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Abstract: This work reports the development and experimental validation of a reconstruction 
algorithm for three-dimensional (3D) nonlinear tomography problems. Many optical 
tomography problems encountered in practice are nonlinear, for example, due to significant 
absorption, multiple-scattering, or radiation trapping. Past research efforts have 
predominately focused on reconstruction algorithms for linear problems, and these algorithms 
are not readily extendable to nonlinear problems due to several challenges. These challenges 
include the computational cost caused by the nonlinearity (which was compounded by the 
large scale of the problems when they are 3D), the limited view angles available in many 
practical applications, and the measurement uncertainty. A new algorithm was therefore 
developed to overcome these challenges. The algorithm was validated both numerically and 
experimentally, and was demonstrated to be able to solve a range of nonlinear tomography 
problems with significantly enhanced efficiency and accuracy compared to existing 
algorithms. 
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1. Introduction 
An incredibly wide range of practical problems can be mathematically formulated as a 
tomography problem. The goal of tomography is to reconstruct a spatially-resolved 
distribution of a certain property of a target based on a set of line-of-sight integrated 
measurements of the target measured from different perspectives (and these measurements 
are called projections). Different applications involve different target and physical processes, 
and examples range from the medical imaging of human body using optical transmission 
measurements [1], examination of the internal structure of solids or liquids using electrical 
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capacitance measurements [2], and optical imaging of a chemical species in fluid flows using 
absorption or emission measurements [3, 4]. Regardless of such wide range of applications 
and the corresponding physical processes involved, the mathematical background involved 
remains essentially the same. Hence, the rest of paper will be developed under the context of 
optical imaging of fluid flows, even though the mathematics and algorithm can be extended to 
other applications straightforwardly. 

Mathematically, tomography problems can be broadly divided into linear and nonlinear 
problems. For a linear tomography problem, the projections depend linearly on the property 
to be reconstructed. In the area of optical imaging of fluid flows, an example of a linear 
problem involves the imaging of the concentration of a radical (such as CH*) using 
tomographic chemiluminescence when radiation trapping is negligible [4–8]. Because of the 
negligible radiation trapping, the projections (i.e., line-of-sight-integrated signals emitted by 
CH*) are proportional to the sought property (i.e., the concentration of CH*). When radiation 
trapping is not negligible, the projections will depend nonlinearly on the sought property and 
the problem becomes nonlinear. Example of other linear problems include tomographic Mie 
scattering when multiple-scattering is negligible [9, 10] and tomographic particle image 
velocimetry [11, 12] (which is essentially tomographic Mie scattering with negligible 
multiple-scattering). Extensive research efforts have invested in the development of 
reconstruction algorithms for solving linear tomography problems. A few widely established 
algorithms include the algebraic reconstruction technique (ART) [5–7], multiplicative 
algebraic reconstruction technique (MART) [11], filtered backprojection (FBP) [13] and 
reconstruction technique based on minimization [8, 14]. For a nonlinear tomography problem, 
the projections depend nonlinearly on the property to be reconstructed. Besides the example 
of tomographic chemiluminescence when radiation trapping is not negligible mentioned 
above, other nonlinear problems include tomographic scattering measurements with 
appreciably multiple-scattering [15, 16], and tomographic laser induced fluorescence (LIF) 
measurements with significant absorption [17] or amplified spontaneous emission [18]. 

