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Abstract

This paper develops efficient ensemble Kalman filter (EnKF) im-
plementations based on shrinkage covariance estimation. The forecast
ensemble members at each step are used to estimate the background
error covariance matrix via the Rao-Blackwell Ledoit and Wolf esti-
mator, which has been developed specifically developed to approxi-
mate high-dimensional covariance matrices using a small number of
samples. Additional samples are taken from the normal distribution
described by the background ensemble mean and the estimated back-
ground covariance matrix in order to increase the size of the ensemble
and reduce the sampling error of the filter. This increase in the size
of the ensemble is obtained without running the forward model. Af-
ter the assimilation step, the additional samples are discarded and
only the initial members are propagated. Two implementations are
considered. In the EnKF Full-Space (EnKF-FS) approach the as-
similation process is performed in the model space, while the EnKF
Reduce-Space (EnKF-RS) formulation performs the analysis in the
subspace spanned by the ensemble members. Numerical experiments
carried out with a quasi-geostrophic model show that the proposed
implementations outperform current methods such as the traditional
EnKF formulation, square root filters, and inflation-free EnKF imple-
mentations. The proposed implementations provide good results with
small ensemble sizes (∼ 10) and small percentages of observed com-
ponents from the vector state. These results are similar (and in some
cases better) to traditional methods using large ensemble sizes (∼ 80)
and large percentages of observed components. The computational
times of the new implementations remain reasonably low.

Keywords: EnKF, shrinkage covariance estimation, background errors,
square root filter

1 Introduction

Sequential data assimilation estimates the current unknown state xtrue ∈
R
n×1 of a physical system as follows. The background (prior) state xb ∈ Rn×1

is given by a physical model initialized with the best estimate of the state at
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a previous time:

xb ≡ xcurrent =Mtprevious→tcurrent (xprevious) . (1)

The background errors are assumed to be unbiased and normally distributed

ξ = xb − xtrue ∈ N (0n, B) (2)

where n is the dimension of the model state, 0q is the vector in the q-
dimensional space whose components are all zeros, and B ∈ Rn×n is the
unknown background error covariance matrix. Observations of the true state
are taken

y = H
(
xtrue

)
+ ε ∈ Rm×1 , (3)

where H : Rn×1 → R
m×1 is the observation operator, and m is the number

of observed components. The observational errors are assumed to be nor-
mally distributed ε ∼ N (0m, R), where R ∈ Rm×m is the observation error
covariance matrix that is assumed to possess a simple structure (e.g., block
diagonal) and therefore its inverse can be easily computed.

Under the Gaussian assumption on data and model errors the negative
logarithms of the a posteriori probability density is the 3D-Var cost function
[31]:

J (x) =
1

2
·
∥∥x− xb

∥∥2
B−1 +

1

2
· ‖y −H (x)‖2R−1 . (4)

The maximum likelihood estimate of the state is obtained by minimizing the
cost function (4), i.e., the analysis state xa ∈ Rn×1 is the solution of the
following optimization problem:

xa = arg min
x

J (x) . (5)

The solution of (5) over the subspace spanned by the ensemble members is:

xa = xb + Ψ ·αB , (6)

where Ψ = B1/2 is a set of basis vectors satisfying Ψ ΨT = B, and the vector
of weights is given by

αB = VT
B ·
(
R + VB ·VT

B

)−1 · (y −H(xb)
)
, (7)
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where VB = H·Ψ ∈ Rm×n and H = H′. By propagating in time the analysis
(6) a new prior (background) state is obtained for the next assimilation cycle.

Since B is unknown the direct use of (6) is infeasible. Methods for esti-
mating the background error covariance matrix have been developed [13, 21].
However, in the absence of prior information about the true structure of B
biased estimators are often obtained. Buhener [7] discusses the impact of
having biased estimators for the background errors in the assimilation pro-
cess. AIn the context of sequential data assimilation an ensemble of model
realizations [18] is built in order to represent the background error statistics:

Xb =
[
xb1, xb2, . . . ,x

b
N

]
∈ Rn×N , (8)

where xbi ∈ Rn×1 is the i-th ensemble member (model run) in the background
stage. Estimates of xb and B are obtained via the empirical moments of the
ensemble (8)

xb ≈ xb =
1

N
·
N∑
i=1

xbi ∈ Rn×1 , (9)

and

B ≈ Pb = S · ST ∈ Rn×n , (10)

where the matrix of scaled member deviations is

S =
1√

N − 1
·
[
Xb − xb ⊗ 1TN

]
∈ Rn×N , (11)

where 1q is the vector in the q-th dimensional space whose components are
all ones. The set of basis vectors (11) does not span the full space of model
errors. By replacing the estimators (9) and (10) in (6), the analysis can be
approximated as follows:

xa ≈ xa = xb + S ·α ∈ Rn×1 , (12)

where

α = V ·
(
R + V ·VT

)−1 · (y −H(xb)
)
∈ RN×1 , (13)

and V = H · S ∈ Rm×N . The analysis state (12) is the optimal solution
in the space spanned by the ensemble members (8), but in general it is not
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optimal in the model space. Since n � N information contained in (7) is
not represented by the set of basis vectors S. From another point of view,
the ensemble covariance matrix Pb is rank deficient and therefore there are
insufficient degrees of freedom to explain the full error. This problem can
be alleviate by making use of localization techniques [9, 14, 25]. However,
since the structure of B remains unknown, the use of localization generally
increases the bias in the background error estimation.

There is an opportunity to avoid the intrinsic need of inflation in ensemble
based methods by replacing the covariance matrix (10) with a more accurate
and well-conditioned estimate of B. We do not want to impose any kind of
structure on B since it will make our approach sensitive to problems faced by
current implementations. Instead, we seek to capture most of the informa-
tion contained in the ensemble. Shrinkage covariance estimators developed
to estimate high-dimensional covariance matrices from a small number of
samples [30] fit very well in the context of sequential data assimilation.

The remaining part of the paper is organized as follows. Section 2 re-
views ensemble based data assimilation and shrinkage covariance estimation.
In section 3 the two novel implementations of the ensemble Kalman filter
based on shrinkage covariance estimation are proposed. Experimental re-
sults making use of a quasi-geostrophic model are given in section 4. Section
5 summarizes the conclusions of this work.

2 Background

In this section we review relevant concepts with regard to shrinkage covari-
ance estimation and ensemble based methods in sequential data assimilation.

2.1 Covariance estimation

Many problems in science and engineering require an estimate of a covariance
matrix and/or its inverse, where the matrix dimension n is large compared to
the sample size N . Different applications ranging from variational [14, 24] to
sequential [9, 41] data assimilation rely on accurately estimated covariance
matrices.

