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Abstract 

 
In recent years, the subject of wide-area synchronized measurements has gained a 

significant amount of attention from the power system researchers. All of this started with 

the introduction of the Phasor Measurement Unit (PMU), which added a new perspective 

in the field of wide-area measurement systems (WAMS). With the ever evolving 

technologies over the years and the need for a more cost effective solution for 

synchronized frequency measurements, the Frequency Monitoring Network (FNET) was 

developed and introduced by the Power IT laboratory at Virginia Tech. The FNET is 

comprised of many Frequency Disturbance Recorders (FDR) geographically distributed 

throughout the United States. The FDR is a dedicated data acquisition device deployed at 

the distribution level, which allows for a lower cost and easily deployable WAMS 

solution. With Internet connectivity and GPS timing synchronization, the FDR provides 

high accuracy frequency, voltage magnitude and voltage angle data to the remote servers.  

 

Although the current FDR design is up to the standard in terms of the measurement 

accuracy and portability, it is of interest to further the research into alternative 

architectures and leverage the ever advancing technologies in high speed computing. One 

of the purposes of this dissertation is to present novel design options for a new generation 

of FDR hardware design. These design options will allow for more flexibility and to 

lower reliance on some vendor specific components. More importantly, the designs seek 

to allow for more computation processing capabilities so that more accurate frequency 

and angle measurements may be obtained.  

 

Besides the fact that the accuracy of frequency and angle measurement is highly 

dependent on the hardware and the algorithm, much can be said about the role of timing 

synchronization and its effects on accurate measurements. Most importantly, the accuracy 



 iii 

of the frequency and angle estimation is highly dependent on the sampling time of local 

voltage angles. The challenges to accurate synchronized sampling are two folds. One 

challenge has to do with the inherent fallbacks of the GPS receiver, which is relatively 

high cost and limited in availability when the satellite signal is degraded. The other 

challenge is related to the timing inaccuracies of the sampling pulses, which is attributed 

to the remainder that results from the imperfect division of the processor counter. This 

dissertation addresses these issues by introducing the implementation of the high 

sensitivity (indoor) GPS and network timing synchronization, which aims to increase the 

availability of frequency measurements in locations that would not have been possible 

before. Furthermore, a high accuracy timing measurement system is introduced to 

characterize the accuracy and stability of the conventional crystal oscillator. To this end, 

a new method is introduced in close association with some prior work in generating 

accurate sampling time for FDR. Finally, a new method is introduced for modeling the 

FDR based on the sampling time measurements and some results are presented in order to 

motivate for more research in this area. 
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Chapter 1 Introduction 

1.1  Motivation and Background 

 
The power transmission network is a highly complex and vast system, yet it is one of 

the most important networks in the world. However, experiences such as the August 14, 

2003 blackout has shown a dire need of an improved power transmission network with 

high reliability and efficiency. In fact, billions of dollars were bid in the recent years to 

improve the reliability of the creaking system in the United States alone. To this end, 

power system researchers around the world are looking for methods to ensure stability in 

a much heavily loaded power transmission network. One method that has been 

increasingly attracting attention in the recent years is the wide area measurement system 

(WAMS). Such monitoring tool can be used to accurately capture real-time events and 

system dynamics. The need for monitoring and recording of power system data has been 

recognized for a long time and one of the most well known methods is the synchronized 

phasor measurements or also known as synchrophasors. Synchronized phasor 

measurements provide a standard of referring the phasor representation of a power 

system voltage or current to an absolute time reference. The absolute reference is 

provided in the form of common high accuracy clocks synchronized to coordinated 

universal time (UTC). The first high accuracy phasor measurement was made possible by 

the invention of phasor measurement units (PMU).  

 

The invention of the PMU goes back to 1988, when the first PMU prototypes were 

developed at Virginia Tech and was later commercialized in the early 1990’s. In order to 

monitor a complex wide area system like the power transmission network, there is a need 

for a synchronized monitoring solution with highly dynamic phasor measurement 

technique. To meet these needs, a Global Positioning System (GPS) receiver is used in 

the PMU in conjunction with the frequency estimation algorithm invented under the 

leadership of Dr. Arun Phadke. However, the high installation cost of PMU’s limits its 

deployment capabilities. Early studies clearly point to the need for much wide system 

measurement coverage, coverage that can be quickly and economically obtained. To meet 
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these goals, an Internet based Frequency Monitoring Network (FNET) was proposed in 

2001 by the PowerIT group at Virginia Tech, and has since been implemented [1].  

 

The FNET is composed of mainly the Frequency Disturbance Recorder (FDR) and 

the Information Management System (IMS) as it is shown in Figure 1.1. Somewhat 

similar to the PMU, the FDR acts as the sensor that performs local frequency data 

measurements and transmits the data to remote servers on the Internet. The FDR’s are 

synchronized to the GPS and installed at 110V or 220V distribution voltage level of a 

typical office outlet. The IMS works as a central server, which provides data collection, 

storage, web service, post disturbance analysis and other information management 

functions. Working together, the FDR’s and IMS provides continuous, real-time, wide 

area gathering of GPS time stamped frequency data for power system monitoring [1]. 

Based on these valuable data, the power system researchers can investigate a variety of 

protection and control applications, which can be used to improve the performance of the 

power transmission network. 

Data
base

Client

IMS

Server Interface

Router

Firewall

Internet

FDR 1

Client

Satellite

LAN

FDR 2

FDR n

 

Figure 1.1 Frequency Monitoring Network (FNET) Architecture 

 

1.1.1 Frequency Monitoring Network (FNET) and Frequency 
Disturbance Recorder (FDR) 

 

The FNET developed at Virginia Tech consists of several FDRs distributed across the 

United States and Canada as well as a central data collection server. The advantages of 

the FNET implementation are twofold. Firstly, each FDR interfaces with the electric grid 
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at low voltage levels with easily accessible wall sockets. Secondly, the cost of FDR 

hardware is on the order of $1000 whereas the PMU ranges in several times of $1000. 

However, there are tradeoffs to be made for such a low cost installation and design. On 

the low voltage level, the FDR will not be able to measure the three-phase quantities and 

increases the vulnerability to noises of various forms, including high frequency switching 

loads and electromagnetic interference (EMI). Overall, with the FNET’s capability for 

mass coverage, its shortcomings are overwhelmingly overshadowed. 

 

1.1.2 FDR Algorithm Review 

 
The phasor measurement algorithm has its roots from the days of Charles Proteus 

Steinmetz, who presented a paper on simplified mathematical description of the 

waveforms of alternating electricity. Since then, the word ‘phasor’ was invented and was 

eventually evolved into the calculation of real time phasor measurements.  

 

The first generation of the FDR device was developed in 2002-2003 and there have 

been more than 40 units deployed in the United States power grid and a few 50Hz units 

in Europe and Africa. The first generation FDRs have virtually no algorithm error at 

60Hz and their calculated frequency accuracy is better than ±0.0005Hz [1]. 

 

With the ever increasing advances in microprocessor technologies, more and more 

digital algorithms have been applied to calculating power system frequency, such as 

Modified Zero Crossing [8], Level Crossing [7], Least Squares Error [10], Newton 

Method [11], Kalman Filtering [12], Discrete Fourier Transform [6] and Smart Discrete 

Fourier Transform [9].  Each algorithm has its unique advantages and disadvantages. 

Nevertheless, phasor angle analysis provides fast and accurate frequency estimation over 

a wide range of frequency and the computation requirement is kept at a minimum for 

real-time implementation. From practical point of view, phasor angle analysis is 

recognized as the most appropriate for FDR measurement applications. 
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The phasor computation algorithm is based on the relationship that small frequency 

perturbation can be approximated by measuring the rate of the change of its phasor angle 

[6]. In mathematical terms this can be represented by the equation: 

 

                 Equation 1-1 

 
Note that the phasor angle to frequency relationship in equation 1-1 is based on the 

assumption that frequency deviation from nominal is relatively small. To illustrate this, 

let’s assume the input signal is a sinusoidal waveform written as: 

 

             Equation 1-2 

 
Where f0 is the nominal system frequency, ∆f is the deviation from nominal frequency 

and φ is phasor angle. 

Using the recursive discrete fourier transform, the new rth phasor can be expressed as 

[4]: 

Equation 1-3 

 
Where N is the number of samples taken per cycle. Now assuming that ∆f is relatively 

small, the following relationships are introduced [4]: 

                 Equation 1-4 

               Equation 1-5 

 

As a result, the second term of Equation 1-3 can be eliminated and the simplified 

expression can be written as [4]: 

             Equation 1-6 
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Since φr and φr+1 are defined as the phasor angle of the rth and (r+1)th phasor 

respectively, the change in phasor angle can be calculated as [3]:   

                Equation 1-7 

 
The denominator t can be represented by the time between consecutive samples and can 

be approximated by [3]: 

                                                                Equation 1-8 

 
Therefore as N is increased, t will approach zero and establish the relationship 

represented in Equation 1-1. Finally, the relationship between the frequency deviation 

and phasor angles can be obtained [3]: 

              Equation 1-9 

At this point, it is important to note that as the system frequency approaches nominal 

system frequency, the phasor angle algorithm reaches its highest accuracy and 

conversely, the accuracy degrades as system frequency deviates from nominal system 

frequency. However, it will be seen later that a multiple resampling method can be used 

to minimize this error [3]. 

 

Given the relationship between phasor angle and frequency deviation, the 

implementation of the algorithm is discussed in [3] and being introduced here to provide 

as a reference. To illustrate phasor representation, one can write a sinusoidal input signal 

of frequency w in the form: 

             Equation 1-10 

and its equivalent representation in phasor form: 

            Equation 1-11 

Assuming that the signal x(t) is sampled N times per cycle of the nominal voltage 

waveform to produce the sample set shown below: 

             Equation 1-12 

The discrete fourier transform (DFT) of equation 1-10 can be written as: 
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             Equation 1-13 

Where  

            Equation 1-14 

           Equation 1-15 

 
To obtain more phasor results the recursive phasor computation technique is used to 

obtain the successive phasor: 

      Equation 1-16 

      Equation 1-17 

Where k = Nf0t 

Then the angle of the kth phasor can be calculated by: 

             Equation 1-18 

Assuming that voltage phasor angles vary as a quadratic function with respect to the 

sample number, 

             Equation 1-19 

Using a computation window of M phasor angles, the relationship between the phasor 

angles and the sample number can be put into matrix form: 

            Equation 1-20 

 

Equation 1-18 can also be simply written as:  



 7 

                 Equation 1-21 

 

The unknown matrix a can be solved using the least error square solution: 

              Equation 1-22 

Where the pseudo-inverse matrix is known as the gain matrix and can be 

computed offline.  

Once the values of a1 and a2 are calculated, the frequency and rate of change of 

frequency can be calculated. Taking the derivative of Equation 1-17 with respect to k: 

               Equation 1-23 

Then taking the derivative of Equation 1-21 with respect to time t: 

                Equation 1-24 

The derivative of phasor angle with respect to time t can be written as: 

        Equation 1-25 

Deviation in frequency, ∆f can be obtained by: 

            Equation 1-26 

              Equation 1-27 

Where t determines which instant inside the computation window the computed 

frequency corresponds to.  

 

As mentioned before, the simplification of Equation 1-4 is made to obtain the 

relationship between phasor angle and deviated frequency. However, this approximation 

will introduce some error in estimation. The frequency estimation will be more accurate 

when the actual frequency approaches the frequency established for the sampling rate. 

Therefore, resampling the waveform with the estimated frequency and using the new 

phasor to perform corrections to the final estimation is rather an attractive solution [3]. In 

detail, assume the nominal frequency is 60Hz and the number of samples per cycle N is 

24, resulting in 1440 samples taken per second. When the frequency has changed to 55 

Hz, each cycle will now have about 26.18 samples instead of the 24 samples as indicated. 

To resolve this issue, re-normalization through resampling can be implemented to 
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interpolate the points so that there will always be 24 samples per cycle regardless of 

waveform frequency. The resampling algorithm can be summarized as the following: 

               Equation 1-28 

       Equation 1-29 

Where  

 Zm is the amplitude of the waveform 

 φ is a sample instant and is an arbitrary known value 

 α is the interval between two samples at the new frequency and is equal to 2пfnew/(Nf0) 

Combining Equations 1-26 and 1-27 results in: 

            Equation 1-30 

 

Let x be the fractional distance between z1 and z2, the resampled point z’ is then given by: 

              Equation 1-31 

          Equation 1-32 

          Equation 1-33 

 

Figure 1.2 Illustration of resampling 

 
After the resampling points are found, the phasor angles of the new resampled data are 

computed and another estimation is made using Equation 1-20, Equation 1-24 and 

Equation 1-25 to obtain the correction frequency, ∆f’, and the final rate of change of 

frequency. As a result, the final frequency estimation is computed by: 
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             Equation 1-34 

1.1.3 FDR Algorithm Implementation 

 

The FDR phasor algorithm is composed of three stages [4]: 

1) Compute rough frequency estimation using raw voltage from sampled data. 

2) Resample the waveform using the resampling frequency 

3) Compute the correction frequency using the new resampled voltage and apply the 

correction to the rough estimation in step 1. 

In the first two generation FDRs, embedded processors were used for phasor computation 

to allow for a compact and small size design. However, since a large amount of voltage is 

being collected and computation time is limited, considerations need to be given to 

maximizing computation speed and measurement accuracy. Hence, the actual 

implementation of the algorithm only uses certain selected phasors. This speeds up the 

computation time tremendously without significant losses in accuracy. 

 

In the first two generation FDRs, the number of cycles to compute a frequency 

estimate was decided to be 6 nominal cycles. The number of samples per cycle used to 

compute a phasor is 24. So after initialization, a new phasor will be obtained every 

1/1440 = 0.6944 millisecond. The whole estimation proceeds recursively with a sliding 

window length of 8 cycles and 6 cycles for estimating frequency. The reason to use an 8 

cycle sliding window is because it takes one cycle of sampled data to compute the first 

phasor value. In addition, when the actual frequency is below nominal 60Hz (i.e. 55Hz), 

more data is needed to fulfill the 6 cycles criterion for resampling.  

 

The implementation of the resampling is rather tricky. Since the resampling and 

subsequent frequency deviation computations are based on the first approximate 

frequency estimation, it is required to locate the exact instant in the waveform where the 

resampling frequency is used. This is not so significant when the waveform frequency is 

constant but is crucial when the frequency undergoes major frequency swings. Under 

such special circumstances it is practical to designate t in Equation 1-25 to be an 

appropriate value for the application. Since the measured frequency will exhibit an 
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oscillatory behavior due to its phasor angles, it is necessary to minimize this error by 

using the average of the estimated frequency as the resampling frequency. The average of 

the estimated frequency can be computed as: 

f

f

r

k

k
=

=

∑
1

24

24
                Equation 1-35 

 
Where fk is the first frequency estimate for k = 1 to 24 and fr as the resampling frequency.   

At this point, it is necessary to make an assumption that the resampling frequency fr is the 

frequency at the end of two and a half cycle in the first computation window. Such an 

assumption is valid for power system phasor measurement since the power system 

frequency deviation within the window is so small that the contribution to frequency 

estimation error is insignificant. Therefore, the second frequency estimation can be 

computed in the same manner as the first frequency estimation: 

            Equation 1-36 

Where C is the sample instant of the estimation and is computed by: 

       

Equation 1-37 

 
To illustrate the phasor measurement algorithm, Figure 1.3 and Figure 1.4 show a 

flowchart of the algorithm in [4]. 
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Figure 1.3 Flowchart of phasor estimation algorithm 
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Figure 1.4 Flowchart of initialization for phasor estimation algorithm 

 

1.1.4 FDR Software Architecture 

 
The FDR software architecture is composed of three states of operation including 

acquisition, initialization and collection. The state machine diagram of FDR is shown in 

Figure 1.5 and each state is summarized below. 

 

Figure 1.5 Top level state machine of FDR 
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Acquisition 

The acquisition state is obtained by meeting the requirement of GPS satellite 

acquisition. Since the voltage measurements need to be aligned to the UTC time, the FDR 

should not begin phase measurement until a valid GPS 1PPS is obtained. An internal 

timer is used to verify the accuracy of the 1PPS by measuring the length between one 

PPS rising edge to the next. If the length is within the bound of a pre-determined 

acceptable error range the measurement continues for the next PPS until four consecutive 

PPS meets the requirement, at which point the system begins phasor measurement.        

 

Initialization 

Once the FDR establishes an accurate 1PPS, the system begins the sampling process 

to feed the phasor measurement algorithm. The initialization process is allocated one 

second so that the synchronized phasor measurement can begin the next second. If GPS 

signal is still valid as verified in the acquisition state, the FDR will switch to collection 

state. If the GPS 1PPS is not valid, the FDR will reset to acquisition state and discard all 

measurements. This ensures the FDR is making phasor measurement only when accurate 

time synchronization is established. 

 

Collection 

When the initialization process ends, the FDR is capable of making phasor 

measurements continuously until either a loss of GPS or input voltage signal. If either 

errors occurs, the FDR will dump the current phasor measurements and go back to 

acquisition state. 

1.2 Objectives 

 
This introduction has covered the theoretical basis for frequency and phasor angle 

estimation, as well as the implementation of the algorithm along with the FDR software 

architecture. The goal of this dissertation is divided into several parts but the focus is on 

the design of the next generation FDR with emphasis on improving the accuracy and 

availability of synchronized sampling. In order to approach the subject of FDR design, it 

is essential to first understand the requirements at the system level. Then the top-down 
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design approach can be used. In addition, it is equally as important to address the 

drawbacks of the current FDR designs so that those drawbacks can be mitigated in the 

next generation design. Also, some FDR architectures are being proposed based on the 

design requirements and an evaluation is conducted to seek out the advantages and 

disadvantages of each. 

 

Given the fact that the crystal oscillator is inaccurate in long term timekeeping and 

phasor angle measurement requires microseconds synchronization accuracy with respect 

to Universal Coordinated Time (UTC), the conventional GPS is used as a precision 

timing reference for FDR synchronized sampling. However, the conventional GPS is 

very much limited with respect to availability and cost. The signal attenuation effects are 

more pronounced for FDR applications since some of the newer office buildings comes 

with energy efficient glass windows, which prohibits the conventional GPS from 

acquiring GPS satellite signals. It is of interest to seek out alternate timing references that 

provides higher availability with similar level of accuracy.  

 

What is also important to the accuracy of frequency and phasor angle measurement is 

the subject of oscillator characteristics since it is used to generate sampling pulses for 

synchronized measurements. To this end, it is important to provide some insights into its 

accuracy and stability. Thus far, there has not been any study conducted in characterizing 

the oscillator to produce accurate FDR sampling time. Ultimately, the characterization of 

the conventional oscillator should provide valuable insights to improve the FDR 

sampling time accuracy. Specifically, a high resolution timing measurement system can 

be used to measure accuracy and stability of the conventional oscillator. Furthermore, it 

is intended that such a measurement system will be able to not only measure the accuracy 

and stability of the crystal oscillator, but also provide some insights into the accuracy of 

different precision time synchronization sources as well as the FDR sampling time. To 

this end, models can be developed based on the sampling time and simulations can be 

performed to observe the effect of the sampling time on frequency and angle 

measurements. Ultimately, any errors associated with timing reference and sampling time 

will be directly reflected in the frequency and angle measurements. 
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1.3 Organization 

 

This dissertation is organized into 8 chapters starting with the introduction in the first 

chapter. The second chapter provides the background in FDR design requirements and 

specifications and addresses the limitations in the current FDR design. The third chapter 

goes over the evaluation of different FDR architectures with respect to its advantages and 

disadvantages. The fourth chapter addresses the issue with the obsolete GPS receiver and 

introduces the high sensitivity GPS receiver for high availability frequency and angle 

measurements. The fifth chapter summarizes the development of a high resolution and 

low cost timing measurement system. At the same time, measurements are taken from the 

processor clock counter to estimate the crystal oscillator accuracy and stability. The sixth 

chapter goes over the methodology to measure the FDR sampling time and takes the 

initial effort in modeling the FDR with the measurement data. The seventh chapter 

presents the network timing synchronization and proposes the use of network time 

protocol (NTP) for frequency estimation. Finally, the eighth chapter concludes the 

dissertation with a summary of the dissertation and future works. 
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Chapter 2 Frequency Disturbance Recorder Design 
Requirements 

2.1 Background 

 
One of the most popular system design method for real-time and embedded systems 

is the top-down design approach. The top-down method is a natural way to approach a 

complex design task, mainly because it relies on multiple levels of abstraction to limit the 

number of independent concepts at each level of the design. Such design approach is very 

much required for the next generation FDR design as all of the requirements and 

specifications are being refined over many years of experience with the first and second 

generation FDRs. Major levels of abstraction in the design process can be visualized in 

Figure 2.1.  

 

 
Figure 2.1 Top-down design approach 

 
Starting at the very top, the requirements block gives an informal description of the 

FDR functionalities. The type of requirements should include both functional and non-
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functional requirements. Functional requirements are solely the I/O (input/output) 

relationships and the non-functional requirements include timing, performance, cost, 

power consumption and physical size and weight. In the second block from the top, 

specifications should accurately define the application requirements. The specification 

should be simple and easily understood so that one can verify that it meets the system and 

overall expectation of the application requirements.  

 

This chapter is focused on an overview of the requirements and specifications of FDR 

design. Also, some of the drawbacks of the present FDR designs will be presented so that 

the next generation design will be able to address these fallbacks and make the necessary 

improvements. 

 

2.2 FDR System Level Requirements 

 

Similar to the PMU design but with some different design goals mainly focused on 

portability and ease of deployment, the FDR is composed of four major subsystems as it 

is shown in Figure 2.2, these include the processor, analog input subsystem, timing 

subsystem and network communication subsystem. The analog input subsystem is 

composed of the analog to digital converter, the transformer and the signal conditioning 

system. The timing subsystem is composed of an accurate frequency and time reference 

that is synchronized with the UTC time. Additionally, the timing subsystem should be 

capable of generating variable frequency pulses synchronized to UTC time for triggering 

the ADC for conversion. Finally, the network communication subsystem provides the 

means to transmit the measurement results to the central server at Virginia Tech.  

 

Figure 2.2 System block diagram of FDR 
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Since portability and ease of deployment are the some of the main goals of the FDR 

design philosophy, an embedded system is the most obvious choice for such a design and 

it has been the norm for the first and second generation FDR design. As a result, should 

the next generation FDR continue to follow the embedded trend, it is worthwhile to 

highlight the requirements for the system.  

 

At the minimum, the system should be able to perform floating point arithmetic. 

Furthermore, a counter with input capture is required to count the number of clock cycles 

in between each 1 PPS output from the GPS. In the case such that the counter register 

overflows, an interrupt will need to be generated to count the number of overflows in 

between pulses. The resultant number of clock cycles and overflows as measured by the 

timing subsystem is used to validate the accuracy of 1PPS, which is also a GPS status 

indicator. Additionally, a pulse width modulator subsystem with output compare is 

needed to trigger the external ADC for conversion. It is crucial for the counter, PWM and 

input capture and output compare to have at least 16 bits register for high resolution 

timing. Depending on the resolution of the ADC to be used, one external interrupt pin is 

needed to indicate the external ADC has latched data into its output register and a general 

purpose input/output (GPIO) subsystem is needed to receive data from external ADC. To 

allow for transmission of data to the main server and receiving timestamps from the GPS, 

there needs to be two serial communication interfaces (SCI). To allow for efficient I/O 

processing the system should also have an interrupt controller that is capable of assigning 

priorities to the interrupts. One such example would be a hierarchical interrupt system. 

For the external interfaces, there should be a liquid crystal display (LCD) interface circuit 

and its physical port for ribbon cable connection, a port for mounting the external ADC, 

and some breadboard area for input filter circuitry.     

2.2.1 Analog Input Subsystem 

 
The analog to digital converter is at the heart of the analog input subsystem. There is 

a variety of ADC’s available today. However, some of the most widely used ADC 

architectures are the integrating ADC (Dual slope) [109], Flash ADC (Parallel ADC) 

[105], Pipelined ADC [108], Sigma Delta ADC [107], and SAR (Successive 
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Approximation Register) ADC [106]. The five architectures differ in conversion 

algorithm and encoding method, but what’s more important to the design of FDR are 

characteristics of each ADC such as speed of conversion, resolution, size and price. 

Tradeoffs need to be made to select the device meeting all of the criteria.  However, the 

relationship between such factors and the phasor estimation accuracy is rather 

complicated. So far there is no absolute requirement established for neither the resolution 

nor the synchronized data samples in the IEEE synchrophasor standards [2]. However, 

what is required by these standards is the phasor measurement be within 1% of TVE 

(total vector error) at the reporting times specified. TVE can be calculated by [2]: 

           Equation 2-1 

Furthermore, the resolution of the ADC is not the only determining factor of phasor 

measurement accuracy, characteristics such as linearity, noise and gain stability provides 

the fundamental limitations on performance. Upon past experiences with the first and 

second generation FDR, 16 bits of SAR ADC resolution is more than adequate with 14 

bits as the minimum resolution required for accurate FDR frequency measurement. 

Finally, a throughput rate of at least 100kSPS and minimized conversion time, power 

consumption and size is needed to meet portable real-time requirements.      

 

In general, the SAR ADC is widely used for nearly all multiplexed data acquisition 

systems as well as in instrumentation applications. Due to its ease of interfacing and 

integration, it is being used in both the first generation and second generation FDRs. It 

has no pipeline delay and is available with resolutions up to 18 bits and sampling rates up 

to 5Msps [106].  

 

For a wide variety of industrial measurement applications, the Sigma Delta and 

Integrating ADCs are the ideal candidates. With respect to the other ADC architectures, 

the integrating ADC is slow in speed with typical conversion speed of 20 milliseconds 

and low input bandwidths but their capability to reject high frequency noise and fixed 

low frequencies makes them attractive for certain industrial applications [107][109]. In 
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addition its popularity in the industrial applications, the Sigma Delta converter dominates 

in audio and voiceband markets. The inherent oversampling capability in these converters 

lowers the requirements on the ADC anti-aliasing filter. Nevertheless, the Sigma Delta 

converter has several drawbacks. Firstly, the filter does not provide attenuation at integer 

multiples of the modulator sampling frequency. Also, the speed of the conversion and 

filtering results in long latency between the start of the sampling cycle and the first digital 

output [107].   

 

Flash ADCs and pipelined ADCs are known to be high speed converters. In 

particular, flash ADCs are more accustomed to converting signals with large bandwidths 

at high speeds. However, the Flash ADCs has relatively low resolution, consumes more 

power and can be comparatively expensive [105]. This drawback alone limits the Flash 

ADC market to high frequency applications that typically cannot be addressed any other 

way. On the other hand, the pipelined ADCs are used in applications requiring sampling 

rates ranging from approximately 5 Msps to greater than 100 Msps and have lower power 

consumption than that of the Flash ADC. The pipeline ADC has a good balance of size, 

speed, resolution and power dissipation, and has become increasingly popular to major 

data converter manufacturers [105]. Finally Table 2-1 summarizes some of the 

characteristics of the commonly used ADC architectures in [105][106][107][108][109]. 

Table 2-1 ADC architectures and attributes 

 
ADC types Flash  SAR  Integrating  Pipelined  Sigma Delta 

Method Cascaded 
comparators 

Binary search Integration 
and 
comparator 

Parallel 
comparators 

Modulator and 
filter 

Encoding Thermometer 
code 

Successive 
approximation 

Analog 
integration 

Digital 
Correction 

Oversampling, 
decimation 
filter 

Conversion 
time 

Constant 
with increase 
in resolution 

Increase 
linearly with 
resolution 

Constant 
with 
increase in 
resolution 

Increase 
linearly with 
resolution 

Tradeoff 
between data 
output rate and 
resolution 

Resolution Limited to 8 8 to 18 10 to 18 8 to 16 12 to 24 
Size Increases 

exponentially 
with 
resolution 

Increase 
linearly with 
resolution 

Constant 
with 
increase in 
resolution 

Increase 
linearly with 
resolution 

Constant with 
increase in 
resolution 
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In addition to the ADC circuitry, the analog input subsystem has a signal conditioning 

component that is used to filter the transformer output, before it is being input to the 

ADC. Depending on the ADC and the transformer that is being implemented, the filter 

design could vary. However, the basic requirement remains the same, and that is to take a 

signal from the transformer and attenuate it to a lower voltage level acceptable to the 

ADC. Generally a simple voltage divider circuit can take care of this. In addition, to get 

rid of the high frequency noise that’s associated with outlet voltages, a low pass filter is 

needed. In general, the low pass filter is essentially a second order anti-aliasing filter. An 

anti-aliasing filter could be passive or active but the smaller package size of active filter 

is rather attractive for FDR design. As a matter of fact, the first generation FDR used a 

passive filter design and the second generation FDR improvised by implementing an 

active filter design. Nevertheless, the design requirements remains the same, with a 

specified DC gain of unity, the filter needs to have a cutoff frequency of 720Hz [4]. 

2.2.2 Central Processing Unit 

 
The Central Processing Unit (CPU) in the FDR design can vary by a great deal and 

with the drastic improvements in digital processor technologies, many different solutions 

are available. Nevertheless, there are several criteria that need to be addressed in the 

processor selection process.    

 

The very first criterion is deciding whether a floating point or fixed point processor is 

needed. The fundamental difference between the two is their respective numeric 

representation of data. While fixed point hardware performs strictly integer arithmetic, 

floating point hardware supports either integer or real arithmetic. Therefore, fixed point 

hardware has less bit width and it is more hardware efficient to implement than its 

floating point counterpart. Furthermore, a fixed point processor requires less hardware 

resources resulting in a smaller package and some cost reduction comparing with that of 

floating point. As a result, fixed point processors are more favored for high volume 

applications like digitized voice and telecom. However, the fixed point processor requires 

fixed point implementation in software, which requires careful consideration in precision 
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losses and overflow as a result of fixed point arithmetic. Although recent advances in 

more sophisticated C compilers has merged the gap between the software complexity of 

floating point and fixed point processor [18]. To this end, the fixed point processor still 

maintains an edge in cost savings compared to the floating point processor, with the 

trade-off of less precision. 

 

Another important factor to consider in the selection of processors is the number of 

bits for floating point arithmetic. The IEEE Standard for Binary Floating Point 

Arithmetic (IEEE 754-1985) is the most widely used standard for floating point 

computation with two commonly used formats, single precision and double precision. 

Almost all of today’s microcontrollers and DSPs come with either single precision or 

double precision floating point unit (FPU). At this point it is necessary to take a look at 

the accuracy of phasor algorithm using both single precision and double precision 

arithmetic. Figure 2.3 shows the frequency and angle measurements conducted by two 

different FDRs with the same input. Also, Figure 2.4 shows the frequency and angle 

difference between the two FDRs. In comparison, Figure 2.5 and Figure 2.6 show the 

measurement results using single and double precision arithmetic, and the resulting 

differences between the two units respectively. If the measurements were perfect, the 

results would match each other between the two units. Nevertheless, the measurement 

differences between two FDRs with double precision arithmetic are similar in magnitudes 

compared to the measurement differences between two FDRs with single precision and 

double precision. Specifically, the average frequency measurement for the two units is 

within 0.1 mHz of each other, which is negligible for any FNET application. It is clear 

that single precision arithmetic is adequate for FDR algorithm implementation.  
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Figure 2.3 Frequency and angle measurements using double precision arithmetic 
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Figure 2.4 Frequency and angle measurement differences between two FDR units using double 

precision arithmetic 
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Figure 2.5 Frequency and angle measurements using single and double precision arithmetic 
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Figure 2.6 Frequency and angle measurement differences with single and double precision arithmetic 
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Table 2-2 Statistics of the differences in frequency measurements between FDR with double precision 

arithmetic and FDR with single precision arithmetic 

 
 6/13/09 FDR4 – FDR7 freq. 6/7/09 FDR4 – FDR7 freq. 

Minimum 0.0001 -0.0005 
Maximum 0.0023 0.0024 

Mean 0.00108 0.0009527 

Median 0.0011 0.001 
Standard deviation 0.0002826 0.0003576 

Range 0.002 0.0029 
 

Generally processor crystal frequency is one of the characteristics that have being 

emphasized in determining the processor speed. However, there is often a misconception 

that the processor crystal frequency is the main contributor in processor performance. 

The fact of the matter is that with the ever improving technologies in multi-processor 

architecture and the addition of peripherals and micros running directly off the crystal 

oscillator circuitry, the crystal frequency value becomes more and more meaningless.  

