
High performance, scalable, and expressive modeling environment

to study mobile malware in large dynamic networks

Karthik Channakeshava

Dissertation submitted to the Faculty of

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Michael S. Hsiao, Chair

Madhav V. Marathe, Co-Chair

Y. Thomas Hou

Jung-Min Park

Jeffrey H. Reed

Anil Kumar Vullikanti

October 14, 2010

Blacksburg, Virginia

Keywords: mobile, Bluetooth, malware, wireless epidemiology, parallel discrete event simulation,

interventions

Copyright c© 2010, Karthik Channakeshava

High performance, scalable, and expressive modeling environment

to study mobile malware in large dynamic networks

Karthik Channakeshava

Abstract

Advances in computing and communication technologies are blurring the distinction between to-

day’s PCs and mobile phones. With expected smart phones sales to skyrocket, lack of awareness

regarding securing them, and access to personal and proprietary information, has resulted in the

recent surge of mobile malware. In addition to using traditional social-engineering techniques such

as email and file-sharing, malware unique to Bluetooth, Short Messaging Service (SMS) and Mul-

timedia Messaging Service (MMS) messages are being used. Large scale simulations of malware on

wireless networks have becomes important and studying them under realistic device deployments

is important to obtain deep insights into their dynamics and devise ways to control them.

In this dissertation, we present EpiNet: an individual-based scalable high-performance oriented

modeling environment for simulating the spread of mobile malware over large, dynamic networks.

EpiNet can be used to undertake comprehensive studies during both planning and response phase of

a malware epidemic in present and future generation wireless networks. Scalability is an important

design consideration and the current EpiNet implementation can scale to 3-5 million device networks

and case studies show that large factorial designs on million device networks can be executed within

a day on 100 node clusters. Beyond compute time, EpiNet has been designed for analysts to easily

represent a range of interventions and evaluating their efficacy.

The results indicate that Bluetooth malware with very low initial infection size will not result in

a major wireless epidemic. The dynamics are dependent on the network structure and, activity-

based mobility models or their variations can yield realistic spread dynamics. Early detection of

the malware is extremely important in controlling the spread. Non-adaptive response strategies

using static graph measures such as degree and betweenness are not effective. Device-based de-

tection mechanisms provide a much better means to control the spread and only effective when

detection occurs early on. Automatic signature generation can help in detecting newer strains of

the malware and signature distributions through a central server results in better control of the

spread. Centralized dissemination of patches are required to reach a large proportion of devices to

be effective in slowing the spread. Non-adaptive dynamic graph measures such as vulnerability are

found to be more effective.

Our studies of SMS and hybrid malware show that SMS-only malware spread slightly faster than

Bluetooth-only malware and do not spread to all devices. Hybrid malware spread orders of mag-

nitude faster than either SMS-only or Bluetooth-only malware and can cause significant damage.

Bluetooth-only malware spread faster than SMS-only malware in cases where density of devices in

the proximity of an infected device is higher. Hybrid malware can be much more damaging than

Bluetooth-only or SMS-only malware and we need mechanisms that can prevent such an outbreak.

EpiNet provide a means to propose, implement and evaluate the response mechanisms in realistic

and safe settings.

iii

To amma and anna

for the countless sacrifices they have made to get me where I am today

iv

Acknowledgements

Throughout my graduate study many people have helped me. I would like to express my appreci-

ation to all those who helped me.

First and foremost, I would like to thank three people who most influenced me as a researcher:

Dr. Michael Hsiao, Dr. Madhav Marathe, and Dr. Anil Vullikanti. I am grateful to Dr. Hsiao

for accepting me as his student and being patient with me and advising me in the initial years. I

am eternally grateful to him for continuing to serve as the chair even when I changed the area of

research. I would like to thank Dr. Marathe for graciously agreeing to work with me on the mobile

malware study as my PhD topic. I am truly grateful to him and Dr. Vullikanti for mentoring me

during these years, improving my research and writing skills. I am grateful to both of them for

patiently guiding me through the research and providing feedback to me on a regular basis. I am

grateful to all three of them for always being ready to help and guide me. I have been greatly

influenced by their passion for research, attention to detail, and openness. I have had an enriching

and enjoyable experience working with them and hope this interaction will continue for years to

come.

I am grateful to Dr. Jeffrey Reed, Dr. Jung-min Park, and Dr. Thomas Hou for serving on my

Ph.D. committee, and for their time and co-operation in reviewing this work. Their suggestions

and comments helped immensely in improving the quality of the research and this thesis.

I owe a great deal to the faculty, staff and students of Network Dynamics and Simulation Science

Lab. They have guided me in my research and made my work environment pleasurable. I am

grateful to Dr. Keith Bisset for collaborating with me and discussing with me the details of

v

EpiSimdemics and helping me through the process of building the EpiNet simulator we present

here. I would like to thank Paula Stretz for patiently answering the zillion questions I asked her

about the data. I hope my queries on the Oracle database are more efficient now! I am grateful

to Dr. Achla Marathe and Dr. Dick Beckman for guiding me on the statistics related questions

and collaborating on the spectrum markets project. I would like to thank Sharon Smyth and Joyce

Randall for the love and affection they have shown me and made me feel at home. I am grateful

to all the students and postdocs at NDSSL for being friendly to me. They include Ashwin Aji,

Suruchi Deodhar, Fei Huang, Chris Kuhlman, Yifei Ma, Kalyani Nagaraj, Elaine Nsoesie, Nidhi

Parikh, Guanhong Pei, Katherine Wendelsdorf, and Zhao Zhao. Special thanks to Andrea Apolloni

and Bryan Lewis for the endless discussions we had on a range of topics during our coffee and lunch

breaks. I am grateful to Samarth Swarup and Maleq Khan for their guidance when I had a query

connected with my research. Special thanks to Shrirang Yardi and Deepti Chafekar for being there

to offer their support, encouragement, and motivation during my doctorate. They have always

been there to discuss research ideas and shape them. Shrirang has always helped me improve my

writing.

I would like to thank my very good friends Deepti Chafekar, Shrirang Yardi, Bharath Ramesh,

Omprakash Seresta, Maheshwar Chandrasekar, Saurabh Bisht, Ashwin Aji, Sapna Kaul, and Su-

ruchi Deodhar for their friendship and making life in Blacksburg interesting and enjoyable. They

have been around to listen to my ramblings, to encourage me, and to provide me with the company.

Having been in Blacksburg for a long time, I have had the pleasure of meeting working with many

bright students and all of them have become close friends over the years. I don’t think there is

room to mention everyone here, but I am truly grateful to one and all.

I owe a great deal to my family – my mother, father, Bharath Channakeshava, Suma Bharath, and

my extended family of friends and well wishers who have been always been there to encourage and

support me. I am grateful to have the unconditional love and affection of my family and for their

constant support and encouragement during the ups and downs during my doctoral studies.

The results in this dissertation were obtained in collaboration with my advisors, Dr. Madhav

vi

Marathe, Dr. Anil Vullikanti, and Dr. Keith Bisset. My other collaborators are Dr. Achla

Marathe, Dr. Samarth Swarup, Dr. Maleq Khan, Deepti Chafekar and Shrirang Yardi, Bryan

Lewis, Christopher Kuhlman, Fei Huang, and Guanhong Pei.

vii

Contents

Table of Contents . viii

List of Figures . xii

List of Tables . xv

List of Algorithms . xvi

1 Introduction 1

1.1 The Problem . 2

1.2 Motivation . 3

1.3 Our Contributions . 4

1.4 Summary of Results . 6

1.5 Organization . 8

2 Related Work 10

2.1 Computer Epidemiology . 11

2.2 Mobile malware threats and their study . 12

2.2.1 Simulation and Emulation Infrastructures . 13

2.2.2 Studying mobile malware spread . 14

viii

2.2.3 Defenses against mobile malware . 18

2.3 Drawbacks in existing approaches . 20

3 The EpiNet Simulation Environment 24

3.1 The EpiNet Infrastructure . 26

3.2 Construction of Realistic Networks . 27

3.2.1 Construction of Realistic Proximity Networks 27

3.2.2 Construction of Realistic Communication Networks 34

3.3 Within-host malware model . 39

3.3.1 Modeling the Bluetooth Malware . 39

3.3.2 Model Calibration . 43

3.3.3 Validation of malware Model . 46

3.4 The Parallel Simulator . 48

3.4.1 EpiNet Implementation . 49

3.4.2 Interventions in EpiNet . 53

3.5 Summary . 56

4 Computational Aspects of EpiNet 58

4.1 Enhancements to EpiNet . 59

4.1.1 Scalability of EpiNet . 59

4.1.2 Interventions in EpiNet . 60

4.2 Scaling improvements for EpiNet . 62

4.2.1 Approximating the host-to-host interaction network 62

ix

4.2.2 Approximating the Within-host model . 65

4.2.3 Error Measurements for the approximations 69

4.2.4 System-level optimizations using hybrid MPI-Threads 76

4.3 Illustrative Case Studies using EpiNet . 76

4.3.1 Case Study 1: Computing dynamic measures in networks 79

4.3.2 Case Study 2: Effect of device penetration . 79

4.3.3 Case Study 3: Effect of Spatial and Demographic Heterogeneity 80

4.4 Performance Evaluation . 82

4.4.1 Scaling Behavior of EpiNet . 82

4.4.2 Scaling MPI processes on multiple cores of same node 83

4.4.3 Scaling with a hybrid MPI-Threads Implementation 85

4.4.4 Evaluation of Load Balancing Approaches . 87

4.5 Summary . 89

5 Spread of Mobile Malware 91

5.1 Comparison with RWP . 92

5.2 Data set, Assumptions, and Experimental Design . 97

5.3 Sensitivity of Bluetooth and worm parameters . 99

5.4 Sensitivity to Network parameters . 101

5.4.1 Effect of market share . 102

5.4.2 Effect of location density . 103

5.5 Characterizing interactions between parameters . 104

x

5.5.1 Analysis of Variance Study . 104

5.6 Study of SMS/MMS Malware and their propagation 108

5.6.1 Implementation of SMS/MMS malware . 109

5.7 Summary . 110

6 Controlling the spread of mobile malware 112

6.1 Graph Centrality Measures . 113

6.2 Mobile device based Responses . 115

6.2.1 Passive Self Detection . 115

6.2.2 Detection with Signature Dissemination . 117

6.3 Device Vulnerability . 119

6.3.1 Vulnerability based responses . 122

6.3.2 Comparing Degree and Vulnerability Metrics 124

6.3.3 Estimating Vulnerability . 125

6.4 Summary . 126

7 Conclusions and Future Directions 128

7.1 Summary of Contributions . 128

7.2 Our Key Findings . 129

7.3 Future Directions . 130

Bibliography 131

xi

List of Figures

3.1 The EpiNet Simulation Infrastructure . 27

3.2 Arrivals and Departures at activity locations created by the activity-based mobility

models. 28

3.3 Temporal Degree Distributions at different location types 29

3.4 Activity duration distributions at two different locations in the NRV dataset 30

3.5 Modeling Sub-locations for creating wireless networks 33

3.6 Architecture of the Session Generator implemented for constructing realistic com-

munication networks. 37

3.7 Example input statistics for the Session Generator 38

3.8 Behavioral model for the Bluetooth malware characteristics or the manifestation of

the malware . 42

3.9 Results for inquiry and infection time obtained from the detailed simulations 45

3.10 Malware Model Validation with NS-2 Simulations . 47

3.11 Implementation of the data partitioning and event creation in EpiNet 50

3.12 Response mechanisms implemented in the EpiNet framework 53

4.1 Advantages of abstracting the mobility of individuals 63

xii

4.2 State elimination using Gillespie’s Algorithm . 66

4.3 Computational improvements and error by state elimination using MSE 67

4.4 Error in instantaneous infections due to lower mobility resolution 70

4.5 Error due to state elimination using MSE . 72

4.6 Time to infect and device vulnerability due to model and mobility approximations . 73

4.7 Experimental configurations and parameters. 77

4.8 Vulnerability estimation on large dynamic networks 78

4.9 Targeted patch application results in different outcomes 80

4.10 Individualized dynamic intervention based on malware prevalence 81

4.11 Strong scaling of EpiNet for NRV and Miami networks 83

4.12 Scaling studies for MPI processes on multiple cores for the Miami1 network 84

4.13 Activity information converted to device–location network for METIS 85

4.14 Study and comparison of load balancing strategies 86

4.15 Comparing compute and communication time of EpiNet-MPI and EpiNet-TBB . . . 87

4.16 Tradeoff in processing and communication costs in EpiNet-TBB 88

4.17 Scaling of the EpiNet-TBB implementation . 88

5.1 Graph Characteristics obtained from activity-based mobility models 93

5.2 Node density comparison of RWP and ABMM . 94

5.3 Infection spread comparison with RWP at a single location 96

5.4 Experimental setting and parameters studied . 98

5.5 Network characteristics for the data set used in the experiments 99

xiii

5.6 Infection spread dynamics with variation in pto . 100

5.7 Infection spread dynamics with variation in Tidle . 101

5.8 Effect of market share on the infection spread . 102

5.9 Infection spread dynamics with varying location density (d) 103

5.10 Interaction of idle time Tidle with pinf and m for the NRV1 network 107

5.11 Interaction of Tidle with pinf and m in the NRV1 network 108

5.12 Comparing the dynamics of Bluetooth, SMS, and hybrid malware in the NRV network111

6.1 Comparison of degree-based response strategy . 114

6.2 Passive Self-detection performance with varying detection thresholds 116

6.3 Comparison between passive and local signature dissemination 117

6.4 Centralized signature dissemination for controling the malware spread 119

6.5 Device vulnerability as the number of replicates are varied 121

6.6 Cumulative distribution of device vulnerability as the number of replicates are varied

for the NRV and Miami networks. 122

6.7 Performance of the vulnerability based targeted patching of devices in NRV1 and

NRV2 networks. 123

6.8 Comparing degree and vulnerability metrics on the NRV networks 124

6.9 Correlation between age and vulnerability obtained by the diffusion of Bluetooth

malware through the proximity network . 125

6.10 Vulnerability correlation between neighbors as the replicates are increased in the

NRV1 network . 126

xiv

List of Tables

2.1 Overview of related work in the study of mobile malware. 15

2.2 Overview of related work in the study of mitigation schemes for mobile malware. . . 18

2.3 Comparison of EpiNet with other approaches in literature. 23

3.1 Bluetooth Protocol and malware Parameters . 40

4.1 Scalability comparison between different simulation environments 61

4.2 Runtime for a 2-factor, 4 level, 5 replicate individualized intervention study 81

4.3 Runtime under weak scaling for EpiNet . 84

5.1 Simulation parameters for RWP and activity-based mobility models for the compar-

ative study . 95

5.2 Levels for the factors in the ANOVA study . 105

5.3 Interaction study for Tidle, pinf , and m . 106

5.4 Networks studied using the EpiNet framework . 109

xv

List of Algorithms

1 The EpiNet Algorithm. 52

2 EpiNet Algorithm with Intel TBB . 75

xvi

Chapter 1

Introduction

Advances in computing and communication technologies have made mobile communication devices

extremely powerful—blurring the distinction between today’s PCs and mobile phones. Worldwide

sales of mobile phones to end users surpassed 1.15 billion units in 2007, a 16% increase from 2006

sales of 990.9 million [35]. In 2007, 20.9 million units were shipped in North America alone [47].

These devices have become a part of the social fabric and world economy. By the end of 2010, 1.2

billion people will carry handsets capable of rich, mobile commerce providing a rich environment

for convergence of mobility and the Web [36]. Most of these devices are capable of communicating

over multiple physical layer technologies, interfacing with disparate networks, such as Evolution-

Data Optimized (EV-DO), wireless broadband networks at residences, coffee shops and airports,

and Bluetooth or IrDA proximity networks. Higher data rates offered by new technologies such

as Long Term Evolution (or LTE) and next generation 4G networks are going to further propel

the acceptance and use of smart phones. We are witnessing the true beginning of nomadic and

ubiquitous computing and communications.