Let {s1, s2, . . . , sN} be a sample of independent identical distributed n-
dimensional Gaussian vectors

si ∼ N (0n, Q) ∈ Rn×1.
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A common approach is to estimate Q ∈ Rn×n by the sample covariance
matrix Cs

Cs =
1

N − 1
·
N∑
i=1

si ⊗ sTi ∈ Rn×n . (14)

Cs is the maximum likelihood estimator when it is invertible [30]. However,
under the condition n � N , this is not the case. The simpler thing to do
in order to deal with the rank-deficiency of Cs is to impose some structure
(i.e., localization in ensemble based methods). However, in the absence of
prior information about the true structure of Q, Cs will poorly describe the
correlations between different components of the samples {si}1≤i≤N . In or-
der to improve estimation of covariance matrices many methods have been
proposed in the literature based on tapering procedures [8, 10], minimiz-
ing the log-determinant divergence [36], and greedy methods [27]. Another
class of well-conditioned estimators is based on shrinkage approximations
[4, 15, 16, 19, 20, 35]. These approximations express the estimated covari-
ance matrix as a weighted average of some target matrix T ∈ Rn×n and the
empirical covariance matrix (14). To better understand this assume that the
components of si are uncorrelated for 1 ≤ i ≤ N . A simple estimate of Q is
given by

T =
tr (Cs)

n
· In×n ,

where In×n is the identity matrix in the n-dimensional space. Note that
this structure will reduce the variance but will increase the bias when the
diagonal assumption is not fulfilled. A reasonable trade-off is achieved by
the shrinkage of Cs towards T and provides the followng class of estimators

Ĉ = γ ·T + (1− γ) ·Cs ∈ Rn×n , (15)

where γ ∈ [0, 1]. The problem is then reduced to find an optimal value for γ
in which the squared loss

E
[∥∥∥Ĉ−Q

∥∥∥2
F

]
(16)

is minimized, where ‖•‖F denotes the Frobenius norm. There are many
shrinkage based estimators derived from the minimization of (16) subject to
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(15). We restrict our exploration to three well-accepted methods: the Ledoit
and Wolf estimator [30], the Rao-Blackwell Ledoit and Wolf estimator [11]
and the oracle approximating shrinkage estimator [11, 12].

The distribution-free Ledoit and Wolf (LW) estimator [30] has been proven
more accurate than the sample covariance matrix and some estimators pro-
posed in finite sample decision theory. Moreover, it is better conditioned
than the true covariance matrix [30]. The optimal γ value proposed by this
estimator is

γLW = min

∑N
i=1

∥∥Cs − si ⊗ sTi
∥∥2
F

N2 ·
[
tr (C2

s)−
tr2(Cs)

n

] , 1

 (17)

and the LW estimator ĈLW is obtained by using γLW in (15).
The Rao-Blackwell Ledoit and Wolf (RBLW) estimator [11, 12] provably

improves the LW method under Gaussian assumptions. The motivation of
this estimator is that, under Gaussian assumptions, all the information re-
quired in order to get a well-conditioned estimate of Q is contained in Cs.
The proposed value for γ is

γRBLW = min

 N−2
n
· tr (C2

s) + tr2 (Cs)

(N + 2) ·
[
tr (C2

s)−
tr2(Cs)

n

] , 1

 (18)

and the corresponding estimator ĈRBLW is obtained by replacing (18) in the
equation (15). In addition, in [12, Theorem 2], it is proven that

E
[∥∥∥ĈRBLW −Q

∥∥∥2
F

]
≤ E

[∥∥∥ĈLW −Q
∥∥∥2
F

]
,

which rigorously shows the RBLW estimator to be a better approximation
of Q than the LW estimator under the Gaussian assumption.

The oracle approximating shrinkage (OAS) estimator [11] is an iterative
approximation of the unimplementable oracle method [11, Section 3]. The
optimal γ at each iteration j is given by

Ĉj = γj ·T + (1− γj) ·Cs , (19a)

γj+1 =

(
1− 2

n

)
· tr
(
Ĉj ·Cs

)
+ tr2

(
Ĉj

)
(
N + 1− 2

n

)
· tr
(
Ĉj ·Cs

)
+
(
1− N

n

)
· tr2

(
Ĉj

) (19b)
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where the initial estimator Ĉ0 can be any estimator (i.e., the LW, the RBLW,
or even the sample covariance matrix).

All the estimators presented in this section provide well-conditioned ap-
proximations to the unknown covariance matrix Q. We center our attention
on the RBLW estimator since in high dimensional problems, such those found
in data assimilation, this estimator can be implemented easily, and under the
Gaussian assumption it provides better approximations than the LW estima-
tor.

2.2 Sequential data assimilation methods

Ensemble data assimilation methods are widely used in applications to weather,
oceanography, and climatology [42]. These methods represent the back-
ground error statistics by the empirical moments of the ensemble (9) and
(10)[22]. The trajectory of each ensemble member and the dispersion of the
overall ensemble around the background state provide meaningful informa-
tion about the background error distribution. One of the most important
advantages of ensemble DA is the flow-dependent forecast error covariance
matrix [7]. When observations are available the analysis state (12) is com-
puted. The next step is to generate an ensemble which describes the analysis
uncertainty around this optimal state. We briefly discuss three implementa-
tions that achieve this, the ensemble square root filter, the ensemble trans-
form Kalman filter, and the (basic) ensemble Kalman filter.

In ensemble square root filters [39], the new analysis ensemble in the
analysis is built as follows:

Xa = xa ⊗ 1TN + S ·
[
IN×N −VT ·

(
R + V ·VT

)−1 ·V]1/2 ∈ Rn×N . (20)

As expected the analysis ensemble members live in the subspace space spanned
by the background ensemble, this is, the space spanned by the columns of
S. All possible information that can be obtained from the model states is
contained in this set of basis vectors.

The covariance matrix in the observation space is

Wobs = R + V ·VT ∈ Rm×m , (21)

the linear system Wobs · ZV = V ∈ Rm×N can be solved via the iterative
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Sherman Morrison formula (ISMF) [32]

h(k) =
(

1 + vTk · u
(k−1)
k

)−1
· u(k−1)

k ∈ Rm×1 (22a)

Z(k) = Z(k−1) − h(k) ·
[
vTk · Z(k−1)] ∈ Rm×N (22b)

U(k) = U(k−1) − h(k) ·
[
vTk ·U(k−1)] ∈ Rm×N (22c)

for 1 ≤ k ≤ N , where Z(0) = R−1 ·
(
y −H · xb

)
and U(0) = R−1 ·V. The

implementation (22) requires no more than O (N2 ·m) long computations,

where vk and u
(k−1)
k are the k-th column of the matrices V and U

(k−1)
k ,

respectively. Moreover, by applying the singular value decomposition to

VT · ZV = UZ ·ΣZ ·UT
Z ∈ RN×N ∈ RN×N , (23)

the square root in (20)

Γ = UZ · [IN×N −ΣZ]1/2 ·UT
Z ,

can be efficiently computed with no more than O (N3) long computations.
Another widely used square root filter implementation is the ensemble

transform Kalman filter (EnTKF) [33]. By making use of the matrix identity

I−V ·
[
R + V ·VT

]−1 ·VT =
[
I + V ·R ·VT

]−1 ∈ Rm×m , (24)

and the singular value decomposition

VT = UV · Σ̂V ·VT
V ∈ RN×m , (25)

the analysis state (12) can be written as follows

xa = xb + S · β (26)

with the optimal weights β ∈ RN×N given by

β = UV · Σ̂V ·
(
IN×N + Σ̂

T

V · Σ̂V

)−1
·VT

V ·
√

R ·
(
y −H · xb

)
. (27)

