

Next Generation Frequency Disturbance Recorder

Design and Timing Analysis

Lei Wang

Dissertation submitted to the faculty of
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of:

Doctor of Philosophy

in

Electrical Engineering

Committee Members:
Yilu Liu (Co-Chair)

Virgilio Centeno (Co-Chair)
Richard W. Conners
Patrick Schaumont

Shu-Ming Sun

May 21st, 2010

Blacksburg, Virginia

Keywords: synchronized sampling, phasor measurements, time
synchronization, indoor GPS, Oscillator, RTAI

Copyright 2010, Lei Wang

Next Generation Frequency Disturbance Recorder Design and Timing

Analysis

Lei Wang

Abstract

In recent years, the subject of wide-area synchronized measurements has gained a

significant amount of attention from the power system researchers. All of this started with

the introduction of the Phasor Measurement Unit (PMU), which added a new perspective

in the field of wide-area measurement systems (WAMS). With the ever evolving

technologies over the years and the need for a more cost effective solution for

synchronized frequency measurements, the Frequency Monitoring Network (FNET) was

developed and introduced by the Power IT laboratory at Virginia Tech. The FNET is

comprised of many Frequency Disturbance Recorders (FDR) geographically distributed

throughout the United States. The FDR is a dedicated data acquisition device deployed at

the distribution level, which allows for a lower cost and easily deployable WAMS

solution. With Internet connectivity and GPS timing synchronization, the FDR provides

high accuracy frequency, voltage magnitude and voltage angle data to the remote servers.

Although the current FDR design is up to the standard in terms of the measurement

accuracy and portability, it is of interest to further the research into alternative

architectures and leverage the ever advancing technologies in high speed computing. One

of the purposes of this dissertation is to present novel design options for a new generation

of FDR hardware design. These design options will allow for more flexibility and to

lower reliance on some vendor specific components. More importantly, the designs seek

to allow for more computation processing capabilities so that more accurate frequency

and angle measurements may be obtained.

Besides the fact that the accuracy of frequency and angle measurement is highly

dependent on the hardware and the algorithm, much can be said about the role of timing

synchronization and its effects on accurate measurements. Most importantly, the accuracy

 iii

of the frequency and angle estimation is highly dependent on the sampling time of local

voltage angles. The challenges to accurate synchronized sampling are two folds. One

challenge has to do with the inherent fallbacks of the GPS receiver, which is relatively

high cost and limited in availability when the satellite signal is degraded. The other

challenge is related to the timing inaccuracies of the sampling pulses, which is attributed

to the remainder that results from the imperfect division of the processor counter. This

dissertation addresses these issues by introducing the implementation of the high

sensitivity (indoor) GPS and network timing synchronization, which aims to increase the

availability of frequency measurements in locations that would not have been possible

before. Furthermore, a high accuracy timing measurement system is introduced to

characterize the accuracy and stability of the conventional crystal oscillator. To this end,

a new method is introduced in close association with some prior work in generating

accurate sampling time for FDR. Finally, a new method is introduced for modeling the

FDR based on the sampling time measurements and some results are presented in order to

motivate for more research in this area.

 iv

Acknowledgement

First and foremost I would like to express my sincere appreciations to my primary

advisor, Dr. Yilu Liu, for her invaluable guidance and encouragements throughout my

studies in the graduate school. In addition, she did not only allow me the flexibility to

pursue my research interests but also gave me the opportunity to work in the industries

where I have obtained valuable experiences in many different fields. Much can be said

about her support throughout my studies and I will be forever in her debt for her advice,

time and most of all friendship.

My sincere appreciation goes out to Dr. Richard Conners for his continuous support

and invaluable guidance in all aspects of my research studies. Even upon retirement, he

selflessly offered a tremendous amount of time to meet with me over the weekends to

accommodate for my full-time work schedule. I would also like to send my sincere

appreciation to Dr. Virgilio Centeno for serving as the co-advisor of my committee and

provided the support throughout the years of my graduate studies. Finally, I would like to

send my sincere appreciation to Dr. Patrick Schaumont and Dr. Shu-Ming Sun for

serving as my committee members. The research work would not have been possible

without their guidance and assistance.

Special thanks goes out to all of the past and present FNET team members, especially

Javier Fernandez who initiated the testing of network time protocol and Bruce Billian for

paving the way for the next generation FDR design. In addition, I would like to send

special thanks to Dr. Kevin Zhong, Dr. Ryan Zuo, Dr. Emily Xu, Dr. Henry Zhang,

Vivian Liang, Jon Burgett, Dr. Matt Gardner, Dr. Josh Wang, Dr. Will Kook, Dr. Mark

Baldwin, Kevin Khan, Dr. Jason Bank, Dr. Jingyuan Dong, Dr. Tao Xia, Dr. Il-Yop

Chung, Dr. Alan Yuan, Yingcheng Zhang, Lang Chen, Joanna Wu, Kelly Ye and Penn

Markham. For it has been a great pleasure and an honor to have known and worked with

these talented and dedicated colleagues.

 v

This is dedicated to my parents, for whom

education always comes first.

 vi

Table of Contents

Abstract ...ii

Acknowledgement ..iv

Table of Contents ...vi

Table of Figures..ix

List of Tables ...xii

Chapter 1 Introduction..1

1.1 Motivation and Background...1

1.1.1 Frequency Monitoring Network (FNET) and Frequency Disturbance

Recorder (FDR) ...2

1.1.2 FDR Algorithm Review ..3

1.1.3 FDR Algorithm Implementation ..9

1.1.4 FDR Software Architecture..12

1.2 Objectives..13

1.3 Organization ...15

Chapter 2 Frequency Disturbance Recorder Design Requirements....................16

2.1 Background...16

2.2 FDR System Level Requirements...17

2.2.1 Analog Input Subsystem...18

2.2.2 Central Processing Unit ..21

2.2.3 Timing Subsystem...27

2.2.4 Network Communication Subsystem...28

2.3 Limitations of the First and Second Generation FDR.................................28

2.3.1 Timing Subsystem Limitations...29

2.3.2 Computation Limitations ...35

2.3.3 Voltage Level and Communication Limitations ..35

Chapter 3 Evaluation of Frequency Disturbance Recorder Architectures38

3.1 Background...38

3.2 Microcontroller Based Design ..39

3.2.1 Analog Subsystem ...40

3.2.2 Microcontroller ...41

3.2.3 Network Subsystem ..43

3.3 Digital Signal Processor Based Design ...43

3.3.1 Analog Subsystem ...45

3.3.2 Microcontroller and DSP Co-processor...45

3.3.3 Network Communication Subsystem...47

3.4 Commodity Personal Computer Based Design with FPGA47

3.4.1 Microcontroller ...48

3.4.2 FPGA...49

3.4.3 Commodity PC..50

3.5 Standalone Commodity Personal Computer Based Design51

Chapter 4 Implementation of Global Positioning System as a High Availability,

High Accuracy Timing Reference for Frequency Disturbance Recorder.................54

4.1 Background...54

4.1.1 Global Positioning System ..55

 vii

4.1.2 Limitations of the GPS Accuracy ...58

4.1.3 Alternative Global Navigation Satellite Systems ...60

4.2 GPS Time Synchronization for FDR..61

4.2.1 First Generation FDR GPS Receiver ...61

4.2.2 Second Generation FDR GPS Receiver ...62

4.3 Introduction to High Sensitivity GPS ..64

4.4 Implementation of a High Sensitivity GPS for FDR....................................67

4.5 Availability and Accuracy Analysis ...70

4.6 Frequency and Angle Measurements with Indoor GPS..............................75

4.7 Recommendations...85

Chapter 5 Timing Measurement Based on a High Stability and High Resolution

PC Counter ...88

5.1 Background...88

5.1.1 Oscillator Characteristics and its Accuracy...89

5.1.2 Factors Affecting Crystal Oscillator Frequency Accuracy92

5.2 Timekeeping for COTS PC ..95

5.2.1 Hardware Clock..96

5.2.2 Software Clock..96

5.3 The Measurement Infrastructure ..99

5.3.1 RTAI (Real Time Application Interface) for Linux and Timers101

5.3.2 Measurement Software and RTAI Latency Mitigation.............................102

5.4 Measurement Results and Time Domain Analysis106

5.4.1 PC Oscillator Accuracy and Stability Analysis ...109

5.5 Summary ...115

Chapter 6 Analysis of Frequency and Phasor Angle Measurements Based on

Timing of Conversion..117

6.1 Background...117

6.2 Clock Division Algorithm ...119

6.3 Development of FDR Model ...125

6.3.1 Conceptual Design of FDR Model..126

6.3.2 Measurement of FDR Timing for Conversion ...130

6.4 Discussion of Results...136

6.5 Summary ...139

Chapter 7 PC Time Synchronization ..141

7.1 Background...141

7.1.1 Network Synchronizations..142

7.2 An Overview of Network Time Protocol (NTP) ..144

7.2.1 NTP version 4..148

7.3 Evaluation of NTP accuracy...149

7.3.1 Characterization of NTP Time Synchronization on Different Operating

Systems...153

7.3.2 Measurement of TSC clock skew ...158

7.4 Summary ...163

Chapter 8 Conclusions and Future Work...165

8.1 Conclusions and Contribution..165

8.2 Future Works..168

 viii

References ...170

Appendix A..176

GPS Signals and Positioning Analysis ..176

I Review of GPS Signal Power Levels...176

II Relationship between Carrier to Noise Ratio and Power Levels177

III Indoor GPS positioning ..177

Appendix B ..185

I NTP Servers ..185

Appendix C..186

I Parallel Port Connection with FDR Trigger for Conversion Signal...............186

II Brief Summary of RTAI...186

III C Code for Measurement PC ...189

 ix

Table of Figures

Figure 1.1 Frequency Monitoring Network (FNET) Architecture..............................2

Figure 1.2 Illustration of resampling ..8

Figure 1.3 Flowchart of phasor estimation algorithm ...11

Figure 1.4 Flowchart of initialization for phasor estimation algorithm....................12

Figure 1.5 Top level state machine of FDR ..12

Figure 2.1 Top-down design approach ...16

Figure 2.2 System block diagram of FDR...17

Figure 2.3 Frequency and angle measurements using double precision arithmetic .23

Figure 2.4 Frequency and angle measurement differences between two FDR units

using double precision arithmetic ...23

Figure 2.5 Frequency and angle measurements using single and double precision

arithmetic ...24

Figure 2.6 Frequency and angle measurement differences with single and double

precision arithmetic ...24

Figure 2.7 Effect of sampling point residues ..30

Figure 2.8 Effect of waiting a constant time for each sampling second.....................31

Figure 2.9 Phasor angle measurement from first generation FDR32

Figure 2.10 Effect of sampling period on phasor angle accuracy [14].......................33

Figure 3.1 First generation FDR architecture..39

Figure 3.2 Photo of first generation FDR ...40

Figure 3.3 Second generation FDR architecture ..44

Figure 3.4 Photo of the second generation FDR...44

Figure 3.5 FDR architecture based on FPGA and PC ...48

Figure 3.6 PC based FDR design block diagram ...52

Figure 4.1 M12M GPS module interface to the MPC555 and ADC..........................63

Figure 4.2 Test setup for comparing M12+ and M12M...64

Figure 4.3 FDR4 with M12+ versus FDR24 with M12M...64

Figure 4.4 Indoor GPS receiver data with antenna placed next to window..............71

Figure 4.5 Conventional GPS receiver data with antenna placed next to the window

..72

Figure 4.6 Indoor GPS receiver data with antenna placed in a desk drawer73

Figure 4.7 Indoor GPS receiver data with signal degradation74

Figure 4.8 Indoor GPS test setup using the AC source ..75

Figure 4.9 Frequency and phasor angle measurements of the AC source signal using

indoor GPS...76

Figure 4.10 Indoor GPS test setup for completely isolated environment77

Figure 4.11 Frequency and angle measurements with the number of acquired

satellites on May 1
st
 from 1AM to 2AM..77

Figure 4.12 Frequency and angle measurements with the number of acquired

satellites on May 2
nd

 from 1AM to 2AM...78

Figure 4.13 Frequency and angle measurements with the number of acquired

satellites on May 3
rd

 from 1AM to 2AM ...79

 x

Figure 4.14 Frequency and angle measurements with the number of acquired

satellites on May 4
th

 from 1AM to 2AM ...80

Figure 4.15 Frequency and angle measurements with the number of acquired

satellites on May 5
th

 from 1AM to 2AM ...81

Figure 4.16 Frequency and angle measurements with the number of acquired

satellites on May 6
st
 from 1AM to 2AM..82

Figure 4.17 Frequency and angle measurements with the number of acquired

satellites on May 7
st
 from 1AM to 2AM..83

Figure 5.1 Crystal Oscillator Block Diagram...90

Figure 5.2 Measured TSC frequency with USB controller enabled105

Figure 5.3 Measured TSC frequency with USB controller disabled106

Figure 5.4 Histogram of TSC frequency measurements – offset from nominal CPU

frequency..110

Figure 5.5 Boxplot of TSC frequency measurements – offset from nominal CPU

frequency grouped by days ...110

Figure 5.6 Histogram of TSC frequency measurements – second to second difference

..112

Figure 5.7 Q-Q Plot of TSC frequency measurements – second to second difference

..112

Figure 5.8 Boxplot of TSC frequency measurements – second to second difference

grouped by days...113

Figure 5.9 Allan deviation plot of TSC frequency measurements with τ0 = 1.........114

Figure 6.1 Flowchart of clock divider algorithm..121

Figure 6.2 Simulation of clock division algorithm for frequency and phasor angle

measurements ..122

Figure 6.3 Simulation of conventional PWM method for frequency and phasor angle

measurements ..122

Figure 6.4 Effect of sampling clock speed on frequency estimation – clock division

algorithm versus conventional PWM method ..123

Figure 6.5 Effect of sampling clock speed on phasor angle estimation – clock division

algorithm versus conventional PWM method ..124

Figure 6.6 Illustration of developing sampling time histogram...............................128

Figure 6.7 Procedure for developing FDR model based on sampling time

measurement..129

Figure 6.8 Illustration of random sampling ...129

Figure 6.9 Procedure for simulating FDR model based on sampling time130

Figure 6.10 Timing measurement setup for FDR trigger for conversion signal131

Figure 6.11 Histogram of timing measurements for FDR trigger for conversion –

offset from theoretical timing..132

Figure 6.12 Histogram of timing measurements for FDR trigger for conversion -

pulse to pulse timing differences ...133

Figure 6.13 Q-Q Plot of 1PPS measurement versus Q-Q Plot of trigger for

conversion measurement – pulse to pulse timing difference134

Figure 6.14 First trigger for conversion latency with respect to 1PPS....................135

Figure 7.1 NTP message format..145

Figure 7.2 NTP message exchange..146

 xi

Figure 7.3 Typical NTP Network Topology ...147

Figure 7.4 Local clock synchronized by NTPD – offset given by W32Time152

Figure 7.5 NTP local clock offset from server clock for Windows XP Pro. – first

week of synchronization ..153

Figure 7.6 NTP local clock offset from server clock for Windows XP Pro. – second

week of synchronization ..154

Figure 7.7 NTP local clock offset from server clock for Ubuntu – first week of

synchronization..156

Figure 7.8 NTP local clock offset with respect to server clock for Ubuntu – second

week of synchronization ..157

Figure 7.9 TSC clock skew (with reboot)..161

Figure 7.10 TSC clock skew measurement case 1 ..162

Figure 7.11 TSC clock skew measurement case 2 ..162

Figure A.1 Relationship between carrier to noise ratio and signal strength...........177

Figure A.2 Comparison of CW12 with M12M in latitude solution179

Figure A.3 Comparison of CW12 with M12M in longitude solution.......................179

Figure A.4 Comparison of CW12 with M12M in altitude solution180

Figure A.5 Overall position solution of CW12 and M12M180

Figure A.6 CW12 latitude solution with signal degradation....................................182

Figure A.7 CW12 longitude solution with signal degradation.................................182

Figure A.8 CW12 altitude solution with signal degradation....................................183

Figure A.9 Overall position solution of CW12 with signal degradation..................183

Figure C.1 PC interface with FDR trigger for conversion signal186

Figure C.2 RTAI Functional Block Diagram ...187

 xii

List of Tables

Table 2-1 ADC architectures and attributes ..20

Table 2-2 Statistics of the differences in frequency measurements between FDR with

double precision arithmetic and FDR with single precision arithmetic25

Table 3-1 Options for direct upgrade of Freescale MPC55542

Table 4-1 Initialization characteristics of indoor GPS receivers and FDR GPS

receiver...67

Table 4-2 Characteristics of GPS receivers - M12+, M12M and CW1269

Table 5-1 Oscillator characteristics ..92

Table 5-2 Measurement PC specifications..101

Table 5-3 Statistics of the TSC frequency measurements..114

Table 6-1 Frequency and phasor angle measurements using the new clock division

algorithm with actual processor clock (input 60Hz with no phase shift).........125

Table 6-2 Statistics for the measurement of the trigger for conversion signal........136

Table 7-1 NTP local clock offset statistics for the first week – Windows XP Pro.

versus Ubuntu..156

Table 7-2 NTP local clock offset statistics for the first week – Ubuntu...................157

Table A-1 Statistics of M12M and CW12 position solution (ms)…………………. 181

Table A-2 Statistics of CW12 position solution when operating under signal

degradation (ms)………………………………………………………………… 184

 1

Chapter 1 Introduction

1.1 Motivation and Background

The power transmission network is a highly complex and vast system, yet it is one of

the most important networks in the world. However, experiences such as the August 14,

2003 blackout has shown a dire need of an improved power transmission network with

high reliability and efficiency. In fact, billions of dollars were bid in the recent years to

improve the reliability of the creaking system in the United States alone. To this end,

power system researchers around the world are looking for methods to ensure stability in

a much heavily loaded power transmission network. One method that has been

increasingly attracting attention in the recent years is the wide area measurement system

(WAMS). Such monitoring tool can be used to accurately capture real-time events and

system dynamics. The need for monitoring and recording of power system data has been

recognized for a long time and one of the most well known methods is the synchronized

phasor measurements or also known as synchrophasors. Synchronized phasor

measurements provide a standard of referring the phasor representation of a power

system voltage or current to an absolute time reference. The absolute reference is

provided in the form of common high accuracy clocks synchronized to coordinated

universal time (UTC). The first high accuracy phasor measurement was made possible by

the invention of phasor measurement units (PMU).

The invention of the PMU goes back to 1988, when the first PMU prototypes were

developed at Virginia Tech and was later commercialized in the early 1990’s. In order to

monitor a complex wide area system like the power transmission network, there is a need

for a synchronized monitoring solution with highly dynamic phasor measurement

technique. To meet these needs, a Global Positioning System (GPS) receiver is used in

the PMU in conjunction with the frequency estimation algorithm invented under the

leadership of Dr. Arun Phadke. However, the high installation cost of PMU’s limits its

deployment capabilities. Early studies clearly point to the need for much wide system

measurement coverage, coverage that can be quickly and economically obtained. To meet

 2

these goals, an Internet based Frequency Monitoring Network (FNET) was proposed in

2001 by the PowerIT group at Virginia Tech, and has since been implemented [1].

The FNET is composed of mainly the Frequency Disturbance Recorder (FDR) and

the Information Management System (IMS) as it is shown in Figure 1.1. Somewhat

similar to the PMU, the FDR acts as the sensor that performs local frequency data

measurements and transmits the data to remote servers on the Internet. The FDR’s are

synchronized to the GPS and installed at 110V or 220V distribution voltage level of a

typical office outlet. The IMS works as a central server, which provides data collection,

storage, web service, post disturbance analysis and other information management

functions. Working together, the FDR’s and IMS provides continuous, real-time, wide

area gathering of GPS time stamped frequency data for power system monitoring [1].

Based on these valuable data, the power system researchers can investigate a variety of

protection and control applications, which can be used to improve the performance of the

power transmission network.

Data
base

Client

IMS

Server Interface

Router

Firewall

Internet

FDR 1

Client

Satellite

LAN

FDR 2

FDR n

Figure 1.1 Frequency Monitoring Network (FNET) Architecture

1.1.1 Frequency Monitoring Network (FNET) and Frequency
Disturbance Recorder (FDR)

The FNET developed at Virginia Tech consists of several FDRs distributed across the

United States and Canada as well as a central data collection server. The advantages of

the FNET implementation are twofold. Firstly, each FDR interfaces with the electric grid

 3

at low voltage levels with easily accessible wall sockets. Secondly, the cost of FDR

hardware is on the order of $1000 whereas the PMU ranges in several times of $1000.

However, there are tradeoffs to be made for such a low cost installation and design. On

the low voltage level, the FDR will not be able to measure the three-phase quantities and

increases the vulnerability to noises of various forms, including high frequency switching

loads and electromagnetic interference (EMI). Overall, with the FNET’s capability for

mass coverage, its shortcomings are overwhelmingly overshadowed.

1.1.2 FDR Algorithm Review

The phasor measurement algorithm has its roots from the days of Charles Proteus

Steinmetz, who presented a paper on simplified mathematical description of the

waveforms of alternating electricity. Since then, the word ‘phasor’ was invented and was

eventually evolved into the calculation of real time phasor measurements.

The first generation of the FDR device was developed in 2002-2003 and there have

been more than 40 units deployed in the United States power grid and a few 50Hz units

in Europe and Africa. The first generation FDRs have virtually no algorithm error at

60Hz and their calculated frequency accuracy is better than ±0.0005Hz [1].

With the ever increasing advances in microprocessor technologies, more and more

digital algorithms have been applied to calculating power system frequency, such as

Modified Zero Crossing [8], Level Crossing [7], Least Squares Error [10], Newton

Method [11], Kalman Filtering [12], Discrete Fourier Transform [6] and Smart Discrete

Fourier Transform [9]. Each algorithm has its unique advantages and disadvantages.

Nevertheless, phasor angle analysis provides fast and accurate frequency estimation over

a wide range of frequency and the computation requirement is kept at a minimum for

real-time implementation. From practical point of view, phasor angle analysis is

recognized as the most appropriate for FDR measurement applications.

 4

The phasor computation algorithm is based on the relationship that small frequency

perturbation can be approximated by measuring the rate of the change of its phasor angle

[6]. In mathematical terms this can be represented by the equation:

 Equation 1-1

Note that the phasor angle to frequency relationship in equation 1-1 is based on the

assumption that frequency deviation from nominal is relatively small. To illustrate this,

let’s assume the input signal is a sinusoidal waveform written as:

 Equation 1-2

Where f0 is the nominal system frequency, ∆f is the deviation from nominal frequency

and φ is phasor angle.

Using the recursive discrete fourier transform, the new rth phasor can be expressed as

[4]:

Equation 1-3

Where N is the number of samples taken per cycle. Now assuming that ∆f is relatively

small, the following relationships are introduced [4]:

 Equation 1-4

 Equation 1-5

As a result, the second term of Equation 1-3 can be eliminated and the simplified

expression can be written as [4]:

 Equation 1-6

 5

Since φr and φr+1 are defined as the phasor angle of the rth and (r+1)th phasor

respectively, the change in phasor angle can be calculated as [3]:

 Equation 1-7

The denominator t can be represented by the time between consecutive samples and can

be approximated by [3]:

 Equation 1-8

Therefore as N is increased, t will approach zero and establish the relationship

represented in Equation 1-1. Finally, the relationship between the frequency deviation

and phasor angles can be obtained [3]:

 Equation 1-9

At this point, it is important to note that as the system frequency approaches nominal

system frequency, the phasor angle algorithm reaches its highest accuracy and

conversely, the accuracy degrades as system frequency deviates from nominal system

frequency. However, it will be seen later that a multiple resampling method can be used

to minimize this error [3].

Given the relationship between phasor angle and frequency deviation, the

implementation of the algorithm is discussed in [3] and being introduced here to provide

as a reference. To illustrate phasor representation, one can write a sinusoidal input signal

of frequency w in the form:

 Equation 1-10

and its equivalent representation in phasor form:

 Equation 1-11

Assuming that the signal x(t) is sampled N times per cycle of the nominal voltage

waveform to produce the sample set shown below:

 Equation 1-12

The discrete fourier transform (DFT) of equation 1-10 can be written as:

 6

 Equation 1-13

Where

 Equation 1-14

 Equation 1-15

To obtain more phasor results the recursive phasor computation technique is used to

obtain the successive phasor:

 Equation 1-16

 Equation 1-17

Where k = Nf0t

Then the angle of the kth phasor can be calculated by:

 Equation 1-18

Assuming that voltage phasor angles vary as a quadratic function with respect to the

sample number,

 Equation 1-19

Using a computation window of M phasor angles, the relationship between the phasor

angles and the sample number can be put into matrix form:

 Equation 1-20

Equation 1-18 can also be simply written as:

 7

 Equation 1-21

The unknown matrix a can be solved using the least error square solution:

 Equation 1-22

Where the pseudo-inverse matrix is known as the gain matrix and can be

computed offline.

Once the values of a1 and a2 are calculated, the frequency and rate of change of

frequency can be calculated. Taking the derivative of Equation 1-17 with respect to k:

 Equation 1-23

Then taking the derivative of Equation 1-21 with respect to time t:

 Equation 1-24

The derivative of phasor angle with respect to time t can be written as:

 Equation 1-25

Deviation in frequency, ∆f can be obtained by:

 Equation 1-26

 Equation 1-27

Where t determines which instant inside the computation window the computed

frequency corresponds to.

As mentioned before, the simplification of Equation 1-4 is made to obtain the

relationship between phasor angle and deviated frequency. However, this approximation

will introduce some error in estimation. The frequency estimation will be more accurate

when the actual frequency approaches the frequency established for the sampling rate.

Therefore, resampling the waveform with the estimated frequency and using the new

phasor to perform corrections to the final estimation is rather an attractive solution [3]. In

detail, assume the nominal frequency is 60Hz and the number of samples per cycle N is

24, resulting in 1440 samples taken per second. When the frequency has changed to 55

Hz, each cycle will now have about 26.18 samples instead of the 24 samples as indicated.

To resolve this issue, re-normalization through resampling can be implemented to

 8

interpolate the points so that there will always be 24 samples per cycle regardless of

waveform frequency. The resampling algorithm can be summarized as the following:

 Equation 1-28

 Equation 1-29

Where

 Zm is the amplitude of the waveform

 φ is a sample instant and is an arbitrary known value

 α is the interval between two samples at the new frequency and is equal to 2пfnew/(Nf0)

Combining Equations 1-26 and 1-27 results in:

 Equation 1-30

Let x be the fractional distance between z1 and z2, the resampled point z’ is then given by:

 Equation 1-31

 Equation 1-32

 Equation 1-33

Figure 1.2 Illustration of resampling

After the resampling points are found, the phasor angles of the new resampled data are

computed and another estimation is made using Equation 1-20, Equation 1-24 and

Equation 1-25 to obtain the correction frequency, ∆f’, and the final rate of change of

frequency. As a result, the final frequency estimation is computed by:

 9

 Equation 1-34

1.1.3 FDR Algorithm Implementation

The FDR phasor algorithm is composed of three stages [4]:

1) Compute rough frequency estimation using raw voltage from sampled data.

2) Resample the waveform using the resampling frequency

3) Compute the correction frequency using the new resampled voltage and apply the

correction to the rough estimation in step 1.

In the first two generation FDRs, embedded processors were used for phasor computation

to allow for a compact and small size design. However, since a large amount of voltage is

being collected and computation time is limited, considerations need to be given to

maximizing computation speed and measurement accuracy. Hence, the actual

implementation of the algorithm only uses certain selected phasors. This speeds up the

computation time tremendously without significant losses in accuracy.

In the first two generation FDRs, the number of cycles to compute a frequency

estimate was decided to be 6 nominal cycles. The number of samples per cycle used to

compute a phasor is 24. So after initialization, a new phasor will be obtained every

1/1440 = 0.6944 millisecond. The whole estimation proceeds recursively with a sliding

window length of 8 cycles and 6 cycles for estimating frequency. The reason to use an 8

cycle sliding window is because it takes one cycle of sampled data to compute the first

phasor value. In addition, when the actual frequency is below nominal 60Hz (i.e. 55Hz),

more data is needed to fulfill the 6 cycles criterion for resampling.

The implementation of the resampling is rather tricky. Since the resampling and

subsequent frequency deviation computations are based on the first approximate

frequency estimation, it is required to locate the exact instant in the waveform where the

resampling frequency is used. This is not so significant when the waveform frequency is

constant but is crucial when the frequency undergoes major frequency swings. Under

such special circumstances it is practical to designate t in Equation 1-25 to be an

appropriate value for the application. Since the measured frequency will exhibit an

 10

oscillatory behavior due to its phasor angles, it is necessary to minimize this error by

using the average of the estimated frequency as the resampling frequency. The average of

the estimated frequency can be computed as:

f

f

r

k

k
=

=

∑
1

24

24
 Equation 1-35

Where fk is the first frequency estimate for k = 1 to 24 and fr as the resampling frequency.

At this point, it is necessary to make an assumption that the resampling frequency fr is the

frequency at the end of two and a half cycle in the first computation window. Such an

assumption is valid for power system phasor measurement since the power system

frequency deviation within the window is so small that the contribution to frequency

estimation error is insignificant. Therefore, the second frequency estimation can be

computed in the same manner as the first frequency estimation:

 Equation 1-36

Where C is the sample instant of the estimation and is computed by:

Equation 1-37

To illustrate the phasor measurement algorithm, Figure 1.3 and Figure 1.4 show a

flowchart of the algorithm in [4].

 11

Figure 1.3 Flowchart of phasor estimation algorithm

 12

Figure 1.4 Flowchart of initialization for phasor estimation algorithm

1.1.4 FDR Software Architecture

The FDR software architecture is composed of three states of operation including

acquisition, initialization and collection. The state machine diagram of FDR is shown in

Figure 1.5 and each state is summarized below.

Figure 1.5 Top level state machine of FDR

 13

Acquisition

The acquisition state is obtained by meeting the requirement of GPS satellite

acquisition. Since the voltage measurements need to be aligned to the UTC time, the FDR

should not begin phase measurement until a valid GPS 1PPS is obtained. An internal

timer is used to verify the accuracy of the 1PPS by measuring the length between one

PPS rising edge to the next. If the length is within the bound of a pre-determined

acceptable error range the measurement continues for the next PPS until four consecutive

PPS meets the requirement, at which point the system begins phasor measurement.

Initialization

Once the FDR establishes an accurate 1PPS, the system begins the sampling process

to feed the phasor measurement algorithm. The initialization process is allocated one

second so that the synchronized phasor measurement can begin the next second. If GPS

signal is still valid as verified in the acquisition state, the FDR will switch to collection

state. If the GPS 1PPS is not valid, the FDR will reset to acquisition state and discard all

measurements. This ensures the FDR is making phasor measurement only when accurate

time synchronization is established.

Collection

When the initialization process ends, the FDR is capable of making phasor

measurements continuously until either a loss of GPS or input voltage signal. If either

errors occurs, the FDR will dump the current phasor measurements and go back to

acquisition state.

1.2 Objectives

This introduction has covered the theoretical basis for frequency and phasor angle

estimation, as well as the implementation of the algorithm along with the FDR software

architecture. The goal of this dissertation is divided into several parts but the focus is on

the design of the next generation FDR with emphasis on improving the accuracy and

availability of synchronized sampling. In order to approach the subject of FDR design, it

is essential to first understand the requirements at the system level. Then the top-down

 14

design approach can be used. In addition, it is equally as important to address the

drawbacks of the current FDR designs so that those drawbacks can be mitigated in the

next generation design. Also, some FDR architectures are being proposed based on the

design requirements and an evaluation is conducted to seek out the advantages and

disadvantages of each.

Given the fact that the crystal oscillator is inaccurate in long term timekeeping and

phasor angle measurement requires microseconds synchronization accuracy with respect

to Universal Coordinated Time (UTC), the conventional GPS is used as a precision

timing reference for FDR synchronized sampling. However, the conventional GPS is

very much limited with respect to availability and cost. The signal attenuation effects are

more pronounced for FDR applications since some of the newer office buildings comes

with energy efficient glass windows, which prohibits the conventional GPS from

acquiring GPS satellite signals. It is of interest to seek out alternate timing references that

provides higher availability with similar level of accuracy.

What is also important to the accuracy of frequency and phasor angle measurement is

the subject of oscillator characteristics since it is used to generate sampling pulses for

synchronized measurements. To this end, it is important to provide some insights into its

accuracy and stability. Thus far, there has not been any study conducted in characterizing

the oscillator to produce accurate FDR sampling time. Ultimately, the characterization of

the conventional oscillator should provide valuable insights to improve the FDR

sampling time accuracy. Specifically, a high resolution timing measurement system can

be used to measure accuracy and stability of the conventional oscillator. Furthermore, it

is intended that such a measurement system will be able to not only measure the accuracy

and stability of the crystal oscillator, but also provide some insights into the accuracy of

different precision time synchronization sources as well as the FDR sampling time. To

this end, models can be developed based on the sampling time and simulations can be

performed to observe the effect of the sampling time on frequency and angle

measurements. Ultimately, any errors associated with timing reference and sampling time

will be directly reflected in the frequency and angle measurements.

 15

1.3 Organization

This dissertation is organized into 8 chapters starting with the introduction in the first

chapter. The second chapter provides the background in FDR design requirements and

specifications and addresses the limitations in the current FDR design. The third chapter

goes over the evaluation of different FDR architectures with respect to its advantages and

disadvantages. The fourth chapter addresses the issue with the obsolete GPS receiver and

introduces the high sensitivity GPS receiver for high availability frequency and angle

measurements. The fifth chapter summarizes the development of a high resolution and

low cost timing measurement system. At the same time, measurements are taken from the

processor clock counter to estimate the crystal oscillator accuracy and stability. The sixth

chapter goes over the methodology to measure the FDR sampling time and takes the

initial effort in modeling the FDR with the measurement data. The seventh chapter

presents the network timing synchronization and proposes the use of network time

protocol (NTP) for frequency estimation. Finally, the eighth chapter concludes the

dissertation with a summary of the dissertation and future works.

 16

Chapter 2 Frequency Disturbance Recorder Design
Requirements

2.1 Background

One of the most popular system design method for real-time and embedded systems

is the top-down design approach. The top-down method is a natural way to approach a

complex design task, mainly because it relies on multiple levels of abstraction to limit the

number of independent concepts at each level of the design. Such design approach is very

much required for the next generation FDR design as all of the requirements and

specifications are being refined over many years of experience with the first and second

generation FDRs. Major levels of abstraction in the design process can be visualized in

Figure 2.1.

Figure 2.1 Top-down design approach

Starting at the very top, the requirements block gives an informal description of the

FDR functionalities. The type of requirements should include both functional and non-

 17

functional requirements. Functional requirements are solely the I/O (input/output)

relationships and the non-functional requirements include timing, performance, cost,

power consumption and physical size and weight. In the second block from the top,

specifications should accurately define the application requirements. The specification

should be simple and easily understood so that one can verify that it meets the system and

overall expectation of the application requirements.

This chapter is focused on an overview of the requirements and specifications of FDR

design. Also, some of the drawbacks of the present FDR designs will be presented so that

the next generation design will be able to address these fallbacks and make the necessary

improvements.

2.2 FDR System Level Requirements

Similar to the PMU design but with some different design goals mainly focused on

portability and ease of deployment, the FDR is composed of four major subsystems as it

is shown in Figure 2.2, these include the processor, analog input subsystem, timing

subsystem and network communication subsystem. The analog input subsystem is

composed of the analog to digital converter, the transformer and the signal conditioning

system. The timing subsystem is composed of an accurate frequency and time reference

that is synchronized with the UTC time. Additionally, the timing subsystem should be

capable of generating variable frequency pulses synchronized to UTC time for triggering

the ADC for conversion. Finally, the network communication subsystem provides the

means to transmit the measurement results to the central server at Virginia Tech.