Nonlinear problems pose several unique challenges, and reconstruction algorithms 
developed for linear problems are not easily extendable to solve nonlinear problems. 
Algorithms proposed in the past for nonlinear tomography problems could be broadly divided 
into two categories. Algorithms in the first category are based on the central slice theorem 
[19], an specific algorithms include the convolution methods [20, 21] and filtered 
backprojection [22, 23]. Algorithms in this category require a large number of projections 
from a wide range of perspectives (hundreds and more). However, in many practical 
problems (such as flow imaging), only a limited number of projections is available, typically 
ranging from 2 [24] to about 50 [4]. It is practically difficult or infeasible to obtain a large 
number of projections from a wide angular range due to the transiency of the target, the 
optical access available, and the cost of equipment. Algorithms in the second category are 
based on the conversion of the tomography problem into a minimization problem, for 
example, to minimize a cost function defined as the difference between the measured and 
calculated projections. Algorithms in this category enjoy the flexibility of being applicable to 
both linear and nonlinear problems. However, in practice, the problem may involve a large 
number of variables (e.g., on the order of millions for the problems examined in this work) 
and the projections are measured with certain uncertainty. As a result, it is not trivial to find a 
minimization technique that can minimize the cost function with efficiency, robustness, and 
accuracy, either for linear or nonlinear problems [25]. Minimization techniques investigated 
in the past included approaches based on the gradients of the cost function, such as the 
conjugate gradient technique [15, 16, 26, 27], Gauss-Newton technique [28], and Newton–
Kantorovich technique [29, 30]. Unfortunately, practical problems often feature many 
confusion local minima (even more so for nonlinear problems than linear problems) and 
gradient-based techniques can only converge to one of these many local minima within the 
measurement uncertainty [31]. To overcome this limitation, global optimization techniques 
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such as simulating annealing (SA) [25, 32, 33] and genetic algorithm (GA) [34] have been 
adopted to solve the tomography problems. These algorithms, at least in principle, can find 
the global minimum or a solution sufficiently close to it [35]. However, the computational 
cost of those techniques is dramatically higher than those based on gradients and can become 
prohibitive for problems with practical scale. 

Based on the above understanding of past work, this work describes a new approach, 
termed NIRT (Nonlinear Iterative Reconstruction Technique), to solve nonlinear tomography 
problems. The NIRT approach solves the nonlinear problem iteratively in a manner analogous 
to the solution of linear tomography problem using ART. The NIRT algorithm is 
demonstrated to solve nonlinear tomography problems while retaining the advantages of ART 
for linear problems. For example, the NIRT algorithm was able to solve nonlinear problem 
with limited number of projections, with robustness in the presence of uncertain projections, 
and with good computational efficiency. In the rest of this paper, we first detail the 
mathematical formulation of the NIRT algorithm, and then report its numerical and 
experimental validation. 

2. Mathematical formulation and algorithm description 

 

Fig. 1. Mathematical formulation of a nonlinear tomography problem. 

This section introduces the mathematical formulation of nonlinear tomography and describes 
the NIRT algorithm. Figure 1 schematically illustrates the mathematical formulation. As can 
be seen, the 3D distribution of the sought property is denoted as C (e.g., the concentration 
distribution of a chemical species or particulates) and discretized into voxels under a 
Cartesian coordinate system. An imaging system collects the signal emitted by the target 
property to form an image on the camera chip (defined as a projection and denoted as P). As 
an example, the dashed red and brown lines illustrate that the signals emitted by two different 
voxels arrive on two sets of pixels on the camera chip and that these two sets of pixels can 
overlap. The projection P depends on two factors: the parameters of the imaging system and 
the modulation (attenuation or magnification) of the signal by the target property itself. The 
parameters of the imaging system include the distance and orientation of the imaging system, 
specified by r (distance), θ (azimuth angle), and φ (inclination angle). The effects of all these 
parameters are reflected in the point spread function (PSF) of the imaging system [36, 37]. 
The modulation of the target signal could be caused by a variety of physical processes 
depending on the specific signal generation and propagation mechanisms. As a simple 
example shown in Fig. 1, when the signal generation involves a laser (e.g., in LIF or Mie 
scattering measurements, respectively), the signal could be attenuated by the absorption or 
scattering of the illumination laser or magnified by amplified spontaneous emission. When 
the signal generation does not involve a laser (e.g., in chemiluminescence measurements), the 
signal could be attenuated by radiation-trapping. 
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Regardless of the specific signal generation and modulation mechanism, the relationship 
between the measured projection P and the sought property can be mathematically capsulated 
into the following equation: 

 ( )= ⋅ P PSF CΓ  (1) 

where P presents the projection vector formed by organizing the measured projections pixel 
by pixel, PSF the point spread function in matrix form, C the vector formed by organizing the 
discretized sought property voxel by voxel, and lastly Г a modulation function representing 
the signal modulation mechanism. In Eq. (1), the operator ‘◦’ represents the Hadamard 
product and ‘·’ matrix and vector product. Note that the Hadamard product is associative but 
the matrix product is not. This work uses bold letters to symbolize vectors or matrices formed 
by discretizing their corresponding continuous functions. The tomographic problem is to 
solve for C with P measured at different locations and orientations. Based on Eq. (1), it can be 
seen that when Г does not depend on C or depends linearly on C, the tomographic problem is 
a linear problem. This work focuses on nonlinear problems where Г depends nonlinearly on 
C. 