The new ensemble members are built as follows

Xa = xa ⊗ 1TN + S ·UV ·
[
IN×N + Σ̂V · Σ̂

T

V

]1/2
·UT

V. (28)

9



In the ensemble Kalman filter (EnKF) [17] each ensemble member (8) and
the observations (3) are treated as random variables, and the i-th ensemble
member is updated as follows:

xai = xbi + S · βi ∈ Rn×1 , i = 1, . . . , N , (29)

where the optimal weights for i-th ensemble member are given by

βi = ·VT ·
(
R + V ·VT

)−1 · [ysi −H · xbi
]
∈ RN×1 (30)

and

ysi ∼ N (y, R) , (31)

The addition of the perturbed observations (31) in the analysis provides
asymptotically correct analysis-error covariance estimates for large ensem-
ble sizes and makes the formulation of the EnKF statistical consistent [40].
However, it also has been proven that the inclusion of perturbed observations
introduces sampling errors in the assimilation [2, 29].

One of the important problems faced by current ensemble based methods
is filter divergence due to the insufficient degrees of freedom (N � n). To
alleviate this deficiency localization is used to impose structure on the sample
covariance matrix (10) according to the physics of the model. Intuitively, the
correlations between individual model variable errors decays with distance,
e.g., exponentially:

ρij = exp

(
−d (i, j)2

2 · L2

)
, (32)

where d (i, j) is the physical distance between the locations of the i-th and
j-th model components, and L is the localization radius. The localized co-
variance matrix is obtained as

Pb
Loc = ρ ◦Pb ∈ Rn×n. (33)

where ◦ is the Schur product. This method can be impractical since it relies
on the explicit computation of Pb. Moreover, there are no guaranties that
this method captures the true structure of B. More sophisticated covari-
ance estimation methods have been proposed in the context of data assim-
ilation. A classic approximation is the Hollingworth and Lonnberg method
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[25] in which the difference between observations and background states are
treated as a combination of background and observations errors. However,
this method provides statistics of background errors in observation spaces,
requires uniform observing network (not the case in practice), and the re-
sulting statistics are biased towards data-dense areas. Another method has
been proposed by Benedetti and Fisher [3] based on forecast differences in
which the spatial correlations of background errors are assumed to be similar
at 24 and 48 hours forecasts. This method can be efficiently implemented in
practice, however, it does not perform well in data-sparse regions, and the
statistics provided are a mixture of analysis and background errors. Since
the structure of B remains unknown, assumptions made about its structure
may increase the bias in the estimate. Furthermore, the balance of variables
in the model with some physical meaning can be disturbed when localization
is utilized [34].

A different approach is based on the 3D-Var cost function in the ensemble
space. Any vector x ∈ Rn×1 in the ensemble subspace can be written as

x = xb + U ·α (34)

where U is the matrix of anomalies

U =
[
xb1 − xb, xb2 − xb, . . . , xbN − xb

]
∈ Rn×N , (35)

and α ∈ RN×1 is a vector to be determined. The columns of U and S span
the same space. Using (34) the 3D-Var cost function (4) in the ensemble
space reads

Jens (α) =
1

2
· ‖U ·α‖2B−1 +

1

2
· ‖-.Q ·α‖

2
R−1 , (36)

where the optimal value of the control variable α

α∗ = arg min
α

Jens (α) , (37)

provides the analysis state in (34)

xa = xb + U ·α∗ . (38)

Two recent formulations based on this approximation are the finite size
anddual ensemble Kalman filters [6]. These formulation avoid the intrin-
sic needed of inflation by choosing Jeffrey’s prior for background errors:

P
(
xb,B

)
= PJ

(
xb
)
· PJ (B) ,
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where the parameters xb and B are assumed to be independent.
In the case of the finite size ensemble Kalman filter (EnKF-N) the cost

function in the ensemble space reads

J fn
ens (α) =

1

2

∥∥y −H (xb + U ·α
)∥∥2

R−1 +
N

2
· log

(
1 +

1

N
+ ‖α‖2

)
. (39)

Minimization of this cost function provides the optimal weights in the en-
semble space

α∗ = arg min
α

J fn
ens (α) , (40)

and the analysis is computed via (38). The projection of the analysis co-
variance matrix on the ensemble space is approximated by the inverse of the
Hessian of (39) at the optimal value (40). The Hessian reads:

∇2
α,αJ fn

ens (α) = [H ·U]T ·R−1 ·H ·U (41)

+ N ·
(
1 + 1

N
+ ‖α‖2

)
· IN×N − 2 ·α ·αT(

1 + 1
N

+ ‖α‖2
)2 ∈ RN×N .

The analysis ensemble is generated as follows:

Xa = xa ⊗ 1TN + U ·
{

(N − 1) ·
[
∇2

α,αJ fn
ens (α∗)

]−1}1/2

·Φ ∈ Rn×N , (42)

where Φ ∈ RN×N is an arbitrary orthogonal matrix which preserves the
ensemble mean (9).

Another approach is based on the dual formulation of the cost function
(41) [6]

Ddu
ens (ζ) =

∥∥y −H · xb
∥∥2
Wζ

−1 + ζ ·
(

1 +
1

N

)
+N · log

(
N

ζ

)
−N , (43)

where the weighted covariance matrix Wζ reads

Wζ = R +
1

ζ
·V ·VT ∈ Rm×m. (44)

The dual optimization problem is one-dimansional

ζ∗ = arg min

ζ∈
(
0, N

1+ 1
N

]Ddu
ens (ζ) subject to ζ ∈

(
0,

N

1 + 1
N

]
. (45)
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The optimal state is computed as follows:

xa = xb + U ·
[
VT ·R−1 ·V + ζ∗ · IN×N

]−1 ·VT ·R−1 ·
[
y −H · xb

]
, (46)

and the following analysis ensemble is built:

Xa = xa ⊗ 1TN + U ·
{

(N − 1) ·
[
VT ·R−1 ·V + ζ∗ · IN×N

]−1}1/2

·Φ. (47)

In this paper we consider a different representation of the background
error statistics by making use of shrinkage covariance estimation. The idea
is not to impose any structure on Pb but to obtain a well-conditioned es-
timator B̂ of the background error covariance matrix B wherein using all
the possible information brought from the ensemble members. Samples from

the distribution N
(
xb, B̂

)
are taken in order to better represent the error

statistics and to increase the number of degrees of freedom. Two novel EnKF
implementations based on the Rao-Blackwell Ledoit and Wolf estimator are
presented in the next section.

