Hindawi Publishing Corporation

Journal of Computational Medicine
Volume 2016, Article ID 9826596, 15 pages
http://dx.doi.org/10.1155/2016/9826596

Research Article

Hindawi

An Object-Oriented Framework for Versatile Finite
Element Based Simulations of Neurostimulation

Edward T. Dougherty' and James C. Turner’

!Mathematics Department, Rowan University, Glassboro, NJ 08028, USA
*Mathematics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Correspondence should be addressed to Edward T. Dougherty; doughertye@rowan.edu

Received 28 May 2015; Revised 27 August 2015; Accepted 21 October 2015

Academic Editor: Camillo Porcaro

Copyright © 2016 E. T. Dougherty and J. C. Turner. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Computational simulations of transcranial electrical stimulation (TES) are commonly utilized by the neurostimulation community,
and while vastly different TES application areas can be investigated, the mathematical equations and physiological characteristics
that govern this research are identical. The goal of this work was to develop a robust software framework for TES that efficiently
supports the spectrum of computational simulations routinely utilized by the TES community and in addition easily extends to
support alternative neurostimulation research objectives. Using well-established object-oriented software engineering techniques,
we have designed a software framework based upon the physical and computational aspects of TES. The framework’s versatility
is demonstrated with a set of diverse neurostimulation simulations that (i) reinforce the importance of using anisotropic tissue
conductivities, (ii) demonstrate the enhanced precision of high-definition stimulation electrodes, and (iii) highlight the benefits
of utilizing multigrid solution algorithms. Our approaches result in a framework that facilitates rapid prototyping of real-world,
customized TES administrations and supports virtually any clinical, biomedical, or computational aspect of this treatment. Software
reuse and maintainability are optimized, and in addition, the same code can be effortlessly augmented to provide support for

alternative neurostimulation research endeavors.

1. Introduction

Transcranial electrical stimulation (TES) is a collection of
noninvasive neurostimulation techniques that strategically
modulate activity in regions of the brain with low magnitude
electric current delivered through electrodes positioned on
the scalp surface. Forms of TES include the commonly
used transcranial direct current stimulation (tDCS), as well
as transcranial alternating current stimulation (tACS) [1].
Recently, the use of numerous smaller sized electrodes,
termed high-definition tDCS (HD-tDCS), has emerged as a
form of TES that enhances electrical current focality [2, 3].
Clinical and biomedical research continue to demonstrate
the capabilities of TES as a medical treatment. For example,
Alzheimer and Parkinson’s disease patients have demon-
strated increased memory abilities [4-6]. In addition, TES
has shown to alleviate symptoms of psychiatric disorders
including depression [7, 8] and schizophrenia [9-11].

The efficacy and comprehension of TES have been
enhanced with mathematical modeling and computational
simulation. In particular, simulations can compute the cur-
rent density distribution for a given patient and TES appa-
ratus configuration [I, 12-15] and have demonstrated the
importance of modulating treatment stimulation dosage [16].
Other simulations have illustrated the importance of incor-
porating anisotropic tissue conductivity data [17, 18], and
numerical studies aid in identifying the computational solu-
tion methods most efficient in simulating TES mathematical
models [19].

Object-oriented design is a software design approach
that defines objects, which are simply software entities that
encapsulate data and functionality and the relationships
among objects. Features of object-oriented design can be
utilized to maximize code reusability, simplify software main-
tenance, and promote application versatility [20]. The preva-
lence of object-oriented design in scientific and biomedical

applications began in the 1990s, and its use has dramatically
increased due to its advantages over procedural software
implementations [21-26]. In particular, mathematical and
physical attributes of a model can be naturally represented
with objects [27, 28].

A common approach for simulating partial differential
equation (PDE) based mathematical models is to use prebuilt
simulation software programs. These “black-boxes” can sim-
plify model implementation; however, there are limitations
with this approach. A researcher is often confined to the
numerical algorithms and programming controls offered by
the simulation program; it can be very difficult, or perhaps
not possible, to incorporate numerics and solution tech-
niques not supported by the software. In addition, integrating
a prebuilt software application with external data sources and
applications can be very challenging, which obstructs the use
of its simulations within larger software solutions.

An alternative strategy is to create custom software
that utilizes numerical application programming interfaces
(APIs). While this approach generally takes longer to imple-
ment, it allows the use of problem-specific algorithms and
programming logic that facilitate accurate and expedient
simulation results [28]. Coupling this philosophy with object-
oriented software engineering techniques can produce a final
product that is versatile, expandable, and computationally
efficient. Interactions with external systems can be seamlessly
integrated, and the ability to compile the software to exe-
cutable machine code simplifies its deployment to alternative
hardware platforms, for example, medical imaging machines.

In this paper, we present an object-oriented software
framework for finite element based TES simulations. Multiple
features of object-oriented design and programming are
utilized to create a modular software architecture that encap-
sulates medical, mathematical, and computational attributes
of TES. The result is a program that maximizes code reuse and
TES simulation versatility. We demonstrate this versatility
with several simulations, each with a distinct TES research
focus. These simulations utilize MRI-derived three-dimen-
sional head models, with physiologically based tissue conduc-
tivities and real-world electrode configurations. Finally, we
show how the same software can be easily extended to address
alternative neurostimulation research areas, such as deep
brain stimulation (DBS). In addition, all components of the
framework are available to the community as a supplement
to this paper.

2. Materials and Methods

2.1. Governing Equations. The electric current density within
the head and brain from neurostimulation can be modeled by
the Poisson equation; namely, -V - MV® = f(X), where O is
the electric potential, M is the tissue conductivity tensor, and
f(X) is a given electrical source term. For isotropic mediums,
M can be represented as a scalar, which varies for different
tissue types.

Electric current delivered by TES anode electrode(s) is
given by the nonhomogeneous Neumann boundary condi-
tion - MV® = I(X), where I(X) represents the stimulation
current density and 7 is the outward boundary normal vector.

Journal of Computational Medicine

Cathode electrode(s) are represented by the homogeneous

Dirichlet condition ®(X) = 0. All other points on the skin

surface are insulated by the surrounding air; thus #-MV® = 0.
Our governing equations are as follows:

—V-MVD = f(X), %€Q, (1a)
D=0, XedQ (1b)

i -MVO =1(%), X€dQ,, (1c)
i -MVO =0, % e€dQs (1d)

where Q is the head volume, 0Q), and 0Q represent the
areas on the scalp covered by anode and cathode electrodes,
respectively, and 0Q) is the remaining portion of the head
surface. Note that, for TES simulations, there is no source
term within the volume, and so f(X) = 0 (la). Alternatively,
DBS is realized with an appropriate definition of f(X) and the
homogeneous Neumann boundary condition (1d) applied to
the entire boundary; namely, 0Q, = 0Q [29].

The associated weak formulation (see Appendix) is to find
D(X) € Hé (Q) given f(X) € L,(Q) such that

JVV-MVCDdx=J- vIds+J fvdx,
Q 04 Q

? (2)
Vv (%) € Hy (Q),
where
Hy () ={ulueH (Q), u=0V%edQg},
ou
HI(Q):{u|u€L2(Q),a—xiELz(Q)}, (3)

LZ(Q)z{p|L|p|2dx<oo}.