To better elucidate the problem and describe the NIRT algorithm, Eq. (1) is expanded into 
its element form as shown in Eq. (2): 
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where m and M are the index and total number of pixels on the projection, respectively; Pm is 
measured projection on the mth pixel; n and N are the index and total number of voxels in the 
measurement domain, respectively; PSFm,n is the value of PSF matrix for the nth voxel on the 
mth pixel, and Cn and Гn are the values of the sought property and the nonlinear modulation 
function for the nth voxel, respectively. Since the PSF matrix does not depend on C, 
established ART algorithm [38] can be applied to solve for Г◦C voxel by voxel. However, in 
general, Г◦C cannot be decoupled by ART to obtain C when Г depends on C nonlinearly. As 
an example, Г assumes the following exponential form according to the Beer-Lambert 
relationship for a variety of signal generation processes (such as absorption, scattering, or 
radiation trapping): 
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 (3) 

where α represents the attenuation coefficient (either absorption or scattering coefficient), l 
the pathlength propagated by the illumination laser and/or the signal photons before reaching 
the imaging system, Cl the value of C along l, and I0,n the incident laser intensity on the nth 

                                                                                                    Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15916                                                                                                     Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15916 



voxel. Here, Γ depends not only on C nonlinearly but also on l, both may vary from voxel to 
voxel. The established ART algorithm is unable to address such dependence in general. 

The NIRT algorithm was developed to address these challenges and solve the nonlinear 
tomography problem described above. The first step of the development was to cast Eq. (1) 
into a different form as shown below: 

 ( )diag= ⋅ ⋅P PSF Γ C   (4) 

by converting Γ from a vector to a diagonal matrix (i.e., diag(Γ)) with the elements of vector 
Г on the main diagonal. The second step was to define a new point spread function, NPSF, by 
combining the first two terms of right hand in Eq. (4). The specific element form of NPSF is 
shown below: 
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Conceptually, NPSF represents the nonlinear point spread function that takes both the 
geometric PSF and the nonlinear modulation Г into account. Now Eq. (1) can be rewritten 
into: 

 = ⋅P NPSF C  (6) 

The third step was to solve Eq. (6) iteratively according to the following scheme: 

 q q
m m mD P P= −  (7) 
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2|| ||

q q
m m nq q

n n q

D NPSF
C C

NPSF
β+ ⋅
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where q represents the index of the iteration step, q
mD  the difference between the measured 

(Pm) and calculated projection ( q
mP ) at the mth pixel in the qth iteration, β a relaxation factor 

set to be 0.01 in this work, and || ||qNPSF  the L2 norm of NPSF in the qth iteration. As can 

be seen from the Eqs. (7) and 8, the NIRT algorithm accounts for the modulation of the signal 
in each step of the iteration to address the nonlinearity (at the cost of increased computational 
cost compared to the linear ART algorithm, since the NPSF matrix needs to be updated in 
every iteration). To address the signal modulation’s dependence on l (i.e., the propagation 
pathlength), a ray-tracing module based on the Monte Carlo method [18] was employed to 
track the signal modulation on a voxel by voxel bases. This ray-tracing module is an 
important component of the NIRT algorithm, and it enables the NIRT algorithm to be 
applicable to a wider range of tomographic problems compared to past algorithms. For 
instance, past algorithms typically were developed under the so-called parallel beam or fan 
beam assumption. These assumptions have limited range of validity in practice, primarily in 
two aspects. First, these assumptions become invalid in practice when the signals emitted 
from different voxels overlap (as illustrated in Fig. 1) due to focusing and zooming. Second, 
algorithms based on these assumptions are typically limited to two-dimensional (2D) 
problems or 3D problems that can be decouple into a series of 2D problems, while many 
practical problems are truly 3D due to signal overlapping and pathlength dependent signal 
modulation, and cannot be decoupled into a series of 2D problems. 
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Lastly, the iteration terminates when the change in C during two consecutive iterations is 
less than a preset value. More specifically, the following termination criterion as described in 
[39] was employed in this work: 