 

In order to help designers to better evaluate processors, the Embedded 

Microprocessor Benchmark Consortium (EEMBC) has established many common 

benchmarks to easily quantify microprocessor performance with respect to each other. 

Nevertheless, considering the speed requirement of the FDR with 4 phasor angles 

computed per cycle, each new frequency has to be computed approximately every 

0.00417 seconds. This means that the first phasor angle computation, the first Least Error 

Square fit, the resampling process, the second phasor angle computation and the second 

Least Error Square fit all have to be completed in approximately 0.00417 seconds. The 

initialization process can be ignored for the moment since it only has to be done once. A 

rough estimate of number of floating point operations in the algorithm is about 15000 

operations per frequency estimation.  

 

With 4 phasor angles computed per cycle, the processor needs to be able to perform at 

least 3.6 MFLOPS (million floating point operations per second) [3]. With today’s fast 

processors, this requirement can be easily met. However, this requirement is rather 

misleading due to architecture differences of the processor. A study was conducted in 

[80] to evaluate the MFLOPS measurement in computer systems and the study indicates 
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that MFLOPS was a consistent measure of performance in computer systems up till 1984. 

For systems produced after 1985, MFLOPS became more dependent on architecture, 

configuration, and application so that a simplified model can be used to evaluate 

MFLOPS measure. Generally, MFLOPS measurement can be used more consistently for 

processors of the same architecture but the comparison becomes more complex across 

different architectures. Due to this reason alone, it is important to limit the architecture 

selection to a certain type and only then will the comparison in MFLOPS be valid.  

 

There are two classification groups for the instruction set of processors. These include 

the CISC (complex instruction set computer) and the RISC (reduced instruction set 

computer). For the embedded version of FDR design, justifications can be made to use 

the RISC based processors. This is mainly due to considerations in simplicity, speed and 

short development cycle. The simplified instruction set has much emphasis on software 

whereas the complex instruction set puts its emphasis on hardware. As a result, the RISC 

based processor tends to spend more transistors on memory registers whereas the CISC 

based processor spends more transistors on storing complex instructions. As the price of 

memory chips decrease over the years, the RISC architecture has been gaining more 

attention in the embedded market. Additionally, the standard feature of pipelining in 

RISC processors allows for higher efficiency and faster processing speeds. Ultimately, 

with the exception of embedded processors, the boundary between RISC and CISC is 

becoming blurred in the recent years due to the fact that both architectures are evolving 

for the common goal of high performance computing. 

 

Most of the processors today have some form of built in ROM (Read Only Memory) 

and RAM (Random Access Memory). An approximation of the amount of data memory 

needed can be approximated by the data size of the variables. With single precision 

representation, the amount of RAM is approximated to be 3120 bytes with the program 

memory estimated to be around 64000 bytes. However, additional memories are needed 

for either a high precision trigonometric look up table (LUT) or a math library for 

implementing the trigonometric functions. Specifically there needs to be at least functions 

for sine, cosine and arc tangent and the precision needs to be around 0.00001 radians [3]. 
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To store a table with all of these values require a large amount of ROM. The alternative is 

to tradeoff speed against memory by approximate the trigonometric functions using 

methods such as polynomials approximation or Goertzels algorithm.  

2.2.3 Timing Subsystem 

 
Phase angle measurement accuracy is highly dependent on the sampling of local 

voltage angles. To provide high accuracy absolute time for synchronized sampling and 

timestamps for frequency and angle measurements, the FDR uses a GPS timing receiver 

in the first and second generation design. In order to synchronize the sampling of 

voltages to GPS timing, the processor uses the pulse width modulation (PWM) subsystem 

to generate the trigger for conversion signal for the ADC upon the rising edge of 1PPS. 

Such sampling scheme is used in both of the first two generations FDR.  

 

The challenges to the design of the timing subsystem are two folds, one requirement 

being the need for a common and accurate timing reference and the other is related to the 

accuracy of the trigger for conversion signal. The IEEE synchrophasor standard states 

that the timing signal shall be accurate enough to keep the Total Vector Error (TVE) 

within the limits defined by the user-required compliance level. In connection to this it is 

important to note that an uncertainty of 1 microsecond on the synchronization signal 

leads to a phase angle error of 0.022/0.018 degrees for a 60/50Hz system [2]. In order to 

meet the 1% TVE requirement, assuming that the input voltage is free of noise, a 

maximum synchronization uncertainty of 26 microseconds is required for a 60Hz system 

and 31 microseconds for a 50Hz system (phase error of 0.57 degree causes 1% TVE) [2].   

 

In order to obtain a common timing reference for the FDR acquisition process, it is 

essential to achieve an accurate synchronization of the sampling pulses. This requires the 

deployment of a timing source that may be internal or external to the FDR. In addition, 

the timing signal should provide enough information to provide the second-of-century in 

agreement with UTC. It must be available with minimum interruption at all measurement 

locations throughout the interconnected grid [17].  
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An obvious solution to synchronized sampling would be using a GPS disciplined 

oscillator with the nominal frequency in integer multiples of the sampling frequency. 

However, such a design is not practical as the oscillator will need to be changed when the 

sampling frequency is changed to a number that is not wholly divisible by the oscillator 

clock. In addition, restrictions are set to the oscillator frequency based on the sampling 

frequency. Past experience has shown that while using the internal processor oscillator 

clock to generate trigger for conversion signals is effective, it still has some intrinsic 

drawbacks in accuracy and flexibility. 

 

At last, in assessing the performance of synchronization sources for FDR, it is 

important to consider factors such as accuracy, availability, continuity, reliability, 

integrity and the coverage [17].   

2.2.4 Network Communication Subsystem 

 
Internet connectivity is one of the basic requirements of FDR. Upon the first two 

generations of the FDR, the network communication system is based on the serial to 

Ethernet converter. Such a design is leveraged based on the popular serial communication 

interface, which is available on almost all of the processor architectures. Furthermore, the 

serial to Ethernet module allows for ease of integration and fast deployment. The module 

interfaces to the processor serial port via CTS/RTS handshaking and converts the data 

from the processor into a stream of TCP (Transmission Control Protocol) data that is 

transmitted over the Internet to the FNET server. For the transmission, TCP was selected 

as the transport mechanism because of its fault tolerant yet reliable transmission 

capabilities.  

 

2.3 Limitations of the First and Second Generation FDR 

 
While some enhancements were developed over the years since the first generation 

FDR, there are still a number of limitations to the second generation FDR design. Most 

importantly, the problem related to the timing subsystem and the processing capacity of 

the system is driving the need for an improved design. The following discussion will 
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highlight some of the improvements of the second generation FDR over the first 

generation, as well as the remaining limitations in the second generation FDR that will 

need to be resolved in the next generation design.  

2.3.1 Timing Subsystem Limitations 

 
The timing subsystems of the first and second generation FDR is one of the 

fundamental limitations to the accuracy of the phasor measurements. The issue is related 

to the method in which each second is divided into 1440 separate time periods. Since the 

1440 trigger for conversion signals are driven by the processor PWM module, the period 

of the conversion signal is limited to the processor clock resolution and the accuracy of 

the clock division. 

 

In the first generation FDR, the period of a sample is determined by dividing the 

number of clock cycles between the last two 1PPS input signals from the GPS by the 

desired sampling rate, 1440Hz. The integer result of this division is then used as the 

period of the PWM signal. The drawback to this method has to do with the remainder that 

is ignored after the integer division operation. The remainder, which may be as high as 

1439 clock cycles, can introduce a great deal of error in the period of the last PWM pulse 

of the second. In addition, due to unavoidable variation in the system clock, a deviation 

of up to 100 clock cycles per 1 MHz of operation speed may have to be expected. This 

translates to 100PPM (parts per million) as it is commonly specified by oscillator 

manufacturers. As an example, with a sampling rate of 1440 Hz and an operating 

frequency of 20MHz in the first generation FDR, the division of 20MHz into 1440 yields 

13888.88 clock cycles. However, since the PWM period register can only take integer 

values, only 13888 or 13889 can be used to approximate the number of clock cycles for 

each period.  

 

In the actual software implementation the integer part of the theoretical number of 

clock cycles is used, or the value 13888. Such an approximation results in a residue of 

extra 1280 clock cycles in the last pulse period of the second. Translating to the time 

domain, 1280 clock cycles is 64 microseconds on the 20MHz clock. Such a figure may 
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seem insignificant but the residue accumulates each second leading to a ‘snowball effect’. 

If left unresolved, the residue from each second would accumulate to the point where one 

sampling point could be lost or added. Figure 2.7 shows this phenomenon where the first 

sampling point of each second moves forward. After a certain amount of time, the 

‘snowball effect’ drives the supposedly first sampling point after the 1PPS to move to the 

previous second. Since the algorithm only takes 1440 sampling points per second for 

phasor estimation, the extra sampling point is consequently discarded [14]. In effect, by 

unintentionally moving one sampling point, the whole sampling sequence is moved from 

one second to another. Hence the estimated angle data would have a periodic jump.   

 

 
Figure 2.7 Effect of sampling point residues 

 
To resolve the issue with the residue in the first generation FDR, a residue 

compensation approach was implemented for every second. The main aim of the 

implementation is to prevent the accumulation effect of the residue. To synchronize the 

sampling clock to the PPS and correct the residue every second, a fixed waiting time is 

defined at the beginning of every second as referenced by the rising edge of 1PPS [4]. 

The waiting time is defined as: 
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sysww tnt =                   Equation 2-2 

                  

Equation 2-3

                 

Where nw is the number of system clock cycles to wait, tsys is the period of the system 

clock in seconds. The waiting time tw should be larger than the residue accumulated over 

one second but as small as possible to make the sampling clock start as close as possible 

to the rising edge of 1PPS. As a result, the residue will be confined to the second and will 

not accumulate over an interval of time. The drawback to this implementation is that the 

sampling interval between the last pulse of previous second and the first pulse of the 

current second is different from other sampling intervals. As shown in Figure 2.8, the 

sampling intervals of t0 and t1 are different. Since the algorithm uses computation 

window that encompass several fundamental frequency cycles, the sampling windows 

will introduce both t0 and t1 intervals. To counter this effect, the window size of the first 

phasor estimation was reduced from 8 cycles to 6 cycles to avoid the use of sampling 

interval t1, which would otherwise introduce spikes in estimated frequency. The method  

 

 
Figure 2.8 Effect of waiting a constant time for each sampling second 

 
is effective in reducing the periodic phase jumps but the residue is not totally eliminated. 

Such phenomenon can be observed in the phase plot of measurement data as shown in 

Figure 2.9. 
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Figure 2.9 Phasor angle measurement from first generation FDR 

 
In the second generation FDR, several enhancements were introduced to the timing 

subsystem. For one, the system clock frequency was increased from 20 MHz to 30 MHz 

thereby improving the timing resolution from 1/20MHz = 50 ns to 1/30MHz = 33.3ns. 

This improvement alone results in finer granularity of the timing division. However, a 

more significant improvement was introduced by matching the accuracy of the FDR 

timing subsystem to that of the PMU [14].  

 

In order to achieve the sampling accuracy provided by the PMU, the FDR processor 

was setup to produce PWM with four different period lengths for the trigger for 

conversion signal. With a 30 MHz clock, the PWM period length is calculated to be 

30MHz/1440 = 20833.3. With this mind, it is intuitive to use period lengths that are close 

to this value, such as 20832, 20833, 20834 and 20835. Figure 2.10 shows the phase error 

of the FDR with respect to that of PMU. Once the phase error is obtained with respect to 

the sampling  
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Figure 2.10 Effect of sampling period on phasor angle accuracy [14] 

 

period length, it is easy to see that there is almost a linear trend of phase error with 

respect to the sampling period length. Given the four data points, linear regression can be 

applied to obtain an approximate linear model of the two parameters. Then the linear 

model can be used to estimate the period length which would minimize the phase error 

[14]. Specifically, the linear model is defined as: 

           Equation 2-4 

By using linear fit model, the four data points can be used to estimate p1 and p2, which 

are estimated to be 1.071 and 1.409 respectively. The AngleDriftRate is the actual phase 

error that results from the timing residue each second. Setting the AngleDriftRate to be 0, 

the parameter Nclock can be calculated to be 20834.409. As a result, when Nclock is set to be 

20834.409, the angle drift rate will be approximately 0. To implement the fractional clock 

cycle of 0.409, the sampling period would add or subtract clock cycles so that the average 

sampling period is approximately 20834.409. 
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The second generation FDR timing subsystem has been dramatically improved since 

that of the first generation. The FDR frequency and angle measurement accuracy is 

enhanced by calibrating the DSP PWM period to match the phasor angle measurement 

with the PMU. However, the actual division of 30MHz by 1440 yields 20833.3 but the 

linear regression model estimated the length of the sampling interval should be 20834.4 

to minimize the phase error that results from the timing residue. The inconsistency can be 

attributed to the hardware interrupt latency of the DSP and the frequency errors of the 

DSP oscillator. 

 

Since the FDR timing subsystem is being calibrated against a PMU, the PMU is 

assumed to have higher accuracy with a superior timing subsystem. However, there are 

many different PMU manufacturers and models today and they may differ somewhat in 

the timing subsystem implementation. As an example, one PMU manufacturer may use a 

certain GPS receiver as the frequency reference but another manufacturer may use a 

different frequency reference. Therefore, the calibration of FDR timing subsystem to that 

of PMU may lead to inconsistencies across different FDR units.  

 

A bigger drawback to such an implementation is the lack of cross platform 

compatibility and upgradeability. The next generation FDR may have a different 

processor or even a different architecture than the current one and such a modification 

would require a re-calibration of the timing subsystem. In addition, even if the hardware 

remains the same, a different sampling rate would also lead to re-calibration. By simply 

changing the sampling rate to 1200Hz to accommodate the power system with 50Hz 

nominal frequency, the timing subsystem would have to be re-calibrated. With the change 

in either the architecture or sampling frequency, the linear regression coefficients for 

estimating sampling period will be quite different. Consequently, the same calibration 

procedure will need to be applied against a PMU.  

 

Another drawback of the second generation FDR timing subsystem has to do with the 

sampling period calculation. To this end, the original calculation of the period length is 
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based on a 30MHz clock. However, as it will be shown in Chapter 5, oscillators 

experience variations in frequency due to aging and temperature effects. In other words, 

the 30MHz frequency specified by the manufacturer is only the nominal frequency and it 

does not imply that the oscillator will always be 30MHz. Such deviation from the 

nominal frequency cannot be controlled and is part of the oscillator characteristic. As a 

result, the calculation of the PWM period is based on the assumption that the DSP 

oscillator will always be 30MHz, which leads to sampling time errors due to frequency 

variations of the oscillator. In addition, one could argue that the calibrated PWM period 

to be different when a different FDR is being calibrated against the PMU.   

 

2.3.2 Computation Limitations 

 
The first generation FDR was limited in computational capacity with almost all of its 

computational resources occupied in processing 1440 data points. The second generation 

FDR design improved in the system architecture but does not offer a significant increase 

in computation power. Furthermore, the second generation FDR split up the computation 

and I/O processing into two separate processors whereas the first generation used one 

processor for all of the I/O processing and computation. Such implementation offloads 

the I/O processing burden from one processor to another, which allows for more 

computational resources. Improvement can be made to the accuracy of frequency and 

angle measurement by including a scaling scheme where the sampling frequency can be 

increased to allow for oversampling. However, the requirement of oversampling will 

increase the computational requirements of the overall system by a factor of 2 to 10 

times. The second generation FDR was not able to meet this goal due to emphasis in cost 

and portability. In the end, the oversampling will allow for the preprocessing of the 

digital sample data in order to produce more accurate input to the phasor algorithm.  

 

2.3.3 Voltage Level and Communication Limitations 

 
The next major limitation is related to the international capabilities of the FDR 

system. When the first generation FDR was developed, the criteria set out for the system 

was that it was to work on the United States power systems, therefore the system expects 



 36 

a 60 Hz, 120 V analog input signal.  As the interest in FNET applications has grown, a 

number of international groups have become interested in the research. 

 

Power systems around the world run at a mix of 50 Hz and 60 Hz with nominal 

voltages that range from 120V to 240V.  The first generation FDR design only addressed 

the need for a nominal frequency of 60 Hz for the sampling frequency and an input 

voltage of 120V.  This limits the first generation FDR to be used in the US power system 

only. To accommodate the need for flexibility, the second generation FDR design 

incorporates a new transformer and filter design that’s capable of accommodating both 

nominal voltage levels and frequencies. To switch between the two, a jumper is used in 

addition to overwriting the existing algorithm firmware to accommodate either 1440 or 

1200 samples per second phasor estimation. This is an improvement to the first 

generation FDR where there are two separate transformer and filter design so that a 50Hz 

unit will not be able to switch to 60Hz and vice versa unless the hardware is changed.  

 

The network interface of the first generation FDR is very much similar to that of the 

second generation. The only difference is that the second generation FDR uses an 

embedded version of the serial to Ethernet converter so that it is mounted onto the main 

PCB instead of operating as a separate unit. Such design is improved in terms of 

compactness and portability but does not gain any performance. There are times when the 

FDR communication interface is unreliable and a hard reset is required to put the unit 

back in operation. Problems have presented themselves related to the lack of reliability of 

the communications subsystems, and the lack of bidirectional data between the FNET 

server and the deployed FDRs. The serial to Ethernet converter is not robust enough to 

operate 24/7 without interruptions and that is an issue that needs to be dealt with in the 

next generation design.    

 

Another factor that is limited by the communication subsystem of the FDRs is remote 

diagnostics. In both the first and second generation design, the deployed FDRs do not 

send any status information and have extremely limited remote diagnostic and repair 

capabilities. When problems occur, only elementary diagnostics can occur by phone or 
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email with the host at the site where the unit is deployed. The end result is that often 

users must send the physical FDR back to the FNET laboratory for evaluation. As the 

number of units deployed becomes greater, the number of problems will inevitably 

increase also. In addition, as more groups begin to rely on the information that FNET 

system provide them, the more they will desire faster recoveries from system faults and 

problems.  
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Chapter 3 Evaluation of Frequency Disturbance 
Recorder Architectures 

3.1 Background 

 
Over the years, the FDR has undergone numerous hardware changes in component 

upgrades. Ultimately, the overall architecture has remained the same, they are all consist 

of a transformer, a low pass filter, an ADC, a GPS, one or more embedded processors, 

interfacing board and a serial to Ethernet converter. In continuation of the FDR design 

requirements and limitations in Chapter 2, this chapter seeks to address the details of the 

existing FDR architectures as well as potential new FDR designs that deviate from the 

traditional architecture. Furthermore, the new design seeks to leverage state of the art 

technologies in field programmable gate arrays (FPGA) and common off the shelf 

(COTS) general purpose computers (PC) [5]. At the same time it is also necessary to 

explore upgrade possibilities for the existing embedded processor to allow for ease of 

upgradeability and minimize development time for deployment. Ultimately, the design 

requirements of the FDR should be satisfied and shortcomings of the existing FDR 

should be addressed and improvised in the new design.  

 

Basically many options exist today for the FDR processor and the overall 

architectures can be divided into two large groups, the embedded design and general 

purpose computer (PC) based design. In an embedded system based design, there are 

many options available for the processor such as general purpose microcontrollers and 

digital signal processors (DSP). Nevertheless, the ever-growing market in system on a 

chip (SoC) technology is also being considered as a good candidate for FDR design. 

Features such as low cost, high reliability and flexibility make SoC very attractive for 

meeting the various requirements of FDR design. Due to its high flexibility and 

popularity, only programmable logic chips such as FPGAs are considered for integration 

into the FDR. Several architectures are presented based on the requirements and 

specifications indicated in Chapter 2, as well as the advantages and disadvantages each 

has to offer. 
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3.2 Microcontroller Based Design 

 
The first generation FDR unit is based on a 32 bit microcontroller, the Freescale 

MPC555. The MPC555 was intended to be used most extensively in the automotive 

applications, such as engine control, transmission control, suspension and stability. In the 

past several years, the MPC555 is rapidly being integrated into applications such as 

avionics, controls, analysis equipment, robotics and power management. During the 

initial stages of the FDR design, much emphasis was put into the reliability, accuracy and 

portability of the device. Design optimization was not a crucial factor in the first 

generation hardware development. Since a proof of concept design was the main goal, an 

MPC555 evaluation board was used for connectivity and debugging capabilities. Figure 

3.1 shows a block diagram of the first generation FDR and Figure 3.2 shows a photo of 

the first generation FDR. 
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Figure 3.1 First generation FDR architecture 
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Figure 3.2 Photo of first generation FDR 

 
 

As shown in Figure 3.1, the main computation unit, the Freescale MPC555 is located 

on the off-the-shelf evaluation board CME-555 from Axiom Manufacturing. The 

CME555 provides easy access to a number of peripherals on the main processor. In 

addition, the board has two memory sockets for memory expansion, two built-in RS232 

connectors on board, two TouCAN ports with transceivers, a LCD connector with 

contrast, a 16 key keypad area and a JTAG development connector. However, most of the 

board modules are not being used for the FDR application and resulting in excessive cost, 

space and system complexity. Hence such design is not appropriate for high volume 

production and deployment. 

 

Should the next generation design be based on the single microcontroller architecture, 

it is necessary to move from the evaluation board to a custom designed board. A custom 

designed board will not only be a more economical solution but also lowering the overall 

system complexity. By isolating the processor subsystems and the system peripherals that 

are needed for FDR, a custom board can be designed for the FDR [15]. 

3.2.1 Analog Subsystem 

 

The signal conditioning system of the first generation FDR is composed of a two 

stage RC filter. Furthermore, the AD976A from Analog Device is being used for analog 

to digital conversion. The AD976A is a 16 bit SAR ADC with 200kSPS throughput and 

has a high speed parallel interface. Since the input range of the ADC is from -10V to 

+10VDC, a transformer is used to step down the 110VAC input from outlets. However, if 

the input voltage differs, a different transformer will need to be used, such is the case for 

220VAC input. Improvements to the system can be made by re-design the transformer 
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and the filter to accommodate a wide range of voltage levels.  Furthermore, the 

transformer, ADC and the filter should be integrated into one PCB. 

3.2.2 Microcontroller  

 

In the first generation FDR, all of the I/O processing and computation are done within 

the MPC555. The MPC555 is a high-speed 32 bit embedded microcontroller with up to 

40MHz of clock speed and 448 Kbytes of embedded FLASH memory and 26 Kbytes of 

Static RAM. Moreover, the MPC555 contains a double precision floating point unit 

designed to meet the needs of high speed scientific computing. The MPC555 supports a 

wide range of on-board peripherals, these include the dual Time Processor Unit (TPU), 

two TouCAN Controller Area Network (CAN 2.0B) modules, and dual queued analog to 

digital converter (QADC). Of all these subsystems, only the TPU subsystem is being 

used for the FDR. The TPU is a microcontroller all on its own. Operating simultaneously 

with the CPU, the two TPU subsystems are capable of processing micro-instructions, 

schedules and real-time hardware events. In the FDR, one of the TPU channels performs 

the Request to Send (RTS)/Clear to Send (CTS) hardware handshaking to transmit 

measurement data to the serial to Ethernet converter. In addition, the other TPU channel 

provides the high accuracy timing for PWM generation, which triggers the external ADC 

for conversion.  To allow for interfacing with external devices, the MPC555 has a plenty 

of I/O capabilities. The FDR design makes use of some of these I/O subsystems for 

interfacing with the GPS, the serial to Ethernet converter and the external ADC.  

 

While the MPC555 meets all of the processing requirements of the FDR, the 

processor is heavily burdened in such a way that no oversampling or extended resampling 

can be implemented. Hence a trivial upgrade to the existing system is to develop a 

custom PCB with a more powerful processor of similar architecture [15]. Recent survey 

of processors similar to that of MPC555 is shown in Table 3-1 along with some of the 

important characteristics for FDR design. Since all of the processor instruction set is 

RISC based with some minimum differences in core architecture, comparison can be 

made directly in terms of Dhrystone MIPS (mega instructions per second). For example, 

the MPC5554 has about four times the processing power of MPC555. The ideal upgrade 
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for MPC555 is to make minimum change to the existing FDR architecture with the 

highest gain in processing power. With that concept in mind, it’s easy to see that 

MPC5554 is the best choice for direct MPC555 upgrade. However, even with the high 

speed clock, there isn’t any significant improvement in the speed of floating point 

operations. As a result, a direct upgrade of the MPC555 will not yield any significant 

gain in computation speed but only higher I/O processing speed. 

  

Table 3-1 Options for direct upgrade of Freescale MPC555 

 
Processor MPC555 MPC566 MPC5554 MPC5200B 

Core architecture PowerPC PowerPC PowerPC 
e200z 

PowerPC 
603e 

Maximum clock 40 MHz 56 MHz 132 MHz 400 MHz 

Dhrystone MIPS 56 DMIPS 89 DMIPS 200 DMIPS 760 DMIPS 

Instruction set RISC RISC RISC RISC 

FPU Single/Double 
Precision 

Single/Double 
Precision 

Single 
Precision 

Single/Double 
Precision 

UART Yes Yes Yes Yes 

General purpose I/O Yes Yes Yes Yes 

Interrupt controller Yes 
(Hierarchal) 

Yes 
(Hierarchal) 

Yes 
(Hierarchal) 

Yes 
(Hierarchal) 

Timing module Yes Yes Yes Yes 

Non-volatile 
memory 

448 Kbytes 
EEPROM 

1 Mbyte Flash 2 Mbyte Flash None 

RAM 26 Kbytes 
SRAM 

36 Kbytes 
SRAM 

64 Kbytes 
SRAM 

16 Kbytes 
SRAM 

 
In conclusion, the single microcontroller based FDR architecture has reached its limit 

in computation capabilities and a direct upgrade of the microcontroller will only provide 

faster I/O processing but not much gain in computation speed. Ultimately, it is not 

feasible to seek standalone general purpose microcontroller with high computation 

capabilities. For it is not optimized for any intensive signal processing capabilities. In 
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order to increase the computation capabilities to accommodate more sampling points, a 

new FDR architecture is needed.   

3.2.3 Network Subsystem 

 
The network subsystem of the first generation FDR is provided by the Moxa NPort 

5110 serial to Ethernet converter. The module is simple to configure and easily integrated 

with the FDR. However, the module is not in an embedded form and is external to the 

FDR. Such a form factor makes relocation and deployment rather difficult. Also, the 

reliability of the device is not consistent as a system fault would stop data transmission.  

3.3 Digital Signal Processor Based Design 

 
The second generation of FDR design was realized more than four years ago and it 

has been showing some promising results. Instead of using a microprocessor as the 

central computation unit, the new generation implements a digital signal processor 

(DSP)-based computation unit. Most importantly, all of the hardware is integrated into a 

few PCBs, and the design has a switch that is able to switch between 110V and 220V 

input. Figure 3.3 shows a block diagram of the second generation FDR. As shown in 

Figure 3.4, this new generation of FDR has proven to be more portable and compact in 

design. In addition, the filter design is able to accommodate 60Hz as well as 50Hz input 

signals [16].  As a result, the second generation FDRs can be deployed on a global scale 

more conveniently.  
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Figure 3.3 Second generation FDR architecture 

 

 
Figure 3.4 Photo of the second generation FDR 

 
One of the most distinctive differences between the second generation architecture 

and that of the first generation is the use of a separate DSP to offload the algorithm 

burden from the microcontroller. In this case, the microcontroller is dedicated to the I/O 

processing functionalities of the FDR, thereby lowering the processing power 

requirement of the microcontroller. A less demanding microcontroller can be used in this 

case since all of the algorithm implementation is moved to the DSP. In addition, the use 

of a fixed point DSP has further lowered the overall cost of the FDR. Finally, the custom 

designed PCB for the second generation FDR eliminates the need for evaluation board 

from third party vendors. The lower cost implementation has drastically helped in terms 
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of high volume FDR production and deployment. Nevertheless, the computation power is 

still very much limited in the second generation design so that no improvement could be 

made in either sampling rate or multiple resampling. In order to accommodate higher 

computation capabilities, it is important to focus on the DSP since that is where all of the 

computation occurs.  

3.3.1 Analog Subsystem 

 
The second generation FDR has integrated the filter, transformer and the ADC into 

one PCB. Also, the transformer and filter are re-designed to accommodate both 120VAC 

and 22VAC inputs. The AD7865 from Analog Devices is used for analog to digital 

conversion. The AD7865 is a 14 bit SAR ADC with a fast conversion speed of 2.4 

microseconds. Thus, the resolution of the ADC is lower compare to that of the first 

generation FDR at the expense of faster conversion speed and lower price. Nevertheless, 

the higher conversion speed is not useful unless the sampling speed is increased. Overall, 

the design of the new analog subsystem has resolved the issues associated with that of the 

first generation design. 

3.3.2 Microcontroller and DSP Co-processor 

 
The second generation FDR uses the C8051F020 from Silicon Laboratories as its 

auxiliary co-processor to perform several functions. The C8051F020 processor offers a 

fully integrated SoC design with subsystems including an ADC, two DACs, two UART 

serial interfaces implemented in hardware, five general purpose 16 bit timers and a 

programmable counter with five capture/compare modules. Furthermore, there are 64 

kbytes of internal FLASH and 4352 bytes of on chip RAM memory to minimize external 

memory requirements.   

 

The C8051 processor measures the 1PPS from GPS to determine whether it is valid 

and parses the GPS messages from the serial interface. It is also responsible for receiving 

the final phase measurement data from the DSP and combining it with the appropriate 

timestamp information into serial streams for the serial to Ethernet converter. Due to the 
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fact that CAN interface is not supported on the chip itself, an external CAN controller is 

needed to interface the C8051 with the DSP. 

 
The main computation unit of the second generation FDR is the TI (Texas 

Instruments) TMS320LF2407. The TMS320LF2407 is part of the TMS320C2000 

platform of fixed point DSPs. Operating at 30MHz with 30 MIPS performance, the 

TMS320LF2407 is mostly used in motor control and motion control applications. 

Moreover, the TMS320LF2407 offers an internal ADC, SCI (serial communication 

interface) module, SPI (serial peripheral interface) module, CAN communication module, 

two general purpose timers and eight PWM channels. The TI ANSI C compiler simplifies 

the software development by providing a run-time-support library that contains a custom 

coded set of floating point math functions. With the aid of the math library, the FDR 

algorithm implemented in C can be directly applied in the fixed point DSP with minimum 

modifications.  

 

In addition to the algorithm implementation, the TMS320LF2407 is responsible for 

generating the trigger for conversion signal to the ADC. The event manager module 

receives the 1PPS signal from the GPS and generates a PWM signal to the ADC based on 

its internal 30MHz clock. In return, the ADC sends back the converted digital data upon 

the rising edge of the trigger for conversion signal. All of the I/O processing are interrupt 

driven to minimize latency. 

 

The microcontroller and DSP co-processor architecture has a well balanced trade-off 

between cost and computation power. Nevertheless, if such architecture were to be used 

in the next generation FDR design, it is necessary to focus on the DSP hardware upgrade 

to obtain higher computation power. Considering that faster floating point computation is 

the major requisite for processing more data points, the obvious migration path would be 

switching over to the floating point DSP with up to 60MFLOPS and 80MFLOPS 

performance. Such transition would certainly increase the cost and complexity of the 

hardware. Nevertheless, the choice of a fixed or floating point DSP is no longer solely 

dependent on the complexity of the software development but rather the precision 
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requirement of the application. Since the current fixed point DSP is performing 

satisfactorily in frequency and angle measurement accuracy, the selection for upgrade 

should encompass both floating point and fixed point DSP. Ultimately, the fixed point 

DSP will always have an edge over the floating point DSP in FDR design.  

 

3.3.3 Network Communication Subsystem 

 
Similar to the first generation FDR, the network communication subsystem is 

provided by a serial to Ethernet converter. However, in this case, an embedded version of 

the device is being used. The Moxa NE4100T has a small form factor and is easily 

mounted to the processor board of the FDR. Since this is a new generation of the Moxa 

products, the performance of the device is better than that of the first generation FDR. 

Nevertheless, the performance is not consistent and the drop out in communication is one 

of the major causes of missing data. It is fair to say that in the next generation design, the 

network communication subsystem needs to be reconsidered with a more reliable 

replacement. 

