtrack to its previous position. The new food sources will then be randomly

generated by the scout bees.

The process will be repeated until the microrobots reach the target or the number

of iterations equals the Maximum Cycle Number (MCN).

5.2. Best-so-far ABC algorithm

The Best-so-far ABC has been proposed by Banharnsakun et al.24 to enhance the

exploitation and exploration processes in the ordinary ABC algorithm. While the

exploration process is related to the independent search for an optimal solution,

the exploitation uses existing knowledge to bias the search. Experimental results

have demonstrated that the Best-so-far ABC is able to produce higher quality

solutions with faster convergence than the original ABC and other state-of-the-art

heuristic-based algorithms.24,36–38

In the Best-so-far ABC, there are three modi¯cation modules including the best-

so-far ABC module, the adjustable search radius module, and the objective-value-

based comparison module. Note that in this work we only employ the best-so-far

ABC module to control motions of microrobots in the drug delivery process. Solu-

tions consisting of a speed ð�Þ and the direction of motion (�) for each microrobot are

treated as the food sources and will be updated by the bee agents similarly to the

steps in the ordinary ABC algorithm.

In the ordinary ABC algorithm, each onlooker bee selects a food source based on a

probability that varies according to the ¯tness function explored by a single

employed bee. Then the new candidate solutions are generated by updating the

onlooker solutions as shown in Eq. (15). However, changing only one dimension of

the solution xi in the original ABC results in a slow convergence rate.

In the best-so-far ABC module, all onlooker bees use existing information from all

employed bees to make a decision on a new candidate food source. Thus, the

onlookers can compare information from all candidate sources and are able to select

the best-so-far position. The new method used to calculate a candidate food source is

�id ¼ xij þ �fbðxij � xbjÞ; ð17Þ
where

�id ¼ the new candidate food source for onlooker bee position i in dimension

d; d ¼ 1; 2; 3; . . . ;D,

xij ¼ the selected food source position i in a selected dimension j,

� ¼ a random number between �1 and 1,

Drug Delivery Based on Swarm Microrobots
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fb ¼ the ¯tness value of the best food source found so far,

xbj ¼ the best so far food source in selected dimension j.

5.3. Particle swarm optimization algorithm

PSO25 algorithm is inspired by the mechanism of bird °ocks and ¯sh schools that is

used to synchronize their movement to avoid collisions during their foraging. In the

PSO method, the member in this swarm is called a \particle". The position of each

particle stands for a feasible solution that will be tracked and updated. The \pbest"

value is used to call its own best position of each particle and the \gbest" value is

used to call the best position, which is obtained from comparison of pbest on all

particles in the swarm. In each iteration, the position of each particle will be updated

by its velocity that is calculated from the cognitive value, which is in°uenced by the

best position found by a particle itself (di®erent value between its pbest and its

current position) and a social value which is modeled by the in°uence of the best

position found by other particles (di®erent value between gbest and its current

position). Consequently, the position of each particle will converge to the optimal

solution.

The position of each particle in the PSO algorithm is adjusted by its velocity as

’id ¼ !�id þ c1R1ðpid � xidÞ þ c2R2ðpgd � xidÞ; ð18Þ
x 0
id ¼ xid þ ’id; ð19Þ

where ’id is the velocity of particle, �id is the previous velocity of particle, xid is the

previous position of particle, x 0
id is the new position of particle, ! is the inertial

constant factor, c1; c2 are values of cognition and social component, respectively,

R1;R2 are two random numbers independently generated in [0, 1], pid is the pbest of

particle i in dimension d, pgd is the gbest of particle i in dimension d.

In the PSO method, solutions consisting of speed (�) and the direction of motion

(�) are treated as the positions of the particles and will be tracked and updated by

using Eqs. (18) and (19).

The microrobots use these solutions to update their positions. The mechanisms to

detect and to avoid the obstacles are also employed on the PSO method the same as

applied on the ABC method and the Best-so-far ABC method.

6. Experiments and Results

We studied the performance of the three proposed techniques including the Best-so-

far ABC, the ABC, and the PSO methods in two sets of experiments: static obstacle

environment and dynamic obstacle environment. For both experiments, we aimed at

comparing and evaluating the solution quality obtained from these three methods in

the perspectives of the target hit rate, the energy consumption, and the time step

used by microrobot to deliver the drug to the target. To make a clearer analysis of the

performance on the proposed algorithms, the A* search algorithm, a well-known

A. Banharnsakun, T. Achalakul & R. C. Batra
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path ¯nding method,39,40 is also included and can be used for comparison with the

proposed method in these experiments.