1

K. Channakeshava Introduction 2

1.1 The Problem

The increasing number of smart phones, lack of awareness regarding securing them, and access to

personal and proprietary information, have resulted in the recent surge of mobile malware. Viruses,

worms, spam and other malicious software target these devices. Traditional social-engineering tech-

niques such as email and file-sharing as well as vectors unique to mobile devices such as Bluetooth,

Short Messaging Service (SMS), and Multimedia Messaging Service (MMS) are used by these mal-

ware. By March 2008, F-Secure had counted 401 different types of mobile malware in the wild,

and McAfee had counted 457 [59]. A recent survey by Credant Technologies [24] shows poor smart

phone security attitude among mobile phone users. While 12% of those surveyed stored bank ac-

count details, 5% stored credit card information on mobile phones, and 1% even stored their pin and

passwords. Mobile devices in the corporate environment are mostly employee owned, un-managed,

and largely unprotected against mobile threats. These devices store or have access to sensitive

corporate information ranging from customer records to the company’s intellectual property. Over

49% of the companies surveyed in Phifer [80] reported significant use of mobile devices to trans-

mit business-critical data. Although current generation, proof-of-concept malware such as Cabir

[29] and CommWarrior [57] have not resulted in harmful outcomes, the same may not apply to

next generation malware. A greater threat are “crossover” malware that spread from desktop PCs

to mobiles and vice versa. Crossover [79], a recent virus, spreads from a Windows desktop to a

mobile running on Windows Mobile Pocket PCr through the ActiveSyncr synchronization utility.

Cardtrp.A [90] is another such crossover malware that affects the device’s memory card and installs

Windows worms (Win32.Rays, Win32.Padobot.Z and Win32Cydog.B) when inserted into the PC.

A more recent threat are large cellular botnets that can perpetrate a denial-of-service (DoS) attack

against cellular network core, web-sites, or the Internet in general [37].

K. Channakeshava Introduction 3

1.2 Motivation

The ability of smart phones to form proximity networks in an ad hoc manner and the exposure

to diverse networks make the study of such malware challenging. Detecting and responding to

such dynamic malware is extremely difficult. Existing solutions to target malware in PCs cannot

be directly employed with mobile phones: (i) they consume a significant amount resources to

function, and (ii) require constant updates to function well. So, we need a new mechanism to

handle threats that affect mobile devices. A pre-requisite to any such mechanism is to study the

problem in detail and understand the underlying characteristics of the spread. Accurate studies

into these malware will yield ideas for handling attacks, provide information to detect when an

infection is prevalent, predict the impact of a malware, and evaluate the effectiveness of response

strategies in controlling the spread.

A number of mathematical and simulation based approaches have been proposed to study epidemi-

ological problems in wireless networks [83]. Analytical models such as the ones presented by Yan

and Eidenbenz [98] and Mickens and Noble [68] can be used to predict the worm spread. Simu-

lations such as the ones presented by Su et al. [89], Yan and Eidenbenz [98], and Yan et al. [100]

can also be used. Analytical models based on mathematical epidemiology provide a natural way

to study large systems and have a number of desirable features, such as closed form expressions

for important epidemic quantities, e.g., the total number of infected devices. Nevertheless, these

models make a number of crucial assumptions (complete mixing, low resolution malware models)

that do not hold in the real world. Detailed simulations that build on well-known network simu-

lators such as NS-2 [76] or Qualnet [85] provide a natural alternative. These simulators allow for

a quick and easy implementation and evaluation of the worm, and have been used in a number of

recent studies. Researchers can create different network topologies and observe the growth of an

infection with these simulators. Yan et al. [100] use random networks with random mobility models

and Su et al. [89] use traces from real Bluetooth activity at locations for the study. A recent study

by Wang et al. [94] considers real data from a mobile phone network to construct mobility and

calling patterns to discover social networks and study the malware propagation. The granularity

K. Channakeshava Introduction 4

of the mobility is at the level of cell towers, and within each tower’s area, they consider a uniform

distribution of devices and construct the network based on Bluetooth range.

Although these studies provide significant understanding of the spread, they have several important

shortcomings. (i) Wireless networks formed by smart phones and mobile devices carried by indi-

viduals have different structural properties than the networks formed by random waypoint (RWP)

movement models considered in the past. The dynamics observed in such networks are differ-

ent from the networks constructed from the activity-based mobility models (see Section 5.1 for a

comparison). (ii) The scale of the networks in terms of the number of devices represented in the

evaluations (city wide, urban area wireless networks with millions of devices) cannot be handled by

the state of the art network simulation tools. The network scale matters as the insights gained by

using realistic networks can be easily translated into deployable security policies and an analyst can

determine crucial aspects of the malware that affect its spread. Although, some existing literature

[94] does consider large scale networks, the resolution of these networks and their accuracy for

proximity malware are limited.

So it becomes important to consider a more detailed representation of device interactions. The

activity-based mobility model provides this detail and uses real data from census, land use, and

activity survey data to construct this network.

1.3 Our Contributions

In this dissertation, we study mobile malware and especially present the study of mobile mal-

ware that spread through proximity Bluetooth networks and cellular infrastructure – using short

messaging service (SMS) or multimedia messaging service (MMS). We propose to model mobile

malware using a “network-based-approach” that employs detailed representations of the underly-

ing communication networks and parameterized models of within-host behavior and between-host

interaction of the malware. We consider high-resolution proximity networks and realistic commu-

nication networks to study Bluetooth and SMS/MMS malware propagation, respectively. The pri-

mary contribution of this dissertation is the creation of a high performance network-based modeling

K. Channakeshava Introduction 5

environment to study mobile malware in large, realistic, dynamic networks. Specific contributions

are as follows:

• A scalable, parallel, and expressive agent-based simulation environment, EpiNet, for study-

ing the spread of mobile malware. The environment allows us to construct realistic device

networks – proximity and communication networks – from activity-based mobility models

and statistics on communication patterns for a synthetic population. To the best of our

knowledge, this is the only environment with the capability to study networks with over 100k

devices.

• Detailed and abstract model for the Bluetooth malware. For the purposes of this dissertation,

we propose two models: a detailed model that represents the propagation at high resolution,

and a more abstract model that provides increased scalability and allows us to extend the

scale of the environment to millions of devices. We show that the results from the abstract

model are within a 5% error. The environment with the abstract model can now study

large experiment designs in a few hours on a reasonably sized, high performance computing

infrastructure.

• Computational improvements are orders of magnitude greater. The framework is a computa-

tionally efficient representation that scales well when larger problems need to be solved. We

have achieved 300X improvements over network simulators while maintaining high fidelity

network and malware models. This makes the framework practical to conduct evaluations of

malware diffusion on large dynamic networks.

• Dynamics of the Malware Spread. We use the environment to study the dynamics of the

propagation of Bluetooth and SMS/MMS malware. We perform detailed sensitivity analysis

and study the interactions among the network and malware model parameters.

• Study efficacy of response mechanisms. We study non-adaptive and adaptive response strate-

gies and determine the effectiveness of these strategies. We evaluate some dynamic graph

metrics that have the potential to control the spread. We illustrate the use of the environ-

K. Channakeshava Introduction 6

ment through some case studies that showcase the usefulness and the expressiveness of the

environment to specify and study sophisticated individualized responses.

The size of networks we consider for the study are city wide networks with millions of devices to

explore the real dynamics of the malware spread. With current implementations of EpiNet and

the modeling approximations we have studied, we can study networks with 1.2 Million devices, 7.2

million activities for individuals, and 500,000 locations where the activities take place (Miami city

synthetic population). For the above network, and simulated duration of a day, EpiNet completes

with a runtime of 50 minutes on 20 nodes of an SGI cluster with Intel Xeon 2.83GHz processors

and 8GB of RAM.

1.4 Summary of Results

In this dissertation, we present EpiNet, a new modeling environment to study wireless epidemiology.

EpiNet can be used to understand mobile malware diffusion processes over a realistic dynamic

network. EpiNet environment is useful to conduct studies on the impact of network structure

on the dynamics of the malware spread. It serves as a tool for analysts and network planners

to identify influential and/or vulnerable devices and evaluate different control strategies to build

secure infrastructures. Scalability is a design goal and we improve the scalability of EpiNet by

proposing model and mobility resolution changes that result in orders of magnitude speedup in

the runtime. We call this faster scalable implementation EpiNet. EpiNet now scales to highly

unstructured, dynamic networks with 3-5 million devices. To the best of our knowledge this is the

only modeling environment that scales to device networks of this size. It also implements more

sophisticated intervention schemes1 and can be used in a large experiment design over a reasonable

high-performance computing infrastructure. EpiNet represents a highly scalable version of EpiNet

we had proposed earlier and we refer to EpiNet when we are discussing the simulation environment.

1The name EpiNet comes from these interventions schemes that have been implemented to cure the network of

malware.

K. Channakeshava Introduction 7

Although we study the spread of Bluetooth worms over mobile networks and use a malware model

we develop, the EpiNet environment can be used to study other malware. A new malware model

can be created and plugged into the environment. With the abstraction of the malware model

and the change in the resolution of mobility data, we obtain significant speedup over other network

simulators. EpiNet obtains 300X improvements in runtime with only 0.1% error in the final infection

size in comparison to network simulators. Because the simulation environment uses an abstracted

Bluetooth worm model, we are able to obtain orders of magnitude speedup in comparison with a

detailed simulator like NS-2. For the same setting (as with NS-2), EpiNet achieves the results in 10

minutes without parallelization. With parallelization, EpiNet can be used on much larger networks

and can help evaluate entire regions in a particular city. We are working on scaling this to entire

cities. Simulations of such large scale, city wide networks help in gaining insight into the spread

characteristics, and devise intelligent schemes to prevent a widespread digital epidemic.

We simulate the spread of proximity Bluetooth malware over fairly large, synthetic, yet realistic

networks consisting of millions of devices. The synthetic network is derived using a number of

innovative modeling techniques, using detailed location and individual data in a US city. We show

that the synthetic networks generated from realistic data exhibit features absent-in, and signifi-

cantly different from, networks generated using RWP movement models. We compare the spatial

and temporal dynamics of Bluetooth malware propagation over realistic networks described above

and random-waypoint generated models. The results, not surprisingly, show that the dynamics are

qualitatively different over these networks. Importantly, those differences highlight the need for

early detection for controlling a malware epidemic. Our simplified worm model and the enhance-

ments to EpiNet suggest that detailed protocol level states are not required to answer system level

questions that relate to network-level spread. Specifically, we observe that most infections occur

during the first hour of contact with infected device, indicating that coming in contact with the

device at inception time can have significant impact on the eventual growth of the infection. This

can also potentially impact the way these infections are identified.

We also simulate SMS/MMS based malware and hybrid malware that use both proximity based

Bluetooth networks and infrastructure based cellular network to replicate on other susceptible

K. Channakeshava Introduction 8

devices. We find that even though the structure of the social contact networks are significantly

different from the proximity network, SMS/MMS-based malware alone do not propagate to all

susceptible devices. Hybrid malware on the other hand spread extremely fast and have the potential

to infect a large number of devices fairly quickly. We find that aggressive malware can infect 50%

of the susceptible population within a matter of 2-3 hours.

1.5 Organization

The rest of the dissertation is organized in the following manner:

Chapter 2 discusses the existing literature in the area of malware studies for wired and wireless

networks. We look at mathematical models and simulation based studies.

Chapter 3 outlines the EpiNet environment we have developed for studying the problem. This

provides a high level description of the modules constituting the environment. We discuss ways to

create social networks – proximity and communication networks that are realistic. We propose a

detailed malware model to describe the within-host behavior of an infected device. We calibrate

the model and validate it using simulation studies.

Chapter 4 proposes some approximations to the mobility of devices and malware model with the

aim of scaling the simulations to large networks. We call this new improved framework EpiNet as

it is useful to study interventions that are compute-communication intensive. We discuss some

case studies to showcase the framework and its ability to answer certain questions. We also discuss

system-level implementation of EpiNet with hybrid MPI-threads using Intel’s TBB. We study the

scalability of the resulting tool by performing strong and weak scaling of the simulator and show

that the simulator scales well when more processing elements are provided and shows that larger

networks can be studied simply by introducing more processing elements.

Chapter 5 provides the results from the simulations. We study the impact of the worm parameters

and the network parameters on the spread of the malware. We perform an analysis of variance

calculation to determine the impact of certain malware and network parameters. We study the

K. Channakeshava Introduction 9

change in the propagation dynamics when communication networks are used in addition to prox-

imity networks.

Chapter 6 discusses the response mechanisms for handling malware outbreaks. We look at some

non-adaptive static (degree and betweenness) and dynamic (vulnerability) graph metrics and study

their effectiveness in controlling the spread of proximity malware. We look at device-based detection

and response mechanisms and their ability to detect and respond to mobile malware.

Chapter 2

Related Work

Ever since Robert T. Morris released a 99 line program on the Internet in 1988 [49], malware

have been written and released on the Internet for various reasons. Similarly, the study of how

malware propagate has been undertaken to understand the spread and take responsive action to

control the impact. Current and predicted explosion in the sale of smart phones and increase in the

applications supported on smart devices have shifted the malware in the direction of mobile devices.

The malware has indeed gone mobile [42]. Thus, understanding the dynamics of this new threat

is important and learning how to avoid the outbreak on mobile devices has gained importance.

The vanishing dichotomy between Internet worms and human diseases makes studying the mobile

malware problem much more challenging. The use of short range communication technologies such

as Bluetooth and the emergence of malware that exploit them has made mobile malware spread

like an epidemic. Three important aspects have to be considered for the study of mobile malware:

• Location of the device. Due to the proximity nature of Bluetooth networks, tracking the

location of a device is important to predict the spatial spread of the malware. In the case of

SMS/MMS based malware propagation, the location of the device provides information on

the cell tower serving the mobile.

• Networks the device has access to or creates. Because next generation malware will likely

employ multiple transmission means (for example, e-mail, web pages, social networking ap-

10

K. Channakeshava Related Work 11

plications, etc.), mobile devices form the interconnect between multiple, diverse, and hetero-

geneous networks.

• Usage patterns of mobile phones. Smartphone usage patterns of individuals go a long way in

both identifying the existence of a malware and predicting how a certain malware may spread

over the network.

In this chapter, we provide a brief review of malware studies of Internet worms and mobile malware.

We provide an overview of the threats that currently exist from mobile malware affecting wireless

mobile devices. We present some prior art on studies of their propagation. We then present a

summary of literature that proposes mitigation techniques and response strategies to control the

spread of mobile malware.

2.1 Computer Epidemiology

The exploration of the computer viruses finds parallels in epidemiological studies undertaken to

study the spread of human epidemics. The analogy between human pathogens and computer

viruses led to the coining of the term “virus” for exploits in the computer domain. Researchers have

proposed the use of mathematical epidemiology to study computer system security, and in particular

computer viruses. Kephart, White, and Chess of IBM were the first to put this analogy to use in [50,

52, 51]. Kephart and White [50] observe that for computer worms, the localized nature of program

sharing is important to consider in the epidemiological approach and incorporate localization in

their proposal. In [51] they propose an analytical model for characterizing the infection in terms

of birth rate (rate of infections), death rate (rate of curing infections), and infection transmission

patterns. From their models the authors concluded that virus propagation rarely reached epidemic

proportions. Although their study is sound and empirically proven, the conclusions of their study—

as a result of their assumptions and simplifications—are no longer applicable. These studies were

conducted at a time when the Internet connected only a few universities and research institutes

and malware spread mostly through storage media (for example, floppy disks). Today, the Internet

K. Channakeshava Related Work 12

connects billions of users across the world and malware spread is faster over the Internet. Further,

the IBM study concentrated on the global aspects of the infection spread and later researchers

have found that though such a study provides useful insights, a set of carefully selected low-level

characteristics help in devising strategies for defense mechanisms.