2.2. Framework Design. The fundamental task in the design
of the framework was to create objects based on attributes
of TES and TES simulations. We refer to [30] for a detailed
explanation of object-oriented design and provide just a brief
overview of the key aspects utilized within our framework.

Objects encapsulate data and functions that operate on
the data. A class provides the description of an object type by
defining variable and function names, and an object is more
formally viewed as a specific instance of a class. Inheritance
is a class relationship and provides the ability to extend the
functionality of a class with a so-called subclass. A subclass
can contain data and functionality from a parent class and can
define its own as well. Inheritance is a major object-oriented
design concept that exploits code reuse, since all subclasses
can reuse data constructs and functions from a parent class.
Polymorphism enables a subclass to give specific functionality
to an abstract function defined by a parent class. This pow-
erful technique allows parent classes to encapsulate generic
and broad ideas by delegating specific function implementa-
tions to subclasses [30].

We required that electrode configuration, stimulation
parameters, tissue conductivity information, computational

Journal of Computational Medicine

FEM

T S F
! ! L 1
: oy - :
| Conductivity A : TES - Source :
| B B :
- o N :
: by 1 |
| : ! ! : !
! P! = Electrode !
I . | i I
1 ! - 1
| | B ’

I | 1
i Matlab_Data_Conductivity P! TES MG 1 i TES_Source DBS_Source :

1 - 1
1 ! - 1
e .]
Tissue conductivity properties PDE solver Neurostimulation modality

FIGURE 1: Software architecture and main classes in the object-oriented TES simulation framework. Classes are represented with boxes, and
arrow and diamond tipped lines represent inheritance and aggregation, respectively.

domain, and numerical solution methods be specified via an
input file. This permits customized TES simulations without
the need to rewrite and recompile code. In addition, by
mathematically retaining the source term, f(X), in the weak
formulation (2) and allowing this function to be defined by
a user, different neurostimulation modalities, for example,
DBS, can be simulated.

We choose to base our framework design on Diffpack
[31], which is a numerical API library for solving PDEs. It is
based on the C++ programming language [32] and possesses
avast collection of PDE solution algorithms [27, 28]. The C++
language incorporates well-established software engineering
practices [33] and is compiled to machine code, resulting in
fast execution speeds and portability to alternative hardware
platforms. Despite our use of a specific numerical library
and programming language, the object-oriented design and
implementation strategies presented in this paper apply to
any programming language and API package that supports
an object-oriented approach.

Figure 1 displays the main software components in the
TES simulation framework. Each box represents a class, and
each arrow and diamond tipped line represents inheritance
and aggregation, respectively. FEM is a class in the Diffpack
library that offers fundamental finite element method data
structures and algorithms. Class TES, which is the corner-
stone of the framework, inherits FEM functionality to solve
simulations given by system (la)-(1d). Class TES_MG extends
TES functionality so that multigrid (MG) algorithms can also
be utilized in solving this system.

For TES simulations to be fully realized, tissue
conductivity and electrode information are needed. These
ideas have been encapsulated with respective classes, and
TES possesses instances of each. Since conductivity data can
come from a variety of sources with differing storage formats,
the Conductivity class merely defines abstract function
names that are viewed as common to all conductivity data
sources. Then, specific functionality for specific conductivity
data sources is implemented in subclasses, for example,

Matlab Data Conductivity, via polymorphism. This
approach allows different conductivity data sources to be
incorporated into the framework without needing to modify
code in the TES and Conductivity classes. The boundary
conditions are also managed by TES, using information from
class Electrode, which maintains TES electrode location
and size information. In addition, by retaining the source
term f(X) in the weak formulation (2) and encapsulating it
as a class, namely, Source, assignments to f(X) enable the
simulation of alternative types of neurostimulation, such as
DBS.

2.3. Framework Implementation. In this section, key soft-
ware implementation aspects of the framework and related
Diftpack concepts are described. For a complete guide to
Diffpack, see [27].

2.3.1. Tissue Conductivity. Class Conductivity defines gen-
eral function names but delegates the implementation of
these functions to its subclasses (Code 1). MatlabConduc-
tivity inherits Conductivity and provides specific imple-
mentations of the loadConductivities and getConduc-
tivity functions based on a Matlab [34] binary data file
format produced by the SimNIBS software package [35].
Two additional data members are defined by Mat1labCon-
ductivity, namely, a MatlabHelper object, mh, which
manages a runtime interface with the MatlabEngine [34],
and a Matlab matrix, ct. These two members are needed
by the MatlabConductivity subclass, not the parent
Conductivity class, and are therefore included in only
the subclass. The MatlabConductivity implementation of
the loadConductivities function simply creates a Matlab
command to load the anisotropic conductivity data source,
executes this command within the MatlabEngine via the mh
object, and then stores the anisotropic conductivity tensor
data into the ct matrix which are then accessible throughout
a TES simulation via the getConductivity function (Code

1).

Journal of Computational Medicine

class Conductivity

{

Conductivity();
virtual ~Conductivity();

{
MatlabConductivity();

mxArray* ct;

}

// Load tensor conductivities from data files
virtual void loadConductivities (String& fileName);

// Get ith component of conductivity tensor at pt (x,y,z)
virtual double getConductivity (int i, int x, int y, int z);

class MatlabConductivity: public Conductivity

virtual ~MatlabConductivity();

// Inherited from Conductivity
virtual void loadConductivities(String& fileName) ;
virtual double getConductivity(int i, int x, int y, int z);

MatlabHelper* mh; // Mangage interface with the MatlabEngine
// Matrix with conductivity tensor data

void MatlabConductivity::loadConductivities(String& fileName){
String name = "load (" + fileName + "');";
engEvalString(mh->ep, name.c_str());
ct = engGetVariable (mh->ep, "ct");

ConbE 1: Class definitions for tissue conductivity data. Class Conductivity provides general function names, that is, loadConductivities
and getConductivity. The MatlabConductivity subclass implements these functions for a particular data source. For example, its
loadConductivities function loads a Matlab anisotropic conductivity data source into the ct matrix for use in a simulation.

The Conductivity-MatlabConductivity relation-
ship demonstrates the advantages of object-oriented inher-
itance and polymorphism. Conductivity is used to define
function names common to all conductivity data sources
and serves as the bridge between these repositories and the
framework. Polymorphism permits the MatlabConductiv-
ity subclass to implement specific loadConductivities
and getConductivity functionality for its particular data
format. Code within the Conductivity class and all other
framework classes does not dependent on these subclass
implementations. Thus, alternative conductivity data sources
can be easily incorporated into the framework as a subclass
of Conductivity, in an identical fashion, requiring no
modification to any other framework component.

2.3.2. Source Term. Class Source is a software abstraction
of the f(X) source term (la) and like Conductivity defines
basic functionality to be implemented in subclasses (Code 2).
Source inherits the Diffpack class FieldFunc which allows
a scalar function to be defined over the domain. Different
subclass implementations of the valuePt function can be
used to model different neurostimulation modalities. For
TES, valuePt in class TES_Source simply returns zero since
f(X) = 0in this case (Code 2).