 1

1 1 1

N N N
q q q
n n n

n n n

C C Cβ−

= = =

− ≤ Δ    (9) 

where Δ is a small number that controls the speed of convergence. The value of Δ was 
empirically suggested to be in a range of 0.0001% to 0.1% from previous work [36, 39], and 
was preset to be 0.1% in this work. The results from this work showed that the reconstruction 
accuracy was insensitive to the choice of Δ (the reconstruction accuracy changes within 0.5% 
when Δ varied between 0.001% to 0.1%). Note that there is no extra constraint placed on C 
by the algorithm besides that it should be positive. 

In summary, the development of the NIRT algorithm relied on two key enabling 
techniques to overcome the challenges of the nonlinear tomography problems. The first 
enabling technique involved the derivation and definition of NPSF, the nonlinear point spread 
function, which allowed the development of the iterative scheme to decouple the nonlinear 
problem. The second enabling technique involved the application of a ray-tracing module to 
account for dependence of signal modulation on pathlength. The rest of this paper will 
describe the experimental and numerical validation of the algorithm, and then the 
demonstration of the algorithm in an application involving volumetric LIF measurement in 
turbulent flows. 

3. Validation of algorithm 
The NIRT algorithm has been first extensively validated numerically using a range of 
phantoms. Here, we will focus on the description of the numerical validation on a phantom 
for which an accompanying experimental validation was performed, and only briefly discuss 
the numerical validation on other phantoms. This validation involved a phantom with a 
uniform distribution of the target species, which can be experimentally realized with excellent 
control and accuracy as shown in Fig. 2(a). Figure 2(a) shows the setup of the validation 
experiment from the top view. The setup used a cubical cell, with a dimension of 50 × 50 × 
50 mm3, filled with a fluorescence dye solution (a well stirred mixture of ethanol and 
Rhodamine 6G) to experimentally create a uniform phantom. 

 

Fig. 2. Panel (a): experimental setup from the top view. Panel (b): the spatial profile of 
illumination laser intensity at X = 25 mm. 

When illuminated volumetrically by a laser at a wavelength of 532 nm (generated by a 
pulsed Nd:YAG and expanded by a series of lenses as shown), the dye solution absorbs the 
illumination laser as it propagates through the solution and emits LIF photons, resulting in a 
nonlinear problem as described above. The dye solution emits LIF signals volumetrically, 
which were captured by a total of 7 cameras (6 Photron SA4s and 1 SA6) from different 

                                                                                                    Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15918                                                                                                     Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15918 



orientations. The goal of this validation was to compare the reconstructed distribution of the 
dye concentration to the uniform distribution known a priori. 

To facilitate the following discussion, a right-handed Cartesian coordinate system was 
defined as shown in the figure: the origin was defined as the center point of the cubical cell, 
the X axis was defined along the propagation direction of the illumination laser (which 
propagated perpendicularly into the dye cell), and the Z axis was defined to be out of the 
paper as shown in Fig. 2(a). In the experiment, all 7 cameras were aligned in the X-Y plane 
and therefore their orientations were completely specified by θ, defined as the angle formed 
by the optical axis of a given camera relative to the positive X direction as shown. The focal 
length and f-number of the lenses used on all cameras were 105 mm and 2.8, respectively. 
Each lens was equipped with a 532 ± 10 nm OD4 notch filter to block any interference due to 
the scattering or reflection of the illumination laser. Prior to any measurement, a calibration 
target was used in view registration program to determine the orientations of cameras [40]. 
The orientations of camera 1 through 7 were determined to be θ = 90.0°, 127.5°, 213.8°, 
240.2°, 272.2°, 316.9° and 48.9°, respectively, with an accuracy estimated to be within 0.6°. 

The profile of the illumination laser pulses (i.e., I0 in Eq. (3) was needed to perform the 
tomographic reconstruction. To obtain I0, another dye cell, with a length and height both of 50 
mm and a thickness of 0.5 mm, was fabricated. This cell was used to hold a thin layer of the 
same dye solution, and was then placed at X = 25 mm, i.e., where the laser entered the target 
measurement volume. The thin cell was illuminated by the laser, and an image of the LIF 
signal emitted was captured as shown in Fig. 2(b). Due to the thinness of the dye solution in 
the cell, the integration effects in the dye were neglected and the image shown in Fig. 2(b) 
was used to represent the intensity profile of the illumination laser (i.e., I0). 