 

3.4 Commodity Personal Computer Based Design with FPGA 

 
To address the need for flexibility in sampling speeds and high reliability, a PC based 

design was proposed in [5]. Overall, the architecture of a PC based design is a little 

different from that of the traditional embedded system architecture. Similar to the first 

and second generation FDR, the system will use a voltage transformer and low pass filter 

combination to convert the input voltage from the standard wall outlet power signal, and 

to condition the input voltage respectively. The same ADC board from the previous 

generation can be used. For the timing subsystem and the computation engine in the 

system there are a number of changes. In order to increase the timing accuracy and 

flexibility of the system, the GPS 1PPS signal will be input to a FPGA. This FPGA will 

monitor the incoming 1PPS signal and will send out accurate trigger for conversion 

pulses to ADC. The ADC will then assert an input to a smaller 16 bit microprocessor in 

order to indicate end of conversion. The FPGA will also indicate to the microprocessor 
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the start of each new second. The microprocessor will then gather the binary data from 

the ADC and GPS serial data stream and transmit to an embedded PC for computation 

and network communications. A block diagram of the FPGA based FDR is shown in 

Figure 3.5.  

 

 
Figure 3.5 FDR architecture based on FPGA and PC 

3.4.1 Microcontroller 

 
The 16 bit embedded processor is responsible for all of the interfacing tasks in the 

system. These tasks include collecting all of the sampling data from the ADC, keep track 

of the sample number, as well as parsing the GPS serial data stream from the GPS timing 

receiver. Most importantly, the microcontroller is used to collect the ADC data and 

correlate that data with timestamps. In order to accomplish this, the microcontroller first 

receives the 1PPS signal from the GPS timing receiver and uses this pulse to reset an 

internal counter that tracks the sample number of ADC conversion. After receiving the 
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data from the ADC the microcontroller stores that sample along with the sample number 

in a buffer waiting to be sent to the computation system.  

 

In addition to receiving data from the ADC, the microcontroller is also responsible for 

receiving and parsing the serial stream from the GPS timing receiver. The 

microcontroller uses the parsed time information to determine the actual second of the 

day that corresponds with the sample number that is maintained by the internal counter 

on the microcontroller. In order to transmit the data to the computation system, the 

microcontroller periodically packages the data that has been stored in the transmit buffer. 

The data are then sent to the computation system from a universal serial bus (USB) 

connection. There are a number of advantages in using USB interface. For one, nearly 

every PC today comes with USB standard interface. Also, the bandwidth of USB link far 

outperforms that of the RS232 serial bus, which was used in both earlier versions of the 

FDR. The throughput of the USB 2.0 is 480 megabits per second (Mbps), which 

surpasses that of the serial connection of merely 230 kilobits per second (kbps). 

 

3.4.2 FPGA 

 
In order to the address the need for a flexible timing subsystem that is capable of 

accommodating variable sampling rates, an FPGA is used as the main controller in the 

timing subsystem [5]. The advantage of using an FPGA is mainly due to its high 

performance in hard-real time, deterministic behavior. Through the reconfigurable nature 

of the FPGA, the 1PPS from the GPS can be accurately divided into sampling periods 

according to the sampling rate specified. The sampling rate can be selected via two 

separate on-board configuration jumper. Through the use of the jumpers the system can 

be configured for both input nominal frequencies of 50Hz and 60Hz. In addition, the 

jumpers allows for the selection of oversampling which increases the sampling rate to 10 

times that of the original sampling rate. Ultimately, the final system design is to have an 

FPGA that took the 1PPS output from the GPS as an input and also reads the desired 

input signal frequency select line as well as an oversampling select line. The output will 

then produce a pulse train based on those input parameters.  
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Much of the software implementation in FPGA can reuse the logic from previous 

generation FDRs. The only difference is that the logic will need to be implemented in 

Verilog hardware description language (HDL) instead of C. Nevertheless, the FPGA 

hardware does not need to be highly sophisticated with high density logic cells and 

system gates. A relatively low-end FPGA such as those from the Xilinx Spartan II family 

of chips is adequate for accommodating the timing logic.   

 

To address the need for remote diagnostic and upgrade, the microcontroller is used to 

configure the attached FPGA upon the basic initialization routines. Specifically, when the 

microcontroller starts up, there will be a basic initialization sequence that will get the 

operating mode of the system. The operating mode includes the input from switches 

related to the selection between 50 and 60Hz input frequency and 120V or 220V input 

voltage. After the initialization routines, the system will configure the attached FPGA. 

Using a stored image of the FPGA configuration file, the microcontroller will load the 

configuration on to the FPGA. This is an important feature as it will allow the FPGA 

portion of the system to be updated remotely. Furthermore, the microcontroller firmware 

can be changed by the use of a USB bootloader, which allows for the internal program 

memory to be reprogrammed directly using the USB connection. This feature will enable 

the remote updating of both the microcontroller and FPGA code [5].  

 

3.4.3 Commodity PC 

 

 In order to step up a notch on the computation capabilities of the FDR, a PC based 

computation unit is necessary to meet the requirement of processing above 10 times the 

current sampling rate. Considering the low cost and abundance of hardware systems that 

are based on the Intel x86 architecture, the new system will be designed to take advantage 

of this hardware. It is the responsibility of the 16 bit microcontroller to control the data 

acquisition process and transmit the digital data to the x86 based PC. Considering the fact 

that commodity PCs currently have multi-gigahertz processors onboard with capabilities 

from a few to many hundreds MFLOPS, with possible giga FLOPS peaks achievable 
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with vector computation units (Single Instruction Multiple Data (SIMD)) that come for 

free with the recent processors, the computation needs of the system can be easily met.    

 

 In addition the high computation capabilities, the PC offers many other advantages to 

the FDR system. The abundant peripheral interfaces of the PC are very valuable to the 

FDR. Most of the PCs today come standard with interfaces such as USB and Ethernet and 

with custom serial and parallel ports. Current implementation makes full use of the USB 

and Ethernet ports but future applications may call for the use of either serial or parallel 

ports as well to support some legacy products. 

 

 In general, most of the commodity PCs today are bundled with an operating system 

and some security software. For the architecture described in Figure 3.6, the operating 

system could be either Microsoft Windows line of products or a standard Linux 

distribution. Both of these options come with standard firewalls and are provided with 

regular security updates.  

 

 One of the most important features of the PC based FDR is the high level 

configurability and upgradeability. What’s more is that a remote based administration 

scheme can be used. Components such as computation algorithm software can be 

configured on the fly and remotely. Also, through the use of standard PC hardware, the 

upgrade cycle for more complex phasor measurement algorithm is inexpensive and very 

simple. Standard software development packages can be used to develop and deploy the 

algorithms [5]. 

3.5 Standalone Commodity Personal Computer Based Design  

 

 The idea of a PC based FDR design expands the possibilities in incorporating a large 

base of readily available hardware and software. For instance, most of the desktop PCs 

today come with open PCI slots for peripheral expansion and there a wide variety of PCI 

(peripheral component interconnect) based DAQ (data acquisition) cards available. With 

these considerations, it is logical to consider the possibility of a standalone commodity 
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PC based FDR. Figure 3.6 shows the architecture of a standalone PC based FDR. The 

main components of interest here are the PCI based DAQ card and the Internet based 

timing. Most of the DAQ cards today have 16 bit ADC capability and a minimum 

sampling rate of 200 kHz so that the FDR data conversion requirement can be easily met. 

In addition, timing synchronization over the Internet is a fairly matured technology and 

has been improving in accuracy and reliability over the recent years. Depending on the 

accuracy needed, there is a wide variety of software that seeks to synchronize the PC 

clock to that of an external time reference. Nevertheless, the topic of PC time 

synchronization is resorted to Chapter 7. Given the capability to synchronize to the UTC 

time with the acceptable accuracy, software triggers can be used to drive the DAQ for 

conversion.  

 

Figure 3.6 PC based FDR design block diagram 

 

It is important to note that given the high flexibility in the PC based FDR design, 

there are several factors that can affect the accuracy of the frequency and angle 

measurements. Specifically, the performance of the system is highly dependent on the 

hardware and operating system used. Since the data acquisition module is being 

integrated into the PC, it is likely that a real-time operating system will be needed for 

better deterministic behavior versus that of the general purpose operating systems. 

Although Chapter 7 will present a more detailed description of the network 

synchronization technique and its performance, it is known that such synchronization 
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method will not provide as high accuracy timing as the GPS. With that taken into 

consideration, there are decisions to be made in regard to the applications that are suitable 

for the lower accuracy FDR. This is especially significant for applications that involve 

phasor angle measurements where there is very small leeway in the timing error. 

Nevertheless, the introduction of the PC based FDR raises the bar for large scale 

deployments and providing high density coverage in large geographical regions.  
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Chapter 4 Implementation of Global Positioning System 
as a High Availability, High Accuracy Timing 

Reference for Frequency Disturbance Recorder 
 

4.1 Background 

 
Global Positioning System (GPS) plays an important role in many different 

applications. They are best known to provide navigation and positioning solutions but 

more and more applications are using GPS as a time and frequency reference for 

synchronization. GPS provides very precise time as a by-product of their navigation 

metrology. For measurement applications GPS can provide accurate time and positioning 

for a single device. In addition, it can also be used for synchronization of multiple 

distributed measurement systems. 

 

Specifically designed for high accuracy timing applications, there are some receiver 

manufacturers that optimize their products for timing applications. Such receivers include 

the Resolution T GPS timing module from Trimble, the Jupiter-T timing GPS receiver 

from Navman and the receiver implemented in the FDR, the M12+ GPS Timing Oncore 

module from Motorola. These receivers differs in that they have an over determined 

clock mode using position hold mode, which enables the coordinates of the antenna to be 

fixed in the solution leaving the clock offset only to solve for. Such a receiver will only 

need one satellite to provide a timing solution once the position solution has been 

established.  

 

Timing Receiver Autonomous Integrity Monitoring (TRAIM) is supported on all of 

the timing GPS receivers. TRAIM is an algorithm that detects the integrity of 1PPS 

signal using the redundancy in measurements. The algorithm relies highly on the number 

of satellites being tracked and any abnormalities in the measurement can be detected and 

isolated. Specifically, there are two modes of operation where one mode uses the 

redundant measurements to alert the user if the solution does not meet specified accuracy 
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requirements [19]. The other mode is commonly known as the isolation mode where the 

degraded solution is improved by isolation and removal of faulty satellites. TRAIM is 

mostly used in the avionics industry where the subject of integrity is crucial to the 

industry’s safety requirements [19].  

 
This Chapter first explores how GPS obtains a timing solution based on time of 

arrival (TOA) concept and present some limitations of the technology. Alternative 

satellite navigation systems will also be presented. Furthermore, emphasis will be placed 

on the upgrade of the first generation FDR GPS receiver as well as a close examination of 

high sensitivity GPS implementation for high accuracy frequency and angle 

measurements. The high sensitivity GPS was introduced to address the issues associated 

with signal attenuation in certain environments. Ultimately, the high sensitivity GPS will 

not only provide high availability for frequency and phasor angle measurements but also 

maintain the same level of timing accuracy compared with the conventional GPS. 

4.1.1 Global Positioning System 

 
The NAVSTAR Global Positioning System (GPS) is made up of a constellation of 

more than 24 active satellites orbiting approximately 20,200 kilometers above the surface 

of the Earth. The constellation is oriented in such a way that at least four satellites are 

visible 24 hours a day all over the world [26]. Originally deployed by the United States 

Department of Defense (DoD), these satellites all have four onboard atomic clocks that 

synchronize to within 3 ns of the official atomic clock located at the Unite States Naval 

Observatory (USNO). Another section of GPS is situated on Earth to control the 

satellites. Within this section of the GPS there is a master control station (MCS) located 

at Schriever Air Force Base, Colorado Springs, CO. USA and five monitor stations 

distributed over the world. Data recorded by the monitor stations are processed at the 

master control station for calculation of satellite ephemerides and modeling of the 

satellite clocks. After doing the corresponding calculations, correction messages are sent 

to the satellites [26]. The purpose of these corrections is to maintain high accuracy of 

orbital location and synchronization of the satellite atomic clocks. The unique fact that 

the signals from these satellites are synchronized with the atomic clock allows end users 
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of the system to receive synchronized frequency information. Henceforth GPS is not only 

a navigation system, it is also a time-transfer system. As a time-transfer system it 

provides stability very close to one nanosecond per one day [27]. GPS is a versatile and 

global tool which can be used to both distribute time to unlimited number of users and 

synchronize clocks over large distances with high degree of precision and accuracy. This 

feature alone makes GPS a highly competitive timing synchronization source for wide 

area monitoring applications.  

 

To obtain a navigation solution, the processor within the GPS receiver can calculate 

the difference between its on-board clock and either GPS time or Coordinated Universal 

Time (UTC) as determined at the U.S. Naval Observatory (USNO). In most cases the 

local GPS clock is a quartz crystal clock but there are some cases where an external clock 

such as a rubidium frequency standard or a cesium beam frequency standard acts as the 

local reference for the GPS receiver. The GPS receiver can be programmed to output 

UTC (USNO) or GPS time as calculated by the difference between the local receiver 

clock and GPS time. The UTC (USNO) is usually kept to within approximately 10 ns of 

actual UTC [27]. A GPS receiver tracking at least four GPS satellites can solve for the 

receiver’s position and time at almost any location on the globe with high precision. A 

timing receiver operating from a given fixed location can derive time from GPS using 

just one satellite. 

 

The exact nature of how GPS works can be obtained from a variety of literature such 

as [56]. Since the main aim of this study is focused on obtaining precise timing for 

frequency and angle measurements it is not necessary to delve into the algorithms of GPS 

location estimation. However, it is important to give an overview of the basic principles 

as well as how the timing solution is solved. GPS operates on five basic principles: (1) 

triangulation and Newton Raphson approximation methods are used to solve the position 

solution from four satellites; (2) GPS measures distance between orbiting satellites to a 

position on Earth by using the travel time of radio waves; (3) GPS requires very accurate 

clocks to measure radio wave travel time; (4) satellite position at any point in time is 

being kept track by DoD and the satellites relay an almanac with this information to the 
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receiver; (5) The radio wave experiences delays as it passes through the atmosphere with 

the most significant delays occurring in the ionosphere and troposphere.  

 

In order to correct for errors on the GPS receiver oscillator clock, each satellite 

transmits a signal in the format of direct sequence spread spectrum (DSSS) on each of the 

two radio frequencies (L1 operating on 1575.42MHz and L2 operating on 1227.60MHz). 

In its most basic form, spread spectrum signaling consists of taking a given signal and 

spreading its bandwidth through multiplication by a high bandwidth spreading waveform. 

The effect of this waveform is to distribute the spectral power of the GPS signal over a 

range of frequencies. Such a distribution enables the ‘jamming’ of the signal more 

difficult as well as reduces unwanted interference of GPS signals with other terrestrial 

systems. Two distinct encodings are used: the coarse/acquisition (C/A) code (also known 

as Gold code or pseudorandom noise code) and the precise (P) code. The C/A code is 

open to public and used by civilian GPS receivers while the P code can only be used for 

military application.  

 

As the signal reaches the GPS receiver, the receiver replicates the C/A code by 

generating a sequence of 1023 bits with a period of one millisecond and compares it with 

the received signal using trial and error. The offset between the replicated code and the 

received signal is the time of transmission and it will be multiplied by the speed of light 

yielding what is known as the pseudorange, or also known as the measured range. It is 

important to recognize that the range measurement just described only works properly if 

the satellite and receiver clocks are synchronized, hence the name pseudorange. To 

illustrate these concepts in terms of receiver clock offset (dtRX), or the offset between the 

receiver clock and one satellite clock the following relationship can be obtained: 

 

                        Equation 4-1 

where c is the speed of light, p is the measured pseudorange, ρ is the true geometric range 

to the satellite, dρ is the satellite orbit error, dtSV is the satellite clock error, diono is the 

ionospheric delay, dtropo is the tropospheric delay and εp denotes multipath and noise. To 

correct for the receiver clock offset (dtRX), a fourth range measurement is provided by the 
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fourth satellite which will not intersect at a single point. At which point the receiver will 

add or subtract time until it arrives at a solution that allows ranges from all satellites to go 

through one point. Finally, it determines the time offset and makes the necessary 

adjustments. The method that is being is described is really an overview of how the 

timing solution is obtained. However, the acquisition and tracking of satellite signals 

involves some more in-depth discussion on the GPS signal. 

  

In order for a GPS receiver to acquire and track satellite signals, it must perform a 

two dimensional signal replication process of the received satellite signals. The type of 

GPS spread spectrum signal employed by the GPS is known as binary phase shift keying 

(BPSK DSSS). BPSK is a form of phase modulation where the carrier signal is 

instantaneously phase shifted by 180° at the time of bit change. The GPS receiver 

synchronizes or locks to the incoming satellite signal by using cross correlation with its 

locally generated code. When the two codes align they cancel one another, which allows 

for the acquisition of the satellite signal. However, in the case when more than one 

pseudorandom code is received, it is necessary distinguish them from each other. Gold 

codes are generated from the modulo-2 addition of two specifically chosen 

pseudorandom codes. Before the addition of the two codes, the second code is delayed a 

certain number of bits from the first code. To decode the incoming signal in the receiver, 

the correlator compares the Gold signal for each satellite with the receiver generate 

replica. Generally, the receiver searches all possible leads and lags between the signal 

and the replica to achieve the highest correlation. When this occurs, the receiver has 

acquire the signal can track it through control loops. 

4.1.2 Limitations of the GPS Accuracy 

 
Some error sources of GPS have been reduced throughout the years of ever 

improving technology. However there are some remaining factors that need to be taken 

into consideration while evaluating GPS accuracy. The GPS performance can be 

degraded by a number of factors and even inoperable under certain conditions.  
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The most well known error source of GPS was the Selective Availability (SA). This 

error was intentionally introduced by the DoD in order to make the GPS positioning 

inaccurate for civil use while preserving the higher accuracy for military use. S/A was put 

into effect on March 25th 1990 and was discontinued on May 1st 2000. While S/A was 

introduced in the GPS solution, it was the greatest source of error with up to 100 meters 

of inaccuracy (note that GPS distance error is directly proportional to timing error by a 

factor of speed of light). Such inaccuracies were introduced due to the intentional 

addition of dithering signal to the satellite clock. In addition, the satellite orbital 

parameters are incorrect so that accurate determination of satellite position in real-time 

was not possible.  

 

Ephemeris errors are often introduced while the satellite paths are affected by forces 

like solar winds and earth gravitational pull. Although ephemeris messages are 

transmitted every 30 seconds, the messages itself may get delayed in the transmission 

process and providing a false update. What’s more important is that the satellite path will 

be deviated away from the predicted, which will propagate into the receiver position 

solution. In addition, the satellite’s atomic clocks also experience noise and drift errors. 

While these errors tend to be small, they can still add up to a few meters of inaccuracies. 

 

Propagation errors are provoked by the fact that a GPS signal has to propagate 

through different layers of Earth’s atmosphere. As an example, the ionosphere adds an 

inaccuracy of about 20 meters to the pseudoranges. Although not as significant of an 

impact, the troposphere also contributes some error to the GPS solution. These effects are 

minimized when the satellite is directly overhead but becomes greater for satellites near 

the horizon since the path through the atmosphere is longer. Furthermore, these effects 

can often be mitigated by modeling, although not perfectly. There will generally be some 

residual atmospheric error due to incorrect model or atmospheric disturbances. Using a 

dual frequency receiver or picking up pseudorange corrections from other reference 

stations are two ways to lessen the residual error. 
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A further important aspect affecting the precision of obtained GPS position is the 

geometry of the satellites used for pseudorange measurements. A parameter that is often 

used to quantify this effect is the Dilution of Precision (DOP) factor. Naturally the DOP 

value varies as the satellites are moving along their orbital planes, which means that the 

DOP values vary over time. DOP value can be calculated based on satellite orbital path 

and does not need any measurements. The accuracy of a GPS solution increases as the 

DOP value decreases with a threshold value of 5, indicating a value below 5 as the most 

accurate solution.  

 

Although very well studied, multipath continues to contribute some errors in the GPS 

position solution. Multipath is the effect of wave signal reflecting off of different objects 

and arriving at the antenna, introducing noise in the received signal. Thus the receiver 

makes a pseudorange measurement based on an incorrect signal. However, the multipath 

errors are being kept to the minimum due to the high autocorrelation nature of the GPS 

signal, which tends to lessen the effect of signal reflections. 

4.1.3 Alternative Global Navigation Satellite Systems  

 

There are two globally used positioning systems, namely the Galileo and GLONASS, 

which are conceptually similar to the GPS. However both systems are yet to be fully 

operational due to various reasons. 

 

Galileo is a joint initiative between the European Commission and the European 

Space Agency (ESA) [43]. It is a satellite navigation system similar to GPS developed in 

order to create a European satellite based navigation system independent of the GPS. 

Started in 2001, Galileo is still currently undergoing development phase. The final system 

will contain 30 Medium Earth Orbit (MEO) satellites in a height of 23,636 km above the 

Earth. The general system is composed of three main component groups, the global 

components, regional components and the local components. The global components are 

the satellites, regional and local components being the EGNOS (European Geostationary 

Navigation Overlay Service) [43]. The EGNOS allows for enhanced positioning needs by 

processing GPS or GLONASS signals resulting in an increase of accuracy of about five 
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meters. EGNOS consists of three geostationary satellites and a network of ground 

stations. Like the GPS, use of basic Galileo services will be free and open to everyone but 

the high accuracy capabilities will be resorted to military use and paying commercial 

users. Even though the Galileo system development has had its share of controversies, the 

EU transportation ministers have reached an agreement that it should be operational by 

2013 [43]. 

 

GLONASS can be considered to be the Russian counterpart to the GPS. GLONASS 

was developed rather quickly resulting in operational capability with 24 satellites in 1995 

[44]. However due to shortage in government funding the satellite constellation was 

degraded until 1998. Ever since then Russia strived to rebuild the satellite infrastructure 

and as of January 12th, 2010 the GLONASS system consists of 22 satellites of which 16 

are operational. The system requires 18 satellites for continuous navigation services 

covering the Russian Federation and 24 satellites to provide services worldwide. The 

Russian government has estimated 2011 as the completion date of all 24 satellites in 

operation [44].  

 

4.2 GPS Time Synchronization for FDR  

4.2.1 First Generation FDR GPS Receiver 

 

In the first generation FDR, the Motorola M12+ GPS timing receiver was used as the 

frequency and timing reference. The Motorola M12+ timing receiver is specifically 

designed for high precision timing applications with the highest claimed accuracy of less 

than 2 nanoseconds offset from UTC at the one sigma level. The receiver uses a parallel 

architecture with 12 channel L1 C/A code. Two communication protocols are supported, 

NMEA (National Marine Electronics Association) and the Motorola binary protocol that 

includes commands for output PPS control, elevation angle selection and ASCII message 

output. The evaluation board for the M12+ allows for simplified interface with the 

CME555 board. There are two serial ports used separately for GPS and AGPS (Assisted 

GPS) message transmission, a SMA (SubMiniature version A) connector allows for high 

precision 1PPS output. The MPC555 processor sends initialization commands through 
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one of the serial ports to initialize the M12+ receiver during system start up. The 

initialization includes configuring the 1PPS output to be enabled when tracking at least 

one satellite and a satellite mask angle of 3 degrees. Given that only one satellite is 

needed for precise timing once the position solution is established, there will always be 

timing correction provided by at least one satellite to the receiver. Furthermore, the 

configuration of satellite mask angle eliminates the satellites near the horizon from the 

GPS solution since the signals from those satellites are more susceptible to noise as they 

travel through the troposphere and ionosphere. Ultimately, such configuration is intended 

to increase the reliability and integrity of the 1PPS signal. 

 

4.2.2 Second Generation FDR GPS Receiver 

 

In the end of the year 2005 Motorola discontinued the M12+ receiver product line. 

There was a need for a new GPS receiver with equivalent performance and 

functionalities. Several GPS receivers were evaluated with the i-Lotus M12M topping the 

list in backward compatibility with the M12+ [45]. Specifically, the M12M receiver is 

very much similar to the M12+ receiver with the following exceptions [47] [49]: 

• The M12M receiver PCB is made from slightly thicker (0.020”) material so that 

the resultant thickness is approximately 0.063”. 

• The upper power supply voltage limit has been raised to +3.3V for M12M to 

simplify interface with +3.3V systems. 

• The acceptable external gain range from the antenna system is much wider with 

the M12M than it was with the M12+. Whereas the M12+ required external gain 

limited to a range of +18dB to 36dB, the M12M front end can handle input gains 

from +10dB to +50dB, making antenna system design less demanding. 

• Typical Cold-Start time for the timing receiver has been reduced from 200 

seconds to 150 seconds.  

• The M12M GPS receiver has a temperature controlled oscillator (TCXO) 

operating at 16.367MHz instead of the crystal oscillator (XO) used in the M12+.  

• Timing accuracy is similar to that of M12+ with less than 2 ns within 1 sigma 

interval and less than 6 ns within 6 sigma interval. 



 63 

 

The block diagram in Figure 4.1 shows the hardware interface for M12M GPS 

receiver, the MPC555 processor and the ADC. The GPS messages are transmitted via 

DB9 crossover cable and are driven by null modem interface where the transmit line and 

receive line are crossed and request to send (RTS) line and clear to send (CTS) line are 

crossed. 

 

 

Figure 4.1 M12M GPS module interface to the MPC555 and ADC 

 
To validate the timing accuracy, testing was conducted using M12M GPS receiver as 

the timing source for FDR. Figure 4.2 shows the test setup to compare the frequency and 

angle data collected by FDRs using different GPS. FDR4 is synchronized against the 

M12+ GPS receiver and FDR24 is synchronized against the M12M GPS receiver. Figure 

4.3 shows that the frequency and angle data obtained from FDR24 is comparable to that 

of the FDR4. In addition, the same initialization sequence used in the M12+ can also be 

applied to the M12M to maintain the integrity and reliability of the 1PPS signal. 
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Figure 4.2 Test setup for comparing M12+ and M12M 
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Figure 4.3 FDR4 with M12+ versus FDR24 with M12M 

 

4.3 Introduction to High Sensitivity GPS 

 

To allow for higher availability of timing source and more possibilities in FDR 

placements, the option of replacing the conventional GPS with a high sensitivity or 

indoor GPS receiver was proposed. The main drawback with the use of conventional GPS 

is the lack of availability in signal degradation environments. As an example, some of the 

newer office buildings have low-emittance (low-e) or also known as energy saving 
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windows. These windows uses a very thin metallic oxide coating to block the 

electromagnetic radiation, thus rejecting the heat outside of a building during the summer 

and keeping the heat inside during the winter. From a radio wave point of view, the 

electromagnetic radiation in the microwave region is blocked and the effect becomes 

more significant as the frequency increases. For a commercial low-e window, the metallic 

oxide coating provides 20dB to 35dB of signal attenuation in the frequency range 1-2 

GHz. Consequently, FDRs placed in these locations are prohibited from acquiring any 

GPS satellite signals. To this end, there is a need to increase the availability of the 

conventional GPS and maintain the same level of accuracy for FDR time 

synchronization.  

 

Several high sensitivity GPS receivers were evaluated for implementation in the FDR 

and only very few were considered due to its inherent high prices. The implementation of 

high sensitivity or simply indoor GPS presents a major challenge due to the significant 

signal degradation in indoor environments. The critical parameter in determining signal 

acquisition and tracking performance is not the absolute signal strength but the signal to 

noise ratio (SNR) and more specifically the SNR in a 1 Hz bandwidth, or the carrier to 

noise power density ratio (C/No) [31]. However, since the noise power is largely 

dependent on the equipment being used and supposedly remains constant for any given 

equipment, the C/No measurement is a rather accurate indication of the actual signal 

strength. In other words, the C/No figure is a measure of the signal quality present at the 

input to a GPS receiver [31]. According to the latest version of IS-GPS-200 specification 

[54], the GPS C/A code signal at L1 is designed to arrive on the ground at not less than -

158.5dBW power level (refer to Appendix A for more information on GPS signal 

strength calculations). Conservative models suggest that the attenuation in buildings can 

reach levels of 2.9 dB per meter of structure [32]. Experiments indicate that the 

attenuation of the GPS signal through the buildings is typically higher than 1 dB per 

meter of structure [32]. Therefore, to track the GPS signals indoors inside high buildings 

the GPS receiver needs to be able to track signals with power levels ranging from 

approximately -160dBW to -200dBW [32]. To convert the figure into C/No values, signal 

strength of -160dBW corresponds to a C/No of about 41 to 44 dBHz.  



 66 

 

In 1996, the Federal Communications Committee (FCC) mandated that wireless 

carriers provide Public Safety Answering Points (PSAPs) with precise location for all 

emergency calls from mobile phones. This system is known as Enhanced 911 (E911) 

system [32]. Such a system sparked the need for a GPS solution that will meet the 

requirements for indoor positioning, fast time to first fix and very low power 

consumption. Furthermore, the market demands have pushed the development of low-

cost GPS receivers which should be able to operate in virtually any environment where 

also a cell phone works. The key to enhancing the sensitivity of GPS receiver is to extend 

the signal integration time significantly beyond the typical 2 to 5 milliseconds [22]. This 

effort requires several modifications to the receiver architecture. The high sensitivity 

receiver architecture differs from that of the typical receiver by having significantly more 

number of correlators and the ability to search all possible code delays in parallel [22]. To 

illustrate, a typical GPS receiver will often have hundreds or thousands of correlators 

whereas a high sensitivity GPS receiver would have tens of thousands of correlators. 

Ultimately, such implementation allows for longer integration time to acquire very weak 

signals and decreases the acquisition time when the signal is strong. High sensitivity GPS 

receivers are now commercially available at low cost from several manufacturers. Such 

receivers are claimed to be able to track and acquire signals with C/No values as low as 

12 dBHz and thus be able to operate beneath heavy forests, in urban canyons and indoors. 

[30] 

 

Studies conducted in [33] and [30] indicate that a high sensitivity receiver can indeed 

acquire significantly more satellites than the conventional GPS and is able to track 

satellites behind obstruction. Also, positioning availability is nearly 100% for the high 

sensitivity receiver. However, studies have also shown that there are drawbacks to the use 

of high sensitivity GPS. Specifically weak signals are usually not only attenuated but also 

delayed. Effects such as reflections and diffraction of the signal upon objects increase the 

traveling time of the signal, thus introducing errors in the range calculations [30]. 

Furthermore, the errors are mostly dependent on the angle of arrival of the signal and the 

properties of the material. Material thickness, reflectivity, index of refraction, 
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conductivity and absorption properties all affect the attenuation of the line of sight signal. 

Therefore, the signals additionally provided by a high sensitivity receiver are usually less 

accurate than those which can also be tracked with a conventional receiver [30]. The 

difference in quality needs to be taken into consideration when computing position and 

time solution. Several literatures go into details on some of the algorithms that are being 

used to estimate the positioning errors including [40], [41], and [30]. Nevertheless, the 

purpose of this study is not to delve into these algorithms but introducing the technology 

to synchronized frequency and angle measurements, especially for the FDR which aims 

for mass deployment in some environments where a direct line-of-sight to the satellites is 

not available. The following study takes a first step in evaluating the use of high 

sensitivity GPS for synchronized frequency and angle measurements.  

4.4 Implementation of a High Sensitivity GPS for FDR 

 

Initial evaluation focused on cost effective indoor timing GPS receiver with similar 

cost to that of M12+ GPS receiver. Table 4-1 lists the indoor GPS receivers with 

performance data as indicated in its respective datasheets [49][50][51][52][53]. The 

M12+ GPS receiver is also listed for comparison.  

 

Table 4-1 Initialization characteristics of indoor GPS receivers and FDR GPS receiver 

 
 Motorola 

M12+ 
QinetiQ Q20 NavSync 

CW12-TIM 
SigNav 
TM3-02 

ublox 
LEA-4T 

Cold start 45s 45s 45s 60s 34s 

Warm start 38s 38s 38s 48s 33s 
Hot start 1s 1s 5s 6s 3.5s 

Timing 15ns 15ns 30ns 10ns 15ns 

 

A closer look at Table 4-1 indicates that the QinetiQ Q20 has the most competitive 

figures in terms of fast signal acquisition and accuracy in timing synchronization. 

However, the Q20 GPS receiver was still in the development stages at QinetiQ when it 

was first tested for FDR timing synchronization. Early test results have shown that the 

Q20 is not stable and would stop sending messages and goes idle after start up. Technical 

support at QinetiQ has indicated the problem may be associated with flaws in power 
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supply design which enables high current draw and puts the receiver at its thermal upper 

limit. The SigNav TM3-02 and ublox LEA-4T are good candidates for FDR 

implementation but their cost is significantly higher than that of the M12+. The NavSync 

CW12-TIM indoor GPS was then selected largely due to similar characteristics and cost 

compared with the legacy GPS receiver. 