On July, 19, 2001, more than 350,000 computers connected to the Internet were infected by the

Code-Red (CRv2) worm in less than 14 hours. The cost of this epidemic and the subsequent

strains of Code-Red is estimated to be in excess of $2.6 billion. This prompted a number of studies

[71, 70] to understand the causes and reasons for the spread of Code-Red [101, 69] and Internet

worms in general. Internet worms have been extensively studied using accurate worm models

and network architectures that they propagate on [101]. A pair approximation (or correlation)

model was developed by Nikoloski et al. [75] that uses the salient network characteristics—order,

size, degree distribution, and transitivity. They conclude that network structure has considerable

impact when local propagation occurs. Recently, this focus has shifted towards studying the worms

that spread using the wireless infrastructure, either laptops or smart devices.

2.2 Mobile malware threats and their study

In the past few years, owing to wide deployment of wireless networks, the interest has turned to

worms and malware created to spread on wireless networks. More than 30 kinds of malware—

worms, trojan horses, other viruses, and spyware—have been unleashed against the devices [42].

Such worms propagate through devices that communicate using wireless interfaces. Of late, these

worms have become more sophisticated, with capability to propagate using multiple communication

schemes. One of the earliest of such viruses written for the Palm PDAs, called the PalmOS/Liberty

[61] virus, represented a relatively lower threat as it required user intervention to become active.

The infection resulted in applications and databases being deleted from the device. More recent

malware have targeted the Nokia 60 series cell phones running Symbian OS due to their popularity

and advanced features like Bluetooth and SMS/MMS services. The Cabir [29], Mabir [64], Lasco

[58], Drever [25], Skulls [88], and Commwarrior [57] are a few of the worms/trojans that affected

K. Channakeshava Related Work 13

this platform. Most of these worms use Bluetooth to infect the neighboring devices and some use

SMS/MMS messages to random people from the infected device’s address book. Most of the above

malware affect a particular device platform and cause limited damage. A particularly nasty form

of Cabir spread rapidly through the audience of the 2005 world track and field championship, and

stadium operators flashed warnings on the big screen [42]. Drever, a trojan, propagates by disguising

as a Symbian OS update and disables SimWorks (a Symbian antivirus software). Redbrowser [81]

was the first trojan to affect the J2ME enabled phones. It uses a social engineering technique

to trick the user into sending SMS messages while actually sending a flood to a specific number,

increasing the user’s service charge. InqTana [30] Bluetooth worm targets vulnerable Mac OS X

systems and propagates from one device to another. This worm could be easily modified to corrupt

the data on the device. SymbOS/Beselo [13] is another worm that attempts to propagate via a

media or image file over a Bluetooth network. It can send an MMS to each number in the phone

book about every 2 minutes.

Current generation smart phone applications are usually downloaded from the market places that

vendors have set up for them. The belief of a majority of users is that buying software from the

Andriod Marketplace or the iTunes store implies that the applications are safe. Issues with iPhone

applications stealing location information [12] and malware mobile banking applications stealing

banking credentials of users (using a phishing technique) [34] are clear indications to the contrary.

Some application vulnerabilities in iPhone [20] also reinforce the point that mobile malware are a

sure thing and it is just a matter of time before they gain the same importance as PC malware.

2.2.1 Simulation and Emulation Infrastructures

In addition to the network simulators [76, 41, 2] that can be augmented to study malware, custom

simulators and emulators to study wired and wireless malware have been proposed. The cyber-

DEfense Technology Experimental Research (DETER) is one such experimental infrastructure to

conduct Cyber-defense research on Internet-scale [11]. The PArallel Worm Simulator (PAWS) [95]

and the WE emulator for analysis of worm spread and defense strategies in local area networks for

K. Channakeshava Related Work 14

the DETER [11] testbed is proposed in [96]. These approaches are for wired infrastructure networks.

l Mobile Agent Malware Simulator (or MAlSim) is a distributed, mobile agent framework developed

in [60] to simulate attacks against information systems. The MalSim toolkit provides standard

patterns that can be used to emulates a malware, study the spread, and control mechanisms.

MAlSim specifically addresses the aspects of critical infrastructure security. A queue based model

is proposed in [67] to emulate wireless connectivity to model mobile environments for malware.

Reproducing effects of large-scale Internet worms attacks in a laboratory setup realistically is im-

portant for detection and defense systems. Liljenstam et al. propose a simulation model in [62] to

model large-scale dynamics of worms and its effects on networks. They map realistic IP address

spaces and model detailed network behavior and show how the model is used to generate a working

prototype worm detection and tracking system.

2.2.2 Studying mobile malware spread

Attempts to study and understand the spread of mobile malware have been undertaken. From a

network theory perspective, the contact network or device network formed by wireless networks is

different from random networks. Further, the propagation characteristics are complicated by the

means by which these malware replicate, and the ad hoc nature of the network makes detecting

and responding to such malware challenging. Table 2.1 outlines the broad scope of the related work

in this area. We attempt to describe each of them and differentiate our proposed work from them.

Mickens and Noble [68] construct an analytical model based on analytical or empirical calculations

for the average travel time between two destinations 〈t〉 and the connectivity distribution P (k)

for the network (k represents the degree of a node). The connectivity distribution provides the

percentage of nodes having k neighbors. In other words, P (k) × N represents the percentage of

nodes with a certain connectivity level. Under the assumption that the connectivity changes occur

at larger instants than the simulation ∆t, they represent the mobile network as a set of M queues,

where Qm contains P (km) × N nodes and every node spends P (k) × 〈t〉 time units in each queue

before exiting. They assume a susceptible-infected-susceptible (or SIS) model for the disease. β

K. Channakeshava Related Work 15

Table 2.1: Overview of related work in the study of mobile malware.

Mathematical Models
Mickens and Noble [68], Yan and Eidenbenz [99],

Nekovee [73], Nikoloski et al. [75], [83]

Simulation Studies
Yan and Eidenbenz [98], Yan et al. [100], Zyba et al.

[103], Su et al. [89], Fleizach et al. [31]

Realistic Studies Wang et al. [94]

represents the probability that an infected infects a susceptible and δ is the probability that an

infected device is cured. A homogeneous infection dynamic is simulated in each queue such that

dIm

dt
= βkIm(1 − Im) − δIm. The authors make an assumption regarding the steady states in the

mobility models that it is possible to derive steady state values for the average travel time 〈t〉 and

P (k). Further, they assume that the interaction in each queue occurs among homogeneous devices

(i.e., devices having same degree) and is not true for scale-free networks and other networks that

occur in real scenarios.

Yan and Eidenbenz [99] propose an analytical model for the Bluetooth protocol and the worm

characteristics. The authors explore and propose an extremely detailed and accurate analytical

model tracing the Bluetooth protocol’s steps in establishing a connection with a susceptible device.

In this model, they also consider the effect of other neighboring devices that are infected and their

impact on completion of a successful inquiry process.

Rhodes and Nekovee [83] investigate the effect of human mobility patterns on the spread of wireless

epidemics. The authors introduce an individual-based model for mobile devices and evaluate the

effect of population characteristics and device behavior on the outbreak dynamics. Using a straight

line movement pattern for devices, the authors illustrate that mass-action epidemic models remain

applicable in low density regimes, and build an expression for contact rate based on straight line

motion of the device. When devices come in range of each other, the infection is propagated from

K. Channakeshava Related Work 16

an infected to a susceptible device with probability p. The devices’ motion trajectory, and their

relative velocity determines the exposure duration.

A combination of large-scale simulations and mathematical modeling to explore the spread of

wireless epidemics in fixed ad hoc networks is presented in [74]. The authors conclude that the

spreading of worms in these networks is greatly affected by a combination of spatial correlations

arising from network topology and temporal correlations resulting from the interference limited

nature of communications in these networks. Standard mean-field and network mean-field models

from mathematical biology, which are widely used to model worm epidemics in computer networks,

are inadequate for describing worm epidemics in wireless ad hoc networks, but spatial epidemic

models provide a promising alternative.

Yan et al. [100] study the effects of the mobility patterns on the speeds of the spread. They consider

four mobility models—random waypoint, random walk, random direction and random landmark

for this study. The simulation studies are conducted on a network of 200 devices in an 75 × 150 m2

area and duration of 3600 seconds. For the landmarks they use scaled version of the Rice University

campus landmarks. The studies underline the fact that mobility plays an important role in the

spreading patterns and use random mobility to make this conclusion.

In [98] the authors conduct simulation studies for 200 Bluetooth devices for differing areas from

75 m2 to 150 m2 and observe the effect of speed and density on the spread of the malware. Most

of the simulation studies have been conducted for small networks created in small locations. Such

small scale studies do not provide actionable information regarding the spreading characteristics

and the global impact the malware has on the system as a whole. Further, response mechanisms

cannot be studied under such restricted setting and extrapolated to real networks. Furthermore, the

nature of some of the mobility models themselves impact the interaction of devices and the networks

formed, thus, coloring the resulting spread. For example, random waypoint mobility models are

known to create a higher density of devices in the center of the region considered [15, 16], thus

creating dense networks under stable conditions.

Fleizach et al. [31] investigate the effect of malware propagation over the wireless backbone net-

K. Channakeshava Related Work 17

works. They characterize the speed and severity of the malware under realistic scenarios and

explore network-based defenses against such malware. They develop an event-based simulator to

study malware propagating using MMS and Voice-over-IP (VoIP) services. For this they con-

struct a hierarchial Universal Mobile Telecommunications System (UMTS) network and generate

the traffic from the mobile nodes. Because the malware propagated by contacting individuals in

the phone books of the infected device, they generate various social networks to study the spread

under unconstrained and constrained network characteristics.

One of the recent simulation studies was conducted by Zyba et al. [103]. The authors use a

combination of traces and synthetic data to model human mobility. They use the Levy walk

[82] synthetic mobility model as it is more realistic than other mobility models. In this paper,

the authors focus on defense mechanisms deployed against proximity malware and explore three

strategies for detecting and mitigating the threat. Local detection is used by the devices to detect

the malware. Proximity and global signature dissemination is used to control the malware.

Recent work by Wang et al. [94] is one of the most realistic studies conducted for the propaga-

tion of Bluetooth malware both using proximity Bluetooth connections and MMS service. The

susceptible-infected (or, SI) malware model is considered in this paper and the authors only study

the propagation of the malware. Although they consider a rather simplistic malware model, the

data used for estimating human mobility is realistic. They use data from a mobile phone carrier

regarding voice calls and messages of approximately 6.2 million customers collected for a month.

Using the communication patterns and the associated cell tower information, they identify the po-

sition of the individual. Using the data, they generate mobility patterns at the resolution of cell

towers using the patterns observed for the individual. The same mobile network data is used to

obtain social network for individuals to be used in the study of malware propagation through MMS

service. To simulate the infection, they use a compartmental model within each cell tower’s area,

dividing the population into disjoint compartments whose size changes with time (as the infection

spreads). The disease consists of two states—susceptible and infected. For the propagation based

on MMS, the authors simply use the social network created from the data and infect a randomly

chosen device (from the individual’s social network) with some probability.

K. Channakeshava Related Work 18

Table 2.2: Overview of existing literature in the study of mitigation schemes for mobile malware.

Detection

Forrest et al. [33], Ellis et al. [27], Bose et al. [19], Kim

et al. [54], Jakobsson and Johansson [45], Jakobsson

and Juels [46]

Mitigation Zyba et al. [103], Mickens and Noble [67]

2.2.3 Defenses against mobile malware

The nature of the networks created by mobile devices raises serious concerns on the application

of Internet based approaches to mitigating mobile malware. Several studies exist in securing the

PCs from malware that can be extended to apply for such malware. The best approach to respond

to mobile malware attacks can begin at the source—the device itself. Dynamic quarantine [102],

comparing signatures, monitoring system calls [33] or power consumption [54], and system behavior

[27, 19] are all effective techniques to detect the malware at the device. System level detection can

also be achieved at the service providers’ side by deep packet inspection and signature comparison

techniques.

By monitoring the change in the patterns of system calls executed by a program, perturbations

caused by attacks can be identified. A synthetic normal profile is created by exercising the program

in all anticipated normal modes, or real profiles can be generated by normal online usage of the

production system. Static analysis techniques (refer to Forrest et al. [33] and references therein)

have also been used to generate the normal functioning of the system as the synthetic or real profiles

are not complete. There are several ways these can still be circumvented, and techniques have been

proposed to deter them. The actual techniques are outside the scope of this current work; we

highlight that one can devise ways to identify whether a device is infected. Assuming that such a

system is available on a mobile phone, one can detect the infection in the device. In this proposal,

we use such methods to make the device aware of its own infection and stop the malicious behavior

K. Channakeshava Related Work 19

by turning off the erring application or system feature.

Defending against malware in mobile phones has been extensively studied. Broadly, detection and

response mechanisms can be divided into system level and device level. System level approaches

are applicable to detect and respond to malware that spread through the cellular infrastructure,

such as short messaging service (SMS) or the multimedia messaging service (MMS). Work in [18]

explored rate-limits and SMS quarantine approaches after identifying infected devices. Similarly,

the propagation of malware through MMS messages is studied in [84]. The authors model different

MMS malware characteristics and study the effectiveness of different response mechanisms, such as

virus scan and detection algorithms on all MMS messages, immunization patches, user education,

monitoring anomalous behavior, and blacklisting of infected devices.

An alternative to the signature-based approach, behavioral detection [27], has emerged as a promis-

ing way of preventing the intrusion of spyware, viruses, and worms. In this approach, the runtime

behavior of an application (e.g., file accesses, API calls) is monitored and compared against mali-

cious and/or normal behavior profiles. The malicious behavior profiles can be specified as global

rules that apply to all applications, as well as fine-grained application-specific rules. Behavioral de-

tection is more resilient to polymorphic worms and code obfuscation because it assesses the effects of

an application rather than specific payload signatures. For example, because encryption/decryption

does not alter the application behavior, multiple malware variants generated via run-time packers

can be detected with a single behavior specification. As a result, a typical database of behavior

profiles should be much smaller than that needed for storing specific payload signatures for each

variant of many different classes of malware. This makes behavioral detection particularly suitable

for resource-limited handsets. Moreover, behavioral detection has potential for detecting new mal-

ware and zero-day worms, because new malware are often constructed by adding new behaviors

to existing malware or replacing the obsolete modules with fresh ones, indicating that they share

similar behavior patterns with existing malware. [19] proposes a behavioral framework to detect

mobile worms, viruses, and Trojans. The authors propose an efficient representation of malware

behaviors based on observations and application actions. The database generated is used to study

several distinct families of mobile viruses and worms targeting Symbian OS and their variants.

K. Channakeshava Related Work 20

In addition, the authors also propose a two-stage mapping technique that constructs a signature

at runtime from the monitored system events and API calls in Symbian OS. Normal activity is

distinguished from malicious behavior by training a classifier based on support vector machines

(SVMs).

Device level approaches involve the self-detection based on identifying anomalous behavior of the

device by intelligent software present in the device. Such techniques are applicable for malware that

spread in the local proximity of the device and do not necessarily use the cellular infrastructure.

Techniques for local detection based on behavioral patterns [19] and energy signatures [54] of

infected devices have been proposed and studied.

The behavioral and signature recognition systems are excellent for PCs and desktop computers.

Recent proposal to use the memory-printing of client devices is in Jakobsson et al. [45]. Memory-

printing is a novel and light-weight cryptographic construction whose core property is that it takes

notably longer to compute a function if given less RAM than that for which it was configured. This

makes it impossible for a malware agent to remain active (e.g., in RAM) without being detected

when the function is configured to use all space that should be free after all active applications are

swapped out.