Main TES Class. Class TES is the main class in the framework.
Code 3 presents the key elements of this class, which contains
numerous objects, functions, and Diffpack concepts. Class
TES inherits the Diffpack FEM class, giving it access to finite
element data structures and functionality. Handle objects,
which are pointers in Diffpack that include memory manage-
ment features, are defined for the computational grid, grid,
and electric potential and current density solution results, u
and currDensity, respectively.

Several other class members are needed to implement
TES simulations. Variables to store boundary condition val-
ues are included, as well as the anodes and cathodes vectors
to store electrode information. The vector isoSigma and
matrix sigma store isotropic and anisotropic conductivity
data, and the choice of conductivity representation is deter-
mined by a user via the isotropic boolean variable. The
mc data member is a reference to the Conductivity class,
providing an interface to conductivity data. Note that mc is
type Conductivity and not MatlabConductivity. The
mc object can therefore use the loadConductivities
and getConductivity functions of any Conductivity
subclass, including MatlabConductivity. This design
approach allows new Conductivity subclasses to be defined
and utilized without the need to modify code in class TES.

Journal of Computational Medicine 5

class Source: public FieldFunc

{

TES* data; // Provides access to TES class members

Source (){}
virtual dpreal valuePt // Source term value at pt. x; Abstract function
(const Ptv(dpreal)& x, dpreal t = DUMMY) = 0;
b

dpreal TES_Source:: valuePt(const Ptv(dpreal)& x, dpreal t) {
dpreal val = 0.0;
return val;

}

CobE 2: Source term class definitions. The TES_Source subclass of Source enables TES simulations by defining its valuePt function to
return a value of zero at all points.

class TES: public FEM

{
// DATA TYPES:
Handle (GridFE) grid; // Underlying finite element grid
Handle (FieldFE) u; // Electric potential over grid
Handle(FieldsFE) currDensity; // Electric Current density over grid
dpreal dirichlet_vall; // Constant phi value at a boundary
dpreal dirichlet_val2; // Constant phi value at boundary
dpreal robin UO; // Constants for Neumann boundary condition
vector<Electrode> anodes; // Anode electrodes
vector<Electrode> cathodes; // Cathode electrodes
bool isotropic; // Isotrpoic or anisotropic bool control
Vec(dpreal) isoSigma; // Isotropic brain tissue conductance values
MatSimple(dpreal) sigma; // Anisotropic conductivity tensor matrix
Conductivity* mc; // Interface class for anisotropic conductivities
Handle(FieldFunc) source; // Source term for initializing f (x)

Handle (FieldFunc) alternatingStim; // Object to model non-direct TES, i.e. tACS

// FUNCTIONS:
// Standard finite element functions inherited from class FEM

virtual void £illEssBC (); // Set dirichlet boundary conditions

virtual void calcElmMatVec // Compute FE coefficient matrix and load vector
(int e, ElmMatVec& elmat, FiniteElement& fe);

virtual void integrands // Implement weak formulation integrand
(ElmMatVec& elmat, const FiniteElement& fe);

virtual void integrandsé4side // Neumann boundary integral

(int side, int boind, ElmMatVec& elmat, const FiniteElement& fe);

CoDE 3: Main elements within the TES class. Handles are Diffpack pointers that include memory management features. The class definition
contains a Handle for the computational grid (grid) and electric potential (u) and current density (currDensity) solution results. Next,
variables store boundary condition values and anode (anodes) and cathode (cathodes) electrode information. Support for both isotropic
and anisotropic conductivity data is provided, as well as functions for source and nonconstant anode stimulation. Functions inherited from
FEM are required to perform finite element calculations.

Journal of Computational Medicine

void TES::
{

int i,j,q;

dpreal detJxW = fe.detJxW() ;

updateConductivityTensors(fe) ;

Ptv (NUMT) x(nsd);
fe.getGlobalEvalPt (x);

dpreal f_val;
if (source.ok())

f_val = source->valuePt(x);
else f_val = 0;

// Compute weak formulation
dpreal gradNi_gradNj;
for (i =1; i <=nbf; i++) {
for (j =1; j <=nbf; j++) {
gradNi_gradNj = 0;
for (q=1; q <=nsd; gq++){

}

}

}
}

integrands (ElmMatVec& elmat, const FiniteElement& fe)

const int nbf = fe.getNoBasisFunc(); // no of nodes/basis functions
const int nsd = fe.getNoSpaceDim() ;

// Get conductivity tensor for the current element.

// Get a point in the global domain represented by elemnt fe.

// Get the source term, f(x), for this element.

// Compute inner product of grad(N_i) and grad(N_j).
gradNi_gradNj += sigma(q,q) * fe.dN(i,q) * fe.dN(j,q);

// Update linear system coefficient matrix.
elmat.A(i,j) += gradNi_gradNj*detJxW;

// Update linear system RHS (load vector).
elmat.b(i) += fe.N(i)*f_val*detJxW;

// Loop control variables

// Numerical integration weight
// Number of spatial dimensions

CoDE 4: TES class integrands function for computing weak formulation volume integrals. Conductivity and source term values for finite
element fe are retrieved with calls to the updateConductivityTensors and source valuePt functions. Finite element basis functions are

then iterated to compute the volume integrals.

There is also a reference to a Source object, for example,
TES_Source, as well as a field function for nonconstant
stimulation currents, for example, tACS. Finally, TES inherits
functions from FEM to perform finite element computations,
including £i11EssBC to set Dirichlet boundary conditions,
calcElmMatVec to assemble the finite element linear system
coeflicient matrix and load vector, and the integrands and
integrands4side functions to evaluate the weak formula-
tion volume and boundary integrals, respectively.

2.3.3. Weak Formulation Integration. The weak formulation
volume integrals (2) are computed in the TESintegrands
function (Code 4). The Diffpack linear system assembler
automatically calls this function as it iterates over the
finite elements in the computational grid. Conductivity
values for the current element are attained with a call to

the updateConductivityTensors function, which deter-
mines if isotropic or anisotropic conductivities are desired
and then populates the sigma matrix accordingly.

The source term f(X) over the current element is
retrieved via a call to the valuePt function in a Source class.
Then, the finite element basis functions for this element are
iterated over, and the weak formulation is computed. Note
that, in this implementation, sigma is assumed to be diag-
onal; however, this can be generalized with the incorporation
of an additional loop. Finally, the coefficient matrix, A, and
load vector, b, are updated. The boundary integral in the weak
formulation is computed similarly in the integrands4side
function, and its contribution is incorporated into b.

2.3.4. Multigrid. Multigrid is a linear system solution algo-
rithm that utilizes multiple computational grid resolutions to

Journal of Computational Medicine

class TES_MG: public TES
{

Handle (MGtools)

int no_of_grids;
mgtools;

// Set boundary condtion on grid level specified by space
virtual void mgFillEssBC (Spaceld space);

CopE 5: New members of TES_MG class definition. The mgtools object references the Diffpack multigrid toolbox. The no_of_grids integer
stores the number of MG grid levels, and the mgFil11EssBC function sets the essential boundary condition on all grid levels.