Each of the experiment sets was repeated 30 times with di®erent random seeds. In

the static environment experiment, the complex search spaces are presented in terms

of the random position of the obstacles whereas in the dynamic environment ex-

periment, the complex search spaces are conducted in terms of the random move-

ment of the obstacles that is di®erent in each run of 30 times.

The proposed methods were programmed in Cþþ and all experiments were run

on a PC with Intel Core i7 CPU, 2.0GHz. The size of the search space is set as

150*1000, the starting point at (0,75) and the target point at (1000,75). For the ABC

and the Best-so-far ABC methods, the size of population was 10, and the number of

iterations (MCN) was 1000. There were 20 obstacles located at random positions in

the search space.

For the parameter setting of the PSO method, the number of particles was 10,

the parameters used in PSO were de¯ned as: c1 ¼ c2 ¼ 2; ! ¼ 0:7, and the number of

iterations was 1000. Note that the number of function evaluations per iteration in the

ABC and that in the Best-so-far ABCwere not equal to that in the PSO algorithm. The

number of function evaluations in the ABC and the Best-so-far ABC is equal to twice

per iteration (for employed bee and onlooker bee phases) but there is only once per

iteration in the ordinary PSO algorithm. For a fair comparison, the PSO algorithm in

this experiment wasmodi¯ed to perform the function evaluation twice in each iteration.

In order to mimic a somewhat realistic environment for °ow in a blood vessel, the

properties of blood °ow reported in Refs. 26–28, 41–43 used in our experiment are

listed in Table 1.

6.1. Static environment experiment

In this experiment, the three methods were used to analyze the same problem. The

objective was to ¯nd the optimal path that microrobots used to minimize energy

consumption for traveling from the starting point to the target point.

The example of search space initially created is shown in Fig. 12. The microrobots

will move from the starting point on the left of the search space to the target on the

far right of the search space.

Table 1. The properties of blood °ow in arteries.

Parameter Value

Di®erential pressure, �P 20Pa

Vessel length, L 10 cm

Vessel radius, R 2mm
Blood density, � 1060 kg/m3

Blood viscosity, � 4mPa�s
Drag coe±cient, Cd 0.47
Frontal area of microrobot, A 0.179mm2

Drug Delivery Based on Swarm Microrobots
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Figure 13 presents the trajectory of the microrobot when the simulation has been

completed with optimization method. The result showed that the control mechanism

by our designed methods would adjust the new position in each time step of the

microrobot to avoid obstacles and to move ahead to its target, while the minimi-

zation of robot's energy consumption was still maintained. The microrobot would

follow the path for which the position where the resistance from the drag force was

low in order to minimize its energy.

The results obtained with the Best-so-far ABC, the ABC, and the PSO methods

on the static obstacle environment are listed in Table 2. The \Target hit rate"

column shows the percentage of the average number of microrobots that reach the

target. The \Energy consumed" column and the \Time step used" column show the

energy consumed and the number of iterations used by microrobots to reach

the target point, respectively. The \Target hit rate" can be calculated by

Taget hit rate ¼
total number of robots that reach

the target from 30 experiments

total number of robots used in 30 experiments
� 100: ð20Þ

Fig. 12. The sample of initial search space.

Table 2. Results for the static obstacle environment.

Energy Consumed (J) Time Step Used

Method Target Hit Rate Best Average S.D. Best Average S.D.

A* search 87% 6.61E�08 7.81E�08 7.25E�09 358 423 62
Best-so-far ABC 100% 6.05E¡08 7.36E¡08 6.94E¡09 236 283 27

ABC 100% 6.52E�08 7.57E�08 7.13E�09 312 354 51

PSO 73% 6.76E�08 7.92E�08 1.22E�08 394 562 92

Fig. 13. The completed path of the microrobot.
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From Table 2, it can be seen that the Best-so-far ABC method generates either

better quality results in terms of the target hit rates, the energy consumed, and the

time step used than the A* search, the ABC, and the PSO methods or at least equal.