2.3 Drawbacks in existing approaches

Understanding the dynamics of the mobile malware and using the results obtained to gain insights

into the spreading patterns and try out different interventions strategies requires a high-resolution

study environment. The practical use of such studies is that one can implement, and try different

deployable strategies in case a real malware spreads through the network. To obtain scalable and

at the same time accurate results imposes a great challenge. It is important to trade off some detail

in certain aspects that do not have a severe impact on the results and consider details in other more

important places. Thus, it has become necessary to understand the dynamics of mobile malware

and learn about ways to prevent a major outbreak. For conducting a qualitative study of mobile

malware, three important aspects are considered:

K. Channakeshava Related Work 21

• Track the location of the device. Due to the proximity nature of Bluetooth networks, tracking

the location of a device is important to predict the spatial spread of the malware. In the case

of SMS/MMS based malware propagation, the location of the device provides information on

the cell tower serving the mobile.

• Determine the network access available to the device. Because several next generation mal-

ware will employ multiple transmission methods (for example, e-mail, web pages, social net-

working applications, etc.) the network created by these devices is diverse and has different

characteristics.

• Monitor usage patterns of mobile phone users. Smart phone usage patterns of individuals

go a long way in both identifying the existence of a malware and predicting how a certain

malware may spread over the network.

Existing approaches to studying mobile malware are limited at different levels and no one proposed

method addresses all the above aspects. Some of them [94] consider lower resolution information for

mapping the devices (although this is good enough for SMS/MMS malware). Others [98, 100, 103,

89, 31] use small size networks, and detailed packet level simulations to study the proximity-based

propagation. The study of the spread of malware through simulations can be accomplished with

varying levels of accuracy, complexity, and scalability.

There are several drawbacks in the approaches outlined above. All the mathematical models out-

lined above make simplifying assumptions to make modeling tractable. Some of the models proposed

do not consider the worm characteristics or the uncertainty of Bluetooth connections. The Blue-

tooth model developed in [99] considers a detailed representation of Bluetooth but makes several

simplifying assumptions to make the modeling tractable. They assume a uniform mixing of de-

vices and a Poisson arrival process for new neighbors that are not true for realistic human mobility.

These modeling techniques also require steady state conditions in the mobility. With activity-based

mobility models, the arrival and departure processes are not Poisson, and the density of locations

vary with time as people enter and leave locations according to their activities. Thus, the device

densities at these locations are not the same throughout. The mobility of individuals create time

K. Channakeshava Related Work 22

varying interactions, creating completely different network characteristics during a normal day.

Thus, the assumptions of steady state conditions do not hold.

As the authors themselves claim, the mobility model in [83] is a highly simplified representation of

human mobility. Because they apply this model for low density regimes, they neglect the correlation

between multiple infected devices in a susceptible devices’ range. In a wireless network, this can

cause congestion and interfere with the infection propagation process (for example, packets collide,

and interfere with each other). In real networks, density varies with time and location, and thus a

model that works for low density regimes does not work for high density locations.

Simulation studies using network simulator (such as NS-2) on the other hand represent excellent

detail in malware’s implementation, protocols required, and the physical layer. This level of detail to

represent the per-node behavior makes them unlikely to be applied to large networks. Simulations

with NS-2 for networks with 500 devices in a single location take wallclocks of over 30 hours to

simulate 4 hours of device interactions. Thus, most existing studies that use simulation are limited

to small scales of 100 or 200 devices at most. Other simulation studies in the network science

(for example, [94]) do consider a large number of devices, but at the lowest level their simulations

use compartmental models assuming uniform mixing. They also fail to consider aspects related to

the nature of the communication medium. The uncertainties included in wireless communication

cannot be completely neglected while studying their propagation.

Our goal here is to study large scale networks with millions of devices and study aspects to answer

policy-and system-level questions. Our approach is to consider an intermediate option that repre-

sents the nature of the malware, the communication protocols, and infrastructure in an abstract

manner and use realistic networks that evolve as people go about their activities. At the lowest

level, the network we construct reflect realistic nature of human mobility and aid in the construction

of more realistic device interactions that can change the spread characteristics.

K
.

C
h

a
n

n
a
k
esh

a
v
a

R
ela

ted
W

o
rk

23

Table 2.3: Comparison of EpiNet with other approaches in literature. We highlight the important aspects of each previous work

and list the differences from our work.

Factors Analytical results [99]

Simulation based computational models

Random mobility [98, 100]
Mobility model based on

real data [94]
EpiNet

Scope Single location/city area Single location Large area Large area

Temporal Scale 1 second ms. / µs. Time unit (time to infect) Time unit (30 s. resolution)

Spatial Scale meters meters meters meters

Mobility model Random waypoint model
Random Waypoint, Random

Walk, Random Landmark

Cell tower position from

mobile call data

Activity-based mobility

model – assigns locations

Device interaction

network

Dependent on mobility model

parameters
Based on mobility models

Homogeneous distribution of

devices within each tower

Heterogeneous distribution of

devices based on activity

locations
Within-host

Malware Model
Analytical expression Detailed implementation Compartmental models (SI)

Both high resolution and low

resolution models

Detection
Can be represented in certain

cases (model specific)
Can be implemented Not studied

Network- and device-based

detection (abstract

implementation)
Control

mechanisms

Can be done individually for

each model
Can be implemented Not studied

Expressive, adaptive &

non-adaptive responses

Chapter 3

The EpiNet Simulation Environment

Malware, also known as malicious code, malicious software, or worm, refers to a program that

is covertly inserted into a system with the intent to compromise the confidentiality, integrity, or

availability of the victim’s data, applications, or operating system [65]. Mobile malware, although

a mere nuisance so far, is starting to become a significant external threat to individuals and organi-

zations [38]. Current and next generation smart phones come equipped with wireless technologies

for short range communications, e.g., Bluetooth. While these are useful to form dynamic, ad-hoc

networks (also called MANETs), they provide a new avenue for increasing the device-to-device

spread of such malware.

Existing simulation platforms [76, 85, 41, 2] can provide a detailed network representation. They

have one major drawback – they perform simulation at packet level and do not scale to large,

dynamic, device deployments. Other methods [103, 89] use traces gathered from real sensor de-

ployments for malware studies. The problem with trace data is its limitation to the location of the

sensors. So, it is only useful for within location modeling of the malware and cannot be used for

large spatial area used in realistic studies. Some studies use random mobility models (models such

as random waypoint, random walk, random landmark, etc.) [98, 100].

All the above approaches have the following limitations:

24

K. Channakeshava The EpiNet Simulation Environment 25

1. Lack of detailed dynamic device structure. Previous work uses aggregate or collective device

network models with unrealistic assumptions of node distributions and interactions. Where

sensor data is used, the interactions cover a smaller region, a building or a large conference

hall, or some buildings within a campus.

2. Simplistic mobility models. Mobility has a significant impact on worm dynamics. However,

most prior art uses simple mobility models (e.g., random waypoint, random landmark, etc),

which are known to be very different from realistic urban mobility models. Human mobility

shows a high degree of temporal and spatial regularity and a significant probability of return-

ing to highly frequented locations [40]. There is a lack of real data on urban mobility and

collection of such data involves privacy and logistical issues.

3. Scalability. Existing approaches make several assumptions to improve scalability at the ex-

pense of accuracy. These techniques are not able to scale beyond a few hundred nodes once

any of these assumptions are relaxed.

Following the analogy with human epidemics, researchers have defined Internet epidemiology (e.g.,

[63]) as the study of the spatio-temporal spread of malware on communication networks. In this

dissertation, we are interested in wireless epidemiology – the study of malware spread over digital

devices using primarily short range contacts. A number of mathematical and simulation based

approaches have been proposed to study epidemiological problems in wireless networks [83]. A

promising approach that has evolved in the last few years is best termed as a “network-based

approach”, in which a detailed representation of the underlying communication network is used

along with parameterized models of infection progression and transmission. In this dissertation, we

propose to use a synthetic population and their activities to generate mobility patterns. The arrival-

departure at individual activity locations are converted to proximity network representations. The

simulations are conducted by a parallel discrete-event simulator. In this chapter, we discuss the

simulation environment and the modules we have created within the framework to study mobile

malware.

In this chapter, we present EpiNet, a parallel, agent-based simulation environment that scales to

K. Channakeshava The EpiNet Simulation Environment 26

large, dynamic networks. We describe the construction of the proximity-based networks within

locations to study the spread of proximity malware using Bluetooth interface. We discuss mthods

used to construct realistic communication networks that are used to study the spread of malware

over the cellular infrastructure through short messaging service (SMS) and/or multimedia messag-

ing service (MMS). Any network-based approach consists of a parameterized model of infection

progression – within-host and across-host propagation models. We describe this model next. We

discuss the calibration of these models using calibration experiments. Lack of real data on actual

malware spreads makes this process hard to validate. We use controlled simulation exercises to

calibrate and validate the model for the malware. We then describe the EpiNetsimulator and its

algorithm. We implement this algorithm as a parallel simulation tool using the message passing

interface (MPI) library. We also discuss the interventions schemes that are implemented within the

framework.

To the best of our knowledge, this is the only modeling environment that scales to millions of

devices over large urban areas. The modeling environment provides an expressive environment to

specify and study several complicated static and dynamic intervention schemes.

3.1 The EpiNet Infrastructure

Figure 3.1 is a pictorial representation of the modules in the framework. In general, the framework

we describe in this section is applicable to study any kind of malware spreading through wireless

networks. In this chapter, we describe the framework under the assumption of malware that spread

in mobile handheld devices such as smart phones and consider only proximity networks. The

framework consists of two phases as outlined below:

• Construction of realistic contact networks. We construct device contact (or wireless) networks

using activity-based mobility of people. This mobility model considers mobility based on

activities they perform during a normative day and constructs proximity networks.

• Construction of abstract worm model. We construct a high-level model for the malware based

K. Channakeshava The EpiNet Simulation Environment 27

Worm

Behavior

+

Wireless

Protocol

Network

Simulator

Worm

Model

Synthetic

Population

Sub-location

Modeling

EpiNet
Device

Network

Construction of Abstract

Worm Model

Activity

Patterns

Construction of Realistic

Contact Network

TRANSIMS

Figure 3.1: The EpiNet Simulation Infrastructure. The infrastructure contains aspects of realistic

network creation and abstract simulation of malware.

on the protocol used by the malware. This model provides an abstract model of the Bluetooth

worm.

For the construction of a realistic wireless network to study the spread of the malware, we consider

a synthetic population as generated in the Simdemics simulation framework [8], primarily used for

human epidemic studies. The Simdemics framework considers activity-based mobility models to

obtain mobility patterns for this synthetic population. Because devices are carried by people, we

also consider the same models to mimic device mobility. Modeling the worm helps in abstracting

the details of the wireless protocol and the worm behavior and improves scalability. More detailed

explanation of the modules is provided in later sections.

3.2 Construction of Realistic Networks

3.2.1 Construction of Realistic Proximity Networks

Construction of a wireless network is important for evaluating any network protocol or algorithm.

Wireless networks are constructed randomly or through synthetic data. There are benefits and

K. Channakeshava The EpiNet Simulation Environment 28

drawbacks in each of these methods and the problem studied guides the method. In this proposal,

we are interested in studying the problem of wireless worms that spread through personal commu-

nication devices. So, modeling human mobility accurately is important to observe a realistic nature

of the malware. Further, modeling actual human mobility also helps us to create wireless contact

networks that are different from random networks.

In this section, we describe the activity-based mobility model (ABMM) used for generating human

mobility. First, we describe the synthetic population that forms the basis for the activity-based

mobility. Second, we describe the generation of activities for the synthetic population. Lastly, we

describe the process of converting the activities into wireless networks of a certain range.

3.2.1.1 Synthetic Population

0 4AM 8AM 12Noon 4PM 8PM 12Mid
0

100

200

300

400

500

600

700

800

Time of Day

A

rr
iv

al
s

(a)

0 4AM 8AM 12Noon 4PM 8PM 12Mid
0

100

200

300

400

500

600

700

800

Time of Day

D

ep
ar

tu
re

s

(b)

Figure 3.2: Arrivals and Departures at activity locations created by the activity-based mobility

models. Both arrivals and departures vary temporally and do not follow any particular pattern for

the locations. They also vary across location types (not shown here). (a): Arrivals at the location

for the day; (b): Departures from the location for the day.

A pre-requisite to the understanding of the spread of wireless malware is a realistic representation

of the wireless network we need to study. Mobile devices and smart phones are used by people

going about their daily activities and using devices when required. These activities expose the

K. Channakeshava The EpiNet Simulation Environment 29

devices to other smart devices and networks—creating dynamic and arbitrary network structure.

In this proposal, we use synthetic population generated by the Transportation Analysis and Simu-

lation System (TRANSIMS) developed at Los Alamos [5] to construct realistic wireless networks.

TRANSIMS has been extensively used for a several transportation studies. In this section, we

briefly discuss how TRANSIMS generates the synthetic population to provide perspective for the

future sections where we construct wireless networks created by devices carried by the synthetic

population.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Node Degree

F
ra

ct
io

n
of

 N
od

es

8:30 AM
9:30 AM
10:30 AM
11:30 AM

(a)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Node Degree

F
ra

ct
io

n
of

 N
od

es

8:30 AM
9:30 AM
10:30 AM
11:30 AM

(b)

Figure 3.3: Temporal Degree Distributions at different location types. Degree distributions for a

work and shopping activity location at 8:30AM, 9:30AM, 10:30AM, and 11:30AM, respectively. As

the day progresses, the number of people in each location increases and the network created has

slightly higher variance in the people’s degree. This discrepancy is more pronounced for shopping

locations than work locations. (a): Work location; (b): Shopping location.

The basic algorithm for the construction of a synthetic population is based on aggregated, block

group level, census data. Data about land use and demographic information, combined with survey

data from thousands of households, is employed to create a household location for the synthetic

population. The output of the synthetic population generator is a proto-population 1. The syn-

thetic population was constructed for conducting micro-simulations in activity-based models using

1A collection of synthetic individuals, each associated with demographic variables drawn from census data.

K. Channakeshava The EpiNet Simulation Environment 30

aggregated demographic characteristics in a four step process. A sequence of daily activities and

the locations where these activities are performed is determined for each person, based on activity

surveys, travel time, and land use data. At the end of these four steps, TRANSIMS produces posi-

tions for the people in the synthetic population on a second-by-second basis for a large metropolitan

area and has effectively been used to construct detailed mobility patterns for entire cities. We use

this synthetic population and activity sequence for each individual to construct networks.

Figure 3.2 shows the arrival and departures at a location. These arrivals and departures do not

follow any particular distributions. As a result of these arrivals and departures, the density of

locations are time varying, creating very dynamic wireless networks. Further, the density of every

location does not follow the same pattern and depends on the time of day and kind of activity

location. Over a larger physical region, the activities create components with differing spatial and

temporal characteristics. The temporal degree distributions at different locations are shown in

Figure 3.3. Here, we assume a certain area for each location and construct a random geometric

graph (RGG) and plot the degree distributions for different times of the day.

0 500 1000 1500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Activity Duration (minutes)

P
ro

ba
bi

lit
y

Location 339886
Location 353497

Figure 3.4: Activity duration distributions at two different locations in the NRV dataset. The

activity durations are not similar across all locations.

Figure 3.4 shows the activity durations at two different locations in the New River Valley dataset.

Clearly, the activity durations at each location are different and are based on the individuals’

activity patterns. For location 353497, the activity duration is exponential while location 339886

K. Channakeshava The EpiNet Simulation Environment 31

has a completely arbitrary distribution. The activity patterns generated in TRANSIMS provides

the basic information required to construct interaction networks. For human disease models, the

arrivals and departures at locations is used to determine interaction networks at locations. Similarly,

for the study of wireless networks, we construct device networks that are created at locations. This

network is constructed by modeling sub-locations.