3 Ensemble Filters Based on Shrinkage Co-

variance Estimators

In this section, we propose two efficient implementations of the EnKF based
on the RBLW estimator (18). As mentioned before, we do not impose any
kind of structure on Pb since the information brought by the ensemble mem-
bers is more than only background errors

Pb = B + Q + C ∈ Rn×n ,

where Q is the covariance of model errors and C ∈ Rn×n is the covariance
matrix of additional errors whose sources are unknown for us. Errors coming
from different sources are assumed to be uncorrelated. We seek to exploit the
information brought by ensemble members and use the RBLW covariance es-
timator (18) to build a covariance matrix that captures all error correlations.
The standard form of this estimatordepends on the explicit representation of
Pb. The efficient implementation for high-dimensional covariance matrices
presented in section 3.1 avoids the explicit computation of Pb. Section 3.2
discusses two EnKF implementations based on the RBLW estimator. Sec-
tion 3.3 develops an efficient sampling method in high dimensions for drawing
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samples from the prior error distribution based on the RBLW estimate. Fi-
nally, section 3.4 discusses the similarities and differences between the two
proposed implementations.

3.1 RBLW estimator for covariance matrices in high-
dimensions

Consider the sample covariance matrix (10). In the context of data assimi-
lation the RBLW estimator (15),(18) reads

B̂ = γB̂ · µB · I + (1− γB̂) ·Pb ∈ Rn×n , (48a)

where

µB̂ =
tr
(
Pb
)

n
, (48b)

γB = min

 N−2
n
· tr
([

Pb
]2)

+ tr2
(
Pb
)

(N + 2) ·
[
tr
(

[Pb]2
)
− tr2(Pb)

n

] , 1

 . (48c)

Since the dimension of the model state is high (n ∼ O (107)), the direct
computation of (52) is impractical as it requires the explicit representation
of the sample covariance matrix Pb. An alternative manner to compute
tr
(
Pb
)

and tr
(
[Pb]2

)
is proposed. Consider the eigenvalue decomposition of

Pb

Pb = UPb ·ΣPb ·UT
Pb ∈ R

n×n , (49)

where ΣPb ∈ Rn×n is a diagonal matrix whose diagonal components σi, for
1 ≤ i ≤ n, are the eigenvalues of Pb and UPb ∈ Rn×n is a set of orthogonal
basis vectors spanning the ensemble space (since Pb is rank deficient). By

definitiont tr
(
Pb
)

=
∑n

i=1 σi and tr
([

Pb
]2)

=
∑n

i=1 σ
2
i . Since there are only

N − 1 eigenvalues different from zero we obtain:

tr
(
Pb
)

=
N−1∑
i=1

σi , tr
([

Pb
]2)

=
N−1∑
i=1

σ2
i ,
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and the computations in the set of equations (48) can be efficiently performed
whenever the first N − 1 eigenvalues of Pb can be easily obtained. Consider
the singular value decomposition (SVD) for the set of basis vectors (11)

S = US · Σ̂S ·VT
S ∈ Rn×N , (50)

where Σ̂S ∈ Rn×N is a diagonal matrix holding the singular values σ̂i of S,
for 1 ≤ i ≤ N . Likewise, US ∈ Rn×n and VS ∈ RN×N are the left and right

singular vectors, respectively. Since Pb = S ·ST we have ΣPb = Σ̂S · Σ̂
T

S and

tr
(
Pb
)

=
N−1∑
i=1

σi =
N−1∑
i=1

σ̂i
2,

tr
([

Pb
]2)

=
N−1∑
i=1

σ2
i =

N−1∑
i=1

σ̂i
4.

The computational effort of the SVD decomposition (50) is O (N2 · n). The
traces in (48) can be computing without calculating the sample covariance
matrix Pb by making use of the inexpensive SVD decomposition of S. None
of the singular vector of S are required, but only the singular values σ̂i, for
1 ≤ i ≤ N − 1. The parameter values in (48) are computed as follows:

µB̂ =

∑N−1
i=1 σ̂i

2

n
, (51a)

γB = min

 N−2
n
·
∑N−1

i=1 σ̂i
4 +

[∑N−1
i=1 σ̂i

2
]2

(N + 2) ·
[∑N−1

i=1 σ̂i
4 − [

∑N−1
i=1 σ̂i

2]
2

n

] , 1

 . (51b)

With ϕ = µB̂ · γB̂ and δ = 1− γB̂ the estimated covariance matrix (48) is

B̂ = ϕ · In×n + δ · S · ST ∈ Rn×n . (52)

3.2 EnKF implementations based on the RBLW esti-
mator

By replacing the estimated error covariance matrix (52) in (29), the EnKF
analysis in matrix form becomes

Xa = Xb + B̂ ·HT ·
(
R + H · B̂ ·HT

)−1
·D ∈ Rn×N , (53)
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where the matrix of innovations D ∈ Rm×N is

D =
[
ys1 −H · xb1, ys2 −H · xb2, . . . , ysN −H · xbN

]
(54)

and the data ysi for 1 ≤ i ≤ N is drawn from the distribution (31). We have

Xa = Xb +
(
ϕ · In×n + δ · S · ST

)
·HT

·
(
R + H ·

(
ϕ · In×n + δ · S · ST

)
·HT

)−1 ·D
Xa = Xb + E ·Π · ZB̂ + ϕ ·HT · ZB̂, (55)

where E =
√
δ ·S ∈ Rn×N , Π = H ·E ∈ Rm×N , and ZB̂ ∈ Rm×N is given by

the solution of the linear system(
Γ + Π ·ΠT

)
· ZB = D , (56)

Γ = R + ϕ ·H ·HT ∈ Rm×m.

When H possesses a simple structure (e.g., indexes to observed components
from vector states) the matrix Γ also has a simple structure (since in practice

R is block diagonal). By letting U(0) = Γ−1 ·Π ∈ Rm×N and Z
(0)
B = Γ−1 ·D,

the linear system (56) can be efficiently solved via the ISMF with no more
than O (N2 ·m) long computations. When Γ has no special structure its
inverse can be calculated off-line.

In order to obtain a better representation of the background error statis-
tics (uncertainty) about the background state (9) additional samples can be
taken from the distribution

x̃bi ∼ N
(
xb, B̂

)
∈ Rn×1 , 1 ≤ i ≤ K. (57)

This yields to a new ensemble formed of two kinds of members, real and
synthetic. The real members {xbi}Ni=1 are obtained by model propagation of
the previous analysis ensemble. The synthetic members {x̃bi}Ki=1 are artifi-
cially built by taking samples from the distribution (57) and do not require
additional model runs.

The artificial increase in the size of the ensemble is therefore a relatively
inexpensive modality to bring in additional degrees of freedom in the so-
lution of the optimization problem (5). Figure 1 exemplifies the effect of
additional members using two-dimensional projections of ensemble member
states from the Lorenz 96 model. Figure 1a shows the spread of the real
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ensemble members (for the background uncertainty around xb). Figures 1b
shows the distribution when artificial members are added to the background
ensemble, resulting in a better representation of the background error and
therefore a decrease in the sampling error.
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(a) K = 0
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(b) K = 120

Figure 1: Error distribution for different values of K using two-dimensional
projections of ensemble members from the Lorenz 96 model. The number of
real members is N = 40. In the plots ∗ represents real ensemble members,
+ artificial members, and � is the ensemble mean.