Microrobots control mechanism using both the Best-so-far ABC and the ABC

algorithms were able to ¯nd the target with 100% success rate whereas the A* search

and the PSO algorithms were able to ¯nd only 87% and 73% of the time, respectively.

The results also showed that the energy consumed by the microrobot based on the

Best-so-far ABC and the ABC approaches was less than that of the microrobot based

on the A* search and PSO approaches. The best and the average of the energy

consumed for the Best-so-far ABC approach are 6.05E�08 J and 7.36E�08

J whereas the ABC approach obtained 6.52E�08 J and 7.57E�08 J, the A* search

approach obtained 6.61E�08 J and 7.81E�08, and the PSO approach obtained

6.76E�08 J and 7.92E�08 J, respectively. Moreover, in terms of the time steps used,

the results showed that the microrobots based on the Best-so-far ABC technique

could reach to the target point faster than did the microrobots based on the A*

search, the ABC, and the PSO techniques. The best and the average of the time step

used for the Best-so-far ABC technique were 236 and 283 whereas the A* search

technique used 358 and 423, the ABC technique used 312 and 354, and the PSO

technique used 394 and 562, respectively. It is also apparent that the Best-so-far

ABC method was more robust than the ABC and the PSO methods as shown by the

lower standard deviations in the S.D. column on both the energy consumed and the

time step used terms.

Figure 14 shows the comparison of the convergence speed in terms of time steps

(number of iterations) for the four proposed methods on the static obstacle envi-

ronment. It shows that the Best-so-far ABC method converges to the target point

substantially faster than the A* search, the ABC, and the PSO methods with a much

smaller number of iterations needed.

Fig. 14. The convergence speed in terms of time steps under the static obstacle environment.
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6.2. Dynamic environment experiment

For this experiment, to validate the e®ectiveness of our proposed methods on dy-

namic environment, the dynamic obstacles were introduced. There were 10 static

obstacles (polygon shape) and 10 dynamic obstacles (circular shape) located at

random positions in the search space. All parameter settings were set the same as

those in the previous experiment. Figure 15 illustrates the snapshot of microrobot

trajectory from the starting point to the target point by the Best-so-far ABC

methods.

From Fig. 15, it is obvious that the microrobot controlled by our proposed

methods could ¯nd the optimal path without any collision with the obstacles. Es-

pecially for the time step from T ¼ 25 to T ¼ 50 and T ¼ 75 to T ¼ 150, the pro-

posed methods based on the collision detection and the boundary distance detection

techniques could help the microrobot to avoid collision with the dynamic obstacles

during traveling to the target point. While the proposed methods tried to control the

microrobot to avoid the dynamic obstacle, the results exhibited in Fig. 15 also show

that the proposed methods still adjusted the direction of the path for the microrobot

to travel to the position where the resistance from the drag force was low.

The results obtained with our proposed methods on the dynamic obstacle envi-

ronment are listed in Table 3.

The results from Table 3 showed that the time step used by microrobots based on

all proposed methods on the dynamic obstacle environment increased when com-

pared with that under the static environment. The increase in the number of time

steps used was caused by the microrobots waiting for a dynamic obstacle to move far

away from their directions. However, the Best-so-far ABC method still generated

better than the A* search, the ABC, and the PSO methods, or equal quality results,

in terms of the target hit rate, the energy consumed, and the time step used. The

Fig. 15. The snapshot of microrobot trajectory under dynamic environment.
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target hit rate was still 100% for the Best-so-far ABC and the ABC methods whereas

they dropped to 81% and 70% for the A* search and the PSO methods, respectively.

The best and the average of the energy consumed for the Best-so-far ABC approach

were 5.52E�08 J and 6.67E�08 J whereas the A* search obtained 6.31E�08 J and

7.33E�08 J, the ABC approach obtained 6.23E�08 J and 7.11E�08 J, and the PSO

approach obtained 6.36E�08 J and 7.63E�08 J, respectively. Moreover, the Best-so-

far ABC technique continued to give good results in terms of the time steps used

compared with the A* search, the ABC, and the PSO techniques. The best and the

average of the time step used for the Best-so-far ABC technique were 267 and 323

whereas the A* search technique used 386 and 513, the ABC technique used 354 and

437, and the PSO technique used 462 and 624, respectively.

The comparison of the convergence speeds in terms of number of iterations for the

four proposed methods on the dynamic obstacle environment is shown in Fig. 16.