3.2.1.2 Modeling Sub-locations

The activity-based mobility model generates information regarding the participants in the network

created at locations. The actual wireless link at each individual location is required to study wireless

networks. This is performed by modeling sub-locations. In this section, we describe the process

of converting the activities into a wireless network which is then used to study the propagation

of the worm. A sub-location is defined as a smaller area within a location that models the range

of devices.We use sub- location modeling to build a device contact network within a location.

Throughout this proposal, we refer to device contact network and device network interchangeably.

It is an abstraction that allows us the flexibility to model range of a wireless interface. Because

we are interested in studying Bluetooth devices, we model Bluetooth networks. Nevertheless, the

sub-location modeling approach provides a clean abstraction to model mobility within location and

wireless propagation effects. Abstractly, one can assume that devices co-located in a sub-location

can communicate. Combining multiple neighboring sub-locations can provide inter-sub-location

links. Simply by altering a devices’ sub-location, we can model time varying links between sets of

devices.

Currently, we just model wireless medium without errors and neglect indoor propagation effects.

We assume the range of Bluetooth devices to be 10 m as for Class II Bluetooth devices. Before

going into the details, we make the following assumptions while generating the wireless networks:

• Although transit between activity locations can contribute to the spread of the malware, we

neglect them. Nevertheless, transit can be modeled as an activity, with transit time as visit

durations at a transit location, and worm propagation modeled. For the purposes of this

K. Channakeshava The EpiNet Simulation Environment 32

proposal, we neglect the transit locations.

• At present, we do not consider mobility of devices within locations. All devices are assigned

random positions within the location and they remain there until the end of the activity.

Essentially, we create a geometric random network within locations and use this to study the

propagation.

• Because we do not have data regarding the areas of the locations where the synthetic popula-

tion performs activities during the day, we make assumptions based on the occupancy of the

locations. Currently, our studies can be conducted with varying densities to study the effect

of density on the spread.

• We also make some assumptions that improve the scalability without significant change to

the spread. We assume the arrivals and departures of people at activity locations rounded to

5 minute intervals. Although this alters the arrival and departure, it does not significantly

impact the spread dynamics while improving scalability of simulations.

We divide each activity location into multiple areas called sub-locations. Unlike social contacts of

people where physical proximity has no bearing, device contact networks are formed by devices in

range. Modeling sub-locations helps to isolate events and provides an opportunity to parallelize

the algorithm used in the study. Now executing events at sub-locations are independent of other

sub-locations. Because wireless networks are based on distance, there is some dependency between

sub-locations and is handled correctly at simulation time. Modeling sub-location in this way only

creates a coarse device network; i.e., all devices belonging to a sub-location are connected to each

other and form a clique, irrespective of the actual physical distance. Some of these devices may be

out of range when considering a particular communication protocol. During simulation, the actual

distance between devices is taken into account, and worm propagation occurs only among devices

within range. Sub-location modeling provides flexibility to use different models for assigning devices

to sub-locations, helps consider mobility of users, and allows different wireless technologies with

varying ranges to be emulated. For example, to change the wireless technology to be IEEE 802.11

based ad hoc networks, we need to change the size of the sub-location and the range the simulator

K. Channakeshava The EpiNet Simulation Environment 33

uses while propagating the infection. The simulator can be extended to handle link reliability and

signal propagation internally.

1 2 3

4 5 6

7 8 9

b

Sublocation 5

f

e

a

c

d

1 2 3

4 5 6

7 8 9

S
u

b
lo

c
a

tio
n

 2

a
d

b
e

fc

1 2 3

4 5 6

7 8 9

S
u

b
lo

c
a

tio
n

 7
a

d

b
e

fc

Figure 3.5: Modeling Sub-locations for creating wireless networks. Device network created through

sub-location modeling. Solid (green) lines indicate devices in range and dashed (red) lines indicate

out of range devices.

The sub-location modeling follows the following steps:

1. Compute occupancy of the building using the activity information.

2. Assign an area to each location based on the occupancy of the location. One can obtain

this from actual building data, but for lack of this information, we are assuming the area.

Sometimes, we assign the area based on the required density value for the locations.

3. Assign random positions within this area when people arrive at the locations. These positions

will also be the device positions in the location. In Figure 3.5, devices a–f are assigned random

positions in the location and are shown in those positions.

4. Divide the building into grids whose size is derived based on the range of the device being

simulated. In this case, we are using the range of Bluetooth devices, 10 m. We choose a grid

with side of 10 m to approximate the range of Bluetooth devices. Figure 3.5 shows the grids

of side 10 m marked with numbers for each grid cell.

K. Channakeshava The EpiNet Simulation Environment 34

5. Form sub-location such that devices in adjacent grid positions are added into the same sub-

location. This implies that each sub-location contains multiple neighboring grid cells obtained

in step 4. From Figure 3.5, ‘Sub-location 5’ has all the grid positions from 1–9 in the sub-

location, implying that all nodes a–f belong to the sub-location for grid position 5.

6. Output the sub-location allocation into a file for the simulator to process.

In Step 4, we consider a certain block size of 10 m × 10 m for Bluetooth proximity networks to

divide the location into grid cells. The block size is derived from the range of the wireless technology

we consider and can be appropriately varied to consider different technologies. For IEEE 802.11

based wireless network, we can consider a grid size of 250 m × 250 m (if we assume a range of

250 m for the interfaces). The grid blocks are used in Step 5 to form sub-locations and decide

the devices’ sub-locations. For example, from Figure 3.5, Sub-location 5 consists of devices in all

the neighboring grid cells (devices marked a–f). This is required to consider as devices can reach

beyond the grid boundaries. We actually model duplicates across sub-locations to account for this.

The network provided as input to the simulator consists of a clique among all devices inside the

sub-location. Actual links are modeled inside the simulator. Figure 3.5 shows the edges in range

marked as solid (green) lines and links that get dropped (in the simulator) for being out-of-range

as dashed (red) lines.

3.2.2 Construction of Realistic Communication Networks

In addition to the proximity spread, current generation mobile malware also replicate through

short-messaging service (SMS) and multimedia messaging service (MMS) and instant messaging

(IM) clients. There are several instances of mobile malware that spread using different media

in addition to Bluetooth [29, 57] and use SMS or MMS messages as a medium of replicating on

susceptible devices. Realistic communication networks – e-mail, SMS/MMS and IM networks –

are required to study such malware, predict their dynamics, and study aspects of their control. As

instant messaging on smart phones is gaining in popularity, it can potentially serve as the next

targeted application. Thus, any framework that models mobile malware has to be able to construct

K. Channakeshava The EpiNet Simulation Environment 35

and use these communication networks for estimating the dynamics and the efficacy of the counter-

measures. In this section, we discuss Session Generator (SG), a synthetic mobile traffic generation

platform, to construct SMS, MMS, and the IM networks. The session generator has been used

as a means to generate synthetic voice calls based on existing statistics for mobile phone calling

patterns in literature. In this section, we present the use of this module in the study of malware

propagation over SMS/MMS networks. We show the architecture of the module and its ability to

construct statistically accurate sessions based on the given input statistics and use it to construct

the social networks that are used to propagate the mobile malware.

The SG module has been presented as a part of the Synthetic Spatio-Temporal Relational

Session Modeling (SSRSM) environment in [9]. The SSRSM framework has been employed

to undertake a couple of studies: primary markets for dynamic spectrum access (DSA) [10] and

interaction between communication and transportation infrastructures [6].

3.2.2.1 Teletraffic analysis and statistics

A significant amount of research has been conducted on network traffic analysis in wireline networks,

LANs, and Internet, e.g., [78, 32, 26, 48, 17]. These studies have established that the network traffic

does not follow Poisson and that the nature of the traffic is bursty. In the case of wireless networks,

there have been a number of studies for very small networks, e.g., local area networks within small

regions, such as a campus or a conference site [4, 55, 91]. The more recent study on a real wireless

personal communications network presented in [87] provides a much better understanding of voice

call patterns in real, current generation networks. Cellular call data has been used in other ways

to understand aspects of human mobility [40] and spectrum usage patterns [97] in next generation

dynamic spectrum management.

The problem with this data is that it contains proprietary information of service providers and their

subscribers and has significant privacy concerns. Most of this data is for internal consumption to

design better backhaul networks to carry service provider traffic over the wired infrastructures.

Some publications like [87] hide the actual data, and the calling patterns released in the paper are

K. Channakeshava The EpiNet Simulation Environment 36

scaled. The location and the network where the data is collected is also hidden.

The goal of the session generator we implement are as follows:

• Provides researchers access to a tool that can generate synthetic traffic. Integrates public data

and statistics collected in surveys and third party data providers and generates realistic traffic

patterns (voice calls, data traffic, etc.). This data can be combined to generate individual

level calling patterns for studying different problems.

• Generate the communication networks based on the observed output. The communication

patterns seen as a result of creating sessions from these statistics provides the interaction

network that can then be used to study aspects such as malware propagation, information

diffusion over digital devices, and others.

3.2.2.2 Architecture of the Session Generator

Figure 3.6 shows the high level architecture of the SG module. The SG is an event-based simulator

that generates communication patterns for individuals in a synthetic population. The communica-

tion patterns can be voice calls or data channels between individuals (peer-to-peer communication).

The patterns between two individuals are dependent on the contact durations derived as a result

of the activity-based mobility of individuals. It is these patterns that we use in this dissertation

to construct the communication network for simulating and studying the short messaging service

(SMS) based malware propagation.

The inputs to the session generator consist of the following:

1. Statistics for the sessions to be generated. This includes either individual or system-level

statistics for several parameters: number of arrivals, duration of the channel, and the input

distributions to these parameters (standard or arbitrary distributions).

2. Demographic based assignment of devices. SG uses a device assignment based on systematic

classification and regression tree (CART) on public data set from National Health Interview

K. Channakeshava The EpiNet Simulation Environment 37

Survey (NHIS) [21].

3. Population demographics for which the sessions are generated. The demographics of the

people making the calls and using sessions to communicate. This includes age, activities, and

activity types for consideration in the generation of sessions.

4. Social contact network. The social contact network is generated based on the activities per-

formed and includes the set of people an individual can potentially come in contact with. This

super-set of social contacts is then used to guide the selection of communicating individuals

based on data about peer-to-peer communication patterns.

The outputs from the session generator are the sessions of the individuals in the population, the

start, duration, and devices used for the session.

Device

Assignment

Synthetic

Population

Modeling

Tool

Session

Generation

Device

Ownership

(NHIS Data)

Synthetic Population

Statistics for

Individual

Sessions

Census &

Activity

surveys

Cells and

spatial data

Spectrum
Demand

Activity Data

Cell

Assignment

Road

Network

Figure 3.6: Architecture of the Session Generator implemented for constructing realistic commu-

nication networks. The boxes with color fills correspond to the actual parts of the SSRSM that are

used for generating the calls to build the communication network.

3.2.2.3 Implementation of SG

SG is implemented as a simple event-based simulator where the arrivals and departures of com-

munication instances are events. Each event is processed independently to create sessions for the

K. Channakeshava The EpiNet Simulation Environment 38

0 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

Time of Day (hours)

%
 C

al
l A

rr
iv

al
s

(a)

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

Session Duration (seconds)

P
ro

ba
bi

lit
y

(b)

Figure 3.7: Example input statistics for the Session Generator. Input statistics for the number of

arrivals and session duration distribution to model communication patterns of individuals. These

arrivals decide the frequency with which the calls are made in the synthetic population.

individuals. The current implementation uses global hourly arrival rates as the input to generate

the the Arrive event for the individuals. This statistic is obtained from [97] and we scale this

to different configurable values to obtain realistic arrival patterns. Note that the data provided

in [97] are scaled and we do not know the exact values. We conduct a parametric evaluation of

the scale and use it to generate the sessions. The base values of the unscaled number of arrivals

for each hour during the day is shown in Figure 3.7a. When the Arrive event is executed, the

other end point can determined from the social contact network based on several parameters. We

select random individuals from the population to satisfy this arrival rate. The other set of input

statistics we use is for the duration of the communication channels between individuals. We use

LogNormal distribution for modeling the session durations based on [56]. Note that the session

duration is different for each application; we are not interested in mimicking the application but

need a communicating link to generate the communication network.

The EpiNet simulation framework initializes each individual device with the set of edges based on

this network. When a device becomes infected, it propagates the infection by selecting individuals

(at random or based on frequency of contact) from this social network. We consider different studies

K. Channakeshava The EpiNet Simulation Environment 39

to determine the effect this has on the propagation of hybrid malware that spread over multiple

interfaces available in a mobile device. The implementation of the SMS/MMS diffusion process is

described in Section 5.6.1. The propagation dynamics of the SMS/MMS and hybrid malware are

studied in Section 5.6.

3.3 Within-host malware model

Malware studies in literature model the nature of the malware at different levels. Mathematical

models use the protocol of the malware to devise a concise way to represent the conditions that

matter to the spread of the malware. In this chapter, we propose one such high level model to

represent the characteristics of the malware. We approach the model as a representation of the

malware in each individual and use it the agent-based framework proposed here. First discuss the

aspects of the Bluetooth malware and the steps it takes to propagate itself to other susceptible

devices. Our model requires calibration to provide realistic results. We describe the experiments

we conduct to calibrate the model and use the calibrated model for validating the results. The

validation is performed in comparison with detailed simulations conducted with NS-2, a network

simulator. We then discuss the preliminary work we have conducted in reducing the model to

improve scalability of the model to target large scale studies. We propose to study this in more

detail in the future.

3.3.1 Modeling the Bluetooth Malware

In this section, we describe the design of the Bluetooth malware model. We follow a top down

approach: Firstly, we discuss the malware protocol, i.e., the stages of an infected device during

each infection cycle. Secondly, we describe the design of the model based on this protocol. Thirdly,

we discuss the characterization experiments we conduct using NS-2 to calibrate the high level model.

We discuss the parameters of interest for the characterization. Lastly, we discuss the validation of

the model using the calibrated model. Table 3.1 defines some terms used in the malware protocol

description.

K. Channakeshava The EpiNet Simulation Environment 40

Terms Definition

N to
resp

Maximum inquiry responses expected by the inquiring device during an inquiry

request. When an inquiring device receives N to
resp responses from neighboring

devices, the inquiry terminates and the next process is begun.

Nresp

Actual number of inquiry responses received by the inquiring device. This effec-

tively means that the inquiry process timed out.

T to
inq

Inquiry timeout value when the inquiring devices terminates the inquiry and

proceeds to the next stage. This is the total inquiry time when Nresp < N to
resp

Tinq

Actual time to complete the inquiry request. If Tinq < T to
inq then the inquiry stage

completed with Nresp = N to
resp. If Tinq = T to

inq then Nresp < N to
resp

T n
inq

Time taken for a particular inquiry request to return the response from a neigh-

boring device. This time is measured from the time the nth inquiry request was

started till the time the nth response was received from a neighboring device.

Tinf

Time taken for a new device to be infected. This time includes the time taken to

page the device and the times to communicate with the device to determine its

susceptibility and finally infecting it if susceptible.

Tidle

Idle time between infection cycles. Following every infectious cycle, each device

reaches an idle state and remains un-infectious for the idle duration Tidle.

Table 3.1: Bluetooth Protocol and malware Parameters

K. Channakeshava The EpiNet Simulation Environment 41

3.3.1.1 Malware Protocol

We briefly describe the malware protocol in [98] for completeness. The Bluetooth malware follows

four distinct steps during the infection cycle—inquiry phase, page phase, infection phase, and idle

phase. During the inquiry phase, the infected device gathers information about the neighborhood.