 

 Similar to the Motorola M12+, the NavSync CW12 indoor GPS receiver module is 

specifically designed for use in synchronization and timing applications. Furthermore, the 

CW12 was designed to meet the form and functionality of the M12+ as closely as 

possible. Identical features include 12 channels L1 C/A code, antenna current sense 

circuitry, voltage input, optional on-board battery, time receiver autonomous integrity 

monitoring (T-RAIM), optional radio technical commission for maritime (RTCM) format 

input and data output format in NMEA 0183 or Motorola binary [49]. In addition to its 

high sensitivity feature of acquiring signals at -185dBW and tracking at -186dBW, the 

CW12 offers variable frequency output between 10Hz to 10MHz from its on board 

programmable NCO (numerically controlled oscillator). At the heart of the CW12 is the 

CW25-TIM module which can massively increase the number of correlators applied to 

each receiver channel with a maximum number of 12288 correlators. This enables the 

CW25 to allocate large number of correlators to each receiver channel to allow the 

receiver to search time/frequency bins in parallel rather than sequentially as in the 

traditional GPS receivers [49]. As a result, the receiver is specified to work in 

applications requiring indoor environments.   

 

  The migration from the M12+ or M12M to the CW12 is simple and low-cost. As it is 

shown in Table 4-2 [48][49][50] the physical and electrical characteristics of the three 

receivers are very similar thereby making the hardware integration fairly straightforward.  
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Table 4-2 Characteristics of GPS receivers - M12+, M12M and CW12 

 

Characteristics Motorola M12+ i-Lotus M12M NavSync CW12 

Dimensions 1.57”x2.36”x0.39” 1.57”x2.36”x0.53” 1.57”x2.36”x0.39” 
Output Message on 
Serial Connector 

Motorola 
binary/NMEA 

Motorola 
binary/NMEA 

Motorola 
binary/NMEA/ 
Proprietary 
ASCII/binary 

TTFF-
Hot/Warm/Cold 
Start 

15s/40s/60s <15s/40s/150s 5s/38s/45s 

Power 
Requirements 

2.85 to 3.15VDC, 
50 mV max ripple 

2.8 to 3.3VDC,  50 
mV max ripple 

3.3VDC 

Connectors 10 pin header with 
0.05” space 

10 pin header with 
0.05” space 

10 pin header with 
0.05” space 

Timing Accuracy <2 ns, 1 sigma 
<6 ns, 6 sigma 

<2 ns, 1 sigma 
<6 ns, 6 sigma 

<30 ns, 1 sigma 

Weight 25 g 12.5 g Not specified 

Track signal below  
-180dBW 

No No Yes 

 
 

However modification was made to the FDR firmware in the parsing of timestamp 

messages. Even thorough it is not stated in the manufacturer specification, the CW12 

outputs variable length messages each second whereas the M12+ and M12M outputs a 

constant 8 bytes of message each second. To illustrate this, the variable length messages 

can be shown below: 

"@@Eq,03,23,08,20,22,05,37,13.8999,N,080,13.8999,W,+00567.7,121.9,177.2,0,0,0,03,0000,00,034\r\n” 

"@@Eq,03,21,08,18,43,51,37,13.8838,N,080,13.8838,W,+00600.9,003.7,177.9,0,2,27.3,07,0000,00,008\r\n” 

"@@Eq,03,23,08,20,22,31,37,13.9039,N,080,13.9039,W,+00567.1,038.3,001.6,0,1,999.9,04,0000,00,060\r\n” 

"@@Eq,03,23,08,16,23,17,37,13.8827,N,080,13.8827,W,+00612.9,04246.5,160.2,0,2,23.1,07,0000,00,003\r\n" 

 

Where the first message has a length of 8 bytes and the rest are longer in length. To 

accommodate the longer length messages, the queue buffer to store the message was 

increased in length from 96 to 98 characters. Also, the parsing function was modified so 

that it will be able to accept messages of different sizes and extract the timing 

information according to the comma separation instead of the character positions.     
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4.5 Availability and Accuracy Analysis  

 
Since availability, signal quality and accuracy are of the utmost concern for GPS 

performance evaluation, it is necessary to examine how indoor GPS compares with the 

conventional GPS in this regard. As it was mentioned earlier, the C/No figure can be a 

relatively good indicator of the signal strength. Since both the M12M and the CW12 

provide the C/No figure for all 12 channels as part of its output messages each second, 

these messages can be recorded and through post-processing, one can extract the C/No 

information. In addition, the DOP value and the number of acquired satellites will be 

examined to compare the accuracy and availability of the M12M and the CW12. Finally, 

the position solution in latitude and longitude is presented in Appendix A along with the 

necessary derivations for transforming from WGS 84 (World Geodetic System 1984) to 

ECEF (Earth-Centered Earth-Fixed) coordinate system. Generally, the timing accuracy of 

the GPS receiver is directly related to the positioning solution given that the position of 

the receiver is constant. Studies conducted in [55] indicate that the errors in the receiver 

position propagate to timing accuracy at the rate of 3 nanoseconds per meter of position 

errors. As a result, the performance of the CW12 receiver can be visualized by plotting 

the latitude and longitude solution and quantified by converting from positioning errors to 

timing errors.  

 

Initially, some data were collected from both the CW12 and the M12M in the FNET 

laboratory.  The antenna of both GPS receiver was placed next to the window and close 

to each other to simulate the effect of a common view of the satellites. Figure 4.4 shows 

the results from the CW12 and Figure 4.5 shows the results from the M12M. Clearly, the 

CW12 receiver was able to acquire a broad range of signal strength, specifically from 

around 10dBHz to almost 50dBHz. On the other hand, the M12M receiver was able to 

acquire satellite signal strength of around 19dBHz to a little above 50dBHz. It is 

interesting to note that the vast majority of the signals acquired by the M12M have C/No 

figures above 30 dBHz. Also, the M12M was able to acquire higher signal strength of 

around 55dBHz whereas the maximum acquired signal strength for the CW12 was less 

than 50dBHz. Finally, the availability of the satellite signals for the CW12 appears to 

supersede that of M12M. Figure 4.5 shows that the M12M receiver lost acquisition of all 
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satellites during a small period of time. As a result, the CW12 receiver provides higher 

availability of satellite signals than that of M12M. In comparison of the accuracy of the 

two GPS receivers, Figure 4.4 shows that the DOP value of the CW12 ranges from 0 to 

100 whereas Figure 4.5 shows that the DOP value of the M12M ranges from 0 to 12. 

Such observations indicate that although the CW12 is capable of acquiring more 

satellites, the M12M can acquire satellites with better geometry. Nevertheless, Appendix 

A shows the corresponding position solutions given by the two GPS receivers to compare 

their performances with respect to each other. It can be seen that under nominal 

conditions where the antenna is placed next to the window, the CW12 is capable of 

providing comparable position solution to the M12M. 

 

Figure 4.4 Indoor GPS receiver data with antenna placed next to window 
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Figure 4.5 Conventional GPS receiver data with antenna placed next to the window 

 

To examine the effect of signal degradation on the CW12, another set of data was 

collected from the CW12 with its antenna hidden away in a desk drawer. The collected 

data is shown in Figure 4.6. As it clearly indicates, the CW12 receiver was able to 

acquire satellite signals ranging from 10dBHz to around 35dBHz. In comparison with 

what is shown in Figure 4.4, there is a maximum of about 10dBHz attenuation when the 

antenna was inside the desk drawer. In addition, the corresponding number of acquired 

satellites is lower comparing with the data that was collected when the antenna was 

placed next to the window. The corresponding DOP value is also affected as it reaches 

100 after some time and poor satellite geometry becomes significant. Finally, the position 

solution in latitude and longitude is shown in Appendix A. The results indicate that the 

accuracy of the position solution is degraded by more than 1000 meters when the antenna 

was placed in the desk drawer.  
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Figure 4.6 Indoor GPS receiver data with antenna placed in a desk drawer 

 
 

To further illustrate the signal degradation effects on the CW12, Figure 4.7 shows the 

data collected while the CW12 antenna was moved into different locations. Initially, 

when the antenna was placed next to the window, the C/No figure is as high as 45dBHz 

and above. Then when the antenna was moved to inside the desk drawer next to the 

window, the signal degradation is clearly shown with more than 10dBHz of attenuation. 

At last, the antenna was moved to inside of a desk drawer that is far away from the 

window and again the C/No figure was reduced by as high as 20dBHz. Nevertheless, the 

receiver was still tracking at least one satellite with signal strength around 15dBHz to 

25dBHz. The corresponding number of acquired satellites decreases when the signal 

degradation effect is increased. Similarly, the DOP value reaches beyond 5 after about 

600 seconds, indicating that the GPS receiver will no longer capable of updating the 

position with reliable data.  
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Figure 4.7 Indoor GPS receiver data with signal degradation 

 
 

Upon close examination of the C/No for both the conventional GPS receiver and the 

high sensitivity GPS receiver, one can conclude that the high sensitivity GPS receiver is 

capable of acquiring signal strength with significant attenuation. In the case of the CW12 

receiver, signal strength as low as 10dBHz can be acquired but consistent tracking of the 

satellites does not occur until the signal strength reaches above 15dBHz. On the other 

hand, conventional GPS receiver such as the M12M is only able to acquire signals as low 

as around 20dBHz and consistent tracking occurs at above 30dBHz. The results indicate 

that the CW12 receiver is behaving as expected in acquisition of signals with significant 

attenuation. In addition, it is capable of acquiring signals with much lower C/No figure 

than that of the M12M. However, it was also illustrated that when operating under 

significant signal attenuation, the position solution given by the CW12 is degraded. Such 

decrease in accuracy can be attributed to high noise level and multipath, leading to 

measurement faults ranging in magnitudes beyond 1 kilometer.  
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4.6 Frequency and Angle Measurements with Indoor GPS 

 

To evaluate the performance of the FDR with the CW12 GPS receiver, initial 

measurement setup involved the use of an AC source for generating variable frequency 

and voltage waveforms. For this test the AC source was configured to output constant 

60Hz, 120VAC waveform. Two FDRs were connected to the same AC source and 

connected via Ethernet to send data to a test server. The goal of this test was to see the 

accuracy of the FDR with indoor GPS under static frequency input. As a comparison, 

FDR unit 7 used the CW12 GPS receiver and FDR unit 24 used the M12M GPS receiver. 

To examine the performance of the indoor GPS in an environment with some signal 

degradation, the CW12 GPS antenna was placed next to the window initially to obtain a 

position solution and then placed inside a closed office desk drawer in the FNET 

laboratory. On the other hand, the M12M GPS antenna was placed next to a window in 

the FNET laboratory. A diagram of the test setup is shown in Figure 4.8. Some data were 

collected using the test setup, as it is shown in Figure 4.9. The frequency measurements 

from the two units match each other. This initial test has confirmed the ‘indoor’ 

capability of the CW12 but more long term measurement data are needed to understand 

its limitations in environments with significant signal degradation.  

 

 

Figure 4.8 Indoor GPS test setup using the AC source 
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Figure 4.9 Frequency and phasor angle measurements of the AC source signal using indoor GPS 

 

To push the envelope further on the CW12 indoor capabilities, another measurement 

trial was conducted for several days with the input signal from the wall outlet. The same 

FDR7 with the CW12 used in the initial test was moved to an office with no window and 

behind several walls to the nearest window. FDR24 with the M12M was used again for 

comparison at the same location and setup as the initial test. An additional unit, FDR4 

with the M12M was added to this test setup as a backup to FDR24 for data comparison. 

Figure 4.7 shows the setup with the three FDRs. The measurement was initiated on April 

29th and the CW12 did not acquire any satellites for the first few days. It wasn’t until 

May 1st when FDR7 started acquiring signals from multiple satellites. Figure 4.11 to 

Figure 4.17 shows plots of one hour’s worth of data (1AM to 2AM UTC time) collected 

from May 1st to May 7th. For each hour of frequency and angle data plot, there is a plot of 

corresponding number of acquired satellites along with a magnified plot of the first 3000 

samples.  
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Figure 4.10 Indoor GPS test setup for completely isolated environment 

0.5 1 1.5 2 2.5 3 3.5

x 10
4

59.98

60

60.02

60.04

60.06
5-1-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u

e
n

c
y

 (
H

z
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

4

6

Data point number

A
n

g
le

 (
ra

d
ia

n
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

4

5

6

7

Data point number

N
u

m
b

e
r 

o
f 

s
a
te

ll
it

e
s

FDR4

FDR7

FDR7

FDR4

FDR7

0 500 1000 1500 2000 2500 3000
59.96

59.98

60

60.02

60.04
5-1-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

F
re

q
u
e
n
c
y
 (

H
z
)

0 500 1000 1500 2000 2500 3000
0

2

4

6

8
5-1-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR4

FDR7

 
Figure 4.11 Frequency and angle measurements with the number of acquired satellites on May 1

st
 

from 1AM to 2AM 
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Figure 4.12 Frequency and angle measurements with the number of acquired satellites on May 2

nd
 

from 1AM to 2AM 
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Figure 4.13 Frequency and angle measurements with the number of acquired satellites on May 3

rd
 

from 1AM to 2AM 
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Figure 4.14 Frequency and angle measurements with the number of acquired satellites on May 4

th
 

from 1AM to 2AM 
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Figure 4.15 Frequency and angle measurements with the number of acquired satellites on May 5

th
 

from 1AM to 2AM 
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Figure 4.16 Frequency and angle measurements with the number of acquired satellites on May 6

st
 

from 1AM to 2AM 



 83 

0.5 1 1.5 2 2.5 3 3.5

x 10
4

59.95

60

60.05

5-7-08 1am to 2am (1hr) FDR7 in office with total enclosure

F
re

q
u

e
n

c
y

 (
H

z)

Data point number

0.5 1 1.5 2 2.5 3 3.5

x 10
4

2

4

6

Data point number

A
n

g
le

 (
ra

d
ia

n
)

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2

4

6

8

Data point number

N
u

m
b

e
r 

o
f 

s
a

te
lli

te
s

FDR24

FDR7

FDR7

FDR24

FDR7

0 500 1000 1500 2000 2500 3000

59.95

60

60.05

5-7-08 1am to 2am (1hr) FDR7 in office with total enclosure

F
re

q
u
e
n
c
y
 (

H
z
)

Data point number

0 500 1000 1500 2000 2500 3000
0

2

4

6

8
5-7-08 1am to 2am (1hr) FDR7 in office with total enclosure

Data point number

A
n
g
le

 (
ra

d
ia

n
)

FDR24

FDR7

 
Figure 4.17 Frequency and angle measurements with the number of acquired satellites on May 7

st
 

from 1AM to 2AM 

 
Under the assumption that there is a direct relationship between the signal strength 

and the quality of the position solution, it was shown in the previous section that under 

significant signal degradation the indoor GPS is susceptible to high DOP figures. In this 

section, the frequency and angle measurements are presented over the course of a week to 

illustrate the quality of indoor GPS timing as well as its capability in acquiring satellite 

signals in an indoor environment. The measurement data has shown that the CW12 is 

capable of operating under stringent conditions with significant signal degradation. Not 

only was the indoor GPS receiver able to acquire satellite signals without a line of sight 
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to the satellites, the frequency and angle measurements are comparable to the FDR with 

the conventional GPS receiver. Another measurement trial was conducted in an 

apartment bedroom where the antenna was initially located at the window and was slowly 

moved away from the window at a daily basis to observe its effect on frequency and 

angle measurements. The following observations can be gathered from the measurement 

results.  

• The measurement data verifies that as the acquired number of satellites increases, 

the frequency and angle measurements become more accurate. Starting from May 

1st to May 4th, the zoomed-in angle plot for FDR7 shows some discontinuities in 

comparison with FDR4. This phenomenon can be attributed to the low quality 

timing solution provided by the indoor GPS receiver. Since the frequency 

estimation is a direct result of angle measurements, the corresponding frequency 

data from the two units does not match each other very well. Then starting from 

May 5th, the sample frequency measurement data from different units matches 

each other and the angle measurement data from FDR7 is relatively smooth 

without the discontinuities observed before. It is also shown that after May 5th the 

number of satellites increased to the range of 7 to 9. However, there are instances 

where the number of acquired satellites drops to 0 for about 10 minutes and 

rebound back to a large number of acquired satellites. Such phenomenon does not 

seem to affect the frequency and angle measurement accuracy. It is most likely 

that the CW12 was steering the 1PPS with its local oscillator without corrections 

from the satellite signals during the 10 minutes of outage.  

• The test was initiated on April 29th but the FDR with indoor GPS was not able to 

perform accurate frequency and angle measurements until May 5th. So it took 

about 7 days for the FDR with indoor GPS to acquire a large number of satellite 

signals and also provide acceptable frequency and angle measurements.  

• During the course of the measurements, the indoor GPS acquired up to 9 satellites 

whereas the conventional GPS only acquired up to 5 satellites at any instance in 

time. Furthermore, as the number of acquired satellites increases, the indoor GPS 

is shown to provide similar levels of accuracy in timing as that of the 

conventional GPS operating under nominal conditions.  This improvement in 
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accuracy is a direct consequence of the indoor GPS obtaining more accurate 

position fix over time as the number of acquired satellites increases. 

• The plots show that after May 5th, FDR7 (with indoor GPS) has less noise in its 

measurements comparing with that of FDR4 and FDR24 (with conventional 

GPS). It is most likely that the extra measurement noise is a direct consequence of 

the laboratory environment. 

 

4.7 Recommendations 

 
Based on these observations, in an extremely high signal degradation environment 

such as an internal office room without any window, the CW12 indoor GPS behaves 

differently from that of the conventional GPS operating under nominal conditions. It can 

be observed that even with 4 to 6 satellites acquired, the quality of the timing solution 

was poor and not acceptable for accurate phasor angle measurements. This may be 

attributed to the lowered signal strength and poor geometry of the acquired satellite 

signals. However, when the number of satellites has reached the range of 7 to 9, the 

frequency and angle measurements are comparable to that of the FDR using conventional 

GPS.  The accuracy improvement can be attributed to the redundant measurements as 

they are averaged to the overall position solution. Furthermore, with the aid of the 

assistance data including time, approximate position and satellite ephemerides, the indoor 

GPS should reveal better performances. In the case of FDR, approximate location data is 

often given before deployment, hence providing the possibility of incorporating the 

position information into the FDR firmware. With the position information given, the 

indoor GPS should have a shorter time to first fix. To improve the accuracy of the GPS 

solution, the satellite mask angle can be increased to 5° so that the receiver only tracks 

satellites for which the elevation angle is greater than 5°. Ultimately, the measurement 

solution becomes more accurate as the satellites near the horizon are removed from the 

solution. Given that the CW12 is able to provide accurate timing under significant signal 

degradation, new possibilities in FDR installation location can be proposed. Furthermore, 

given the verification that the CW12 is capable of providing accurate timing in an indoor 
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environment, it can be inferred that the CW12 will also be able to operate with the similar 

performances when it is located in office building with metallic coated window.  

 

Since the measurement data suggest that the CW12 behaves differently from the 

M12+ and M12M, a new control strategy needs to be developed to maintain the 

credibility of the timing solution provided by the CW12. For the existing control strategy 

in support of the M12+ and the M12M is mostly based on the number of acquired 

satellites and the 1PPS output is enabled when the receiver is tracking at least one 

satellite. Clearly this control method is ineffective for the CW12 as it was shown in an 

indoor environment, the frequency and angle measurements were inaccurate even when 

the CW12 was tracking 4 to 6 satellites. It is important to note that the fundamental 

difference between the indoor GPS and the conventional GPS is the enhanced capabilities 

to acquire and track weak GPS satellite signals to provide high availability, at the 

expense of incorporating erroneous measurements into the computation of position and 

timing solution. In the case of the indoor GPS, the accuracy varies as a function of the 

environment and the receiver provides measurements almost regardless of the 

environment. The fact that the indoor GPS accuracy varies makes the validation of the 

GPS solution difficult. The trivial method is to incorporate the use of the TRAIM feature 

into the verification of GPS timing solution. As an example, an alarm limit of 1 

microsecond can be set so that redundant measurements can detect timing errors greater 

than 1 microsecond. The drawback to this method is that a large number of acquired 

satellites with high-quality geometry are needed to provide for the redundant 

measurements. Hence the TRAIM feature will not always be available and is subject to 

outage when the number of acquired satellites is low. Another possibility for estimating 

the accuracy of the indoor GPS solution is by interpreting the transmitted GPS messages. 

Like most of the commercial GPS receiver, the raw GPS measurements are not readily 

available in the message stream provided by the CW12. Although multiple studies have 

suggested the estimation of the pseudorange errors using least squares and Kalman 

filtering method to quantify indoor GPS accuracy [40]. 
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To estimate the accuracy of the indoor GPS when it is operating in an indoor 

environment, it is possible to monitor the signal strength, DOP and the acquired number 

of satellites. To this end validations can be performed for each receiver channel with 

respect to carrier to noise ratio. Specifically a C/No threshold can be set for 35 dBHz and 

when all of the acquired satellite signals reach below 35 dBHz and the number of 

acquired satellites is low the FDR should stop making measurements. However, in the 

case when the acquired number of satellites reaches above 7 it would no longer be 

necessary to validate the signal strength. Furthermore, to handle the occasional short term 

lose of all satellite signals, the FDR should continue to perform measurement for 10 

minutes without interruption. When the 10 minutes has elapsed and the acquired number 

of satellites does not rebound, the FDR should stop making measurements and switch 

from collection state to acquisition state. Nevertheless, one single method cannot perform 

the challenging task of showing accuracy estimates reliably. Thus, choosing the right 

combination of fault detection methods for indoor GPS timing as it is applied in accurate 

frequency and phasor angle measurements will be a subject of future research. 
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Chapter 5 Timing Measurement Based on a High 
Stability and High Resolution PC Counter 

5.1 Background 

 
As it was described in Chapters 1 and 2, the phase voltage angle calculated by the 

phasor algorithm is highly dependent on the timing accuracy of the FDR timing 

subsystem. The different aspects of timing, such as keeping accurate time, frequency, and 

the ability to time stamp events when they occur are all crucial aspects of a phasor 

measurement device. The focus of this chapter is on the development of a high resolution 

yet inexpensive timing measurement infrastructure and an analysis of inherent timing and 

frequency stability of PC oscillator. 

 

The motivation for a PC based timing subsystem was initiated by the concept of the 

PC based FDR design. Similar to the embedded systems solution, a PC based FDR will 

also need an accurate timing subsystem to synchronize the sampling voltage as well as 

providing accurate timestamps. However, what is different about a PC based 

implementation is that there are many readily available accurate timekeeping and 

synchronization techniques for PC’s. To this end it is necessary to explore how 

timekeeping is conducted on a PC as well as exposing any limitations that it may have 

and more importantly, how to go about improving the accuracy of the PC timekeeping. In 

fact, most of the precise timekeeping on the PC is regulated by an external GPS or some 

other forms of higher accuracy timing source, based on the assumption or general 

acceptance that the PC clock is not a precise timing source.  

 

It is fair to say at this day and age that almost all of the clocks are made of two 

essential components, an oscillator and a counting mechanism with the oscillator 

operating as the main driving force behind the timekeeping. As it will be shown, there are 

many factors that influences the accuracy of oscillator timekeeping and a variety of 

compensation methods have been developed to further enhance the capabilities of crystal 

oscillators. However, it is just as important to gain some insights into why the standalone 

PC clock cannot be a precise timing source and quantify its accuracy and stability. 
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Consequently, an in-depth analysis is conducted on the inherent accuracy and stability of 

the PC clock and how it can be applied in the implementation of a high resolution and 

high stability timing measurement system, which can ultimately be used to evaluate the 

accuracy of different precision timing sources and possibly the FDR sampling time. 

5.1.1 Oscillator Characteristics and its Accuracy 

 
Timekeeping accuracy has improved about 106 fold in the first sixty years after the 

introduction of quartz crystal oscillators (about 1920) [59]. However, in the last two 

decades the progress in certain areas such as long term aging has not shown as significant 

progress.  

  

Two of the most fundamental characteristics of any clock are its rate and offset. Both 

rate and offset can be measured. To measure the rate of the clock, a time interval 

measurement method can be implemented, which determine the elapsed time between 

two events. Similarly, the offset of a clock can be measured using time synchronization 

measurements, which determine the time offset between the test signal and the UTC 

second [58]. As a result, with a high accuracy 1 pulse per second signal synchronized 

with UTC, one can easily obtain a very accurate time of day clock. Nevertheless, almost 

all of the oscillators today are in the Megahertz if not Gigahertz range, thereby providing 

resolutions measured in microseconds or nanoseconds.    

 

In the modern world, a quartz crystal oscillator is in the heart of nearly all frequency 

control devices. Furthermore, the quartz crystal oscillator is low cost and provides a 

reasonably precise and stable frequency source. Although some other materials such as 

ceramic resonators have been developed but their accuracy cannot surpass that of quartz 

crystals [60]. In addition, there is a wide variety of quartz oscillators that can be made in 

accordance to the requirements in cost, accuracy and stability. While the design of quartz 

crystal oscillator is outside of the scope of this research, it is important to get a basic 

understanding of how quartz oscillates in order to learn its associated uncertainties. As 

shown in Figure 5.1, quartz crystal is a piezo-electric substance and it can generate 

voltage when mechanical stress is applied. Conversely, when a voltage is applied across 
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the crystal will generate mechanical movement within the crystal. In the event that an AC 

voltage is applied, the crystal will begin vibrating.  The rate that the crystal will vibrate 

with the most accuracy is its resonant frequency, which is determined by the cut, size, 

and shape of the crystal, as well as any fixed mechanical stress applied to the crystal [60].  

 

Figure 5.1 Crystal Oscillator Block Diagram 

 

Before delving into the details of crystal oscillator performance, it is necessary to take 

note of the difference between accuracy and stability. Generally, the accuracy can be 

characterized by the capability of a crystal oscillator to generate a frequency where the 

systematic uncertainties such as frequency offset relative to the ideal are known. An 

accuracy statement usually involves the upper and lower limit for deviations from that of 

the ideal. On the other hand, the frequency stability can be characterized by the 

oscillator’s ability to stay within specific frequency limits for some sampling time, τ. 

Nevertheless, in the standards laboratory setting, it is intuitive to argue that the best 

approach to long term stability is to improve accuracy. The basis for this claim is based 

on the idea that long term variations in output are caused by variations in the systematic 

offsets. By reducing and controlling offsets, both accuracy and long-term stability should 

improve [59]. On the other hand, in practical situations stability is often the key 

consideration. Consider the example of synchronized phasor measurement, more 

emphasis are placed on the stability of the frequency reference to allow for accurate 

synchronized sampling. To this end, it is important to recognize the importance of both 

accuracy and stability but the requirement for stability is far stricter.  

 

With any quartz crystal oscillators, there are some innate fall backs that can usually 

be compensated in some way. Factors such as temperature, crystal aging and retrace 
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establish the frequency accuracy of the oscillator whereas the tuning port noise, power 

supply noise, and vibration establish the stability of the oscillator [59]. In order to 

compensate for some of these anomalies that would otherwise affect the oscillator 

frequency, the quartz crystal oscillator designers came up with different ways of 

minimizing their influences. Since temperature is a main contributor to frequency 

inaccuracies, most of the sophisticated quartz crystal oscillators are temperature 

compensated. These include the temperature controlled crystal oscillator (TCXO), 

microprocessor compensation crystal oscillator (MCXO) and oven controlled crystal 

oscillator (OCXO) with the OCXO being the most accurate [58]. The TCXO measures 

the ambient temperature and adjust the oscillator to a calibrated compensation curve. This 

compensation makes TCXO’s more stable with temperature variations in comparison 

with crystal oscillators without temperature control, but it does not make them immune. 

TCXO temperature stability is typically +/-5x10-7 over the range of 0 to 70°C [58]. The 

MCXO is very similar to TCXO except that it uses microprocessor to store the frequency 

versus temperature characteristics of the crystal thereby making more accurate 

compensation. As a result the frequency stability of MCXO increases by a factor of about 

10 to 100 times that of TCXO. In the case of OCXO, the crystal resides in an oven that 

holds the temperature constant, independent of the ambient temperature. OCXO typically 

exhibit stability of +/-5x10-10 over 0 to 70°C [58]. 

 

For applications that may require more stringent timing accuracy, there are the atomic 

clocks such as the Cesium atomic clocks, Rubidium gas cell atomic clocks and the 

Hydrogen maser frequency standard. These are more precise and more stable than the 

crystal oscillators but they come with a higher price, larger size and more power 

consumption, which makes them unattractive for many common applications requiring a 

frequency source. Table 5-1 [61] tabulates the characteristics of different crystal 

oscillators with compensation as well as the atomic clocks. 
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Table 5-1 Oscillator characteristics 

 
 TCXO MCXO OCXO Rubidium Cesium Hydrogen 

maser 
Accuracy 
per year 

2x10-6 5x10-8 1x10-8 5x10-10 7x10-10 2x10-11 

Aging per 
year 

5x10-7 2x10-8 5x10-9 2x10-10 2x10-10 0 

Temperature 
stability 
(range °C) 

5x10-7  
(-55 to 
+85) 

3x10-8  
(-55 to 
+85) 

1x10-9  
(-55 to 
+85) 

3x10-10  
(-55 to 
+68) 

5x10-10  
(-55 to 
+85) 

2x10-11  
(-28 to 
+65) 

Size 
(cm3) 

10 30 20-200 200-800 1,000 6,000 

Price (~$) 10-100 <1,000 200-
2,000 

2,000-
8,000 

<10,000 50,000 

 

The simplest of all quartz crystal oscillators is the simple packaged crystal oscillator 

(SPXO) which is often used in electrical devices such as computers using it as a clock 

signal source. Although SPXO is more susceptible to temperature variations than the 

TCXO and OCXO but it is in high availability and low cost, which makes it an attractive 

solution for most of the laboratory measurement applications where the temperature is 

usually well regulated. Nevertheless there are many factors other than temperature that 

may influence the frequency of a crystal oscillator.    

 

5.1.2 Factors Affecting Crystal Oscillator Frequency Accuracy 

 
Since PC timekeeping is the focus of this research work, more emphasis will be 

placed on the factors that may affect the PC oscillators. Listed below are some of the 

factors that make some contribution to the frequency instabilities in the PC oscillators. It 

will be clear that out of all the factors that affect crystal oscillator frequency, temperature 

and aging are the biggest violators of frequency stability.  

 

Temperature 

 

As mentioned in the previous section, temperature is a significant factor which affects 

the frequency of resonators. Different crystal cuts have a different frequency and 
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temperature characteristics. The temperature and frequency relationship is somewhat 

complicated. First, the change of frequency with temperature may not be a linear 

function. In addition, even with the same kind of crystal, each crystal has a very different 

frequency-temperature curve. With some intentional temperature adjustments such as 

those described in [86], it is possible to have a general estimate on the temperature effects 

on PC oscillator clock. An Intel Pentium II 350MHz processor temperature was adjusted 

from room temperature to the maximum rated temperature and clock frequency readings 

were taken every second. The results indicate that the CPU frequency decreases at a rate 

of about 150Hz (4.29x10-7) per degree Celsius of increase [86]. Nevertheless, the effects 

of temperature change can be reduced by providing a more constant ambient (room 

temperature control). To this end, most of the laboratory environments are temperature 

controlled rooms with good ventilation. 

 

Aging (long term) 

 

A gradual change in frequency over days or months is known as aging. The main 

causes of aging are mass transfer due to contamination and stress relief in the crystal’s 

mounting and sustaining circuitry aging [58]. Aging usually occurs at a relatively 

constant rate per decade for each crystal. However, there are instances where the aging 

rate can reverse sign over time. Computer simulated aging from [60] shows a positive 

aging and a negative aging characteristic governed by the equations: 

 

                Equation 5-1 

               Equation 5-2 

 

Simply combine the two characteristics to obtain the behavior when both aging 

mechanism are occurring simultaneously, which in effect reverses the aging direction. 