From Fig. 16, it is seen that the microrobot controlled by the Best-so-far ABC

could converge to the target point faster than the A* search, the ABC, and the PSO

methods. It also consumed less energy than both the ABC and the PSO in this case.

In summary, even though all proposed algorithms have a similar search process

based on heuristic method, the A* search, the Best-so-far ABC and the ABC

methods could provide better results than the PSO method. However, the A* search

algorithm has characteristic of slow search speed and can easily fall into the failed

Fig. 16. The convergence speed in terms of time steps under the dynamic obstacle environment.

Table 3. The results on the dynamic obstacle environment.

Energy Consumed (J) Time Step Used

Method Target Hit Rate Best Average S.D. Best Average S.D.

A* search 81% 6.31E�08 7.33E�08 6.84E�08 386 513 73

Best-so-far ABC 100% 5.52E¡08 6.67E¡08 5.92E¡09 267 323 35
ABC 100% 6.23E�08 7.11E�08 6.27E�09 354 437 57

PSO 70% 6.36E�08 7.63E�08 7.13E�09 462 624 94
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search state when trap obstacles are met in the unknown environments. The Best-so-

far ABC and the ABC methods have both the exploitation and the exploration in

their search process, while the PSO method only has the exploitation. The exploi-

tation is handled by employed bees and onlooker bees, while the exploration is

maintained by scout bees in the Best-so-far ABC and the ABC methods. If some

directions of microrobot become trapped at any obstacle, the scout bees will try to

randomly search the new direction again. Microrobots based on both the Best-so-far

ABC and the ABC methods can achieve 100% target hit rate and provide low energy

consumption as compared with the microrobots based on the A* search and the PSO

methods.

7. Conclusions

Target ¯nding and obstacle avoiding mechanisms based on swarm intelligence

algorithms were employed in this work to design a microrobot for optimally deliv-

ering drugs to the target cell. Collision detection based on intersection lines concept

and boundary distance detection based on Point-Line distance concept were used to

avoid obstacles in microrobot's paths.

The swarm intelligence algorithms used in this work are the ABC algorithm, the

Best-so-far ABC algorithm, and the PSO algorithm. The performance of the three

methods was then compared together under the same parameter setting under

various obstacle environments. In addition, forces that drive or resist blood °ow, as

well as pressure and °ow in blood vessels, were considered to somewhat mimic the

realistic environment. The target hit rate, the energy consumption, and the number

of time steps used were set as the objectives in this drug delivery process. The results

showed that the Best-so-far ABC and the ABC algorithms can be used to ¯nd the

optimal path for the microrobots to deliver drug to the target better than the PSO

algorithm. The microrobots can follow this optimal path to minimize their energy

consumption and the time step used to reach the target point, as well as to avoid the

biological obstacles.

In addition, the results on both static and dynamic environments also showed the

evidence that the Best-so-far ABC method can help microrobots avoid any collision

with obstacles while still continuing on the optimal path, leading toward convergence

on the target faster than the ordinary ABC method. Microrobot's control mechanism

using the Best-so-far ABC method is thus e®ective.

All in all, the major contribution of this work is the successful development of an

e®ective and robust method with faster convergence for drug delivery problem, in

which the concept of swarm intelligence is utilized to optimize the energy con-

sumption used by microrobots to reach the target in an unknown environment with

moving obstacles. However, there is still room for improvement in the capability of

the proposed methods. In the future work, the drug delivery in the three-dimensional

environments will be studied and the sensitivity of the parameter settings on the

proposed algorithms will be addressed.

A. Banharnsakun, T. Achalakul & R. C. Batra

1650006-22

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
E

IZ
M

A
N

N
 I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 o

n 
06

/1
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



Acknowledgments

This work is partially supported by Faculty of Engineering at Sriracha, Kasetsart

University Sriracha Campus (2558/1).

References

1. A. Cavalcanti and R. A. Freitas, Nanorobotics control design: A collective behavior
approach for medicine, IEEE Trans. Nanobiosci. 4 (2005) 133–140.

2. G. M. Patel, G. C. Patel, R. B. Patel, J. K. Patel and M. Patel, Nanorobot: A versatile
tool in nanomedicine, J. Drug Target. 14 (2006) 63–67.

3. A. Cavalcanti, B. Shirinzadeh, R. A. Freitas and T. Hogg, Nanorobot architecture for
medical target identi¯cation, Nanotechnology 19 (2008) 1–12.