During this phase, the inquiring (or an infected) device sends inquiry requests and waits for re-

sponses from other devices. The device continues to perform this until it receives N to
inq responses

or the request times out in T to
inq . The infected device maintains a neighbor list consisting of nodes

that respond to the inquiry. Only devices that are discoverable respond to this message. After Tinq

seconds, the infected device enters the infection phase, where it processes Ninq neighbors, one at a

time. This phase involves sending a page request to each neighboring device and obtaining a page

response, sending a message that verifies the condition of this neighbor. The neighbor’s condition

is either susceptible, not susceptible, or infected. The susceptible node then receives the malware

packet with payload to cause the infection. If the neighboring device is not susceptible or is already

infected, then the packet is not transmitted. The infected device then repeats these steps with all

devices in the neighbor list. Once the entire neighbor list is processed, the infected node becomes

idle for Tidle before restarting the infection process with a fresh inquiry process.

Our modeling approach incorporates the malware protocol as a probabilistic timed transition system

(PTTS) called the malware manifestation. This model represents the various stages of the malware

protocol executed by an infected device. The timing of the transitions and the probability of being

in particular states of the manifestation is obtained from simulation studies. In these calibration

experiments, we conduct a detailed simulation using packet accurate small scale malware simulations

with tools like NS2 [76] or Qualnet [85]. In Section 3.3.1.2, we describe the PTTS model for the

Bluetooth malware. Further, in Section 3.3.3, we provide information regarding the validation of

the model and compare it to the results obtained from the detailed simulation results.

K. Channakeshava The EpiNet Simulation Environment 42

3.3.1.2 Malware Model

The malware model is built to abstract the details of the actual detailed Bluetooth protocol.

Figure 3.8 shows the malware modeled as a PTTS. Though [99] models the Bluetooth protocol

analytically, the several modeling assumptions regarding homogeneous distribution of devices and

steady state conditions do not occur in realistic wireless networks. Building analytical models

accounting for the realistic conditions is intractable. Detailed simulation studies on smaller scales

do not result in actionable information to tackle the malware spread and study its true impact.

Abstract simulations by using abstract models for the malware under realistic network conditions

motivated the modeling approach we take.

susceptible

incubation

idle

timeout

infected
inquiry

infectious

1
1

n

2

1

2

p1

p2

pn

T
timeout

T
inq

p
1 - p

1.0

1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0

1.0

Transition

induced by

simulator

T
idle

Forever

T
inf

Figure 3.8: Behavioral model for the Bluetooth malware characteristics or the manifestation of

the malware.

Initially, all nodes are susceptible and remain susceptible until they become infected through the

simulation. When conducting the simulation study, we consider some nodes as infected initially and

force this transition on these nodes. Once a node becomes infected, the node incubates for a certain

time, denoted by Tinf . This is the time taken to actually pass the infection to a new node and is

lumped in the incubating state. This time is obtained from the Tinf histogram. When incubating,

K. Channakeshava The EpiNet Simulation Environment 43

the node cannot infect any other susceptible nodes–i.e., the node is not infectious. Once the device

is infected, the malware begins executing its protocol. The protocol begins with an idle state where

it waits for a certain idle time, Tidle, without spreading the infection. Tidle is a malware specific

parameter that can change based on the malware characteristics and indicates the time between

two infection cycles. After this the malware enters the infection cycle by becoming infected. In

the model, the infected device does not spend any time in the infected state and moves either to

timeout with probability p or to inquiry with probability (1 − p), where p is the probability that

the node’s inquiry terminates without receiving any response. This incorporates the conditions

when the inquiry terminates with no responses or obtains at least one response. The probability

p is obtained from the Tinq histogram. Once in the timeout state the malware spends T to
inq time

and returns back to the infected state. Because there are no neighbors discovered, the node has

to perform another inquiry after Tidle time. If the node picks the inquiry state, after a Tinq time

it shifts into the infectious state when the infectious cycle begins. The time spent in these set of

states depends a lot on the Bluetooth protocol and its functioning. Therefore, the probability pt of

choosing a certain cycle time t : t ∈ (1, n) is deduced from the Tinf histogram. This is represented

in the disease model as bt branches with t states in each branch. In each state bi
t where i ∈ (1, t),

the probability of infecting at time i, pi
inf is derived from the Tinf histogram. After the last state

in branch bt the node moves back into the idle state and the next infection cycle continues until

the node remains infected or simulation is complete. Here, we make an important assumption: we

assume that the probability of infecting a susceptible node at time t1, pt1

inf is independent of pt2

inf

at the next instant t2. From our validation results in Section 3.3.3, we find that this seems to work

very well.

3.3.2 Model Calibration

The model in Figure 3.8 has aspects of the Bluetooth protocol that require calibration. To perform

this calibration we conduct detailed simulations in small settings to obtain certain parameters that

are used to calibrate the model. Further, because we are studying the Bluetooth malware, the

parameters of interest are derived from the aspects of the Bluetooth protocol that matter in the

K. Channakeshava The EpiNet Simulation Environment 44

spread of the malware.

3.3.2.1 Calibration Experiments

The experiments were performed using the detailed simulation implemented in NS-2 and specific

parameters required were analyzed and obtained from the experiments. We have implemented a

Bluetooth malware model in NS-2 for this study using UCBT model for Bluetooth protocol stack

[93]. As detailed simulations are not scalable, we consider a single location with 700 people arriving

and departing at various instants during the 4 hour interval of the simulation. The arrivals and

departures are based on the activity-based mobility model and the arrival and departure times are

rounded to 300 s intervals—no new arrivals/departures during the 300 s interval. We assign an area

of 120 × 120m2 to the location and generate the device positions randomly in the area. We neglect

mobility of devices in the location and the device remains at the same position allocated for the

duration of the stay. We randomly select the individual to be infected and start the spread of the

malware. We make some assumptions for the purposes of simplifying the calibration experiments.

Nevertheless, they do not alter the procedure for a study dropping some of these assumptions.

• All devices are discoverable. This ensures that all devices respond to the inquiry request from

any neighboring device.

• All devices are connectable. This means that connections can be established to all the devices

irrespective of their status, infected or susceptible.

• All devices are susceptible. For the purposes of the calibration we are assuming that all

devices are in either of the two states, susceptible to being infected, or infected.

• No errors are introduced in the medium. The wireless transmissions are error free and the

malware inquiry request or the malware code itself have no errors during transmission.

The parameters of interest from this study are outlined in Section 3.3.2.2. We extract these pa-

rameters and use them to calibrate the model. The calibration experiments take approximately 48

K. Channakeshava The EpiNet Simulation Environment 45

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

Inquiry Time (s)

P
ro

ba
bi

lit
y

(a)

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Infection Time (s)

P
ro

ba
bi

lit
y

(b)

Figure 3.9: Results for inquiry and infection time obtained from the detailed simulations. (a): In-

quiry time distribution from detailed simulations conducted at a particular location; (b): Infection

time distribution from the same simulation study.

hours for a simulation duration of 4 hours. Clearly, this cannot be used to make a detailed study

and analysis of the malware at a decent scale.

3.3.2.2 Calibration Parameters

From the malware protocol described in Section 3.3.1.1 it is clear that the inquiry process has to

complete either with the Nresp number of responses, or the inquiry terminates after T to
inq . Because

every Bluetooth interface is performing frequency hopping, the time taken to receive a response

from a neighboring device is a random number. Similarly, the time taken to complete the inquiry

request is also a random number but depends on the density of devices in the neighborhood and

N to
resp. Figure 3.9a shows the distribution for the inquiry time for the detailed simulation studies.

Once a device is infected, it periodically cycles through an idle phase during which it does not

propagate the infection, and a infectious phase. The total time the infected device spends in the

idle phase is constant idle time Tidle. The total time the infected device continuous to infect other

devices (Tinf) is dependent on Nresp, the number of those with which a connection can be established

K. Channakeshava The EpiNet Simulation Environment 46

and whether the connected device is infected or susceptible. Figure 3.9b shows the distribution

for infection times in the detailed simulation study. Thus, the parameters we are interested in

evaluating from the detailed simulations are the distributions for Tinq and Tinf , Tidle value for the

malware distribution, and the probability that the inquiry times out (obtained from the last bar in

the Tinq distribution).

3.3.3 Validation of malware Model

Before using the model to conduct the studies for the spread of the Bluetooth worms, we first need

to validate the model. We validate the malware model (Section 3.3.1.2) by comparing the results

with detailed packet level simulation using NS-2. For this comparison, we first calibrate the model

from exact simulation with specific parameters—inquiry time and infection time distributions and

inquiry timeout. We use the calibrated model for validation. We implement a Bluetooth malware

model in NS-2 using the UCBT’s Bluetooth [93] implementation. Because packet level protocol

simulations are not scalable, we consider scenarios with 100–400 devices in a single location, with

activities over a 4 hour period during the day. Note that we use activity-based mobility model in

NS-2 for the calibration and validation experiments. The malware packet size of 20, 000 bytes and

probe packet of 27 bytes were used for the simulation studies as in [99].

The assumptions for the calibration experiments hold here as well. For the experiments with the

EpiNet simulator we use the abstract Bluetooth malware model we describe in Section 3.3.1.2 and

calibrate it with the experiments in Section 3.3.2.1. We compare the results of the simulations in

terms of the number of infections and the time taken. We find that the EpiNet study for the same

one location scenario in the calibration experiments takes 25 minutes (the detailed simulation study

takes approximately 48 hours or 2 days to complete the same).

Figure 3.10 shows the comparison between the cumulative infections in the NS-2 simulations and

EpiNet. We find that the results are comparable and extremely close. Considering that the simula-

tion granularity for EpiNet is 1 s, the infection growth tracks the growth observed by the detailed

simulations. Figure 3.10a shows the comparison between various seeds of EpiNet’s simulations with

K. Channakeshava The EpiNet Simulation Environment 47

8 AM 9 AM 10 AM 11 AM 12 Noon
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Simulation Time (sec.)

%
 In

fe
ct

ed
 N

od
es

NS2
EpiNet (seed 1)
EpiNet (seed 2)
EpiNet (seed 3)

(a)

8 AM 9 AM 10 AM 11 AM 12 Noon
0

0.02

0.04

0.06

0.08

0.1

0.12

Simulation Time (sec.)

%
 In

fe
ct

ed
 N

od
es

0 500 1000
0

0.02

0.04

0.06

NS2

Original

Work2 Ch.

Work3 Ch.

(b)

Figure 3.10: Malware Model Validation with NS-2 Simulations. (a): Comparison between NS-2

simulation results with the results from the malware model at work location 2; (b): Effect of

characterization at location on simulation of another location.

NS-2. Here the model is calibrated using NS-2 simulations from the same location. For example,

if work1 was the location used to calibrate the model, EpiNet is run on the same location with the

calibrated model. In the large scale simulations that we need to study, there are tens of thousands

of activity locations and so the model cannot be calibrated for each location individually. We also

need to validate is the impact of using the model in location L2 while the model is calibrated using

L1. Figure 3.10b shows exactly this. We calibrate the model using location work1 and use it on

the different locations (work2 and work3). We find that using a different location to calibrate the

model does not affect the results significantly. There are slight differences, but they are marginal

when compared to the benefit we gain by using a model calibrated from a single location across all

locations.

Figure 3.10a shows the comparison between the exact simulation and the Bluetooth malware model

for a location. We can see that the simulation using the Bluetooth model tracks the infection CDF

for the packet level simulation. The time taken for the NS-2 simulations for this setting was 48

hours (2 days); the simulation using the malware model with EpiNet took 10 minutes. There is

a huge time advantage in using the high level simulation, and the accuracy is good in comparison

with the detailed simulation. For this comparison, we have characterized the models using the Tinf

K. Channakeshava The EpiNet Simulation Environment 48

histogram for location l (H l
inf) with 1 s as the width of each interval (for example, any Tinf between

0 and 1.0 s is counted in bin 1, and so on).

3.4 The Parallel Simulator

In this section, we provide the details regarding the parallel simulator in the EpiNet framework. We

implement a parallel discrete event simulator (PDES) where arrival, departure, and disease update

events are executed to perform the simulation of malware propagation at activity locations. The

basic structure of the simulator is borrowed from the human epidemics simulator, EpiSimdemics [8].

EpiSimdemics is a scalable parallel algorithm to simulate the spread of contagion in large, realistic

social contact networks using individual-based models. It is an interaction based simulation of

a class of stochastic reaction-diffusion processes [8]. The scaling in EpiSimdemics is obtained by

exploiting the semantics of disease evolution and scales to 100 million individuals.

There were several modifications made to EpiSimdemics to study mobile malware. EpiSimdemics

exploits the semantics of disease evolution and performs several optimizations and thus achieves

scalability. The same does not hold for mobile malware as they have completely different character-

istics: 1. Time scales of mobile malware are similar to the Internet worms while the spatial nature is

similar to human epidemics. An infected device becomes infectious immediately after the infection

and does not have the same incubation period as a human epidemic (normal incubation periods for

human contagions extend beyond a day, and sometimes even weeks). Mobile malware simulators do

not have the luxury of such extended incubation periods. 2. Wireless devices can communicate with

multiple devices at much larger distances. Human epidemics have a much smaller spatial effect than

certain wireless technologies. This complicates the infection processing parallelization task. This

required modifications to the disease update algorithm and each agent carries the disease state to

the activity location. The event handling takes care of updating the state of a device immediately

after infection. The range based wireless networks reduces the parallelization capability of EpiNet,

and modifications to the visits of the individual ensured that each individual is present in multiple

sublocations simultaneously. This requires proper handling of the infection propagation. Details

K. Channakeshava The EpiNet Simulation Environment 49

are provided in the next section.

Each agent is an individual in the synthetic population and maintains a within-host state of the

infection through a contagion manifestation or disease model. EpiNet embeds a Bluetooth malware’s

model or manifestation within each device. The manifestation is a probabilistic timed transition

system (PTTS) model of the Bluetooth and worm protocol as discussed in Section 3.3.

3.4.1 EpiNet Implementation

Several factors inherent in computer malware behavior require modifications to the EpiSimdemics’

algorithm summarized above. Contagions affecting humans have longer incubation periods, some-

times hours, several days, or weeks. EpiSimdemics exploits this nature in implementing the parallel

algorithm. Unlike human contagions, which have longer incubation periods, mobile malware or any

computer worm becomes infectious immediately after the infection. This reduces the opportunities

for exploiting parallelism available to EpiSimdemics. Thus, scaling EpiNet is much harder and it is

identical to a parallel discrete event simulator. The only scaling that can be exploited is the paral-

lelization of the event execution at locations. Another aspect of the Bluetooth or wireless malware

is the network. Unlike human contagions which can propagate through the air, wireless malware

can spread only to devices that are in range of the infected device. In case of Bluetooth, this is

10 m, and for IEEE 802.11/11e/11n standards the range is higher. Each sub-location in EpiSim-

demics creates a mutually exclusive event boundary allowing parallelization of event execution to

the sub-location level. EpiNet, on the other hand, performs sub-location modeling differently, as

outlined in Section 3.2.1.2, and creates random geometric graphs (RGG) in locations. This results

in overlap in the sub-locations and does not allow for sub-locations to execute events in parallel as

there is some dependency between sub-locations.

EpiNet implementation accounts for the newly infected devices to become infectious immediately

by designing the individual to maintain a local copy of the disease manifestation. Essentially, the

individual carries the manifestation to the location. When the activities of a particular individual

are processed to construct the visits, in addition to creating arrival and departure events at times

K. Channakeshava The EpiNet Simulation Environment 50

when the individual arrives at a location and departs from the location, the disease manifestation

is created. The creation of the manifestation for each individual allows the simulator to track the

progress in the disease states of the manifestation. Because we round the arrival and departures for

300 s intervals, the arrival and departure events are executed at that granularity. The disease states,

on the other hand, require much more frequent updates; in the worst cases, they are updated every

second. We use the disease update events to perform the state transitions in the manifestation.