The analysis state is now computed in the subspace spanned by both real
and artificial members:

xa ∈ span
{
xb1, xb2, . . . , xbN , x̃b1, x̃b2, . . . , x̃bK

}
. (58)

The extended ensemble reads:

X̃b =
[
xb1, xb2, . . . , xbN , x̃b1, x̃b2, . . . , x̃bK

]
∈ Rn×Nk . (59)

where Nk = N+K. Similar to (55), the background ensemble (59) is updated
using

Xa = Xb + Ẽ · Π̃ · Z̃B̂ + ϕ ·HT · Z̃B ∈ Rn×N , (60)
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where

Ẽ =
√
δ · S̃ ∈ Rn×Nk , (61a)

Π̃ = H · Ẽ ∈ Rm×Nk , (61b)

Z̃B̂ =
(
Γ + Π̃ · Π̃

T
)−1
·D ∈ Rm×N , (61c)

S̃ = X̃− xb ⊗ 1TNk ∈ R
n×Nk . (61d)

The solution of (61c) can be efficiently obtained via the ISMF. Even if the
artificial members (57) are used in the covariance approximation for the
analysis step, according to (60) only the states of real members are adjusted.
After the assimilation step the artificial members are discarded and only the
real members form the analysis ensemble. This strategy does not increase the
number of ensemble members to be propagated by model runs (and there-
fore, the computational effort). When more computational resources become
available, or when some real members are lost due to hardware failures, se-
lected artificial members can be updated and propagated as well. In this
case they become real members during the next assimilation step. Moreover,
some real members can be replaced by artificial members such as to refresh
the ensemble directions, e.g., in order to prevent filter divergence.

To summarize the above discussion, the implementation of the ensemble
Kalman filter based on the RBWL estimator with weighted covariance matrix
in the observation space (EnKF-FS) consists of the following steps:

1. Estimate the background error covariance matrix (52) based on the

samples
{
xb[i]
}N
i=1

, for 1 ≤ i ≤ N .

2. Compute the innovation matrix D according to (54).

3. Draw K artificial members from the distribution (57).

4. Compute the set of matrices (61).

5. Perform the assimilation (60).

6. Propagate the ensemble members

xbnext =Mtcurrent→tnext (xacurrent) ,

until the next assimilation step, for 1 ≤ i ≤ N .
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Another efficient implementation of the filter based on the RBLW esti-
mator can be obtained via the 3D-Var cost function in the ensemble space
(36). This involves projecting the weighted covariance matrix (21) onto the
ensemble space (58) rather than onto the observation space.

After taking the samples (57) and building the ensemble (59) a new set
of basis vectors can be built as follows

Ũ =
[
xb1 − xb, . . . , xbN − xb, x̃b1 − xb, . . . , x̃bK − xb

]
∈ Rn×Nk , (62)

where xb is given in (9). By replacing (62) and the RBLW estimator of the
background error covariance matrix (52) in the 3D-Var cost function (36) we
obtain

Jens (λ) =
1

2
·
∥∥∥Ũ · λ∥∥∥2

B̂−1
+

1

2
·
∥∥∥D− Q̃ · λ

∥∥∥2
R−1

(63)

where λ ∈ RNk×N is the matrix of weights whose i-th column represent the
coordinates of the i-th ensemble member in the space (58), for 1 ≤ i ≤ Nk,

and Q̃ = H · Ũ ∈ Rm×Nk . The resulting 3D-Var optimization problem is

λ∗ = arg min
λ

Jens (λ) , (64)

and has the solution

λ∗ =
[
ŨT · ZB̂U + Q̃T ·R−1 · Q̃

]−1
· Q̃T ·R−1 ·D ∈ RNk×N , (65)

where ZB̂U = B̂−1 ·U ∈ Rn×Nk . The resulting analysis ensemble is

Xa = Xb + Ũ · λ∗ ∈ Rn×N . (66)

To summarize, the implementation of the ensemble Kalman filter based
on covariance estimation with weighted covariance matrix in the ensemble
space (EnKF-FS) consists of the following steps:

1. Estimate the background error covariance matrix (52) based on the

samples
{
xb[i]
}N
i=1

, for 1 ≤ i ≤ N .

2. Compute the innovation matrix D according to (54).

3. Draw K artificial members according to (57).
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4. Compute the matrix of optimal weights (65).

5. Perform the assimilation (66).

6. Propagate the ensemble members

xbnext =Mtcurrent→tnext (xacurrent) ,

until the next assimilation step, for 1 ≤ i ≤ N .

3.3 Sampling in high-dimensions based on the RBLW
estimator

Both implementations discussed in Section 3.2 use samples from the distri-
bution (57). Such samples can be generated as follows:

x̃bi = xb + B̂1/2 · ξi = xb +
(
ϕ · In×n + δ · S · ST

)1/2 · ξi (67)

for 1 ≤ i ≤ K, where ξi ∼ N (0n, In×n). However, this computation requires
the explicit representation in memory of the estimated error covariance ma-
trix B̂, which is prohibitive for high-resolution models. Moreover, the square
root matrix B̂1/2 is required making the use of (67) impractical.

We need an equivalent strategy to obtain the samples (57) that requires
a reasonable computational effort and does not use a full representation of
the covariance matrix B̂. Toward this end consider the random vectors

ξ1i ∼ N (0n, In×n) ∈ Rn×1 ,

ξ2i ∼ N (0N , IN×N) ∈ RN×1 ,

and let

Cov
(
ξ1i , ξ

2
i

)
= ξ1i ⊗ ξ2i

T
= 0n×N ,

Cov (ξ2, ξ1) = ξ2i ⊗ ξ1i
T

= 0N×n .

We make the following substitution in (67)

B̂1/2 · ξi ∼
√
ϕ · ξ1i +

√
δ · S · ξ2i .
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This does not change the statistics since

E
[(√

ϕ · In×n · ξ1i +
√
δ · S · ξ2i

)
·
(√

ϕ · In×n · ξ1i +
√
δ · S · ξ2i

)T]
= ϕ · ξ1i ⊗ ξ1i

T︸ ︷︷ ︸
Cov(ξ1i ,ξ1i )=In×n

+
√
ϕ · δ · ξ1i ⊗ ξ2i

T︸ ︷︷ ︸
Cov(ξ1i ,ξ2i )=0n×N

+
√
ϕ · δ · ξ2i ⊗ ξ1i

T︸ ︷︷ ︸
Cov(ξ2i ,ξ1i )=0N×n

+δ · S · ξ2i ⊗ ξ2i
T︸ ︷︷ ︸

Cov(ξ2i ,ξ2i )=IN×N

·ST = ϕ · In×n + δ · S · ST

= B̂ .

The artificial ensemble members are obtained as follows:

x̃bi = xb +
√
ϕ · In×n · ξ1i +

√
δ · S · ξ2i , i = 1, . . . , K. (68)

The components of the random variables ξ1i and ξ2i are drawn indepen-
dently from the standard normal distribution N (0, 1). For large model reso-
lutions the components of the random vectors can be prepared independently
taking advantage of parallel computations. Moreover, the random vectors ξ1i
and ξ2i can be sampled prior the assimilation process in an off-line computa-
tion.

The estimated error covariance matrix is never represented explicitly in
memory. Instead, the estimator B̂ is represented via the triplet

B̂ ≡ [ϕ, µ, S] .

which contains two scalars and one matrix of dimension n×N . In addition,
the scalars ϕ and µ are computed making use only of the matrix S. This
data is sufficient for correct sampling from the distribution (57).