Some important concepts to be pointed out here are the fact that the aging rate of an 

oscillator is highest when it is first turned on and decreases as time goes on. The higher 

aging rate can reach any where from 1x10-7 per month to 1x10-8 per month [59]. For the 

later period, when the crystal has been operational for more than 2 months, the aging rate 

can reduce to anywhere from (1~2)x10-9 per month to (1~2)x10-10 per month [59]. To 
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compensate for the aging behavior, it is possible to periodically adjust the frequency of 

the oscillator. This change is usually done by an adjustable capacitor. However, in the 

case of the PC oscillator, it may not be practical to periodically adjust the frequency of 

oscillator to compensate for aging. Due to this the PC oscillator will always be 

susceptible to long term aging and such parameter can not be determined independent of 

time. 

 

Retrace 

 

As explained earlier, the frequency output of the crystal oscillator changes over time 

due to aging. When an oscillator is turned off and then back on, it will not necessarily 

start at the same frequency as it has been operating. Eventually the oscillator will begin to 

age according to its previous rate but will most likely be offset slightly from its original 

frequency. This effect is known as retrace and typically exhibits an offset in the order of 

1x10-8 [58]. The causes of retrace are believed to be the same as those responsible for 

aging and temperature excursion. 

 

Noise (short term stability) 

 

Short term stability of the crystal oscillator is often portrayed as small variations in 

frequency for a specific averaging time. Specifications for short term stability have been 

often defined as the root mean square (RMS) uncertainty in the time base, averaged over 

one second. The reason that this value is a result of averaging is due to the fact that the 

short term stability is not known at any instant in time. It is primarily caused by noise in 

the active circuitry in the oscillator. Short terms stability can be eliminated by averaging 

over time. It should only be taken into consideration when measurements are 

significantly less than a second. In today’s newer oscillator circuitry, the short term 

stability uncertainty has been reduced to 1x10-10 RMS over one second [58].  

 

Others 
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Some other factors that affect the oscillator frequency instabilities include 

electromagnetic, power supply noise, gravity, shock, vibration, acceleration sensitivity 

and ionizing radiation [59]. Although in the case of the PC clock oscillator these are not 

as significant of a threat to the frequency stability as temperature and aging effects. For 

example, mechanical shock and vibration affects the physical stress on the quartz crystal 

but it can usually be treated as transient effects and be ignored. Typical sensitivity for 

quartz crystal time base is 1x10-9/g, where g is a force equal to one times the force of 

gravity [59]. Quartz crystal’s inherent magnetic field sensitivity is smaller than 10-11/T 

for fields smaller than 10-4T [59]. Some instability in the oscillator can be traced to 

instabilities in the power supply. The frequency changes occur because changes in 

various voltages change the capacitance of active and passive components. The end result 

is a slight phase shift which directly influences the frequency. Crystal oscillator 

variations will typically be less than 1x10-7 for a 10% line voltage change [59]. However, 

most of the COTS PC has decent voltage regulator design and there isn’t any known limit 

to oscillator frequency stability due to this effect. At last, the back ground radiation due 

to radioactive trace elements in the soil and building materials, cosmic rays and such will 

produce drift that is difficult to distinguish from aging. Nevertheless, this drift is not 

considered aging but a radiation effect. The radiation effect is at the minimum in the case 

of PC clock oscillator. Cosmic ray effects does not become a factor unless it’s located in 

a significantly higher altitude and background radiation (on the surface of earth) 

contributes to aging rates of approximately 10-13 per day [59]. 

 

5.2 Timekeeping for COTS PC  

 

In the old days of timekeeping almost all of the clocks are driven by the 110 or 220 

volt power line and cause interrupt on every voltage cycle at 50-60Hz. Such clocks are 

outdated and are replaced with more modern clocks such as those used on the PC 

platform, where a 1.19318 MHz clock provides the base frequency to the PC timer [72]. 

1.19318 MHz is one third of the National Television System Committee (NTSC) color 

subcarrier frequency to allow for TV output in the legacy systems. All i386 family boards 

have 14.318 MHz quartz crystal oscillator from which both the main clock frequency 
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(1.19318 MHz) and the CPU clock are derived [72]. The PC clock hardware is served by 

the clock driver software to maintain the time of the day.   

5.2.1 Hardware Clock 

 
In the earlier PC architectures starting with the introduction of the IBM-AT PC in 

1984, there were two hardware devices that were used to update the operating system 

internal time, namely the battery-backed real time clock (RTC) and the programmable 

interrupt timer (PIT). The RTC is used to maintain the time even when the computer is 

off and in the IBM PC compatible computers, the RTC circuit is the Motorola 146818 

with a resolution of approximately one second and significant drift. The PIT is used to 

measure elapsed time and trigger operations in a PC. In the Intel x86 architecture, either 

the Intel 8253 or the 8254 PIT is used to provide the base frequency for timer operation. 

Both the 8253 and the 8254 are capable of generating interrupts at specified timing 

intervals as designate by the programmer. 

  

The majority of the new microprocessors today, starting with the Pentium in the i386 

architecture, have a built-in CPU clock cycle counter. This cycle counter is used 

differently based on the operating system but it has a much higher resolution timing 

compared with the PIT and the RTC. In Intel Pentium processors, this register is named 

Time Stamp Counter (TSC) and is 64 bits long. In addition the new x86 PIT include a 

counter through the Advanced Configuration and Power Interface (ACPI), named the 

Local Advanced Programmable Interrupt Controller (APIC), which is mostly found on 

Symmetric Multi-Processor (SMP) computer systems. The APIC timer was designed to 

allow for per-processor timing in a multi-processor architecture.  

 

5.2.2 Software Clock 

 
The PC software clock (also known as the system clock) is generated by the Intel 

8254 timer or a functionally equivalent device. Most of the operating systems have relied 

on the interrupts generated from the timer to keep track of time where the length in 

between interrupts is known as a tick. Upon every timer interrupt, there is a software 
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clock variable that is being updated by the fixed number of microseconds or nanoseconds 

in the tick interval. The timer generates an interrupt either every 10 or 15 milliseconds in 

the Windows operating system to maintain the absolute time. On the newer distributions 

of the Linux based operating systems, the division of the 8254 timer can be adjusted but 

it is often set at a default value of an interrupt being generated every 4 milliseconds, 

which enhances the timekeeping capabilities of Linux to surpass that of Windows 

operating system. Furthermore, the PC Basic Input Output System (BIOS) contains a 

software routine that counts the interrupt requests and generates a time of day clock that 

can be read or set by other software programs. As an example, the operating system may 

get the time of day information from the software clock to timestamp files.  

 

The software clock by itself is not a good timekeeper. Among several things, its 

timing accuracy is limited by the performance of interrupt requests. Any changes in the 

interrupt request timing will be reflected in the software clock inaccuracies. Standalone 

software clock can be off up to a minute or more in a day. In addition, the software clock 

also has a limited resolution in the order of milliseconds. In other words, the software 

clock can only represent time of day in even multiples of the time interval between 

interrupts. Nevertheless, software clock accuracy is reduced even further by the nature of 

cycling the PC power. When the PC is first powered on, the software clock sets itself to 

within one second of RTC, which is susceptible to significant drift. After this initial 

synchronization, the RTC and the software clock will be running at different rates while 

the PC is running. To compensate for these inaccuracies, there are many networks based 

timing synchronization techniques being implemented. The topic of timing 

synchronization will be revisited in more details in Chapter 7. 

 

A common enhancement to the Unix based software clock is to make use of the time 

stamp counter (TSC) register to interpolate time between PIT interrupts, thus increasing 

the resolution from milliseconds to microseconds. The resulting higher resolution is 

maximized at 1 microsecond, the smallest time unit available on the standard data 

structure for Unix. The updating of this register is done by hardware and reading it and 

storing its value takes only a few instructions. [93] indicate a median access latency of 
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420 clock cycles for the TSC counter. However, a conservative estimate would put the 

figure to be around 500 clock cycles. With today’s gigahertz range PCs, the latency 

involved in retrieving the TSC counts is well below 1 microsecond. In the Pentium-class 

processors, the TSC counter is 64 bits long and can be accessed directly. Furthermore the 

TSC counter has a resolution that’s directly related to the CPU core frequency. For 

example, a 1 GHz processor would have 1 nanosecond resolution in TSC counts. 

Provided that the duration of a clock cycle is accurately estimated, the TSC counts can be 

converted to an accurate relative time. At the same time it is important to note that there 

are a few underlying assumptions regarding the hardware architecture. Features such as 

power management, frequency stepping, and unsynchronized multi-processors affect the 

stability and consistency of the TSC. In order to avoid these pitfalls it is necessary to 

disable these features while when using the TSC as a timekeeping and timestamping 

source.  

 

Recent literature has shown that the TSC counter exhibit high frequency stability and 

can be used in high precision measurement applications [82][83][84]. Results are 

presented by Veitch and his students, showing the implementation of an accurate clock 

based on TSC counter and its applications in Internet probing and measurements. The 

TSCclock is one instance of the implementation of Robust Absolute and Difference clock 

(RADclock) algorithm. With today’s processor frequency, a rollover on the 64 bit TSC 

counter would take almost 200 years. Taking this into consideration, the stable long term 

clock rate estimates can be obtained using a feedforward approach. Results in [82] 

indicate such algorithm can achieve 10 microseconds accuracy in a LAN network. At the 

same time [93] shows that the hardware counters in the PC exhibit stability below 0.1 

PPM in a temperature controlled room. Ultimately, TSCclock exploits the high stability 

of the TSC counter over relatively large averaging intervals to estimate the period of one 

clock cycle in the processor. With an accurate estimate of the period and constant 

calibration over time using network time synchronization, it is possible to use the TSC 

counter for accurate timekeeping.    
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In another recent study, [86] has also mentioned the use of TSC counter to measure 

the internal clock drift of computer clusters. Several Intel and AMD processor frequency 

was measured in variable temperature and variable load adjustments. Results indicate that 

PC processor frequency diminishes at the rate of approximately 150Hz per degree Celsius 

with a linear relationship between frequency and temperature. In addition, load variation 

has little effect on either the frequency or the temperature of the processor. Finally the 

frequencies of several processors were monitored from several hours to several days and 

the results shows stability of less than 1PPM.  

 

To this end, the TSC counter has the potential to be used in many applications that 

requires high resolution and high stability timing. What’s more important is the fact that 

the TSC is easily accessible in almost all of today’s COTS PCs, thus eliminating the need 

to purchase a rather expensive oscilloscope data logger.    

5.3 The Measurement Infrastructure 

 
The measurement system based on the TSC counter was developed for several 

purposes. For one, it is important to examine the inherent stability of the TSC counter 

which directly reflects the internal PC clock oscillator stability. Such study will be useful 

in determining whether the inherent PC processor clock can be used in FDR timing and 

investigate its limitations. Another reason for building such a measurement system is to 

exploit its high resolution timing to measure the accuracy of different timing mechanisms 

and the possibility of measuring the FDR trigger for conversion signal in the ADC. 

Finally, the implementation of a measurement system with COTS PC and readily 

available open source software is attractive in comparison with some of the high cost 

measurement equipments. 

 

Some of the basic requirements for the measurement system are fairly obvious. A PC 

with the TSC counter is needed along with a general purpose operating system for ease of 

user interaction. In the earlier stages of developing the timing measurement system, it 

was decided that the Linux based operating system Ubuntu to be used. A Unix based 

operating system offers flexibility, stability, open source software, and most of all 
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improved timekeeping in comparison with its counterpart Microsoft Windows platform. 

The main reason Ubuntu was chosen instead of another Unix based operating system is 

that it offers ease of installation, usability and it is part of open source Linux distribution. 

In fact Ubuntu installation makes up for a large percentage of all the Linux distribution 

for the desktop.  

 

In addition to the Linux based platform, the integration of real-time operating system 

is crucial in a precision timing measurement system. In comparison with a general-

purpose operating system, a real-time operating system will always be able to meet the 

timing requirements of the processes under its control. In the case of high resolution 

timing measurement with strict timing requirements, it is important to have a 

deterministic environment with low response time. Clearly, in order to achieve hard real-

time, guaranties must be made that no deadline is missed. However Linux alone is not 

preemptible, which is another characteristic of the real-time operating system. 

Preemptibility allows for a higher priority process to run over an already running lower 

priority process in the kernel. As a matter of fact, this measurement system differs from 

that of [86] largely due to the introduction of a real-time operating system, which 

minimizes operating system latency and interrupts latency variability.     

 

There are many real-time operating systems available but only few are open source. 

Open source software allows for flexibility in the modification of the source code as well 

as zero cost. With such criteria in mind, Linux provides some readily available open 

source code that modifies the Linux environment to be real-time. There are two different 

approaches in providing real-time in Linux. In the first one the standard Linux kernel is 

improved either by making the kernel preemptible or by adding preemption points to the 

code [77]. However, in order to make Linux kernel fully preemptible, a more drastic 

approach is needed. There are two on-going projects that enable full preemptibility in the 

kernel by adding a hardware abstraction layer (HAL) in ‘between’ the system hardware 

and Linux. In addition, a new separate real-time scheduler is used which runs Linux as its 

lowest priority thread. The hardware abstraction layer is only allowed to take over the 

control of system interrupts when no real-time task is running. When Linux tries to 
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disable interrupts it only sets a flag in the abstraction layer and cannot really turn off the 

interrupts. As a result the real-time scheduler has full control of the system and Linux 

runs without any significant modifications. Only a small real-time kernel is added to the 

system.  

 

The real-time tasks are written as kernel modules and executed in the kernel space. 

With the aid of a special real-time Application Programming Interface (API) the user is 

able to fully control the real-time tasks. The two on-going projects are real-time Linux 

(RTLinux) and real-time application interface (RTAI). RTLinux is the oldest project of 

the two and RTAI is based on the ideas behind RTLinux. Since the implementation of 

RTLinux and RTAI is similar, not much performance gain is obtained in using one over 

another. However, RTAI has always been an open source initiative and is being actively 

developed. On the other hand, RTLinux started as open source but was later 

commercialized and all of the developments are applied to the commercial version only. 

Therefore RTAI was chosen as the platform to enable real-time in the measurement 

system. Finally the characteristics of the measurement system are shown in Table 5-2. 

 
Table 5-2 Measurement PC specifications 

 

PC specification 
Model Dell Optiplex GX240 

CPU frequency (nominal) ~ 1595291000 

TSC resolution (based on nominal frequency) ~ 0.6268 ns 
Operating System Ubuntu 

Linux distribution Version 2.6.28.7 
RTAI distribution Version 3.7 

 

5.3.1 RTAI (Real Time Application Interface) for Linux and Timers 

 
RTAI was developed by Paolo Mantegazza and the team at Dipartimento di 

Ingegneria Aerospaziale - Politecnico di Milano (DIAPM). The development started right 

after the release of RTLinux. The people at DIAPM were not satisfied with the 

performance offered by the first version of RTLinux and added some new features. 

DIAPM modified all of the real-time timing, such as introducing periodic timing and 

greatly improved the one-shot timing by using the CPU TSC instead of the timer circuit. 
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RTAI originally supported only the x86 architecture in the first release but now supports 

a wide variety of architectures including PowerPC, ARM and MIPS. A description of the 

RTAI features and capabilities are presented in Appendix C. 

 

RTAI real-time processes can either run in the kernel space or user space. Real-time 

applications running in kernel space are implemented as normal Linux kernel modules. 

As the very first action it is necessary to setup timers. Based on the application RTAI is 

capable of supporting both periodic and oneshot timers for scheduling. If the periodic 

mode is selected, the 8254 PIT will be in mode 2 and it is used to generate interrupts 

periodically. In this mode all periodic tasks must have a common time base for its period. 

On the other hand, in the oneshot mode, the timer will be programmed in mode 0 and is 

re-programmed on each timer interrupt. This leads to more overhead but allows tasks to 

be scheduled with any period time without regard to a common time base. More 

significantly, in the oneshot mode the time is measured using the TSC counter. The 8254 

is only used to generate interrupts.  

5.3.2 Measurement Software and RTAI Latency Mitigation 

 
To measure the PC clock accuracy and stability, it is necessary to provide a frequency 

reference. Given a higher accuracy reference clock, it is possible to evaluate the accuracy 

of the PC clock with respect to the reference clock. Since the i-Lotus M12M GPS 

receiver is currently being used in the FDR units and it is known to provide high stability 

1PPS over long intervals, the receiver will be used as a frequency reference in the 

measurement system.  

 

In order to interface with the 1PPS signal from the M12M receiver, there are two 

options. The receiver offers a 1PPS output on its RCA connector and on the DCD (Data 

Carrier Detect) pin of the serial port for GPS message transmission. Both signals can be 

connected to the PC via either the serial port or the parallel port. However, since the 

signal is readily available on the DCD pin of the serial port and no additional wiring is 

needed to make the connection, the serial port was chosen as the 1PPS interface.  
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Since the use of interrupts is the most effective way to deal with external events, the 

serial port interrupt system is used to capture the 1PPS with minimized latency. For PC 

hardware, interrupt signals are received by the programmable interrupt controller (PIC) 

and forwarded to call the routine which is responsible for handling the interrupting 

device. For the processor to know which device or devices need to be serviced, the 

interrupt controller maps each of its interrupt input lines to an interrupt request number. 

The processor gathers this number or also known as the vector from the controller and 

executes the particular handler. [76] Depending on the PIC that is being implemented in 

the PC, there are a total of either 16 or 24 interrupt requests (IRQ) connected to the input 

of the PIC. In the x86 systems, the first serial port is being assigned to IRQ 4 with an IO 

address of 0x3F8. With all of this information in mind, the C code was developed to read 

the TSC counter or the system clock upon every interrupt generated on the DCD pin of 

the serial port. Furthermore, the TSC counts are being recorded into the kernel log by 

using the RTAI instruction for writing to kernel log in real-time. Appendix C shows the C 

code listing. Basically there are three modules in the code, the interrupt handler, 

initialization of the real-time module and resource clean up upon termination of the 

program.   

 
The most vital characteristic of a real-time operating system is how responsive the 

operating system is in servicing internal and external events. These events include 

external hardware interrupts, internal software signals, and internal timer interrupts. The 

measure of the responsiveness can be attributed to latency and jitter noise. Literature 

often defines latency as the time between the occurrence of an event and the execution of 

the first instruction in the interrupt code whereas the jitter is the variations in the period 

of the events. Although RTAI is known to provide hard real-time capabilities, there are 

some factors that affect the performance of the system. 

 

As today’s PC technology improves, more advanced hardware is integrated into the 

system introducing latencies in real-time environment. Some common suspects that 

results in system latency are SMI (system maintenance interrupts), power management 

systems such as APM (advanced power management) and ACPI (advanced configuration 
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and power interface), X Window system and video mode emulation, CPU frequency 

scaling and USB interface. The latency sources cause unpredictable timing results and 

they are incompatible with the concept of real-time. In general, most of the new 

motherboards with Intel chipset are likely to have SMI. SMI introduces anywhere of 

about 100 microseconds to up to a few milliseconds of latency in a real-time 

environment. RTAI provides a kernel module that disables most of the SMI as a 

workaround to minimize latency that results from SMI. Other latency sources including 

APM, ACPI, and CPU frequency scaling can be disabled when configuring the Linux 

kernel. The X Window system in Ubuntu is GNOME (GNU Network Object Model 

Environment) based and can be disabled so that the system would boot into terminal 

mode upon default. However, out of all of the latency sources, the USB controller is 

known to contribute the most latency, ranging greater than 100 milliseconds.  

 
Initial measurements of the PC TSC counter were not successful due to latency. As it 

was mentioned earlier, the performance of RTAI can be significantly degraded with some 

PC peripheral hardware. Experience has shown that the biggest latency contributor for 

RTAI is the legacy USB controller. The TSC counter readings were acquired from using 

the code in Appendix C for reading the TSC counter upon every 1PPS and store to kernel 

log. Since there is no possibility of the TSC counter ever rolling over in the lifetime of 

the experimentation, a post-processing program was developed in C# to find the 

difference between each TSC counter reading. This can be illustrated in Equations 5-3 

shown below: 

              Equation 5-3 

 

Where fCPU represent the frequency of the PC clock oscillator as measured with reference 

to 1PPS. 

 

Figure 5.2 shows fCPU as measured with the legacy USB controller on the default 

setting. It is easy to see that the supposed deterministic behavior of RTAI is being 

disrupted. When magnified, Figure 5.2 shows there is an approximately 1 millisecond 

latency that occurs periodically at about every 16 seconds. In comparison, Figure 5.3 

shows that when the legacy USB controller is disabled the periodic latency is eliminated. 
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Since the USB controller is disabled, USB devices such as keyboard and mouse can not 

be used. Nevertheless, the motherboard offers two PS/2 interfaces for PS/2 compatible 

keyboard and mouse so that user interface is still possible during runtime. Once the 

measurements are taken and stored into the kernel log, the USB controller can be enabled 

to allow for transfer of the files via USB storage for post-processing on a separate 

machine.  

 

Figure 5.2 Measured TSC frequency with USB controller enabled 
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Figure 5.3 Measured TSC frequency with USB controller disabled 

5.4 Measurement Results and Time Domain Analysis 

 
With the measurement system described previously, it is possible to measure the 

accuracy and stability of different timing sources. However, before the analysis is 

conducted it is important to review some definitions and terminologies for quantifying 

the accuracy and stability of clocks. 

 

The basis for time domain stability analysis starts with an array of equally spaced 

phase (time error), or fractional frequency deviation data arrays, xi and yi, respectively, 

where the index i refers to data points in time. These data are equivalent and conversions 

between the two are possible. The x values have units of time in seconds and the y values 

are dimensionless fractional frequency. The x(t) time variations are related to phase 

variations by: 

                 Equation 5-4 

Where vo is the carrier frequency of the frequency source. However, since infinite 

bandwidth measurement equipment is not available in this context, the instantaneous 

phase Φ(t) is not measurable. Since the primary concern here is frequency stability, the 
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amplitude fluctuations of the frequency source can be neglected. As a result, the sine 

wave output voltage of a frequency source can be approximated by the equation: 

              Equation 5-5 

Where Vo is the nominal peak output voltage, vo being the nominal frequency and Φ(t) 

represents the phase deviation. For the analysis of frequency stability, the Φ(t) term is the 

primary subject of interest. The instantaneous frequency is the derivative of the total 

phase: 

                 Equation 5-6 

For precision frequency sources such as the crystal oscillator, the second term on the 

right hand is quite small so it is useful to define the fractional frequency y(t) in terms of 

the instantaneous frequency: 

               Equation 5-7 

y(t) is dimensionless and it is the fractional or normalized frequency deviation of v(t) 

from its nominal value. In relationship to phase and time, y(t) can also be defined as: 

               Equation 5-8 

Where: 

                          Equation 5-9 

The data sampling or measurement interval is often being represented by the symbol τo, 

which has units of seconds. The averaging time used in the analysis, τ can be a multiple 

of τo to increase the averaging time.  

 

The classical method of characterizing oscillator stability is a plot of Allan variance, 

which is defined using a series of time differences measured between a computer clock 

and some external standard. The fractional frequency in this case can be defined as: 

                       Equation 5-10 

Where xk is the kth measurement and τ is the interval between measurements. The Allan 

variance, σy
2, is based on a “two-sample” variance measurement of the data. Instead of 

measuring the difference between each data point and the mean, it measures the 

difference between each data point, yn and the next one yn+1: 



 108 

          Equation 5-11 

Where m is the number of y data points in the calculation and the quantity τ being the 

sample time of the frequency measurement. The Allan variance is better than the classical 

variance in characterizing oscillator stability due to the fact that each frequency 

measurement is strongly correlated with the points near it in the sequence. As a result, 

when more data points are added to the set, the classical standard deviation value of the 

data set varies and is unbounded.  On the other hand, the Allan variance has the 

advantage of being convergent for most types of clock noise. The Allan variance is the 

fundamental quantity, but Allan deviation, σy, is more frequently used and can be 

obtained by taking the square root of the Allan variance. Finally, Allan deviation results 

are presented as a plot of deviation versus sample time, or given as a value at a certain τ 

(Allan deviation of 1Hz at 100 seconds). Essentially, longer sample times are calculated 

by grouping the data into bins of length τ. The average value of the data points in each 

bin is used for the Allan deviation calculation.  

 
To address the treatment of outliers in the measurement data, the median absolute 

deviation (MAD) is recommended in [103] for outlier recognition. In this context, the 

outliers will most likely be a result of the GPS losing acquisition of satellites at times and 

stops outputting the 1PPS. The MAD is a robust statistic based on the median of the data. 

It is the median of the deviations of the data points from their median value. Specifically, 

it is defined as: 

            Equation 5-12 

Where m is the median of the data set and the factor 0.6745 makes the MAD equal to the 

standard deviation for normally distributed data. Therefore, based on their deviation from 

the median of the data, a deviation limit can be set in terms of MAD and a 5 sigma limit 

is most commonly used [103]. These median statistics are more robust because they are 

insensitive to the size of the outliers. This outlier rejection method is used in the 

following analysis. 
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5.4.1 PC Oscillator Accuracy and Stability Analysis 

 
The subject of PC clock oscillator accuracy and stability is well known but there are 

limited literatures which seek to precisely measure the system. One survey based on 

Internet time synchronization has indicated that the median frequency error of 20,000 

PCs is about 78PPM, with some PCs showing errors over 500PPM [87]. However, more 

optimistic results are shown for the oscillator stability in [84] and [86] with less than 

1PPM error when averaged over a relatively long time.   

 
The measurement trial was conducted in a one week period using the measurement 

setup where the GPS 1PPS is used to trigger the reading of the TSC counter every 

second. Then using the post-processing C# program, the interval length between each 

1PPS in TSC counts can be extracted. Figure 5.4 shows a histogram of the TSC counter 

offset from the nominal processor frequency, calculated using Equation 5-13 shown 

below:  

                 Equation 5-13 

 

Where foffset is the number of clock cycles offset from the processor nominal frequency 

and fnominal is the estimated processor nominal frequency. Given that oscillators are prone 

to fluctuations in frequencies, fnominal is only an estimate and subject to change as the 

measurement time is extended. Hence the sole purpose of defining fnominal here is to get an 

approximation of the timing error in seconds. In addition, Figure 5.4 shows the histogram 

of TSC counter offset scaled to seconds by dividing the processor nominal frequency. It 

is important to note that the measurement is approximate due to the deviations of the 

clock frequency each second and the latency associated with system. Nevertheless, as the 

averaging period is prolonged, these effects will be minimized. An estimate of the PC 

clock deviation can be made according to Figure 5.4 at about -31 to -37 microseconds, or 

31 to 37 PPM of deviation error, which is close to what is often quoted in the oscillator 

specification of 50PPM deviation. In addition, the box plot of Figure 5.5 takes another 

perspective and shows the daily variations of the TSC counter with respect to the nominal 

frequency. Although the box plot is known to be an effective statistical tool in observing 

the median, lower quartile (Q1), upper quartile (Q3), sample minimum and sample 
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maximum, it is used here to observe the dispersion and skewness of the data. In this case, 

it can be observed that the daily variations in oscillator frequency is relative large. From 

these observations one can conclude that this particular PC oscillator may have 

undergone aging and experienced some temperature variations during the measurement 

which led to the disagreement between the measured and nominal frequency.  

 

Figure 5.4 Histogram of TSC frequency measurements – offset from nominal CPU frequency  

 
Figure 5.5 Boxplot of TSC frequency measurements – offset from nominal CPU frequency grouped 

by days 
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The most important aspect of this study is in looking at the stability of the TSC 

counter. Figures 5.6 shows the second to second difference of the frequency measurement 

in clock cycles and clock cycles scaled to seconds respectively. The second to second 

difference of the frequency measurement is simply obtained by yn+1 - yn., then the 

frequency measurement can be scaled to seconds by dividing by the nominal frequency. 

The plot demonstrate that the TSC counter has a maximum deviation of approximately 5 

microseconds or 5PPM variation going from one second to the next. Furthermore, the 

histogram for the second to second differences is bell-shaped and similar to that of a 

normal distribution.  

 

To examine whether the data follows the normal distribution, one can use the 

quantile-quantile (Q-Q) plot as a graphical analysis tool to interpret how well the data 

follows the distribution. Figure 5.7 shows the Q-Q plot of the data collected from second 

to second difference of TSC counter. It is shown that the data points close to zero (within 

2 standard normal quantiles) closely follow the normal distribution whereas the data 

points at the tails deviate away. The reason for this phenomenon is closely tied to the 

random jitter noise associated with the serial port interrupt. Random jitter is often 

characterized by a normal probability distribution and theoretically it should be 

unbounded. Such characteristic is the result of the accumulation of various random 

processes including thermal noise and flicker noise. With the sum of many independent 

random functions, the resultant distribution tends to converge to a normal distribution by 

the central limit theorem. Also shown in Figure 5.8 is a box plot of the second to second 

difference in clock cycles. Once again it has confirmed the high stability of the TSC 

counter as the variations in frequency is very small. 
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Figure 5.6 Histogram of TSC frequency measurements – second to second difference  

 

 
Figure 5.7 Q-Q Plot of TSC frequency measurements – second to second difference 
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Figure 5.8 Boxplot of TSC frequency measurements – second to second difference grouped by days 

 
 

Taking a step further in the stability analysis, Figure 5.9 shows the Allan deviation 

plot of the same set of data with the averaging period, τ0 being one second.  Figure 5.9 is 

consistent to the results obtained in [93], illustrating a nearly straight line starting from 

the left with slope near -1, reflecting the characteristic of white phase noise [89] and is 

largely attributed to the random jitter noise in the serial port. In this region, increasing τ 

increases the frequency stability in direct proportion. However, at the end of the line there 

are some sudden jumps which may have been caused by temperature variation in the 

room. Ultimately, the TSC counter is shown to reach well below 0.1PPM when the 

averaging period τ reaches above 120 seconds. At the point where τ reaches above 10000 

seconds, the Allan deviation curve slowly deviates from the constant slope of decreasing 

PPM until it flattens in the end, indicating less correlation between one averaging interval 

and the next. At this point the effects of the serial port jitter noise will be dominated by 

the oscillator drift. Nevertheless, if the clock frequencies drifted in a measurable way, the 

values would vary over time and Allan deviation would tend to increase with time. The 

drift behavior does not seem to be significant in the averaging interval shown in the plot. 

A significantly longer averaging interval would most likely reveal such characteristic.   
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Figure 5.9 Allan deviation plot of TSC frequency measurements with τ0 = 1 

 
To summarize the one week’s worth of data, some classical statistic parameters can 

be calculated and is tabulated in Table 5-3. Even thorough the results indicate good 

frequency stability, such small variations in frequency does accumulate over time and 

propagate to the actual timekeeping accuracy. Nevertheless, the measurements indicate 

that the TSC counter exhibit good frequency stability characteristics when averaged over 

long intervals.  

 

Table 5-3 Statistics of the TSC frequency measurements 

 

 Offset from nominal frequency Second to second difference 

Number of data points 599384 599294 

Mean -54541  0.016 
Median -54592  0 

Standard Deviation 1240.7  1937.7 
Variance 1539442 3754702 

Minimum -71976 -35184 
Maximum -36792 25072 

Range 35184 60256 

 
In the practical sense, it is worthwhile to note the delay of the PPS reaching the 

computer. The delay outside of the computer is in the traversing of the electric signal in 

copper at about 5 nanoseconds per meter is fairly constant, thus has no effect on the drift 

measurement. Even thorough a real-time operating system is used here, there is still some 
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small variable internal delays introduced in the system. The difference between the signal 

arrival time and the execution of the counter read time is the interrupt latency and is 

largely dependent on the hardware being used. Such latency does contribute to the 

accuracy of the measurement. However, for the purpose of accuracy and stability analysis 

the relative effect of interrupt latency is minimized as the measurement time is extended.   

 

5.5 Summary  

 
The results presented here shows that the crystal oscillators of the Pentium class 

processor cores exhibit inaccurate but relatively stable frequencies. The same can be 

implied for other conventional oscillators. Hence, it is possible to leverage its high 

stability and high resolution counter for either timekeeping or timing measurements. 

There are several reasons for introducing the measurement system in this context. Firstly, 

the measurement system provides the theoretical basis for understanding the inaccuracies 

in the crystal oscillator as well as the high stability it offers. It was shown that smallest 

variations in the oscillator frequency occur when the measurement is averaged over 

longer time intervals. In effect, by averaging the measurement result over time, the 

influence of the white phase noise and flicker noise is minimized.  

 

The concept introduced in this chapter can be applied to the FDR timing subsystem, 

where the processor oscillator frequency can be measured each second based on a high 

precision timing source. Furthermore, this study indicates that by averaging the 

measurement result over time, a more accurate estimate of the oscillator frequency can be 

obtained. The overall effect of the averaging is equivalent to filtering the short term 

instabilities of the 1PPS and as the averaging interval increases the filtering effect is 

pronounced. Ultimately, the Allan deviation analysis can be interpreted as a tool that 

calculates how accurately one can predict the occurrence of the next 1PPS and the results 

presented in this chapter can be incorporated into the design of the next generation FDR. 