 

Fig. 3. Experimental results obtained from the controlled dye cell. Panel (a): projection of the 
volumetric LIF signal from the top view. Panel (b): intensity of signal along the laser 
propagation direction at three different Y locations (Y = −5, 0 and 5 mm). Panel (c): the 
reconstructed concentration distribution at three difference planes (Z = 10, 20 and 30 mm). 
Panel (d): reconstructed dye concentration along three lines. 

To confirm the absorption, a camera was placed to capture the projection of the LIF signal 
emitted by the dye cell from the top view, as shown in Fig. 3(a). If the absorption was 
negligible, the LIF signal captured from this view should be constant along the X direction 
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(i.e., the propagation direction of the laser) due to the uniformity of the dye concentration. 
Figure 3(b) shows the intensity of the signal along the X direction at three Y locations (Y = 
−5, 0 and 5 mm, illustrated by the dashed lines in panel a). As seen in Fig. 3(b), signal 
decreased appreciably as the laser propagated into the dye solution, confirming that the 
absorption was not negligible. A curve fitting on the data shown in Fig. 3(b) also confirmed 
that the signal decreased exponentially according to Beer-Lambert relationship as shown in 
Eq. (3). The absorption coefficient, α, was estimated to be around 0.006 mm−1 for this sample. 

Based on the projections obtained on all 7 cameras (each with 800 × 800 pixels, resulting 
M ≈4.5 × 107 as shown in Eq. (2), a tomography reconstruction was performed using the 
NIRT algorithm to obtain the 3D distribution of dye concentration (which should be ideally a 
uniform distribution because the dye solution was well mixed). In this volumetric LIF 
problem, the two-level LIF model was used and the fluorescence yield was set as a constant 
value for all particles in the concentration field (i.e., the goal is essentially to measure a 
relative concentration field, which is what many LIF measurements are aimed at). The 
computational domain was taken to be a volume of 40 × 40 × 40 mm3 center around the 
origin, smaller than the volume of the dye cell to exclude non-ideal effect around the edges 
and corners of the cell. The computational domain was then discretized into 120 × 120 × 120 
voxels (i.e., N ≈1.8 × 106 as shown in Eq. (2), resulting in a nominal resolution of 0.33 mm in 
all three directions. The nominal resolution was calculated by dividing the dimension of the 
measurement volume with the discretization (i.e., 40 mm/120 = 0.33 mm). This nominal 
resolution represents the highest possible resolution that can be obtained. The actual 
resolution will be worse than the nominal resolution due to the factors such as measurement 
and reconstruction uncertainty. Our previous work [17] have quantified the spatial resolution 
by comparing the volumetric LIF with a planar LIF (PLIF) measurement on a turbulent flow. 
Based on the comparison, the actual spatial resolution was estimated to be 0.71 mm. Also 
note that M is larger than N in this work, resulting in an over-determined systems (i.e., more 
equations than unknowns). In practice, we always prefer to design the experiments to make 
the problem over-determined. The number of equations is controlled by the number cameras 
and their field of view, and the number of unknowns by the discretization scheme. 

 

Fig. 4. Numerical validation using a uniform phantom. Panel (a): reconstructed distribution on 
the central plane (i.e., Y = 0) using simulated projections with 4% artificial noises added. Panel 
(b): reconstructed distribution along 3 lines. 