Figure 2.2 System block diagram of FDR

 18

Since portability and ease of deployment are the some of the main goals of the FDR

design philosophy, an embedded system is the most obvious choice for such a design and

it has been the norm for the first and second generation FDR design. As a result, should

the next generation FDR continue to follow the embedded trend, it is worthwhile to

highlight the requirements for the system.

At the minimum, the system should be able to perform floating point arithmetic.

Furthermore, a counter with input capture is required to count the number of clock cycles

in between each 1 PPS output from the GPS. In the case such that the counter register

overflows, an interrupt will need to be generated to count the number of overflows in

between pulses. The resultant number of clock cycles and overflows as measured by the

timing subsystem is used to validate the accuracy of 1PPS, which is also a GPS status

indicator. Additionally, a pulse width modulator subsystem with output compare is

needed to trigger the external ADC for conversion. It is crucial for the counter, PWM and

input capture and output compare to have at least 16 bits register for high resolution

timing. Depending on the resolution of the ADC to be used, one external interrupt pin is

needed to indicate the external ADC has latched data into its output register and a general

purpose input/output (GPIO) subsystem is needed to receive data from external ADC. To

allow for transmission of data to the main server and receiving timestamps from the GPS,

there needs to be two serial communication interfaces (SCI). To allow for efficient I/O

processing the system should also have an interrupt controller that is capable of assigning

priorities to the interrupts. One such example would be a hierarchical interrupt system.

For the external interfaces, there should be a liquid crystal display (LCD) interface circuit

and its physical port for ribbon cable connection, a port for mounting the external ADC,

and some breadboard area for input filter circuitry.

2.2.1 Analog Input Subsystem

The analog to digital converter is at the heart of the analog input subsystem. There is

a variety of ADC’s available today. However, some of the most widely used ADC

architectures are the integrating ADC (Dual slope) [109], Flash ADC (Parallel ADC)

[105], Pipelined ADC [108], Sigma Delta ADC [107], and SAR (Successive

 19

Approximation Register) ADC [106]. The five architectures differ in conversion

algorithm and encoding method, but what’s more important to the design of FDR are

characteristics of each ADC such as speed of conversion, resolution, size and price.

Tradeoffs need to be made to select the device meeting all of the criteria. However, the

relationship between such factors and the phasor estimation accuracy is rather

complicated. So far there is no absolute requirement established for neither the resolution

nor the synchronized data samples in the IEEE synchrophasor standards [2]. However,

what is required by these standards is the phasor measurement be within 1% of TVE

(total vector error) at the reporting times specified. TVE can be calculated by [2]:

 Equation 2-1

Furthermore, the resolution of the ADC is not the only determining factor of phasor

measurement accuracy, characteristics such as linearity, noise and gain stability provides

the fundamental limitations on performance. Upon past experiences with the first and

second generation FDR, 16 bits of SAR ADC resolution is more than adequate with 14

bits as the minimum resolution required for accurate FDR frequency measurement.

Finally, a throughput rate of at least 100kSPS and minimized conversion time, power

consumption and size is needed to meet portable real-time requirements.

In general, the SAR ADC is widely used for nearly all multiplexed data acquisition

systems as well as in instrumentation applications. Due to its ease of interfacing and

integration, it is being used in both the first generation and second generation FDRs. It

has no pipeline delay and is available with resolutions up to 18 bits and sampling rates up

to 5Msps [106].

For a wide variety of industrial measurement applications, the Sigma Delta and

Integrating ADCs are the ideal candidates. With respect to the other ADC architectures,

the integrating ADC is slow in speed with typical conversion speed of 20 milliseconds

and low input bandwidths but their capability to reject high frequency noise and fixed

low frequencies makes them attractive for certain industrial applications [107][109]. In

 20

addition its popularity in the industrial applications, the Sigma Delta converter dominates

in audio and voiceband markets. The inherent oversampling capability in these converters

lowers the requirements on the ADC anti-aliasing filter. Nevertheless, the Sigma Delta

converter has several drawbacks. Firstly, the filter does not provide attenuation at integer

multiples of the modulator sampling frequency. Also, the speed of the conversion and

filtering results in long latency between the start of the sampling cycle and the first digital

output [107].

Flash ADCs and pipelined ADCs are known to be high speed converters. In

particular, flash ADCs are more accustomed to converting signals with large bandwidths

at high speeds. However, the Flash ADCs has relatively low resolution, consumes more

power and can be comparatively expensive [105]. This drawback alone limits the Flash

ADC market to high frequency applications that typically cannot be addressed any other

way. On the other hand, the pipelined ADCs are used in applications requiring sampling

rates ranging from approximately 5 Msps to greater than 100 Msps and have lower power

consumption than that of the Flash ADC. The pipeline ADC has a good balance of size,

speed, resolution and power dissipation, and has become increasingly popular to major

data converter manufacturers [105]. Finally Table 2-1 summarizes some of the

characteristics of the commonly used ADC architectures in [105][106][107][108][109].

Table 2-1 ADC architectures and attributes

ADC types Flash SAR Integrating Pipelined Sigma Delta

Method Cascaded
comparators

Binary search Integration
and
comparator

Parallel
comparators

Modulator and
filter

Encoding Thermometer
code

Successive
approximation

Analog
integration

Digital
Correction

Oversampling,
decimation
filter

Conversion
time

Constant
with increase
in resolution

Increase
linearly with
resolution

Constant
with
increase in
resolution

Increase
linearly with
resolution

Tradeoff
between data
output rate and
resolution

Resolution Limited to 8 8 to 18 10 to 18 8 to 16 12 to 24
Size Increases

exponentially
with
resolution

Increase
linearly with
resolution

Constant
with
increase in
resolution

Increase
linearly with
resolution

Constant with
increase in
resolution

 21

In addition to the ADC circuitry, the analog input subsystem has a signal conditioning

component that is used to filter the transformer output, before it is being input to the

ADC. Depending on the ADC and the transformer that is being implemented, the filter

design could vary. However, the basic requirement remains the same, and that is to take a

signal from the transformer and attenuate it to a lower voltage level acceptable to the

ADC. Generally a simple voltage divider circuit can take care of this. In addition, to get

rid of the high frequency noise that’s associated with outlet voltages, a low pass filter is

needed. In general, the low pass filter is essentially a second order anti-aliasing filter. An

anti-aliasing filter could be passive or active but the smaller package size of active filter

is rather attractive for FDR design. As a matter of fact, the first generation FDR used a

passive filter design and the second generation FDR improvised by implementing an

active filter design. Nevertheless, the design requirements remains the same, with a

specified DC gain of unity, the filter needs to have a cutoff frequency of 720Hz [4].

2.2.2 Central Processing Unit

The Central Processing Unit (CPU) in the FDR design can vary by a great deal and

with the drastic improvements in digital processor technologies, many different solutions

are available. Nevertheless, there are several criteria that need to be addressed in the

processor selection process.

The very first criterion is deciding whether a floating point or fixed point processor is

needed. The fundamental difference between the two is their respective numeric

representation of data. While fixed point hardware performs strictly integer arithmetic,

floating point hardware supports either integer or real arithmetic. Therefore, fixed point

hardware has less bit width and it is more hardware efficient to implement than its

floating point counterpart. Furthermore, a fixed point processor requires less hardware

resources resulting in a smaller package and some cost reduction comparing with that of

floating point. As a result, fixed point processors are more favored for high volume

applications like digitized voice and telecom. However, the fixed point processor requires

fixed point implementation in software, which requires careful consideration in precision

 22

losses and overflow as a result of fixed point arithmetic. Although recent advances in

more sophisticated C compilers has merged the gap between the software complexity of

floating point and fixed point processor [18]. To this end, the fixed point processor still

maintains an edge in cost savings compared to the floating point processor, with the

trade-off of less precision.

Another important factor to consider in the selection of processors is the number of

bits for floating point arithmetic. The IEEE Standard for Binary Floating Point

Arithmetic (IEEE 754-1985) is the most widely used standard for floating point

computation with two commonly used formats, single precision and double precision.

Almost all of today’s microcontrollers and DSPs come with either single precision or

double precision floating point unit (FPU). At this point it is necessary to take a look at

the accuracy of phasor algorithm using both single precision and double precision

arithmetic. Figure 2.3 shows the frequency and angle measurements conducted by two

different FDRs with the same input. Also, Figure 2.4 shows the frequency and angle

difference between the two FDRs. In comparison, Figure 2.5 and Figure 2.6 show the

measurement results using single and double precision arithmetic, and the resulting

differences between the two units respectively. If the measurements were perfect, the

results would match each other between the two units. Nevertheless, the measurement

differences between two FDRs with double precision arithmetic are similar in magnitudes

compared to the measurement differences between two FDRs with single precision and

double precision. Specifically, the average frequency measurement for the two units is

within 0.1 mHz of each other, which is negligible for any FNET application. It is clear

that single precision arithmetic is adequate for FDR algorithm implementation.

 23

0 100 200 300 400 500 600 700 800 900 1000

59.96

59.98

60

60.02
6/13/09 FDR4 with double precision and FDR7 with double precision

Data point number

F
re

q
u
e
n
c
y
 (

H
z
)

100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

6

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR7

FDR4

Figure 2.3 Frequency and angle measurements using double precision arithmetic

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

x 10
-3

data point

F
re

q
u
e

n
c
y

 d
if
fe

re
n
c

e
 (

H
z

)

6/13/09 FDR4 with double precision and FDR7 with double precision (FDR4 - FDR7)

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

data point

A
n

g
le

 d
if

fe
rn

c
e
 (

ra
d
)

Figure 2.4 Frequency and angle measurement differences between two FDR units using double

precision arithmetic

 24

0 100 200 300 400 500 600 700 800 900 1000
59.9

59.92

59.94

59.96

59.98

60
6/7/09 FDR4 with single precision and FDR7 with double precision

Data point number

F
re

q
u
e
n
c
y
 (

H
z
)

100 200 300 400 500 600 700 800 900 1000
0

2

4

6

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR7

FDR4

Figure 2.5 Frequency and angle measurements using single and double precision arithmetic

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

-3

data points

F
re

q
u
e
n

c
y
 d

if
fe

re
n

c
e
 (

H
z
)

6/7/09 FDR4 with single precision and FDR7 with double precision (FDR4 - FDR7)

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

data points

A
n

g
le

 d
if
fe

re
n
c

e
 (

ra
d
)

Figure 2.6 Frequency and angle measurement differences with single and double precision arithmetic

 25

Table 2-2 Statistics of the differences in frequency measurements between FDR with double precision

arithmetic and FDR with single precision arithmetic

 6/13/09 FDR4 – FDR7 freq. 6/7/09 FDR4 – FDR7 freq.

Minimum 0.0001 -0.0005
Maximum 0.0023 0.0024

Mean 0.00108 0.0009527

Median 0.0011 0.001
Standard deviation 0.0002826 0.0003576

Range 0.002 0.0029

Generally processor crystal frequency is one of the characteristics that have being

emphasized in determining the processor speed. However, there is often a misconception

that the processor crystal frequency is the main contributor in processor performance.

The fact of the matter is that with the ever improving technologies in multi-processor

architecture and the addition of peripherals and micros running directly off the crystal

oscillator circuitry, the crystal frequency value becomes more and more meaningless.

In order to help designers to better evaluate processors, the Embedded

Microprocessor Benchmark Consortium (EEMBC) has established many common

benchmarks to easily quantify microprocessor performance with respect to each other.

Nevertheless, considering the speed requirement of the FDR with 4 phasor angles

computed per cycle, each new frequency has to be computed approximately every

0.00417 seconds. This means that the first phasor angle computation, the first Least Error

Square fit, the resampling process, the second phasor angle computation and the second

Least Error Square fit all have to be completed in approximately 0.00417 seconds. The

initialization process can be ignored for the moment since it only has to be done once. A

rough estimate of number of floating point operations in the algorithm is about 15000

operations per frequency estimation.

With 4 phasor angles computed per cycle, the processor needs to be able to perform at

least 3.6 MFLOPS (million floating point operations per second) [3]. With today’s fast

processors, this requirement can be easily met. However, this requirement is rather

misleading due to architecture differences of the processor. A study was conducted in

[80] to evaluate the MFLOPS measurement in computer systems and the study indicates

 26

that MFLOPS was a consistent measure of performance in computer systems up till 1984.

For systems produced after 1985, MFLOPS became more dependent on architecture,

configuration, and application so that a simplified model can be used to evaluate

MFLOPS measure. Generally, MFLOPS measurement can be used more consistently for

processors of the same architecture but the comparison becomes more complex across

different architectures. Due to this reason alone, it is important to limit the architecture

selection to a certain type and only then will the comparison in MFLOPS be valid.

There are two classification groups for the instruction set of processors. These include

the CISC (complex instruction set computer) and the RISC (reduced instruction set

computer). For the embedded version of FDR design, justifications can be made to use

the RISC based processors. This is mainly due to considerations in simplicity, speed and

short development cycle. The simplified instruction set has much emphasis on software

whereas the complex instruction set puts its emphasis on hardware. As a result, the RISC

based processor tends to spend more transistors on memory registers whereas the CISC

based processor spends more transistors on storing complex instructions. As the price of

memory chips decrease over the years, the RISC architecture has been gaining more

attention in the embedded market. Additionally, the standard feature of pipelining in

RISC processors allows for higher efficiency and faster processing speeds. Ultimately,

with the exception of embedded processors, the boundary between RISC and CISC is

becoming blurred in the recent years due to the fact that both architectures are evolving

for the common goal of high performance computing.

Most of the processors today have some form of built in ROM (Read Only Memory)

and RAM (Random Access Memory). An approximation of the amount of data memory

needed can be approximated by the data size of the variables. With single precision

representation, the amount of RAM is approximated to be 3120 bytes with the program

memory estimated to be around 64000 bytes. However, additional memories are needed

for either a high precision trigonometric look up table (LUT) or a math library for

implementing the trigonometric functions. Specifically there needs to be at least functions

for sine, cosine and arc tangent and the precision needs to be around 0.00001 radians [3].

 27

To store a table with all of these values require a large amount of ROM. The alternative is

to tradeoff speed against memory by approximate the trigonometric functions using

methods such as polynomials approximation or Goertzels algorithm.

2.2.3 Timing Subsystem

Phase angle measurement accuracy is highly dependent on the sampling of local

voltage angles. To provide high accuracy absolute time for synchronized sampling and

timestamps for frequency and angle measurements, the FDR uses a GPS timing receiver

in the first and second generation design. In order to synchronize the sampling of

voltages to GPS timing, the processor uses the pulse width modulation (PWM) subsystem

to generate the trigger for conversion signal for the ADC upon the rising edge of 1PPS.

Such sampling scheme is used in both of the first two generations FDR.

The challenges to the design of the timing subsystem are two folds, one requirement

being the need for a common and accurate timing reference and the other is related to the

accuracy of the trigger for conversion signal. The IEEE synchrophasor standard states

that the timing signal shall be accurate enough to keep the Total Vector Error (TVE)

within the limits defined by the user-required compliance level. In connection to this it is

important to note that an uncertainty of 1 microsecond on the synchronization signal

leads to a phase angle error of 0.022/0.018 degrees for a 60/50Hz system [2]. In order to

meet the 1% TVE requirement, assuming that the input voltage is free of noise, a

maximum synchronization uncertainty of 26 microseconds is required for a 60Hz system

and 31 microseconds for a 50Hz system (phase error of 0.57 degree causes 1% TVE) [2].

In order to obtain a common timing reference for the FDR acquisition process, it is

essential to achieve an accurate synchronization of the sampling pulses. This requires the

deployment of a timing source that may be internal or external to the FDR. In addition,

the timing signal should provide enough information to provide the second-of-century in

agreement with UTC. It must be available with minimum interruption at all measurement

locations throughout the interconnected grid [17].

 28

An obvious solution to synchronized sampling would be using a GPS disciplined

oscillator with the nominal frequency in integer multiples of the sampling frequency.

However, such a design is not practical as the oscillator will need to be changed when the

sampling frequency is changed to a number that is not wholly divisible by the oscillator

clock. In addition, restrictions are set to the oscillator frequency based on the sampling

frequency. Past experience has shown that while using the internal processor oscillator

clock to generate trigger for conversion signals is effective, it still has some intrinsic

drawbacks in accuracy and flexibility.

At last, in assessing the performance of synchronization sources for FDR, it is

important to consider factors such as accuracy, availability, continuity, reliability,

integrity and the coverage [17].

2.2.4 Network Communication Subsystem

Internet connectivity is one of the basic requirements of FDR. Upon the first two

generations of the FDR, the network communication system is based on the serial to

Ethernet converter. Such a design is leveraged based on the popular serial communication

interface, which is available on almost all of the processor architectures. Furthermore, the

serial to Ethernet module allows for ease of integration and fast deployment. The module

interfaces to the processor serial port via CTS/RTS handshaking and converts the data

from the processor into a stream of TCP (Transmission Control Protocol) data that is

transmitted over the Internet to the FNET server. For the transmission, TCP was selected

as the transport mechanism because of its fault tolerant yet reliable transmission

capabilities.

2.3 Limitations of the First and Second Generation FDR

While some enhancements were developed over the years since the first generation

FDR, there are still a number of limitations to the second generation FDR design. Most

importantly, the problem related to the timing subsystem and the processing capacity of

the system is driving the need for an improved design. The following discussion will

 29

highlight some of the improvements of the second generation FDR over the first

generation, as well as the remaining limitations in the second generation FDR that will

need to be resolved in the next generation design.

2.3.1 Timing Subsystem Limitations

The timing subsystems of the first and second generation FDR is one of the

fundamental limitations to the accuracy of the phasor measurements. The issue is related

to the method in which each second is divided into 1440 separate time periods. Since the

1440 trigger for conversion signals are driven by the processor PWM module, the period

of the conversion signal is limited to the processor clock resolution and the accuracy of

the clock division.

In the first generation FDR, the period of a sample is determined by dividing the

number of clock cycles between the last two 1PPS input signals from the GPS by the

desired sampling rate, 1440Hz. The integer result of this division is then used as the

period of the PWM signal. The drawback to this method has to do with the remainder that

is ignored after the integer division operation. The remainder, which may be as high as

1439 clock cycles, can introduce a great deal of error in the period of the last PWM pulse

of the second. In addition, due to unavoidable variation in the system clock, a deviation

of up to 100 clock cycles per 1 MHz of operation speed may have to be expected. This

translates to 100PPM (parts per million) as it is commonly specified by oscillator

manufacturers. As an example, with a sampling rate of 1440 Hz and an operating

frequency of 20MHz in the first generation FDR, the division of 20MHz into 1440 yields

13888.88 clock cycles. However, since the PWM period register can only take integer

values, only 13888 or 13889 can be used to approximate the number of clock cycles for

each period.

In the actual software implementation the integer part of the theoretical number of

clock cycles is used, or the value 13888. Such an approximation results in a residue of

extra 1280 clock cycles in the last pulse period of the second. Translating to the time

domain, 1280 clock cycles is 64 microseconds on the 20MHz clock. Such a figure may

 30

seem insignificant but the residue accumulates each second leading to a ‘snowball effect’.

If left unresolved, the residue from each second would accumulate to the point where one

sampling point could be lost or added. Figure 2.7 shows this phenomenon where the first

sampling point of each second moves forward. After a certain amount of time, the

‘snowball effect’ drives the supposedly first sampling point after the 1PPS to move to the

previous second. Since the algorithm only takes 1440 sampling points per second for

phasor estimation, the extra sampling point is consequently discarded [14]. In effect, by

unintentionally moving one sampling point, the whole sampling sequence is moved from

one second to another. Hence the estimated angle data would have a periodic jump.

Figure 2.7 Effect of sampling point residues

To resolve the issue with the residue in the first generation FDR, a residue

compensation approach was implemented for every second. The main aim of the

implementation is to prevent the accumulation effect of the residue. To synchronize the

sampling clock to the PPS and correct the residue every second, a fixed waiting time is

defined at the beginning of every second as referenced by the rising edge of 1PPS [4].

The waiting time is defined as:

 31

sysww tnt = Equation 2-2

Equation 2-3

Where nw is the number of system clock cycles to wait, tsys is the period of the system

clock in seconds. The waiting time tw should be larger than the residue accumulated over

one second but as small as possible to make the sampling clock start as close as possible

to the rising edge of 1PPS. As a result, the residue will be confined to the second and will

not accumulate over an interval of time. The drawback to this implementation is that the

sampling interval between the last pulse of previous second and the first pulse of the

current second is different from other sampling intervals. As shown in Figure 2.8, the

sampling intervals of t0 and t1 are different. Since the algorithm uses computation

window that encompass several fundamental frequency cycles, the sampling windows

will introduce both t0 and t1 intervals. To counter this effect, the window size of the first

phasor estimation was reduced from 8 cycles to 6 cycles to avoid the use of sampling

interval t1, which would otherwise introduce spikes in estimated frequency. The method

Figure 2.8 Effect of waiting a constant time for each sampling second

is effective in reducing the periodic phase jumps but the residue is not totally eliminated.

Such phenomenon can be observed in the phase plot of measurement data as shown in

Figure 2.9.

 32

Figure 2.9 Phasor angle measurement from first generation FDR

In the second generation FDR, several enhancements were introduced to the timing

subsystem. For one, the system clock frequency was increased from 20 MHz to 30 MHz

thereby improving the timing resolution from 1/20MHz = 50 ns to 1/30MHz = 33.3ns.

This improvement alone results in finer granularity of the timing division. However, a

more significant improvement was introduced by matching the accuracy of the FDR

timing subsystem to that of the PMU [14].

In order to achieve the sampling accuracy provided by the PMU, the FDR processor

was setup to produce PWM with four different period lengths for the trigger for

conversion signal. With a 30 MHz clock, the PWM period length is calculated to be

30MHz/1440 = 20833.3. With this mind, it is intuitive to use period lengths that are close

to this value, such as 20832, 20833, 20834 and 20835. Figure 2.10 shows the phase error

of the FDR with respect to that of PMU. Once the phase error is obtained with respect to

the sampling

0 5 10 15 20 25 30

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

Time (seconds)

A
n

g
le

 (
d

e
g
re

e
s
)

Sawtooth in angle measurement

 33

Figure 2.10 Effect of sampling period on phasor angle accuracy [14]

period length, it is easy to see that there is almost a linear trend of phase error with

respect to the sampling period length. Given the four data points, linear regression can be

applied to obtain an approximate linear model of the two parameters. Then the linear

model can be used to estimate the period length which would minimize the phase error

[14]. Specifically, the linear model is defined as:

 Equation 2-4

By using linear fit model, the four data points can be used to estimate p1 and p2, which

are estimated to be 1.071 and 1.409 respectively. The AngleDriftRate is the actual phase

error that results from the timing residue each second. Setting the AngleDriftRate to be 0,

the parameter Nclock can be calculated to be 20834.409. As a result, when Nclock is set to be

20834.409, the angle drift rate will be approximately 0. To implement the fractional clock

cycle of 0.409, the sampling period would add or subtract clock cycles so that the average

sampling period is approximately 20834.409.

 34

The second generation FDR timing subsystem has been dramatically improved since

that of the first generation. The FDR frequency and angle measurement accuracy is

enhanced by calibrating the DSP PWM period to match the phasor angle measurement

with the PMU. However, the actual division of 30MHz by 1440 yields 20833.3 but the

linear regression model estimated the length of the sampling interval should be 20834.4

to minimize the phase error that results from the timing residue. The inconsistency can be

attributed to the hardware interrupt latency of the DSP and the frequency errors of the

DSP oscillator.

Since the FDR timing subsystem is being calibrated against a PMU, the PMU is

assumed to have higher accuracy with a superior timing subsystem. However, there are

many different PMU manufacturers and models today and they may differ somewhat in

the timing subsystem implementation. As an example, one PMU manufacturer may use a

certain GPS receiver as the frequency reference but another manufacturer may use a

different frequency reference. Therefore, the calibration of FDR timing subsystem to that

of PMU may lead to inconsistencies across different FDR units.

A bigger drawback to such an implementation is the lack of cross platform

compatibility and upgradeability. The next generation FDR may have a different

processor or even a different architecture than the current one and such a modification

would require a re-calibration of the timing subsystem. In addition, even if the hardware

remains the same, a different sampling rate would also lead to re-calibration. By simply

changing the sampling rate to 1200Hz to accommodate the power system with 50Hz

nominal frequency, the timing subsystem would have to be re-calibrated. With the change

in either the architecture or sampling frequency, the linear regression coefficients for

estimating sampling period will be quite different. Consequently, the same calibration

procedure will need to be applied against a PMU.

Another drawback of the second generation FDR timing subsystem has to do with the

sampling period calculation. To this end, the original calculation of the period length is

 35

based on a 30MHz clock. However, as it will be shown in Chapter 5, oscillators

experience variations in frequency due to aging and temperature effects. In other words,

the 30MHz frequency specified by the manufacturer is only the nominal frequency and it

does not imply that the oscillator will always be 30MHz. Such deviation from the

nominal frequency cannot be controlled and is part of the oscillator characteristic. As a

result, the calculation of the PWM period is based on the assumption that the DSP

oscillator will always be 30MHz, which leads to sampling time errors due to frequency

variations of the oscillator. In addition, one could argue that the calibrated PWM period

to be different when a different FDR is being calibrated against the PMU.

2.3.2 Computation Limitations

The first generation FDR was limited in computational capacity with almost all of its

computational resources occupied in processing 1440 data points. The second generation

FDR design improved in the system architecture but does not offer a significant increase

in computation power. Furthermore, the second generation FDR split up the computation

and I/O processing into two separate processors whereas the first generation used one

processor for all of the I/O processing and computation. Such implementation offloads

the I/O processing burden from one processor to another, which allows for more

computational resources. Improvement can be made to the accuracy of frequency and

angle measurement by including a scaling scheme where the sampling frequency can be

increased to allow for oversampling. However, the requirement of oversampling will

increase the computational requirements of the overall system by a factor of 2 to 10

times. The second generation FDR was not able to meet this goal due to emphasis in cost

and portability. In the end, the oversampling will allow for the preprocessing of the

digital sample data in order to produce more accurate input to the phasor algorithm.

2.3.3 Voltage Level and Communication Limitations

The next major limitation is related to the international capabilities of the FDR

system. When the first generation FDR was developed, the criteria set out for the system

was that it was to work on the United States power systems, therefore the system expects

 36

a 60 Hz, 120 V analog input signal. As the interest in FNET applications has grown, a

number of international groups have become interested in the research.

Power systems around the world run at a mix of 50 Hz and 60 Hz with nominal

voltages that range from 120V to 240V. The first generation FDR design only addressed

the need for a nominal frequency of 60 Hz for the sampling frequency and an input

voltage of 120V. This limits the first generation FDR to be used in the US power system

only. To accommodate the need for flexibility, the second generation FDR design

incorporates a new transformer and filter design that’s capable of accommodating both

nominal voltage levels and frequencies. To switch between the two, a jumper is used in

addition to overwriting the existing algorithm firmware to accommodate either 1440 or

1200 samples per second phasor estimation. This is an improvement to the first

generation FDR where there are two separate transformer and filter design so that a 50Hz

unit will not be able to switch to 60Hz and vice versa unless the hardware is changed.

The network interface of the first generation FDR is very much similar to that of the

second generation. The only difference is that the second generation FDR uses an

embedded version of the serial to Ethernet converter so that it is mounted onto the main

PCB instead of operating as a separate unit. Such design is improved in terms of

compactness and portability but does not gain any performance. There are times when the

FDR communication interface is unreliable and a hard reset is required to put the unit

back in operation. Problems have presented themselves related to the lack of reliability of

the communications subsystems, and the lack of bidirectional data between the FNET

server and the deployed FDRs. The serial to Ethernet converter is not robust enough to

operate 24/7 without interruptions and that is an issue that needs to be dealt with in the

next generation design.

Another factor that is limited by the communication subsystem of the FDRs is remote

diagnostics. In both the first and second generation design, the deployed FDRs do not

send any status information and have extremely limited remote diagnostic and repair

capabilities. When problems occur, only elementary diagnostics can occur by phone or

 37

email with the host at the site where the unit is deployed. The end result is that often

users must send the physical FDR back to the FNET laboratory for evaluation. As the

number of units deployed becomes greater, the number of problems will inevitably

increase also. In addition, as more groups begin to rely on the information that FNET

system provide them, the more they will desire faster recoveries from system faults and

problems.

 38

Chapter 3 Evaluation of Frequency Disturbance
Recorder Architectures

3.1 Background

Over the years, the FDR has undergone numerous hardware changes in component

upgrades. Ultimately, the overall architecture has remained the same, they are all consist

of a transformer, a low pass filter, an ADC, a GPS, one or more embedded processors,

interfacing board and a serial to Ethernet converter. In continuation of the FDR design

requirements and limitations in Chapter 2, this chapter seeks to address the details of the

existing FDR architectures as well as potential new FDR designs that deviate from the

traditional architecture. Furthermore, the new design seeks to leverage state of the art

technologies in field programmable gate arrays (FPGA) and common off the shelf

(COTS) general purpose computers (PC) [5]. At the same time it is also necessary to

explore upgrade possibilities for the existing embedded processor to allow for ease of

upgradeability and minimize development time for deployment. Ultimately, the design

requirements of the FDR should be satisfied and shortcomings of the existing FDR

should be addressed and improvised in the new design.

Basically many options exist today for the FDR processor and the overall

architectures can be divided into two large groups, the embedded design and general

purpose computer (PC) based design. In an embedded system based design, there are

many options available for the processor such as general purpose microcontrollers and

digital signal processors (DSP). Nevertheless, the ever-growing market in system on a

chip (SoC) technology is also being considered as a good candidate for FDR design.

Features such as low cost, high reliability and flexibility make SoC very attractive for

meeting the various requirements of FDR design. Due to its high flexibility and

popularity, only programmable logic chips such as FPGAs are considered for integration

into the FDR. Several architectures are presented based on the requirements and

specifications indicated in Chapter 2, as well as the advantages and disadvantages each

has to offer.

 39

3.2 Microcontroller Based Design

The first generation FDR unit is based on a 32 bit microcontroller, the Freescale

MPC555. The MPC555 was intended to be used most extensively in the automotive

applications, such as engine control, transmission control, suspension and stability. In the

past several years, the MPC555 is rapidly being integrated into applications such as

avionics, controls, analysis equipment, robotics and power management. During the

initial stages of the FDR design, much emphasis was put into the reliability, accuracy and

portability of the device. Design optimization was not a crucial factor in the first

generation hardware development. Since a proof of concept design was the main goal, an

MPC555 evaluation board was used for connectivity and debugging capabilities. Figure

3.1 shows a block diagram of the first generation FDR and Figure 3.2 shows a photo of

the first generation FDR.

Voltage

Transformer

ADC

Power Grid

Signal
Conditioning

 Microcontroller

Data

Sampling
pulses

GPS Timing

Receiver

1PPS
Serial

Cable

Serial to

Ethernet

Converter

Internet

Serial

Cable

LCD display

Figure 3.1 First generation FDR architecture

 40

Figure 3.2 Photo of first generation FDR

As shown in Figure 3.1, the main computation unit, the Freescale MPC555 is located

on the off-the-shelf evaluation board CME-555 from Axiom Manufacturing. The

CME555 provides easy access to a number of peripherals on the main processor. In

addition, the board has two memory sockets for memory expansion, two built-in RS232

connectors on board, two TouCAN ports with transceivers, a LCD connector with

contrast, a 16 key keypad area and a JTAG development connector. However, most of the

board modules are not being used for the FDR application and resulting in excessive cost,

space and system complexity. Hence such design is not appropriate for high volume

production and deployment.

Should the next generation design be based on the single microcontroller architecture,

it is necessary to move from the evaluation board to a custom designed board. A custom

designed board will not only be a more economical solution but also lowering the overall

system complexity. By isolating the processor subsystems and the system peripherals that

are needed for FDR, a custom board can be designed for the FDR [15].

3.2.1 Analog Subsystem

The signal conditioning system of the first generation FDR is composed of a two

stage RC filter. Furthermore, the AD976A from Analog Device is being used for analog

to digital conversion. The AD976A is a 16 bit SAR ADC with 200kSPS throughput and

has a high speed parallel interface. Since the input range of the ADC is from -10V to

+10VDC, a transformer is used to step down the 110VAC input from outlets. However, if

the input voltage differs, a different transformer will need to be used, such is the case for

220VAC input. Improvements to the system can be made by re-design the transformer

 41

and the filter to accommodate a wide range of voltage levels. Furthermore, the

transformer, ADC and the filter should be integrated into one PCB.

3.2.2 Microcontroller

In the first generation FDR, all of the I/O processing and computation are done within

the MPC555. The MPC555 is a high-speed 32 bit embedded microcontroller with up to

40MHz of clock speed and 448 Kbytes of embedded FLASH memory and 26 Kbytes of

Static RAM. Moreover, the MPC555 contains a double precision floating point unit

designed to meet the needs of high speed scientific computing. The MPC555 supports a

wide range of on-board peripherals, these include the dual Time Processor Unit (TPU),

two TouCAN Controller Area Network (CAN 2.0B) modules, and dual queued analog to

digital converter (QADC). Of all these subsystems, only the TPU subsystem is being

used for the FDR. The TPU is a microcontroller all on its own. Operating simultaneously

with the CPU, the two TPU subsystems are capable of processing micro-instructions,

schedules and real-time hardware events. In the FDR, one of the TPU channels performs

the Request to Send (RTS)/Clear to Send (CTS) hardware handshaking to transmit

measurement data to the serial to Ethernet converter. In addition, the other TPU channel

provides the high accuracy timing for PWM generation, which triggers the external ADC

for conversion. To allow for interfacing with external devices, the MPC555 has a plenty

of I/O capabilities. The FDR design makes use of some of these I/O subsystems for

interfacing with the GPS, the serial to Ethernet converter and the external ADC.

While the MPC555 meets all of the processing requirements of the FDR, the

processor is heavily burdened in such a way that no oversampling or extended resampling

can be implemented. Hence a trivial upgrade to the existing system is to develop a

custom PCB with a more powerful processor of similar architecture [15]. Recent survey

of processors similar to that of MPC555 is shown in Table 3-1 along with some of the

important characteristics for FDR design. Since all of the processor instruction set is

RISC based with some minimum differences in core architecture, comparison can be

made directly in terms of Dhrystone MIPS (mega instructions per second). For example,

the MPC5554 has about four times the processing power of MPC555. The ideal upgrade

 42

for MPC555 is to make minimum change to the existing FDR architecture with the

highest gain in processing power. With that concept in mind, it’s easy to see that

MPC5554 is the best choice for direct MPC555 upgrade. However, even with the high

speed clock, there isn’t any significant improvement in the speed of floating point

operations. As a result, a direct upgrade of the MPC555 will not yield any significant

gain in computation speed but only higher I/O processing speed.

Table 3-1 Options for direct upgrade of Freescale MPC555

Processor MPC555 MPC566 MPC5554 MPC5200B

Core architecture PowerPC PowerPC PowerPC
e200z

PowerPC
603e

Maximum clock 40 MHz 56 MHz 132 MHz 400 MHz

Dhrystone MIPS 56 DMIPS 89 DMIPS 200 DMIPS 760 DMIPS

Instruction set RISC RISC RISC RISC

FPU Single/Double
Precision

Single/Double
Precision

Single
Precision

Single/Double
Precision

UART Yes Yes Yes Yes

General purpose I/O Yes Yes Yes Yes

Interrupt controller Yes
(Hierarchal)

Yes
(Hierarchal)

Yes
(Hierarchal)

Yes
(Hierarchal)

Timing module Yes Yes Yes Yes

Non-volatile
memory

448 Kbytes
EEPROM

1 Mbyte Flash 2 Mbyte Flash None

RAM 26 Kbytes
SRAM

36 Kbytes
SRAM

64 Kbytes
SRAM

16 Kbytes
SRAM

In conclusion, the single microcontroller based FDR architecture has reached its limit

in computation capabilities and a direct upgrade of the microcontroller will only provide

faster I/O processing but not much gain in computation speed. Ultimately, it is not

feasible to seek standalone general purpose microcontroller with high computation

capabilities. For it is not optimized for any intensive signal processing capabilities. In

 43

order to increase the computation capabilities to accommodate more sampling points, a

new FDR architecture is needed.