Given its high computation capabilities and large memory size, the PC based FDR can 

easily record the frequency of the oscillator as measured by the 1PPS  or some other form 

of frequency reference over time and the measurements can be averaged in appropriate 
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intervals to predict the arrival of the next 1PPS. With an accurate estimate of the 

oscillator frequency, the FDR sampling time can be more accurately divided within each 

second and hence resulting in more accurate sampling time.  

 

In addition to the study of oscillator characteristics, it is intended that such 

measurement system to be used for the analysis of timing accuracies achieved by 

different timing mechanisms. Since there are a wide variety of precision timing sources 

available today, it’s important to be able to accurately quantify the accuracy that is 

achievable for each timing source. What is more important is the ability to characterize 

the accuracy of frequency and angle measurement based on the sampling time. To this 

end the next chapter takes a closer examination at the FDR sampling time and addresses 

the sampling time error resulting from the oscillator imperfections.  
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Chapter 6 Analysis of Frequency and Phasor Angle 
Measurements Based on Timing of Conversion 

6.1 Background 

 
As it was shown in Chapter 5, the crystal oscillators tend to have good frequency 

stabilities in the short term but they are prone to drift in the long term. Furthermore, the 

frequency offset of the oscillators differs due to manufacturing defects and the slight 

variations in the cut of the crystal. Nevertheless, with the aid of a high stability frequency 

reference such as the GPS 1PPS, the frequency drift that’s associated with any particular 

oscillator can be removed through either software or hardware implementation. In the 

case of the FDR, an internal processor counter is used to reset upon every rising edge of 

the 1PPS to synchronize with the UTC time for synchronized sampling. Throughout the 

years of FDR design refinements, the implementation of synchronized sampling has 

changed several times to improve the accuracy of the frequency and phasor angle 

measurements.  

 

The method to which synchronized sampling is conducted has evolved over the years 

with the highest accuracy obtained in the second generation FDR [14]. Although there 

hasn’t been any significant change in the timing subsystem hardware, consisting of a GPS 

receiver and some form of processor timer. The sampling pulses are generated by the 

pulse width modulation (PWM) subsystem of the processor and the PWM timing is based 

on the internal timer. Since the processor timer frequency varies according to the 

oscillator that is being used, it is practically difficult to obtain an oscillator with a 

frequency that is wholly divisible by the sampling rate. In the practical world, the 

division of the timer by the sampling rate would always end up with a remainder which 

would accumulate at the end of each second and causing sudden jumps in phasor angle 

measurements. Different methods were implemented in both the first and second 

generation FDRs to mitigate the effect of the remainder accumulation. As it was 

described in Chapter 2, the timing subsystem of the second generation FDR was 

calibrated against a PMU using phasor angle measurement results [14]. Assuming that 

the PMU has a more accurate timing subsystem and given the condition that both the 
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FDR and PMU are measuring the same voltage source, the trigger for conversion pulses 

of the FDR can be adjusted so that the magnitude of the phasor angle measurement 

matches that of the PMU. A linear fit method was used to find the length of the trigger 

for conversion pulse period in clock cycles which would minimize the saw-tooth error in 

the angle measurements [14]. 

 

Although laboratory measurements have confirmed the frequency and angle 

measurement accuracy of this implementation [14], there are still some drawbacks to the 

design. The main flaws being the lack of cross platform compatibility, consistency among 

different FDR units and flexibility. If the FDR DSP hardware were to be upgraded or 

changed to another processor, the FDR will need to be recalibrated against the PMU with 

the same linear fit method. Furthermore, if the sampling rate were to be changed the FDR 

will also need to be recalibrated. At last, inconsistencies may be introduced across 

different FDR units due to differences in oscillators caused by manufacturing 

imprecision, aging and temperature effects. Given the frequency differences from 

different oscillators, it is most likely that the calibrated PWM period would differ across 

different FDR units. However, the sampling clock in the second generation FDR uses a 

constant value for PWM period. Since the quality of the phasor angle measurements are 

directly related to the timing of conversion, the variability in oscillator frequencies can 

lead to discrepancy in frequency and angle measurements across different FDR units. 

This chapter addresses these issues by introducing a new clock division algorithm which 

does not only adapt to different hardware architectures but guarantees to produce the 

most accurate sampling time based on the underlying hardware. 

 

Since there are numerous possibilities for the implementation of FDR precision 

timing source and the sampling time accuracy varies to a great extent, it is highly 

plausible to develop a model of FDR which can be used to evaluate the performance of 

frequency and angle measurement using different timing mechanism, whether it is based 

on network time synchronization, GPS receiver or any other form of precision timing 

source. Given a universal clock division algorithm which is platform independent, 

different models can be developed based on the timing of conversion from different 
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hardware and precision timing reference. This chapter proposes the methodology to 

develop such model based on the measurement of the absolute second as referenced by 

UTC time and the sampling time. 

 

6.2 Clock Division Algorithm 

 
In order to address the need for a common method of PWM generation that does not 

only yield the maximum frequency and phasor angle measurement accuracy for any clock 

speeds but also minimizes the remainder accumulation effect, it is necessary to develop 

an algorithm that varies the period width of the PWM based on the amount of remainder 

for each pulse period. The most significant advantage of developing such an algorithm is 

the high flexibility it provides. The algorithm implementation is hardware independent 

provided that there is a timer and some means of producing variable length pulses are 

available. In addition, the algorithm can be implemented for any clock speeds and 

theoretically provide the most accurate sampling time solely based on the timing for 

conversion.  

 

The core of the algorithm for the clock division is shown in Figure 6.1 in a flowchart. 

The basic concept of the design is similar to what is being proposed in [5] and the basic 

objective is to vary the period of the trigger for conversion pulses over the course of the 

second to distribute the error associated with the imperfect division. Upon the acquisition 

phase of the FDR state machine, the length of the 1PPS will need to be measured by the 

internal timer of the processor to get an accurate estimate of the oscillator frequency. The 

averaging of the measurements over time should yield a more accurate estimate of the 

arrival of the next 1PPS. Depending on the hardware memory that is available, the 

averaging interval could vary and the longer averaging time should provide for more 

accurate estimate. Once an accurate estimate has been obtained, the FDR should enter the 

initialization state where the algorithm in Figure 6.1 can be used to produce the PWM 

timing signal for conversion.   
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As shown in Figure 6.1, the flowchart illustrates the logic to generate the PWM 

timing pulses upon the rising edge of 1PPS. Upon system start up, the variable storing the 

previous remainder value, CURR_REMAINDER is reset to zero and upon the rising edge 

of the 1PPS, the system will add the base remainder, REMAINDER to the current 

remainder that had just been reset. The base remainder is obtained by dividing the length 

of the previous 1PPS as measured by the internal timer or PPS_Count by the sampling 

rate. If the current remainder is equal to zero then the division is actually an exact integer 

multiple division. This situation would result in the current remainder being set back to 

zero and the VAR_PERIOD_LEN variable being set to the quotient of the original 1PPS 

period division. On the other hand, if the base remainder is not equal to zero, then the 

system would either set VAR_PERIOD_LEN to the quotient of the original 1PPS 

division, or simply add one to the quotient and set it to be VAR_PERIOD_LEN. The 

resultant PWM pulses will have a period length of either the default quotient obtained 

from the 1PPS division or one more clock cycle added to the default quotient. The 

condition to determine whether or not to add one to the quotient is dependent on the 

accumulation of the remainder. When the accumulation of remainder is less than half of 

the sampling rate, the period of the PWM will be set as default quotient as obtained from 

the division of 1PPS. On the other hand, when the accumulation of remainder is greater 

than the half of the sampling rate, the period of the PWM will be set as the default 

quotient plus one. 
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Figure 6.1 Flowchart of clock divider algorithm 

 
The end result of this process is to not accumulate the error caused by the remainder 

but instead distribute it among the pulses. So when the remainders add up to equal or 

greater than the one pulse period, the current remainder is decreased by the value of the 

original remainder. By implementing such algorithm in the FDR, the accuracy of the 

frequency and phasor angle measurements will be heavily dependent on the clock speed 

that is used to generate the PWM, or equivalently the resolution of the clock. Lower 

clock speeds tend to introduce jitter that amounts to some significant effects in the 

frequency and phasor angle measurements. Since the smallest possible increment that can 

be made to the output pulse is 1 clock cycle, the minimum jitter would correspond to the 

length of the 1 clock cycle. For example, if the algorithm were to be implemented in the 

second generation FDR with the 30MHz DSP clock, the minimum jitter would be +/- 33 

nanoseconds. This could be decreased by improving the system to operate from a higher 

speed oscillator. Another advantage of this algorithm is the incorporation of the oscillator 

frequency measurement each second. Since the existing clock division scheme does not 

measure the 1PPS each second and uses the nominal oscillator frequency to calculate the 
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timing for conversion, errors associated with the aging and long term drift of the 

oscillator are not being taken into consideration.  

 

To better illustrate the performance of the clock division algorithm with higher speed 

clock, some numerical simulations can be conducted. A 60 Hz sinusoidal signal with 0 

phase offset was sampled at 1440 Hz according to the sampling time calculated from the 

clock division algorithm and the resultant samples were input to the phasor analysis 

algorithm. Nominal clock speeds (fCPU) ranging from 1MHz to 100MHz were used as the 

input to the clock division algorithm to sample the 60Hz signal. The nominal clock speed 

was incremented at a step size of 1MHz and for every clock speed there were 10 

frequency and phasor angle points being calculated (10 frequency/angle output per 

second). Figure 6.2 and Figure 6.3 illustrates the simulation process for two different 

method of generating the sampling clock. Two sets of results are shown in the figures for 

comparison using the conventional clock divider where each sampling period is constant 

and rounded to the nearest whole number and the new clock divider algorithm where the 

sampling period is varied according to the accumulated remainder. With respect to the 

conventional method for clock division, the new clock division algorithm is shown to be 

effective in lowering the error caused by the timing residuals at then end of each second. 

 

 

Figure 6.2 Simulation of clock division algorithm for frequency and phasor angle measurements 

 

 

Figure 6.3 Simulation of conventional PWM method for frequency and phasor angle measurements 
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Since frequency is the derivative of phasor angle measurement, the root of the 

inaccuracies in frequency can be attributed to the angle measurements. Due to the timing 

remainders at the end of each second, the last phasor angle measurement of each second 

is erroneous and tends to have a large magnitude when the clock speed is low. In the case 

of the new clock divider algorithm, this is largely due to the jitter that is created as a 

result of adding a clock cycle to certain sampling periods, and low clock speeds tend to 

enlarge the jitter. The consequence of this error is a corresponding spike created in the 

last frequency measurement of each second, as well as an erroneous constant offset for 

the rest of the frequency measurements. As expected and illustrated in Figure 6.5, the 

magnitude of the supposed saw-tooth error in the angle data at the end of each second 

decreases as the clock speed increases. Such accuracy improvement is propagated to the 

frequency estimation as it is shown in figure 6.4 where the spike at the end of each 

second also decreases as the clock speed increases. 

 

 
Figure 6.4 Effect of sampling clock speed on frequency estimation – clock division algorithm versus 

conventional PWM method 
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Figure 6.5 Effect of sampling clock speed on phasor angle estimation – clock division algorithm 

versus conventional PWM method 

 
 

To illustrate the effectiveness of the algorithm for actual processor clock speeds, 

Table 6-1 lists two different clock speeds with two being the actual FDR processor 

speeds of 20MHz (MPC555) and 30MHz (TMS320LF270A). Also listed are the 

frequency and phasor angle results obtained by simulating the phasor algorithm with a 

60Hz sinusoidal input with no phase shift. The algorithm provides accurate frequency 

and phasor angle measurement results for 30MHz clock speed, but appears to be affected 

by the relatively large jitter produced by the 20MHz clock as well as the remainder that is 

at the end of the second. The last phasor angle result deviates by 0.0031 radians, leading 

to erroneous frequency results.  
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Table 6-1 Frequency and phasor angle measurements using the new clock division algorithm with 

actual processor clock (input 60Hz with no phase shift) 

 
20MHz (MPC555) 30MHz (TMS320LF270A) 

Frequency 
(Hz) 

Angle  
(rad) 

Frequency 
(Hz) 

Angle 
(rad) 

59.9980 0.0000 60.0000 0.0000 

59.9980 0.0000 60.0000 0.0000 
59.9980 0.0000 60.0000 0.0000 

59.9980 0.0000 60.0000 0.0000 
59.9980 0.0000 60.0000 0.0000 

59.9980 0.0000 60.0000 0.0000 
59.9980 0.0000 60.0000 0.0000 

59.9980 0.0000 60.0000 0.0000 

59.9980 0.0000 60.0000 0.0000 
59.9760 0.0031 60.0000 0.0000 

 

Hence it is shown that the clock divider algorithm is theoretically sound in the cure of 

the accumulating sampling period remainders and it is flexible in the sense that it can be 

re-used for any clock speeds and provides the most accurate clock division for any 

particular clock speed. However, the development of such algorithm was not intended to 

replace the existing calibration method that was developed for the second generation 

FDR. Rather it can be used for the next generation FDR design whether it is 

microcontroller, DSP or PC based, and also serve as a basis for comparison of the 

maximum accuracy that could be achieved in different platforms. 

6.3 Development of FDR Model 

 
In the view of the fact that the clock division algorithm presented in the last section is 

accurate to below 1 clock cycle given any clock speed, it would be of interest to develop 

a simulation method based on a model of timing for conversion signal. With such a 

model, one can explore the accuracy of the frequency and phasor angle measurements 

under different scenarios where the timing for conversion is dependent on the underlying 

hardware clock and the precision timing source. Such model is useful in determining the 

accuracy of frequency and phasor angle measurement using different timing mechanisms. 

In addition, due to the inherent random jitter noise that is part of all digital electronics 

and the deterministic jitter noise that results from intentionally varying the period of 
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sampling pulse, it would be interesting to examine how this would affect the accuracy of 

sampling time and ultimately the resulting measurements.  

6.3.1 Conceptual Design of FDR Model 

 

The approach to developing the model starts with the high resolution measurement 

PC from Chapter 5. As it was shown, the measurement PC takes advantage of the high 

resolution and high stability TSC counter, which has an inherent timing resolution of 

below 1 nanosecond and high stability over long averaging periods. With such a high 

resolution timing measurement system combined with deterministic timing behavior 

provided by the real-time operating system, one may wonder the possibility of measuring 

the timing of the trigger for conversion signal in the FDR. Only the second generation 

FDR is considered here as it is the most accurate in frequency and phasor angle 

measurements. With its 30MHz clock, the DSP has a timing resolution of about 33 

nanoseconds, which is more than ten times the magnitude of 1 clock cycle on the 

measurement system. Fundamentally, the high resolution counter combined with a real-

time operating system such as RTAI enables the COTS PC to become a high performance 

oscilloscope data logger. The concept is highly plausible in many measurement 

application as the x86 based PC has a wide spread usage and the Linux/RTAI software 

packages are open source and royalty free. 

 

Assuming that the voltage transformer and the input filter of FDR is perfect in the 

sense that they do not introduce any noise, the timing of conversion and the quantization 

effects of the ADC would be the largest contributor to the sampled signal noise. The 

quantization effects are the errors predominately produced by rounding and truncation of 

quantization levels and the timing of conversion is associated with deterministic jitters 

produced from the intentional adding of clock cycles to sampling periods as well as 

random jitters from the imperfection of the electronics. Based on the assumptions, one 

can model the FDR using the ADC timing for conversion and quantization levels. Much 

of the modeling is from a statistical technique, where each parameter can be modeled by 

a random variable.  
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Since timing for conversion is the parameter of interest in this model, the quantization 

noise can be assumed to be uniformly distributed between -1/2 LSB (least significant bit) 

and +1/2 LSB. Such assumption is equivalent to as if the quantization noise is uniformly 

distributed which may not be valid at all times and is dependent on the amplitude the 

signal. Although a more accurate quantization model can be obtained by static testing 

method of injecting several different DC voltage levels to the input of the ADC and 

collect the digital data at the output to form noise histograms. With the data collected, a 

statistical model can be developed based on the histogram. Nevertheless, since the timing 

of conversion is the main parameter of interest, either a uniform quantizer is assumed or 

the quantization effect of the ADC can be totally neglected to observe the effect of 

sampling time error.   

 

To model the timing of conversion, the measurement PC can be used to timestamp 

the trigger for conversion signal using its high resolution processor counter. Since the 

measurement PC has a much higher resolution clock comparing to the embedded DSP, 

the timestamps provided by the PC processor clock should be very accurate and reflect 

any inaccuracies in the lower resolution DSP clock. Ultimately, the model is based on 

any errors of the DSP clock with respect to the measurement PC clock. Therefore, the 

clock division algorithm will be used here to provide a common basis for the DSP and the 

measurement PC. Since the DSP operates in a much lower speed, it is expected that the 

clock division algorithm would provide more accurate timing on the measurement PC. 

Therefore, both platforms will use the same clock division algorithm to generate the 

timing for conversion and assessment can be made based on the differences between the 

two. Furthermore, since a reference time is still needed to measure the precise length of 1 

second, the GPS 1PPS will also need to be time-stamped as well. Once the length of the 

1PPS or 1PPSlength is given in processor clock cycles, it is used in the clock division 

algorithm to mitigate the errors caused by imperfections in the oscillator. Hence, the 

timing results generated on the PC is considered to be much more accurate than that of 

the FDR and is considered to be the theoretical timing for conversion. Given the 

theoretical sampling time, tcalc, a histogram can be generated by subtracting the measured 
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sampling time, tmeasured, from the theoretical sampling time. In summary, the process for 

developing the sampling time histogram is illustrated in Figure 6.6. 

 

 

Figure 6.6 Illustration of developing sampling time histogram 

 

Since the measurement is conducted using a higher speed clock, the raw 

measurements will need to be quantized or scaled to its equivalent for the lower speed 

clock. In this case, the scaling factor can be obtained by dividing the nominal frequency 

of PC clock by the nominal frequency of the DSP clock. Hence, the raw measurement 

data based on the PC clock can be scaled by dividing the scaling factor. The scaled 

results should form another histogram based on the clock cycles of the DSP clock. 

Finally, the histogram based on timing conversion will need to be normalized where the 

y-axis is the probability of occurrences and the x-axis is the error with respect to the 

theoretical value in number of clock cycles. The conversion involves taking each value in 

the histogram and divide by the total number of samples, which results with values in 

between 0 and 1, and the sum of all of the values in the normalized histogram will be 

equal to 1. Hence, the probability of obtaining any value is easily obtainable using the 
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normalized histogram. Then it is necessary to sum the probabilities to create the 

cumulative histogram. Figure 6.7 summarizes the process for developing the FDR model. 

 

 

Figure 6.7 Procedure for developing FDR model based on sampling time measurement 

 
In order to sample randomly from the histogram, a random number generator is 

needed. In this case, the Matlab uniformly distributed pseudorandom number generator 

can be used to generate numbers in the range of 0 to 1 to represent the probabilities. 

Given the probabilities generated from the pseudorandom number generator, the 

corresponding value in clock cycles can be obtained based on the cumulative histogram. 

Since a discrete random variable is considered here, it is necessary to apply the condition 

illustrated in Figure 6.8 where k will be used if M(k-1) < randn() ≤ M(k), where randn() 

is the function that provides the uniformly distributed pseudorandom numbers.  

 

 

Figure 6.8 Illustration of random sampling  

 

As a result of the random sampling process, toffset can be obtained and applied as an 

offset to tcalc in the actual simulation as it is shown in Figure 6.9. The resulting tsimulate is 

used to sample any arbitrary waveform and generate discrete values to input into the 

phasor angle analysis. Finally, the frequency and phasor angle results forms another 

histogram based on the difference between the theoretical and simulated values. 

Ultimately the final histogram should provide much information on the accuracy of the 
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frequency and phasor angle estimation based on the sampling time. The random sampling 

process should be performed many times to approach the point where all of the data in 

the histogram has been sampled. Such methodology is very similar to the classical Monte 

Carlo method, which shares the similar concept of modeling systems with uncertainties in 

inputs. 

 

 

Figure 6.9 Procedure for simulating FDR model based on sampling time 

 

6.3.2 Measurement of FDR Timing for Conversion 

 

Since the measurement is conducted on a device external to the measurement PC, 

there needs to be some way of interfacing to the external signal. The trigger for 

conversion signal that is generated from the DSP is connected to the CONVST’ input of 

the ADC, or the convert start input pin. A low to high transition on this input starts the 

conversion process and it is TTL (transistor transistor logic). Considering that the parallel 

port of the PC is also TTL and given its versatility in interfacing with external 

peripherals, it is sometimes being used for data collection, testing and control systems. 

Although the original intent of the parallel port was to interface with printers but it has 

evolved to perform sophisticated PC control applications, such as multiple stepper motors 

control. [A parallel port interface circuit for computer control applications involving] 

Given these justifications and the simplicity in implementing parallel port interrupts, the 

parallel port is used to capture the CONVST’ signal. In the x86 systems, the parallel port 

interrupt is assigned to IRQ 7 and is triggered by rising edges in the ACK (acknowledge) 

pin (refer to Appendix C for schematic). Therefore, upon every low to high transition of 

the CONVST’ signal, the system enters the ISR where the TSC counter is being read and 

logged into the kernel log. Furthermore, since the reference timing for conversion is 
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based on the 1PPS signal from the GPS, the same interfacing software that was 

implemented in Chapter 5 can be re-used here to provide the start of the sampling 

reference. Figure 6.10 shows the measurement setup for FDR trigger for conversion 

signal. 

 

 

Figure 6.10 Timing measurement setup for FDR trigger for conversion signal 

 

Due to the fact that the TSC counter is started when the machine boots up and will 

not rollover in the time span of the measurements, a post processing tool was developed 

in C# to extract the data from the kernel log and convert the TSC data point to counts 

with respect to the start of the second as indicated by the 1PPS. Also, given the length of 

the 1PPS as measured by the TSC, the C# program will calculate the timing of the trigger 

for conversion with respect to the start of the second using the clock division algorithm. 

By subtracting the actual timing for conversion as measured by the PC from the ‘perfect’ 

timing derived from the C# program, the error associated with the DSP clock is obtained.  

 

Figure 6.11 shows the histogram representing the difference between when the actual 

trigger for conversion occurred and the calculated timing, in clock cycles and its 

equivalent in seconds. With a sample size of 1000000 data points, it appears that most of 
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the data points are concentrated within +/- 20000 clock cycles, or about 12 microseconds. 

Considering that the 30MHz DSP clock has a resolution of about 33ns per clock cycle, it 

is clear that the measurement result is diluted with much larger errors. Much speculation 

was placed on the performance of RTAI and whether it was lacking the real-time 

behavior that is expected of all real-time operating systems. 

 

 

Figure 6.11 Histogram of timing measurements for FDR trigger for conversion – offset from 

theoretical timing 

 

Taking another perspective in examining the measurement results, if the measurement 

were ideal, the period difference between each of the trigger for conversion pulses should 

always be less than 1 clock cycle on the 30MHz DSP clock, or equivalently 53 clock 

cycles on the 1.59GHz PC clock. Figure 6.12 shows the period differences in the trigger 

for conversion pulses in clock cycles and seconds. Once again, the results indicate 

otherwise as the differences between pulses periods exceed +/- 10000 clock cycles on the 

1.54GHz PC clock, or equivalent to about +/- 8 microseconds. Since the histogram is 

approximately bell shaped and resembles a normal distribution, one may attribute the 
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error to system noise. To confirm, direct comparisons can be made between the pulse to 

pulse period differences and the second to second frequency difference from Chapter 5. 

Specifically, the measurements taken here is very much similar to that of Chapter 5 

where the length of the 1PPS is being measured. The only exception is the differences in 

the frequency of the PC oscillator and the FDR sampling rate. Nevertheless, in comparing  

Figure 6.12 with Figure 5.6 from Chapter 5, there is no discernable differences between 

the two measurement results in terms of the distribution of the data.  

 

Figure 6.12 Histogram of timing measurements for FDR trigger for conversion - pulse to pulse 

timing differences 

 

A better representation of the comparison between the two is shown in Figure 6.13, 

where the Q-Q plot for both trigger for conversion pulse to pulse period difference and 

1PPS second to second frequency difference is shown. Both data sets can be 

approximated to the normal distribution within +/-2 standard normal quantiles. Then the 

tails on the two sides deviates away from the normal distribution at about the same 

position. The result indicates that the jitter noise associated with the 1PPS measurement 
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is very similar to that of the trigger for conversion pulse measurement. Hence, the 

performance of the measurement PC is consistent across different measurements and the 

frequency difference between the two signals that are measured do not seem to make any 

significant differences in the jitter noise. Nevertheless, it is important to recognize that 

the accuracy of the FDR model is dependent upon the accuracy of the sampling time 

measurements. The measurement from Chapter 5 is different in this aspect because 

statistical tools such as the Allan deviation and averaging can be used to identify and 

mitigate the effect of jitter noise. 

 

 
Figure 6.13 Q-Q Plot of 1PPS measurement versus Q-Q Plot of trigger for conversion measurement – 

pulse to pulse timing difference 

 
Although the jitter noise in the microseconds range is a relatively large contributor to 

the inaccuracies of the measurement PC, the interrupt latency is yet another concern for 

accurate measurements. The first trigger for conversion pulse with respect to the 1PPS 

can be examined to approximate the effect of interrupt latency. At every rising edge of 

the 1PPS, the DSP loads the period of the trigger for conversion into the PWM period 

register and the first rising edge of the trigger for conversion should occur within one or a 

few clock cycles in the worst case latency. Since both the 1PPS and trigger for 

conversion timing information is available, the interrupt latency effect can be 

approximated. Figure 6.14 shows the measurement of the delay of the first trigger for 

conversion pulse with respect to 1PPS, in clock cycles and scaled seconds. The average 
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delay in the arrival of the first trigger for conversion pulse with respect to 1PPS is about 

2500 clock cycles in the 1.59GHz clock, or about 16 microseconds. That’s more than 400 

times the length of 1 clock cycle in the 30MHz clock, signifying a relatively large latency 

in comparison with what was predicted. 

 

Figure 6.14 First trigger for conversion latency with respect to 1PPS 

 

The original intention of this effort was to accurately measure when the trigger for 

conversion occurs in each second and develop the model based on the difference between 

the measured value and calculated value. The concept of the higher timing accuracy can 

be obtained when the resolution and the precision of the measurement system timing is 

higher than that of the DSP. However, the results show that given the approximate timing 

behavior of the DSP PWM, the measurement PC is not capable of accurately depicting 

when the trigger for conversion actually occurred. On the other side of the spectrum, it is 

known that dedicated processors such as the DSP has the capability of guaranteed 

interrupt latency in the range of a single or in the worst case a few execution cycles. 

Nevertheless, it was shown that the jitter noise is consistent between the measurement of 

trigger for conversion signal and the 1PPS from Chapter 5. Hence, it is clear that the error 
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is not associated with the way that the ISR was implemented, but rather it is indicative of 

the imperfections in the real-time operating system or the underlying hardware. Finally, 

Table 6-2 shows the statistics of the measurement in both clock cycles and microseconds.  

 

Table 6-2 Statistics for the measurement of the trigger for conversion signal 

 
 Offset from 

calculated values 
First pulse delay 
wrt. GPS 1PPS 

Pulse to pulse period 
difference 

Number of data 
points 

1000000 7504 1000000 

Mean 114 (~71.45 ns) 2556 (~16 us) -0.00754 (~ 0 us) 

Median 116 (~72.71 ns) 2521 (~15.8 us) 40 (~0 us) 
Standard Deviation 4453 (~2.79 us) 2290 (~14.3 us) 2466 (~1.54 us) 

Minimum -18404 (~-2.13 us) 15360 (~9.63 us) -2340 (~-1.46 us) 

Maximum 19132 (~11.99 us) 44540 (~27.9 us) 1989 (~1.24 us) 
Range 37536 (~23.5 us) 29180 (~18.29 us) 4329 (~2.71 us) 

 

6.4 Discussion of Results 

 
Although it was verified that the measurement results indicate a relatively large 

magnitude jitter noise and latency which is consistent throughout all of the 

measurements, it is important to characterize the underlying limitations of measurement 

system and the sources of inaccuracies. The original motivation for this work was the 

observation that the use of general-purpose microprocessors, such as the Intel Pentium, is 

increasing for real-time applications [78]. The reasons for this increase are the readily 

available TSC counter and the convenience of complete PC compatible platforms that 

provide abundant peripherals at low cost. However, the results indicate that there are 

limitations to such implementation rooted in either the real-time operating system or the 

underlying hardware. At this point it is worthwhile to revisit the topic of real-time 

operating system performance evaluation and the possibility of improvising the existing 

system. 

 

Literature such as [78] indicates that despite the best efforts to make RTOS 

deterministic, the underlying hardware in general-purpose computers introduces timing 

uncertainties due to microprocessor and bus effects. While there is a large amount of 

literatures on the research of RTOS and real-time programming, real-time software by 
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itself does not guarantee a deterministic system. Microprocessors such as the Pentium 

contain some optimization features which interfere with the deterministic capabilities of 

RTOS. These optimization features include instruction and data caches, instruction 

pipeline and speculative execution. These features are often incorporated into the 

processor architecture to significantly speed up the average execution times, but 

occasionally introduce large delays.  

 

In the case of the data cache, copies of data from external memory are kept in the 

internal processor cache, reducing the time for subsequent access. However, if the cached 

data is replaced and is referenced again, it must be fetched again. [78] indicate that in an 

environment where real-time and non-real-time tasks share the processor, it is practically 

impossible to prevent real-time task data from being replaced occasionally, even if the 

non-real-time tasks run at the lowest priority. Furthermore, an increase in processor speed 

leads to more profound effect in mixing the real-time and non-real-time tasks. The faster 

the processor, the more non-real-time task code can run during the idle period and 

interfere with the determinism of the real-time task. Nevertheless, the common 

misconception is that disabling a microprocessor’s cache would reduce timing 

uncertainty. But in reality the absence of a cache magnifies the uncertainties in 

instruction pipelining and speculative execution. Even if the timing uncertainty was 

eliminated by disabling the cache, the performance in speed would be penalized 

significantly. 

 

It is also worthwhile to address the issue with the interrupt latency as seen in the 

measurement results. Specifically, interrupt latency measure the ability of a system to 

respond to an asynchronous event and the system’s ability to change the processor’s state. 

In general, [73] indicate that the minimum and maximum latency measurements have 

virtually no relationship to the processor’s clock speed or the processor model (Pentium 

versus Pentium 2). The minimum latency is often attributed to the I/O and memory bus 

performance where as the maximum latency is often attributed to the state of the machine 

at the moment the interrupt occurred. These are considered extreme cases and are 

dependent on a machine’s bus speed, memory, peripheral devices and associated drives. 
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Overall, increasing a processor’s clock speed increases the average performance level of 

a system but does not significantly affect the speed at which a processor will respond to 

an interrupt.   

 

In contrast to general purpose processors, DSPs bypasses unpredictable features like 

caches and pipelines, opting instead for simple instruction sets that optimize commonly 

used instructions for speed. Such implementation allows the DSP to have guaranteed 

interrupt latency in the range of a single or few execution cycles. As a result, the 

measurement of the FDR trigger for conversion signal reflects a mixture of latency and 

jitter noise that are associated with the uncertainties of the Pentium processor, rather than 

the DSP itself. Many literatures present the evaluation of real-time operating system 

performances and provide actual figures in latency and jitter. However, since the machine 

under test varies in certain aspects such as configuration and hardware, the range of 

latency and jitter figure can vary by some extent. Nevertheless, RTAI is known to exhibit 

comparable latency and jitter to commercial real-time operating systems but is still 

susceptible to latency and jitter in the orders of anywhere from 1 to 10 microseconds for 

processors running at a clock rate of 100s of MHz [75]. Although [78] shows that the 

worst case jitter values can reach the orders of ten microseconds. The timing uncertainties 

in jitter are mostly related to the execution environment where other running tasks can 

provide interference and also the scheduling algorithm. Although it was indicated in the 

measurement of the FDR trigger for conversion that the estimated maximum latency 

exceeds 10 microseconds, but the average estimated latency indicates that the system is 

performing close to the optimal conditions. The same can be said about the estimated 

jitter which has a range of 2.71 microseconds, well within the bound of what is indicated 

in the literature. Nevertheless, even with the highest performance real-time operating 

systems, the accumulation of latency and jitter noise can easily reach within the 

microseconds range [74]. Ultimately, in order to achieve high deterministic timing that is 

needed to measure the DSP clock, it is necessary to acquire the use of a FPGA based 

counter [102][104].  
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6.5 Summary 

 
In this chapter a new clock division algorithm is proposed for generating accurate 

sampling pulses using PWM. The existing method of producing sampling pulses is based 

on the calibration of the period of the FDR sampling pulses against the PMU. Although 

the calibration method is effective in increasing the accuracy of the frequency and phasor 

angle measurement, it is hardware dependent and susceptible to timing errors in the 

sampling pulses due to the inaccuracies of the oscillator. To address these issues, the 

proposed clock division algorithm keeps track of the accumulated timing error caused by 

the imperfect division and adds or subtracts one clock cycle to the next sampling period 

so that the sampling time error is always within one clock cycle and does not accumulate. 