(a) Head surface

(b) Brain region

(c) View of sagittal cross section

FIGURE 2: Computational domain used in numerical simulations.

achieve fast solution convergence [36]. By performing just
a few iterations on each grid and then changing between
finer and coarser grids, large portions of the error are
efficiently removed [37]. In addition, as a preconditioner to
the commonly used conjugate gradient (CG) method, MG is
highly effective at solving linear systems that result from finite
element based TES simulations [38]. Two commonly used
MG cycles are the V-cycle and the W-cycle, and identifying
the optimal cycle type for a given PDE system, in addition to
other MG parameters including the number of grid levels, can
be challenging [38].

As a subclass of TES, very few new data members and
functions are needed in TES_MG (Code 5), since the entirety
of TES is efficiently reused. The new members in TES_MG
are a reference to the Diffpack multigrid toolbox, mgtools,
and an integer representing the number of MG grid levels,
no_of _grids. Finally, just one new function, mgFillEssBC,
is needed to set the essential boundary condition (1b) on all
grid levels.

2.4. Computational Tools. Numerical simulations were per-
formed on a three-dimensional mesh (Figure 2) generated
from human MRI images by the SimNIBS software package
[35]. The mesh contains the skin, skull, cerebral spinal fluid
(CSF), gray matter (GM), and white matter (WM) tissues of
the head. Gmsh [39] enabled mesh visualization, identifica-
tion of electrode coordinates, and grid conversion to a form
supported by Diffpack. Electric potential and current density
results were exported from Diffpack and visualized with
ParaView [40] and gnuplot [41]. Anisotropic conductivity
data for the GM and WM regions are provided by SImNIBS in

a Matlab binary data file; these data are accessed by the
MatlabEngine [34] via the MatlabHelper object of the
MatlabConductivity class (Code1).

2.5. Computational Simulations. Multiple simulations were
performed with the TES framework. Simulations were
selected to demonstrate the framework’s versatility and ability
to target medical, biophysical, and computational research
objectives. Finally, to illustrate how alternative forms of
neurostimulation can be simulated with the same software,
we show a trivial extension to the framework that enables
support for DBS applications.

Simulation 1 (comparison of isotropic and anisotropic con-
ductivity data). Previous research suggests that incorporating
anisotropic, rather than isotropic, brain tissue conductivity
data is important for most accurately modeling TES electrical
current distribution [17, 42]. To evaluate the impact that
these two conductivity representations have on simulation
results, TES simulations were performed with isotropic and
anisotropic data. The three-dimensional domain shown in
Figure 2 was used with approximately 2.8 million linear
tetrahedra finite elements.

Anode and cathode electrodes were positioned at C3 and
C4 [43], respectively, each with a surface area of approx-
imately 16 cm?, and the anode electric current magnitude
was set to .0 mA. This montage has been used to stimulate
the motor cortex ipsilateral to the C3 anode electrode [44,
45]. First, isotropic electrical conductivities were assigned to
different tissues: skin = 0.465, skull = 0.010, CSF = 1.654,
GM = 0.276, and WM = 0.126, each with units (S/m) [46].

Journal of Computational Medicine

FIGURE 3: Simulation 4, DBS electrode positioning (subthalamic nucleus) and dimensions. Anode and cathode contacts are denoted with “+”

and “=” symbols, respectively.

Then, anisotropic conductivity data were used via the
MatlabConductivity class as previously described (see
Code1).

Simulation 2 (comparison of tDCS and HD-tDCS electrode
montages). High-definition TES electrodes have demon-
strated a greater ability to focus its electrical current on a
targeted brain region than traditional tDCS, which uses two
larger electrodes [2, 3]. Using the same computational grid
as Simulation 1, the current densities produced by tDCS and
HD-tDCS were compared.

For tDCS, the anode was positioned over C3 and the cath-
ode over the contralateral supraorbital, each with a surface
area of approximately 16 cm”. In comparison, high-definition
electrodes, each circular with a 12 mm diameter, were posi-
tioned according to a 4 x 1 configuration; a single anode was
positioned over C3, and four cathodes were placed approxi-
mately 5 cm radially from the anode, forming a square. Both
of these montages are known to target the motor cortex
region ipsilateral to the anode electrode [15, 47-50]. Anode
stimulation strength for each simulation was once again
1.0 mA, and both utilized anisotropic conductivities.

Simulation 3 (comparison of finite element linear system
solvers). Finite element based simulations of TES require
the solution of large systems of linear equations, which can
become a computational bottleneck for simulations per-
formed on very fine meshes. Therefore, the effectiveness of
a TES simulation is directly related to the efficiency of the
chosen linear solver. The CG method is ideal for solving these
linear systems and appropriate preconditioning can rapidly
accelerate numerical results [36, 38].

The numerical efficiency of the preconditioned CG
method was evaluated with TES simulations on the three-
dimensional volume mesh (Figure 2), with approximately

29 million linear tetrahedra finite elements and roughly 5.1
million unknowns. The anode was positioned at CZ, with a
stimulation strength of 1.0 mA, and the cathode at OZ [12, 51].
Simulations were performed with the CG method precon-
ditioned with symmetric successive overrelaxation (SSOR),
relaxed incomplete LU decomposition (RILU), and multigrid.
The RILU relaxation parameter was set to 0.5 [27]. The MG
preconditioner was simulated with a V-cycle with both two
and three grid levels, and a W-cycle with three grid levels. The
relative residual convergence tolerance was set to 10~ for all
numerical experiments.

Simulation 4 (impact of conductivity representation on
DBS simulation results). The importance of incorporating
anisotropic conductivities in TES simulations suggests that
accurately simulating other neurostimulation modalities may
depend on this conductivity representation as well. In this
numerical experiment, we compared DBS simulation results
using both isotropic and anisotropic conductivities. A single
electrode was positioned in the subthalamic nucleus (STN),
the most commonly targeted location for DBS [52]. The elec-
trode is a simplified version of the Medtronic (Model 3387)
electrode used in humans [53]. The lower 5.0 mm of the elec-
trode was modeled. The anode is positioned 1.0 mm from the
electrode tip and the cathode is separated by 0.5 mm from the
anode. Both the anode and cathode are 0.5 mm in height, and
the overall electrode diameter was set to 0.75 mm (Figure 3).
The anode and cathode metal contacts were modeled as
conductors by setting the electrical conductivities of these
regions to 10° (S/m), and the remaining electrode shaft was
modeled as an insulator with conductivity equal to 107 (S/
m) [54]. Because DBS electric current is proximal to the elec-
trode [29, 55], 2 10.0 mm x 4.0 mm X 4.0 mm subset of tissue
around the electrode was considered as the computational
domain.

Journal of Computational Medicine

class DBS_Source: public Source

{
DBS_Source (TES* data) ;

}’

dpreal DBS_Source::
dpreal val = 0.0;

val = 0.001;
}

virtual dpreal valuePt(const Ptv(dpreal)& x, dpreal t = DUMMY);
valuePt (const Ptv(dpreal)& x, dpreal t) {

if (4.625 <= x(1) && x(1) <=5.375 &&
4.625 <= x(2) && x(2) <=5.375 &&
3.500 <= x(3) && x(3) <=4.000) {

CopE 6: DBS_Source class definition and sample code from its valuePt function.

0.44

0.33

0.22

Current density (A/m?)