3.2.3 Network Subsystem

The network subsystem of the first generation FDR is provided by the Moxa NPort

5110 serial to Ethernet converter. The module is simple to configure and easily integrated

with the FDR. However, the module is not in an embedded form and is external to the

FDR. Such a form factor makes relocation and deployment rather difficult. Also, the

reliability of the device is not consistent as a system fault would stop data transmission.

3.3 Digital Signal Processor Based Design

The second generation of FDR design was realized more than four years ago and it

has been showing some promising results. Instead of using a microprocessor as the

central computation unit, the new generation implements a digital signal processor

(DSP)-based computation unit. Most importantly, all of the hardware is integrated into a

few PCBs, and the design has a switch that is able to switch between 110V and 220V

input. Figure 3.3 shows a block diagram of the second generation FDR. As shown in

Figure 3.4, this new generation of FDR has proven to be more portable and compact in

design. In addition, the filter design is able to accommodate 60Hz as well as 50Hz input

signals [16]. As a result, the second generation FDRs can be deployed on a global scale

more conveniently.

 44

Voltage

Transformer

ADC

Power Grid

DSP Microcontroller

GPS Timing

Receiver

Serial to

Ethernet
Converter

Internet
Data

Signal
Conditioning

Sampling
pulses

1PPS
Serial

Data

1PPS

CAN
Data

LCD display

Figure 3.3 Second generation FDR architecture

Figure 3.4 Photo of the second generation FDR

One of the most distinctive differences between the second generation architecture

and that of the first generation is the use of a separate DSP to offload the algorithm

burden from the microcontroller. In this case, the microcontroller is dedicated to the I/O

processing functionalities of the FDR, thereby lowering the processing power

requirement of the microcontroller. A less demanding microcontroller can be used in this

case since all of the algorithm implementation is moved to the DSP. In addition, the use

of a fixed point DSP has further lowered the overall cost of the FDR. Finally, the custom

designed PCB for the second generation FDR eliminates the need for evaluation board

from third party vendors. The lower cost implementation has drastically helped in terms

 45

of high volume FDR production and deployment. Nevertheless, the computation power is

still very much limited in the second generation design so that no improvement could be

made in either sampling rate or multiple resampling. In order to accommodate higher

computation capabilities, it is important to focus on the DSP since that is where all of the

computation occurs.

3.3.1 Analog Subsystem

The second generation FDR has integrated the filter, transformer and the ADC into

one PCB. Also, the transformer and filter are re-designed to accommodate both 120VAC

and 22VAC inputs. The AD7865 from Analog Devices is used for analog to digital

conversion. The AD7865 is a 14 bit SAR ADC with a fast conversion speed of 2.4

microseconds. Thus, the resolution of the ADC is lower compare to that of the first

generation FDR at the expense of faster conversion speed and lower price. Nevertheless,

the higher conversion speed is not useful unless the sampling speed is increased. Overall,

the design of the new analog subsystem has resolved the issues associated with that of the

first generation design.

3.3.2 Microcontroller and DSP Co-processor

The second generation FDR uses the C8051F020 from Silicon Laboratories as its

auxiliary co-processor to perform several functions. The C8051F020 processor offers a

fully integrated SoC design with subsystems including an ADC, two DACs, two UART

serial interfaces implemented in hardware, five general purpose 16 bit timers and a

programmable counter with five capture/compare modules. Furthermore, there are 64

kbytes of internal FLASH and 4352 bytes of on chip RAM memory to minimize external

memory requirements.

The C8051 processor measures the 1PPS from GPS to determine whether it is valid

and parses the GPS messages from the serial interface. It is also responsible for receiving

the final phase measurement data from the DSP and combining it with the appropriate

timestamp information into serial streams for the serial to Ethernet converter. Due to the

 46

fact that CAN interface is not supported on the chip itself, an external CAN controller is

needed to interface the C8051 with the DSP.

The main computation unit of the second generation FDR is the TI (Texas

Instruments) TMS320LF2407. The TMS320LF2407 is part of the TMS320C2000

platform of fixed point DSPs. Operating at 30MHz with 30 MIPS performance, the

TMS320LF2407 is mostly used in motor control and motion control applications.

Moreover, the TMS320LF2407 offers an internal ADC, SCI (serial communication

interface) module, SPI (serial peripheral interface) module, CAN communication module,

two general purpose timers and eight PWM channels. The TI ANSI C compiler simplifies

the software development by providing a run-time-support library that contains a custom

coded set of floating point math functions. With the aid of the math library, the FDR

algorithm implemented in C can be directly applied in the fixed point DSP with minimum

modifications.

In addition to the algorithm implementation, the TMS320LF2407 is responsible for

generating the trigger for conversion signal to the ADC. The event manager module

receives the 1PPS signal from the GPS and generates a PWM signal to the ADC based on

its internal 30MHz clock. In return, the ADC sends back the converted digital data upon

the rising edge of the trigger for conversion signal. All of the I/O processing are interrupt

driven to minimize latency.

The microcontroller and DSP co-processor architecture has a well balanced trade-off

between cost and computation power. Nevertheless, if such architecture were to be used

in the next generation FDR design, it is necessary to focus on the DSP hardware upgrade

to obtain higher computation power. Considering that faster floating point computation is

the major requisite for processing more data points, the obvious migration path would be

switching over to the floating point DSP with up to 60MFLOPS and 80MFLOPS

performance. Such transition would certainly increase the cost and complexity of the

hardware. Nevertheless, the choice of a fixed or floating point DSP is no longer solely

dependent on the complexity of the software development but rather the precision

 47

requirement of the application. Since the current fixed point DSP is performing

satisfactorily in frequency and angle measurement accuracy, the selection for upgrade

should encompass both floating point and fixed point DSP. Ultimately, the fixed point

DSP will always have an edge over the floating point DSP in FDR design.

3.3.3 Network Communication Subsystem

Similar to the first generation FDR, the network communication subsystem is

provided by a serial to Ethernet converter. However, in this case, an embedded version of

the device is being used. The Moxa NE4100T has a small form factor and is easily

mounted to the processor board of the FDR. Since this is a new generation of the Moxa

products, the performance of the device is better than that of the first generation FDR.

Nevertheless, the performance is not consistent and the drop out in communication is one

of the major causes of missing data. It is fair to say that in the next generation design, the

network communication subsystem needs to be reconsidered with a more reliable

replacement.

3.4 Commodity Personal Computer Based Design with FPGA

To address the need for flexibility in sampling speeds and high reliability, a PC based

design was proposed in [5]. Overall, the architecture of a PC based design is a little

different from that of the traditional embedded system architecture. Similar to the first

and second generation FDR, the system will use a voltage transformer and low pass filter

combination to convert the input voltage from the standard wall outlet power signal, and

to condition the input voltage respectively. The same ADC board from the previous

generation can be used. For the timing subsystem and the computation engine in the

system there are a number of changes. In order to increase the timing accuracy and

flexibility of the system, the GPS 1PPS signal will be input to a FPGA. This FPGA will

monitor the incoming 1PPS signal and will send out accurate trigger for conversion

pulses to ADC. The ADC will then assert an input to a smaller 16 bit microprocessor in

order to indicate end of conversion. The FPGA will also indicate to the microprocessor

 48

the start of each new second. The microprocessor will then gather the binary data from

the ADC and GPS serial data stream and transmit to an embedded PC for computation

and network communications. A block diagram of the FPGA based FDR is shown in

Figure 3.5.

Figure 3.5 FDR architecture based on FPGA and PC

3.4.1 Microcontroller

The 16 bit embedded processor is responsible for all of the interfacing tasks in the

system. These tasks include collecting all of the sampling data from the ADC, keep track

of the sample number, as well as parsing the GPS serial data stream from the GPS timing

receiver. Most importantly, the microcontroller is used to collect the ADC data and

correlate that data with timestamps. In order to accomplish this, the microcontroller first

receives the 1PPS signal from the GPS timing receiver and uses this pulse to reset an

internal counter that tracks the sample number of ADC conversion. After receiving the

 49

data from the ADC the microcontroller stores that sample along with the sample number

in a buffer waiting to be sent to the computation system.

In addition to receiving data from the ADC, the microcontroller is also responsible for

receiving and parsing the serial stream from the GPS timing receiver. The

microcontroller uses the parsed time information to determine the actual second of the

day that corresponds with the sample number that is maintained by the internal counter

on the microcontroller. In order to transmit the data to the computation system, the

microcontroller periodically packages the data that has been stored in the transmit buffer.

The data are then sent to the computation system from a universal serial bus (USB)

connection. There are a number of advantages in using USB interface. For one, nearly

every PC today comes with USB standard interface. Also, the bandwidth of USB link far

outperforms that of the RS232 serial bus, which was used in both earlier versions of the

FDR. The throughput of the USB 2.0 is 480 megabits per second (Mbps), which

surpasses that of the serial connection of merely 230 kilobits per second (kbps).

3.4.2 FPGA

In order to the address the need for a flexible timing subsystem that is capable of

accommodating variable sampling rates, an FPGA is used as the main controller in the

timing subsystem [5]. The advantage of using an FPGA is mainly due to its high

performance in hard-real time, deterministic behavior. Through the reconfigurable nature

of the FPGA, the 1PPS from the GPS can be accurately divided into sampling periods

according to the sampling rate specified. The sampling rate can be selected via two

separate on-board configuration jumper. Through the use of the jumpers the system can

be configured for both input nominal frequencies of 50Hz and 60Hz. In addition, the

jumpers allows for the selection of oversampling which increases the sampling rate to 10

times that of the original sampling rate. Ultimately, the final system design is to have an

FPGA that took the 1PPS output from the GPS as an input and also reads the desired

input signal frequency select line as well as an oversampling select line. The output will

then produce a pulse train based on those input parameters.

 50

Much of the software implementation in FPGA can reuse the logic from previous

generation FDRs. The only difference is that the logic will need to be implemented in

Verilog hardware description language (HDL) instead of C. Nevertheless, the FPGA

hardware does not need to be highly sophisticated with high density logic cells and

system gates. A relatively low-end FPGA such as those from the Xilinx Spartan II family

of chips is adequate for accommodating the timing logic.

To address the need for remote diagnostic and upgrade, the microcontroller is used to

configure the attached FPGA upon the basic initialization routines. Specifically, when the

microcontroller starts up, there will be a basic initialization sequence that will get the

operating mode of the system. The operating mode includes the input from switches

related to the selection between 50 and 60Hz input frequency and 120V or 220V input

voltage. After the initialization routines, the system will configure the attached FPGA.

Using a stored image of the FPGA configuration file, the microcontroller will load the

configuration on to the FPGA. This is an important feature as it will allow the FPGA

portion of the system to be updated remotely. Furthermore, the microcontroller firmware

can be changed by the use of a USB bootloader, which allows for the internal program

memory to be reprogrammed directly using the USB connection. This feature will enable

the remote updating of both the microcontroller and FPGA code [5].

3.4.3 Commodity PC

 In order to step up a notch on the computation capabilities of the FDR, a PC based

computation unit is necessary to meet the requirement of processing above 10 times the

current sampling rate. Considering the low cost and abundance of hardware systems that

are based on the Intel x86 architecture, the new system will be designed to take advantage

of this hardware. It is the responsibility of the 16 bit microcontroller to control the data

acquisition process and transmit the digital data to the x86 based PC. Considering the fact

that commodity PCs currently have multi-gigahertz processors onboard with capabilities

from a few to many hundreds MFLOPS, with possible giga FLOPS peaks achievable

 51

with vector computation units (Single Instruction Multiple Data (SIMD)) that come for

free with the recent processors, the computation needs of the system can be easily met.

 In addition the high computation capabilities, the PC offers many other advantages to

the FDR system. The abundant peripheral interfaces of the PC are very valuable to the

FDR. Most of the PCs today come standard with interfaces such as USB and Ethernet and

with custom serial and parallel ports. Current implementation makes full use of the USB

and Ethernet ports but future applications may call for the use of either serial or parallel

ports as well to support some legacy products.

 In general, most of the commodity PCs today are bundled with an operating system

and some security software. For the architecture described in Figure 3.6, the operating

system could be either Microsoft Windows line of products or a standard Linux

distribution. Both of these options come with standard firewalls and are provided with

regular security updates.

 One of the most important features of the PC based FDR is the high level

configurability and upgradeability. What’s more is that a remote based administration

scheme can be used. Components such as computation algorithm software can be

configured on the fly and remotely. Also, through the use of standard PC hardware, the

upgrade cycle for more complex phasor measurement algorithm is inexpensive and very

simple. Standard software development packages can be used to develop and deploy the

algorithms [5].

3.5 Standalone Commodity Personal Computer Based Design

 The idea of a PC based FDR design expands the possibilities in incorporating a large

base of readily available hardware and software. For instance, most of the desktop PCs

today come with open PCI slots for peripheral expansion and there a wide variety of PCI

(peripheral component interconnect) based DAQ (data acquisition) cards available. With

these considerations, it is logical to consider the possibility of a standalone commodity

 52

PC based FDR. Figure 3.6 shows the architecture of a standalone PC based FDR. The

main components of interest here are the PCI based DAQ card and the Internet based

timing. Most of the DAQ cards today have 16 bit ADC capability and a minimum

sampling rate of 200 kHz so that the FDR data conversion requirement can be easily met.

In addition, timing synchronization over the Internet is a fairly matured technology and

has been improving in accuracy and reliability over the recent years. Depending on the

accuracy needed, there is a wide variety of software that seeks to synchronize the PC

clock to that of an external time reference. Nevertheless, the topic of PC time

synchronization is resorted to Chapter 7. Given the capability to synchronize to the UTC

time with the acceptable accuracy, software triggers can be used to drive the DAQ for

conversion.

Figure 3.6 PC based FDR design block diagram

It is important to note that given the high flexibility in the PC based FDR design,

there are several factors that can affect the accuracy of the frequency and angle

measurements. Specifically, the performance of the system is highly dependent on the

hardware and operating system used. Since the data acquisition module is being

integrated into the PC, it is likely that a real-time operating system will be needed for

better deterministic behavior versus that of the general purpose operating systems.

Although Chapter 7 will present a more detailed description of the network

synchronization technique and its performance, it is known that such synchronization

 53

method will not provide as high accuracy timing as the GPS. With that taken into

consideration, there are decisions to be made in regard to the applications that are suitable

for the lower accuracy FDR. This is especially significant for applications that involve

phasor angle measurements where there is very small leeway in the timing error.

Nevertheless, the introduction of the PC based FDR raises the bar for large scale

deployments and providing high density coverage in large geographical regions.

 54

Chapter 4 Implementation of Global Positioning System
as a High Availability, High Accuracy Timing

Reference for Frequency Disturbance Recorder

4.1 Background

Global Positioning System (GPS) plays an important role in many different

applications. They are best known to provide navigation and positioning solutions but

more and more applications are using GPS as a time and frequency reference for

synchronization. GPS provides very precise time as a by-product of their navigation

metrology. For measurement applications GPS can provide accurate time and positioning

for a single device. In addition, it can also be used for synchronization of multiple

distributed measurement systems.

Specifically designed for high accuracy timing applications, there are some receiver

manufacturers that optimize their products for timing applications. Such receivers include

the Resolution T GPS timing module from Trimble, the Jupiter-T timing GPS receiver

from Navman and the receiver implemented in the FDR, the M12+ GPS Timing Oncore

module from Motorola. These receivers differs in that they have an over determined

clock mode using position hold mode, which enables the coordinates of the antenna to be

fixed in the solution leaving the clock offset only to solve for. Such a receiver will only

need one satellite to provide a timing solution once the position solution has been

established.

Timing Receiver Autonomous Integrity Monitoring (TRAIM) is supported on all of

the timing GPS receivers. TRAIM is an algorithm that detects the integrity of 1PPS

signal using the redundancy in measurements. The algorithm relies highly on the number

of satellites being tracked and any abnormalities in the measurement can be detected and

isolated. Specifically, there are two modes of operation where one mode uses the

redundant measurements to alert the user if the solution does not meet specified accuracy

 55

requirements [19]. The other mode is commonly known as the isolation mode where the

degraded solution is improved by isolation and removal of faulty satellites. TRAIM is

mostly used in the avionics industry where the subject of integrity is crucial to the

industry’s safety requirements [19].

This Chapter first explores how GPS obtains a timing solution based on time of

arrival (TOA) concept and present some limitations of the technology. Alternative

satellite navigation systems will also be presented. Furthermore, emphasis will be placed

on the upgrade of the first generation FDR GPS receiver as well as a close examination of

high sensitivity GPS implementation for high accuracy frequency and angle

measurements. The high sensitivity GPS was introduced to address the issues associated

with signal attenuation in certain environments. Ultimately, the high sensitivity GPS will

not only provide high availability for frequency and phasor angle measurements but also

maintain the same level of timing accuracy compared with the conventional GPS.

4.1.1 Global Positioning System

The NAVSTAR Global Positioning System (GPS) is made up of a constellation of

more than 24 active satellites orbiting approximately 20,200 kilometers above the surface

of the Earth. The constellation is oriented in such a way that at least four satellites are

visible 24 hours a day all over the world [26]. Originally deployed by the United States

Department of Defense (DoD), these satellites all have four onboard atomic clocks that

synchronize to within 3 ns of the official atomic clock located at the Unite States Naval

Observatory (USNO). Another section of GPS is situated on Earth to control the

satellites. Within this section of the GPS there is a master control station (MCS) located

at Schriever Air Force Base, Colorado Springs, CO. USA and five monitor stations

distributed over the world. Data recorded by the monitor stations are processed at the

master control station for calculation of satellite ephemerides and modeling of the

satellite clocks. After doing the corresponding calculations, correction messages are sent

to the satellites [26]. The purpose of these corrections is to maintain high accuracy of

orbital location and synchronization of the satellite atomic clocks. The unique fact that

the signals from these satellites are synchronized with the atomic clock allows end users

 56

of the system to receive synchronized frequency information. Henceforth GPS is not only

a navigation system, it is also a time-transfer system. As a time-transfer system it

provides stability very close to one nanosecond per one day [27]. GPS is a versatile and

global tool which can be used to both distribute time to unlimited number of users and

synchronize clocks over large distances with high degree of precision and accuracy. This

feature alone makes GPS a highly competitive timing synchronization source for wide

area monitoring applications.

To obtain a navigation solution, the processor within the GPS receiver can calculate

the difference between its on-board clock and either GPS time or Coordinated Universal

Time (UTC) as determined at the U.S. Naval Observatory (USNO). In most cases the

local GPS clock is a quartz crystal clock but there are some cases where an external clock

such as a rubidium frequency standard or a cesium beam frequency standard acts as the

local reference for the GPS receiver. The GPS receiver can be programmed to output

UTC (USNO) or GPS time as calculated by the difference between the local receiver

clock and GPS time. The UTC (USNO) is usually kept to within approximately 10 ns of

actual UTC [27]. A GPS receiver tracking at least four GPS satellites can solve for the

receiver’s position and time at almost any location on the globe with high precision. A

timing receiver operating from a given fixed location can derive time from GPS using

just one satellite.

The exact nature of how GPS works can be obtained from a variety of literature such

as [56]. Since the main aim of this study is focused on obtaining precise timing for

frequency and angle measurements it is not necessary to delve into the algorithms of GPS

location estimation. However, it is important to give an overview of the basic principles

as well as how the timing solution is solved. GPS operates on five basic principles: (1)

triangulation and Newton Raphson approximation methods are used to solve the position

solution from four satellites; (2) GPS measures distance between orbiting satellites to a

position on Earth by using the travel time of radio waves; (3) GPS requires very accurate

clocks to measure radio wave travel time; (4) satellite position at any point in time is

being kept track by DoD and the satellites relay an almanac with this information to the

 57

receiver; (5) The radio wave experiences delays as it passes through the atmosphere with

the most significant delays occurring in the ionosphere and troposphere.

In order to correct for errors on the GPS receiver oscillator clock, each satellite

transmits a signal in the format of direct sequence spread spectrum (DSSS) on each of the

two radio frequencies (L1 operating on 1575.42MHz and L2 operating on 1227.60MHz).

In its most basic form, spread spectrum signaling consists of taking a given signal and

spreading its bandwidth through multiplication by a high bandwidth spreading waveform.

The effect of this waveform is to distribute the spectral power of the GPS signal over a

range of frequencies. Such a distribution enables the ‘jamming’ of the signal more

difficult as well as reduces unwanted interference of GPS signals with other terrestrial

systems. Two distinct encodings are used: the coarse/acquisition (C/A) code (also known

as Gold code or pseudorandom noise code) and the precise (P) code. The C/A code is

open to public and used by civilian GPS receivers while the P code can only be used for

military application.

As the signal reaches the GPS receiver, the receiver replicates the C/A code by

generating a sequence of 1023 bits with a period of one millisecond and compares it with

the received signal using trial and error. The offset between the replicated code and the

received signal is the time of transmission and it will be multiplied by the speed of light

yielding what is known as the pseudorange, or also known as the measured range. It is

important to recognize that the range measurement just described only works properly if

the satellite and receiver clocks are synchronized, hence the name pseudorange. To

illustrate these concepts in terms of receiver clock offset (dtRX), or the offset between the

receiver clock and one satellite clock the following relationship can be obtained:

 Equation 4-1

where c is the speed of light, p is the measured pseudorange, ρ is the true geometric range

to the satellite, dρ is the satellite orbit error, dtSV is the satellite clock error, diono is the

ionospheric delay, dtropo is the tropospheric delay and εp denotes multipath and noise. To

correct for the receiver clock offset (dtRX), a fourth range measurement is provided by the

 58

fourth satellite which will not intersect at a single point. At which point the receiver will

add or subtract time until it arrives at a solution that allows ranges from all satellites to go

through one point. Finally, it determines the time offset and makes the necessary

adjustments. The method that is being is described is really an overview of how the

timing solution is obtained. However, the acquisition and tracking of satellite signals

involves some more in-depth discussion on the GPS signal.

In order for a GPS receiver to acquire and track satellite signals, it must perform a

two dimensional signal replication process of the received satellite signals. The type of

GPS spread spectrum signal employed by the GPS is known as binary phase shift keying

(BPSK DSSS). BPSK is a form of phase modulation where the carrier signal is

instantaneously phase shifted by 180° at the time of bit change. The GPS receiver

synchronizes or locks to the incoming satellite signal by using cross correlation with its

locally generated code. When the two codes align they cancel one another, which allows

for the acquisition of the satellite signal. However, in the case when more than one

pseudorandom code is received, it is necessary distinguish them from each other. Gold

codes are generated from the modulo-2 addition of two specifically chosen

pseudorandom codes. Before the addition of the two codes, the second code is delayed a

certain number of bits from the first code. To decode the incoming signal in the receiver,

the correlator compares the Gold signal for each satellite with the receiver generate

replica. Generally, the receiver searches all possible leads and lags between the signal

and the replica to achieve the highest correlation. When this occurs, the receiver has

acquire the signal can track it through control loops.

4.1.2 Limitations of the GPS Accuracy

Some error sources of GPS have been reduced throughout the years of ever

improving technology. However there are some remaining factors that need to be taken

into consideration while evaluating GPS accuracy. The GPS performance can be

degraded by a number of factors and even inoperable under certain conditions.

 59

The most well known error source of GPS was the Selective Availability (SA). This

error was intentionally introduced by the DoD in order to make the GPS positioning

inaccurate for civil use while preserving the higher accuracy for military use. S/A was put

into effect on March 25th 1990 and was discontinued on May 1st 2000. While S/A was

introduced in the GPS solution, it was the greatest source of error with up to 100 meters

of inaccuracy (note that GPS distance error is directly proportional to timing error by a

factor of speed of light). Such inaccuracies were introduced due to the intentional

addition of dithering signal to the satellite clock. In addition, the satellite orbital

parameters are incorrect so that accurate determination of satellite position in real-time

was not possible.

Ephemeris errors are often introduced while the satellite paths are affected by forces

like solar winds and earth gravitational pull. Although ephemeris messages are

transmitted every 30 seconds, the messages itself may get delayed in the transmission

process and providing a false update. What’s more important is that the satellite path will

be deviated away from the predicted, which will propagate into the receiver position

solution. In addition, the satellite’s atomic clocks also experience noise and drift errors.

While these errors tend to be small, they can still add up to a few meters of inaccuracies.

Propagation errors are provoked by the fact that a GPS signal has to propagate

through different layers of Earth’s atmosphere. As an example, the ionosphere adds an

inaccuracy of about 20 meters to the pseudoranges. Although not as significant of an

impact, the troposphere also contributes some error to the GPS solution. These effects are

minimized when the satellite is directly overhead but becomes greater for satellites near

the horizon since the path through the atmosphere is longer. Furthermore, these effects

can often be mitigated by modeling, although not perfectly. There will generally be some

residual atmospheric error due to incorrect model or atmospheric disturbances. Using a

dual frequency receiver or picking up pseudorange corrections from other reference

stations are two ways to lessen the residual error.

 60

A further important aspect affecting the precision of obtained GPS position is the

geometry of the satellites used for pseudorange measurements. A parameter that is often

used to quantify this effect is the Dilution of Precision (DOP) factor. Naturally the DOP

value varies as the satellites are moving along their orbital planes, which means that the

DOP values vary over time. DOP value can be calculated based on satellite orbital path

and does not need any measurements. The accuracy of a GPS solution increases as the

DOP value decreases with a threshold value of 5, indicating a value below 5 as the most

accurate solution.

Although very well studied, multipath continues to contribute some errors in the GPS

position solution. Multipath is the effect of wave signal reflecting off of different objects

and arriving at the antenna, introducing noise in the received signal. Thus the receiver

makes a pseudorange measurement based on an incorrect signal. However, the multipath

errors are being kept to the minimum due to the high autocorrelation nature of the GPS

signal, which tends to lessen the effect of signal reflections.

4.1.3 Alternative Global Navigation Satellite Systems

There are two globally used positioning systems, namely the Galileo and GLONASS,

which are conceptually similar to the GPS. However both systems are yet to be fully

operational due to various reasons.

Galileo is a joint initiative between the European Commission and the European

Space Agency (ESA) [43]. It is a satellite navigation system similar to GPS developed in

order to create a European satellite based navigation system independent of the GPS.

Started in 2001, Galileo is still currently undergoing development phase. The final system

will contain 30 Medium Earth Orbit (MEO) satellites in a height of 23,636 km above the

Earth. The general system is composed of three main component groups, the global

components, regional components and the local components. The global components are

the satellites, regional and local components being the EGNOS (European Geostationary

Navigation Overlay Service) [43]. The EGNOS allows for enhanced positioning needs by

processing GPS or GLONASS signals resulting in an increase of accuracy of about five

 61

meters. EGNOS consists of three geostationary satellites and a network of ground

stations. Like the GPS, use of basic Galileo services will be free and open to everyone but

the high accuracy capabilities will be resorted to military use and paying commercial

users. Even though the Galileo system development has had its share of controversies, the

EU transportation ministers have reached an agreement that it should be operational by

2013 [43].

GLONASS can be considered to be the Russian counterpart to the GPS. GLONASS

was developed rather quickly resulting in operational capability with 24 satellites in 1995

[44]. However due to shortage in government funding the satellite constellation was

degraded until 1998. Ever since then Russia strived to rebuild the satellite infrastructure

and as of January 12th, 2010 the GLONASS system consists of 22 satellites of which 16

are operational. The system requires 18 satellites for continuous navigation services

covering the Russian Federation and 24 satellites to provide services worldwide. The

Russian government has estimated 2011 as the completion date of all 24 satellites in

operation [44].

4.2 GPS Time Synchronization for FDR

4.2.1 First Generation FDR GPS Receiver

In the first generation FDR, the Motorola M12+ GPS timing receiver was used as the

frequency and timing reference. The Motorola M12+ timing receiver is specifically

designed for high precision timing applications with the highest claimed accuracy of less

than 2 nanoseconds offset from UTC at the one sigma level. The receiver uses a parallel

architecture with 12 channel L1 C/A code. Two communication protocols are supported,

NMEA (National Marine Electronics Association) and the Motorola binary protocol that

includes commands for output PPS control, elevation angle selection and ASCII message

output. The evaluation board for the M12+ allows for simplified interface with the

CME555 board. There are two serial ports used separately for GPS and AGPS (Assisted

GPS) message transmission, a SMA (SubMiniature version A) connector allows for high

precision 1PPS output. The MPC555 processor sends initialization commands through

 62

one of the serial ports to initialize the M12+ receiver during system start up. The

initialization includes configuring the 1PPS output to be enabled when tracking at least

one satellite and a satellite mask angle of 3 degrees. Given that only one satellite is

needed for precise timing once the position solution is established, there will always be

timing correction provided by at least one satellite to the receiver. Furthermore, the

configuration of satellite mask angle eliminates the satellites near the horizon from the

GPS solution since the signals from those satellites are more susceptible to noise as they

travel through the troposphere and ionosphere. Ultimately, such configuration is intended

to increase the reliability and integrity of the 1PPS signal.

4.2.2 Second Generation FDR GPS Receiver

In the end of the year 2005 Motorola discontinued the M12+ receiver product line.

There was a need for a new GPS receiver with equivalent performance and

functionalities. Several GPS receivers were evaluated with the i-Lotus M12M topping the

list in backward compatibility with the M12+ [45]. Specifically, the M12M receiver is

very much similar to the M12+ receiver with the following exceptions [47] [49]:

• The M12M receiver PCB is made from slightly thicker (0.020”) material so that

the resultant thickness is approximately 0.063”.

• The upper power supply voltage limit has been raised to +3.3V for M12M to

simplify interface with +3.3V systems.

• The acceptable external gain range from the antenna system is much wider with

the M12M than it was with the M12+. Whereas the M12+ required external gain

limited to a range of +18dB to 36dB, the M12M front end can handle input gains

from +10dB to +50dB, making antenna system design less demanding.

• Typical Cold-Start time for the timing receiver has been reduced from 200

seconds to 150 seconds.

• The M12M GPS receiver has a temperature controlled oscillator (TCXO)

operating at 16.367MHz instead of the crystal oscillator (XO) used in the M12+.

• Timing accuracy is similar to that of M12+ with less than 2 ns within 1 sigma

interval and less than 6 ns within 6 sigma interval.

 63

The block diagram in Figure 4.1 shows the hardware interface for M12M GPS

receiver, the MPC555 processor and the ADC. The GPS messages are transmitted via

DB9 crossover cable and are driven by null modem interface where the transmit line and

receive line are crossed and request to send (RTS) line and clear to send (CTS) line are

crossed.

Figure 4.1 M12M GPS module interface to the MPC555 and ADC

To validate the timing accuracy, testing was conducted using M12M GPS receiver as

the timing source for FDR. Figure 4.2 shows the test setup to compare the frequency and

angle data collected by FDRs using different GPS. FDR4 is synchronized against the

M12+ GPS receiver and FDR24 is synchronized against the M12M GPS receiver. Figure

4.3 shows that the frequency and angle data obtained from FDR24 is comparable to that

of the FDR4. In addition, the same initialization sequence used in the M12+ can also be

applied to the M12M to maintain the integrity and reliability of the 1PPS signal.

 64

Figure 4.2 Test setup for comparing M12+ and M12M

500 1000 1500 2000 2500 3000

59.96

59.98

60

60.02

M12+ versus M12M on 2/12/08

F
re

q
u

e
n

c
y

 (
H

z
)

Data point number

500 1000 1500 2000 2500 3000

1

2

3

4

5

6

Data point number

A
n

g
le

 (
ra

d
ia

n
)

FDR4

FDR24

Figure 4.3 FDR4 with M12+ versus FDR24 with M12M

4.3 Introduction to High Sensitivity GPS

To allow for higher availability of timing source and more possibilities in FDR

placements, the option of replacing the conventional GPS with a high sensitivity or

indoor GPS receiver was proposed. The main drawback with the use of conventional GPS

is the lack of availability in signal degradation environments. As an example, some of the

newer office buildings have low-emittance (low-e) or also known as energy saving

 65

windows. These windows uses a very thin metallic oxide coating to block the

electromagnetic radiation, thus rejecting the heat outside of a building during the summer

and keeping the heat inside during the winter. From a radio wave point of view, the

electromagnetic radiation in the microwave region is blocked and the effect becomes

more significant as the frequency increases. For a commercial low-e window, the metallic

oxide coating provides 20dB to 35dB of signal attenuation in the frequency range 1-2

GHz. Consequently, FDRs placed in these locations are prohibited from acquiring any

GPS satellite signals. To this end, there is a need to increase the availability of the

conventional GPS and maintain the same level of accuracy for FDR time

synchronization.

Several high sensitivity GPS receivers were evaluated for implementation in the FDR

and only very few were considered due to its inherent high prices. The implementation of

high sensitivity or simply indoor GPS presents a major challenge due to the significant

signal degradation in indoor environments. The critical parameter in determining signal

acquisition and tracking performance is not the absolute signal strength but the signal to

noise ratio (SNR) and more specifically the SNR in a 1 Hz bandwidth, or the carrier to

noise power density ratio (C/No) [31]. However, since the noise power is largely

dependent on the equipment being used and supposedly remains constant for any given

equipment, the C/No measurement is a rather accurate indication of the actual signal

strength. In other words, the C/No figure is a measure of the signal quality present at the

input to a GPS receiver [31]. According to the latest version of IS-GPS-200 specification

[54], the GPS C/A code signal at L1 is designed to arrive on the ground at not less than -

158.5dBW power level (refer to Appendix A for more information on GPS signal

strength calculations). Conservative models suggest that the attenuation in buildings can

reach levels of 2.9 dB per meter of structure [32]. Experiments indicate that the

attenuation of the GPS signal through the buildings is typically higher than 1 dB per

meter of structure [32]. Therefore, to track the GPS signals indoors inside high buildings

the GPS receiver needs to be able to track signals with power levels ranging from

approximately -160dBW to -200dBW [32]. To convert the figure into C/No values, signal

strength of -160dBW corresponds to a C/No of about 41 to 44 dBHz.

 66

In 1996, the Federal Communications Committee (FCC) mandated that wireless

carriers provide Public Safety Answering Points (PSAPs) with precise location for all

emergency calls from mobile phones. This system is known as Enhanced 911 (E911)

system [32]. Such a system sparked the need for a GPS solution that will meet the

requirements for indoor positioning, fast time to first fix and very low power

consumption. Furthermore, the market demands have pushed the development of low-

cost GPS receivers which should be able to operate in virtually any environment where

also a cell phone works. The key to enhancing the sensitivity of GPS receiver is to extend

the signal integration time significantly beyond the typical 2 to 5 milliseconds [22]. This

effort requires several modifications to the receiver architecture. The high sensitivity

receiver architecture differs from that of the typical receiver by having significantly more

number of correlators and the ability to search all possible code delays in parallel [22]. To

illustrate, a typical GPS receiver will often have hundreds or thousands of correlators

whereas a high sensitivity GPS receiver would have tens of thousands of correlators.

Ultimately, such implementation allows for longer integration time to acquire very weak

signals and decreases the acquisition time when the signal is strong. High sensitivity GPS

receivers are now commercially available at low cost from several manufacturers. Such

receivers are claimed to be able to track and acquire signals with C/No values as low as

12 dBHz and thus be able to operate beneath heavy forests, in urban canyons and indoors.

[30]

Studies conducted in [33] and [30] indicate that a high sensitivity receiver can indeed

acquire significantly more satellites than the conventional GPS and is able to track

satellites behind obstruction. Also, positioning availability is nearly 100% for the high

sensitivity receiver. However, studies have also shown that there are drawbacks to the use

of high sensitivity GPS. Specifically weak signals are usually not only attenuated but also

delayed. Effects such as reflections and diffraction of the signal upon objects increase the

traveling time of the signal, thus introducing errors in the range calculations [30].