This method is hardware independent and produces the most accurate sampling time for 

any oscillator frequency. This clock division algorithm can be integrated into the next 

generation FDR regardless of its hardware architecture. By the same token, it is just as 

important to emphasize that the measurement of the 1PPS is critical for accurate 

calculation of sampling time.  

 

Given the clock division algorithm, one can measure the timing of the sampling 

pulses generated from oscillators of different frequencies and different precision timing 

reference. Examples of the precision timing reference include the indoor GPS and the 

network time synchronization. Given that these timing references provides different 

levels of timing accuracy and are difficult to characterize in terms of its influence on the 

frequency and phasor angle measurements, it is logical to develop a method to model the 

FDR based on the timing characteristic. The methodology is based on the measurement 

of the FDR sampling time and the absolute second given by the frequency reference. 

Although the timing measurement is carried out using the measurement system from 

Chapter 5, it is shown that the measured sampling time does not accurately depict the 

FDR. This is due to the optimization features of the Pentium processor which adds 

comparatively large jitter noise and latency to the measurements. Hence the measurement 

system is not suitable for this application and more deterministic hardware is needed to 

develop a more accurate FDR model. The measurement of the FDR sampling time has 

proven to push the measurement system to its limitations but these results does not 
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conflict with that of Chapter 5. In the measurement of the 1PPS, statistical tools such as 

averaging and Allan deviation are used to mitigate and distinguish the effect of jitter 

noise and latency. In the case of measuring the FDR sampling time, a large sample size is 

needed to model the FDR and carry out the random sampling. Ultimately, it would not be 

practical to apply data filtering in such application. More accurate model can be 

developed by means of more deterministic timing measurement system such as a 

dedicated hardware solution using FPGA.   
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Chapter 7 PC Time Synchronization 

7.1 Background 

 
Ever since the introduction of PC based FDR design, there is much optimism in using 

an Internet based timing synchronization technique to provide for frequency reference 

and timing reference for the FDR. Although GPS timing receivers has proven to be an 

effective frequency and timing reference, there are still many factors that would affect the 

availability of the GPS as outlined in Chapter 4. An indoor GPS solution is superior to 

that of the conventional GPS in terms of operating under environments which suffers 

from significant signal degradation. However, it’s also shown that under significant 

signal attenuation environments the indoor GPS exhibit lower accuracy. The most 

significant advantage that the network time synchronization has to offer is the elimination 

of the extra cost and hardware that is associated with GPS receiver.  

 

Part of Chapter 5 investigated the stability of the PC oscillator clock, or the TSC 

counter. It is shown that the TSC counter is relatively stable in frequency for a period of a 

week. Therefore a PC based FDR implementation would be able to make use of such a 

counter synchronized to a reference clock with UTC time to generate the trigger for 

conversion signal. Even though the PC software clock provides absolute time information 

and it can be retrieved by simple software instructions, its timekeeping accuracy suffers 

from instability in interrupt requests, limited resolution and inconsistencies due to power 

cycles of the machine. To improve the accuracy of the PC software clock and compensate 

for the inherent drawbacks in its timekeeping mechanism, it is necessary to investigate 

clock synchronization strategies and perform the appropriate analysis to quantify the 

achievable accuracy and the required trade-offs. 

 

Clock synchronization can be implemented in either hardware or software. The 

synchronization technique to be used is heavily dependent on the required precision and 

the geographic spread of the distributed system. Dedicated hardware synchronization 
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provides the highest accuracy ranging in several nanoseconds. Although such 

implementation requires dedicated synchronization network and the appropriate phase 

locked loop (PLL) hardware with distributed devices that are located within a few meters 

of each other. Nevertheless, the hardware synchronization approach requires high density 

installation with high cost and its accuracy far surpasses that of what is needed for 

synchronized phasor measurements. Furthermore, many approaches to clock 

synchronization today are based on a hybrid solution combining software algorithm with 

moderate hardware support, which are capable of reaching microseconds accuracy in 

local area network (LAN). Finally, solely software driven clock synchronization 

algorithms use standard communication networks and send synchronization messages to 

get the clocks synchronized. They are not as accurate in comparison to the hardware and 

the hybrid solution but are more used due to the fact that many applications do not need 

as strict of timing requirements.  

 

The major challenge to the WAMS time synchronization is the need for high 

accuracy synchronization in a wide area network (WAN). Such requirement is rarely 

addressed in many clock synchronization techniques as most of the distributed system 

applications are either LAN based or simply does not need as high of accuracy. 

Henceforth, this chapter seeks to address these challenges and characterize the accuracy 

of the one of the most popular network synchronization methods. Ultimately, 

recommendation can be made on whether network synchronization can be used for 

accurate frequency and phasor angle measurement applications. 

 

7.1.1 Network Synchronizations 

 
Generally, in network synchronizations there are at least two clocks with one being 

the local clock and the other being the reference clock. When compared to the reference 

clock A, the errors of a crystal oscillator based PC clock B, or in this case the local clock 

can be characterized by offset, skew and drift. Hence, a simple model of the local clock 

can be illustrated as: 

 

                 Equation 7-1 
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Where aB(t) is the clock drift, and bB(t) is the offset of clock B. Drift is often defined as 

the rate of the clock and offset is the difference in value from real time t. Using 

Equation(), a comparison can be made between clock A and clock B as: 

 

               Equation 7-2 

 

Where aAB is the relative drift, and bAB is the relative offset between the clock A and 

clock B. If the two clocks are closely synchronized, then their relative drift should 

approach 1, indicating both clocks are approaching the same rate and relative offset is 

approaching 0. Assuming a perfect clock synchronization scenario, the relative drift 

would be 1 and relative offset would be 0 indicating the same time for both clocks at that 

instant. In some literature, the phrase ‘clock skew’ is used in place of drift to indicate the 

difference between clock rates. Likewise, the phrase ‘phase offset’ is equivalent to offset 

and often used interchangeably.   

 

The synchronization of multiple devices is the same as equalizing the computer 

clocks of different devices. Only by correcting offset of clocks is not enough for 

synchronization as clocks tend to have different rates so that drift between clocks occurs 

over time. As a result, the method of synchronization should correct for both the clock 

rates and offset to equalize the values for the clocks. The major challenge to precise 

network clock synchronization is non-determinism. Inaccuracies in latency estimates 

present major problems to asymmetric round-trip message delivery delays. Purely 

software implemented methods are often designed to run in asynchronous environments 

that do not have timing guarantees. One extreme example is the Internet where the 

performance of network synchronization is dependent on many random variables. 

Furthermore, software often runs on general purpose operating systems where 

determinism is almost non-existent.   

 
Network synchronization can often be divided into two large groups, one being the 

peer to peer synchronization and the other being the client and server architecture where 

the reference time is obtained from one or more number of sources. Furthermore, most 
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systems are equipped with a pure oscillator with counter based clock where 

synchronization of the local hardware clock is not possible. Instead, logical clocks are 

introduced. Adjustments can be made to the logical clock by adding an adjustment term 

to the local hardware clock. The adjustment could be a discrete value obtained from each 

re-synchronization or a linear function of time. The discrete clock adjustment method 

may cause a logical clock to instantaneously leap forward or be set back and then 

continue to run at the speed of the underlying hardware clock. On the other hand, a linear 

function of time for clock adjustment prevents the sudden changes in the progression of 

the logical clock and is more accustomed to network synchronization with distributed 

systems. 

 

The subject of time synchronization in sensor networks has only gained attention in 

the recent few years. Synchronization techniques include Reference Broadcast 

Synchronization (RBS) [94], Timing-Sync Protocol for Sensor Networks (TPSN) [95], 

Tiny-Sync and Mini-Sync [96], Lightweight Tree based synchronization [97], 802.11 

synchronization [98], Precision Time Protocol (PTP) [101] and Network Time Protocol 

(NTP) [89]. Nevertheless, out of all of these synchronization methods, only NTP meets 

the basic requirement for wide area monitoring applications where the capability to 

synchronize with UTC time for a large geographical area is essential.  

 

7.2 An Overview of Network Time Protocol (NTP) 

 
For the past thirty years, Dave Mills’ Network Time Protocol (NTP) has been the ‘de 

facto’ standard protocol for network time synchronization. It is the oldest continuously 

operating protocol in the Internet has undergone 5 different version releases (numbered 0 

through 4). Almost all of the server machines in the world use it to synchronize to UTC. 

The basic concept of NTP is to synchronize the software clocks or system clocks of 

computers using messages transmitted over the Internet thereby increasing the accuracy 

of PC timekeeping [89]. It not only corrects the current time, it can keep track of 

consistent time variations and automatically adjust for system time offset on the client. 

Nevertheless, the actual variability in clock frequency is not being compensated. In the 

NTP clock synchronization, the clock consists of an absolute offset, called an epoch, and 
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a frequency ratio scale. The clock is defined as the epoch plus the hardware elapsed time 

multiplied by the frequency ratio. Finally, offset is the difference in epochs, skew is the 

difference in frequency and dispersion is the known error in the local clock.  

 

NTP is built on the Internet Protocol (IP) and User Datagram Protocol (UDP) but it 

can also adapt to other protocol packages [89]. The main principle behind the NTP 

protocol is a client/server engine that stamps messages when sent and received. A 

message transmitted from a host returns with three timestamps in its packet body 

including originate, receive and transmit timestamp, and a fourth stamp separate from it. 

Received messages are automatically replied and sent messages are periodically initiated 

according to local state information. As a result, both the server and the peer can 

independently calculate delay and offset using a single message stream. This method is 

advantageous in the sense that the transmission times and received message orders are 

not important and it does not require reliable delivery. Rather, the accuracies are 

dependent upon the statistical properties of the outbound and inbound data paths [89]. 

Figure 7.1 shows the NTP message format.  

 

 
Figure 7.1 NTP message format 

 
In general, NTP reads a remote clock by sending a NTP message to the remote node 

and waits for a reply in a later time. Upon receiving the reply message, the client/server 
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engine combines the incoming packet with the current local time and processes it. The 

message is stamped at each transmit and receive point as shown in Figure 7.2.  

 
Figure 7.2 NTP message exchange 

 

The four timestamps are used to compute round trip time and offset measurements. 

Assuming that the timestamp is accurate, the round trip time, δ can be computed from 

Equation 7-3. The  clock time is defined as the average over an interval. Such is the case 

for both local time and remote time estimation as shown in Equation 7-4 and Equation 7-

5. Furthermore, offset θ is defined as the difference between the remote clock time and 

the local clock time, where positive offset indicate the remote clock is ahead of the local 

clock and vice versa for a negative offset. Equation 7-7 illustrates the calculation for 

offset [87].  

 

               Equation 7-3 

                 Equation 7-4 

                Equation 7-5 

                Equation 7-6 

               Equation 7-7 

 
At this point, it is important to note that NTP is making several underlying 

assumptions as the offset is being calculated. Firstly, the clock time varies linearly during 

the exchange which may not always be the case due to factors such as oscillator 

instabilities and error in reading the clock. Second, the path from transmitting and 

receiving the message takes an equal amount of time. Such assumption can be made 

invalid purely due to differences in network delays. Ultimately, the clock value is a linear 

interpolation of the send and receives times of the message [89].  
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The NTP network is composed of primary and secondary time servers, clients and 

interconnecting transmission paths. A primary server is directly connected to a high 

accurate reference source, such as a timecode receiver or atomic clock. A secondary 

server provides time synchronization over path networks which may be shared with other 

services. Each time server is given by a number called the stratum, which reflects its 

distance from the reference clock.   

 

Figure 7.3 shows a typical NTP network topology with atomic clocks and GPS timing 

receivers as the most accurate timing source. Any NTP server having as a time reference 

of stratum 1 server is categorized as a stratum 2. Any NTP server having as a time 

reference of stratum 2 server is categorized as a stratum 3, and so on. The stratum 1 

servers are connected to the high accuracy atomic clock or GPS via an RS-232 cable or 

an IRIG-B (Inter-range instrumentation group) time code and they are considered to be 

primary servers. Strata 2-255 are considered secondary servers and their distance to the 

primary server are defined by their respective stratum number. Clients never 

communicate directly with a stratum 0 server and they always go through a stratum 1 

server synchronized to a stratum 0 server. By arranging the network into stratum and 

allowing inaccurate higher stratum number servers to synchronize against a lower stratum 

number server, the demand on the NTP server and the network is minimized [89]. 

Stratum 0

Stratum 1

Atomic Clock

Global 

Positioning 

System

Stratum 2

` `` `

` ` ``

Stratum 3

 

Figure 7.3 Typical NTP Network Topology 
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Due to network delays and traffics on the Internet, a stratum 2 time server will have 

anywhere from 10-100 milliseconds accuracy to UTC and each subsequent stratum time 

servers will add an additional 10-100 milliseconds of inaccuracy. Nevertheless, in 

practice it is rare to find clients with stratum numbers above 4 or 5 in most real-world 

configurations. As a matter of fact, according to a survey conducted by David Mills, 

more than half of the Internet connected NTP clients are in stratum 3, with almost all of 

the remainders in strata 2 and 4. In addition to the client and server model, the NTP 

servers operating on the same stratum can be associated with others in a peer to peer 

basis, so they may decide highest accuracy clock and then synchronize against that 

particular clock.  

 

Ultimately, the goal of the NTP algorithms is to minimize both the time difference 

and frequency difference between UTC and the system clock. When these differences 

have been reduced to below a threshold of 128 milliseconds, the system clock is 

considered to be synchronized to UTC. Once the time offsets of the local clock is below 

128 milliseconds, the local clock is being gently steered in small steps. For offsets larger 

than 128 milliseconds, the synchronization process may take a long time or never 

happens. Furthermore, if the clock offsets is greater than 1000 seconds, the algorithm 

would reset or the whole process reboots. 

 

7.2.1 NTP version 4 

 
Up to date, various versions of NTP exist, beginning with RFC (request for 

comments) 778 which included only data and packet formats and specification of 

server/client engine. Version 1 introduced the concept of hierarchical clock organization 

and a clock adjusting algorithm. Version 2 added authentication, control message option, 

and asymmetric modes of operation. It wasn’t until version 3 that a significant progress 

was made in the clock synchronization algorithm. The most recent release of NTP is 

version 4, which have not been documented into RFC [88]. 
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Version 4 of NTP addresses some significant shortcomings of the version 3 design. 

Most importantly the new implementation uses double precision data types throughout 

with the exception of the calculation of first order timestamp differences required to 

determine offset and delay. The time resolution is better than one nanosecond and the 

frequency resolution is better than one nanosecond per second. Additionally, 

improvements are made to the clock discipline algorithm where a true hybrid of 

frequency locked loop (FLL) and phase locked loop (PLL) is being implemented. The 

advantage to such a hybrid feedback control system is its capability to mitigate both 

network jitter and oscillator wander. Specifically, the FLL is more effective in 

minimizing oscillator wander effects whereas the PLL is more effective when network 

latency and jitter dominates [87].  

 

In the previous version of NTP, the selection of using either PLL or FLL is based on 

the update interval τ with PLL being used when τ is less than 1024 seconds and FLL 

being used when τ is greater than 1024 seconds. Such scheme was implemented based on 

the Allan intercept illustrated by the Allan deviation plot from Chapter 5, where the 

oscillator stability is optimum, just before oscillator drift occurs. Version 4 of NTP 

combines both PLL and FLL in such a way that the FLL prediction is weighted more 

heavily when network jitter dominates and PLL prediction is weighted more heavily 

under conditions of oscillator drift. Ultimately, the new implementation allows for τ to be 

increased without losing significant accuracy and at the same time compensating for a 

wide range of network jitter and oscillator drift [88]. 

 

7.3 Evaluation of NTP accuracy 

 
The literature on software based clock synchronization over networks is relatively 

limited. The original literature [89] contains much information on implementation but 

there is no formal analysis and no benchmarking study on the performance of the newly 

released NTP version 4.0. [20] indicate that the version 4 of the NTP can usually 

maintain time to within 10 milliseconds over the public Internet and can achieve 

accuracies of 200 microseconds or better in local area networks under ideal conditions. 
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Such figures are arbitrary since there are many different factors that would affect the 

accuracy of NTP. In general, reference clocks are assumed to be accurate and the 

accuracy of the synchronized clocks are judged according to how ‘close’ a clock is to the 

reference clock, the network latency to the reference clock, and the claimed accuracy of 

the clock. However, the network latency is practically uncontrollable and the NTP clock 

discipline seeks to minimize the errors as a result of this as well as the inherent 

instabilities of the crystal oscillator.  

 

There are many publicly available NTP servers exist today and the most common 

route of obtaining accurate time is through those servers. Many organizations setup 

public NTP servers as a public service. However, setting up a large number of clients to 

use the public external servers is inefficient and a poor use of computing resources. 

Therefore, it is more reasonable to have a few servers receive accurate time readings 

from the Internet and use each of these stratum 2 or stratum 3 servers in localized areas. 

All the clients at the site can then receive updates from the stratum 2 or stratum 3 servers 

at the site. The alternative to the use of public NTP server is to setup reliable reference 

server dedicated for specific applications. Such method may be applicable to FNET since 

the FDRs are usually distributed in separate LANs and are dispersed throughout in the 

WAN.  

 

In understanding the selection process for reference clocks, it is important to note that 

by synchronizing to a stratum 1 server does not necessarily dictate more accuracy 

comparing with that of synchronizing to a stratum 2 server. Selecting NTP source 

requires careful consideration of accuracy and reliability. In addition, it is always best to 

synchronize with multiple servers to mitigate the effect of incorrect or inoperational 

server. To ensure the performance of the reference clock, it is important to find a server 

that is peered with several other servers to provide robustness. The NTP protocol is 

designed as a hierarchy to prevent large numbers of clients from accessing the same 

primary time sources. Therefore it is always a good practice to synchronize to a stratum 2 

server when there are a small number of clients in the network and only synchronize to 

stratum 1 server when the number of clients becomes large.  
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Although there is very limited literature on the performance of the version 4 NTP 

release, some factors that may affect its accuracy can be foreseen. It is most likely that 

the achievable accuracy is heavily dependent on the operating system being used due to 

the differences in the timer resolution of Windows and Linux based operating systems. 

Furthermore, it is known that the NTP accuracy is maximized when synchronization 

occurs in a LAN with a small number of routers and switches but rather difficult to 

characterize in the WAN.  

 

Early measurements of the time offset were conducted on the Windows XP platform 

using the W32Time tool [17]. The W32Time Service is a fully compliant implementation 

of the Simple Network Time Protocol (SNTP) as detailed in IETF RFC 1769. The results 

indicate that the polling interval plays an important role in the accuracy of NTP time 

synchronization. Furthermore, it was shown that NTP version 4 is several orders of 

magnitude more accurate than that of Windows Time Service. The polling interval was 

configured for both automatic and manual polling intervals where manual polling mode 

allows for a fixed polling interval, and automatic polling mode is based on an algorithm 

where the polling interval is determined based on a balance between accuracy and 

network overhead. It was shown that with a fixed polling interval of 1024 seconds, or 

polling at about every 17 minutes yields the best results in clock offsets. Windows Time 

Service operating at a fixed polling interval of 1024 seconds yields a maximum clock 

offset of about 60 milliseconds. Nevertheless, another measurement conducted on NTP 

Daemon (NTPD) for Windows has yielded much better results with maximum offset of 

about 15 milliseconds as shown in Figure 7.4. Ultimately, short polling intervals update 

the parameters frequently and are more susceptible to jitter whereas long polling intervals 

may require larger corrections with some significant errors between the updates.  
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Figure 7.4 Local clock synchronized by NTPD – offset given by W32Time 

 

The results shown in Figure 7.4 are rather biased as it is very much dependent on the 

resolution of W32Time tool. Since most of the Windows NT based platforms has an 

inherent timer resolution of 10 to 15 milliseconds and the W32Time tool is completely 

Windows based, it is very much limited to the Windows timer resolution. As a result, 

offset values lower than 15 milliseconds will not be able to be taken accounted for in the 

measurement and hence the measured offsets are very much bounded to 15 milliseconds.  

 

In order to get a more precise measurement of the NTP version 4 time offset and be 

able to compare the performance between different operating system, it is necessary to 

turn to a more precise measurement tool other than what is provided in the Windows 

operating system. One of the most common methods to debug NTP is through the 

interpretation of the statistic log files generated. Specifically used for precision timing 

requirements, the loopstats (loopfilter statistics) file provide information on date, time, 

offset, drift compensation, estimated error, polling interval and timing stability. 

Parameters such as offset and drift are the measurement values as predicted by the NTP 

loop filter. The information can be extracted from the log file for post-processing and 

performance analysis. Also, since there is a readily available timing measurement system 

detailed in Chapter 5, it is worthwhile to exploit its high determinism and high resolution 

clock to be applied in timing measurement with NTP synchronization.    
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7.3.1 Characterization of NTP Time Synchronization on Different 
Operating Systems 

 
To compare the performance of NTP in Windows and Linux, it is necessary to use a 

common measurement system with similar levels of precision in both operating systems. 

The loopstat file is available on all recently released versions of NTP and can be 

activated through the NTP configuration file. Since minimizing the offset between the 

local and reference clock offset is the main objective of NTP time synchronization, the 

scope of analysis will be limited to the offset of the local clock with respect to the 

reference clock. In addition, the reference servers that are being used were selected at 

random with the exception of the Virginia Tech servers, which are known to have the 

shortest network distance to the host PC and considered to be stratum 2 servers. The 

polling interval is set at a maximum of 1024 seconds to allow for a fair trade-off in fast 

synchronization and low network overhead.  

 
Figure 7.5 shows the time offset of the local PC clock in a period of a week with 

respect to the reference servers (see Appendix B for the NTP servers), which include 4 

NTP servers located at Virginia Tech. The plot illustrate that the clock offset is the largest 

at the beginning when NTP service was first started and over the course of about 3 days 

the offset is minimized due to synchronization.  

 
Figure 7.5 NTP local clock offset from server clock for Windows XP Pro. – first week of 

synchronization 
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The largest offset is around 46 milliseconds, which may be attributed to system reboot 

while the average offset over the week is around merely 1.6 milliseconds. Such accuracy 

is relatively high considering the low resolution of the Windows timer. Nevertheless, the 

newest version of NTP (NTPD) attempts to use the TSC counter to interpolate between 

the timer interrupts to obtain higher resolution timing and thereby increasing the accuracy 

of the offset. Therefore the results obtained here is far more accurate than the 15 

milliseconds offset obtained from W32Time measurements.    

 
Given the fact that the Virginia Tech NTP servers are close in network distance to 

the host PC, one may wonder the synchronization performance when such servers are 

removed. Therefore another set of data was collected with reference servers that are 

relatively far away in network distance (see Appendix B for the list of NTP servers). 

Figure 7.6 shows the time offset plot of the local PC with respect to the server clock, 

which does not include the Virginia Tech servers.  

 

 
Figure 7.6 NTP local clock offset from server clock for Windows XP Pro. – second week of 

synchronization 

 

Since the time offset was already in steady state from the previous week of 

synchronization, the beginning part of Figure 7.6 shows small time offset of less than 2 

milliseconds but then the offset increased on the third day with two peaks of more than 

3.5 milliseconds offset. This phenomenon may be attributed to synchronizing servers that 

are further away in network distance hence introducing longer latencies in the network. 



 155 

Hence, the network distances of the NTP servers in the WAN may affect the accuracy of 

the time synchronization but the effect does not seem to be significant.  

 

It is also worthwhile to note that the number of times for the host PC to poll the 

server is significantly different for the two sets of data. Such observed behavior is due to 

the nature of the NTP algorithm, which allows for more frequent polling when the time 

offset is large and less polling when the time offset is relatively small. Since the second 

set of time offset data without VT NTP servers was collected right after the 

synchronization with the servers including the VT NTP servers, the offset of local clock 

is already small so there were less frequent polling of the servers. Considering that the 

second set of data was collected in 6 days and the first set was collected in 7 days, the 

average number of times that the servers are being polled each day was approximately 

102 for the 7 days and 154 for the 6 days.  

 
To examine the performance of Linux based operating system with NTP time 

synchronization, Ubuntu was used to synchronize with the same set of NTP servers 

(Appendix B including Virginia Tech servers) as Windows XP for comparison. In 

addition, the configuration for polling is the same as it was used in Windows XP with 

1024 seconds maximum polling period. Figure 7.7 shows the time offset of the Ubuntu 

local clock offset with respect to the server for a period of 7 days. Similar to Figure 7.4, 

the largest clock offsets occurs at the beginning of synchronization, indicating the local 

clock is relatively far off from UTC time upon boot up. However, the beginning of the 

synchronization also exhibits a semi-transient response for a period of over one day and 

enters the steady state in the middle of the second day. In addition, the maximum offset is 

about -60 milliseconds and occurs at the very beginning of synchronization. Although the 

initial clock offset is relatively large compare with that of the Windows XP, Ubuntu still 

manages to obtain synchronization with the remote server on the second day as opposed 

to taking up to three days for the Windows XP. What’s more important in this set of 

results is the verification that Ubuntu was able to obtain below 1 millisecond offset with 

respect to the server clock. Statistics for the one week’s worth of data is tabulated in 

Table 7-1 along with the Windows XP results for comparison. It is interesting to note that 
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Ubuntu polled the servers only about half as much as that of Windows XP and obtained 

an average clock offset value of about a half of its Windows XP counterpart.  

 

 
Figure 7.7 NTP local clock offset from server clock for Ubuntu – first week of synchronization  

 
Table 7-1 NTP local clock offset statistics for the first week – Windows XP Pro. versus Ubuntu 

 

 Time offset from remote server 
for Ubuntu 

Time offset from remote server 
for Windows XP 

Number of data points 
(number of polls) 

546 1084 

Mean -0.8042 ms 1.689 ms 
Median 0.0895 ms 0.2634 ms 

Standard Deviation 9.82 ms 6.259 ms 
Range 86.27 ms 72.66 ms 

Minimum -60.16 ms -25.88 ms 

Maximum 26.11 ms 46.77 ms 
 

Since the time offset data illustrated in Figure 7.7 shows a relatively accurate clock 

with offsets below 1 millisecond at the end of the second day and throughout the rest of 

the week, it was decided to collect more data for another week to observe if NTP can 

maintain the synchronization. Figure 7.8 shows the time offset data of the second week in 

succession of what is shown in Figure 7.7. Also, statistics of second week’s data are 

tabulated in Table 7-2. Again, lower number of polls is shown for the second week due to 

the smaller offset of local clock. Maximum deviation occurs at the first day of the week 

with about 0.63 millisecond offset, and then stays within the bound of about 0.5 

milliseconds offset throughout the rest of the week.       
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Figure 7.8 NTP local clock offset with respect to server clock for Ubuntu – second week of 

synchronization 

 
Table 7-2 NTP local clock offset statistics for the first week – Ubuntu 

 
 Offset from remote server for Ubuntu 

Number of data points  
(number of polls) 

425 

Mean 32.26 us 
Median 26 us 

Standard Deviation 0.1854 ms 
Range 1.09 ms 

Minimum -0.458 ms 

Maximum 0.632 ms 
 

Clearly, the measurement conducted using NTP version 4 is more accurate than the 

standard SNTP implementation in the Windows XP operating system. Furthermore, it 

was shown that the Linux based operating system Ubuntu exhibits better accuracy in 

NTP synchronization and synchronizes to the remote clock at a faster speed added with 

less server polling than its Windows XP counterpart. This is mainly due to the differences 

in timekeeping implementation of the two operating systems. The newer Linux 

distributions (version 2.4 and beyond) has a significant change in the timekeeping 

implementation. Specifically the frequency of the timer interrupt is increased from 100Hz 

to 1000Hz whereas the Windows XP timer interrupt is kept at 100Hz. In addition, a new 

abstraction layer called ‘clocksource’ was introduced. In this subsystem the operating 

system selects the hardware counter it considers the most reliable at boot time and 
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provides an interface to access it. Throughout the measurements conducted in this study, 

the TSC was selected by the operating system and deems to be the most reliable source.    

 

Although not sufficient to address all needs, especially for high accuracy 

synchronized phasor angle measurements where a specialist solution such as the use of 

GPS receivers is required, NTP synchronization is a low-cost alternative that can be used 

for applications where the timing requirement is not as stringent. With less than 1 

millisecond offset from the UTC time, it’s possible to use NTP for frequency 

measurement where timing requirements are not as high as the angle measurement. As an 

example, the detection of sudden frequency excursions does not need accuracies in the 

microseconds range and NTP is more than adequate for such applications. Nevertheless, 

the main goal of NTP is to maintain bounded offset between the local system clock with 

the server clock, it does not put any emphasis in the correction of system clock skew or 

clock drift. The next section takes a closer look at the inherent TSC clock skew by 

measuring the TSC clock skew with respect to the GPS 1PPS. 

 

7.3.2 Measurement of TSC clock skew  

 
It was observed in the previous section that the NTP synchronization can keep the 

local clock offset to within 1 millisecond with respect to the reference clock. In this 

section, measurement is performed on the skew of the local processor clock with respect 

to the GPS 1PPS. Since a high precision measurement system was developed and 

characterized in Chapter 5, the same measurement system can be used to measure the 

TSC clock skew, where TSC clock represents the relative time obtained by scaling the 

TSC counts. The reason that the TSC clock skew is being measured here instead of the 

system time is due to the fact that real-time operating systems such as RTAI can not 

access the system time without breaking the real-time performance. However, one 

method of getting around this incapability is to have a soft time based scheduler running 

in Linux that would periodically synchronize the TSC counts to the Linux system time. 

By retrieving the Linux system time and the TSC counts in the soft task, one can easily 

scale the system time to TSC counts and then subtract the TSC counts that was retrieved 

to obtain the system boot time. The drawback to such implementation is that the soft task 
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is at the mercy of being preempted by the RTAI task, thereby losing synchronization at 

times with the system time. Also, with periodic synchronization to the Linux system time, 

it is expected that the rate of the clock will be fluctuating at relatively large magnitudes.  

 

Given that the TSC counter has inaccurate but fairly stable frequencies and that it is 

used to interpolate between the timer interrupts in the NTP algorithm, it would be 

interesting to examine how the TSC clock compares with the 1PPS. The concept of the 

TSC clock is to simply scale the TSC counts to nanoseconds and the scaling process 

takes on the following form: 

             Equation 7-8 

Where fCPU is the estimated processor frequency determined during system boot. 

Specifically, an attempt is made during every system boot to calibrate the processor 

frequency by comparing it with the PIT. The calibration result is in the format of TSC 

counts per microsecond. This 50 milliseconds calibration is coarse mainly due to I/O 

delays in accessing the PIT. As a result, the accuracy of timekeeping with TSC selected 

as the ‘clocksource’ is highly dependent on the accuracy of TSC frequency calibration. 

When the TSC is used for interpolation in between system timer interrupts, NTP either 

skews or set the system time to synchronize with the server time. However, since the 

initial calibration is susceptible to error, some initialization time needs to be resorted for 

NTP to estimate the skew value. Such phenomenon was observed in the previous section 

where there is a startup transient in the time offset when NTP was first started. 