0.11

0.0

(a) Isotropic conductivities

0.44

0.33

0.22

Current density (A/ m?)

0.11

(b) Anisotropic conductivities

FIGURE 4: Simulation 1, current density results viewed from above with the nasion facing up. Anode was placed at C3 and cathode at C4.

To simulate DBS with the existing TES software frame-
work, no existing code required modification. Rather, the
only addition was a new subclass of class Source that defines
f(x) (la) for DBS; in total, less than ten lines of code
were added. Code 6 displays this new subclass definition,
Source_DBS, and highlights of its valuePt function imple-
mentation, which in this simplified scenario simply injects
1.0 mA of current from the anode contact into the surround-
ing tissue. In practice, DBS stimulations are time-varying
pulses, and differing stimulation frequencies impact GM and
WM tissue conductivities [56]. However, when examining
electric field dispersion around a DBS electrode as in this
simulation, a constant-valued source term in (la) can be
utilized [57].

3. Results and Discussion

3.1. Simulation 1. Electric current density results on the
surface of the brain tissue are displayed in Figure 4. Viewing

perspective is from above the head with the nasion facing
up. As expected, the largest electric current density values
are attained near the anode and cathode locations. Despite
an overall similar pattern of electric current distribution, the
simulated current densities, particularly in the motor cortex
ipsilateral to the anode electrode, are significantly different
between the isotropic and anisotropic simulations. For exam-
ple, the maximal anisotropic current density value (0.434 (A/
m?)) is approximately 18.2% higher than in the isotropic case
(0.367 (A/m?)). Similar discrepancies are observed through-
out the top surface of the brain, including a substantial
impact on the paracentral lobule contralateral to the anode.
In addition, these discrepancies extend to the GM and WM
interiors. These results reinforce the importance of using
anisotropic conductivities to most accurately model TES
administrations and in addition showcase the capabilities of
the object-oriented framework to support both isotropic and
anisotropic TES simulations.

10

- 0.10

Electric potential (V)

0.0
(a) tDCS electric potential
0.45

.
=}
G
Current density (A/m?)

0.0
(c) tDCS electric current density

Journal of Computational Medicine

0.045
2003 =
3
=
g
=]
(=¥
9
g
0.015 &
S5}
0.0

(b) HD-tDCS electric potential

Current density (A/m?)

(d) HD-tDCS electric current density

FIGURE 5: Simulation 2, electric potential and current density results. The tDCS montage positioned the anode at C3 and the cathode over
the contralateral supraorbital. A 4 x 1 configuration was used for HD-tDCS with a single anode positioned over C3.

3.2. Simulation 2. Electric potential and electric current
density results are displayed in Figure 5. The tDCS montage
results in a noticeably larger range of electric potential values
(Figures 5(a) and 5(b)). However, the focus of the tDCS
current density on the targeted region, in this case the motor
cortex under C3, is much less than the HD-tDCS electrode
montage (Figures 5(c) and 5(d)). Specifically, the brain tissue
outside of the square formed by the HD-tDCS cathodes
is virtually unstimulated, whereas tDCS results in a much
greater electric current dispersion.

One limitation of this HD-tDCS electrode arrangement
is the lower concentration of electric current that reaches the
brain tissue. Specifically, the maximal electric current density
in the brain from HD-tDCS is just approximately 23% of that
achieved with traditional tDCS. The culprit for this effect is
the shunting of the electric current around the poorly con-
ducting skull; the HD-tDCS montage used in this simulation
yields a minuscule amount of current that penetrates the
skull to reach the CSF and brain tissues (Figure 6). Potential
remedies for this behavior are a greater anode stimulation or
positioning the cathodes at greater distances from the anode
[3].

This simulation demonstrates the framework’s ability to
support varying TES electrode montages, including high-
definition electrode configurations. Results of this simulation

1.5
-1.0

I 0.5

0.0

Current density (A/m?)

FIGURE 6: Simulation 2, HD-tDCS electric current density. Cross
section is through two diagonally positioned cathodes.

corroborate that HD-tDCS offers greater electric current
focality; however, its net stimulation of brain tissue is poten-
tially much lower than tDCS.

3.3. Simulation 3. Electric potential and current density
results on the head surface are displayed in Figure 7. Viewing

Journal of Computational Medicine

‘ "

2 0.08 =
=
=
L
]
o
9
=]

0.04 3
23]

I 0.0

(a) Electric potential

1

2.0

I 1.0

0.5

Current density (A/ m?)

0.0
(b) Current density

FIGURE 7: Simulation 3, electric potential and current density results viewed from the back of the head. The anode was positioned at CZ and

the cathode at OZ.

perspective is from behind the head, and as anticipated, maxi-
mal and minimal electric potential and current density values
occur at the anode and cathode, respectively. The shunting of
the electric current around the skull, due to its low electrical
conductivity, results in the segregated current density pattern
around the anode and cathode centers (Figure 7(b)). This
phenomenon has been previously observed [1]; however, it
is highlighted by the very fine mesh resolution used in this
simulation.

Figure 8 displays convergence history curves and perfor-
mance metrics for each CG preconditioning strategy. With
no preconditioning, the CG method will eventually conver-
gence but will accomplish this extremely slowly, requiring
more than 6 hours to solve the linear system. The SSOR
and RILU preconditioners demonstrate comparable perfor-
mances, both in solution time and number of iterations.
Multigrid preconditioning with two grid levels has far fewer
iterations with 166 than both SSOR and RILU and yet has a
greater run time. This observation can be explained by the
fact that a single iteration of MG has embedded iterations
on the different mesh refinements [37]. However, three-grid-
level MG noticeably accelerates convergence rates, with both
the V- and W-cycles outperforming the other precondition-
ers. Three-grid-level MG with a W-cycle pattern has slightly
fewer iterations than its corresponding V-cycle, yet this V-
cycle preconditioner is approximately 11.3% faster.

The ability of the framework to support numerically ori-
ented TES research is presented in this simulation example.
The results indicate that the CG method combined with an
appropriately configured MG preconditioner is highly effi-
cient in solving the linear systems produced in TES compu-
tational simulations.

3.4. Simulation 4. Figure9 displays the electric current
densities produced by the DBS electrode using isotropic
(Figure 9(a)) and anisotropic (Figure 9(b)) conductivities.
In both cases, the majority of the current density is prox-
imal to the electrode, indicating that accurate placement
of electrodes in DBS procedures is paramount [56]. While

log;((relative residual)

- 0 100 200 300 400 500 600 700 800 900
Iterations
—— SSOR MG: 3-V
— RILU — MG:3-W
— MG:2-V
(a) Convergence history
Preconditioner Iterations Time (min)
None >5000 >360
SSOR 860 113.4
RILU 885 117.5
MG 2-grid V-cycle 166 126.4
MG 3-grid V-cycle 113 57.4
MG 3-grid W-cycle 106 64.7

(b) Numerical iterations and linear system solve time. Boldface
values indicate best convergence results

FIGURE 8: Convergence performances of the preconditioned conju-
gate gradient methods.

the maximal current densities of the isotropic and anisotropic
scenarios are similar, other differences between them are
observable. First, the current density around the electrode
is nonsymmetric in the anisotropic case, as is expected
with directionally dependent conductivity data. In addition,

12

o o
w N

o
[\S}
Current density (A/m?)