Figure 3(c) shows the result of the reconstruction on three planes (corresponding to Z = 
10, 20 and 30 mm). As seen, the reconstruction shows the expected uniform distribution. To 
examine the reconstruction closely and quantitatively, Fig. 3(d) shows the reconstructed 
concentration along three lines shown by the dashed line in Fig. 3(c). As seen from Fig. 3(d), 
the reconstructed concentration agreed well with the expected uniform distribution (shown as 
dotted lines). To quantify the reconstruction accuracy, an average reconstruction error (eR) 
was defined according to Eq. (10): 
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nC  represent the reconstructed and true concentration distribution on the nth 

voxel, respectively. For results shown in Fig. 3(d), eR was on the order of 4%. 
Numerical validation was performed parallel with the above experiments, and such 

numerical validation also provided further insights to the eR calculated above. For the 
numerical validation, a uniform phantom was created to simulate the distribution of the dye in 
the cell. Projections from the same seven orientations as used in the experiments were 
calculated using the laser profile shown in Fig. 2(b). To simulate the experimental 
uncertainty, a total of 4% of noise was artificially added to the projections. This noise level 
was chosen based on an analysis of the experiments. Three primary sources of uncertainty 
were identified in the experiments: the uncertainty with the camera (such as background 
noises, camera nonlinearity and/or nonuniformity et al., estimated to be about 1%), the shot-
to-shot variation of the laser system (estimated to be about 1.1%), and the accuracy of our 
view registration process. As aforementioned, the accuracy of the view registration was 
estimated to be within 0.6°, and such an uncertainty translated into about 1.6% uncertainty in 
the projection. The overall uncertainty from all three sources was therefore estimated to be 
around 4%. Gaussian noise was added to the numerical projection data to simulate the 
background noise and the shot-to-shot variation. As for the view registration noise, the noisy 
projections were simulated using the angle sets with measurement uncertainty. Based on the 
simulated projections, reconstructions were performed and the results summarized in Fig. 4. 
Figure 4(a) shows the reconstructed concentration at a slice corresponding to Y = 0 mm using 
the simulated projections. Figure 4(b) shows the reconstructions along three lines in 
comparison to the phantom (shown in black dash lines), with eR calculated to be 4.01%, 
4.03% and 4.53%, respectively. These results were in good agreement with those obtained 
experimentally, supporting the accuracy of the algorithm and the analysis of the experimental 
uncertainty. 

 

Fig. 5. Comparison of reconstruction accuracy and computational time among different 
algorithms. 

Lastly, to further elucidate the difficulties associated with nonlinear tomography 
problems, numerical studies were performed to compare the accuracy and computational cost 
of three reconstruction techniques: NIRT, ART, and a minimization technique. When the 
ART algorithm was used, it was used to solve the problem as if it were a linear problem (i.e., 
the absorption is neglected). In the minimization technique, the tomography problem was 
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converted into a problem to find a distribution that can reproduce the projections with 
minimum difference. Due to the complexity of this minimization process, a stochastic 
minimization algorithm based on simulated annealing (SA) [33] was used. Figure 5 compares 
the eR and computing time when these techniques were applied on the same uniform phantom. 
All simulations were performed with 4% artificial noise added to the projections, and all 
computations were performed on a same computational workstation with 16-Core Intel Xeon 
2.6GHz CPU (only 1 core is used in all calculations) and 512GB memory. As can be seen, 
both NIRT and SA achieved the same level of accuracy, indicating that their ability to 
converge to the globally optimal solution for complicated tomographic problems is 
comparable. Both NIRT and the minimization technique SA yielded good reconstruction 
accuracy with eR below 5%, illustrating the effectiveness of NIRT method and also the 
flexibility of the minimization technique and the prowess of SA to minimize large scale and 
complicated functions. In contrast, ART failed to solve the problem correctly and resulted in 
an eR≈60% due to its inability to address the nonlinearity in the problem. 

In terms of the computational cost, the computing time of NIRT (~7,200 seconds) was on 
the same order of magnitude as that of ART (~5,760 second) because the NPSF needed to be 
updated in each iteration in NIRT and required extra computation time. The SA algorithm, in 
contrast, cost approximately 30 × more computing time than NIRT (~219,600 seconds). In 
conclusion, the NIRT algorithm was capable of performing 3D nonlinear tomography with 
reconstruction fidelity as methods based on minimization techniques, while with 
computational cost on the same order as ART. 