4. P. Dario, M. C. Carrozza, L. Lencioni, B. Magnani and S. D'Attanasio, Micro robotic
system for colonoscopy, in Proc. IEEE Int. Conf. Robotics and Automation (1997),
pp. 1567–1572.

5. K. Ishiyama, M. Sendoh and K. I. Arai, Magnetic micromachines for medical applications,
J. Magn. Magn. Mater. 242–245 (2002) 41–46.

6. C. Yu, J. Kim, H. Choi, J. Choi, S. Jeong, K. Cha, J.-O. Park and S. Park, Novel
electromagnetic actuation system for three-dimensional locomotion and drilling of in-
travascular microrobot, Sens. Actuators A: Phys. 161 (2010) 296–304.

7. B. J. Nelson, I. K. Kaliakatsos and J. J. Abbott, Microrobots for minimally invasive
medicine, Annu. Rev. Biomed. Eng. 12 (2010) 55–85.

8. A. Stentz, Optimal and e±cient path planning for partially-known environments, in
Proc. IEEE Int. Conf. Robotics and Automation (1994), pp. 3310–3317.

9. M. S. G. Tsuzuki, T. C. Martins and F. K. Takase, Robot path planning using simulated
annealing, in 12th IFAC Symp. Information Control Problems in Manufacturing, (2006),
pp. 173–178.

10. W. M. Tao and M. Zhang, A genetic algorithm-based area coverage approach for con-
trolled drug delivery using microrobots, Nanomedicine 1 (2005) 91–100.

11. M. Brand, M. Masuda, N. Wehner and X.-H. Yu, Ant colony optimization algorithm for
robot path planning, in Proc. 2010 Int. Conf. Computer Design and Applications (2010),
pp. 436–440.

12. N. Ganganath, C.-T. Cheng, C. K. Tse, An ACO-based o®-line path planner for non-
holonomic mobile robots, in Proc. IEEE Int. Symp. Circuits and Systems (2014), pp.
1038–1041.

13. Y. Q. Qin, D. B. Sun, M. Li and Y. G. Cen, Path planning for mobile robot using the
particle swarm optimization with mutation operator, in Proc. Int. Conf. Machine
Learning and Cybernetics, Vol. 4 (2004), pp. 2473–2478.

14. X. Chen and Y. Li, Smooth path planning of a mobile robot using stochastic particle
swarm optimization, in Proc. IEEE on Mechatronics and Automation (2006), pp. 1722–
1727.

15. Q. Zhang and S. Li, A global path planning approach based on particle swarm optimi-
zation for a mobile robot, in Proc. 7th WSEAS Int. Conf. Robotics, Control, and
Manufacturing Technology (2007), pp. 263–267.

16. K. H. S. Hla, Y. Choi and J. S. Park, Obstacle avoidance algorithm for collective
movement in nanorobots, Int. J. Comput. Sci. Netw. Secur. 8 (2008) 302–309.

17. Y. Zhang, D.-W. Gong and J.-H. Zhang, Robot path planning in uncertain environment
using multi-objective particle swarm optimization, Neurocomputing 103 (2013) 172–185.

Drug Delivery Based on Swarm Microrobots

1650006-23

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
E

IZ
M

A
N

N
 I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 o

n 
06

/1
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



18. B. B. V. L. Deepak, D. R. Parhi and B. M. V. A. Raju, Advance particle swarm opti-
mization-based navigational controller for mobile robot, Arab. J. Sci. Eng. 39 (2014)
6477–6487.

19. S. Chandrasekarn and D. F. Hougen, Swarm intelligence for cooperation of bio-nano
robots using quorum sensing, in Proc. BioMicro and Nanosystems Conf. (2006), pp.
15–18.

20. Md. A. Hossain and I. Ferdous, Autonomous robot path planning in dynamic environ-
ment using a new optimization technique inspired by bacterial foraging technique, Robot.
Auton. Syst. 64 (2015) 137–141.

21. P. K. Mohanty and D. R. Parhi, Cuckoo search algorithm for the mobile robot navigation,
in Proc. 4th Int. Conf. Swarm, Evolutionary and Memetic Computing (2013), pp. 527–
536.