I - I -
o o o o o
o W N = — t
Current density (A/ m?)

o
-

0.0

(a) Isotropic

Journal of Computational Medicine

0.4

f=]
[38]
Current density (A/ m?)

0.1

0.0

0.4

0.3

(=]
[\S]
Current density (A/ m?)

0.1

0.0

(b) Anisotropic

FIGURE 9: Simulation 4, electric current density magnitudes and field lines. Current densities in the figures on the left are from a coronal cross

section through the electrode center.

anisotropic conductivities result in a greater electrical current
intensity adjacent to the electrode and more dispersion into
the neighbouring tissue. This is also observed in the electrical
field lines, where anisotropic conductivities produce a more
intense and further-reaching current.

With a straightforward extension, DBS was simulated
with the object-oriented TES framework. The entirety of
the framework is reused in the DBS simulation, which
demonstrates how object-oriented design can produce effi-
cient and scalable software implementations. This particular
example further reinforces the importance that anisotropic
conductivities play in accurately modeling neurostimulation.

While this DBS scenario utilizes a constant source term
to assess electrode electric field dispersion [57], alternative
applications may demand the use of time-dependent pulses,
such as those that examine temporal neuronal responses to
nonconstant electric current administrations. In these cases,
different stimulation frequencies have an impact on the elec-
trical impedance; specifically, WM and GM conductivities
are frequency dependent where an increase in stimulation
frequency yields an increase in electrical conductivity.

Applications such as these are supported by the software
framework. First, since isotropic tissue conductivity values
are specified within the configuration input file, and not
hard-coded in the software, alternative DBS pulses can

be accurately simulated by modifying these values. For
anisotropic data, modifications to support frequency-
dependent conductivities can be made within the Conduc-
tivity classes. For example, the SimNIBS software
package volume normalizes the WM and GM anisotropic
conductivities such that the mean conductivity value of
each tensor is maintained to the associated tissue’s isotropic
value [35]. Therefore, for different DBS frequencies, tensors
could be updated to be normalized to different isotropic
values within the framework’s Conductivity components.
To implement the time-varying source itself, the existing
definition of the valuePt function in class Source
contains an argument for time, namely, dpreal t. Thus,
implementations of valuePt in the Source DBS class can
be based on time, and system (1a)-(1d) can then be iteratively
solved for with time-based source values.

4. Conclusions

Computational simulations of neurostimulation are a valu-
able tool that enable researchers to investigate this form
of brain therapy in silico, and as simulations become more
refined, their utility to medical and biomedical research
grows. While prebuilt simulation software programs can sim-
plify and expedite TES model implementation, they possess

Journal of Computational Medicine

application and portability limitations. In addition, recreating
custom software as applications and research objectives
change is inefficient, error-prone, and tedious to maintain.

Since the mathematics and physiology that govern all
forms of neurostimulation are the same, a single, well-
designed software code can support a versatile range of neu-
rostimulation simulations. In this paper, we have presented
one such software framework, described its design and imple-
mentation, and demonstrated its abilities to support diverse
neurostimulation research objectives. The cornerstone of the
design stage was to encapsulate general neurostimulation
concepts into modular software objects. In doing so, a
multitude of TES simulation areas are supported, and in
addition, alternative forms of neurostimulation, for example,
DBS, can be simulated with the same software.

Simulation results show the importance of using
anisotropic conductivities in both TES and DBS. This is
especially important for simulations utilized in selecting
patient-specific neurostimulation parameters. In addition,
results demonstrate the ability of HD-tDCS to focus the
electrical current on a specific brain region; however,
this capability must be balanced with a potentially low
concentration of electric current actually reaching the
target. The object-oriented TES framework is an ideal tool
for this scenario, enabling different permutations of HD-
tDCS electrode montages and stimulation strengths to be
conveniently investigated to identify an optimal configura-
tion for a particular patient’s data and therapeutic objectives.

Results also illustrate that appropriately configured multi-
grid preconditioning can achieve superior convergence rates.
It is conceivable that hundreds of simulations could be run to
identify an optimal electrode montage and neurostimulation
parameters for a particular patient. Hence, efficiently solving
the linear system of equations resulting from TES finite
element simulations is crucial, and MG can be used in this
capacity to greatly decrease simulation run times. Finally, we
demonstrated how a minor addition to the object-oriented
TES framework enables simulations of DBS. The DBS sim-
ulation example that was performed utilizes a constant
stimulation source term; however, the software framework
description and simulation ensemble presented in this paper
motivate how the framework could be used to address DBS
research related to electrode placement and parameter values.

In future work, we plan to extend the framework to sup-
port anisotropic transcranial magnetic stimulation (TMS), in
a similar fashion as was demonstrated for DBS. In addition,
we plan to utilize the framework to more thoroughly investi-
gate correlations between HD-tDCS interelectrode distances
and electric current distributions.

Appendix
Weak Formulation

We multiply (1a) by a test function v = v(X) and integrate over
Q) to obtain

-J v (V- (MYD)) dx = j vf dx, (A1)
Q Q

13

and using Green’s theorem we have
J Vv MYD dx = J V (MV® - 73) ds + I yfdx. (A2)
Q 20 Q
Expanding the surface integral gives

J Vv~MV®dx=J- v (MVO - 1) ds
Q

20
+ J vy (MV® - #)ds
20,
(A.3)
+ j vy (MV® - #)ds
20y

+ J vfdx,
Q
and substituting the boundary conditions (1c) and (1d) yields

j VV-MVCDdx=j vy (MV® - 1) ds
Q

20c
(A.4)

+J vIds+J vfdx.
20, Q

For these integrals to exist, we require v, ® € H'(Q) and f €
L,(Q), where

H'(Q) = {u|ueL2(Q),a—” eLz(Q)},
ox;
(A.5)
L,(Q)= {pl JQ |p|2dx< oo},

and we enforce the Dirichlet boundary condition (1b) on our
solution space by further stipulating that v, ® € H, = {u |
ueH(Q),u=0forx e 0Q¢}.
Consequently, we have the following weak formulation.
Given f() € L,(Q), find ®(%) € Hy(Q) such that

JV%MV@dsz vIds+J fvdx,
Q Q, Q

9 (A.6)

Vv (%) € Hy (Q).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to acknowledge Frank Vogel and the
entire inuTech team for their assistance with Diffpack. The
authors would also like to acknowledge the financial support
received from Virginia Tech’s Open Access Subvention Fund.

References

[1] A.Datta, X. Zhou, Y. Su, L. C. Parra, and M. Bikson, “Validation
of finite element model of transcranial electrical stimulation
using scalp potentials: implications for clinical dose;” Journal of
Neural Engineering, vol. 10, no. 3, Article ID 036018, 2013.

14

(2]

(8]

(10]

(14]

A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson,
“Gyri-precise head model of transcranial direct current stim-
ulation: improved spatial focality using a ring electrode versus
conventional rectangular pad,” Brain Stimulation, vol. 2, no. 4,
pp. 201-207, 2009.