4. Demonstration on a turbulent flow 
After the above experimental and numerical validations, this section reports an application of 
the NIRT algorithm on the 3D measurement of iodine (I2) vapor using a technique we 
codenamed VLIF (volumetric LIF). The experimental setup was similar to that shown in Fig. 
2(a), with two major differences. The first major difference was that the controlled cell was 
replaced by a turbulent nitrogen (N2) jet flow seeded with I2 vapor. The exit diameter of the 
jet was 6.35 mm. The I2 vapor was introduced into the flow by heating solid iodine crystals in 
a water bath to a temperature of 200 °F. The mole concentration of the I2 vapor in the target 
flow was estimated to be 4%. A rod (with a diameter of 3.18 mm) was placed at the exit of 
the jet, to increase the complexity of the flow structures (and also to create an easily 
recognizable pattern of the flow to facilitate the discussion of the results). The second 
difference was that the 10 Hz Nd:YAG laser was replaced by a 5 kHz pulsed laser at a 
wavelength of 527 nm (Photonics Industries DM20–527). The pulse duration of the 5 kHz 
laser was ~300 ns and the pulse energy was 24 mJ. Similar to the dye cell measurement, the 
laser pulses generated were expanded to illuminate the flow volumetrically, exciting the 
seeded I2 molecules to generate LIF photons volumetrically. 

 

Fig. 6. A set of example projections on the turbulent flow. 
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Base on this new setup, Fig. 6 shows a set of example projections of the target flow 
captured by camera 1 through 7, and also an example 2D laser profile measured using the thin 
dye cell mentioned before. All images shown here were single-shot measurements. The 
projections displayed a turbulent jet flow with an overall V shape generated by the rod placed 
at the exit of the jet. All projections had a resolution of 800 × 800 pixels, and each pixel 
corresponded to a physical dimension of 0.05 × 0.05 mm. The overall size jet flow was about 
40 mm in each direction. The absorption of the illumination laser by the seeded iodine was 
estimated to be ~5% as it propagated through the measurement volume, not as large as the 
absorption observed in the dye cells but large enough to preclude the use of linear algorithms 
such as ART. 

Based on the measured projections, 3D distribution of the I2 vapor concentration in the jet 
flow was reconstructed using NIRT. These reconstructions were performed in a 
computational domain of 40 × 40 × 40 mm3 encompassing the entire target flow. The 
computational domain was discretized into 120 × 120 × 120 voxels (~1.8 × 106), resulting in a 
nominal spatial resolution of 0.33 mm. Figure 7 shows an example reconstruction obtained 
using the projections shown in Fig. 6. Figure 7(a) shows a 3D rendering of the relative I2 
concentration, illustrating that the reconstruction captured the overall V-shape of the flow. To 
further examine the reconstruction, Fig. 7(b) shows three planar slices of the reconstruction at 
three different Y locations (Y = −5, 0 and 5 mm). As seen from Fig. 7(b), the 3D 
reconstruction also captured the flow feature at a more detailed level. For example, the slice 
at Y = 0 corresponded to the central plane of the jet flow, and therefore the overall I2 
concentration on this slice should be higher than the other two slices due to less entrainment, 
as clearly captured by the 3D reconstruction shown in Fig. 7(b). 

 

Fig. 7. Application of NIRT on 3D measurement of I2 concentration in turbulent flows using 
VLIF. Panel (a): 3D rendering of the reconstruction. Panel (b): three planar slices of the 3D 
reconstruction. Panel(c): a planar slice taken out of 3D reconstruction at Y = 5 mm. Panel (d): 
projection measured by camera 5. 

To further elucidate the usefulness of the 3D reconstruction, Figs. 7(c) and 7(d) show a 
comparison between the 3D reconstructed I2 distribution against a measured projection. 
Figure 7(c) shows a planar slice of the 3D reconstruction at Y = 5 mm, and Fig. 7(d) shows 
the projection measured by camera 5 (which was placed in the same view orientation as Fig. 
7(c)). The images shown in Fig. 7(c) and 7(d) differ apparently, due to the fact that the result 
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shown in Fig. 7(c) was spatially resolved in 3D while that in Fig. 7(d) was line-of-sight-
integrated. Such difference was further displayed by comparing the contours of the flow. The 
white line shown in Fig. 7(c) shows the contour of the flow extracted from the 3D 
reconstruction, and this contour was overlaid on the line-of-sight-integrated measurements 
shown in Fig. 7(d). 