 

To measure the TSC clock skew, the same setup that was used in Chapter 5 is used 

here. The GPS 1PPS triggers the serial port interrupt and the system enters the ISR where 

the TSC count is being read and converted to nanoseconds based on Equation 7-9. Post-

processing calculates the interval of 1PPS using Equation 7-10 and the clock skew is 

calculated based on Equation 7-11. It should be noted that these equations are similar to 

Equation 5-3 and Equation 5-12 from Chapter 5 since the clock skew is the time domain 

representation of the frequency offset. However, in this context the processor frequency 

used for scaling is a result of the calibration with the PIT upon system boot, thereby 

reflecting the inherent timekeeping accuracy of the TSC. The TSC clock skew is plotted 
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in Figure 7.9 along with the corresponding histogram representing one week’s worth of 

data. Note that the phrase ‘offset from 1PPS’ is used here due to the fact that the skew is 

a relative offset and can be approximated by the difference between the clock’s rate and 

the reference rate of 1, or in this case the 1PPS.   

           Equation 7-9

     

            Equation 7-10 

 
From observing Figure 7.9, it’s clear that the TSC clock exhibit a ‘jump’ in the 

beginning of synchronization going from one rate to another. This change in clock skew 

was intentionally introduced when the system was rebooted. When data collection was 

initiated, the average offset from the ideal rate of 1PPS is about 35 microseconds behind, 

or 35PPM of error per second. Then after the reboot, the average offset changed to about 

10 microseconds, or 10PPM of error per second. Furthermore, with the exception of the 

random jitter noise the clock rate stayed relatively constant for the rest of the week 

averaging about 10 microseconds offset from the 1PPS. The change in the rate of the 

clock is caused by the initial calibration of the TSC upon system boot. Since the 

calibration results in a different value upon each system boot and it is propagated to the 

processor frequency parameter given by the operating system, the TSC clock skew varies 

depending on the accuracy of the initial calibration. As a result, a relatively large TSC 

clock skew would slow down the process for NTP to synchronize with the remote server 

clock and conversely a relatively small TSC clock skew would most likely speed up the 

process. 
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Figure 7.9 TSC clock skew (with reboot) 

 

To further the investigation, two more measurement trials were conducted over the 

course of a week each to examine the variability of the PIT calibration results. The 

measurement result is plotted in Figure 7.10 and Figure 7.11 along with its respective 

histograms. Interestingly, the average rate of the clock in Figure 7.10 is about 40 

microseconds behind with respect to the 1PPS, which is similar to the measurement result 

observed in Figure 7.9 before the reboot. In the second trial measurement, the clock is 

about 10 microseconds behind with respect to the 1PPS as it is shown in Figure 7.11. 

Hence, the calibration error is in the range of 10PPM to 40PPM. 



 162 

 
 

Figure 7.10 TSC clock skew measurement case 1 

 

 

Figure 7.11 TSC clock skew measurement case 2 
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7.4 Summary 

 
In this chapter, the network time synchronization is introduced as an alternative to the 

GPS for FDR time synchronization. Since NTP provides coverage in the wide area 

network (WAN) with time synchronization referenced by the UTC, it is the most 

appropriate for FDR time synchronization. Although it is well known that NTP is 

incapable of matching the accuracy obtainable by the GPS, there is very limited literature 

on the achievable synchronization accuracy on the WAN, let alone any data to illustrate 

the accuracy.  

 

Preliminary evaluation of NTP accuracy was conducted using the Windows XP 

operating system due to its wide acceptance. With minimal configuration the results 

indicate that the operating system timer API is limited to about 16 ms of resolution. 

Hence it was decided to use the time offset data provided by the NTP loopfilter, which is 

a more accurate depiction of the local clock time offset with respect to the server clock. 

In addition, the time offset data can be used to compare the accuracies achieved by 

different operating systems. It is shown that the Linux based operating system can 

achieve less than 1 millisecond time offset with respect to the server clock when given 

the appropriate configurations and hardware. Furthermore, it is also shown that when the 

TSC is selected as the clocksource, the local clock offset undergoes transient upon 

reboot. When given enough time for NTP to correctly estimate the TSC frequency, the 

local clock time offset reaches well below 1 millisecond. 

 

In relationship to FNET applications, NTP time synchronization does not provide the 

accuracy that is needed for phasor angle measurement but it can be used for frequency 

measurements where the timing requirement is not as strict. The timing accuracy of NTP 

is limited by the network traffic as well as the underlying hardware. Chapter 6 has shown 

the limitations of a real-time operating system characterized by microsecond latencies 

and jitter noise. Hence it is trivial to imply that a general purpose operating system such 

as Linux has larger variations in its timing and lower determinism. If the next generation 

FDR were to be based on a standalone PC, the system time of the PC can be 

synchronized with one or several remote servers. Given the results from this study, it 
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would be the most appropriate to use a Linux based operating system installed on a 

uniprocessor desktop PC. In addition, if the TSC is selected as the clocksource, the power 

management and frequency stepping features should be disabled to optimize the 

synchronization accuracy. Once NTP has started, there needs to be enough time allocated 

for the local clock time to synchronize with the server clock. Once the local clock time 

offset has reached below a certain threshold, software polling can be used to detect the 

start of the second and begin the sampling process. Although the frequency estimation is 

not as accurate compared with a GPS synchronized FDR, larger geographical coverage is 

possible with a standalone PC based FDR. Furthermore, the measured frequency data can 

be used for generator trip detection, generation loss estimation and event localization. 
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Chapter 8 Conclusions and Future Work 

8.1 Conclusions and Contribution 

 
This dissertation presents several novel architectures for the next generation FDR 

design. Although there are tradeoffs that need to be considered for each one, the overall 

goal of higher computation capabilities and lower cost can be achieved through the 

integration of a PC in the overall design. By leveraging the high performance floating 

point processing capabilities of the x86 architecture and its large installation base, a PC 

based FDR would be able to achieve a significantly higher sampling rate and be deployed 

at a faster pace. All of this is made possible by a standalone PC, a FPGA, a GPS receiver 

and a microcontroller. At the same time, it is also important to recognize the availability 

of network time synchronization for general purpose operating systems, which eliminates 

the dependency of GPS hardware for time synchronization. Nevertheless, given the fact 

that network time synchronization has lower accuracy compared with the GPS and the 

phasor angle estimation requires accuracy in the lower microseconds range, only 

frequency measurement and limited applications can be considered for the standalone PC 

based design. 

 

Since frequency and phasor angle measurement accuracy is directly related to the 

timing of the sampling pulses, this dissertation addresses the subject matter of timing 

from several different perspectives. Firstly, the fact that conventional GPS is limited to 

operate with line of sight to the satellites is prohibiting its uses in certain locations. This 

work has introduced the implementation of the high sensitivity or indoor GPS for 

synchronized frequency and phasor angle measurements at locations that are not possible 

with the conventional GPS. Due to effects such as reflection and diffraction, the signal 

strength of the acquired satellites is weaker and the accuracy of timing and position 

solution degrades. Nevertheless, results are presented in this dissertation with regard to 

the accuracy and availability achievable by the indoor GPS and most importantly, its 

applicability for FDR. It is shown that the indoor GPS can be used in FDR time 

synchronization and it is capable of providing similar level of timing accuracy with 
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respect to the conventional GPS under signal degradation. Given its higher availability 

and comparable performances with respect to the conventional GPS, the indoor GPS adds 

a new dimension to the next generation FDR and expands the opportunity for more FNET 

coverage without degrading the measurement accuracy. 

 

Another aspect of the timing accuracy has to do with the inherent accuracy and 

stability of the common crystal oscillator. Study was conducted in the characterization of 

the crystal oscillator to provide some insights for why the conventional oscillator can not 

be a precision timing source. In addition, a timing measurement system is proposed based 

on the TSC counter of the Intel x86 processor and a real-time extension to Linux. The 

measurement system provides high resolution timing through the multi-gigahertz clock of 

the Pentium processor and hard real-time determinism provided by RTAI. Measurement 

results are presented in this dissertation which shows that the PC oscillator has relatively 

high stability when averaged over time but inaccurate frequencies. Nevertheless, with the 

aid of a high precision timing source such as the GPS, the frequency inaccuracies in the 

crystal oscillator can be measured and removed. Statistical analysis is conducted in this 

work to provide some insights into the most optimized method of synchronizing the local 

oscillator with GPS. The results presented here is significant in the sense that a more 

accurate estimate of the oscillator frequency can be obtained by averaging the 

measurement over time whereas the conventional method of synchronization is based on 

the rising edge of 1PPS alone without any compensation in oscillator frequency errors. In 

relationship to the next generation FDR design, the averaging of the measurement can be 

easily performed on the PC based architecture given its fast computation capabilities and 

large memory size. 

 

To investigate the accuracy of frequency and phasor angle measurement using 

different precision timing mechanism, a novel methodology is proposed to model the 

FDR based on the sampling time of the ADC. The approach was motivated by the fact 

that the timing resolution of PC processor clock is significantly higher than the DSP and 

any latency associated with the system is minimized by using a real-time operating 

system RTAI. Starting with the establishment of a high accuracy clock division algorithm 
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that is self-regulating and is independent of the clock speed, direct comparisons can be 

made for different systems with regard to the timing of trigger for conversion. Given the 

length of the 1PPS as measured by the TSC counter, the clock division algorithm can be 

used to calculate the exact time that the conversion should occur. The errors associated 

with the DSP clock is simply the difference between when the conversion should occur 

and when it actually occurred, as measured by the PC. Then with the histograms 

generated based on this error, one can use random sampling to simulate the sampling 

process. However, due to some optimization features of the Pentium processor, the 

inherent jitter noise associated with the measurement system is significant with respect to 

the resolution of the DSP clock. Ultimately, the FDR can be modeled more accurately 

given a more deterministic system with delays and jitter noise much smaller than the 

resolution of the DSP clock. 

 

The concept of network time synchronization is proposed for the standalone PC based 

FDR. Since NTP provides wide-area coverage and is synchronized to UTC time, it is 

introduced in this dissertation as an alternative to GPS timing synchronization. Although 

at this stage of development, the accuracy of NTP time synchronization is limited by the 

Internet traffic load and the inherent stability of the hardware clock. Hence its accuracy 

cannot match that of the GPS. Nevertheless, results presented in this dissertation indicate 

that given the proper operating system, configuration and hardware, NTP can maintain 

below 1 millisecond offset with respect to UTC time. Such accuracy is not suitable for 

phasor angle measurement but it is acceptable for the monitoring of frequency dynamics 

where the timing requirement is not as strict. In addition, it was shown in the 

measurement results that immediately after a machine reboot, NTP is susceptible to 

transients in the time offset with respect to the server clock. This behavior is closely 

linked to the inaccuracies of the TSC calibration procedure which tends to produce varied 

results for TSC frequency upon every system boot. Ultimately, network time 

synchronization can still be a viable choice for the next generation FDR. The standalone 

PC based architecture can bring about the largest geographical coverage at the lowest 

cost. 
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Regardless of the architecture that will be used in the next generation design, whether 

it is embedded system, PC based or even a combination of both, the timing analysis 

results presented in this dissertation can be applied to improve upon the current FDR 

design and bring about higher accuracy and availability for synchronized sampling. 

Furthermore, the hardware architecture is also a determinant factor for FDR measurement 

accuracy. The standalone PC based FDR is not only limited by the accuracy of time 

synchronization but it is also susceptible to variability in the sampling time caused by the 

underlying hardware and the operating system. However, much improved real-time 

determinism can be achieved by integrating an FPGA to the PC based FDR timing 

subsystem. As a result, the PC based FDR architecture combined with FPGA does not 

only provide for higher computation capabilities but also deterministic timing. 

Nevertheless, the biggest limitation of the PC based FDR architecture is related to the 

security issues. Since an operating system is required for all of the general purpose PC, it 

is more vulnerable to intruder attacks from the wide area network. This issue did not exist 

in the first and second generation FDR since the embedded system does not need an 

operating system. Although there are some ways to lower the risk of network intrusions, 

these include the preferential use of Unix based operating system over the Windows 

based operating system or installing sophisticated firewalls and anti-virus software. More 

future work is needed to further the investigation on this topic and bring about more 

secure FDR architecture. 

 

8.2 Future Works 

 

• Expand design architectures for FDR to use more off the shelf components and 

increase the modularity of the design.  

• Increase accuracy of NTP by using better quality hardware clock (TCXO, OCXO) 

and using dedicated FNET NTP servers. 

• Develop fault detection algorithm in FDR to mitigate the effect of erroneous 

timing solution caused by signal attenuation in indoor GPS. 

• Measure the FDR trigger for conversion timing using a more deterministic timing 

solution such as the time interval counter to develop a more accurate FDR model. 
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The model can be used to evaluate the accuracy of frequency and phasor angle 

measurement using network time protocol or any other time synchronization 

sources. 
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Appendix A  

GPS Signals and Positioning Analysis 

I Review of GPS Signal Power Levels 
 

Power in Decibels 
 
Power can be expressed in decibels by dividing the power by a reference power level. 
Typical reference levels are either one watt or one milliwatt. A power level in decibel-
milliwatts can be computed as: 
 

     
 
Also, it can be expressed in decibel-watts: 
 

 
 
Signal-to-Noise Ratio (SNR) 

 
Signal to noise ratio (SNR) is defined as the ratio between signal power and noise power, 
expressed in decibels. For a signal power (S) and a noise power (N) defined in common 
units of power, the SNR is: 

 
Similarly: 

 
 
Power Spectral Density and Thermal Noise 

 

Thermal noise has a constant power spectral density and the power of thermal noise 
generated is dependent on the temperature and the noise bandwidth. Hence, the noise 
power spectral density is the product of Boltzmann’s constant, k and the absolute 
temperature, T. Ambient thermal noise is typically calculated to be 280 Kelvin. This is 
generally used as the effective noise temperature of the earth: 

 
Since a watt is one joule per second, the power spectral density can alos be expressed as 
watts per hertz. As a result, ambient thermal noise power spectral density is: 
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Carrier to Noise Ratio 

 

The carrier to noise ratio is defined as the carrier power divide by the noise power 
spectral density. To calculate the carrier to noise ratio for a GPS receiver operating at 
thermal noise floor, it is necessary to obtain carrier power. The C/A code GPS signal is 
specified to arrive at the surface of the Earth at a power level of -160dBW or above. 
Hence, carrier to noise ratio of this power level is calculated as: 

 
 

II Relationship between Carrier to Noise Ratio and Power 

Levels 
 

 
Figure A.1 Relationship between carrier to noise ratio and signal strength 

III Indoor GPS positioning 
 
The unit of measurement for latitude and longitude is in milliseconds, where 1 degree in 
latitude or longitude is equivalent to 3600000 milliseconds. The longitude (λ) defines 
west-east position with respect to the prime (Greenwich) meridian, while the latitude (φ) 
indicates north-south position with respect to the equator. For GPS technology, the WGS 
84 (World Geodetic System 1984) and the Earth-Centered Earth-Fixed (ECEF) frame of 
reference. The ECEF frame is an orthogonal Cartesian frame while the WGS-84 frame is 
an ellipsoidal approximation to the Earth’s surface for determining latitude, longitude and 
altitude. By convention the constants for the WGS-84 coordinate system are: 
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The semi-major axis, a = 6378.137 km 
The semi-minor axis, b = 6356.75231425 km 
Since the CW12 and the M12M GPS receivers output the position solution in the WGS-
84 datum while the GPS determines the user position in ECEF, a practical means is 
required to transform between the two coordinate systems. Given the user’s position in 
the WGS-84 systems, the conversion to ECEF is given below: 

 
 

 

 
 
Comparison of position fix between conventional GPS and indoor GPS  

 

To compare the position fix obtained by the conventional GPS (M12M) and the indoor 
GPS (CW12), both the M12M and the CW12 were placed next to each other at the same 
location next to the window. Position solution in latitude and longitude with respect to 
time are shown in Figure A.2 and Figure A.3 respectively. Figure A.4 shows the overall 
position solution with the average position solution. Besides some relatively small 
deviations in the longitude solution given by the M12M and the noise that is associated 
with the latitude solution given by the CW12, the difference between the averaged 
positions provided by the two receivers in x, y and z directions are all below 50 meters. 
The result indicates that the positioning error is within the bound of the most commonly 
quoted GPS positioning tolerance of 50 meters. 
 
CW12 
XECEF = 845898.3 m 
YECEF = -5014126.4 m 
ZECEF = 3838244.2 m 
M12M 
XECEF = 845888.5 m 
YECEF = -5014150.6 m 
ZECEF = 3838241.3 m  
Difference in position 
∆xECEF = -9.8627 m 
∆yECEF = -24.2310 m 
∆zECEF = -2.8388 m 
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Figure A.2 Comparison of CW12 with M12M in latitude solution 

 

 
Figure A.3 Comparison of CW12 with M12M in longitude solution 

 



 180 

 
Figure A.4 Comparison of CW12 with M12M in altitude solution 

 
 

 
Figure A.5 Overall position solution of CW12 and M12M 
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Table A-1 Statistics of M12M and CW12 position solution (ms) 

 
 CW12 

latitude 
M12M 
latitude 

CW12 
height 

M12M 
height 

CW12 
longitude 

M12M 
longitude 

Mean 134033209  134032699 609.3 625.3 -289527096 -289527654 

Minimum 134030000 134030307 452.9 600.4 -289529655 -289535127 

Maximum 134038479 134034851 767.4 695.2 -289524011 -289523730 
Range 12154 4544 314.5 94.81 5644 11397 

Std. 
deviation 

684 754 22.65 15.99 375 1398 

 

Comparison of the position fix given by CW12 operating under nominal conditions 

and signal degradation 

 

To examine the effect of the signal attenuation on the position fix of the indoor GPS, the 
CW12 antenna was placed both inside a drawer and next to a window. Position solution 
in latitude, longitude and altitude with respect to time are shown in Figure A.6, Figure 
A.7 and Figure A.8 respectively. Moreover, the actual position given by Google Map is 
plotted as a green line for comparison.  Figure A.9 shows the overall position solution 
with the average position solution. In the case where the antenna is placed next to the 
window, the position solution is relatively stable. However, when the antenna is placed in 
the drawer, the position solution has large variations at first and it took more than 10,000 
seconds for the position solution to stabilize. The difference between the averaged 
positions provided by the two receivers in the x and y directions are in the hundreds of 
meters whereas in the z direction there is more than 1000 meters in difference. 
 
CW12 antenna at window 
XECEF = 845906.5 m 
YECEF = -5014129.8 m 
ZECEF = 3838260.4 m  
CW12 antenna in drawer 
XECEF = 845417.3 m 
YECEF = -5014473.8 m 
ZECEF = 3836970.9 m 
Difference in position 
∆xECEF = 489 m 
∆yECEF = 343.9 m 
∆zECEF = 1289.5 m 
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Figure A.6 CW12 latitude solution with signal degradation 

 

 
Figure A.7 CW12 longitude solution with signal degradation 
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Figure A.8 CW12 altitude solution with signal degradation 

 
Figure A.9 Overall position solution of CW12 with signal degradation 
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Table A-2 Statistics of CW12 position solution when operating under signal degradation (ms) 

 

 CW12 
latitude 
(drawer) 

CW12  
latitude 
(window) 

CW12  
longitude 
(drawer) 

CW12 
longitude 
(window) 

CW12 
height 
(drawer) 

CW12 
height 
(window) 

Mean 133995170 134033534 -289548678 -289526793 622.9 48.05 

Minimum 133833830 134033430 -289598666 -289526900 616.9 -155.3 

Maximum 134197142 134033688 -289481410 -289526575 640.9 1112 
Range 363312 258 117256 59.3 23.99 1268 

Std. 
deviation 

25706.1 35.1 12942.1 325 4.738 144.1 
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Appendix B  

NTP Servers for Time Synchronization 

I NTP Servers 
 

NTP servers including Virginia Tech servers 

server ntp-1.vt.edu  
server ntp-2.vt.edu  
server ntp-3.vt.edu  
server ntp-3.vt.edu  
server time-a.nist.gov  
server time-b.nist.gov  
server time.nist.gov  
 
NTP servers excluding Virginia Tech servers 

server nist1-dc.witime.net  
server tick.uh.edu  
server time-a.nist.gov  
server time-b.nist.gov  
server ntp.myfloridacity.us  
server tick.usno.navy.mil  
server ntp0.broad.mit.edu  
server nist.expertsmi.com  
server time.keneli.org  
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Appendix C  

Measurement System Wiring Diagram and RTAI 

I Parallel Port Connection with FDR Trigger for Conversion 

Signal 
 

 
Figure C.1 PC interface with FDR trigger for conversion signal 

 

II Brief Summary of RTAI 
 

The design of RTAI is highly modularized and is composed of several components. 

In the first versions it consisted of an abstraction layer called Real-Time Hardware 

Abstraction Layer (RTHAL) and a small real-time kernel that runs Linux as its idle task. 

RTHAL is a structure installed in the Linux kernel which is used to intercept the 

hardware interrupts and process them. The purpose of RTHAL is to minimize the 

modifications needed to the kernel code. With RTHAL interrupt handlers are easily 

changed or modified without interfering Linux. Furthermore, the real-time kernel is not 

restricted to the supplied RTAI kernel and any real-time kernel can be used to interact 

with the HAL interface. Figure 5.2 shows a block diagram of RTAI. In terms of the 

implementation of RTAI, only a kernel patch is required to install the RTHAL. The layer 

acts as an interface between Linux and the hardware. In the newer versions of RTAI 

(beyond version 3.0), RTHAL is being replaced with another HAL known as Adaptive 

Domain Environment for Operating System (ADEOS). The reasons for replacing 

RTHAL with ADEOS are two folds. Most importantly ADEOS is not covered by the 

RTLinux patent. Also, ADEOS is much more generic and can do more tasks than just 
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providing hardware abstraction. ADEOS is a resource virtualization layer available as a 

Linux kernel patch. It allows for several domains to coexist on the same hardware. A 

domain could be an operating system like Linux but it could also be real-time tasks. The 

domains do not see each other but every domain sees ADEOS. Furthermore, each domain 

is attached to a central data structure called the event pipeline or I-Pipe, which offers the 

capability to notify the domains for external interrupts, system calls issued by Linux or 

other system events. Each domain has been assigned a static priority, which is used for 

controlling the order of events. Once an event such as an external interrupt occurs, it is 

first handled by the domain that has the highest priority. After processing the interrupt it 

is being sent down along all the other attached domains. Each domain relies on the Linux 

kernel to load the kernel modules in order to put it into operation.   

 

 
 

Figure C.2 RTAI Functional Block Diagram 

 
The RTAI extension LXRT (Linux Realtime) is an API for RTAI which makes it 

possible to develop real-time applications entirely in user space without having to create 

kernel modules. The LXRT is useful because the use of kernel modules introduce risks in 

modifying memory locations unintentionally, which causes data corruption and 

malfunction of Linux kernel. In other words, kernel space memory is not protected from 

unintended access. The LXRT provides the developer with a safer environment for 

testing and debugging of application code. Once the application code is considered to be 

bug free the task can be converted into kernel space module as a hard real-time task. 
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Finally LXRT allows applications to dynamically switch between soft real-time and hard 

real-time by using a single function call in the user space. This is useful in a multi-tasking 

environment where the tasks can be prioritized according to their timing requirements.  

 

The scheduling of RTAI tasks are prioritized with the Linux kernel running as a low 

priority task. When real time tasks are executed, the scheduler gives them priority over 

the Linux kernel. The scheduler itself is implemented as another kernel module which 

enables the implementation of alternative schedulers if required. There are three different 

types of schedulers depending on the machine type. Uniprocessor (UP) scheduler is 

intended to be used on uniprocessor platforms and can not be used with multiprocessor 

machines. Symmetric Multiprocessor (SMP) scheduler is designed for SMP 

(multiprocessor) machines. SMP provides an interface for the applications to select the 

processor on which a given task is run. Multi-uniprocessor (MUP) scheduler can be used 

with both multi and uniprocessor machines. However, unlike the SMP scheduler, the 

tasks must be bound to specific processor when MUP scheduler is used.   

 

In order to make the application development flexible, RTAI developers have 

introduced several different mechanisms for inter-process communication (IPC) between 

real-time tasks and user space processes. Different IPC mechanisms are included as 

kernel modules which can be loaded in addition to the standard RTAI modules if several 

processes need to communicate with each other. The IPC and some of the other features 

of RTAI are outlined below. 

 
FIFO (First In First Out) 

The most basic communication method of RTAI are FIFOs. FIFO is an asynchronous 

and unblocking one-way communication between a Linux process and a real-time task 

having a size limit indicated by the user. The developer has the responsibility of 

managing the FIFO when it becomes full, in which case new data can not be written until 

the old data is consumed.     

 

Semaphores 
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Semaphores are used for communication and synchronization among real time tasks. 

Semaphores are counters allocated and released by the tasks and processes. RTAI 

provides an API for using semaphores and each semaphore is technically associated to a 

FIFO. As a result each semaphore uses one entry from the global FIFO.  

 

Shared Memory 

Depending on the application, shared memory provides an alternative to FIFOs. 

Shared memory is a common block of memory which can be read or written by any 

processes and tasks in the system. Since different processes can operate on the shared 

memory asynchronously, it is important to ensure that data on the shared memory is not 

unintentionally overwritten. In this case semaphores can be used to guarantee the mutual 

exclusion of a memory block. 

  

Mailbox 

One of the most used IPC method is the mailbox. Any number of processes can send 

and receive messages to and from a mailbox. Similar to the FIFO, mailbox stores 

messages up to its size limit. There can be multiple mailboxes active simultaneously. The 

mailbox sending and receiving operations can be associated with a timer, which allows a 

time-out alarm to be sent to the user whenever a sending or receiving operation do not 

complete within the given time.  

 
Memory management and Posix threads 

 
RTAI features memory management and Posix threads in the real-time environment. 

These two features are only used in a few applications. The present version of RTAI 

include a memory management module which allows dynamic allocation of memory in 

the real-time tasks. This allows the developer to allocate memory sizes other than the 

default, which is preallocated by RTAI before real-time execution. The Posix thread can 

be implemented through RTAI according to the POSIX (Portable Operating System 

Interface for Unix) 1003.1c standard.  

III C Code for Measurement PC 
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/* 
serial_hard.c 
 
Kernel module (RTAI hard real time) for capturing the serial port interrupt when modem 
status lines like Carrier Detect (CD), Data Set Ready(DSR) and Clear To Send(CTS) 
change their state. Since the GPS receiver provides the 1PPS signal on its CD line, this 
program can be used to measure the length of the 1PPS using the TSC counter provided 
by rdtsc() instruction. 
 
Note: Since the serial interrupt is triggered by both rising and falling edge, two interrupts 
will be generated each second. 
 
*/ 
 
#include <linux/module.h> 
#include <linux/interrupt.h> 
#include <rtai.h> 
#include <rtai_sched.h> 
 
#define SERPORT 0x3F8        //location of serial port control 
register 
 
static RTIME counter1, counter2;      //type long long 
static void serial_handler(void)       //define ISR 
{  
 //counter2 = rt_get_time;  
 //rt_printk("interrupt generated, count number is %lld \n", counter2); 
 counter2 = rtai_rdtsc();       //read TSC upon interrupt 
 rt_printk("rtai_rdtsc() returns %lld \n", counter2); //write counts to kernel log 
 tmp = inb_p( SERPORT + 5); 
 tmp = inb_p( SERPORT + 6); 
 rt_ack_irq(4);         //acknowledge interrupt 
} 
 
int xinit_module(void) 
{ 
 int ret; 
 
 outb_p(0, SERPORT + 3); // reset DLAB 
 outb_p(0, SERPORT + 1); 
 
 ret = rt_request_global_irq(4, (void *)serial_handler);  //interrupt init. routine 
 if (ret) { printk ("##### error requesting irq 4: returned %d\n", ret); }  
 rt_enable_irq(4); 
 
 outb_p(0, SERPORT + 3); 



 191 

 outb_p(0xC7, SERPORT + 2); 
 outb_p(0x0B, SERPORT + 4); 
 
 // Bit 3 Enable Modem Status Interrupt 
 //Bit 2 Enable Receiver Line Status Interrupt  
 outb_p(0x0C, SERPORT + 1);  
  
 rt_set_oneshot_mode();          //oneshot mode  
  
 (void) start_rt_timer(1); 
 //counter1 = rt_get_time(); 
 //rt_printk("one shot mode set, count number is %lld \n", counter1); 
 counter1 = rtai_rdtsc(); 
 rt_printk("rtai_rdtsc() returns %lld \n", counter1); 
 
 rt_printk("Interrupt generated. You should see the latency messages\n"); 
 return 0; 
} 
 
void xcleanup_module(void) 
{ 
 rt_printk("Unloading serial port test\n"); 
 rt_disable_irq(4); 
 outb_p(0, SERPORT + 3);  // disable DLAB 
 outb_p(0, SERPORT + 1); // disable serial ints 
 rt_free_global_irq(4); 
 
} 
 
module_init(xinit_module); 
module_exit(xcleanup_module); 
MODULE_LICENSE("GPL"); 
 
 
/* 
parallel_hard.c 
 
Two interrupt service routines (ISR) are implemented in this module. One ISR is for 
capturing the serial port interrupt. Since the GPS receiver provides the 1PPS signal on its 
CD line, the length of the 1PPS is measured using the TSC provided by rdtsc() 
instruction. Another ISR is used for capturing the parallel port interrupt. The parallel port 
interrupt is triggered by the FDR trigger for conversion signal and is measured by the 
TSC provided by rdtsc() instruction. 
 
Note: Since the serial interrupt is triggered by both rising and falling edge, two interrupts 
will be generated each second. 
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*/ 
 
#include <linux/module.h> 
#include <rtai.h> 
#include <rtai_sched.h> 
 
#define PARPORT 0x378 
#define SERPORT 0x3F8 
 
static int time; 
static int time2; 
static int timex; 
static int timex2; 
RTIME counter1, counter2; 
 
static void handler(void)            //parallel handler 
{ 
 
   
 counter1 = rtai_rdtsc(); 
 rt_printk ("%lld,", counter1); 
 rt_printk ("%d \n", time);  
 //rt_printk ("%lld \n", counter1);  
 time++; 
  
 rt_ack_irq(7); 
} 
 
static void handler2(void)           //serial handler 
{ 
 int tmp; 
 int timediff; 
 
 time = 0; 
 counter2 = rtai_rdtsc(); 
 rt_printk("*%lld \n", counter2); 
 //counter2 = rt_get_cpu_time_ns(); 
 //rt_printk("*%lld ns\n", counter2);  
 
 
 
 tmp = inb_p( SERPORT + 5); 
 tmp = inb_p( SERPORT + 6); 
 rt_ack_irq(4); 
} 
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int xinit_module(void) 
{ 
 int ret; 
 //initialize serial port stuff 
 outb_p(0, SERPORT + 3); // reset DLAB 
 outb_p(0, SERPORT + 1); 
 ret = rt_request_global_irq(4, (void *)handler2); 
 if (ret) { printk ("##### error requesting irq 4: returned %d\n", ret); }  
 rt_enable_irq(4); 
 outb_p(0, SERPORT + 3); 
 outb_p(0xC7, SERPORT + 2); 
 outb_p(0x0B, SERPORT + 4); 
 
 // Bit 3 Enable Modem Status Interrupt 
 // Bit 2 Enable Receiver Line Status Interrupt  
 outb_p(0x0C, SERPORT + 1);  
 
 counter1 = rtai_rdtsc(); 
 rt_printk("rtai_rdtsc() returns %lld \n", counter1); 
 counter1 = rt_get_cpu_time_ns(); 
 rt_printk("serial done, rt_get_cpu_time_ns() returns %lld \n", counter1); 
 
 
 //initialize parallel port stuff 
  
 ret = rt_request_global_irq(7, (void *)handler); 
 rt_enable_irq(7); 
 outb_p(0x10, PARPORT + 2);    //set port to interrupt mode; pins are input 
 
 counter1 = rtai_rdtsc(); 
  
 rt_printk("rtai_rdtsc() returns  %lld \n", counter1); 
 counter2 = rt_get_cpu_time_ns(); 
 rt_printk ("parallel done, rt_get_cpu_time_ns() returns %lld \n", counter2); 
 
 rt_printk("Ports done. You should see the latency message\n"); 
 return 0; 
} 
 
void xcleanup_module(void) 
{ 
 rt_printk("Unloading  parallel port latency test\n"); 
 rt_disable_irq(7); 
 rt_free_global_irq(7); 
 rt_printk("Unloading serial port test\n"); 
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 rt_disable_irq(4); 
 outb_p(0, SERPORT + 3);  // disable DLAB 
 outb_p(0, SERPORT + 1); // disable serial ints 
 rt_free_global_irq(4); 
} 
 
module_init(xinit_module); 
module_exit(xcleanup_module); 
MODULE_LICENSE("GPL"); 
 
 
 