P. Faria, M. Hallett, and P. C. Miranda, “A finite element analysis
of the effect of electrode area and inter-electrode distance on the
spatial distribution of the current density in tDCS,” Journal of
Neural Engineering, vol. 8, no. 6, Article ID 066017, 2011.

P.S. Boggio, R. Ferrucci, S. P. Rigonatti et al., “Effects of transcra-
nial direct current stimulation on working memory in patients
with Parkinson’s disease,” Journal of the Neurological Sciences,
vol. 249, no. 1, pp. 31-38, 2006.

P. S. Boggio, L. P. Khoury, D. C. S. Martins, O. E. M. S. Martins,
E. C. de Macedo, and F. Fregni, “Temporal cortex direct current
stimulation enhances performance on a visual recognition
memory task in Alzheimer disease,” Journal of Neurology,
Neurosurgery and Psychiatry, vol. 80, no. 4, pp. 444-447, 2009.

P. S. Boggio, C. A. Valasek, C. Campanha et al., “Non-invasive
brain stimulation to assess and modulate neuroplasticity in
Alzheimer’s disease;,” Neuropsychological Rehabilitation, vol. 21,
no. 5, pp. 703-716, 2011.

R. Ferrucci, M. Bortolomasi, M. Vergari et al, “Transcra-
nial direct current stimulation in severe, drug-resistant major
depression,” Journal of Affective Disorders, vol. 118, no. 1-3, pp.
215-219, 2009.

P. S. Boggio, S. P. Rigonatti, R. B. Ribeiro et al., “A randomized,
double-blind clinical trial on the efficacy of cortical direct cur-
rent stimulation for the treatment of major depression,” Inter-
national Journal of Neuropsychopharmacology, vol. 11, no. 2, pp.
249-254, 2008.

P. Homan, J. Kindler, A. Federspiel et al., “Muting the voice: a
case of arterial spin labeling-monitored transcranial direct cur-
rent stimulation treatment of auditory verbal hallucinations,”
The American Journal of Psychiatry, vol. 168, no. 8, pp. 853-854,
2011.

J. Brunelin, M. Mondino, E. Haesebaert, M. Saoud, M. F. Suaud-
Chagny, and E. Poulet, “Efficacy and safety of bifocal tDCS as
an interventional treatment for refractory schizophrenia,” Brain
Stimulation, vol. 5, no. 3, pp. 431-432, 2012.

A. Antal and W. Paulus, “Transcranial alternating current stim-
ulation (tACS),” Frontiers in Human Neuroscience, vol. 7, article
317, 2013.

T. Neuling, S. Wagner, C. H. Wolters, T. Zaehle, and C. S. Her-
rmann, “Finite-element model predicts current density distri-
bution for clinical applications of tDCS and tACS,” Frontiers in
Psychiatry, vol. 3, article 83, 2012.

F. Gasca, L. Marshall, S. Binder, A. Schlaefer, U. G. Hofmann,
and A. Schweikard, “Finite element simulation of transcranial
current stimulation in realistic rat head model,” in Proceedings
of the 5th International IEEE/EMBS Conference on Neural
Engineering (NER 2011), pp. 36-39, IEEE, Cancun, Mexico, May
2011.

P. C. Miranda, M. Lomarev, and M. Hallett, “Modeling the
current distribution during transcranial direct current stimu-
lation;” Clinical Neurophysiology, vol. 117, no. 7, pp. 1623-1629,
2006.

E. M. Caparelli-Daquer, T. J. Zimmermann, E. Mooshagian et
al., “A pilot study on effects of 4 x1 high-definition tDCS on
motor cortex excitability,” in Proceedings of the IEEE Annual
International Conference of the Engineering in Medicine and

(16]

(18]

[20]

(21]

[22]

[26]

(27]

Journal of Computational Medicine

Biology Society (EMBC ’12), vol. 735, pp. 735-738, San Diego,
Calif, USA, September 2012.

S. K. Kessler, P. Minhas, A. J. Woods, A. Rosen, C. Gorman, and
M. Bikson, “Dosage considerations for transcranial direct cur-
rent stimulation in children: a computational modeling study;’
PLoS ONE, vol. 8, no. 9, Article ID e76112, 2013.

H. S. Suh, W. H. Lee, and T.-S. Kim, “Influence of anisotropic
conductivity in the skull and white matter on transcranial direct
current stimulation via an anatomically realistic finite element
head model,” Physics in Medicine and Biology, vol. 57, no. 21, pp.
6961-6980, 2012.

S. Wagner, S. M. Rampersad, U. Aydin et al, “Investigation
of tDCS volume conduction effects in a highly realistic head
model,” Journal of Neural Engineering, vol. 11, no. 1, Article ID
016002, 2014.

S. Lew, C. H. Wolters, T. Dierkes, C. Roer, and R. S. MacLeod,
“Accuracy and run-time comparison for different potential
approaches and iterative solvers in finite element method based
EEG source analysis,” Applied Numerical Mathematics, vol. 59,
no. 8, pp. 1970-1988, 2009.

W. Aquino, “An object-oriented framework for reduced-order
models using proper orthogonal decomposition (POD),” Com-
puter Methods in Applied Mechanics and Engineering, vol. 196,
no. 41-44, pp. 4375-4390, 2007,

R. I. Mackie, “An object-oriented approach to fully interactive
finite element software,” Advances in Engineering Software, vol.
29, no. 2, pp. 139-149, 1998.

R. Sampath and N. Zabaras, “An object-oriented framework
for the implementation of adjoint techniques in the design and
control of complex continuum systems,” International Journal
for Numerical Methods in Engineering, vol. 48, no. 2, pp. 239-
266, 2000.

M. Hakman and T. Groth, “Object-oriented biomedical system
modeling—the rationale,” Computer Methods and Programs in
Biomedicine, vol. 59, no. 1, pp. 1-17,1999.

S. C. Lee, K. Bhalerao, and M. Ferrari, “Object-oriented design
tools for supramolecular devices and biomedical nanotechnol-
ogy, Annals of the New York Academy of Sciences, vol. 1013, pp.
110-123, 2004.

S. Tuchschmid, M. Grassi, D. Bachofen et al., “A flexible
framework for highly-modular surgical simulation systems,” in
Biomedical Simulation, vol. 4072 of Lecture Notes in Computer
Science, pp. 84-92, Springer, Berlin, Germany, 2006.

A. Doronin and I. Meglinski, “Online object oriented Monte
Carlo computational tool for the needs of biomedical optics,”
Biomedical Optics Express, vol. 2, no. 9, pp. 2461-2469, 2011.

H. P. Langtangen, Computational Partial Differential Equations:
Numerical Methods and Diffpack Programming, Texts in Com-
putational Science and Engineering, Springer, Berlin, Germany,
2003.

H. P. Langtangen and A. Tveito, Advanced Topics in Compu-
tational Partial Differential Equations: Numerical Methods and
Diffpack Programming, Lecture Notes in Computational Science
and Engineering, Springer, Berlin, Germany, 2003.

M. Astrom, L. U. Zrinzo, S. Tisch, E. Tripoliti, M. I. Hariz, and
K. Wardell, “Method for patient-specific finite element mod-
eling and simulation of deep brain stimulation,” Medical and
Biological Engineering and Computing, vol. 47, no. 1, pp. 21-28,
20009.