The second aspect is the distance requirement for wireless communication links. Because Bluetooth

has a range of 10 m, the EpiNet simulator is required to transfer the physical location of the device

at a sub-location and use this for creating communication links between devices at runtime. Only

if devices are in range can Bluetooth worm propagation occur. This is a configurable parameter

and can be altered for another kind of wireless network.

3.4.1.1 Data Partitioning and Algorithm

Locations People

Event Queue

Visits

PE-1

Broker

Locations People

Event Queue
PE-2 Other

PEs

Figure 3.11: Implementation of the data partitioning and event creation in EpiNet. Each PE

shares a set of locations and individuals and maintains an event queue for the events that are

processed in a PE. Individuals (from other PEs) that perform activities in locations of PE-1 create

events in PE-1’s event queue.

Before describing the algorithm for EpiNet, we outline the scheme used for parallelizing the data.

Figure 3.11 pictorially represents the data partitioning and the way the events are created for

K. Channakeshava The EpiNet Simulation Environment 51

visits to a location. The data, in this case the synthetic population and the locations, are divided

into every processing element (PE). The way this division is performed is similar to EpiSimdemics.

Current implementation performs a simple division based on the individual’s identification number.

Although this can provide better performance if a more intelligent mechanism is used, we do not

implement it in this version. We define the PE assigned with a block of individuals and locations

as the home PE. When an individual performs an activity at a location, the home PE transmits

the visit information to the location’s home PE. If the home PE for the individual and location are

the same, no transmission takes place. Only simulation triggered updates, such as when a device

becomes susceptible or crashes – i.e., the device is removed from the simulation, or the device is

patched and updated by a message to the home PE of the individual. At the location’s home PE,

the arrival at and departure from the location are controlled through arrival and departure events

executed at the location PE.

Each PE performs the steps as outlined in Algorithm 1 every ∆t. In our simulation ∆t = 1 s,

although we can use any time granularity required. Step 1 computes the new infections as a result

of the SMS malware for an infected device. This implements a probabilistic model for infecting

the device with SMS malware. Note that irrespective of how the infection occurs, the malware we

consider is a hybrid that propagates infection in either medium. Step 2 and 3 are computed for

each person in the PE. computeVisits looks at the schedule of the individual and based on the

activity location and start time of the visit, sends a message to the PE containing the location

where the activity takes place. This happens only if the activity starts at the current value of t.

sendVisits sends the messages to the locations (on other PEs) where the activity occurs. Note

that each PE is performing these steps in parallel and continues to send messages and receive mes-

sages from the broker. When the receiver retrieves the messages through readMsgs, it constructs

events for the arrival and departure of the individual and adds them to the event queue. At the end

all PEs synchronize before processing the events. Once every PE has the required individuals in

the locations, we can process events and propagate the infection (computeInfections). Any call

to computeInfections results in new infections and each new infection is propagated to the home

PE of the individual for use in the future. Locally, an infected device updates the disease mani-

K. Channakeshava The EpiNet Simulation Environment 52

Algorithm 1: The EpiNet Algorithm.

for t← 0; t < T ; t← (t + ∆t) do

foreach Pi ∈ P do

//compute new infections from SMS malware

1 computeSMSInfections(Pi);

markInfected(Pi);

//send visits to location P Es

2 computeVisits(Pi , t);

3 sendVisits(P E);

//process visit messages

4 Visits ← readMessages();

//create events from the visits

5 makeEvents(Visits);

//wait till all PEs obtain the data for instant t

synchronize();

//execute the events for each location

foreach location lj ∈ L do

//compute the proximity malware infections

6 computeInfection();

7 sendOutcomes(P E);

readMessages();

synchronize();

//update health state

foreach i ∈ Pi do

8 updateState();

K. Channakeshava The EpiNet Simulation Environment 53

festation and creates disease update events for performing transitions through the manifestation.

The computeInfections executes the events serially for each location in a PE. After completion of

processing the events for all locations, we need to synchronize and wait for other PEs to complete

this step before continuing with the next instant (t + ∆t). The infection messages conveyed to the

individual’s home PE update the state of the individual as infected by updateState.

3.4.2 Interventions in EpiNet

The responses implemented in EpiNet can be classified broadly as (i) adaptive/non-adaptive and

(ii) local (individualized) and policy oriented.

Non-Adaptive Adaptive

Static

Measures

Dynamic

Measures

Passive Self

Detection

Active Self

Detection

Local Signature

Update

Centralized

Signature Update

Policy-based

Individualized

Figure 3.12: Response mechanisms implemented in the EpiNet framework. We have non-adaptive

and adaptive responses that can use a combination of static and dynamics metrics. Dynamic met-

rics are determined through simulations. Policy-based and individualized responses are inherently

adaptive and are implemented by the service provider and the individual, respectively.

K. Channakeshava The EpiNet Simulation Environment 54

3.4.2.1 Adaptive and non-adaptive interventions

Non-adaptive interventions occur before the start of the wireless epidemic and are a result

of certain devices being patched for a vulnerability exploit that is released. These would be for

non-zero-day malware where the fixes are available before the exploit starts to spread. If the

device is not patched, then it becomes susceptible to the malware. The unrealistic assumption

in such interventions is that people do not adapt to the malware and that devices that are not

patched initially remain unpatched throughout the epidemic. Further, they are limited to studying

interventions that are permanent, i.e., the patch completely eliminated the risk of getting infected

once the device becomes exposed to the malware.

Adaptive intervention strategies, on the other hand, incorporate changes in the movement of

the people and include treatments that have both temporary effects (shutting the devices off for

a brief period, disallowing the use of devices in certain locations, etc.) and permanent effects

(patching a vulnerability). They are strategies that primarily change over the duration of the

epidemic and undergo changes in the degree at which interventions are applied. For example, while

an epidemic is in progress, the level at which the interventions are applied may depend on the

efficacy of the previously employed strategy. If an earlier (early during the epidemic) strategy is

found to be effective, it can be repeated, targeting other devices at varying stages of the epidemic.

If a particular strategy is found ineffective, a different strategy can be tried. In the interventions we

have implemented in EpiNet, we can differentiate various strategies by how frequently interventions

are applied and triggering conditions are checked, i.e., the degree of adaptation.

At an implementation level, a non-adaptive intervention is specified as either changing the vulner-

ability of a device to contract the malware, or changing the behaviors of the intervened devices.

In the former case, the intervention does not change the device-device interactions, so the disease

may transmit through the contact network via the same edges. But the transmissions are hindered

at the intervened nodes. This class of interventions include software patching, updating signatures

for malware detection, or disabling communication sub-systems if anomalous activity is detected.

A device that has been patched still goes to the same places and interacts with the same devices

K. Channakeshava The EpiNet Simulation Environment 55

as before. But now the malware cannot propagate via this device.

3.4.2.2 Policy-oriented and individualized interventions

Policy oriented interventions are patches or fixes that are propagated by the service provider

or the application developer (through the software vendor or service provider) [53]. They include

over-the-air (OTA) delivery of important updates from time to time without user monitoring.

Individualized interventions, on the other hand, are the responsibility of the user. Depending on

the user’s awareness about the latest vulnerabilities, the user patches the device regularly or uses

a malware detection software (either signature-based or signature-less) to guide patching. Some

individualized interventions may be simple, but temporary–for example, switching off devices in

case of malicious behavior, or disabling or uninstalling the vulnerable software.

The static interventions entail device selection based on graph metrics, and the selection of devices

occur outside the simulation and can be configured offline. On the other hand, dynamic responses

are implemented during the simulation. We currently implement three dynamic interventions: (a)

Passive self-detection, (b) Self-detection with local update, and (c) self-detection with global update.

All dynamic responses are dependent on self-detection. We define self-detection as the ability

of the device to recognize self-infection through signature analysis or behavior recognition. Any

device that performs this detection is informed. The self-detection with local update implements a

mechanism in which an informed device can trigger any infected neighboring device into recognizing

the infection and becoming informed. This is only local in the sense it is possible only in the

neighborhood of an informed device. In the global update mechanism, a central server is informed

of the malware through an infection update message, and the central server patches devices randomly

when the number of infection update messages reaches a threshold.

K. Channakeshava The EpiNet Simulation Environment 56

3.5 Summary

In this chapter, we have outlined the parallel EpiNet simulation environment with the various

modules that go into it. We discuss the construction of realistic networks – proximity networks

for the study of Bluetooth and other proximity based technologies, and communication networks

for the study of SMS/MMS based malware. We describe the modeling procedure for the prob-

abilistic timed transition system to model the within-device malware protocol. We also provide

information on the calibration experiments we conduct to calibrate the model. We use smaller

networks in controlled settings to obtain parameters, such as probability of infection and duration

a device remains infectious before entering the idle state. We then validate the model with small

networks of 500 devices with network simulator ns-2 [76] and find that the model represents the

malware propagation very accurately. We present the parallel simulator implemented to conduct

the simulation studies using the network and the malware model.

The EpiNet framework is used to study malware propagation on a 30,000 device network in the

Chicago area and we find that for a simulated time of 24 hours the runtime is around 45 hours

on 5 processing elements. Although EpiNet was orders of magnitude faster than existing packet

level simulation, it still lacks the power and the expressibility to be used for large designs on much

larger networks consisting of millions of devices. Specifically, we need to address the following issues

related to developing HPC-models for wireless epidemiology: (a) Optimizing inter-process commu-

nication and load-balancing for heterogeneous time varying short range communication networks

is non-trivial. (b) Dynamic, independent actions of individuals results in changes in the network

and intervention strategies which implies that non-adaptive schemes for efficient computation are

not applicable. (c) There is a need for a large number of replicates to use simulation results in

practical settings (searching for extremely large parameter space)

In the next chapter, we discuss details of EpiNet, a highly scalable implementation of the same

environment with several approximations. We show that this new modeling environment can be

used on large dynamic networks to study the impact of network structure and identify devices that

are vulnerable or influential in the infection propagation. EpiNet can be used as a tool by analysts

K. Channakeshava The EpiNet Simulation Environment 57

and network planners to explore a larger parameter space to obtain insight into aspects of malware

and their control for better network design and maintenance.

Chapter 4

Computational Aspects of EpiNet

The design goal of the EpiNet simulation environment is scalability to large dynamic mobile net-

works with the ability to specify and study sophisticated response mechanisms. This requires that

the simulation environment scale to networks of 3-5 million devices. There are several challenges

that the wireless epidemiology problem poses when implemented on HPC platforms and these need

to be tackled in order to obtain scalability.

• Scale, heterogeneity, and time varying nature of short-range communication networks make

optimizing inter-process communications and load balancing non-trivial.

• A highly dynamic nature of these networks as a result of changes resulting from individual’s

actions and interventions implies that non-adaptive schemes for efficient computations are

usually not applicable. Moreover, it is important from the standpoint of human productivity

to be able to represent these interventions easily.

• The need for a large number of replicates to use simulations in practical settings. The repli-

cates are required to search an extremely large parameter space to derive results that are

statistically sound.

In this chapter, we build on the discussion of EpiNet from Chapter 3. EpiNet can now be used to

study and understand malware diffusion processes in realistic networks, to study the impact of the

58

K. Channakeshava Computational Aspects of EpiNet 59

network structure on the dynamics of malware spread, to identify individuals who are influential and

vulnerable, and as a tool for analysts and network planners for building a more resilient infrastruc-

ture. The version of EpiNet presented in this chapter, is a computationally more efficient simulation

engine to study malware propagation. It allows implementing and studying more advanced inter-

vention strategies using dynamic graph metrics such as vulnerability and adaptive policy-based

and individualized interventions. In the next few sections, we explain the enhancements made to

EpiNet. We then describe some case studies that require and use these improvements. Later, we

perform some experiments to analyze the scalability of this environment to represent and study

much larger networks for more advanced studies and evaluations.

4.1 Enhancements to EpiNet

In this section we discuss in detail the issues that need to be addressed to make EpiNet scale to

large networks and computationally intensive adaptive and non-adaptive response mechanisms.

4.1.1 Scalability of EpiNet

First and foremost, we improve the scalability of EpiNet; EpiNet can now study large dynamic

networks with 3-5 million nodes; to the best of our knowledge, this is the only modeling environment

for malware spread that scales to device networks with well over 100,000 nodes. These networks

capture the human mobility in an urban region and the resulting time varying interactions of a

digital device. As discussed earlier, the time varying nature and the lack of symmetry in such

networks makes mapping on parallel machines non-trivial; in general, determining basic dynamical

properties in such stochastic systems, such as whether the system will reach configurations with

many infections, can be PSPACE-complete1 [7]. As discussed in [92], network structure has a

significant impact on the dynamics and the conclusions that can be drawn from such simulations

– this makes scaling to large unstructured networks very important for practical use of these

techniques. Additionally, we find that there are a number of parameters with high variance that

1Informally, this corresponds to the class of problems that can be solved in polynomial space.

K. Channakeshava Computational Aspects of EpiNet 60

require a large number of simulation runs for a particular study. In these cases, it is necessary

to improve the overall time to complete the execution of such studies. From a HPC stand-point,

this means that we need techniques that can allow scaling and effective use of a large number of

processing elements (PEs) to conduct such extensive, high resolution simulations.

EpiNet achieves this scaling using a slightly lower resolution mobility and within-device malware

model that enable both sequential and parallel performance improvements. In addition, EpiNet also

employs a hybrid MPI-threads implementation for better utilization of multicore processing nodes.

Table 4.1 illustrates the scaling results and compares existing simulation-based platforms. These

ideas led to a 300 fold improvement in the overall performance for some networks, compared to

other simulations. EpiNet also does well for studies with multiple simulation runs (see Table 4.2

for time taken to complete a study on a 100 node cluster).

4.1.2 Interventions in EpiNet

The second enhancement provides an expressive framework to specify and study sophisticated

intervention strategies. An integrated modeling environment to support wireless epidemiology

should allow policy makers and analysts an environment in which they can undertake various what-

if studies; most modeling environments simply do not have this capability and users implement this

in an ad-hoc manner. A novel aspect of EpiNet is that it has been designed specifically for analysts

to be able to represent and study various dynamic counter-measures to control the spread of the

malware. This requires two new capabilities, which pose further challenges for high performance

computing: (i) One needs to measure the state of the simulation at regular intervals and perform

situational assessment. (ii) The network and individual states have to be changed dynamically,

as a result of behavioral changes, which have important consequences for the dynamics. All these

changes cause significant dynamic message exchanges in the parallel framework and can potentially

result in some slowdown depending on the actual intervention studied.

This chapter presents the changes we discuss above. First, we discuss the changes in the mobility

and model resolution, the error introduced in the final infection size as a result. We incrementally

K
.

C
h

a
n

n
a
k
esh

a
v
a

C
o
m

p
u

ta
tio

n
a
l

A
sp

ects
o
f

E
p

iN
et

61

Table 4.1: Scalability comparison between different simulation environments. Comparison between ns-2 [76], and the two versions

of EpiNet (Chapter 3 and Chapter 4, respectively) for different networks in terms of simulation time and error in results. ns-2 is

compared with sequential executions of EpiNet on a single processing element (PE). Comparisons in column 4 are between the

two versions of EpiNet on 30,000 devices. Note: Simulated time is 24 hrs. (column 5) and 4 hrs. (columns 3 and, 4).