Furthermore, the errors are mostly dependent on the angle of arrival of the signal and the

properties of the material. Material thickness, reflectivity, index of refraction,

 67

conductivity and absorption properties all affect the attenuation of the line of sight signal.

Therefore, the signals additionally provided by a high sensitivity receiver are usually less

accurate than those which can also be tracked with a conventional receiver [30]. The

difference in quality needs to be taken into consideration when computing position and

time solution. Several literatures go into details on some of the algorithms that are being

used to estimate the positioning errors including [40], [41], and [30]. Nevertheless, the

purpose of this study is not to delve into these algorithms but introducing the technology

to synchronized frequency and angle measurements, especially for the FDR which aims

for mass deployment in some environments where a direct line-of-sight to the satellites is

not available. The following study takes a first step in evaluating the use of high

sensitivity GPS for synchronized frequency and angle measurements.

4.4 Implementation of a High Sensitivity GPS for FDR

Initial evaluation focused on cost effective indoor timing GPS receiver with similar

cost to that of M12+ GPS receiver. Table 4-1 lists the indoor GPS receivers with

performance data as indicated in its respective datasheets [49][50][51][52][53]. The

M12+ GPS receiver is also listed for comparison.

Table 4-1 Initialization characteristics of indoor GPS receivers and FDR GPS receiver

 Motorola

M12+
QinetiQ Q20 NavSync

CW12-TIM
SigNav
TM3-02

ublox
LEA-4T

Cold start 45s 45s 45s 60s 34s

Warm start 38s 38s 38s 48s 33s
Hot start 1s 1s 5s 6s 3.5s

Timing 15ns 15ns 30ns 10ns 15ns

A closer look at Table 4-1 indicates that the QinetiQ Q20 has the most competitive

figures in terms of fast signal acquisition and accuracy in timing synchronization.

However, the Q20 GPS receiver was still in the development stages at QinetiQ when it

was first tested for FDR timing synchronization. Early test results have shown that the

Q20 is not stable and would stop sending messages and goes idle after start up. Technical

support at QinetiQ has indicated the problem may be associated with flaws in power

 68

supply design which enables high current draw and puts the receiver at its thermal upper

limit. The SigNav TM3-02 and ublox LEA-4T are good candidates for FDR

implementation but their cost is significantly higher than that of the M12+. The NavSync

CW12-TIM indoor GPS was then selected largely due to similar characteristics and cost

compared with the legacy GPS receiver.

 Similar to the Motorola M12+, the NavSync CW12 indoor GPS receiver module is

specifically designed for use in synchronization and timing applications. Furthermore, the

CW12 was designed to meet the form and functionality of the M12+ as closely as

possible. Identical features include 12 channels L1 C/A code, antenna current sense

circuitry, voltage input, optional on-board battery, time receiver autonomous integrity

monitoring (T-RAIM), optional radio technical commission for maritime (RTCM) format

input and data output format in NMEA 0183 or Motorola binary [49]. In addition to its

high sensitivity feature of acquiring signals at -185dBW and tracking at -186dBW, the

CW12 offers variable frequency output between 10Hz to 10MHz from its on board

programmable NCO (numerically controlled oscillator). At the heart of the CW12 is the

CW25-TIM module which can massively increase the number of correlators applied to

each receiver channel with a maximum number of 12288 correlators. This enables the

CW25 to allocate large number of correlators to each receiver channel to allow the

receiver to search time/frequency bins in parallel rather than sequentially as in the

traditional GPS receivers [49]. As a result, the receiver is specified to work in

applications requiring indoor environments.

 The migration from the M12+ or M12M to the CW12 is simple and low-cost. As it is

shown in Table 4-2 [48][49][50] the physical and electrical characteristics of the three

receivers are very similar thereby making the hardware integration fairly straightforward.

 69

Table 4-2 Characteristics of GPS receivers - M12+, M12M and CW12

Characteristics Motorola M12+ i-Lotus M12M NavSync CW12

Dimensions 1.57”x2.36”x0.39” 1.57”x2.36”x0.53” 1.57”x2.36”x0.39”
Output Message on
Serial Connector

Motorola
binary/NMEA

Motorola
binary/NMEA

Motorola
binary/NMEA/
Proprietary
ASCII/binary

TTFF-
Hot/Warm/Cold
Start

15s/40s/60s <15s/40s/150s 5s/38s/45s

Power
Requirements

2.85 to 3.15VDC,
50 mV max ripple

2.8 to 3.3VDC, 50
mV max ripple

3.3VDC

Connectors 10 pin header with
0.05” space

10 pin header with
0.05” space

10 pin header with
0.05” space

Timing Accuracy <2 ns, 1 sigma
<6 ns, 6 sigma

<2 ns, 1 sigma
<6 ns, 6 sigma

<30 ns, 1 sigma

Weight 25 g 12.5 g Not specified

Track signal below
-180dBW

No No Yes

However modification was made to the FDR firmware in the parsing of timestamp

messages. Even thorough it is not stated in the manufacturer specification, the CW12

outputs variable length messages each second whereas the M12+ and M12M outputs a

constant 8 bytes of message each second. To illustrate this, the variable length messages

can be shown below:

"@@Eq,03,23,08,20,22,05,37,13.8999,N,080,13.8999,W,+00567.7,121.9,177.2,0,0,0,03,0000,00,034\r\n”

"@@Eq,03,21,08,18,43,51,37,13.8838,N,080,13.8838,W,+00600.9,003.7,177.9,0,2,27.3,07,0000,00,008\r\n”

"@@Eq,03,23,08,20,22,31,37,13.9039,N,080,13.9039,W,+00567.1,038.3,001.6,0,1,999.9,04,0000,00,060\r\n”

"@@Eq,03,23,08,16,23,17,37,13.8827,N,080,13.8827,W,+00612.9,04246.5,160.2,0,2,23.1,07,0000,00,003\r\n"

Where the first message has a length of 8 bytes and the rest are longer in length. To

accommodate the longer length messages, the queue buffer to store the message was

increased in length from 96 to 98 characters. Also, the parsing function was modified so

that it will be able to accept messages of different sizes and extract the timing

information according to the comma separation instead of the character positions.

 70

4.5 Availability and Accuracy Analysis

Since availability, signal quality and accuracy are of the utmost concern for GPS

performance evaluation, it is necessary to examine how indoor GPS compares with the

conventional GPS in this regard. As it was mentioned earlier, the C/No figure can be a

relatively good indicator of the signal strength. Since both the M12M and the CW12

provide the C/No figure for all 12 channels as part of its output messages each second,

these messages can be recorded and through post-processing, one can extract the C/No

information. In addition, the DOP value and the number of acquired satellites will be

examined to compare the accuracy and availability of the M12M and the CW12. Finally,

the position solution in latitude and longitude is presented in Appendix A along with the

necessary derivations for transforming from WGS 84 (World Geodetic System 1984) to

ECEF (Earth-Centered Earth-Fixed) coordinate system. Generally, the timing accuracy of

the GPS receiver is directly related to the positioning solution given that the position of

the receiver is constant. Studies conducted in [55] indicate that the errors in the receiver

position propagate to timing accuracy at the rate of 3 nanoseconds per meter of position

errors. As a result, the performance of the CW12 receiver can be visualized by plotting

the latitude and longitude solution and quantified by converting from positioning errors to

timing errors.

Initially, some data were collected from both the CW12 and the M12M in the FNET

laboratory. The antenna of both GPS receiver was placed next to the window and close

to each other to simulate the effect of a common view of the satellites. Figure 4.4 shows

the results from the CW12 and Figure 4.5 shows the results from the M12M. Clearly, the

CW12 receiver was able to acquire a broad range of signal strength, specifically from

around 10dBHz to almost 50dBHz. On the other hand, the M12M receiver was able to

acquire satellite signal strength of around 19dBHz to a little above 50dBHz. It is

interesting to note that the vast majority of the signals acquired by the M12M have C/No

figures above 30 dBHz. Also, the M12M was able to acquire higher signal strength of

around 55dBHz whereas the maximum acquired signal strength for the CW12 was less

than 50dBHz. Finally, the availability of the satellite signals for the CW12 appears to

supersede that of M12M. Figure 4.5 shows that the M12M receiver lost acquisition of all

 71

satellites during a small period of time. As a result, the CW12 receiver provides higher

availability of satellite signals than that of M12M. In comparison of the accuracy of the

two GPS receivers, Figure 4.4 shows that the DOP value of the CW12 ranges from 0 to

100 whereas Figure 4.5 shows that the DOP value of the M12M ranges from 0 to 12.

Such observations indicate that although the CW12 is capable of acquiring more

satellites, the M12M can acquire satellites with better geometry. Nevertheless, Appendix

A shows the corresponding position solutions given by the two GPS receivers to compare

their performances with respect to each other. It can be seen that under nominal

conditions where the antenna is placed next to the window, the CW12 is capable of

providing comparable position solution to the M12M.

Figure 4.4 Indoor GPS receiver data with antenna placed next to window

 72

Figure 4.5 Conventional GPS receiver data with antenna placed next to the window

To examine the effect of signal degradation on the CW12, another set of data was

collected from the CW12 with its antenna hidden away in a desk drawer. The collected

data is shown in Figure 4.6. As it clearly indicates, the CW12 receiver was able to

acquire satellite signals ranging from 10dBHz to around 35dBHz. In comparison with

what is shown in Figure 4.4, there is a maximum of about 10dBHz attenuation when the

antenna was inside the desk drawer. In addition, the corresponding number of acquired

satellites is lower comparing with the data that was collected when the antenna was

placed next to the window. The corresponding DOP value is also affected as it reaches

100 after some time and poor satellite geometry becomes significant. Finally, the position

solution in latitude and longitude is shown in Appendix A. The results indicate that the

accuracy of the position solution is degraded by more than 1000 meters when the antenna

was placed in the desk drawer.

 73

Figure 4.6 Indoor GPS receiver data with antenna placed in a desk drawer

To further illustrate the signal degradation effects on the CW12, Figure 4.7 shows the

data collected while the CW12 antenna was moved into different locations. Initially,

when the antenna was placed next to the window, the C/No figure is as high as 45dBHz

and above. Then when the antenna was moved to inside the desk drawer next to the

window, the signal degradation is clearly shown with more than 10dBHz of attenuation.

At last, the antenna was moved to inside of a desk drawer that is far away from the

window and again the C/No figure was reduced by as high as 20dBHz. Nevertheless, the

receiver was still tracking at least one satellite with signal strength around 15dBHz to

25dBHz. The corresponding number of acquired satellites decreases when the signal

degradation effect is increased. Similarly, the DOP value reaches beyond 5 after about

600 seconds, indicating that the GPS receiver will no longer capable of updating the

position with reliable data.

 74

Figure 4.7 Indoor GPS receiver data with signal degradation

Upon close examination of the C/No for both the conventional GPS receiver and the

high sensitivity GPS receiver, one can conclude that the high sensitivity GPS receiver is

capable of acquiring signal strength with significant attenuation. In the case of the CW12

receiver, signal strength as low as 10dBHz can be acquired but consistent tracking of the

satellites does not occur until the signal strength reaches above 15dBHz. On the other

hand, conventional GPS receiver such as the M12M is only able to acquire signals as low

as around 20dBHz and consistent tracking occurs at above 30dBHz. The results indicate

that the CW12 receiver is behaving as expected in acquisition of signals with significant

attenuation. In addition, it is capable of acquiring signals with much lower C/No figure

than that of the M12M. However, it was also illustrated that when operating under

significant signal attenuation, the position solution given by the CW12 is degraded. Such

decrease in accuracy can be attributed to high noise level and multipath, leading to

measurement faults ranging in magnitudes beyond 1 kilometer.

 75

4.6 Frequency and Angle Measurements with Indoor GPS

To evaluate the performance of the FDR with the CW12 GPS receiver, initial

measurement setup involved the use of an AC source for generating variable frequency

and voltage waveforms. For this test the AC source was configured to output constant

60Hz, 120VAC waveform. Two FDRs were connected to the same AC source and

connected via Ethernet to send data to a test server. The goal of this test was to see the

accuracy of the FDR with indoor GPS under static frequency input. As a comparison,

FDR unit 7 used the CW12 GPS receiver and FDR unit 24 used the M12M GPS receiver.

To examine the performance of the indoor GPS in an environment with some signal

degradation, the CW12 GPS antenna was placed next to the window initially to obtain a

position solution and then placed inside a closed office desk drawer in the FNET

laboratory. On the other hand, the M12M GPS antenna was placed next to a window in

the FNET laboratory. A diagram of the test setup is shown in Figure 4.8. Some data were

collected using the test setup, as it is shown in Figure 4.9. The frequency measurements

from the two units match each other. This initial test has confirmed the ‘indoor’

capability of the CW12 but more long term measurement data are needed to understand

its limitations in environments with significant signal degradation.

Figure 4.8 Indoor GPS test setup using the AC source

 76

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

Sample Point

A
n

g
le

 (
R

a
d
ia

n
s
)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

59.999

59.9995

60

60.0005

Sample Point

F
re

q
u
e

n
c

y
 (

H
z
)

April 6th 2008, 8pm to 9pm

FDR24

FDR7

Figure 4.9 Frequency and phasor angle measurements of the AC source signal using indoor GPS

To push the envelope further on the CW12 indoor capabilities, another measurement

trial was conducted for several days with the input signal from the wall outlet. The same

FDR7 with the CW12 used in the initial test was moved to an office with no window and

behind several walls to the nearest window. FDR24 with the M12M was used again for

comparison at the same location and setup as the initial test. An additional unit, FDR4

with the M12M was added to this test setup as a backup to FDR24 for data comparison.

Figure 4.7 shows the setup with the three FDRs. The measurement was initiated on April

29th and the CW12 did not acquire any satellites for the first few days. It wasn’t until

May 1st when FDR7 started acquiring signals from multiple satellites. Figure 4.11 to

Figure 4.17 shows plots of one hour’s worth of data (1AM to 2AM UTC time) collected

from May 1st to May 7th. For each hour of frequency and angle data plot, there is a plot of

corresponding number of acquired satellites along with a magnified plot of the first 3000

samples.

 77

Figure 4.10 Indoor GPS test setup for completely isolated environment

0.5 1 1.5 2 2.5 3 3.5

x 10
4

59.98

60

60.02

60.04

60.06
5-1-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u

e
n

c
y

 (
H

z
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

4

6

Data point number

A
n

g
le

 (
ra

d
ia

n
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

4

5

6

7

Data point number

N
u

m
b

e
r

o
f

s
a
te

ll
it

e
s

FDR4

FDR7

FDR7

FDR4

FDR7

0 500 1000 1500 2000 2500 3000
59.96

59.98

60

60.02

60.04
5-1-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u
e
n
c
y
 (

H
z
)

0 500 1000 1500 2000 2500 3000
0

2

4

6

8
5-1-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR4

FDR7

Figure 4.11 Frequency and angle measurements with the number of acquired satellites on May 1

st

from 1AM to 2AM

 78

0 500 1000 1500 2000 2500 3000
59.95

60

60.05

60.1
5-2-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u
e
n
c
y
 (

H
z
)

0 500 1000 1500 2000 2500 3000
0

2

4

6

8
5-2-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR4

FDR7

0.5 1 1.5 2 2.5 3 3.5

x 10
4

59.96

59.98

60

60.02

60.04

60.06

5-2-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u

e
n

c
y

 (
H

z
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

4

6

Data point number

A
n

g
le

 (
ra

d
ia

n
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

4

4.5

5

5.5

6

Data point number

N
u

m
b

e
r

o
f

s
a

te
ll
it

e
s

FDR4

FDR7

FDR7

FDR4

FDR7

Figure 4.12 Frequency and angle measurements with the number of acquired satellites on May 2

nd

from 1AM to 2AM

 79

0.5 1 1.5 2 2.5 3 3.5

x 10
4

59.96

59.98

60

60.02

60.04

5-3-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u

e
n

c
y

 (
H

z
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

4

6

Data point number

A
n

g
le

 (
ra

d
ia

n
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

4

4.5

5

5.5

6

Data point number

N
u

m
b

e
r

o
f

s
a

te
ll
it

e
s

FDR4

FDR7

FDR7

FDR4

FDR7

0 500 1000 1500 2000 2500 3000
59.96

59.98

60

60.02

60.04
5-3-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u
e
n
c
y
 (
H

z
)

0 500 1000 1500 2000 2500 3000
0

2

4

6

8
5-3-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR4

FDR7

Figure 4.13 Frequency and angle measurements with the number of acquired satellites on May 3

rd

from 1AM to 2AM

 80

0.5 1 1.5 2 2.5 3 3.5

x 10
4

59.94

59.96

59.98

60

60.02

5-4-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u

e
n

c
y

 (
H

z
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

4

6

Data point number

A
n

g
le

 (
ra

d
ia

n
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

4

4.5

5

5.5

6

Data point number

N
u

m
b

e
r

o
f

s
a

te
ll
it

e
s

FDR4

FDR7

FDR7

FDR4

FDR7

0 500 1000 1500 2000 2500 3000
59.9

59.95

60

60.05
5-4-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u
e
n
c
y
 (
H

z
)

0 500 1000 1500 2000 2500 3000
0

2

4

6

8
5-4-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR4

FDR7

Figure 4.14 Frequency and angle measurements with the number of acquired satellites on May 4

th

from 1AM to 2AM

 81

0.5 1 1.5 2 2.5 3 3.5

x 10
4

59.95

60

60.05

5-5-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u

e
n

c
y

 (
H

z
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

4

6

Data point number

A
n

g
le

 (
ra

d
ia

n
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

8

Data point number

N
u

m
b

e
r

o
f

s
a

te
ll
it

e
s

FDR24

FDR7

FDR7

FDR24

FDR7

0 500 1000 1500 2000 2500 3000

59.95

60

60.05

60.1
5-5-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u
e
n
c
y
 (
H

z
)

0 500 1000 1500 2000 2500 3000
0

2

4

6

8
5-5-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR24

FDR7

Figure 4.15 Frequency and angle measurements with the number of acquired satellites on May 5

th

from 1AM to 2AM

 82

0.5 1 1.5 2 2.5 3 3.5

x 10
4

59.95

60

60.05

5-6-08 1am to 2am (1hr) FDR7 in office with total enclosure

F
re

q
u

e
n

c
y

 (
H

z)

Data point number

0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

4

6

Data point number

A
n

g
le

 (
ra

d
ia

n
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

8

Data point number

N
u

m
b

e
r

o
f

s
a

te
ll
it

e
s

FDR4

FDR24

FDR7

FDR4

FDR24

FDR7

FDR7

0 500 1000 1500 2000 2500 3000

59.95

60

60.05

5-6-08 1am to 2am (1hr) FDR7 in office with total enclosure

F
re

q
u
e
n
c
y
 (

H
z
)

Data point number

0 500 1000 1500 2000 2500 3000
0

2

4

6

8
5-6-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR4

FDR24

FDR7

Figure 4.16 Frequency and angle measurements with the number of acquired satellites on May 6

st

from 1AM to 2AM

 83

0.5 1 1.5 2 2.5 3 3.5

x 10
4

59.95

60

60.05

5-7-08 1am to 2am (1hr) FDR7 in office with total enclosure

F
re

q
u

e
n

c
y

 (
H

z)

Data point number

0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

4

6

Data point number

A
n

g
le

 (
ra

d
ia

n
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

8

Data point number

N
u

m
b

e
r

o
f

s
a

te
lli

te
s

FDR24

FDR7

FDR7

FDR24

FDR7

0 500 1000 1500 2000 2500 3000

59.95

60

60.05

5-7-08 1am to 2am (1hr) FDR7 in office with total enclosure

F
re

q
u
e
n
c
y
 (

H
z
)

Data point number

0 500 1000 1500 2000 2500 3000
0

2

4

6

8
5-7-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR24

FDR7

Figure 4.17 Frequency and angle measurements with the number of acquired satellites on May 7

st

from 1AM to 2AM

Under the assumption that there is a direct relationship between the signal strength

and the quality of the position solution, it was shown in the previous section that under

significant signal degradation the indoor GPS is susceptible to high DOP figures. In this

section, the frequency and angle measurements are presented over the course of a week to

illustrate the quality of indoor GPS timing as well as its capability in acquiring satellite

signals in an indoor environment. The measurement data has shown that the CW12 is

capable of operating under stringent conditions with significant signal degradation. Not

only was the indoor GPS receiver able to acquire satellite signals without a line of sight

 84

to the satellites, the frequency and angle measurements are comparable to the FDR with

the conventional GPS receiver. Another measurement trial was conducted in an

apartment bedroom where the antenna was initially located at the window and was slowly

moved away from the window at a daily basis to observe its effect on frequency and

angle measurements. The following observations can be gathered from the measurement

results.

• The measurement data verifies that as the acquired number of satellites increases,

the frequency and angle measurements become more accurate. Starting from May

1st to May 4th, the zoomed-in angle plot for FDR7 shows some discontinuities in

comparison with FDR4. This phenomenon can be attributed to the low quality

timing solution provided by the indoor GPS receiver. Since the frequency

estimation is a direct result of angle measurements, the corresponding frequency

data from the two units does not match each other very well. Then starting from

May 5th, the sample frequency measurement data from different units matches

each other and the angle measurement data from FDR7 is relatively smooth

without the discontinuities observed before. It is also shown that after May 5th the

number of satellites increased to the range of 7 to 9. However, there are instances

where the number of acquired satellites drops to 0 for about 10 minutes and

rebound back to a large number of acquired satellites. Such phenomenon does not

seem to affect the frequency and angle measurement accuracy. It is most likely

that the CW12 was steering the 1PPS with its local oscillator without corrections

from the satellite signals during the 10 minutes of outage.

• The test was initiated on April 29th but the FDR with indoor GPS was not able to

perform accurate frequency and angle measurements until May 5th. So it took

about 7 days for the FDR with indoor GPS to acquire a large number of satellite

signals and also provide acceptable frequency and angle measurements.

• During the course of the measurements, the indoor GPS acquired up to 9 satellites

whereas the conventional GPS only acquired up to 5 satellites at any instance in

time. Furthermore, as the number of acquired satellites increases, the indoor GPS

is shown to provide similar levels of accuracy in timing as that of the

conventional GPS operating under nominal conditions. This improvement in

 85

accuracy is a direct consequence of the indoor GPS obtaining more accurate

position fix over time as the number of acquired satellites increases.

• The plots show that after May 5th, FDR7 (with indoor GPS) has less noise in its

measurements comparing with that of FDR4 and FDR24 (with conventional

GPS). It is most likely that the extra measurement noise is a direct consequence of

the laboratory environment.

4.7 Recommendations

Based on these observations, in an extremely high signal degradation environment

such as an internal office room without any window, the CW12 indoor GPS behaves

differently from that of the conventional GPS operating under nominal conditions. It can

be observed that even with 4 to 6 satellites acquired, the quality of the timing solution

was poor and not acceptable for accurate phasor angle measurements. This may be

attributed to the lowered signal strength and poor geometry of the acquired satellite

signals. However, when the number of satellites has reached the range of 7 to 9, the

frequency and angle measurements are comparable to that of the FDR using conventional

GPS. The accuracy improvement can be attributed to the redundant measurements as

they are averaged to the overall position solution. Furthermore, with the aid of the

assistance data including time, approximate position and satellite ephemerides, the indoor

GPS should reveal better performances. In the case of FDR, approximate location data is

often given before deployment, hence providing the possibility of incorporating the

position information into the FDR firmware. With the position information given, the

indoor GPS should have a shorter time to first fix. To improve the accuracy of the GPS

solution, the satellite mask angle can be increased to 5° so that the receiver only tracks

satellites for which the elevation angle is greater than 5°. Ultimately, the measurement

solution becomes more accurate as the satellites near the horizon are removed from the

solution. Given that the CW12 is able to provide accurate timing under significant signal

degradation, new possibilities in FDR installation location can be proposed. Furthermore,

given the verification that the CW12 is capable of providing accurate timing in an indoor

 86

environment, it can be inferred that the CW12 will also be able to operate with the similar

performances when it is located in office building with metallic coated window.

Since the measurement data suggest that the CW12 behaves differently from the

M12+ and M12M, a new control strategy needs to be developed to maintain the

credibility of the timing solution provided by the CW12. For the existing control strategy

in support of the M12+ and the M12M is mostly based on the number of acquired

satellites and the 1PPS output is enabled when the receiver is tracking at least one

satellite. Clearly this control method is ineffective for the CW12 as it was shown in an

indoor environment, the frequency and angle measurements were inaccurate even when

the CW12 was tracking 4 to 6 satellites. It is important to note that the fundamental

difference between the indoor GPS and the conventional GPS is the enhanced capabilities

to acquire and track weak GPS satellite signals to provide high availability, at the

expense of incorporating erroneous measurements into the computation of position and

timing solution. In the case of the indoor GPS, the accuracy varies as a function of the

environment and the receiver provides measurements almost regardless of the

environment. The fact that the indoor GPS accuracy varies makes the validation of the

GPS solution difficult. The trivial method is to incorporate the use of the TRAIM feature

into the verification of GPS timing solution. As an example, an alarm limit of 1

microsecond can be set so that redundant measurements can detect timing errors greater

than 1 microsecond. The drawback to this method is that a large number of acquired

satellites with high-quality geometry are needed to provide for the redundant

measurements. Hence the TRAIM feature will not always be available and is subject to

outage when the number of acquired satellites is low. Another possibility for estimating

the accuracy of the indoor GPS solution is by interpreting the transmitted GPS messages.

Like most of the commercial GPS receiver, the raw GPS measurements are not readily

available in the message stream provided by the CW12. Although multiple studies have

suggested the estimation of the pseudorange errors using least squares and Kalman

filtering method to quantify indoor GPS accuracy [40].

 87

To estimate the accuracy of the indoor GPS when it is operating in an indoor

environment, it is possible to monitor the signal strength, DOP and the acquired number

of satellites. To this end validations can be performed for each receiver channel with

respect to carrier to noise ratio. Specifically a C/No threshold can be set for 35 dBHz and

when all of the acquired satellite signals reach below 35 dBHz and the number of

acquired satellites is low the FDR should stop making measurements. However, in the

case when the acquired number of satellites reaches above 7 it would no longer be

necessary to validate the signal strength. Furthermore, to handle the occasional short term

lose of all satellite signals, the FDR should continue to perform measurement for 10

minutes without interruption. When the 10 minutes has elapsed and the acquired number

of satellites does not rebound, the FDR should stop making measurements and switch

from collection state to acquisition state. Nevertheless, one single method cannot perform

the challenging task of showing accuracy estimates reliably. Thus, choosing the right

combination of fault detection methods for indoor GPS timing as it is applied in accurate

frequency and phasor angle measurements will be a subject of future research.

 88

Chapter 5 Timing Measurement Based on a High
Stability and High Resolution PC Counter

5.1 Background

As it was described in Chapters 1 and 2, the phase voltage angle calculated by the

phasor algorithm is highly dependent on the timing accuracy of the FDR timing

subsystem. The different aspects of timing, such as keeping accurate time, frequency, and

the ability to time stamp events when they occur are all crucial aspects of a phasor

measurement device. The focus of this chapter is on the development of a high resolution

yet inexpensive timing measurement infrastructure and an analysis of inherent timing and

frequency stability of PC oscillator.

The motivation for a PC based timing subsystem was initiated by the concept of the

PC based FDR design. Similar to the embedded systems solution, a PC based FDR will

also need an accurate timing subsystem to synchronize the sampling voltage as well as

providing accurate timestamps. However, what is different about a PC based

implementation is that there are many readily available accurate timekeeping and

synchronization techniques for PC’s. To this end it is necessary to explore how

timekeeping is conducted on a PC as well as exposing any limitations that it may have

and more importantly, how to go about improving the accuracy of the PC timekeeping. In

fact, most of the precise timekeeping on the PC is regulated by an external GPS or some

other forms of higher accuracy timing source, based on the assumption or general

acceptance that the PC clock is not a precise timing source.

It is fair to say at this day and age that almost all of the clocks are made of two

essential components, an oscillator and a counting mechanism with the oscillator

operating as the main driving force behind the timekeeping. As it will be shown, there are

many factors that influences the accuracy of oscillator timekeeping and a variety of

compensation methods have been developed to further enhance the capabilities of crystal

oscillators. However, it is just as important to gain some insights into why the standalone

PC clock cannot be a precise timing source and quantify its accuracy and stability.

 89

Consequently, an in-depth analysis is conducted on the inherent accuracy and stability of

the PC clock and how it can be applied in the implementation of a high resolution and

high stability timing measurement system, which can ultimately be used to evaluate the

accuracy of different precision timing sources and possibly the FDR sampling time.

5.1.1 Oscillator Characteristics and its Accuracy

Timekeeping accuracy has improved about 106 fold in the first sixty years after the

introduction of quartz crystal oscillators (about 1920) [59]. However, in the last two

decades the progress in certain areas such as long term aging has not shown as significant

progress.

Two of the most fundamental characteristics of any clock are its rate and offset. Both

rate and offset can be measured. To measure the rate of the clock, a time interval

measurement method can be implemented, which determine the elapsed time between

two events. Similarly, the offset of a clock can be measured using time synchronization

measurements, which determine the time offset between the test signal and the UTC

second [58]. As a result, with a high accuracy 1 pulse per second signal synchronized

with UTC, one can easily obtain a very accurate time of day clock. Nevertheless, almost

all of the oscillators today are in the Megahertz if not Gigahertz range, thereby providing

resolutions measured in microseconds or nanoseconds.

In the modern world, a quartz crystal oscillator is in the heart of nearly all frequency

control devices. Furthermore, the quartz crystal oscillator is low cost and provides a

reasonably precise and stable frequency source. Although some other materials such as

ceramic resonators have been developed but their accuracy cannot surpass that of quartz

crystals [60]. In addition, there is a wide variety of quartz oscillators that can be made in

accordance to the requirements in cost, accuracy and stability. While the design of quartz

crystal oscillator is outside of the scope of this research, it is important to get a basic

understanding of how quartz oscillates in order to learn its associated uncertainties. As

shown in Figure 5.1, quartz crystal is a piezo-electric substance and it can generate

voltage when mechanical stress is applied. Conversely, when a voltage is applied across

 90

the crystal will generate mechanical movement within the crystal. In the event that an AC

voltage is applied, the crystal will begin vibrating. The rate that the crystal will vibrate

with the most accuracy is its resonant frequency, which is determined by the cut, size,

and shape of the crystal, as well as any fixed mechanical stress applied to the crystal [60].

Figure 5.1 Crystal Oscillator Block Diagram

Before delving into the details of crystal oscillator performance, it is necessary to take

note of the difference between accuracy and stability. Generally, the accuracy can be

characterized by the capability of a crystal oscillator to generate a frequency where the

systematic uncertainties such as frequency offset relative to the ideal are known. An

accuracy statement usually involves the upper and lower limit for deviations from that of

the ideal. On the other hand, the frequency stability can be characterized by the

oscillator’s ability to stay within specific frequency limits for some sampling time, τ.

Nevertheless, in the standards laboratory setting, it is intuitive to argue that the best

approach to long term stability is to improve accuracy. The basis for this claim is based

on the idea that long term variations in output are caused by variations in the systematic

offsets. By reducing and controlling offsets, both accuracy and long-term stability should

improve [59]. On the other hand, in practical situations stability is often the key

consideration. Consider the example of synchronized phasor measurement, more

emphasis are placed on the stability of the frequency reference to allow for accurate

synchronized sampling. To this end, it is important to recognize the importance of both

accuracy and stability but the requirement for stability is far stricter.

With any quartz crystal oscillators, there are some innate fall backs that can usually

be compensated in some way. Factors such as temperature, crystal aging and retrace

 91

establish the frequency accuracy of the oscillator whereas the tuning port noise, power

supply noise, and vibration establish the stability of the oscillator [59]. In order to

compensate for some of these anomalies that would otherwise affect the oscillator

frequency, the quartz crystal oscillator designers came up with different ways of

minimizing their influences. Since temperature is a main contributor to frequency

inaccuracies, most of the sophisticated quartz crystal oscillators are temperature

compensated. These include the temperature controlled crystal oscillator (TCXO),

microprocessor compensation crystal oscillator (MCXO) and oven controlled crystal

oscillator (OCXO) with the OCXO being the most accurate [58]. The TCXO measures

the ambient temperature and adjust the oscillator to a calibrated compensation curve. This

compensation makes TCXO’s more stable with temperature variations in comparison

with crystal oscillators without temperature control, but it does not make them immune.

TCXO temperature stability is typically +/-5x10-7 over the range of 0 to 70°C [58]. The

MCXO is very similar to TCXO except that it uses microprocessor to store the frequency

versus temperature characteristics of the crystal thereby making more accurate

compensation. As a result the frequency stability of MCXO increases by a factor of about

10 to 100 times that of TCXO. In the case of OCXO, the crystal resides in an oven that

holds the temperature constant, independent of the ambient temperature. OCXO typically

exhibit stability of +/-5x10-10 over 0 to 70°C [58].

For applications that may require more stringent timing accuracy, there are the atomic

clocks such as the Cesium atomic clocks, Rubidium gas cell atomic clocks and the

Hydrogen maser frequency standard. These are more precise and more stable than the

crystal oscillators but they come with a higher price, larger size and more power

consumption, which makes them unattractive for many common applications requiring a

frequency source. Table 5-1 [61] tabulates the characteristics of different crystal

oscillators with compensation as well as the atomic clocks.

 92

Table 5-1 Oscillator characteristics

 TCXO MCXO OCXO Rubidium Cesium Hydrogen

maser
Accuracy
per year

2x10-6 5x10-8 1x10-8 5x10-10 7x10-10 2x10-11

Aging per
year

5x10-7 2x10-8 5x10-9 2x10-10 2x10-10 0

Temperature
stability
(range °C)

5x10-7
(-55 to
+85)

3x10-8
(-55 to
+85)

1x10-9
(-55 to
+85)

3x10-10
(-55 to
+68)

5x10-10
(-55 to
+85)

2x10-11
(-28 to
+65)

Size
(cm3)

10 30 20-200 200-800 1,000 6,000

Price (~$) 10-100 <1,000 200-
2,000

2,000-
8,000

<10,000 50,000

The simplest of all quartz crystal oscillators is the simple packaged crystal oscillator

(SPXO) which is often used in electrical devices such as computers using it as a clock

signal source. Although SPXO is more susceptible to temperature variations than the

TCXO and OCXO but it is in high availability and low cost, which makes it an attractive

solution for most of the laboratory measurement applications where the temperature is

usually well regulated. Nevertheless there are many factors other than temperature that

may influence the frequency of a crystal oscillator.

5.1.2 Factors Affecting Crystal Oscillator Frequency Accuracy

Since PC timekeeping is the focus of this research work, more emphasis will be

placed on the factors that may affect the PC oscillators. Listed below are some of the

factors that make some contribution to the frequency instabilities in the PC oscillators. It

will be clear that out of all the factors that affect crystal oscillator frequency, temperature

and aging are the biggest violators of frequency stability.

Temperature

As mentioned in the previous section, temperature is a significant factor which affects

the frequency of resonators. Different crystal cuts have a different frequency and

 93

temperature characteristics. The temperature and frequency relationship is somewhat

complicated. First, the change of frequency with temperature may not be a linear

function. In addition, even with the same kind of crystal, each crystal has a very different

frequency-temperature curve. With some intentional temperature adjustments such as

those described in [86], it is possible to have a general estimate on the temperature effects

on PC oscillator clock. An Intel Pentium II 350MHz processor temperature was adjusted

from room temperature to the maximum rated temperature and clock frequency readings

were taken every second. The results indicate that the CPU frequency decreases at a rate

of about 150Hz (4.29x10-7) per degree Celsius of increase [86]. Nevertheless, the effects

of temperature change can be reduced by providing a more constant ambient (room

temperature control). To this end, most of the laboratory environments are temperature

controlled rooms with good ventilation.