T. Budd, An Introduction to Object-Oriented Programming,
Addison-Wesley, Boston, Mass, USA, 2002.

Journal of Computational Medicine

[31] A.M. Bruaset and H. P. Langtangen, “Diffpack: a software envi-
ronment for rapid prototyping of PDE solvers,” in Proceedings of
the 15th IMACS World Congress on Scientific Computation, Mod-
eling and Applied Mathematics, pp. 553-558, Berlin, Germany,
August 1997.

[32] B. Stroustrup, The C++ Programming Language, Addison-
Wesley, Upper Saddle River, NJ, USA, 2013.

[33] S.Prata, C++ Primer Plus, Addison-Wesley, Upper Saddle River,
NJ, USA, 2012.

[34] MATLAB Version 8.2.0.701 (R2013b), MathWorks, Natick, Mass,
USA, 2013.

[35] M. Windhoft, A. Opitz, and A. Thielscher, “Electric field
calculations in brain stimulation based on finite elements: an
optimized processing pipeline for the generation and usage of
accurate individual head models,” Human Brain Mapping, vol.
34, no. 4, pp. 923-935, 2013.

[36] H. A. van der Vorst, Iterative Krylov Methods for Large Linear
Systems, Cambridge Monographs on Applied and Computa-
tional Mathematics, Cambridge University Press, 2003.

[37] W.L.Briggs, A Multigrid Tutorial, SIAM, Philadelphia, Pa, USA,
2000.

[38] K. A. Mardal, G. W. Zumbusch, and H. P. Langtangen, “Software
tools for multigrid methods,” in Advanced Topics in Compu-
tational Partial Differential Equations: Numerical Methods and
Diffpack Programming, H. P. Langtangen and A. Tveito, Eds.,
Lecture Notes in Computational Science and Engineering, pp.
97-152, Springer, Berlin, Germany, 2003.

[39] C. Geuzaine and J.-F. Remacle, “Gmsh: a 3-D finite element
mesh generator with built-in pre- and post-processing facili-
ties,” International Journal for Numerical Methods in Engineer-
ing, vol. 79, no. 11, pp- 1309-1331, 2009.

[40] A. Henderson, J. Ahrens, and C. Law, The Paraview Guide,
Kitware Inc, Clifton Park, NY, USA, 2004.

[41] T. Williams, C. Kelley et al., “Gnuplot 4.4: an interactive plotting
program,” March 2011.

[42] A. Opitz, M. Windhoff, R. M. Heidemann, R. Turner, and
A. Thielscher, “How the brain tissue shapes the electric field
induced by transcranial magnetic stimulation,” Neurolmage,
vol. 58, no. 3, pp- 849-859, 2011.

[43] M. A. Nitsche, L. G. Cohen, E. M. Wassermann et al., “Tran-
scranial direct current stimulation: state of the art 2008,” Brain
Stimulation, vol. 1, no. 3, pp. 206-223, 2008.

[44] M. Okamoto, H. Dan, K. Sakamoto et al., “Three-dimensional
probabilistic anatomical cranio-cerebral correlation via the
international 10-20 system oriented for transcranial functional
brain mapping,” Neurolmage, vol. 21, no. 1, pp. 99-111, 2004.

[45] E. K. Kang and N.-J. Paik, “Effect of a tDCS electrode montage
on implicit motor sequence learning in healthy subjects;
Experimental and Translational Stroke Medicine, vol. 3, no. 1,
article 4, 2011.

[46] A. Datta, J. M. Baker, M. Bikson, and J. Fridriksson, “Indi-
vidualized model predicts brain current flow during transcra-
nial direct-current stimulation treatment in responsive stroke
patient,” Brain Stimulation, vol. 4, no. 3, pp. 169-174, 2011.

[47] G. Schlaug, V. Renga, and D. Nair, “Transcranial direct current
stimulation in stroke recovery;, Archives of Neurology, vol. 65,
no. 12, pp. 1571-1576, 2008.

[48] A. FE DaSilva, M. S. Volz, M. Bikson, and E Fregni, “Electrode
positioning and montage in transcranial direct current stimu-
lation,” Journal of Visualized Experiments, no. 51, 2011.

15

[49] A. Antal, D. Terney, C. Poreisz, and W. Paulus, “Towards
unravelling task-related modulations of neuroplastic changes
induced in the human motor cortex,” European Journal of
Neuroscience, vol. 26, no. 9, pp. 2687-2691, 2007.

[50] D. Q. Truong, G. Magerowski, G. L. Blackburn, M. Bikson, and
M. Alonso-Alonso, “Computational modeling of transcranial
direct current stimulation (tDCS) in obesity: impact of head fat
and dose guidelines,” Neurolmage: Clinical, vol. 2, no. 1, pp. 759-
766, 2013.

[51] A. Antal, K. Boros, C. Poreisz, L. Chaieb, D. Terney, and W.
Paulus, “Comparatively weak after-effects of transcranial alter-
nating current stimulation (tACS) on cortical excitability in
humans,” Brain Stimulation, vol. 1, no. 2, pp. 97-105, 2008.

[52] S. Miocinovic, S. Somayajula, S. Chitnis, and J. L. Vitek, “His-
tory, applications, and mechanisms of deep brain stimulation,”
JAMA Neurology, vol. 70, no. 2, pp. 163-171, 2013.

[53] L. M. Zitella, K. Mohsenian, M. Pahwa, C. Gloeckner, and M.
D. Johnson, “Computational modeling of pedunculopontine
nucleus deep brain stimulation,” Journal of Neural Engineering,
vol. 10, no. 4, Article ID 045005, 2013.

[54] S. Miocinovic, M. Parent, C. R. Butson et al., “Computational
analysis of subthalamic nucleus and lenticular fasciculus acti-
vation during therapeutic deep brain stimulation,” Journal of
Neurophysiology, vol. 96, no. 3, pp. 1569-1580, 2006.

[55] C. C. Mcintyre and T. J. Foutz, “Computational modeling of

deep brain stimulation,” Handbook of Clinical Neurology, vol.

116, pp. 55-61, 2013.

D. Tarsy, Deep Brain Stimulation In Neurological And Psychiatric

Disorders, Humana Press, Totowa, NJ, USA, 2008.

[57] M. Astrom, Modelling, simulation, and visualization of deep
brain stimulation [Ph.D. thesis], Linképing University, Link6p-
ing, Sweden, 2011.

[56

MEDIATORS
INFLAMMATION

The Scientific Gastroenterology Fi o Journal of
World Journal Research and Practice Diabetes Research

Journal of International Journal of

Immunology Research Endocrinology

Hindawi

Submit your manuscripts at
http://www.hindawi.com

BioMed
Research International

PPAR Research

Journal of
Obesity

AL
@

Evidence-Based b ‘
Stem Ce' |S Complementary and - 4 < 3 = Journal of
International Alternative Medicine & Oncology

oot oume 014

Journal of

Ophthalmology

Parkinson’s
Disease

. <
l-r/

e .

: o .
Ly,

| i

Behavioural Oxidative Medicine and

Neu I’O|Ogy Research and Treatment Cellular Longevity

Computational and
Mathematical Methods
in Medicine