3.4 Comparison of EnKF-FS and EnKF-RS versions
of the filter

Although both EnKF-FS and EnKF-RS methods are based on the EnKF
equations and RBLW estimator, their underlying theoretical properties are
slightly different. To facilitate the comparison of the two proposed imple-
mentations we bring the EnKF-FS analysis equation (60) to the form (6):

Xa = Xb + B̂1/2 ·αB̂ ∈ R
n×N , (69)
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where the weights αB̂ ∈ Rn×N are given by

αB̂ = B̂1/2 ·HT
(
R + H · B̂ ·HT

)−1
·D ∈ Rn×N .

It is readily apparent from equations (69) and (66) that EnKF-FS and EnKF-
RS implementations differ in the number of degrees of freedom used in the
assimilation process. In the EnKF-FS approach the columns of B̂1/2 serve
as the basis set for generating an ensemble of background deviations. Since
the estimated background error covariance matrix is full-rank the optimal
solution (46) is searched for in the full space. The matrix identity[

B̂−1 + HT ·R−1 ·H
]−1
·HT ·R−1 ≡ B̂ ·HT ·

[
R + H · B̂ ·HT

]−1
together with (69) reveal that the weighted covariance matrix of the EnKF-
FS implementation

W = B̂−1 + HT ·R−1 ·H ∈ Rn×n , (70)

is related to the weighted covariance matrix of the EnKF-RS method by the
relation

Wens = ŨT ·W · Ũ ∈ RNk×Nk . (71)

Threfore when the size of the ensemble Nk is increased (by adding real or
artificial members) more information from the matrix W is captured by its
projection onto the Nk-dimensional space. Note that when Nk → n and
Ũ is orthonormal we have that Wens → W. Consequently, the number
of artificial members will play an important role in the performance of the
EnKF-RS implementation.

4 Experimental Results

This section tests the new EnKF implementations on a data assimilation
problem using the quasi-geostrophic model presented in [38]. A comparison is
done in two steps: first, the proposed implementations are compared against
the well-known EnKF implementations presented in section 2, and next the
quality of the results for the EnKF-FS and EnKF-RS based on different
values of N and K are assessed.
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The oceans form a complex flow system influenced by the rotation of the
Earth, the density stratification due to temperature and salinity, as well as
other factors. The quasi-geostrophic (QG) model is a simple approximation
of the real behavior of the ocean. It is defined by the following partial
differential equation:

ωt + r · J (ω, ψ) + β · ψx − v · ∇4ψ = −µ · ∇2ψ + τ · sin
(

2 · π · y
Ly

)
(72)

in Ω ∈ [0, Lx]× [0, Ly], where x and y represent the horizontal and vertical
space components, ω is the vorticity, ψ is the stream function, J (ψ, ω) is the
Jacobian of two fields

J (ψ, ω) = ψx · ωy − ψy · ωx , (73)

and ∇2 is the Laplacian operator. The coefficients β, v, µ and τ are asso-
ciated with the horizontal vorticity, the horizontal friction, the biharmonic
horizontal friction, and the horizontal wind stress at the surface of the ocean,
respectively. Moreover, the vorticity is related to the stream function by the
elliptical equation:

∇2ψ = ω . (74)

The spatial domain for our experiments is Ω = [0, 1]× [0, 1]. The interior is
covered by computational grids of different resolutions, and we denote by D1

and D2 the number of horizontal and vertical grid points, respectively. The
different model resolutions are presented in the table 1.

Instance D1 D2 n = D1 ·D2

QG33×33 31 31 961
QG65×65 63 63 3,969
QG129×129 127 127 16,129

Table 1: Quasi-geostrophic instances for the computational tests in terms of
the number of horizontal D1 and vertical D2 grid points. D1 and D2 do not
consider boundary points.

The numerical data assimilation experiments are characterized by the
following settings:
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• Initial vorticities have the form

ω0 = sin(4xi yj) · cos(2xi yj) + sin(2 xi yj) + cos(4 xi yj) ,

for 1 ≤ i ≤ D1 and 1 ≤ j ≤ D2.

• The initial background error covariance is

B =
[
σB
]2 · In×n,

where the standard deviation σB is chosen to be 0.05 or 0.15 (times the
true vorticity) in different experiments .

• The observational errors are uncorrelated with variances [0.01]2.

• The number of observed components from the vector state is given by

m = p · n , (75)

where p is the percentage of observed components. We consider two
values for p, 0.7 and 0.9, corresponding to a sparser and a denser net-
work, respectively.

Other aspects of the numerical simulation are described below:

• The EnKF methods are implemented in C++ while the forward model
(QG) [37] is implemented making use of FORTRAN.

• The partial derivatives are discretized by central finite differences.

• The matrix and vector computations are efficiently carried out using
the BLAS library [5].

• Matrix decompositions as well as eigenvalue computations are per-
formed using the LAPACK library [1].

• The Arakawa method [26] is utilized in order to compute the Jacobian
(73).

• The time discretization of the model (72) uses of a fourth order Runge-
Kutta method. The time step size 1.27 (units) which represent one
hour in the ocean. The integration is performed for 1000 hours.
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• The NLOPT library [28] is utilized to numerically solve the optimiza-
tion problems (39) and (43).

• The GSL-GNU scientific library [23] is utilized to generate the synthetic
background and data errors.

4.1 Comparison with current EnKF implementations

We compare the EnKF-RS and EnKF-FS methods against current well-
known EnKF implementations. The root mean square errors (RMSE) and
CPU times for different methods making use of the QG33×33, QG65×65 and
QG129×129 model instances are reported inTables 2, 3, and 4, respectively. For
a given number of snapshots {xai }

M
i=1 and a reference trajectory {xtrue

i }
M
i=1,

where M is the number of assimilation times, the RMSE is defined as follows

RMSE =

√√√√ 1

M
·
M∑
i=1

‖xai − xtrue
i ‖

2.

We vary the size of the ensemble N , the percentage of observed compo-
nents p, and the initial background error σB. As expected the traditional en-
semble implementations EnKF, EnSRF, and EnTKF provide accurate anal-
yses for different model resolutions and number of observed components.
Moreover it can be seen in figures 2 and 3 that the RMSE decreases as the
simulation progresses. The traditional EnKF implementations provide the
lowest elapsed time among the compared methods (i.e., EnKF and EnSRF
implementations) which explains why they are attractive for use in real ap-
plications. The RMSE values for the EnSRF and EnTKF implementations
are identical since both filters are deterministic and EnTKF is just an effi-
cient implementation of the EnSRF. The inflation-free methods such as the
EnKF-FN and EnK-DU implementations provide slightly better accurate re-
sults than other methods. For example, for the largest instance QG129×129,
table 4 shows the EnKF-DU to perform better than current implementa-
tions. In most of the cases, strong duality holds: J fn

ens(α
∗) = Ddu

ens(ζ
∗) and

the slight differences between the optimal cost function values (39) and (43)
are consistent with the numerical approximation errors in the solution of the
optimization problems (40) and (45), respectively.