Aging (long term)

A gradual change in frequency over days or months is known as aging. The main

causes of aging are mass transfer due to contamination and stress relief in the crystal’s

mounting and sustaining circuitry aging [58]. Aging usually occurs at a relatively

constant rate per decade for each crystal. However, there are instances where the aging

rate can reverse sign over time. Computer simulated aging from [60] shows a positive

aging and a negative aging characteristic governed by the equations:

 Equation 5-1

 Equation 5-2

Simply combine the two characteristics to obtain the behavior when both aging

mechanism are occurring simultaneously, which in effect reverses the aging direction.

Some important concepts to be pointed out here are the fact that the aging rate of an

oscillator is highest when it is first turned on and decreases as time goes on. The higher

aging rate can reach any where from 1x10-7 per month to 1x10-8 per month [59]. For the

later period, when the crystal has been operational for more than 2 months, the aging rate

can reduce to anywhere from (1~2)x10-9 per month to (1~2)x10-10 per month [59]. To

 94

compensate for the aging behavior, it is possible to periodically adjust the frequency of

the oscillator. This change is usually done by an adjustable capacitor. However, in the

case of the PC oscillator, it may not be practical to periodically adjust the frequency of

oscillator to compensate for aging. Due to this the PC oscillator will always be

susceptible to long term aging and such parameter can not be determined independent of

time.

Retrace

As explained earlier, the frequency output of the crystal oscillator changes over time

due to aging. When an oscillator is turned off and then back on, it will not necessarily

start at the same frequency as it has been operating. Eventually the oscillator will begin to

age according to its previous rate but will most likely be offset slightly from its original

frequency. This effect is known as retrace and typically exhibits an offset in the order of

1x10-8 [58]. The causes of retrace are believed to be the same as those responsible for

aging and temperature excursion.

Noise (short term stability)

Short term stability of the crystal oscillator is often portrayed as small variations in

frequency for a specific averaging time. Specifications for short term stability have been

often defined as the root mean square (RMS) uncertainty in the time base, averaged over

one second. The reason that this value is a result of averaging is due to the fact that the

short term stability is not known at any instant in time. It is primarily caused by noise in

the active circuitry in the oscillator. Short terms stability can be eliminated by averaging

over time. It should only be taken into consideration when measurements are

significantly less than a second. In today’s newer oscillator circuitry, the short term

stability uncertainty has been reduced to 1x10-10 RMS over one second [58].

Others

 95

Some other factors that affect the oscillator frequency instabilities include

electromagnetic, power supply noise, gravity, shock, vibration, acceleration sensitivity

and ionizing radiation [59]. Although in the case of the PC clock oscillator these are not

as significant of a threat to the frequency stability as temperature and aging effects. For

example, mechanical shock and vibration affects the physical stress on the quartz crystal

but it can usually be treated as transient effects and be ignored. Typical sensitivity for

quartz crystal time base is 1x10-9/g, where g is a force equal to one times the force of

gravity [59]. Quartz crystal’s inherent magnetic field sensitivity is smaller than 10-11/T

for fields smaller than 10-4T [59]. Some instability in the oscillator can be traced to

instabilities in the power supply. The frequency changes occur because changes in

various voltages change the capacitance of active and passive components. The end result

is a slight phase shift which directly influences the frequency. Crystal oscillator

variations will typically be less than 1x10-7 for a 10% line voltage change [59]. However,

most of the COTS PC has decent voltage regulator design and there isn’t any known limit

to oscillator frequency stability due to this effect. At last, the back ground radiation due

to radioactive trace elements in the soil and building materials, cosmic rays and such will

produce drift that is difficult to distinguish from aging. Nevertheless, this drift is not

considered aging but a radiation effect. The radiation effect is at the minimum in the case

of PC clock oscillator. Cosmic ray effects does not become a factor unless it’s located in

a significantly higher altitude and background radiation (on the surface of earth)

contributes to aging rates of approximately 10-13 per day [59].

5.2 Timekeeping for COTS PC

In the old days of timekeeping almost all of the clocks are driven by the 110 or 220

volt power line and cause interrupt on every voltage cycle at 50-60Hz. Such clocks are

outdated and are replaced with more modern clocks such as those used on the PC

platform, where a 1.19318 MHz clock provides the base frequency to the PC timer [72].

1.19318 MHz is one third of the National Television System Committee (NTSC) color

subcarrier frequency to allow for TV output in the legacy systems. All i386 family boards

have 14.318 MHz quartz crystal oscillator from which both the main clock frequency

 96

(1.19318 MHz) and the CPU clock are derived [72]. The PC clock hardware is served by

the clock driver software to maintain the time of the day.

5.2.1 Hardware Clock

In the earlier PC architectures starting with the introduction of the IBM-AT PC in

1984, there were two hardware devices that were used to update the operating system

internal time, namely the battery-backed real time clock (RTC) and the programmable

interrupt timer (PIT). The RTC is used to maintain the time even when the computer is

off and in the IBM PC compatible computers, the RTC circuit is the Motorola 146818

with a resolution of approximately one second and significant drift. The PIT is used to

measure elapsed time and trigger operations in a PC. In the Intel x86 architecture, either

the Intel 8253 or the 8254 PIT is used to provide the base frequency for timer operation.

Both the 8253 and the 8254 are capable of generating interrupts at specified timing

intervals as designate by the programmer.

The majority of the new microprocessors today, starting with the Pentium in the i386

architecture, have a built-in CPU clock cycle counter. This cycle counter is used

differently based on the operating system but it has a much higher resolution timing

compared with the PIT and the RTC. In Intel Pentium processors, this register is named

Time Stamp Counter (TSC) and is 64 bits long. In addition the new x86 PIT include a

counter through the Advanced Configuration and Power Interface (ACPI), named the

Local Advanced Programmable Interrupt Controller (APIC), which is mostly found on

Symmetric Multi-Processor (SMP) computer systems. The APIC timer was designed to

allow for per-processor timing in a multi-processor architecture.

5.2.2 Software Clock

The PC software clock (also known as the system clock) is generated by the Intel

8254 timer or a functionally equivalent device. Most of the operating systems have relied

on the interrupts generated from the timer to keep track of time where the length in

between interrupts is known as a tick. Upon every timer interrupt, there is a software

 97

clock variable that is being updated by the fixed number of microseconds or nanoseconds

in the tick interval. The timer generates an interrupt either every 10 or 15 milliseconds in

the Windows operating system to maintain the absolute time. On the newer distributions

of the Linux based operating systems, the division of the 8254 timer can be adjusted but

it is often set at a default value of an interrupt being generated every 4 milliseconds,

which enhances the timekeeping capabilities of Linux to surpass that of Windows

operating system. Furthermore, the PC Basic Input Output System (BIOS) contains a

software routine that counts the interrupt requests and generates a time of day clock that

can be read or set by other software programs. As an example, the operating system may

get the time of day information from the software clock to timestamp files.

The software clock by itself is not a good timekeeper. Among several things, its

timing accuracy is limited by the performance of interrupt requests. Any changes in the

interrupt request timing will be reflected in the software clock inaccuracies. Standalone

software clock can be off up to a minute or more in a day. In addition, the software clock

also has a limited resolution in the order of milliseconds. In other words, the software

clock can only represent time of day in even multiples of the time interval between

interrupts. Nevertheless, software clock accuracy is reduced even further by the nature of

cycling the PC power. When the PC is first powered on, the software clock sets itself to

within one second of RTC, which is susceptible to significant drift. After this initial

synchronization, the RTC and the software clock will be running at different rates while

the PC is running. To compensate for these inaccuracies, there are many networks based

timing synchronization techniques being implemented. The topic of timing

synchronization will be revisited in more details in Chapter 7.

A common enhancement to the Unix based software clock is to make use of the time

stamp counter (TSC) register to interpolate time between PIT interrupts, thus increasing

the resolution from milliseconds to microseconds. The resulting higher resolution is

maximized at 1 microsecond, the smallest time unit available on the standard data

structure for Unix. The updating of this register is done by hardware and reading it and

storing its value takes only a few instructions. [93] indicate a median access latency of

 98

420 clock cycles for the TSC counter. However, a conservative estimate would put the

figure to be around 500 clock cycles. With today’s gigahertz range PCs, the latency

involved in retrieving the TSC counts is well below 1 microsecond. In the Pentium-class

processors, the TSC counter is 64 bits long and can be accessed directly. Furthermore the

TSC counter has a resolution that’s directly related to the CPU core frequency. For

example, a 1 GHz processor would have 1 nanosecond resolution in TSC counts.

Provided that the duration of a clock cycle is accurately estimated, the TSC counts can be

converted to an accurate relative time. At the same time it is important to note that there

are a few underlying assumptions regarding the hardware architecture. Features such as

power management, frequency stepping, and unsynchronized multi-processors affect the

stability and consistency of the TSC. In order to avoid these pitfalls it is necessary to

disable these features while when using the TSC as a timekeeping and timestamping

source.

Recent literature has shown that the TSC counter exhibit high frequency stability and

can be used in high precision measurement applications [82][83][84]. Results are

presented by Veitch and his students, showing the implementation of an accurate clock

based on TSC counter and its applications in Internet probing and measurements. The

TSCclock is one instance of the implementation of Robust Absolute and Difference clock

(RADclock) algorithm. With today’s processor frequency, a rollover on the 64 bit TSC

counter would take almost 200 years. Taking this into consideration, the stable long term

clock rate estimates can be obtained using a feedforward approach. Results in [82]

indicate such algorithm can achieve 10 microseconds accuracy in a LAN network. At the

same time [93] shows that the hardware counters in the PC exhibit stability below 0.1

PPM in a temperature controlled room. Ultimately, TSCclock exploits the high stability

of the TSC counter over relatively large averaging intervals to estimate the period of one

clock cycle in the processor. With an accurate estimate of the period and constant

calibration over time using network time synchronization, it is possible to use the TSC

counter for accurate timekeeping.

 99

In another recent study, [86] has also mentioned the use of TSC counter to measure

the internal clock drift of computer clusters. Several Intel and AMD processor frequency

was measured in variable temperature and variable load adjustments. Results indicate that

PC processor frequency diminishes at the rate of approximately 150Hz per degree Celsius

with a linear relationship between frequency and temperature. In addition, load variation

has little effect on either the frequency or the temperature of the processor. Finally the

frequencies of several processors were monitored from several hours to several days and

the results shows stability of less than 1PPM.

To this end, the TSC counter has the potential to be used in many applications that

requires high resolution and high stability timing. What’s more important is the fact that

the TSC is easily accessible in almost all of today’s COTS PCs, thus eliminating the need

to purchase a rather expensive oscilloscope data logger.

5.3 The Measurement Infrastructure

The measurement system based on the TSC counter was developed for several

purposes. For one, it is important to examine the inherent stability of the TSC counter

which directly reflects the internal PC clock oscillator stability. Such study will be useful

in determining whether the inherent PC processor clock can be used in FDR timing and

investigate its limitations. Another reason for building such a measurement system is to

exploit its high resolution timing to measure the accuracy of different timing mechanisms

and the possibility of measuring the FDR trigger for conversion signal in the ADC.

Finally, the implementation of a measurement system with COTS PC and readily

available open source software is attractive in comparison with some of the high cost

measurement equipments.

Some of the basic requirements for the measurement system are fairly obvious. A PC

with the TSC counter is needed along with a general purpose operating system for ease of

user interaction. In the earlier stages of developing the timing measurement system, it

was decided that the Linux based operating system Ubuntu to be used. A Unix based

operating system offers flexibility, stability, open source software, and most of all

 100

improved timekeeping in comparison with its counterpart Microsoft Windows platform.

The main reason Ubuntu was chosen instead of another Unix based operating system is

that it offers ease of installation, usability and it is part of open source Linux distribution.

In fact Ubuntu installation makes up for a large percentage of all the Linux distribution

for the desktop.

In addition to the Linux based platform, the integration of real-time operating system

is crucial in a precision timing measurement system. In comparison with a general-

purpose operating system, a real-time operating system will always be able to meet the

timing requirements of the processes under its control. In the case of high resolution

timing measurement with strict timing requirements, it is important to have a

deterministic environment with low response time. Clearly, in order to achieve hard real-

time, guaranties must be made that no deadline is missed. However Linux alone is not

preemptible, which is another characteristic of the real-time operating system.

Preemptibility allows for a higher priority process to run over an already running lower

priority process in the kernel. As a matter of fact, this measurement system differs from

that of [86] largely due to the introduction of a real-time operating system, which

minimizes operating system latency and interrupts latency variability.

There are many real-time operating systems available but only few are open source.

Open source software allows for flexibility in the modification of the source code as well

as zero cost. With such criteria in mind, Linux provides some readily available open

source code that modifies the Linux environment to be real-time. There are two different

approaches in providing real-time in Linux. In the first one the standard Linux kernel is

improved either by making the kernel preemptible or by adding preemption points to the

code [77]. However, in order to make Linux kernel fully preemptible, a more drastic

approach is needed. There are two on-going projects that enable full preemptibility in the

kernel by adding a hardware abstraction layer (HAL) in ‘between’ the system hardware

and Linux. In addition, a new separate real-time scheduler is used which runs Linux as its

lowest priority thread. The hardware abstraction layer is only allowed to take over the

control of system interrupts when no real-time task is running. When Linux tries to

 101

disable interrupts it only sets a flag in the abstraction layer and cannot really turn off the

interrupts. As a result the real-time scheduler has full control of the system and Linux

runs without any significant modifications. Only a small real-time kernel is added to the

system.

The real-time tasks are written as kernel modules and executed in the kernel space.

With the aid of a special real-time Application Programming Interface (API) the user is

able to fully control the real-time tasks. The two on-going projects are real-time Linux

(RTLinux) and real-time application interface (RTAI). RTLinux is the oldest project of

the two and RTAI is based on the ideas behind RTLinux. Since the implementation of

RTLinux and RTAI is similar, not much performance gain is obtained in using one over

another. However, RTAI has always been an open source initiative and is being actively

developed. On the other hand, RTLinux started as open source but was later

commercialized and all of the developments are applied to the commercial version only.

Therefore RTAI was chosen as the platform to enable real-time in the measurement

system. Finally the characteristics of the measurement system are shown in Table 5-2.

Table 5-2 Measurement PC specifications

PC specification
Model Dell Optiplex GX240

CPU frequency (nominal) ~ 1595291000

TSC resolution (based on nominal frequency) ~ 0.6268 ns
Operating System Ubuntu

Linux distribution Version 2.6.28.7
RTAI distribution Version 3.7

5.3.1 RTAI (Real Time Application Interface) for Linux and Timers

RTAI was developed by Paolo Mantegazza and the team at Dipartimento di

Ingegneria Aerospaziale - Politecnico di Milano (DIAPM). The development started right

after the release of RTLinux. The people at DIAPM were not satisfied with the

performance offered by the first version of RTLinux and added some new features.

DIAPM modified all of the real-time timing, such as introducing periodic timing and

greatly improved the one-shot timing by using the CPU TSC instead of the timer circuit.

 102

RTAI originally supported only the x86 architecture in the first release but now supports

a wide variety of architectures including PowerPC, ARM and MIPS. A description of the

RTAI features and capabilities are presented in Appendix C.

RTAI real-time processes can either run in the kernel space or user space. Real-time

applications running in kernel space are implemented as normal Linux kernel modules.

As the very first action it is necessary to setup timers. Based on the application RTAI is

capable of supporting both periodic and oneshot timers for scheduling. If the periodic

mode is selected, the 8254 PIT will be in mode 2 and it is used to generate interrupts

periodically. In this mode all periodic tasks must have a common time base for its period.

On the other hand, in the oneshot mode, the timer will be programmed in mode 0 and is

re-programmed on each timer interrupt. This leads to more overhead but allows tasks to

be scheduled with any period time without regard to a common time base. More

significantly, in the oneshot mode the time is measured using the TSC counter. The 8254

is only used to generate interrupts.

5.3.2 Measurement Software and RTAI Latency Mitigation

To measure the PC clock accuracy and stability, it is necessary to provide a frequency

reference. Given a higher accuracy reference clock, it is possible to evaluate the accuracy

of the PC clock with respect to the reference clock. Since the i-Lotus M12M GPS

receiver is currently being used in the FDR units and it is known to provide high stability

1PPS over long intervals, the receiver will be used as a frequency reference in the

measurement system.

In order to interface with the 1PPS signal from the M12M receiver, there are two

options. The receiver offers a 1PPS output on its RCA connector and on the DCD (Data

Carrier Detect) pin of the serial port for GPS message transmission. Both signals can be

connected to the PC via either the serial port or the parallel port. However, since the

signal is readily available on the DCD pin of the serial port and no additional wiring is

needed to make the connection, the serial port was chosen as the 1PPS interface.

 103

Since the use of interrupts is the most effective way to deal with external events, the

serial port interrupt system is used to capture the 1PPS with minimized latency. For PC

hardware, interrupt signals are received by the programmable interrupt controller (PIC)

and forwarded to call the routine which is responsible for handling the interrupting

device. For the processor to know which device or devices need to be serviced, the

interrupt controller maps each of its interrupt input lines to an interrupt request number.

The processor gathers this number or also known as the vector from the controller and

executes the particular handler. [76] Depending on the PIC that is being implemented in

the PC, there are a total of either 16 or 24 interrupt requests (IRQ) connected to the input

of the PIC. In the x86 systems, the first serial port is being assigned to IRQ 4 with an IO

address of 0x3F8. With all of this information in mind, the C code was developed to read

the TSC counter or the system clock upon every interrupt generated on the DCD pin of

the serial port. Furthermore, the TSC counts are being recorded into the kernel log by

using the RTAI instruction for writing to kernel log in real-time. Appendix C shows the C

code listing. Basically there are three modules in the code, the interrupt handler,

initialization of the real-time module and resource clean up upon termination of the

program.

The most vital characteristic of a real-time operating system is how responsive the

operating system is in servicing internal and external events. These events include

external hardware interrupts, internal software signals, and internal timer interrupts. The

measure of the responsiveness can be attributed to latency and jitter noise. Literature

often defines latency as the time between the occurrence of an event and the execution of

the first instruction in the interrupt code whereas the jitter is the variations in the period

of the events. Although RTAI is known to provide hard real-time capabilities, there are

some factors that affect the performance of the system.

As today’s PC technology improves, more advanced hardware is integrated into the

system introducing latencies in real-time environment. Some common suspects that

results in system latency are SMI (system maintenance interrupts), power management

systems such as APM (advanced power management) and ACPI (advanced configuration

 104

and power interface), X Window system and video mode emulation, CPU frequency

scaling and USB interface. The latency sources cause unpredictable timing results and

they are incompatible with the concept of real-time. In general, most of the new

motherboards with Intel chipset are likely to have SMI. SMI introduces anywhere of

about 100 microseconds to up to a few milliseconds of latency in a real-time

environment. RTAI provides a kernel module that disables most of the SMI as a

workaround to minimize latency that results from SMI. Other latency sources including

APM, ACPI, and CPU frequency scaling can be disabled when configuring the Linux

kernel. The X Window system in Ubuntu is GNOME (GNU Network Object Model

Environment) based and can be disabled so that the system would boot into terminal

mode upon default. However, out of all of the latency sources, the USB controller is

known to contribute the most latency, ranging greater than 100 milliseconds.

Initial measurements of the PC TSC counter were not successful due to latency. As it

was mentioned earlier, the performance of RTAI can be significantly degraded with some

PC peripheral hardware. Experience has shown that the biggest latency contributor for

RTAI is the legacy USB controller. The TSC counter readings were acquired from using

the code in Appendix C for reading the TSC counter upon every 1PPS and store to kernel

log. Since there is no possibility of the TSC counter ever rolling over in the lifetime of

the experimentation, a post-processing program was developed in C# to find the

difference between each TSC counter reading. This can be illustrated in Equations 5-3

shown below:

 Equation 5-3

Where fCPU represent the frequency of the PC clock oscillator as measured with reference

to 1PPS.

Figure 5.2 shows fCPU as measured with the legacy USB controller on the default

setting. It is easy to see that the supposed deterministic behavior of RTAI is being

disrupted. When magnified, Figure 5.2 shows there is an approximately 1 millisecond

latency that occurs periodically at about every 16 seconds. In comparison, Figure 5.3

shows that when the legacy USB controller is disabled the periodic latency is eliminated.

 105

Since the USB controller is disabled, USB devices such as keyboard and mouse can not

be used. Nevertheless, the motherboard offers two PS/2 interfaces for PS/2 compatible

keyboard and mouse so that user interface is still possible during runtime. Once the

measurements are taken and stored into the kernel log, the USB controller can be enabled

to allow for transfer of the files via USB storage for post-processing on a separate

machine.

Figure 5.2 Measured TSC frequency with USB controller enabled

 106

Figure 5.3 Measured TSC frequency with USB controller disabled

5.4 Measurement Results and Time Domain Analysis

With the measurement system described previously, it is possible to measure the

accuracy and stability of different timing sources. However, before the analysis is

conducted it is important to review some definitions and terminologies for quantifying

the accuracy and stability of clocks.

The basis for time domain stability analysis starts with an array of equally spaced

phase (time error), or fractional frequency deviation data arrays, xi and yi, respectively,

where the index i refers to data points in time. These data are equivalent and conversions

between the two are possible. The x values have units of time in seconds and the y values

are dimensionless fractional frequency. The x(t) time variations are related to phase

variations by:

 Equation 5-4

Where vo is the carrier frequency of the frequency source. However, since infinite

bandwidth measurement equipment is not available in this context, the instantaneous

phase Φ(t) is not measurable. Since the primary concern here is frequency stability, the

 107

amplitude fluctuations of the frequency source can be neglected. As a result, the sine

wave output voltage of a frequency source can be approximated by the equation:

 Equation 5-5

Where Vo is the nominal peak output voltage, vo being the nominal frequency and Φ(t)

represents the phase deviation. For the analysis of frequency stability, the Φ(t) term is the

primary subject of interest. The instantaneous frequency is the derivative of the total

phase:

 Equation 5-6

For precision frequency sources such as the crystal oscillator, the second term on the

right hand is quite small so it is useful to define the fractional frequency y(t) in terms of

the instantaneous frequency:

 Equation 5-7

y(t) is dimensionless and it is the fractional or normalized frequency deviation of v(t)

from its nominal value. In relationship to phase and time, y(t) can also be defined as:

 Equation 5-8

Where:

 Equation 5-9

The data sampling or measurement interval is often being represented by the symbol τo,

which has units of seconds. The averaging time used in the analysis, τ can be a multiple

of τo to increase the averaging time.

The classical method of characterizing oscillator stability is a plot of Allan variance,

which is defined using a series of time differences measured between a computer clock

and some external standard. The fractional frequency in this case can be defined as:

 Equation 5-10

Where xk is the kth measurement and τ is the interval between measurements. The Allan

variance, σy
2, is based on a “two-sample” variance measurement of the data. Instead of

measuring the difference between each data point and the mean, it measures the

difference between each data point, yn and the next one yn+1:

 108

 Equation 5-11

Where m is the number of y data points in the calculation and the quantity τ being the

sample time of the frequency measurement. The Allan variance is better than the classical

variance in characterizing oscillator stability due to the fact that each frequency

measurement is strongly correlated with the points near it in the sequence. As a result,

when more data points are added to the set, the classical standard deviation value of the

data set varies and is unbounded. On the other hand, the Allan variance has the

advantage of being convergent for most types of clock noise. The Allan variance is the

fundamental quantity, but Allan deviation, σy, is more frequently used and can be

obtained by taking the square root of the Allan variance. Finally, Allan deviation results

are presented as a plot of deviation versus sample time, or given as a value at a certain τ

(Allan deviation of 1Hz at 100 seconds). Essentially, longer sample times are calculated

by grouping the data into bins of length τ. The average value of the data points in each

bin is used for the Allan deviation calculation.

To address the treatment of outliers in the measurement data, the median absolute

deviation (MAD) is recommended in [103] for outlier recognition. In this context, the

outliers will most likely be a result of the GPS losing acquisition of satellites at times and

stops outputting the 1PPS. The MAD is a robust statistic based on the median of the data.

It is the median of the deviations of the data points from their median value. Specifically,

it is defined as:

 Equation 5-12

Where m is the median of the data set and the factor 0.6745 makes the MAD equal to the

standard deviation for normally distributed data. Therefore, based on their deviation from

the median of the data, a deviation limit can be set in terms of MAD and a 5 sigma limit

is most commonly used [103]. These median statistics are more robust because they are

insensitive to the size of the outliers. This outlier rejection method is used in the

following analysis.

 109

5.4.1 PC Oscillator Accuracy and Stability Analysis

The subject of PC clock oscillator accuracy and stability is well known but there are

limited literatures which seek to precisely measure the system. One survey based on

Internet time synchronization has indicated that the median frequency error of 20,000

PCs is about 78PPM, with some PCs showing errors over 500PPM [87]. However, more

optimistic results are shown for the oscillator stability in [84] and [86] with less than

1PPM error when averaged over a relatively long time.

The measurement trial was conducted in a one week period using the measurement

setup where the GPS 1PPS is used to trigger the reading of the TSC counter every

second. Then using the post-processing C# program, the interval length between each

1PPS in TSC counts can be extracted. Figure 5.4 shows a histogram of the TSC counter

offset from the nominal processor frequency, calculated using Equation 5-13 shown

below:

 Equation 5-13

Where foffset is the number of clock cycles offset from the processor nominal frequency

and fnominal is the estimated processor nominal frequency. Given that oscillators are prone

to fluctuations in frequencies, fnominal is only an estimate and subject to change as the

measurement time is extended. Hence the sole purpose of defining fnominal here is to get an

approximation of the timing error in seconds. In addition, Figure 5.4 shows the histogram

of TSC counter offset scaled to seconds by dividing the processor nominal frequency. It

is important to note that the measurement is approximate due to the deviations of the

clock frequency each second and the latency associated with system. Nevertheless, as the

averaging period is prolonged, these effects will be minimized. An estimate of the PC

clock deviation can be made according to Figure 5.4 at about -31 to -37 microseconds, or

31 to 37 PPM of deviation error, which is close to what is often quoted in the oscillator

specification of 50PPM deviation. In addition, the box plot of Figure 5.5 takes another

perspective and shows the daily variations of the TSC counter with respect to the nominal

frequency. Although the box plot is known to be an effective statistical tool in observing

the median, lower quartile (Q1), upper quartile (Q3), sample minimum and sample

 110

maximum, it is used here to observe the dispersion and skewness of the data. In this case,

it can be observed that the daily variations in oscillator frequency is relative large. From

these observations one can conclude that this particular PC oscillator may have

undergone aging and experienced some temperature variations during the measurement

which led to the disagreement between the measured and nominal frequency.

Figure 5.4 Histogram of TSC frequency measurements – offset from nominal CPU frequency

Figure 5.5 Boxplot of TSC frequency measurements – offset from nominal CPU frequency grouped

by days

 111

The most important aspect of this study is in looking at the stability of the TSC

counter. Figures 5.6 shows the second to second difference of the frequency measurement

in clock cycles and clock cycles scaled to seconds respectively. The second to second

difference of the frequency measurement is simply obtained by yn+1 - yn., then the

frequency measurement can be scaled to seconds by dividing by the nominal frequency.

The plot demonstrate that the TSC counter has a maximum deviation of approximately 5

microseconds or 5PPM variation going from one second to the next. Furthermore, the

histogram for the second to second differences is bell-shaped and similar to that of a

normal distribution.

To examine whether the data follows the normal distribution, one can use the

quantile-quantile (Q-Q) plot as a graphical analysis tool to interpret how well the data

follows the distribution. Figure 5.7 shows the Q-Q plot of the data collected from second

to second difference of TSC counter. It is shown that the data points close to zero (within

2 standard normal quantiles) closely follow the normal distribution whereas the data

points at the tails deviate away. The reason for this phenomenon is closely tied to the

random jitter noise associated with the serial port interrupt. Random jitter is often

characterized by a normal probability distribution and theoretically it should be

unbounded. Such characteristic is the result of the accumulation of various random

processes including thermal noise and flicker noise. With the sum of many independent

random functions, the resultant distribution tends to converge to a normal distribution by

the central limit theorem. Also shown in Figure 5.8 is a box plot of the second to second

difference in clock cycles. Once again it has confirmed the high stability of the TSC

counter as the variations in frequency is very small.

 112

Figure 5.6 Histogram of TSC frequency measurements – second to second difference

Figure 5.7 Q-Q Plot of TSC frequency measurements – second to second difference

 113

Figure 5.8 Boxplot of TSC frequency measurements – second to second difference grouped by days

Taking a step further in the stability analysis, Figure 5.9 shows the Allan deviation

plot of the same set of data with the averaging period, τ0 being one second. Figure 5.9 is

consistent to the results obtained in [93], illustrating a nearly straight line starting from

the left with slope near -1, reflecting the characteristic of white phase noise [89] and is

largely attributed to the random jitter noise in the serial port. In this region, increasing τ

increases the frequency stability in direct proportion. However, at the end of the line there

are some sudden jumps which may have been caused by temperature variation in the

room. Ultimately, the TSC counter is shown to reach well below 0.1PPM when the

averaging period τ reaches above 120 seconds. At the point where τ reaches above 10000

seconds, the Allan deviation curve slowly deviates from the constant slope of decreasing

PPM until it flattens in the end, indicating less correlation between one averaging interval

and the next. At this point the effects of the serial port jitter noise will be dominated by

the oscillator drift. Nevertheless, if the clock frequencies drifted in a measurable way, the

values would vary over time and Allan deviation would tend to increase with time. The

drift behavior does not seem to be significant in the averaging interval shown in the plot.

A significantly longer averaging interval would most likely reveal such characteristic.

 114

Figure 5.9 Allan deviation plot of TSC frequency measurements with τ0 = 1

To summarize the one week’s worth of data, some classical statistic parameters can

be calculated and is tabulated in Table 5-3. Even thorough the results indicate good

frequency stability, such small variations in frequency does accumulate over time and

propagate to the actual timekeeping accuracy. Nevertheless, the measurements indicate

that the TSC counter exhibit good frequency stability characteristics when averaged over

long intervals.

Table 5-3 Statistics of the TSC frequency measurements

 Offset from nominal frequency Second to second difference

Number of data points 599384 599294

Mean -54541 0.016
Median -54592 0

Standard Deviation 1240.7 1937.7
Variance 1539442 3754702

Minimum -71976 -35184
Maximum -36792 25072

Range 35184 60256

In the practical sense, it is worthwhile to note the delay of the PPS reaching the

computer. The delay outside of the computer is in the traversing of the electric signal in

copper at about 5 nanoseconds per meter is fairly constant, thus has no effect on the drift

measurement. Even thorough a real-time operating system is used here, there is still some

 115

small variable internal delays introduced in the system. The difference between the signal

arrival time and the execution of the counter read time is the interrupt latency and is

largely dependent on the hardware being used. Such latency does contribute to the

accuracy of the measurement. However, for the purpose of accuracy and stability analysis

the relative effect of interrupt latency is minimized as the measurement time is extended.

5.5 Summary

The results presented here shows that the crystal oscillators of the Pentium class

processor cores exhibit inaccurate but relatively stable frequencies. The same can be

implied for other conventional oscillators. Hence, it is possible to leverage its high

stability and high resolution counter for either timekeeping or timing measurements.

There are several reasons for introducing the measurement system in this context. Firstly,

the measurement system provides the theoretical basis for understanding the inaccuracies

in the crystal oscillator as well as the high stability it offers. It was shown that smallest

variations in the oscillator frequency occur when the measurement is averaged over

longer time intervals. In effect, by averaging the measurement result over time, the

influence of the white phase noise and flicker noise is minimized.

The concept introduced in this chapter can be applied to the FDR timing subsystem,

where the processor oscillator frequency can be measured each second based on a high

precision timing source. Furthermore, this study indicates that by averaging the

measurement result over time, a more accurate estimate of the oscillator frequency can be

obtained. The overall effect of the averaging is equivalent to filtering the short term

instabilities of the 1PPS and as the averaging interval increases the filtering effect is

pronounced. Ultimately, the Allan deviation analysis can be interpreted as a tool that

calculates how accurately one can predict the occurrence of the next 1PPS and the results

presented in this chapter can be incorporated into the design of the next generation FDR.

Given its high computation capabilities and large memory size, the PC based FDR can

easily record the frequency of the oscillator as measured by the 1PPS or some other form

of frequency reference over time and the measurements can be averaged in appropriate

 116

intervals to predict the arrival of the next 1PPS. With an accurate estimate of the

oscillator frequency, the FDR sampling time can be more accurately divided within each

second and hence resulting in more accurate sampling time.

In addition to the study of oscillator characteristics, it is intended that such

measurement system to be used for the analysis of timing accuracies achieved by

different timing mechanisms. Since there are a wide variety of precision timing sources

available today, it’s important to be able to accurately quantify the accuracy that is

achievable for each timing source. What is more important is the ability to characterize

the accuracy of frequency and angle measurement based on the sampling time. To this

end the next chapter takes a closer examination at the FDR sampling time and addresses

the sampling time error resulting from the oscillator imperfections.

 117

Chapter 6 Analysis of Frequency and Phasor Angle
Measurements Based on Timing of Conversion

6.1 Background

As it was shown in Chapter 5, the crystal oscillators tend to have good frequency

stabilities in the short term but they are prone to drift in the long term. Furthermore, the

frequency offset of the oscillators differs due to manufacturing defects and the slight

variations in the cut of the crystal. Nevertheless, with the aid of a high stability frequency

reference such as the GPS 1PPS, the frequency drift that’s associated with any particular

oscillator can be removed through either software or hardware implementation. In the

case of the FDR, an internal processor counter is used to reset upon every rising edge of

the 1PPS to synchronize with the UTC time for synchronized sampling. Throughout the

years of FDR design refinements, the implementation of synchronized sampling has

changed several times to improve the accuracy of the frequency and phasor angle

measurements.

The method to which synchronized sampling is conducted has evolved over the years

with the highest accuracy obtained in the second generation FDR [14]. Although there

hasn’t been any significant change in the timing subsystem hardware, consisting of a GPS

receiver and some form of processor timer. The sampling pulses are generated by the

pulse width modulation (PWM) subsystem of the processor and the PWM timing is based

on the internal timer. Since the processor timer frequency varies according to the

oscillator that is being used, it is practically difficult to obtain an oscillator with a

frequency that is wholly divisible by the sampling rate. In the practical world, the

division of the timer by the sampling rate would always end up with a remainder which

would accumulate at the end of each second and causing sudden jumps in phasor angle

measurements. Different methods were implemented in both the first and second

generation FDRs to mitigate the effect of the remainder accumulation. As it was

described in Chapter 2, the timing subsystem of the second generation FDR was

calibrated against a PMU using phasor angle measurement results [14]. Assuming that

the PMU has a more accurate timing subsystem and given the condition that both the

 118

FDR and PMU are measuring the same voltage source, the trigger for conversion pulses

of the FDR can be adjusted so that the magnitude of the phasor angle measurement

matches that of the PMU. A linear fit method was used to find the length of the trigger

for conversion pulse period in clock cycles which would minimize the saw-tooth error in

the angle measurements [14].

Although laboratory measurements have confirmed the frequency and angle

measurement accuracy of this implementation [14], there are still some drawbacks to the

design. The main flaws being the lack of cross platform compatibility, consistency among

different FDR units and flexibility. If the FDR DSP hardware were to be upgraded or

changed to another processor, the FDR will need to be recalibrated against the PMU with

the same linear fit method. Furthermore, if the sampling rate were to be changed the FDR

will also need to be recalibrated. At last, inconsistencies may be introduced across

different FDR units due to differences in oscillators caused by manufacturing

imprecision, aging and temperature effects. Given the frequency differences from

different oscillators, it is most likely that the calibrated PWM period would differ across

different FDR units. However, the sampling clock in the second generation FDR uses a

constant value for PWM period. Since the quality of the phasor angle measurements are

directly related to the timing of conversion, the variability in oscillator frequencies can

lead to discrepancy in frequency and angle measurements across different FDR units.