22. A. Banharnsakun, T. Achalakul and R. C. Batra, Target ¯nding and obstacle avoidance
algorithm for microrobot swarms, in Proc. 2012 IEEE Int. Conf. Systems, Man, and
Cybernetics (2012), pp. 1610–1615.

23. D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical
Report-TR06, Computer Engineering Department, Erciyes University, Turkey, 2005.

24. A. Banharnsakun, T. Achalakul and B. Sirinaovakul, The best-so-far selection in arti¯cial
bee colony algorithm, Appl. Soft Comput. 11 (2011) 2888–2901.

25. J. Kennedy and R. C. Eberhart, Particle swarm optimization, in Proc. 1995 IEEE Int.
Conf. Neural Networks, Vol. 4 (1995), pp. 1942–1948.

26. Y. C. Fung, Biomechanics: Circulation, 2nd edn. (Springer, New York, 1996).
27. J. B. Franzini and E. J. Finnemore, Fluid Mechanics, 9th edn. (McGraw-Hill, New York,

1997).
28. K. B. Yesin, K. Vollmers and B. J. Nelson, Modeling and control of untethered biomi-

crorobots in a °uidic environment using electromagnetic ¯elds, Int. J. Robot. Res. 25
(2006) 527–536.

29. R. K. Soong, G. D. Bachand, H. P. Neves, A. G. Olkhovets, H. G. Craighead and C. D.
Montemagno, Powering an inorganic nanodevice with a biomolecular motor, Science 290
(2000) 1555–1558.

30. S. Takeuchi and I. Shimoyama, Selective drive of electrostatic actuators using remote
inductive powering, Sens. Actuators A 95 (2002) 269–273.

31. C. Sauer, M. Stanacevic, G. Cauwenberghs and N. Thakor, Power harvesting and te-
lemetry in CMOS for implanted devices, IEEE Trans. Circuits Syst. 52 (2005) 2605–
2613.

32. H. Aubert, RFID technology for human implant devices, C. R. Phys. 12 (2011) 675–683.
33. L. Rubinstein, A practical nanorobot for treatment of various medical problems, in Proc.

8th Foresight Conf. Molecular Nanotechnology, Vol. 2 (2002), pp. 208–214.
34. J. C. Biesmeijer and T. D. Seeley, The use of waggle dance information by honey bees

throughout their foraging careers, Behav. Ecol. Sociobiol. 59 (2005) 133–142.
35. D. Karaboga and B. Basturk, A powerful and e±cient algorithm for numerical function

optimization: Arti¯cial bee colony (ABC) algorithm, J. Glob. Optim. 39 (2007) 459–471.
36. A. Banharnsakun, T. Achalakul and B. Sirinaovakul, Job shop scheduling with the best-

so-far ABC, Eng. Appl. Artif. Intell. 25 (2012) 583–593.
37. A. Banharnsakun, B. Sirinaovakul and T. Achalakul, The best-so-far ABC with multiple

patrilines for clustering problems, Neurocomputing 116 (2013) 355–366.
38. A. Banharnsakun, B. Sirinaovakul and T. Achalakul, The performance and sensitivity of

the parameters setting on the best-so-far ABC, in The Ninth Int. Conf. Simulated Evo-
lution and Learning, eds. L. T. Bui et al., (Springer, Berlin, 2012), pp. 248–257.

A. Banharnsakun, T. Achalakul & R. C. Batra

1650006-24

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
E

IZ
M

A
N

N
 I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 o

n 
06

/1
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



39. P. E. Hart, N. J. Nilsson and B. Raphael, A formal basis for the heuristic determination of
minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (1968) 100–107.

40. J. Yao, C. Lin, X. Xie, A. J. Wang and C. C. Hung, Path planning for virtual human
motion using improved A* algorithm, in Proc. Seventh Int. Conf. Information Technol-
ogy: New Generations (2010), pp. 1154–1158.

41. J. Cutnell and K. Johnson, Physics, 4th edn. (Wiley, California, 1998).
42. R. Glaser, Biophysics, 4th edn. (Springer, New York, 2001).
43. K. B. Chandran, A. P. Yoganathan and S. E. Rittgers, Bio°uid Mechanics: The Human

Circulation (CRC/Taylor and Francis, Boca Raton, 2007).

Drug Delivery Based on Swarm Microrobots

1650006-25

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
E

IZ
M

A
N

N
 I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 o

n 
06

/1
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.