Since the analysis state in the EnKF-DU formulation is obtained via the
solution of the one-dimensional optimization problem (45), we expect this
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method to be faster than the EnKF-FN implementation where the analysis
requires the solution of the N -dimensional optimization problem (39). This
fact is also pointed out by Boquet in [6, Section 2.2], where the cost of com-
puting the inverse (44) is assumed to be negligible in the dual formulation.
However, this statement seems to be true for small model resolutions (i.e.,
Bocquet makes use of the Lorenz 96 model with 40 variables) and it holds for
the smallest QG instance QG33×33. Nevertheless, for the QG65×65 case, the
difference between the CPU times for the primal and dual implementations
is almost negligible and even more, for the largest instance QG129×129, the
EnKF-FN performs better than its dual approach for σB = 0.15. Although
the cost function (43) depends only on ζ, every step in the optimization pro-
cess requires the solution of the linear system (44) whose computational cost
is not negligible in practice. Furthermore, when the initial background error
is large the EnKF-DU computes many times the inverse of (44) and therefore
its performance decreases considerably.

Even if the traditional implementations perform very well in terms of
RMSE and elapsed time, the most accurate results are obtained by the pro-
posed new EnKF implementations. The results presented in figures 2a and 3a
show that the EnKF-RS method performs much better than traditional and
inflation-free methods for the small instance QG33×33, and are slightly better
in the larger instances. The most accurate results among all the compared
methods are the ones obtained by the EnKF-FS implementation. The results
reported in figures 2 and 3 show that, for all the instances and configurations,
the RMSE obtained via the EnKF-FS outperforms the other methods by at
least 60%. The CPU times for the proposed implementations are just slightly
larger than those from the compared EnKF implementations. Since most of
the computational time is spent in propagating the ensemble members, a
modest increase in analysis time retains the potential of the new methods to
perform well in practical applications.
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RMSE CPU Time
σB σB

N p Method 0.05 0.15 0.05 0.15

40

0.7

EnKF 1.287 3.858 0.013 0.009
EnSRF 1.289 3.864 0.013 0.013
EnTKF 1.289 3.864 0.026 0.028
EnKF-FN 1.286 3.855 0.125 0.116
EnKF-DU 1.285 3.854 0.045 0.036
EnKF-FS 0.659 1.974 0.024 0.036
EnKF-RS 1.16 3.49 0.421 0.252

0.9

EnKF 1.279 3.836 0.019 0.021
EnSRF 1.282 3.841 0.01 0.017
EnTKF 1.282 3.841 0.028 0.017
EnKF-FN 1.279 3.831 0.115 0.115
EnKF-DU 1.276 3.828 0.072 0.087
EnKF-FS 0.371 1.116 0.048 0.028
EnKF-RS 1.07 3.209 0.395 0.222

80

0.7

EnKF 1.268 3.803 0.065 0.061
EnSRF 1.275 3.82 0.034 0.052
EnTKF 1.275 3.82 0.143 0.076
EnKF-FN 1.264 3.79 0.608 0.681
EnKF-DU 1.263 3.79 0.162 0.181
EnKF-FS 0.646 1.927 0.119 0.105
EnKF-RS 1.069 3.144 1.303 1.285

0.9

EnKF 1.252 3.756 0.074 0.077
EnSRF 1.26 3.773 0.058 0.051
EnTKF 1.26 3.773 0.168 0.12
EnKF-FN 1.249 3.737 0.894 0.766
EnKF-DU 1.246 3.737 0.155 0.181
EnKF-FS 0.358 1.074 0.192 0.14
EnKF-RS 0.879 2.588 1.269 1.26

Table 2: RMSE and CPU-time (TIME) for the EnKF, EnSRF, EnTKF,
EnKF-FN, EnKF-DU, EnKF-RS and EnKF-FS implementations applied to
the QG33×33 instance (n = 961).
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RMSE CPU Time
σB σB

N p Method 0.05 0.15 0.05 0.15

40

0.7

EnKF 1.67 5.011 0.072 0.076
EnSRF 1.675 5.025 0.059 0.047
EnTKF 1.675 5.025 0.056 0.098
EnKF-FN 1.671 4.987 0.185 0.261
EnKF-DU 1.662 4.987 0.17 0.245
EnKF-FS 0.893 2.668 0.108 0.205
EnKF-RS 1.61 4.818 1.869 1.801

0.9

EnKF 1.667 5.001 0.095 0.061
EnSRF 1.671 5.015 0.06 0.035
EnTKF 1.671 5.015 0.067 0.117
EnKF-FN 1.667 4.975 0.262 0.269
EnKF-DU 1.658 4.975 0.273 0.244
EnKF-FS 0.52 1.533 0.209 0.139
EnKF-RS 1.589 4.761 1.975 2.011

80

0.7

EnKF 1.653 4.958 0.189 0.189
EnSRF 1.661 4.982 0.174 0.183
EnTKF 1.661 4.982 0.265 0.377
EnKF-FN 1.644 4.915 0.934 0.919
EnKF-DU 1.638 4.916 0.567 0.787
EnKF-FS 0.866 2.592 0.634 0.495
EnKF-RS 1.546 4.612 7.627 7.542

0.9

EnKF 1.65 4.949 0.271 0.302
EnSRF 1.657 4.97 0.227 0.181
EnTKF 1.657 4.97 0.428 0.429
EnKF-FN 1.639 4.888 1.099 1.01
EnKF-DU 1.63 4.888 0.85 0.936
EnKF-FS 0.494 1.486 0.607 0.502
EnKF-RS 1.507 4.509 7.845 8.012

Table 3: RMSE and CPU-time (TIME) for the EnKF, EnSRF, EnTKF,
EnKF-FN, EnKF-DU, EnKF-RS and EnKF-FS implementations applied to
the QG65×65 instance (n = 3969).

28



RMSE CPU Time
σB σB

N p Method 0.05 0.15 0.05 0.15

40

0.7

EnKF 1.708 5.125 0.307 0.186
EnSRF 1.712 5.136 0.174 0.153
EnTKF 1.712 5.136 0.237 0.223
EnKF-FN 1.707 5.1 0.793 0.589
EnKF-DU 1.7 5.1 0.788 0.746
EnKF-FS 0.963 2.847 0.572 0.611
EnKF-RS 1.682 5.042 5.607 5.832

0.9

EnKF 1.709 5.127 0.263 0.277
EnSRF 1.712 5.134 0.166 0.192
EnTKF 1.712 5.134 0.294 0.296
EnKF-FN 1.704 5.089 0.888 0.849
EnKF-DU 1.696 5.089 1.047 1.041
EnKF-FS 0.582 1.661 0.627 0.745
EnKF-RS 1.676 5.02 6.368 6.292

80

0.7

EnKF 1.702 5.104 0.721 0.693
EnSRF 1.709 5.125 0.554 0.576
EnTKF 1.709 5.125 0.838 0.734
EnKF-FN 1.69 5.063 3.085 2.596
EnKF-DU 1.687 5.063 2.826 2.931
EnKF-FS 0.941 2.81 2.191 2.373
EnKF-RS 1.654 4.94 26.384 26.355