This chapter addresses these issues by introducing a new clock division algorithm which

does not only adapt to different hardware architectures but guarantees to produce the

most accurate sampling time based on the underlying hardware.

Since there are numerous possibilities for the implementation of FDR precision

timing source and the sampling time accuracy varies to a great extent, it is highly

plausible to develop a model of FDR which can be used to evaluate the performance of

frequency and angle measurement using different timing mechanism, whether it is based

on network time synchronization, GPS receiver or any other form of precision timing

source. Given a universal clock division algorithm which is platform independent,

different models can be developed based on the timing of conversion from different

 119

hardware and precision timing reference. This chapter proposes the methodology to

develop such model based on the measurement of the absolute second as referenced by

UTC time and the sampling time.

6.2 Clock Division Algorithm

In order to address the need for a common method of PWM generation that does not

only yield the maximum frequency and phasor angle measurement accuracy for any clock

speeds but also minimizes the remainder accumulation effect, it is necessary to develop

an algorithm that varies the period width of the PWM based on the amount of remainder

for each pulse period. The most significant advantage of developing such an algorithm is

the high flexibility it provides. The algorithm implementation is hardware independent

provided that there is a timer and some means of producing variable length pulses are

available. In addition, the algorithm can be implemented for any clock speeds and

theoretically provide the most accurate sampling time solely based on the timing for

conversion.

The core of the algorithm for the clock division is shown in Figure 6.1 in a flowchart.

The basic concept of the design is similar to what is being proposed in [5] and the basic

objective is to vary the period of the trigger for conversion pulses over the course of the

second to distribute the error associated with the imperfect division. Upon the acquisition

phase of the FDR state machine, the length of the 1PPS will need to be measured by the

internal timer of the processor to get an accurate estimate of the oscillator frequency. The

averaging of the measurements over time should yield a more accurate estimate of the

arrival of the next 1PPS. Depending on the hardware memory that is available, the

averaging interval could vary and the longer averaging time should provide for more

accurate estimate. Once an accurate estimate has been obtained, the FDR should enter the

initialization state where the algorithm in Figure 6.1 can be used to produce the PWM

timing signal for conversion.

 120

As shown in Figure 6.1, the flowchart illustrates the logic to generate the PWM

timing pulses upon the rising edge of 1PPS. Upon system start up, the variable storing the

previous remainder value, CURR_REMAINDER is reset to zero and upon the rising edge

of the 1PPS, the system will add the base remainder, REMAINDER to the current

remainder that had just been reset. The base remainder is obtained by dividing the length

of the previous 1PPS as measured by the internal timer or PPS_Count by the sampling

rate. If the current remainder is equal to zero then the division is actually an exact integer

multiple division. This situation would result in the current remainder being set back to

zero and the VAR_PERIOD_LEN variable being set to the quotient of the original 1PPS

period division. On the other hand, if the base remainder is not equal to zero, then the

system would either set VAR_PERIOD_LEN to the quotient of the original 1PPS

division, or simply add one to the quotient and set it to be VAR_PERIOD_LEN. The

resultant PWM pulses will have a period length of either the default quotient obtained

from the 1PPS division or one more clock cycle added to the default quotient. The

condition to determine whether or not to add one to the quotient is dependent on the

accumulation of the remainder. When the accumulation of remainder is less than half of

the sampling rate, the period of the PWM will be set as default quotient as obtained from

the division of 1PPS. On the other hand, when the accumulation of remainder is greater

than the half of the sampling rate, the period of the PWM will be set as the default

quotient plus one.

 121

Figure 6.1 Flowchart of clock divider algorithm

The end result of this process is to not accumulate the error caused by the remainder

but instead distribute it among the pulses. So when the remainders add up to equal or

greater than the one pulse period, the current remainder is decreased by the value of the

original remainder. By implementing such algorithm in the FDR, the accuracy of the

frequency and phasor angle measurements will be heavily dependent on the clock speed

that is used to generate the PWM, or equivalently the resolution of the clock. Lower

clock speeds tend to introduce jitter that amounts to some significant effects in the

frequency and phasor angle measurements. Since the smallest possible increment that can

be made to the output pulse is 1 clock cycle, the minimum jitter would correspond to the

length of the 1 clock cycle. For example, if the algorithm were to be implemented in the

second generation FDR with the 30MHz DSP clock, the minimum jitter would be +/- 33

nanoseconds. This could be decreased by improving the system to operate from a higher

speed oscillator. Another advantage of this algorithm is the incorporation of the oscillator

frequency measurement each second. Since the existing clock division scheme does not

measure the 1PPS each second and uses the nominal oscillator frequency to calculate the

 122

timing for conversion, errors associated with the aging and long term drift of the

oscillator are not being taken into consideration.

To better illustrate the performance of the clock division algorithm with higher speed

clock, some numerical simulations can be conducted. A 60 Hz sinusoidal signal with 0

phase offset was sampled at 1440 Hz according to the sampling time calculated from the

clock division algorithm and the resultant samples were input to the phasor analysis

algorithm. Nominal clock speeds (fCPU) ranging from 1MHz to 100MHz were used as the

input to the clock division algorithm to sample the 60Hz signal. The nominal clock speed

was incremented at a step size of 1MHz and for every clock speed there were 10

frequency and phasor angle points being calculated (10 frequency/angle output per

second). Figure 6.2 and Figure 6.3 illustrates the simulation process for two different

method of generating the sampling clock. Two sets of results are shown in the figures for

comparison using the conventional clock divider where each sampling period is constant

and rounded to the nearest whole number and the new clock divider algorithm where the

sampling period is varied according to the accumulated remainder. With respect to the

conventional method for clock division, the new clock division algorithm is shown to be

effective in lowering the error caused by the timing residuals at then end of each second.

Figure 6.2 Simulation of clock division algorithm for frequency and phasor angle measurements

Figure 6.3 Simulation of conventional PWM method for frequency and phasor angle measurements

 123

Since frequency is the derivative of phasor angle measurement, the root of the

inaccuracies in frequency can be attributed to the angle measurements. Due to the timing

remainders at the end of each second, the last phasor angle measurement of each second

is erroneous and tends to have a large magnitude when the clock speed is low. In the case

of the new clock divider algorithm, this is largely due to the jitter that is created as a

result of adding a clock cycle to certain sampling periods, and low clock speeds tend to

enlarge the jitter. The consequence of this error is a corresponding spike created in the

last frequency measurement of each second, as well as an erroneous constant offset for

the rest of the frequency measurements. As expected and illustrated in Figure 6.5, the

magnitude of the supposed saw-tooth error in the angle data at the end of each second

decreases as the clock speed increases. Such accuracy improvement is propagated to the

frequency estimation as it is shown in figure 6.4 where the spike at the end of each

second also decreases as the clock speed increases.

Figure 6.4 Effect of sampling clock speed on frequency estimation – clock division algorithm versus

conventional PWM method

0 10 20 30 40 50 60 70 80 90 100
59.4

59.5

59.6

59.7

59.8

59.9

60

60.1

60.2

Clock speed (MHz)

F
re

q
u
e
n
c
y
 (

H
z
)

Accuracy of the new clock divider algorithm versus the conventional clock divider

Conventional Clock Divider

New Clock Divider Algorithm

 124

Figure 6.5 Effect of sampling clock speed on phasor angle estimation – clock division algorithm

versus conventional PWM method

To illustrate the effectiveness of the algorithm for actual processor clock speeds,

Table 6-1 lists two different clock speeds with two being the actual FDR processor

speeds of 20MHz (MPC555) and 30MHz (TMS320LF270A). Also listed are the

frequency and phasor angle results obtained by simulating the phasor algorithm with a

60Hz sinusoidal input with no phase shift. The algorithm provides accurate frequency

and phasor angle measurement results for 30MHz clock speed, but appears to be affected

by the relatively large jitter produced by the 20MHz clock as well as the remainder that is

at the end of the second. The last phasor angle result deviates by 0.0031 radians, leading

to erroneous frequency results.

0 10 20 30 40 50 60 70 80 90 100
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
Accuracy of the new clock divider algorithm versus the conventional clock divider

A
n
g
le

(r
a
d
ia

n
s
)

Clock speed (MHz)

Conventional Clock Divider

New Clock Divider Algorithm

 125

Table 6-1 Frequency and phasor angle measurements using the new clock division algorithm with

actual processor clock (input 60Hz with no phase shift)

20MHz (MPC555) 30MHz (TMS320LF270A)

Frequency
(Hz)

Angle
(rad)

Frequency
(Hz)

Angle
(rad)

59.9980 0.0000 60.0000 0.0000

59.9980 0.0000 60.0000 0.0000
59.9980 0.0000 60.0000 0.0000

59.9980 0.0000 60.0000 0.0000
59.9980 0.0000 60.0000 0.0000

59.9980 0.0000 60.0000 0.0000
59.9980 0.0000 60.0000 0.0000

59.9980 0.0000 60.0000 0.0000

59.9980 0.0000 60.0000 0.0000
59.9760 0.0031 60.0000 0.0000

Hence it is shown that the clock divider algorithm is theoretically sound in the cure of

the accumulating sampling period remainders and it is flexible in the sense that it can be

re-used for any clock speeds and provides the most accurate clock division for any

particular clock speed. However, the development of such algorithm was not intended to

replace the existing calibration method that was developed for the second generation

FDR. Rather it can be used for the next generation FDR design whether it is

microcontroller, DSP or PC based, and also serve as a basis for comparison of the

maximum accuracy that could be achieved in different platforms.

6.3 Development of FDR Model

In the view of the fact that the clock division algorithm presented in the last section is

accurate to below 1 clock cycle given any clock speed, it would be of interest to develop

a simulation method based on a model of timing for conversion signal. With such a

model, one can explore the accuracy of the frequency and phasor angle measurements

under different scenarios where the timing for conversion is dependent on the underlying

hardware clock and the precision timing source. Such model is useful in determining the

accuracy of frequency and phasor angle measurement using different timing mechanisms.

In addition, due to the inherent random jitter noise that is part of all digital electronics

and the deterministic jitter noise that results from intentionally varying the period of

 126

sampling pulse, it would be interesting to examine how this would affect the accuracy of

sampling time and ultimately the resulting measurements.

6.3.1 Conceptual Design of FDR Model

The approach to developing the model starts with the high resolution measurement

PC from Chapter 5. As it was shown, the measurement PC takes advantage of the high

resolution and high stability TSC counter, which has an inherent timing resolution of

below 1 nanosecond and high stability over long averaging periods. With such a high

resolution timing measurement system combined with deterministic timing behavior

provided by the real-time operating system, one may wonder the possibility of measuring

the timing of the trigger for conversion signal in the FDR. Only the second generation

FDR is considered here as it is the most accurate in frequency and phasor angle

measurements. With its 30MHz clock, the DSP has a timing resolution of about 33

nanoseconds, which is more than ten times the magnitude of 1 clock cycle on the

measurement system. Fundamentally, the high resolution counter combined with a real-

time operating system such as RTAI enables the COTS PC to become a high performance

oscilloscope data logger. The concept is highly plausible in many measurement

application as the x86 based PC has a wide spread usage and the Linux/RTAI software

packages are open source and royalty free.

Assuming that the voltage transformer and the input filter of FDR is perfect in the

sense that they do not introduce any noise, the timing of conversion and the quantization

effects of the ADC would be the largest contributor to the sampled signal noise. The

quantization effects are the errors predominately produced by rounding and truncation of

quantization levels and the timing of conversion is associated with deterministic jitters

produced from the intentional adding of clock cycles to sampling periods as well as

random jitters from the imperfection of the electronics. Based on the assumptions, one

can model the FDR using the ADC timing for conversion and quantization levels. Much

of the modeling is from a statistical technique, where each parameter can be modeled by

a random variable.

 127

Since timing for conversion is the parameter of interest in this model, the quantization

noise can be assumed to be uniformly distributed between -1/2 LSB (least significant bit)

and +1/2 LSB. Such assumption is equivalent to as if the quantization noise is uniformly

distributed which may not be valid at all times and is dependent on the amplitude the

signal. Although a more accurate quantization model can be obtained by static testing

method of injecting several different DC voltage levels to the input of the ADC and

collect the digital data at the output to form noise histograms. With the data collected, a

statistical model can be developed based on the histogram. Nevertheless, since the timing

of conversion is the main parameter of interest, either a uniform quantizer is assumed or

the quantization effect of the ADC can be totally neglected to observe the effect of

sampling time error.

To model the timing of conversion, the measurement PC can be used to timestamp

the trigger for conversion signal using its high resolution processor counter. Since the

measurement PC has a much higher resolution clock comparing to the embedded DSP,

the timestamps provided by the PC processor clock should be very accurate and reflect

any inaccuracies in the lower resolution DSP clock. Ultimately, the model is based on

any errors of the DSP clock with respect to the measurement PC clock. Therefore, the

clock division algorithm will be used here to provide a common basis for the DSP and the

measurement PC. Since the DSP operates in a much lower speed, it is expected that the

clock division algorithm would provide more accurate timing on the measurement PC.

Therefore, both platforms will use the same clock division algorithm to generate the

timing for conversion and assessment can be made based on the differences between the

two. Furthermore, since a reference time is still needed to measure the precise length of 1

second, the GPS 1PPS will also need to be time-stamped as well. Once the length of the

1PPS or 1PPSlength is given in processor clock cycles, it is used in the clock division

algorithm to mitigate the errors caused by imperfections in the oscillator. Hence, the

timing results generated on the PC is considered to be much more accurate than that of

the FDR and is considered to be the theoretical timing for conversion. Given the

theoretical sampling time, tcalc, a histogram can be generated by subtracting the measured

 128

sampling time, tmeasured, from the theoretical sampling time. In summary, the process for

developing the sampling time histogram is illustrated in Figure 6.6.

Figure 6.6 Illustration of developing sampling time histogram

Since the measurement is conducted using a higher speed clock, the raw

measurements will need to be quantized or scaled to its equivalent for the lower speed

clock. In this case, the scaling factor can be obtained by dividing the nominal frequency

of PC clock by the nominal frequency of the DSP clock. Hence, the raw measurement

data based on the PC clock can be scaled by dividing the scaling factor. The scaled

results should form another histogram based on the clock cycles of the DSP clock.

Finally, the histogram based on timing conversion will need to be normalized where the

y-axis is the probability of occurrences and the x-axis is the error with respect to the

theoretical value in number of clock cycles. The conversion involves taking each value in

the histogram and divide by the total number of samples, which results with values in

between 0 and 1, and the sum of all of the values in the normalized histogram will be

equal to 1. Hence, the probability of obtaining any value is easily obtainable using the

 129

normalized histogram. Then it is necessary to sum the probabilities to create the

cumulative histogram. Figure 6.7 summarizes the process for developing the FDR model.

Figure 6.7 Procedure for developing FDR model based on sampling time measurement

In order to sample randomly from the histogram, a random number generator is

needed. In this case, the Matlab uniformly distributed pseudorandom number generator

can be used to generate numbers in the range of 0 to 1 to represent the probabilities.

Given the probabilities generated from the pseudorandom number generator, the

corresponding value in clock cycles can be obtained based on the cumulative histogram.

Since a discrete random variable is considered here, it is necessary to apply the condition

illustrated in Figure 6.8 where k will be used if M(k-1) < randn() ≤ M(k), where randn()

is the function that provides the uniformly distributed pseudorandom numbers.

Figure 6.8 Illustration of random sampling

As a result of the random sampling process, toffset can be obtained and applied as an

offset to tcalc in the actual simulation as it is shown in Figure 6.9. The resulting tsimulate is

used to sample any arbitrary waveform and generate discrete values to input into the

phasor angle analysis. Finally, the frequency and phasor angle results forms another

histogram based on the difference between the theoretical and simulated values.

Ultimately the final histogram should provide much information on the accuracy of the

 130

frequency and phasor angle estimation based on the sampling time. The random sampling

process should be performed many times to approach the point where all of the data in

the histogram has been sampled. Such methodology is very similar to the classical Monte

Carlo method, which shares the similar concept of modeling systems with uncertainties in

inputs.

Figure 6.9 Procedure for simulating FDR model based on sampling time

6.3.2 Measurement of FDR Timing for Conversion

Since the measurement is conducted on a device external to the measurement PC,

there needs to be some way of interfacing to the external signal. The trigger for

conversion signal that is generated from the DSP is connected to the CONVST’ input of

the ADC, or the convert start input pin. A low to high transition on this input starts the

conversion process and it is TTL (transistor transistor logic). Considering that the parallel

port of the PC is also TTL and given its versatility in interfacing with external

peripherals, it is sometimes being used for data collection, testing and control systems.

Although the original intent of the parallel port was to interface with printers but it has

evolved to perform sophisticated PC control applications, such as multiple stepper motors

control. [A parallel port interface circuit for computer control applications involving]

Given these justifications and the simplicity in implementing parallel port interrupts, the

parallel port is used to capture the CONVST’ signal. In the x86 systems, the parallel port

interrupt is assigned to IRQ 7 and is triggered by rising edges in the ACK (acknowledge)

pin (refer to Appendix C for schematic). Therefore, upon every low to high transition of

the CONVST’ signal, the system enters the ISR where the TSC counter is being read and

logged into the kernel log. Furthermore, since the reference timing for conversion is

 131

based on the 1PPS signal from the GPS, the same interfacing software that was

implemented in Chapter 5 can be re-used here to provide the start of the sampling

reference. Figure 6.10 shows the measurement setup for FDR trigger for conversion

signal.

Figure 6.10 Timing measurement setup for FDR trigger for conversion signal

Due to the fact that the TSC counter is started when the machine boots up and will

not rollover in the time span of the measurements, a post processing tool was developed

in C# to extract the data from the kernel log and convert the TSC data point to counts

with respect to the start of the second as indicated by the 1PPS. Also, given the length of

the 1PPS as measured by the TSC, the C# program will calculate the timing of the trigger

for conversion with respect to the start of the second using the clock division algorithm.

By subtracting the actual timing for conversion as measured by the PC from the ‘perfect’

timing derived from the C# program, the error associated with the DSP clock is obtained.

Figure 6.11 shows the histogram representing the difference between when the actual

trigger for conversion occurred and the calculated timing, in clock cycles and its

equivalent in seconds. With a sample size of 1000000 data points, it appears that most of

 132

the data points are concentrated within +/- 20000 clock cycles, or about 12 microseconds.

Considering that the 30MHz DSP clock has a resolution of about 33ns per clock cycle, it

is clear that the measurement result is diluted with much larger errors. Much speculation

was placed on the performance of RTAI and whether it was lacking the real-time

behavior that is expected of all real-time operating systems.

Figure 6.11 Histogram of timing measurements for FDR trigger for conversion – offset from

theoretical timing

Taking another perspective in examining the measurement results, if the measurement

were ideal, the period difference between each of the trigger for conversion pulses should

always be less than 1 clock cycle on the 30MHz DSP clock, or equivalently 53 clock

cycles on the 1.59GHz PC clock. Figure 6.12 shows the period differences in the trigger

for conversion pulses in clock cycles and seconds. Once again, the results indicate

otherwise as the differences between pulses periods exceed +/- 10000 clock cycles on the

1.54GHz PC clock, or equivalent to about +/- 8 microseconds. Since the histogram is

approximately bell shaped and resembles a normal distribution, one may attribute the

 133

error to system noise. To confirm, direct comparisons can be made between the pulse to

pulse period differences and the second to second frequency difference from Chapter 5.

Specifically, the measurements taken here is very much similar to that of Chapter 5

where the length of the 1PPS is being measured. The only exception is the differences in

the frequency of the PC oscillator and the FDR sampling rate. Nevertheless, in comparing

Figure 6.12 with Figure 5.6 from Chapter 5, there is no discernable differences between

the two measurement results in terms of the distribution of the data.

Figure 6.12 Histogram of timing measurements for FDR trigger for conversion - pulse to pulse

timing differences

A better representation of the comparison between the two is shown in Figure 6.13,

where the Q-Q plot for both trigger for conversion pulse to pulse period difference and

1PPS second to second frequency difference is shown. Both data sets can be

approximated to the normal distribution within +/-2 standard normal quantiles. Then the

tails on the two sides deviates away from the normal distribution at about the same

position. The result indicates that the jitter noise associated with the 1PPS measurement

 134

is very similar to that of the trigger for conversion pulse measurement. Hence, the

performance of the measurement PC is consistent across different measurements and the

frequency difference between the two signals that are measured do not seem to make any

significant differences in the jitter noise. Nevertheless, it is important to recognize that

the accuracy of the FDR model is dependent upon the accuracy of the sampling time

measurements. The measurement from Chapter 5 is different in this aspect because

statistical tools such as the Allan deviation and averaging can be used to identify and

mitigate the effect of jitter noise.

Figure 6.13 Q-Q Plot of 1PPS measurement versus Q-Q Plot of trigger for conversion measurement –

pulse to pulse timing difference

Although the jitter noise in the microseconds range is a relatively large contributor to

the inaccuracies of the measurement PC, the interrupt latency is yet another concern for

accurate measurements. The first trigger for conversion pulse with respect to the 1PPS

can be examined to approximate the effect of interrupt latency. At every rising edge of

the 1PPS, the DSP loads the period of the trigger for conversion into the PWM period

register and the first rising edge of the trigger for conversion should occur within one or a

few clock cycles in the worst case latency. Since both the 1PPS and trigger for

conversion timing information is available, the interrupt latency effect can be

approximated. Figure 6.14 shows the measurement of the delay of the first trigger for

conversion pulse with respect to 1PPS, in clock cycles and scaled seconds. The average

 135

delay in the arrival of the first trigger for conversion pulse with respect to 1PPS is about

2500 clock cycles in the 1.59GHz clock, or about 16 microseconds. That’s more than 400

times the length of 1 clock cycle in the 30MHz clock, signifying a relatively large latency

in comparison with what was predicted.

Figure 6.14 First trigger for conversion latency with respect to 1PPS

The original intention of this effort was to accurately measure when the trigger for

conversion occurs in each second and develop the model based on the difference between

the measured value and calculated value. The concept of the higher timing accuracy can

be obtained when the resolution and the precision of the measurement system timing is

higher than that of the DSP. However, the results show that given the approximate timing

behavior of the DSP PWM, the measurement PC is not capable of accurately depicting

when the trigger for conversion actually occurred. On the other side of the spectrum, it is

known that dedicated processors such as the DSP has the capability of guaranteed

interrupt latency in the range of a single or in the worst case a few execution cycles.

Nevertheless, it was shown that the jitter noise is consistent between the measurement of

trigger for conversion signal and the 1PPS from Chapter 5. Hence, it is clear that the error

 136

is not associated with the way that the ISR was implemented, but rather it is indicative of

the imperfections in the real-time operating system or the underlying hardware. Finally,

Table 6-2 shows the statistics of the measurement in both clock cycles and microseconds.

Table 6-2 Statistics for the measurement of the trigger for conversion signal

 Offset from

calculated values
First pulse delay
wrt. GPS 1PPS

Pulse to pulse period
difference

Number of data
points

1000000 7504 1000000

Mean 114 (~71.45 ns) 2556 (~16 us) -0.00754 (~ 0 us)

Median 116 (~72.71 ns) 2521 (~15.8 us) 40 (~0 us)
Standard Deviation 4453 (~2.79 us) 2290 (~14.3 us) 2466 (~1.54 us)

Minimum -18404 (~-2.13 us) 15360 (~9.63 us) -2340 (~-1.46 us)

Maximum 19132 (~11.99 us) 44540 (~27.9 us) 1989 (~1.24 us)
Range 37536 (~23.5 us) 29180 (~18.29 us) 4329 (~2.71 us)

6.4 Discussion of Results

Although it was verified that the measurement results indicate a relatively large

magnitude jitter noise and latency which is consistent throughout all of the

measurements, it is important to characterize the underlying limitations of measurement

system and the sources of inaccuracies. The original motivation for this work was the

observation that the use of general-purpose microprocessors, such as the Intel Pentium, is

increasing for real-time applications [78]. The reasons for this increase are the readily

available TSC counter and the convenience of complete PC compatible platforms that

provide abundant peripherals at low cost. However, the results indicate that there are

limitations to such implementation rooted in either the real-time operating system or the

underlying hardware. At this point it is worthwhile to revisit the topic of real-time

operating system performance evaluation and the possibility of improvising the existing

system.

Literature such as [78] indicates that despite the best efforts to make RTOS

deterministic, the underlying hardware in general-purpose computers introduces timing

uncertainties due to microprocessor and bus effects. While there is a large amount of

literatures on the research of RTOS and real-time programming, real-time software by

 137

itself does not guarantee a deterministic system. Microprocessors such as the Pentium

contain some optimization features which interfere with the deterministic capabilities of

RTOS. These optimization features include instruction and data caches, instruction

pipeline and speculative execution. These features are often incorporated into the

processor architecture to significantly speed up the average execution times, but

occasionally introduce large delays.

In the case of the data cache, copies of data from external memory are kept in the

internal processor cache, reducing the time for subsequent access. However, if the cached

data is replaced and is referenced again, it must be fetched again. [78] indicate that in an

environment where real-time and non-real-time tasks share the processor, it is practically

impossible to prevent real-time task data from being replaced occasionally, even if the

non-real-time tasks run at the lowest priority. Furthermore, an increase in processor speed

leads to more profound effect in mixing the real-time and non-real-time tasks. The faster

the processor, the more non-real-time task code can run during the idle period and

interfere with the determinism of the real-time task. Nevertheless, the common

misconception is that disabling a microprocessor’s cache would reduce timing

uncertainty. But in reality the absence of a cache magnifies the uncertainties in

instruction pipelining and speculative execution. Even if the timing uncertainty was

eliminated by disabling the cache, the performance in speed would be penalized

significantly.

It is also worthwhile to address the issue with the interrupt latency as seen in the

measurement results. Specifically, interrupt latency measure the ability of a system to

respond to an asynchronous event and the system’s ability to change the processor’s state.

In general, [73] indicate that the minimum and maximum latency measurements have

virtually no relationship to the processor’s clock speed or the processor model (Pentium

versus Pentium 2). The minimum latency is often attributed to the I/O and memory bus

performance where as the maximum latency is often attributed to the state of the machine

at the moment the interrupt occurred. These are considered extreme cases and are

dependent on a machine’s bus speed, memory, peripheral devices and associated drives.

 138

Overall, increasing a processor’s clock speed increases the average performance level of

a system but does not significantly affect the speed at which a processor will respond to

an interrupt.

In contrast to general purpose processors, DSPs bypasses unpredictable features like

caches and pipelines, opting instead for simple instruction sets that optimize commonly

used instructions for speed. Such implementation allows the DSP to have guaranteed

interrupt latency in the range of a single or few execution cycles. As a result, the

measurement of the FDR trigger for conversion signal reflects a mixture of latency and

jitter noise that are associated with the uncertainties of the Pentium processor, rather than

the DSP itself. Many literatures present the evaluation of real-time operating system

performances and provide actual figures in latency and jitter. However, since the machine

under test varies in certain aspects such as configuration and hardware, the range of

latency and jitter figure can vary by some extent. Nevertheless, RTAI is known to exhibit

comparable latency and jitter to commercial real-time operating systems but is still

susceptible to latency and jitter in the orders of anywhere from 1 to 10 microseconds for

processors running at a clock rate of 100s of MHz [75]. Although [78] shows that the

worst case jitter values can reach the orders of ten microseconds. The timing uncertainties

in jitter are mostly related to the execution environment where other running tasks can

provide interference and also the scheduling algorithm. Although it was indicated in the

measurement of the FDR trigger for conversion that the estimated maximum latency

exceeds 10 microseconds, but the average estimated latency indicates that the system is

performing close to the optimal conditions. The same can be said about the estimated

jitter which has a range of 2.71 microseconds, well within the bound of what is indicated

in the literature. Nevertheless, even with the highest performance real-time operating

systems, the accumulation of latency and jitter noise can easily reach within the

microseconds range [74]. Ultimately, in order to achieve high deterministic timing that is

needed to measure the DSP clock, it is necessary to acquire the use of a FPGA based

counter [102][104].

 139

6.5 Summary

In this chapter a new clock division algorithm is proposed for generating accurate

sampling pulses using PWM. The existing method of producing sampling pulses is based

on the calibration of the period of the FDR sampling pulses against the PMU. Although

the calibration method is effective in increasing the accuracy of the frequency and phasor

angle measurement, it is hardware dependent and susceptible to timing errors in the

sampling pulses due to the inaccuracies of the oscillator. To address these issues, the

proposed clock division algorithm keeps track of the accumulated timing error caused by

the imperfect division and adds or subtracts one clock cycle to the next sampling period

so that the sampling time error is always within one clock cycle and does not accumulate.

This method is hardware independent and produces the most accurate sampling time for

any oscillator frequency. This clock division algorithm can be integrated into the next

generation FDR regardless of its hardware architecture. By the same token, it is just as

important to emphasize that the measurement of the 1PPS is critical for accurate

calculation of sampling time.

Given the clock division algorithm, one can measure the timing of the sampling

pulses generated from oscillators of different frequencies and different precision timing

reference. Examples of the precision timing reference include the indoor GPS and the

network time synchronization. Given that these timing references provides different

levels of timing accuracy and are difficult to characterize in terms of its influence on the

frequency and phasor angle measurements, it is logical to develop a method to model the

FDR based on the timing characteristic. The methodology is based on the measurement

of the FDR sampling time and the absolute second given by the frequency reference.

Although the timing measurement is carried out using the measurement system from

Chapter 5, it is shown that the measured sampling time does not accurately depict the

FDR. This is due to the optimization features of the Pentium processor which adds

comparatively large jitter noise and latency to the measurements. Hence the measurement

system is not suitable for this application and more deterministic hardware is needed to

develop a more accurate FDR model. The measurement of the FDR sampling time has

proven to push the measurement system to its limitations but these results does not

 140

conflict with that of Chapter 5. In the measurement of the 1PPS, statistical tools such as

averaging and Allan deviation are used to mitigate and distinguish the effect of jitter

noise and latency. In the case of measuring the FDR sampling time, a large sample size is

needed to model the FDR and carry out the random sampling. Ultimately, it would not be

practical to apply data filtering in such application. More accurate model can be

developed by means of more deterministic timing measurement system such as a

dedicated hardware solution using FPGA.

 141

Chapter 7 PC Time Synchronization

7.1 Background

Ever since the introduction of PC based FDR design, there is much optimism in using

an Internet based timing synchronization technique to provide for frequency reference

and timing reference for the FDR. Although GPS timing receivers has proven to be an

effective frequency and timing reference, there are still many factors that would affect the

availability of the GPS as outlined in Chapter 4. An indoor GPS solution is superior to

that of the conventional GPS in terms of operating under environments which suffers

from significant signal degradation. However, it’s also shown that under significant

signal attenuation environments the indoor GPS exhibit lower accuracy. The most

significant advantage that the network time synchronization has to offer is the elimination

of the extra cost and hardware that is associated with GPS receiver.

Part of Chapter 5 investigated the stability of the PC oscillator clock, or the TSC

counter. It is shown that the TSC counter is relatively stable in frequency for a period of a

week. Therefore a PC based FDR implementation would be able to make use of such a

counter synchronized to a reference clock with UTC time to generate the trigger for

conversion signal. Even though the PC software clock provides absolute time information

and it can be retrieved by simple software instructions, its timekeeping accuracy suffers

from instability in interrupt requests, limited resolution and inconsistencies due to power

cycles of the machine. To improve the accuracy of the PC software clock and compensate

for the inherent drawbacks in its timekeeping mechanism, it is necessary to investigate

clock synchronization strategies and perform the appropriate analysis to quantify the

achievable accuracy and the required trade-offs.

Clock synchronization can be implemented in either hardware or software. The

synchronization technique to be used is heavily dependent on the required precision and

the geographic spread of the distributed system. Dedicated hardware synchronization

 142

provides the highest accuracy ranging in several nanoseconds. Although such

implementation requires dedicated synchronization network and the appropriate phase

locked loop (PLL) hardware with distributed devices that are located within a few meters

of each other. Nevertheless, the hardware synchronization approach requires high density

installation with high cost and its accuracy far surpasses that of what is needed for

synchronized phasor measurements. Furthermore, many approaches to clock

synchronization today are based on a hybrid solution combining software algorithm with

moderate hardware support, which are capable of reaching microseconds accuracy in

local area network (LAN). Finally, solely software driven clock synchronization

algorithms use standard communication networks and send synchronization messages to

get the clocks synchronized. They are not as accurate in comparison to the hardware and

the hybrid solution but are more used due to the fact that many applications do not need

as strict of timing requirements.

The major challenge to the WAMS time synchronization is the need for high

accuracy synchronization in a wide area network (WAN). Such requirement is rarely

addressed in many clock synchronization techniques as most of the distributed system

applications are either LAN based or simply does not need as high of accuracy.

Henceforth, this chapter seeks to address these challenges and characterize the accuracy

of the one of the most popular network synchronization methods. Ultimately,

recommendation can be made on whether network synchronization can be used for

accurate frequency and phasor angle measurement applications.

7.1.1 Network Synchronizations

Generally, in network synchronizations there are at least two clocks with one being

the local clock and the other being the reference clock. When compared to the reference

clock A, the errors of a crystal oscillator based PC clock B, or in this case the local clock

can be characterized by offset, skew and drift. Hence, a simple model of the local clock

can be illustrated as:

 Equation 7-1

 143

Where aB(t) is the clock drift, and bB(t) is the offset of clock B. Drift is often defined as

the rate of the clock and offset is the difference in value from real time t. Using

Equation(), a comparison can be made between clock A and clock B as:

 Equation 7-2

Where aAB is the relative drift, and bAB is the relative offset between the clock A and

clock B. If the two clocks are closely synchronized, then their relative drift should

approach 1, indicating both clocks are approaching the same rate and relative offset is

approaching 0. Assuming a perfect clock synchronization scenario, the relative drift

would be 1 and relative offset would be 0 indicating the same time for both clocks at that

instant. In some literature, the phrase ‘clock skew’ is used in place of drift to indicate the

difference between clock rates. Likewise, the phrase ‘phase offset’ is equivalent to offset

and often used interchangeably.

The synchronization of multiple devices is the same as equalizing the computer

clocks of different devices. Only by correcting offset of clocks is not enough for

synchronization as clocks tend to have different rates so that drift between clocks occurs

over time. As a result, the method of synchronization should correct for both the clock

rates and offset to equalize the values for the clocks. The major challenge to precise

network clock synchronization is non-determinism. Inaccuracies in latency estimates

present major problems to asymmetric round-trip message delivery delays. Purely

software implemented methods are often designed to run in asynchronous environments

that do not have timing guarantees. One extreme example is the Internet where the

performance of network synchronization is dependent on many random variables.

Furthermore, software often runs on general purpose operating systems where

determinism is almost non-existent.

Network synchronization can often be divided into two large groups, one being the

peer to peer synchronization and the other being the client and server architecture where

the reference time is obtained from one or more number of sources. Furthermore, most

 144

systems are equipped with a pure oscillator with counter based clock where

synchronization of the local hardware clock is not possible. Instead, logical clocks are

introduced. Adjustments can be made to the logical clock by adding an adjustment term

to the local hardware clock. The adjustment could be a discrete value obtained from each

re-synchronization or a linear function of time. The discrete clock adjustment method

may cause a logical clock to instantaneously leap forward or be set back and then

continue to run at the speed of the underlying hardware clock. On the other hand, a linear

function of time for clock adjustment prevents the sudden changes in the progression of

the logical clock and is more accustomed to network synchronization with distributed

systems.