Similar to the validation studies described in Section 3, parallel numerical simulations 
were performed for these measurements conducted in turbulent flows to provide further 
insights. In these simulations, a phantom distribution resembling that target turbulent flow 
was created. Based on the phantom, projections at the same orientations used in the 
experiments were computed with artificial noises added to simulate measurement uncertainty. 
Then these simulated projections were used in the NIRT algorithm. As aforementioned, the 
noises considered included the uncertainty with camera (estimated to be about 1%), the shot-
to-shot variation of the laser system (estimated to be about 1.1%), and the accuracy of our 
view registration process. Figure 8 examines the last noise source more closely by showing 
the eR obtained under various level of uncertainty caused by view registration error. As seen, 
at our current level of view registration accuracy of Δθ = 0.6°, the error in the projection (eP, 

VR) caused by Δθ was about 2.7% (which was larger than that for the simpler uniform 
distribution examined in Section 3). In general, our results suggest that the impact of Δθ on eP, 

VR increases as the complexity of the distribution increases, motivating the improvement of 
the view registration process as to be further elaborated at the end of this section. With an eP, 

VR of 2.7% and a combined uncertainty of 2.1% due to the background noise registered on the 
camera and the shot-to-shot variation, a total of 4.8% artificial noise was added to the 
computed projections to simulate the experiments. The eR obtained was ~8% as shown in Fig. 
8, significantly larger than that obtained for the simpler uniform phantom discussed in Section 
3 due to the increased complexity in the target distribution. Before further discussion on such 
reconstruction accuracy and on possible ways to improve it, we wanted to first point out that a 
reconstruction with an eR of 8% is actually quite accurate already and resolve most of the 
detailed features as illustrated in Fig. 9. 

 

Fig. 8. Reconstruction error using simulated projections based on turbulent phantoms. 

Figure 9 shows a more detailed comparison between the turbulent phantom and the 
reconstruction using simulated projections (with 4.8% artificial noise added) across several 
planes and along several lines. In each panel, the first column shows phantom distribution of 
I2 vapor (i.e., the true answer) across a plane, the second column shows the I2 distribution 
reconstructed by NIRT across the same plane, and the third column compares the phantom 
and the reconstruction along three lines (the dashed line). These three lines were picked so 
that the eR along the first line (8.9%) was about the same as the overall 3D eR of 8% (as 
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shown in Fig. 9(a), the eR along the second line (5.6%) was significantly smaller than the 
overall 3D eR, and the eR along the third line (10.8%) was significantly larger than the overall 
3D eR. As seen, at a reconstruction accuracy within 8%, the reconstruction was able to capture 
the overall features of the flow and also most of the detailed features. 

Lastly, we conclude this discussion with a discussion of possible approaches that can 
further improve the reconstruction accuracy of nonlinear tomography problems. As 
mentioned above, the reconstruction algorithm need to be able to address at least three 
sources of noises encountered in practice: uncertainty with the camera, the laser system, and 
the view registration process. The first two sources need to be addressed primarily by 
experimental equipment and are not discussed further here. The last source can be addressed 
both by experimental approaches (e.g., design of a new view registration procedure to reduce 
Δθ) and also by the reconstruction algorithm. One possible approach involves modifying the 
NIRT algorithm to include the orientations of the cameras (i.e., θ’s) as variables too, so that 
the view registration errors are accounted for during the reconstruction process. Our 
preliminary study shows that this approach along could reduce Δθ from = 0.6° to an 
equivalent of 0.3°, leading to an improved eR of ~6.6% from ~8% as shown in Fig. 8. 

 

Fig. 9. The quantitative comparison from several slices and lines between phantom and 
reconstruction on turbulent V-flow phantom 

5. Summary 
In summary, this work reports the development and validation of a reconstruction algorithm 
for nonlinear tomography problems, motivated by a range of practical applications involving 
absorption, scattering, or radiation trapping. Algorithms developed in the past are not readily 
extendable to such nonlinear problems due to several challenges, such as computation cost, 
limited view angles available, and the measurement uncertainty. To address these challenges, 
this work therefore developed a nonlinear iterative reconstruction technique (NIRT). The 
NIRT algorithm was demonstrated and validated using both experimental tests and numerical 
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simulations. Results show that the NIRT algorithm is able to solve large scale nonlinear 
tomography problems in 3D effectively with high fidelity. 
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