0.9

EnKF 1.7 5.099 0.834 0.991
EnSRF 1.708 5.123 0.667 0.729
EnTKF 1.708 5.123 0.924 0.963
EnKF-FN 1.683 5.034 4.07 3.485
EnKF-DU 1.678 5.034 3.565 3.501
EnKF-FS 0.558 1.622 2.745 2.442
EnKF-RS 1.634 4.908 27.672 26.208

Table 4: RMSE and CPU-time for for the EnKF, EnSRF, EnTKF, EnKF-
FN, EnKF-DU, EnKF-RS and EnKF-FS implementations applied to the
QG129×129 instance (n = 16129).
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(a) n = 961 and σB = 0.05
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(b) n = 961 and σB = 0.15
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(c) n = 3969 and σB = 0.05
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(d) n = 3969 and σB = 0.15

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

Time

R
M

S
E

 

 

EnKF

EnSRF

EnTKF

EnKFFN

EnKFDU

EnKFFS

EnKFRS

(e) n = 16129 and σB = 0.05

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

Time

R
M

S
E

 

 

EnKF

EnSRF

EnTKF

EnKFFN

EnKFDU

EnKFFS

EnKFRS

(f) n = 16129 and σB = 0.15

Figure 2: Plots of RMSE values for the EnKF, EnSRF, EnTKF, EnKF-FN,
EnKF-DU, EnKF-FS and EnKF-RS for N = 40 and p = 0.7.
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(a) n = 961 and σB = 0.05
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(b) n = 961 and σB = 0.15
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(c) n = 3969 and σB = 0.05
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(d) n = 3969 and σB = 0.15

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

Time

R
M

S
E

 

 

EnKF

EnSRF

EnTKF

EnKFFN

EnKFDU

EnKFFS

EnKFRS

(e) n = 16129 and σB = 0.05
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(f) n = 16129 and σB = 0.15

Figure 3: Plots of RMSE values of the EnKF, EnSRF, EnTKF, EnKF-FN,
EnKF-DU, EnKF-FS and EnKF-RS for N = 80 and p = 0.7.
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4.2 The impact of the number of ensemble members
on performance

The EnKF-RS and EnKF-FS implementations depend on the K samples
taken from the distribution (57). We now study how the performance of the
proposed methods varies for different values of N (number of real members)
and K (number of artificial members). For this we let K and N to be related
by

K = C ·N ,

where C is a constant. Practical ensemble sizes range in 40 ≤ N ≤ 80
[22]. For each ensemble size we use several values of C between 0 and 10,
e.g., N = 40 and C = 10 lead to K = 400. When C = 0 no artificial
members are added, but the error covariance matrix B̂ is estimated. In
the numerical experiments, the variances of the initial background error are
set to σB = 0.15. The analyses RMSE values and the compute times for
the proposed implementations using the QG33×33 instance are reported in
figures 4 and 5, respectively. The analysis times for both implementations
are small. Moreover, as expected, EnKF-RS is sensitive to changes in any
of the parameters N and K. The RMSE is decreased when the values of
those parameters are high as shown in figures 4b and 4d. The RMSE of the
EnKF-FS analysis decreases only with increasing N as can be seen in figures
4a and 4c.

An important question is how well do the proposed implementations per-
form with a small number of real members. Hopefully the inexpensive addi-
tion of artificial members can compensate for a small number of real ones.
To this end we consider a small number of real members 10 ≤ N ≤ 30 and
a large number of artificial members with 10 ≤ C ≤ 60. The results for
the EnKF-RS are shown in figures 6a and 6c for p equal to 0.7 and 0.9, re-
spectively. The EnKF-RS implementation improves the estimated analysis
state whenever N or K are increased. Moreover, the quality of the analyses
obtained with small real ensembles (10 ≤ N ≤ 30) is comparable to those
obtained with large real ensemble sizes (40 ≤ N ≤ 80). This justifies the
addition of inexpensive artificial members in order to increase the degrees
of freedom of the ensemble. The EnKF-FS analysis improves only when the
number of real members is increased. This can be seen in figures 6a and
6c. For the smallest ensemble size (N = 10) the results obtained by the
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EnKF-FS are better than those of any other implementation, including the
traditional EnKF implementations with the large ensemble size N = 80.

Figures 6b and 6d show that the EnKF-RS analyses for a small number
of observed components (70%) and a large number of artificial members
(K) are equivalent to those obtained with a large number of real members
(N) and many observed components (90%). This is another indication of the
positive impact obtained by increasing the number of degrees of freedom with
samples from the distribution (57). This is computationally less expensive
than adding real members via running the model.
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Figure 4: RMSE of the EnKF-FS and EnKF-RS implementations for different
values of 0 ≤ C ≤ 10 and 40 ≤ N ≤ 80 making use of the QG33×33 instance.
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Figure 5: Assimilation times of the EnKF-FS and EnKF-RS implementations
for different values of 0 ≤ C ≤ 10 and 40 ≤ N ≤ 80 making use of the
QG33×33 instance
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Figure 6: RMSEs of the EnKF-FS and EnKF-RS implementations for dif-
ferent values of 10 ≤ C ≤ 60 and 10 ≤ N ≤ 30 making use of the QG33×33
instance.
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Figure 7: Assimilation times of the EnKF-FS and EnKF-RS implementations
for different values of 10 ≤ C ≤ 60 and 10 ≤ N ≤ 30 making use of the
QG33×33 instance.

5 Conclusions

This paper develops two new implementations of the ensemble Kalman filter
(EnKF) based on shrinkage covariance estimation. The background error co-
variance matrices used in analysis are obtained via the Rao-Blackwell Ledoit
and Wolf estimator, which has been proved optimal in the estimation of
high-dimensional covariance matrices from a small number of samples. This
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covariance matrix and the background state (ensemble mean) serve as param-
eters of the normal error distribution associated with the ensemble members.
Samples from this distribution are taken in order to increase the number
of ensemble members, and therefore, to decrease the sampling error in rep-
resenting the background error distribution, and to increase the number of
degrees of freedom in the assimilation. The two proposed implementations
differ in the space where the assimilation process is performed: EnKF Full-
Space (EnKF-FS) performs the analysis in the model space, while EnKF
Reduce-Space (EnKF-RS) computes the analysis state in the space spanned
by the ensemble members. Numerical experiments are carried out using
a quasi-geostrophic model. They show that the two new implementations
perform better than current EnKF implementations such as the traditional
EnKF, square root filters, and inflation-free EnKF methods. For all the
scenarios and experimental settings, the EnKF-FS outperforms the other
implementations by at least 60% in terms of accuracy (root mean square
error). Moreover, for a small number of ensemble members (∼ 10) and a
moderate percentage of observed components from the vector state (∼ 70%),
the solutions obtained by the proposed methods are similar to those obtained
by large ensemble sizes (∼ 80) and large percentage of observed components
(∼ 90%). The computational time for analysis of the proposed implemen-
tations is reasonably low. Since the total compute time is dominated by
the multiple model runs considerable savings are expected from reducing the
number of real ensemble members without deteriorating the quality of the
results.
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