The subject of time synchronization in sensor networks has only gained attention in

the recent few years. Synchronization techniques include Reference Broadcast

Synchronization (RBS) [94], Timing-Sync Protocol for Sensor Networks (TPSN) [95],

Tiny-Sync and Mini-Sync [96], Lightweight Tree based synchronization [97], 802.11

synchronization [98], Precision Time Protocol (PTP) [101] and Network Time Protocol

(NTP) [89]. Nevertheless, out of all of these synchronization methods, only NTP meets

the basic requirement for wide area monitoring applications where the capability to

synchronize with UTC time for a large geographical area is essential.

7.2 An Overview of Network Time Protocol (NTP)

For the past thirty years, Dave Mills’ Network Time Protocol (NTP) has been the ‘de

facto’ standard protocol for network time synchronization. It is the oldest continuously

operating protocol in the Internet has undergone 5 different version releases (numbered 0

through 4). Almost all of the server machines in the world use it to synchronize to UTC.

The basic concept of NTP is to synchronize the software clocks or system clocks of

computers using messages transmitted over the Internet thereby increasing the accuracy

of PC timekeeping [89]. It not only corrects the current time, it can keep track of

consistent time variations and automatically adjust for system time offset on the client.

Nevertheless, the actual variability in clock frequency is not being compensated. In the

NTP clock synchronization, the clock consists of an absolute offset, called an epoch, and

 145

a frequency ratio scale. The clock is defined as the epoch plus the hardware elapsed time

multiplied by the frequency ratio. Finally, offset is the difference in epochs, skew is the

difference in frequency and dispersion is the known error in the local clock.

NTP is built on the Internet Protocol (IP) and User Datagram Protocol (UDP) but it

can also adapt to other protocol packages [89]. The main principle behind the NTP

protocol is a client/server engine that stamps messages when sent and received. A

message transmitted from a host returns with three timestamps in its packet body

including originate, receive and transmit timestamp, and a fourth stamp separate from it.

Received messages are automatically replied and sent messages are periodically initiated

according to local state information. As a result, both the server and the peer can

independently calculate delay and offset using a single message stream. This method is

advantageous in the sense that the transmission times and received message orders are

not important and it does not require reliable delivery. Rather, the accuracies are

dependent upon the statistical properties of the outbound and inbound data paths [89].

Figure 7.1 shows the NTP message format.

Figure 7.1 NTP message format

In general, NTP reads a remote clock by sending a NTP message to the remote node

and waits for a reply in a later time. Upon receiving the reply message, the client/server

 146

engine combines the incoming packet with the current local time and processes it. The

message is stamped at each transmit and receive point as shown in Figure 7.2.

Figure 7.2 NTP message exchange

The four timestamps are used to compute round trip time and offset measurements.

Assuming that the timestamp is accurate, the round trip time, δ can be computed from

Equation 7-3. The clock time is defined as the average over an interval. Such is the case

for both local time and remote time estimation as shown in Equation 7-4 and Equation 7-

5. Furthermore, offset θ is defined as the difference between the remote clock time and

the local clock time, where positive offset indicate the remote clock is ahead of the local

clock and vice versa for a negative offset. Equation 7-7 illustrates the calculation for

offset [87].

 Equation 7-3

 Equation 7-4

 Equation 7-5

 Equation 7-6

 Equation 7-7

At this point, it is important to note that NTP is making several underlying

assumptions as the offset is being calculated. Firstly, the clock time varies linearly during

the exchange which may not always be the case due to factors such as oscillator

instabilities and error in reading the clock. Second, the path from transmitting and

receiving the message takes an equal amount of time. Such assumption can be made

invalid purely due to differences in network delays. Ultimately, the clock value is a linear

interpolation of the send and receives times of the message [89].

 147

The NTP network is composed of primary and secondary time servers, clients and

interconnecting transmission paths. A primary server is directly connected to a high

accurate reference source, such as a timecode receiver or atomic clock. A secondary

server provides time synchronization over path networks which may be shared with other

services. Each time server is given by a number called the stratum, which reflects its

distance from the reference clock.

Figure 7.3 shows a typical NTP network topology with atomic clocks and GPS timing

receivers as the most accurate timing source. Any NTP server having as a time reference

of stratum 1 server is categorized as a stratum 2. Any NTP server having as a time

reference of stratum 2 server is categorized as a stratum 3, and so on. The stratum 1

servers are connected to the high accuracy atomic clock or GPS via an RS-232 cable or

an IRIG-B (Inter-range instrumentation group) time code and they are considered to be

primary servers. Strata 2-255 are considered secondary servers and their distance to the

primary server are defined by their respective stratum number. Clients never

communicate directly with a stratum 0 server and they always go through a stratum 1

server synchronized to a stratum 0 server. By arranging the network into stratum and

allowing inaccurate higher stratum number servers to synchronize against a lower stratum

number server, the demand on the NTP server and the network is minimized [89].

Stratum 0

Stratum 1

Atomic Clock

Global

Positioning

System

Stratum 2

` `` `

` ` ``

Stratum 3

Figure 7.3 Typical NTP Network Topology

 148

Due to network delays and traffics on the Internet, a stratum 2 time server will have

anywhere from 10-100 milliseconds accuracy to UTC and each subsequent stratum time

servers will add an additional 10-100 milliseconds of inaccuracy. Nevertheless, in

practice it is rare to find clients with stratum numbers above 4 or 5 in most real-world

configurations. As a matter of fact, according to a survey conducted by David Mills,

more than half of the Internet connected NTP clients are in stratum 3, with almost all of

the remainders in strata 2 and 4. In addition to the client and server model, the NTP

servers operating on the same stratum can be associated with others in a peer to peer

basis, so they may decide highest accuracy clock and then synchronize against that

particular clock.

Ultimately, the goal of the NTP algorithms is to minimize both the time difference

and frequency difference between UTC and the system clock. When these differences

have been reduced to below a threshold of 128 milliseconds, the system clock is

considered to be synchronized to UTC. Once the time offsets of the local clock is below

128 milliseconds, the local clock is being gently steered in small steps. For offsets larger

than 128 milliseconds, the synchronization process may take a long time or never

happens. Furthermore, if the clock offsets is greater than 1000 seconds, the algorithm

would reset or the whole process reboots.

7.2.1 NTP version 4

Up to date, various versions of NTP exist, beginning with RFC (request for

comments) 778 which included only data and packet formats and specification of

server/client engine. Version 1 introduced the concept of hierarchical clock organization

and a clock adjusting algorithm. Version 2 added authentication, control message option,

and asymmetric modes of operation. It wasn’t until version 3 that a significant progress

was made in the clock synchronization algorithm. The most recent release of NTP is

version 4, which have not been documented into RFC [88].

 149

Version 4 of NTP addresses some significant shortcomings of the version 3 design.

Most importantly the new implementation uses double precision data types throughout

with the exception of the calculation of first order timestamp differences required to

determine offset and delay. The time resolution is better than one nanosecond and the

frequency resolution is better than one nanosecond per second. Additionally,

improvements are made to the clock discipline algorithm where a true hybrid of

frequency locked loop (FLL) and phase locked loop (PLL) is being implemented. The

advantage to such a hybrid feedback control system is its capability to mitigate both

network jitter and oscillator wander. Specifically, the FLL is more effective in

minimizing oscillator wander effects whereas the PLL is more effective when network

latency and jitter dominates [87].

In the previous version of NTP, the selection of using either PLL or FLL is based on

the update interval τ with PLL being used when τ is less than 1024 seconds and FLL

being used when τ is greater than 1024 seconds. Such scheme was implemented based on

the Allan intercept illustrated by the Allan deviation plot from Chapter 5, where the

oscillator stability is optimum, just before oscillator drift occurs. Version 4 of NTP

combines both PLL and FLL in such a way that the FLL prediction is weighted more

heavily when network jitter dominates and PLL prediction is weighted more heavily

under conditions of oscillator drift. Ultimately, the new implementation allows for τ to be

increased without losing significant accuracy and at the same time compensating for a

wide range of network jitter and oscillator drift [88].

7.3 Evaluation of NTP accuracy

The literature on software based clock synchronization over networks is relatively

limited. The original literature [89] contains much information on implementation but

there is no formal analysis and no benchmarking study on the performance of the newly

released NTP version 4.0. [20] indicate that the version 4 of the NTP can usually

maintain time to within 10 milliseconds over the public Internet and can achieve

accuracies of 200 microseconds or better in local area networks under ideal conditions.

 150

Such figures are arbitrary since there are many different factors that would affect the

accuracy of NTP. In general, reference clocks are assumed to be accurate and the

accuracy of the synchronized clocks are judged according to how ‘close’ a clock is to the

reference clock, the network latency to the reference clock, and the claimed accuracy of

the clock. However, the network latency is practically uncontrollable and the NTP clock

discipline seeks to minimize the errors as a result of this as well as the inherent

instabilities of the crystal oscillator.

There are many publicly available NTP servers exist today and the most common

route of obtaining accurate time is through those servers. Many organizations setup

public NTP servers as a public service. However, setting up a large number of clients to

use the public external servers is inefficient and a poor use of computing resources.

Therefore, it is more reasonable to have a few servers receive accurate time readings

from the Internet and use each of these stratum 2 or stratum 3 servers in localized areas.

All the clients at the site can then receive updates from the stratum 2 or stratum 3 servers

at the site. The alternative to the use of public NTP server is to setup reliable reference

server dedicated for specific applications. Such method may be applicable to FNET since

the FDRs are usually distributed in separate LANs and are dispersed throughout in the

WAN.

In understanding the selection process for reference clocks, it is important to note that

by synchronizing to a stratum 1 server does not necessarily dictate more accuracy

comparing with that of synchronizing to a stratum 2 server. Selecting NTP source

requires careful consideration of accuracy and reliability. In addition, it is always best to

synchronize with multiple servers to mitigate the effect of incorrect or inoperational

server. To ensure the performance of the reference clock, it is important to find a server

that is peered with several other servers to provide robustness. The NTP protocol is

designed as a hierarchy to prevent large numbers of clients from accessing the same

primary time sources. Therefore it is always a good practice to synchronize to a stratum 2

server when there are a small number of clients in the network and only synchronize to

stratum 1 server when the number of clients becomes large.

 151

Although there is very limited literature on the performance of the version 4 NTP

release, some factors that may affect its accuracy can be foreseen. It is most likely that

the achievable accuracy is heavily dependent on the operating system being used due to

the differences in the timer resolution of Windows and Linux based operating systems.

Furthermore, it is known that the NTP accuracy is maximized when synchronization

occurs in a LAN with a small number of routers and switches but rather difficult to

characterize in the WAN.

Early measurements of the time offset were conducted on the Windows XP platform

using the W32Time tool [17]. The W32Time Service is a fully compliant implementation

of the Simple Network Time Protocol (SNTP) as detailed in IETF RFC 1769. The results

indicate that the polling interval plays an important role in the accuracy of NTP time

synchronization. Furthermore, it was shown that NTP version 4 is several orders of

magnitude more accurate than that of Windows Time Service. The polling interval was

configured for both automatic and manual polling intervals where manual polling mode

allows for a fixed polling interval, and automatic polling mode is based on an algorithm

where the polling interval is determined based on a balance between accuracy and

network overhead. It was shown that with a fixed polling interval of 1024 seconds, or

polling at about every 17 minutes yields the best results in clock offsets. Windows Time

Service operating at a fixed polling interval of 1024 seconds yields a maximum clock

offset of about 60 milliseconds. Nevertheless, another measurement conducted on NTP

Daemon (NTPD) for Windows has yielded much better results with maximum offset of

about 15 milliseconds as shown in Figure 7.4. Ultimately, short polling intervals update

the parameters frequently and are more susceptible to jitter whereas long polling intervals

may require larger corrections with some significant errors between the updates.

 152

Figure 7.4 Local clock synchronized by NTPD – offset given by W32Time

The results shown in Figure 7.4 are rather biased as it is very much dependent on the

resolution of W32Time tool. Since most of the Windows NT based platforms has an

inherent timer resolution of 10 to 15 milliseconds and the W32Time tool is completely

Windows based, it is very much limited to the Windows timer resolution. As a result,

offset values lower than 15 milliseconds will not be able to be taken accounted for in the

measurement and hence the measured offsets are very much bounded to 15 milliseconds.

In order to get a more precise measurement of the NTP version 4 time offset and be

able to compare the performance between different operating system, it is necessary to

turn to a more precise measurement tool other than what is provided in the Windows

operating system. One of the most common methods to debug NTP is through the

interpretation of the statistic log files generated. Specifically used for precision timing

requirements, the loopstats (loopfilter statistics) file provide information on date, time,

offset, drift compensation, estimated error, polling interval and timing stability.

Parameters such as offset and drift are the measurement values as predicted by the NTP

loop filter. The information can be extracted from the log file for post-processing and

performance analysis. Also, since there is a readily available timing measurement system

detailed in Chapter 5, it is worthwhile to exploit its high determinism and high resolution

clock to be applied in timing measurement with NTP synchronization.

 153

7.3.1 Characterization of NTP Time Synchronization on Different
Operating Systems

To compare the performance of NTP in Windows and Linux, it is necessary to use a

common measurement system with similar levels of precision in both operating systems.

The loopstat file is available on all recently released versions of NTP and can be

activated through the NTP configuration file. Since minimizing the offset between the

local and reference clock offset is the main objective of NTP time synchronization, the

scope of analysis will be limited to the offset of the local clock with respect to the

reference clock. In addition, the reference servers that are being used were selected at

random with the exception of the Virginia Tech servers, which are known to have the

shortest network distance to the host PC and considered to be stratum 2 servers. The

polling interval is set at a maximum of 1024 seconds to allow for a fair trade-off in fast

synchronization and low network overhead.

Figure 7.5 shows the time offset of the local PC clock in a period of a week with

respect to the reference servers (see Appendix B for the NTP servers), which include 4

NTP servers located at Virginia Tech. The plot illustrate that the clock offset is the largest

at the beginning when NTP service was first started and over the course of about 3 days

the offset is minimized due to synchronization.

Figure 7.5 NTP local clock offset from server clock for Windows XP Pro. – first week of

synchronization

 154

The largest offset is around 46 milliseconds, which may be attributed to system reboot

while the average offset over the week is around merely 1.6 milliseconds. Such accuracy

is relatively high considering the low resolution of the Windows timer. Nevertheless, the

newest version of NTP (NTPD) attempts to use the TSC counter to interpolate between

the timer interrupts to obtain higher resolution timing and thereby increasing the accuracy

of the offset. Therefore the results obtained here is far more accurate than the 15

milliseconds offset obtained from W32Time measurements.

Given the fact that the Virginia Tech NTP servers are close in network distance to

the host PC, one may wonder the synchronization performance when such servers are

removed. Therefore another set of data was collected with reference servers that are

relatively far away in network distance (see Appendix B for the list of NTP servers).

Figure 7.6 shows the time offset plot of the local PC with respect to the server clock,

which does not include the Virginia Tech servers.

Figure 7.6 NTP local clock offset from server clock for Windows XP Pro. – second week of

synchronization

Since the time offset was already in steady state from the previous week of

synchronization, the beginning part of Figure 7.6 shows small time offset of less than 2

milliseconds but then the offset increased on the third day with two peaks of more than

3.5 milliseconds offset. This phenomenon may be attributed to synchronizing servers that

are further away in network distance hence introducing longer latencies in the network.

 155

Hence, the network distances of the NTP servers in the WAN may affect the accuracy of

the time synchronization but the effect does not seem to be significant.

It is also worthwhile to note that the number of times for the host PC to poll the

server is significantly different for the two sets of data. Such observed behavior is due to

the nature of the NTP algorithm, which allows for more frequent polling when the time

offset is large and less polling when the time offset is relatively small. Since the second

set of time offset data without VT NTP servers was collected right after the

synchronization with the servers including the VT NTP servers, the offset of local clock

is already small so there were less frequent polling of the servers. Considering that the

second set of data was collected in 6 days and the first set was collected in 7 days, the

average number of times that the servers are being polled each day was approximately

102 for the 7 days and 154 for the 6 days.

To examine the performance of Linux based operating system with NTP time

synchronization, Ubuntu was used to synchronize with the same set of NTP servers

(Appendix B including Virginia Tech servers) as Windows XP for comparison. In

addition, the configuration for polling is the same as it was used in Windows XP with

1024 seconds maximum polling period. Figure 7.7 shows the time offset of the Ubuntu

local clock offset with respect to the server for a period of 7 days. Similar to Figure 7.4,

the largest clock offsets occurs at the beginning of synchronization, indicating the local

clock is relatively far off from UTC time upon boot up. However, the beginning of the

synchronization also exhibits a semi-transient response for a period of over one day and

enters the steady state in the middle of the second day. In addition, the maximum offset is

about -60 milliseconds and occurs at the very beginning of synchronization. Although the

initial clock offset is relatively large compare with that of the Windows XP, Ubuntu still

manages to obtain synchronization with the remote server on the second day as opposed

to taking up to three days for the Windows XP. What’s more important in this set of

results is the verification that Ubuntu was able to obtain below 1 millisecond offset with

respect to the server clock. Statistics for the one week’s worth of data is tabulated in

Table 7-1 along with the Windows XP results for comparison. It is interesting to note that

 156

Ubuntu polled the servers only about half as much as that of Windows XP and obtained

an average clock offset value of about a half of its Windows XP counterpart.

Figure 7.7 NTP local clock offset from server clock for Ubuntu – first week of synchronization

Table 7-1 NTP local clock offset statistics for the first week – Windows XP Pro. versus Ubuntu

 Time offset from remote server
for Ubuntu

Time offset from remote server
for Windows XP

Number of data points
(number of polls)

546 1084

Mean -0.8042 ms 1.689 ms
Median 0.0895 ms 0.2634 ms

Standard Deviation 9.82 ms 6.259 ms
Range 86.27 ms 72.66 ms

Minimum -60.16 ms -25.88 ms

Maximum 26.11 ms 46.77 ms

Since the time offset data illustrated in Figure 7.7 shows a relatively accurate clock

with offsets below 1 millisecond at the end of the second day and throughout the rest of

the week, it was decided to collect more data for another week to observe if NTP can

maintain the synchronization. Figure 7.8 shows the time offset data of the second week in

succession of what is shown in Figure 7.7. Also, statistics of second week’s data are

tabulated in Table 7-2. Again, lower number of polls is shown for the second week due to

the smaller offset of local clock. Maximum deviation occurs at the first day of the week

with about 0.63 millisecond offset, and then stays within the bound of about 0.5

milliseconds offset throughout the rest of the week.

 157

Figure 7.8 NTP local clock offset with respect to server clock for Ubuntu – second week of

synchronization

Table 7-2 NTP local clock offset statistics for the first week – Ubuntu

 Offset from remote server for Ubuntu

Number of data points
(number of polls)

425

Mean 32.26 us
Median 26 us

Standard Deviation 0.1854 ms
Range 1.09 ms

Minimum -0.458 ms

Maximum 0.632 ms

Clearly, the measurement conducted using NTP version 4 is more accurate than the

standard SNTP implementation in the Windows XP operating system. Furthermore, it

was shown that the Linux based operating system Ubuntu exhibits better accuracy in

NTP synchronization and synchronizes to the remote clock at a faster speed added with

less server polling than its Windows XP counterpart. This is mainly due to the differences

in timekeeping implementation of the two operating systems. The newer Linux

distributions (version 2.4 and beyond) has a significant change in the timekeeping

implementation. Specifically the frequency of the timer interrupt is increased from 100Hz

to 1000Hz whereas the Windows XP timer interrupt is kept at 100Hz. In addition, a new

abstraction layer called ‘clocksource’ was introduced. In this subsystem the operating

system selects the hardware counter it considers the most reliable at boot time and

 158

provides an interface to access it. Throughout the measurements conducted in this study,

the TSC was selected by the operating system and deems to be the most reliable source.

Although not sufficient to address all needs, especially for high accuracy

synchronized phasor angle measurements where a specialist solution such as the use of

GPS receivers is required, NTP synchronization is a low-cost alternative that can be used

for applications where the timing requirement is not as stringent. With less than 1

millisecond offset from the UTC time, it’s possible to use NTP for frequency

measurement where timing requirements are not as high as the angle measurement. As an

example, the detection of sudden frequency excursions does not need accuracies in the

microseconds range and NTP is more than adequate for such applications. Nevertheless,

the main goal of NTP is to maintain bounded offset between the local system clock with

the server clock, it does not put any emphasis in the correction of system clock skew or

clock drift. The next section takes a closer look at the inherent TSC clock skew by

measuring the TSC clock skew with respect to the GPS 1PPS.

7.3.2 Measurement of TSC clock skew

It was observed in the previous section that the NTP synchronization can keep the

local clock offset to within 1 millisecond with respect to the reference clock. In this

section, measurement is performed on the skew of the local processor clock with respect

to the GPS 1PPS. Since a high precision measurement system was developed and

characterized in Chapter 5, the same measurement system can be used to measure the

TSC clock skew, where TSC clock represents the relative time obtained by scaling the

TSC counts. The reason that the TSC clock skew is being measured here instead of the

system time is due to the fact that real-time operating systems such as RTAI can not

access the system time without breaking the real-time performance. However, one

method of getting around this incapability is to have a soft time based scheduler running

in Linux that would periodically synchronize the TSC counts to the Linux system time.

By retrieving the Linux system time and the TSC counts in the soft task, one can easily

scale the system time to TSC counts and then subtract the TSC counts that was retrieved

to obtain the system boot time. The drawback to such implementation is that the soft task

 159

is at the mercy of being preempted by the RTAI task, thereby losing synchronization at

times with the system time. Also, with periodic synchronization to the Linux system time,

it is expected that the rate of the clock will be fluctuating at relatively large magnitudes.

Given that the TSC counter has inaccurate but fairly stable frequencies and that it is

used to interpolate between the timer interrupts in the NTP algorithm, it would be

interesting to examine how the TSC clock compares with the 1PPS. The concept of the

TSC clock is to simply scale the TSC counts to nanoseconds and the scaling process

takes on the following form:

 Equation 7-8

Where fCPU is the estimated processor frequency determined during system boot.

Specifically, an attempt is made during every system boot to calibrate the processor

frequency by comparing it with the PIT. The calibration result is in the format of TSC

counts per microsecond. This 50 milliseconds calibration is coarse mainly due to I/O

delays in accessing the PIT. As a result, the accuracy of timekeeping with TSC selected

as the ‘clocksource’ is highly dependent on the accuracy of TSC frequency calibration.

When the TSC is used for interpolation in between system timer interrupts, NTP either

skews or set the system time to synchronize with the server time. However, since the

initial calibration is susceptible to error, some initialization time needs to be resorted for

NTP to estimate the skew value. Such phenomenon was observed in the previous section

where there is a startup transient in the time offset when NTP was first started.

To measure the TSC clock skew, the same setup that was used in Chapter 5 is used

here. The GPS 1PPS triggers the serial port interrupt and the system enters the ISR where

the TSC count is being read and converted to nanoseconds based on Equation 7-9. Post-

processing calculates the interval of 1PPS using Equation 7-10 and the clock skew is

calculated based on Equation 7-11. It should be noted that these equations are similar to

Equation 5-3 and Equation 5-12 from Chapter 5 since the clock skew is the time domain

representation of the frequency offset. However, in this context the processor frequency

used for scaling is a result of the calibration with the PIT upon system boot, thereby

reflecting the inherent timekeeping accuracy of the TSC. The TSC clock skew is plotted

 160

in Figure 7.9 along with the corresponding histogram representing one week’s worth of

data. Note that the phrase ‘offset from 1PPS’ is used here due to the fact that the skew is

a relative offset and can be approximated by the difference between the clock’s rate and

the reference rate of 1, or in this case the 1PPS.

 Equation 7-9

 Equation 7-10

From observing Figure 7.9, it’s clear that the TSC clock exhibit a ‘jump’ in the

beginning of synchronization going from one rate to another. This change in clock skew

was intentionally introduced when the system was rebooted. When data collection was

initiated, the average offset from the ideal rate of 1PPS is about 35 microseconds behind,

or 35PPM of error per second. Then after the reboot, the average offset changed to about

10 microseconds, or 10PPM of error per second. Furthermore, with the exception of the

random jitter noise the clock rate stayed relatively constant for the rest of the week

averaging about 10 microseconds offset from the 1PPS. The change in the rate of the

clock is caused by the initial calibration of the TSC upon system boot. Since the

calibration results in a different value upon each system boot and it is propagated to the

processor frequency parameter given by the operating system, the TSC clock skew varies

depending on the accuracy of the initial calibration. As a result, a relatively large TSC

clock skew would slow down the process for NTP to synchronize with the remote server

clock and conversely a relatively small TSC clock skew would most likely speed up the

process.

 161

Figure 7.9 TSC clock skew (with reboot)

To further the investigation, two more measurement trials were conducted over the

course of a week each to examine the variability of the PIT calibration results. The

measurement result is plotted in Figure 7.10 and Figure 7.11 along with its respective

histograms. Interestingly, the average rate of the clock in Figure 7.10 is about 40

microseconds behind with respect to the 1PPS, which is similar to the measurement result

observed in Figure 7.9 before the reboot. In the second trial measurement, the clock is

about 10 microseconds behind with respect to the 1PPS as it is shown in Figure 7.11.

Hence, the calibration error is in the range of 10PPM to 40PPM.

 162

Figure 7.10 TSC clock skew measurement case 1

Figure 7.11 TSC clock skew measurement case 2

 163

7.4 Summary

In this chapter, the network time synchronization is introduced as an alternative to the

GPS for FDR time synchronization. Since NTP provides coverage in the wide area

network (WAN) with time synchronization referenced by the UTC, it is the most

appropriate for FDR time synchronization. Although it is well known that NTP is

incapable of matching the accuracy obtainable by the GPS, there is very limited literature

on the achievable synchronization accuracy on the WAN, let alone any data to illustrate

the accuracy.

Preliminary evaluation of NTP accuracy was conducted using the Windows XP

operating system due to its wide acceptance. With minimal configuration the results

indicate that the operating system timer API is limited to about 16 ms of resolution.

Hence it was decided to use the time offset data provided by the NTP loopfilter, which is

a more accurate depiction of the local clock time offset with respect to the server clock.

In addition, the time offset data can be used to compare the accuracies achieved by

different operating systems. It is shown that the Linux based operating system can

achieve less than 1 millisecond time offset with respect to the server clock when given

the appropriate configurations and hardware. Furthermore, it is also shown that when the

TSC is selected as the clocksource, the local clock offset undergoes transient upon

reboot. When given enough time for NTP to correctly estimate the TSC frequency, the

local clock time offset reaches well below 1 millisecond.

In relationship to FNET applications, NTP time synchronization does not provide the

accuracy that is needed for phasor angle measurement but it can be used for frequency

measurements where the timing requirement is not as strict. The timing accuracy of NTP

is limited by the network traffic as well as the underlying hardware. Chapter 6 has shown

the limitations of a real-time operating system characterized by microsecond latencies

and jitter noise. Hence it is trivial to imply that a general purpose operating system such

as Linux has larger variations in its timing and lower determinism. If the next generation

FDR were to be based on a standalone PC, the system time of the PC can be

synchronized with one or several remote servers. Given the results from this study, it

 164

would be the most appropriate to use a Linux based operating system installed on a

uniprocessor desktop PC. In addition, if the TSC is selected as the clocksource, the power

management and frequency stepping features should be disabled to optimize the

synchronization accuracy. Once NTP has started, there needs to be enough time allocated

for the local clock time to synchronize with the server clock. Once the local clock time

offset has reached below a certain threshold, software polling can be used to detect the

start of the second and begin the sampling process. Although the frequency estimation is

not as accurate compared with a GPS synchronized FDR, larger geographical coverage is

possible with a standalone PC based FDR. Furthermore, the measured frequency data can

be used for generator trip detection, generation loss estimation and event localization.

 165

Chapter 8 Conclusions and Future Work

8.1 Conclusions and Contribution

This dissertation presents several novel architectures for the next generation FDR

design. Although there are tradeoffs that need to be considered for each one, the overall

goal of higher computation capabilities and lower cost can be achieved through the

integration of a PC in the overall design. By leveraging the high performance floating

point processing capabilities of the x86 architecture and its large installation base, a PC

based FDR would be able to achieve a significantly higher sampling rate and be deployed

at a faster pace. All of this is made possible by a standalone PC, a FPGA, a GPS receiver

and a microcontroller. At the same time, it is also important to recognize the availability

of network time synchronization for general purpose operating systems, which eliminates

the dependency of GPS hardware for time synchronization. Nevertheless, given the fact

that network time synchronization has lower accuracy compared with the GPS and the

phasor angle estimation requires accuracy in the lower microseconds range, only

frequency measurement and limited applications can be considered for the standalone PC

based design.

Since frequency and phasor angle measurement accuracy is directly related to the

timing of the sampling pulses, this dissertation addresses the subject matter of timing

from several different perspectives. Firstly, the fact that conventional GPS is limited to

operate with line of sight to the satellites is prohibiting its uses in certain locations. This

work has introduced the implementation of the high sensitivity or indoor GPS for

synchronized frequency and phasor angle measurements at locations that are not possible

with the conventional GPS. Due to effects such as reflection and diffraction, the signal

strength of the acquired satellites is weaker and the accuracy of timing and position

solution degrades. Nevertheless, results are presented in this dissertation with regard to

the accuracy and availability achievable by the indoor GPS and most importantly, its

applicability for FDR. It is shown that the indoor GPS can be used in FDR time

synchronization and it is capable of providing similar level of timing accuracy with

 166

respect to the conventional GPS under signal degradation. Given its higher availability

and comparable performances with respect to the conventional GPS, the indoor GPS adds

a new dimension to the next generation FDR and expands the opportunity for more FNET

coverage without degrading the measurement accuracy.

Another aspect of the timing accuracy has to do with the inherent accuracy and

stability of the common crystal oscillator. Study was conducted in the characterization of

the crystal oscillator to provide some insights for why the conventional oscillator can not

be a precision timing source. In addition, a timing measurement system is proposed based

on the TSC counter of the Intel x86 processor and a real-time extension to Linux. The

measurement system provides high resolution timing through the multi-gigahertz clock of

the Pentium processor and hard real-time determinism provided by RTAI. Measurement

results are presented in this dissertation which shows that the PC oscillator has relatively

high stability when averaged over time but inaccurate frequencies. Nevertheless, with the

aid of a high precision timing source such as the GPS, the frequency inaccuracies in the

crystal oscillator can be measured and removed. Statistical analysis is conducted in this

work to provide some insights into the most optimized method of synchronizing the local

oscillator with GPS. The results presented here is significant in the sense that a more

accurate estimate of the oscillator frequency can be obtained by averaging the

measurement over time whereas the conventional method of synchronization is based on

the rising edge of 1PPS alone without any compensation in oscillator frequency errors. In

relationship to the next generation FDR design, the averaging of the measurement can be

easily performed on the PC based architecture given its fast computation capabilities and

large memory size.

To investigate the accuracy of frequency and phasor angle measurement using

different precision timing mechanism, a novel methodology is proposed to model the

FDR based on the sampling time of the ADC. The approach was motivated by the fact

that the timing resolution of PC processor clock is significantly higher than the DSP and

any latency associated with the system is minimized by using a real-time operating

system RTAI. Starting with the establishment of a high accuracy clock division algorithm

 167

that is self-regulating and is independent of the clock speed, direct comparisons can be

made for different systems with regard to the timing of trigger for conversion. Given the

length of the 1PPS as measured by the TSC counter, the clock division algorithm can be

used to calculate the exact time that the conversion should occur. The errors associated

with the DSP clock is simply the difference between when the conversion should occur

and when it actually occurred, as measured by the PC. Then with the histograms

generated based on this error, one can use random sampling to simulate the sampling

process. However, due to some optimization features of the Pentium processor, the

inherent jitter noise associated with the measurement system is significant with respect to

the resolution of the DSP clock. Ultimately, the FDR can be modeled more accurately

given a more deterministic system with delays and jitter noise much smaller than the

resolution of the DSP clock.

The concept of network time synchronization is proposed for the standalone PC based

FDR. Since NTP provides wide-area coverage and is synchronized to UTC time, it is

introduced in this dissertation as an alternative to GPS timing synchronization. Although

at this stage of development, the accuracy of NTP time synchronization is limited by the

Internet traffic load and the inherent stability of the hardware clock. Hence its accuracy

cannot match that of the GPS. Nevertheless, results presented in this dissertation indicate

that given the proper operating system, configuration and hardware, NTP can maintain

below 1 millisecond offset with respect to UTC time. Such accuracy is not suitable for

phasor angle measurement but it is acceptable for the monitoring of frequency dynamics

where the timing requirement is not as strict. In addition, it was shown in the

measurement results that immediately after a machine reboot, NTP is susceptible to

transients in the time offset with respect to the server clock. This behavior is closely

linked to the inaccuracies of the TSC calibration procedure which tends to produce varied

results for TSC frequency upon every system boot. Ultimately, network time

synchronization can still be a viable choice for the next generation FDR. The standalone

PC based architecture can bring about the largest geographical coverage at the lowest

cost.

 168

Regardless of the architecture that will be used in the next generation design, whether

it is embedded system, PC based or even a combination of both, the timing analysis

results presented in this dissertation can be applied to improve upon the current FDR

design and bring about higher accuracy and availability for synchronized sampling.

Furthermore, the hardware architecture is also a determinant factor for FDR measurement

accuracy. The standalone PC based FDR is not only limited by the accuracy of time

synchronization but it is also susceptible to variability in the sampling time caused by the

underlying hardware and the operating system. However, much improved real-time

determinism can be achieved by integrating an FPGA to the PC based FDR timing

subsystem. As a result, the PC based FDR architecture combined with FPGA does not

only provide for higher computation capabilities but also deterministic timing.

Nevertheless, the biggest limitation of the PC based FDR architecture is related to the

security issues. Since an operating system is required for all of the general purpose PC, it

is more vulnerable to intruder attacks from the wide area network. This issue did not exist

in the first and second generation FDR since the embedded system does not need an

operating system. Although there are some ways to lower the risk of network intrusions,

these include the preferential use of Unix based operating system over the Windows

based operating system or installing sophisticated firewalls and anti-virus software. More

future work is needed to further the investigation on this topic and bring about more

secure FDR architecture.

8.2 Future Works

• Expand design architectures for FDR to use more off the shelf components and

increase the modularity of the design.

• Increase accuracy of NTP by using better quality hardware clock (TCXO, OCXO)

and using dedicated FNET NTP servers.

• Develop fault detection algorithm in FDR to mitigate the effect of erroneous

timing solution caused by signal attenuation in indoor GPS.

• Measure the FDR trigger for conversion timing using a more deterministic timing

solution such as the time interval counter to develop a more accurate FDR model.

 169

The model can be used to evaluate the accuracy of frequency and phasor angle

measurement using network time protocol or any other time synchronization

sources.

 170

References

[1] Z. Zhong, C.C. Xu, B.J. Billian, L. Zhang, S.-J.S. Tsai, R.W. Conners, V.A.
Centeno, A.G. Phadke,; Y. Liu, “Power system frequency monitoring network
(FNET) implementation”, IEEE Transactions on Power Systems, vol. 20, no. 4,
pp. 1914 – 1921, Nov. 2005.

[2] IEEE Standard for Synchrophasors for Power System, C37.118-2005, prepared by
the IEEE Power System Relaying Committee of the Power Engineering Society.

[3] J. Chen, “Accurate frequency estimation with phasor angles,” M.Sc. dissertation,
Bradley Dept. Elect. Comput. Eng., Virginia Polytechnic Inst. State Univ.,
Blacksburg, VA, 1994.

[4] C. Xu, “High Accuracy Real-time GPS Synchronized Frequency Measurement
Device for Wide-area Power Grid Monitoring” Ph.D. dissertation, Bradley Dept.
Elect. Comput. Eng., Virginia Polytechnic Inst. State Univ., Blacksburg, VA,
2006.

[5] B. Billian, “Next generation design of a frequency data recorder using field
programmable gate arrays”, Master thesis, Bradley Dept. Elect. Comput. Eng.,
Virginia Polytechnic Inst. State Univ., Blacksburg, VA, 2006.

[6] A.G. Phadke, J.S. Thorp, et al, “A new measurement technique for tracking
voltage phasors, local system frequency, and rate of change of frequency”, IEEE
Transaction on PAS., 1983.

[7] C. Nguyen and K. Srinivasan, “A new technique for rapid tracking of frequency
deviation based on level crossings”, IEEE Transaction on Power Apparatus and
Systems, 1984.

[8] M. Begovic, P. Djuric, et al, “Frequency tracking in power networks in the
presence of harmonic”, IEEE Transaction on Power Delivery, 1993.

[9] J.Z. Yang, C.W. Liu, “A precise calculation of power system frequency and
phasor”, IEEE Transaction on Power Delivery, 2000.

[10] M. Giray, M. Sachdev, “Off-nominal frequency measurement in electric power
systems”, IEEE Transaction on Power Delivery, 1989.

[11] V. Terzija, M. Djuric, et al, “Voltage phasor and local system frequency estimation
using Newton type algorithm”, IEEE Transaction on Power Delivery, 1994.

[12] M. Sachdev, H.C. Wood, et al, “Kalman filtering applied to power system
measurements for relaying”, IEEE Transaction on Power Apparatus and Systems,
1985.

[13] Arbiter Systems, Inc., “Model 1133A Phasor measurement specifications”, 2007.
[14] T. Xia, “Frequency Monitoring Network Algorithm Improvements and

Application Development”, Ph.D. dissertation, Bradley Dept. Elect. Comput.
Eng., Virginia Polytechnic Inst. State Univ., Blacksburg, VA, 2009.

[15] L. Wang, “Printed circuit board design for frequency disturbance recorder”,
Master thesis, Bradley Dept. Elect. Comput. Eng., Virginia Polytechnic Inst. State
Univ., Blacksburg, VA, 2005.

[16] L. Wang, J. Burgett, J. Zuo, C.C. Xu, B. Billian, R.W. Conners, Y. Liu,
“Frequency disturbance recorder design and developments”, IEEE Power
Engineering Society General Meeting, 2007.

 171

[17] L. Wang, J. Fernandez, J. Burgett, R.W. Conners, Y. Liu, “Network time protocol
for clock synchronization in wide area measurements”, IEEE Power Engineering
Society General Meeting, 2008.

[18] G. Frantz, R. Simar, “Comparing fixed and floating point DSPs”, White Paper,
Texas Instruments, 2004.

[19] J. Carroll, K. Montgomery, “Global positioning system timing criticality
assessment – preliminary performance results”, 40th Annual Precise Time and
Time Interval (PTTI) Meeting, 2008.

[20] V. Madani, D. Novosel, and et.al. PSTT, “Guidelines for Synchronization
Techniques Accuracy and Availability”, NASPI report, 2008.

[21] H. Hellwig, “Frequency Standards and Clocks: A Tutorial Introduction”
[22] F. Diggelen, “Indoor GPS Theory and implementation”, IEEE Position, Location

and Navigation Symposium, 2002.
[23] D. Allan, J. Barnes, “Optimal Time and Frequency Transfer using GPS Signals”,

36th Annual Frequency Control symposium, 1982.
[24] T. Dao, G. Lachapelle, “GPS Performance for Various Applications”,

Proceedings of ACRS, 2005.
[25] J. Carroll, K. Montgomery, Global Positioning System Timing Criticality

Assessment – Preliminary Performance Results”, Precise Time and Time Interval
(PTTI) Meeting.

[26] M. Braasch, GPS Receiver Architecture and Measurements” Proceedings of the
IEEE, Vol. 87, No. 1, Jan. 1999.

[27] W. Lewandowsk, C. Thomas, “GPS time transfer”, Proceedings of the IEEE,
1991.

[28] P. Misra, P. Enge, “Global Positioning System Signals, Measurements, and
Performance”, Ganga-Jamuna Press, Lincoln, Massachusetts, 2001.

[29] L. Vittorini, B. Robinson, “Optimizing Indoor GPS Performance” GPS World,
Nov. 2003

[30] Wieser, “High-sensitivity GNSS: The Trade-off Between Availability and
Accuracy”, Proceedings of third Symposium Geodesy for Geotechnical and
Structural Engineering.

[31] G. Lachapelle, H. Kuusniemi, D. Dao, G. MacGougan, M. Cannon, “HSGPS
Signal Analysis and Performance under Various Indoor Conditions”, Proceedings
of GPS/GNSS 2003 Conference.

[32] G. Dedes, A. Dempster, “Indoor GPS Positioning Challenges and Opportunities”,
[33] F. Diggelen, “Global locate indoor GPS chipset and services”, Institute of

Navigation (ION) Technical Meeting, 2001.
[34] T. Parker and D. Matsakis, “Time and Frequency Dissemination, Advances in

GPS Transfer Techniques”, GPS World, Nov. 2004.
[35] J. Rutman, “Characterization of Frequency Stability in Precision Frequency

Sources”, Proceedings of the IEEE, June, 1991.
[36] J. Barnes et al., “Characterization of Frequency Stability”, IEEE Transactions on

Instrumentation and Measurement, May, 1971.
[37] F. Diggelen, “Indoor GPS Theory and Implementation”, IEEE Position, Location

and Navigation Symposium, 2002.

 172

[38] S. Bednarz, “Adaptive Modeling of GPS Receiver Clock for Integrity Monitoring
during Precision Apporaches”, MS. Thesis, M.I.T., 2004.

[39] J. Carroll, K. Montgomery, “GPS Timing Criticality Assessment – Preliminary
Performance Results”, 40th Annual Precise Time and Time Interval Meeting.

[40] J. Collin et al., “HSGPS under Heavy Signal Masking – Accuracy and
Availability Analysis”, Proceedings of 6th Nordic Radio Navigation Conference,
2003.

[41] H. El-Natour et al., “Impact of Multipath and Cross-Correlation on GPS
acquisition in Indoor environments”, Institute of Navigation (ION) Technical
Meeting, 2005.

[42] R. Watson et al., “Investigating GPS Signals Indoors with Extreme High-
Sensitivity Detection Techniques”, Journal of the Institute of Navigation, 2005.

[43] G. Geier et al., “Prediction of the Time Accuracy and Integrity of GPS Timing”,
IEEE International Frequency Control Symposium, 1995.

[44] J. Benedicto, D. Ludwig, “Galileo defined: proposed architecture and services for
the new European satellite positioning system”, GPS World, Eugene, Oregon,
2001.

[45] Coordination Scientific Information Center, “GLONASS – Global navigation
satellite system”, http://www.glonass-ianc.rsa.ru/, 2009.

[46] K.J.H. Khan, “Wide area power system monitoring device design and data
analysis”, Master thesis, Bradley Dept. Elect. Comput. Eng., Virginia Polytechnic
Inst. State Univ., Blacksburg, VA, 2006.

[47] M. Lombardi, L. Nelson, A. Novick, V. Zhang, “Time and Frequency
Measurement Using the GPS”, 2001.

[48] i-Lotus Corporation, “M12M GPS Receiver User’s Guide”, 2006.
[49] NavSync Corporation, “CW12 GPS User Manual”, 2007.
[50] Motorola Corporation, “M12+ GPS Receiver User’s Guide”, 2004.
[51] SigNav Pty. Limited, “TM3 Timing Module User Guide”, 2006.
[52] QinetiQ, “The QinetiQ Q20 high sensitivity GPS receiver integration board”,

datasheet, 2007.
[53] u-Blox AG, “LEA-4T ANTARIS 4 programmable GPS module with precision

timing”, datasheet, 2006.
[54] GPS Joint Program Office, IS-GPS-200, Interface Specification: Navstar GPS

Space segment/Navigation User Interfaces, Rev. D, 2006.
[55] D. Helling, M. Hense, H. Auweraer, J. Leuridan, “Data stream synchronization of

distributed measurements systems using GPS technology”, IEEE Workshop on
intelligent data acquisition and advanced computing systems: technology and
applications, 2005.

[56] Kintner, Paul M., Global Positioning System Theory and Design, Class Notes,
1999.

[57] M. Lombardi, “Remote Frequency Calibrations: The NIST Frequency
Measurement and Analysis Service”, NIST Special Publication 250-29.

[58] J. Vig and F. Walls, “Fundamental Limits on the Frequency Instabilities of Quartz
Crystal Oscillators”, IEEE International Frequency Control Symposium, 1994.

[59] H. Zhou, C Nichools, T. Kunz, H. Schwartz, “Frequency Accuracy and Stability
Dependencies of Crystal Oscillators”, Technical Report SCE-08-12, Nov. 2008.

 173

[60] F. Walls and J. Vig, “Fundamental Limits on the Frequency Stabilities of Crystal
Oscillators”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, July 1995.

[61] J. Vig, “Introduction to Quartz Frequency Standards”, Technical Report SLCET-
TR-92-1, Army Research Laboratory, 1992.

[62] R. Fillter, “Long-Term Aging of Oscillators”, IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, July 1993.

[63] D. Allan, “Time and frequency (time domain) characterization, estimation, and
prediction of precision clocks and oscillators”, IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, Nov. 1987.

[64] D.B. Percival, “Use of robust statistical techniques in time scale formation”,
Preliminary Report, U.S. Naval Observatory Contract No. N70092-82-M-0579,
1982.

[65] P.H. Kamp, “Timecounters: efficient and precise timekeeping in SMP kernels”,
Proceedings of the BSDCon Europe 2002, Nov. 2002.

[66] Brannon, “Sampled Systems and the Effects of Clock Phase Noise and Jitter”,
Analog Devices Appliation Note AN-756, 2004.

[67] V. Rosati, R. Fillter, S. Schodowski, J. Vig, “State of the Art in Crystal
Oscillators, Present and Future”, US Army Electronics Technology and Devices
Laboratory, 1983.

[68] R. Fillter, “The Acceleration Sensitivity of Quartz Crystal Oscillators: A
Review”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, May 1988.

[69] J. Vig and T. Meeker, “The Aging of Bulk Acoustic Wave Resonators, Filters and
Oscillators”, 45th Annual Symposium on Frequency Control, 1991.

[70] Sullivan and J. Levine, “Time Generation and Distribution”, Proceedings of the
IEEE, July, 1991.

[71] R. Wilson, “Uses of Precise Time and Frequency in Power Systems”, Proceedings
of the IEEE, July, 1991.

[72] J. Roberson, “Accurate, high resolution absolute timing on the PC platform”,
Dedicated Systems Magazine, 2001, Q3.

[73] J. Zhang, R. Lumia, J. Wood, G. Starr, “Achieving Deterministic Hard Real-time
Control On An IBM-Compatible PC: A General Configuration Guideline”, IEEE
International Conference on Systems, Man and Cybernetics, 2005.

[74] L. Dozio, P. Mantegazza, “Linux Real Time Application Interface (RTAI) in low
cost high performance motion control”, Proceedings ANIPLA., 2003.

[75] National Institute of Standards and Technology, “Introduction to Linux for real-
time control”, available at http://www.isd.mel.nist.gov/projects/rtlinux/, 2002.

[76] T. Wiedemann, “How fast can computer react?”, Seminar paper, 2005.
[77] F. Proctor, W. Shackleford, “Timing studies of real-time Linux for control”,

Proceedings of the 2001 ASME computers in engineering conference, 2001.
[78] F. Proctor, W. Shackleford, “Real-time operating system timing jitter and its

impact on motor control”, Proceedings of the SPIE International symposium on
Intelligent Systems and Advanced Manufacturing, 2001.

 174

[79] P. Cloutier, P.Mantegazza, S. Papacharalambous, I. Soanes, S. Hughes, K.
Yaghmour, “DIAPM-RTAI position paper”, Real Time Operating System
Workshop, 2000.

[80] R. Giladi, “Evaluating the MFLOPS measure”, IEEE Micro, 1996.
[81] R. Wilson, “Methods and uses of precise time in power systems”, IEEE

Transactions on Power Delivery, Jan. 1992.
[82] J. Ridoux, D. Veitch, “Ten microseconds over LAN, for free”, IEEE Transactions

on Instrumentation and Measurement, June, 2009.
[83] Veitch, J. Ridoux, S. Korada, “Robust synchronization of absolute and difference

clocks over networks”, IEEE/ACM Transactions on Networking, Apr. 2009.
[84] Pasztor, D. Veitch, “PC based precision timing without GPS”, Proceedings ACM

Sigmetrics Confernce Meas. Model. Comput. Syst., 2002.
[85] K.Correll, N. Barendt, M. Branicky, “Design considerations for software only

implementations of the IEEE-1588 precision time protocol”, Proceedings ISPCS,
2005.

[86] H. Marouani, M. Dagenais, “Internal clock drift estimation in computer clusters”,
Journal of Computer Systems, Networks and Communications, 2008.

[87] D. Mills, “Adaptive hybrid clock discipline algorithm for the network time
protocol”, IEEE/ACM Transaction on Networking, Vol. 45, 1999.

[88] D. Mills, “Clock discipline algorithms for the network time protocol Version 4”,
Electrical Engineeering Report 97-3-3, University of Delaware, March 1997.

[89] D. Mills, “The network computer as precision timekeeper”, Proceedings Precision
Time and Time Interval Applications and Planning Meeting, Dec. 1996.

[90] D. Mills, “Unix kernel modifications for precision time synchronization”,
Electrical Engineering Report 94-10-1, University of Delaware, Oct. 1994.

[91] D. Mills, “Network time protocol version 4 reference and implementation guide”,
NTP working group technical report 06-6-1, Jun. 2006.

[92] D. Mills, “The nanokernel”, Proceedings Precision Time and Time Interval
Applications and Planning Meeting, Nov. 2000.

[93] T. Broomhead, J. Ridoux, D. Veitch, “Counter availability and characteristics for
feed-forward based synchronization”, International IEEE Symposium on
Precision Clock Synchronization for Measurement, Control and Communication,
Oct. 2009.

[94] J. Elson, L. Girod, D. Estrin, “Fine grained network time synchronization using
reference broadcasts”, Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation, Dec. 2002.

[95] J. Greunen, J. Rabaey, “Lightweight time synchronization for sensor networks”,
Proceedings of the 2nd ACM International Conference on Wireless Sensor
Networks and Applications, Sept. 2003.

[96] M. Sichitiu, C. Veerarittiphan, “Simple, accurate time synchronization for
wireless sensor networks”, IEEE Wireless Communications and Networking
Conference, 2003.

[97] S. Ganeriwal, R. Kumar, M. Srivastava, “Timing sync protocol for sensor
networks”, ACM SenSys, Nov. 2003.

 175

[98] J. Chiang, T. Chiueh, “Accurate clock synchronization for IEEE 802.11 based
multi-hop wireless networks”, IEEE Transactions on Parallel and Distributed
Systems, 2007.

[99] W. Kester, “Mixed-signal and DSP design techniques”, Analog Devices, 2000.
[100] F. Sivrikaya, B. Yener, “Time synchronization in sensor networks: a survey”,

IEEE Networks, 2004.
[101] J. Eidson, M. Fischer, and J. White, “IEEE-1588 Standard for a precision clock

synchronization protocol for networked measurement and control systems”,
Proceedings of the 34th Precise Time and Time Interval (PTTI) Systems and
Applications Meeting, 2000.

[102] Hewlett-Packard, “Hewlett-Packard Application Note: 200-3 The Fundamentals
of Time interval measurement”, Hewlett-Packard company, 1997.

[103] J. Riley, “Handbook of frequency stability analysis”, Beaufort Hamilton
Technical Services, 2007. Available on web:
http://tf.nist.gov/general/pdf/2220.pdf

[104] W. Kester, “Which ADC architecture is right for your application?”, Analog
Dialogue, vol. 39-06, Jun. 2005.

[105] W. Kester, “MT-020: ADC Architectures I: The Flash Converter”, Tutorial MT-
020, Analog Devices Inc., Norwood, MA. Jan. 15, 2006.

[106] W. Kester, “MT-021: ADC Architectures II: Successive Approximation ADCs”,
Tutorial MT-021, Analog Devices Inc., Norwood, MA. Jan. 25, 2006.

[107] W. Kester, “MT-022: ADC Architectures III: Sigma-Delta ADC Basics”, Tutorial
MT-022, Analog Devices Inc., Norwood, MA. Jan. 25, 2006.

[108] W. Kester, “MT-024: ADC Architectures V: Pipelined Subranging ADCs”,
Tutorial MT-024, Analog Devices Inc., Norwood, MA. October, 2008.

[109] W. Kester, “MT-027: ADC Architectures VIII: Integrating ADCs”, Tutorial MT-
027, Analog Devices Inc., Norwood, MA. October, 2008.

[110] G. I. Kiani, A. Karlsson, L. Osslon, and K. P. Esselle, “Glass characterization for
designing frequency selective surfaces to improve transmission through energy
saving glass windows,” Asia Pacific Microwave Confernce, Bangkok, December,
2007.

[111] M. Gustafsson, A. Karlsson, “Design of frequency selective windows for
improved indoor outdoor communication”, IEEE Transactions on Antennas and
Propagation, Volume 54, 2006.

 176

Appendix A

GPS Signals and Positioning Analysis

I Review of GPS Signal Power Levels

Power in Decibels

Power can be expressed in decibels by dividing the power by a reference power level.
Typical reference levels are either one watt or one milliwatt. A power level in decibel-
milliwatts can be computed as:

Also, it can be expressed in decibel-watts:

Signal-to-Noise Ratio (SNR)

Signal to noise ratio (SNR) is defined as the ratio between signal power and noise power,
expressed in decibels. For a signal power (S) and a noise power (N) defined in common
units of power, the SNR is:

Similarly:

Power Spectral Density and Thermal Noise

Thermal noise has a constant power spectral density and the power of thermal noise
generated is dependent on the temperature and the noise bandwidth. Hence, the noise
power spectral density is the product of Boltzmann’s constant, k and the absolute
temperature, T. Ambient thermal noise is typically calculated to be 280 Kelvin. This is
generally used as the effective noise temperature of the earth:

Since a watt is one joule per second, the power spectral density can alos be expressed as
watts per hertz. As a result, ambient thermal noise power spectral density is:

 177

Carrier to Noise Ratio

The carrier to noise ratio is defined as the carrier power divide by the noise power
spectral density. To calculate the carrier to noise ratio for a GPS receiver operating at
thermal noise floor, it is necessary to obtain carrier power. The C/A code GPS signal is
specified to arrive at the surface of the Earth at a power level of -160dBW or above.
Hence, carrier to noise ratio of this power level is calculated as:

II Relationship between Carrier to Noise Ratio and Power

Levels

Figure A.1 Relationship between carrier to noise ratio and signal strength

III Indoor GPS positioning

The unit of measurement for latitude and longitude is in milliseconds, where 1 degree in
latitude or longitude is equivalent to 3600000 milliseconds. The longitude (λ) defines
west-east position with respect to the prime (Greenwich) meridian, while the latitude (φ)
indicates north-south position with respect to the equator. For GPS technology, the WGS
84 (World Geodetic System 1984) and the Earth-Centered Earth-Fixed (ECEF) frame of
reference. The ECEF frame is an orthogonal Cartesian frame while the WGS-84 frame is
an ellipsoidal approximation to the Earth’s surface for determining latitude, longitude and
altitude. By convention the constants for the WGS-84 coordinate system are:

 178

The semi-major axis, a = 6378.137 km
The semi-minor axis, b = 6356.75231425 km
Since the CW12 and the M12M GPS receivers output the position solution in the WGS-
84 datum while the GPS determines the user position in ECEF, a practical means is
required to transform between the two coordinate systems. Given the user’s position in
the WGS-84 systems, the conversion to ECEF is given below:

Comparison of position fix between conventional GPS and indoor GPS

To compare the position fix obtained by the conventional GPS (M12M) and the indoor
GPS (CW12), both the M12M and the CW12 were placed next to each other at the same
location next to the window. Position solution in latitude and longitude with respect to
time are shown in Figure A.2 and Figure A.3 respectively. Figure A.4 shows the overall
position solution with the average position solution. Besides some relatively small
deviations in the longitude solution given by the M12M and the noise that is associated
with the latitude solution given by the CW12, the difference between the averaged
positions provided by the two receivers in x, y and z directions are all below 50 meters.
The result indicates that the positioning error is within the bound of the most commonly
quoted GPS positioning tolerance of 50 meters.

CW12
XECEF = 845898.3 m
YECEF = -5014126.4 m
ZECEF = 3838244.2 m
M12M
XECEF = 845888.5 m
YECEF = -5014150.6 m
ZECEF = 3838241.3 m
Difference in position
∆xECEF = -9.8627 m
∆yECEF = -24.2310 m
∆zECEF = -2.8388 m

 179

Figure A.2 Comparison of CW12 with M12M in latitude solution

Figure A.3 Comparison of CW12 with M12M in longitude solution

 180

Figure A.4 Comparison of CW12 with M12M in altitude solution

Figure A.5 Overall position solution of CW12 and M12M

 181

Table A-1 Statistics of M12M and CW12 position solution (ms)

 CW12

latitude
M12M
latitude

CW12
height

M12M
height

CW12
longitude

M12M
longitude

Mean 134033209 134032699 609.3 625.3 -289527096 -289527654

Minimum 134030000 134030307 452.9 600.4 -289529655 -289535127

Maximum 134038479 134034851 767.4 695.2 -289524011 -289523730
Range 12154 4544 314.5 94.81 5644 11397

Std.
deviation

684 754 22.65 15.99 375 1398

Comparison of the position fix given by CW12 operating under nominal conditions

and signal degradation

To examine the effect of the signal attenuation on the position fix of the indoor GPS, the
CW12 antenna was placed both inside a drawer and next to a window. Position solution
in latitude, longitude and altitude with respect to time are shown in Figure A.6, Figure
A.7 and Figure A.8 respectively. Moreover, the actual position given by Google Map is
plotted as a green line for comparison. Figure A.9 shows the overall position solution
with the average position solution. In the case where the antenna is placed next to the
window, the position solution is relatively stable. However, when the antenna is placed in
the drawer, the position solution has large variations at first and it took more than 10,000
seconds for the position solution to stabilize. The difference between the averaged
positions provided by the two receivers in the x and y directions are in the hundreds of
meters whereas in the z direction there is more than 1000 meters in difference.

CW12 antenna at window
XECEF = 845906.5 m
YECEF = -5014129.8 m
ZECEF = 3838260.4 m
CW12 antenna in drawer
XECEF = 845417.3 m
YECEF = -5014473.8 m
ZECEF = 3836970.9 m
Difference in position
∆xECEF = 489 m
∆yECEF = 343.9 m
∆zECEF = 1289.5 m

 182

Figure A.6 CW12 latitude solution with signal degradation

Figure A.7 CW12 longitude solution with signal degradation

 183

Figure A.8 CW12 altitude solution with signal degradation

Figure A.9 Overall position solution of CW12 with signal degradation

 184

Table A-2 Statistics of CW12 position solution when operating under signal degradation (ms)

 CW12
latitude
(drawer)

CW12
latitude
(window)

CW12
longitude
(drawer)

CW12
longitude
(window)

CW12
height
(drawer)

CW12
height
(window)

Mean 133995170 134033534 -289548678 -289526793 622.9 48.05

Minimum 133833830 134033430 -289598666 -289526900 616.9 -155.3

Maximum 134197142 134033688 -289481410 -289526575 640.9 1112
Range 363312 258 117256 59.3 23.99 1268

Std.
deviation

25706.1 35.1 12942.1 325 4.738 144.1

 185

Appendix B

NTP Servers for Time Synchronization

I NTP Servers

NTP servers including Virginia Tech servers

server ntp-1.vt.edu
server ntp-2.vt.edu
server ntp-3.vt.edu
server ntp-3.vt.edu
server time-a.nist.gov
server time-b.nist.gov
server time.nist.gov

NTP servers excluding Virginia Tech servers

server nist1-dc.witime.net
server tick.uh.edu
server time-a.nist.gov
server time-b.nist.gov
server ntp.myfloridacity.us
server tick.usno.navy.mil
server ntp0.broad.mit.edu
server nist.expertsmi.com
server time.keneli.org

 186

Appendix C

Measurement System Wiring Diagram and RTAI

I Parallel Port Connection with FDR Trigger for Conversion

Signal

Figure C.1 PC interface with FDR trigger for conversion signal

II Brief Summary of RTAI

The design of RTAI is highly modularized and is composed of several components.

In the first versions it consisted of an abstraction layer called Real-Time Hardware

Abstraction Layer (RTHAL) and a small real-time kernel that runs Linux as its idle task.

RTHAL is a structure installed in the Linux kernel which is used to intercept the

hardware interrupts and process them. The purpose of RTHAL is to minimize the

modifications needed to the kernel code. With RTHAL interrupt handlers are easily

changed or modified without interfering Linux. Furthermore, the real-time kernel is not

restricted to the supplied RTAI kernel and any real-time kernel can be used to interact

with the HAL interface. Figure 5.2 shows a block diagram of RTAI. In terms of the

implementation of RTAI, only a kernel patch is required to install the RTHAL. The layer

acts as an interface between Linux and the hardware. In the newer versions of RTAI

(beyond version 3.0), RTHAL is being replaced with another HAL known as Adaptive

Domain Environment for Operating System (ADEOS). The reasons for replacing

RTHAL with ADEOS are two folds. Most importantly ADEOS is not covered by the

RTLinux patent. Also, ADEOS is much more generic and can do more tasks than just

 187

providing hardware abstraction. ADEOS is a resource virtualization layer available as a

Linux kernel patch. It allows for several domains to coexist on the same hardware. A

domain could be an operating system like Linux but it could also be real-time tasks. The

domains do not see each other but every domain sees ADEOS. Furthermore, each domain

is attached to a central data structure called the event pipeline or I-Pipe, which offers the

capability to notify the domains for external interrupts, system calls issued by Linux or

other system events. Each domain has been assigned a static priority, which is used for

controlling the order of events. Once an event such as an external interrupt occurs, it is

first handled by the domain that has the highest priority. After processing the interrupt it

is being sent down along all the other attached domains. Each domain relies on the Linux

kernel to load the kernel modules in order to put it into operation.

Figure C.2 RTAI Functional Block Diagram

The RTAI extension LXRT (Linux Realtime) is an API for RTAI which makes it

possible to develop real-time applications entirely in user space without having to create

kernel modules. The LXRT is useful because the use of kernel modules introduce risks in

modifying memory locations unintentionally, which causes data corruption and

malfunction of Linux kernel. In other words, kernel space memory is not protected from

unintended access. The LXRT provides the developer with a safer environment for

testing and debugging of application code. Once the application code is considered to be

bug free the task can be converted into kernel space module as a hard real-time task.

 188

Finally LXRT allows applications to dynamically switch between soft real-time and hard

real-time by using a single function call in the user space. This is useful in a multi-tasking

environment where the tasks can be prioritized according to their timing requirements.

The scheduling of RTAI tasks are prioritized with the Linux kernel running as a low

priority task. When real time tasks are executed, the scheduler gives them priority over

the Linux kernel. The scheduler itself is implemented as another kernel module which

enables the implementation of alternative schedulers if required. There are three different

types of schedulers depending on the machine type. Uniprocessor (UP) scheduler is

intended to be used on uniprocessor platforms and can not be used with multiprocessor

machines. Symmetric Multiprocessor (SMP) scheduler is designed for SMP

(multiprocessor) machines. SMP provides an interface for the applications to select the

processor on which a given task is run. Multi-uniprocessor (MUP) scheduler can be used

with both multi and uniprocessor machines. However, unlike the SMP scheduler, the

tasks must be bound to specific processor when MUP scheduler is used.

In order to make the application development flexible, RTAI developers have

introduced several different mechanisms for inter-process communication (IPC) between

real-time tasks and user space processes. Different IPC mechanisms are included as

kernel modules which can be loaded in addition to the standard RTAI modules if several

processes need to communicate with each other. The IPC and some of the other features

of RTAI are outlined below.

FIFO (First In First Out)

The most basic communication method of RTAI are FIFOs. FIFO is an asynchronous

and unblocking one-way communication between a Linux process and a real-time task

having a size limit indicated by the user. The developer has the responsibility of

managing the FIFO when it becomes full, in which case new data can not be written until

the old data is consumed.

Semaphores

 189

Semaphores are used for communication and synchronization among real time tasks.

Semaphores are counters allocated and released by the tasks and processes. RTAI

provides an API for using semaphores and each semaphore is technically associated to a

FIFO. As a result each semaphore uses one entry from the global FIFO.

Shared Memory

Depending on the application, shared memory provides an alternative to FIFOs.

Shared memory is a common block of memory which can be read or written by any

processes and tasks in the system. Since different processes can operate on the shared

memory asynchronously, it is important to ensure that data on the shared memory is not

unintentionally overwritten. In this case semaphores can be used to guarantee the mutual

exclusion of a memory block.

Mailbox

One of the most used IPC method is the mailbox. Any number of processes can send

and receive messages to and from a mailbox. Similar to the FIFO, mailbox stores

messages up to its size limit. There can be multiple mailboxes active simultaneously. The

mailbox sending and receiving operations can be associated with a timer, which allows a

time-out alarm to be sent to the user whenever a sending or receiving operation do not

complete within the given time.

Memory management and Posix threads

RTAI features memory management and Posix threads in the real-time environment.

These two features are only used in a few applications. The present version of RTAI

include a memory management module which allows dynamic allocation of memory in

the real-time tasks. This allows the developer to allocate memory sizes other than the

default, which is preallocated by RTAI before real-time execution. The Posix thread can

be implemented through RTAI according to the POSIX (Portable Operating System

Interface for Unix) 1003.1c standard.

III C Code for Measurement PC

 190

/*
serial_hard.c

Kernel module (RTAI hard real time) for capturing the serial port interrupt when modem
status lines like Carrier Detect (CD), Data Set Ready(DSR) and Clear To Send(CTS)
change their state. Since the GPS receiver provides the 1PPS signal on its CD line, this
program can be used to measure the length of the 1PPS using the TSC counter provided
by rdtsc() instruction.

Note: Since the serial interrupt is triggered by both rising and falling edge, two interrupts
will be generated each second.

*/

#include <linux/module.h>
#include <linux/interrupt.h>
#include <rtai.h>
#include <rtai_sched.h>

#define SERPORT 0x3F8 //location of serial port control
register

static RTIME counter1, counter2; //type long long
static void serial_handler(void) //define ISR
{
 //counter2 = rt_get_time;
 //rt_printk("interrupt generated, count number is %lld \n", counter2);
 counter2 = rtai_rdtsc(); //read TSC upon interrupt
 rt_printk("rtai_rdtsc() returns %lld \n", counter2); //write counts to kernel log
 tmp = inb_p(SERPORT + 5);
 tmp = inb_p(SERPORT + 6);
 rt_ack_irq(4); //acknowledge interrupt
}

int xinit_module(void)
{
 int ret;

 outb_p(0, SERPORT + 3); // reset DLAB
 outb_p(0, SERPORT + 1);

 ret = rt_request_global_irq(4, (void *)serial_handler); //interrupt init. routine
 if (ret) { printk ("##### error requesting irq 4: returned %d\n", ret); }
 rt_enable_irq(4);

 outb_p(0, SERPORT + 3);

 191

 outb_p(0xC7, SERPORT + 2);
 outb_p(0x0B, SERPORT + 4);

 // Bit 3 Enable Modem Status Interrupt
 //Bit 2 Enable Receiver Line Status Interrupt
 outb_p(0x0C, SERPORT + 1);

 rt_set_oneshot_mode(); //oneshot mode

 (void) start_rt_timer(1);
 //counter1 = rt_get_time();
 //rt_printk("one shot mode set, count number is %lld \n", counter1);
 counter1 = rtai_rdtsc();
 rt_printk("rtai_rdtsc() returns %lld \n", counter1);

 rt_printk("Interrupt generated. You should see the latency messages\n");
 return 0;
}

void xcleanup_module(void)
{
 rt_printk("Unloading serial port test\n");
 rt_disable_irq(4);
 outb_p(0, SERPORT + 3); // disable DLAB
 outb_p(0, SERPORT + 1); // disable serial ints
 rt_free_global_irq(4);

}

module_init(xinit_module);
module_exit(xcleanup_module);
MODULE_LICENSE("GPL");

/*
parallel_hard.c

Two interrupt service routines (ISR) are implemented in this module. One ISR is for
capturing the serial port interrupt. Since the GPS receiver provides the 1PPS signal on its
CD line, the length of the 1PPS is measured using the TSC provided by rdtsc()
instruction. Another ISR is used for capturing the parallel port interrupt. The parallel port
interrupt is triggered by the FDR trigger for conversion signal and is measured by the
TSC provided by rdtsc() instruction.

Note: Since the serial interrupt is triggered by both rising and falling edge, two interrupts
will be generated each second.

 192

*/

#include <linux/module.h>
#include <rtai.h>
#include <rtai_sched.h>

#define PARPORT 0x378
#define SERPORT 0x3F8

static int time;
static int time2;
static int timex;
static int timex2;
RTIME counter1, counter2;

static void handler(void) //parallel handler
{

 counter1 = rtai_rdtsc();
 rt_printk ("%lld,", counter1);
 rt_printk ("%d \n", time);
 //rt_printk ("%lld \n", counter1);
 time++;

 rt_ack_irq(7);
}

static void handler2(void) //serial handler
{
 int tmp;
 int timediff;

 time = 0;
 counter2 = rtai_rdtsc();
 rt_printk("*%lld \n", counter2);
 //counter2 = rt_get_cpu_time_ns();
 //rt_printk("*%lld ns\n", counter2);

 tmp = inb_p(SERPORT + 5);
 tmp = inb_p(SERPORT + 6);
 rt_ack_irq(4);
}

 193

int xinit_module(void)
{
 int ret;
 //initialize serial port stuff
 outb_p(0, SERPORT + 3); // reset DLAB
 outb_p(0, SERPORT + 1);
 ret = rt_request_global_irq(4, (void *)handler2);
 if (ret) { printk ("##### error requesting irq 4: returned %d\n", ret); }
 rt_enable_irq(4);
 outb_p(0, SERPORT + 3);
 outb_p(0xC7, SERPORT + 2);
 outb_p(0x0B, SERPORT + 4);

 // Bit 3 Enable Modem Status Interrupt
 // Bit 2 Enable Receiver Line Status Interrupt
 outb_p(0x0C, SERPORT + 1);

 counter1 = rtai_rdtsc();
 rt_printk("rtai_rdtsc() returns %lld \n", counter1);
 counter1 = rt_get_cpu_time_ns();
 rt_printk("serial done, rt_get_cpu_time_ns() returns %lld \n", counter1);

 //initialize parallel port stuff

 ret = rt_request_global_irq(7, (void *)handler);
 rt_enable_irq(7);
 outb_p(0x10, PARPORT + 2); //set port to interrupt mode; pins are input

 counter1 = rtai_rdtsc();

 rt_printk("rtai_rdtsc() returns %lld \n", counter1);
 counter2 = rt_get_cpu_time_ns();
 rt_printk ("parallel done, rt_get_cpu_time_ns() returns %lld \n", counter2);

 rt_printk("Ports done. You should see the latency message\n");
 return 0;
}

void xcleanup_module(void)
{
 rt_printk("Unloading parallel port latency test\n");
 rt_disable_irq(7);
 rt_free_global_irq(7);
 rt_printk("Unloading serial port test\n");

 194

 rt_disable_irq(4);
 outb_p(0, SERPORT + 3); // disable DLAB
 outb_p(0, SERPORT + 1); // disable serial ints
 rt_free_global_irq(4);
}

module_init(xinit_module);
module_exit(xcleanup_module);
MODULE_LICENSE("GPL");