Devices–500

Simulated Time–4 hours

(Sequential)

Devices–30,000

Simulated Time–4 hours

(Parallel – 1 PE)

Devices–1.6 M

Simulated Time–24 hours

(Parallel – 20 PEs)

ns-2

Runtime 45-50 hours
Not compared with parallel

ns-2

Not compared with parallel

ns-2

Error Reference (gold standard) – –

EpiNet

Runtime
15 minutes

(200X improvement over ns-2)
45 hours Not compared with EpiNet

Error
0% error (Results matches

with ns-2 on these networks)

Reference (ns-2 was not run for

this comparison)
–

EpiNet

Runtime
10 minutes

(300X improvement over ns-2)

20 minutes

(135X improvement over

EpiNet)

1 hour (executed on 20 PEs)

Error
< 0.1% error

(compared to ns-2)

< 5% error (compared to

EpiNet, ns-2 not used for

comparison)

No reference to compare with,

ns-2 and EpiNet do not scale

K. Channakeshava Computational Aspects of EpiNet 62

implement these approximations and then use a hybrid MPI-Threads implementation using Intel’s

Thread Building Block (TBB) library to use multi-core HPC architectures. We present the scal-

ing results for EpiNet, strong scaling and weak scaling. We show that errors introduced by the

approximations we choose are not significant enough to alter the conclusions and the error in final

infection sizes are well below < 5%. For example, a 4.5% error in the NRV1 network corresponds

to a difference of 1,389 (1.7% of the total devices) infections. Note that this error is different for

each network. For the Miami2 network (not reported here) the % error between 20 minutes and 1

sec mobility resolution is 1.7 (11,793 infections; 0.07% of the total devices). This improved scala-

bility allows for timely execution of the simulation with the set of interventions we discussed above.

EpiNet implements several of these interventions and one can sweep through the parameters and

determine the most effective strategy to control the spread.

4.2 Scaling improvements for EpiNet

Computing dynamic measures on large, realistic urban networks motivates the scaling of EpiNet.

EpiNet as discussed in Chapter 3 does not scale to large dynamic networks, and estimating dynamic

metrics (as shown in Section 4.3.1) or executing large experiment design (as shown in Section 4.3.3)

are not possible. We propose three approaches to obtain significant improvements in runtime for

EpiNet: device-device interaction network approximation, approximations to the within-host mal-

ware representation, and system level improvements to make use of multi-core cluster environments.

In this section, we look at each technique in isolation and measure the gain in implementing them

and the resulting increase in error. We then combine all of them in the scaling studies we present

in Section 4.4.

4.2.1 Approximating the host-to-host interaction network

The main goal of performing an approximation of host-to-host interaction network is to extract

the maximum scaling without adversely impacting the results. The host-to-host interaction in

EpiNet arises from human mobility patterns and the intra-location model of the wireless network.

K. Channakeshava Computational Aspects of EpiNet 63

Because work-load of the simulator is divided among the PEs, a set of locations and devices are

allocated to each PE. When devices (or people) move from one location to another, the information

of the device (i.e., current state of infection, the susceptibility of the device, etc.) is transmitted to

the new location. The key idea here is to reduce the volume of messages by reducing the frequency

of these updates by altering the devices’ mobility. The obvious side-effect is an alteration of

the device-device interaction network leading to error in propagation estimates. In this section,

we evaluate the effect of the change in update interval of the mobility patterns of individuals.

Specifically, we measure the change in the computation and communication overheads resulting

from this approximation. We also measure the error in the instantaneous and final infection sizes

and the growth of the infection.

Actual 5 min 10 min 15 min 20 min

40

60

80

100

120

140

160

180

200

220

240

C
om

pu
ta

tio
n

T
im

e
(m

in
ut

es
)

Mobility Abstraction

5 PEs
10 PEs
15 Nodes

(a)

1 sec 5 min 10 min 15 min 20 min
10

3

10
4

10
5

10
6

10
7

V
is

it
M

es
sa

ge
s

Mobility Resolution

5 Nodes
10 Nodes
15 Nodes

(b)

Figure 4.1: Advantages of abstracting the mobility of individuals. Scalability obtained by changing

the mobility update interval from 1 second to 20 minutes. (a): Computation time changes as a

result of changes in the mobility resolution. No improvement is observed in the total compute time;

(b): Shows the message volume resulting due to change in the update interval. The activity start

and durations are rounded to the interval boundaries so that update occurs in that frequency. We

obtain a 100X reduction in message volume when mobility interval is increased to 5 minutes.

K. Channakeshava Computational Aspects of EpiNet 64

Figure 4.1b and Figure 4.4 show the results obtained by changing the mobility update interval

from 1 second to 20 minutes. We measure the change in computation, communication overhead

in addition to the instantaneous % error in the propagation. Computation time is not affected by

changing the resolution of the mobility (as shown in Figure 4.1a). Nevertheless, the communication

overhead is significantly lower. Figure 4.1b shows the reduction in the total number of mobility

messages exchanged between the PEs as the resolution is changed from 1 sec. to 5 minutes, and

so on. In Figure 4.1b, the update intervals are indicated along the x-axis – ‘1 sec’ indicates that

update occurs every second as provided by the activity-based mobility data. ‘5 min,’ ‘10 min,’ etc.

indicate the rounded time intervals for the activity start and end times. We observe a dramatic

reduction in message volume when mobility update interval is increased to 5 minutes and the total

number of messages reduces by 100X. The change is not dramatic for higher update intervals. The

reduction in message volume will be higher when more PEs or nodes are used for the simulation.

It is important to note that we plot the actual number of messages that are being exchanged and

not the message sizes. In order to identify that a certain node has no more messages to send, we use

a 0 byte ‘end message.’ The message volume we plot includes these end messages as they incur the

MPI communication overhead irrespective of the actual message sizes. For the case when update

interval is according to the actual activity, we have to exchange messages every second, and if there

are no changes in the mobility, for n PEs, (n − 1) end messages are sent by each PE. This is the

reason for the message complexity in using an 1 sec. update interval. Thus, increasing the update

interval clearly leads to better communication performance although the scale of the improvements

does not extend to higher update intervals.

Key Findings: Mobility resolution leads to a 100X reduction in the number of messages exchanged.

The update interval of 5 minutes contributes less than 1% error in both instantaneous and final

infection sizes. We use this mobility resolution in all the simulations in later sections, unless stated

otherwise.

K. Channakeshava Computational Aspects of EpiNet 65

4.2.2 Approximating the Within-host model

The Bluetooth malware model we proposed in Section 3.3.1 is shown in Figure 3.8. The model

is based on the 1st generation Bluetooth malware Cabir [29] and CommWarrior [57]. The infec-

tious state consists of several sub-states arranged in branches with probability of transition into a

particular branch. Each branch depicts a possible path an infected node takes and determines the

infection probability and the duration of the infectiousness. Every state in these branches has a

corresponding probability of infection pi. The parameters in the model are calibrated from simu-

lation studies (on a network with 500 devices) conducted using Bluetooth protocol stack [93] and

our malware protocol implementation in ns-2. Due to lack of real data on malware outbreaks and

spreading patterns of mobile worms, we use ns-2 studies as the gold standard. The detailed model

has been validated with ns-2 in the same settings for smaller network sizes and found to be very

accurate. More details of the calibration and validation studies is presented in Section 3.3.

In this section, we are interested in abstracting the model further so that large networks can be

studied. In order to reduce the complexity of the model, we perform two kinds of approximations:

1. State-space compaction by collapsing states (or MSC). Here, we perform an abstraction in

which multiple sub-states in infectious state of Figure 3.8 are combined into one. Because

each sub-state represents a probability of infection (pi) at every second, this probability is

re-calculated after compacting the states.

2. State elimination using Gillespie’s algorithm (or MSE). We use Gillespie’s algorithm to

perform this abstraction, resulting in the simplified model shown in Figure 4.2b. As a result

of this abstraction, the infectious state is represented as a single state. We need to derive

both pinf (note that pinf in the reduced model is different from the pi of each sub-state) and

time the device spends in the infectious state, Tinf .

As we will show, MSE results in better gains both in terms of computation and communication

time and helps us achieve the level of scalability required to study a network with a million devices.

We also observe the % error contributions of these model approximation approaches. Note that the

K. Channakeshava Computational Aspects of EpiNet 66

model reduction in these approaches are being performed in addition to the mobility resolution of

5 minutes.

Time Unit (TU)

Infectious

Cycle 1
Infectious

Cycle 2

Infectious

Cycle 3

infectious

timeout

idle

Legend

(a)

idle

susceptible

Tidle Ttimeout

timeout

infectious

Tinf idle
p

1 - p

Transition
induced by
simulator

pinf

(b)

Figure 4.2: State elimination using Gillespie’s Algorithm. Applying MSE on the original model

through Gillespie’s algorithm. (a): Discrete-time simulation of the detailed malware model. Shows

the stages an infected Bluetooth devices goes through to infect other susceptible devices unrolled

for a time unit (TU); (b): Simplified model after applying Gillespie’s algorithm.

4.2.2.1 State space compaction by collapsing states

The sub-states in the infectious state is derived from a histogram of the probability of infection in the

calibration experiments (see Section 3.3.2 for details on calibration). The state-space compaction

is performed by pre-processing this histogram and increasing the bin width. We use bin width of

2 s, 4 s, and 8 s to reduce the number of sub-states in the infectious state. The results obtained

from MSC on the infectious state are shown in Figure 4.3.

We do not show the computation time improvements as MSC achieves only modest reductions.

This indicates that simple state compaction does not provide scaling.

4.2.2.2 State elimination using Gillespie’s algorithm

The model in Figure 3.8 requires the simulation to proceed in time steps of 1 s. Such a situation

arises in stochastic simulations, where repeated monte-carlo sampling slows the simulation down.

K. Channakeshava Computational Aspects of EpiNet 67

20min 8sec Abstract
4

10

100

300

C
om

pu
ta

tio
n

T
im

e
(m

in
ut

es
)

5 Nodes
10 Nodes
15 Nodes

(a)

Detailed 2 sec 4 sec 8 sec
70

100

130

160

190

210

C
om

pu
ta

tio
n

T
im

e
(m

in
ut

es
)

Model Abstraction

5 Nodes

10 Nodes

15 Nodes

(b)

Figure 4.3: Computational improvements and error by state elimination using MSE. (a): Compu-

tation scaling obtained in MSE compared with MSC and mobility resolution. Note that MSE and

MSC include the mobility resolution at 5 minute intervals already enabled. The comparison is

between MSE , MSC with state compaction for 8 seconds, and mobility resolution of 20 minutes;

(b): Scaling in the computation time by changing model resolution through MSC . No significant

gains are observed in compute time.

K. Channakeshava Computational Aspects of EpiNet 68

The approach by Gillespie [39] uses a technique for determining the time interval before the “next

event,” thereby skipping redundant sampling. We use a similar approach and reduce the granularity

of the simulation to achieve speedup and call it MSE. This could introduce errors, and we need to

construct a simplified model to minimize their impact.

The Bluetooth malware approximation is achieved by MSEwith a certain time unit (TU). For

example, consider 1 T U = 10 s. This means that the simulation progresses in 10 second increments

and no events occur within this interval. An offline simulation of the state space determines the

state traversals for this TU; instead of considering single state transitions in Figure 3.8, we consider

sequences of transitions that correspond to a duration of a TU. As shown in Figure 4.2a, a large

number of such sequences (we use 10,000 trials) can be used to determine the average probability

of infection, pinf , and infectious duration, Tinf . In addition, we also determine the probability of

traversing to the timeout state, p. A low resolution model obtained as a result of this procedure

is shown in Figure 4.2b. Performing simulation in terms of TUs provides an improvement in the

computation times and makes the study of large, million device networks. As Figure 4.3a shows

we obtain a 10X improvement in computation time over the detailed model. We now evaluate the

accuracy of such an approximation in terms of instantaneous and final infection sizes.

In the above sections, we have verified the cumulative and time series growth of the infection and

computed the error introduced by MSE. What about the effect of the MSE at individual locations?

Next, we determine its effect of MSE on the spatio-temporal impact on the infections, i.e., how the

model behaves spatially. Here, we look at the individual locations and determine the number of

infected devices at different times – 8AM, 12 Noon, 4PM, and end of simulation – and compare

the detailed model to model after MSE. Figure 4.5b shows the difference between the models. The

x-axis represents the number of infections in the detailed model and the y-axis represents infections

after MSE. Other than a few locations where the infection numbers do not match, this number is

very small in comparison to the number of locations. Further, the infections at these locations also

match temporally, showing that MSE maintains the infection count. Note that the approximate

model in some cases predicts higher infections in some locations indicated by points lying on the

y-axis in Figure 4.5b.

K. Channakeshava Computational Aspects of EpiNet 69

4.2.3 Error Measurements for the approximations

We will now evaluate the above approaches of approximating the malware model by computing

the error in infection propagation. Error can be measured using various outcomes of the spread.

In this chapter, we use different methods to compute the errors introduced by the approximations

to the malware modeling approach. Each of these metrics displays different aspects and provides

better insight into the outcome predicted by the EpiNet simulation environment. In this section,

we first look at the errors introduced by decreasing the mobility resolution. Next, we look at the

error introduced due to the model approximation. The following are the metrics we compute to

determine the error introduced in the modeling approximations we discuss in this chapter:

1. final infections at the end of the simulated time,

2. instantaneous infections at each time step,

3. time to infection for each infected device, and

4. vulnerability of the infected devices

Increasing the update interval for device mobility alters the network created at activity locations.

For example, by changing update interval to 5 minutes, the devices are moved once in 5 minutes.

This alters the network by extending certain links at the source location while reducing the link

durations at the destination location. As Figure 4.4 shows the error introduced measured in terms

of the final infection sizes as a result of the lower mobility resolution. The percentage error increases

as the update interval is increased except for the mobility resolution of 15 minutes. The error for

15 minute mobility resolution is lower than 10 and 20 minute resolutions because of the network

created. It shows that the instantaneous and final infection is closer to the resolution of 1 second

than 10 or 20 minute mobility resolution.

Figure 4.4 shows that the error is higher at instances where the propagation is faster and mostly

during the initial phase of the spread. As simulation progresses, the error – measured with respect

to the number of infections – introduced by the mobility resolution reduces. From Figure 4.1b, we

K. Channakeshava Computational Aspects of EpiNet 70

12 Mid 8 AM 4 PM 12 Mid

−6

−4

−2

0

2

4

6

8

10

12

14

Time of Day

P
er

ce
nt

ag
e

E
rr

or
 (

%
)

5 min
10 min
15 min
20 min

(a)

0 4 AM 8 AM 12 Noon 4 PM 8 PM 12 Mid
−1

1

3

5

7

9

Time of Day

P
er

ce
nt

ag
e

E
rr

or
 w

ith
 9

5%
 c

on
fid

en
ce

 in
te

rv
al

s

5 min
20 min

(b)

Figure 4.4: Error in instantaneous infections due to lower mobility resolution. We compare the error

in instantaneous infections when mobility resolution is reduced. (a): % error in the instantaneous

infections (measured every second) for the duration of a day when mobility resolution is reduced.

The error is lowest for 5 minute resolution and increases as this is reduced. The variation for

instantaneous infections is higher during the initial phase of the spread and finally reduces to less

than 5% in comparison to 1 second mobility resolution; (b): Percentage error in instantaneous

infections with 5 and 20 minute mobility resolution with 95% confidence intervals. We show that

the variation of this error is not more than 0.5% of the average error even when the initially infected

devices are changed.

K. Channakeshava Computational Aspects of EpiNet 71

see that the advantage gained in communication times by using increased mobility resolution does

not extend beyond the 5 minute interval, and the gains are marginal. Further, the approximations

employed do depend on the importance of accuracy. For example, if we require a very accurate

simulation result, we have to employ the highest resolution of updates for mobility. When the

studies are not that dependent on the actual number of infected devices but the trend in the spread

or an approximate percentage of devices infected, then lower mobility resolution can be employed

to obtain faster results with low errors. In either case, it appears that the resolution of 5 minutes

performs extremely well both in terms of reduced communication and low error. As a rule of thumb,

if the error can significantly change the conclusions made with a study, then we use the update

interval that produces the least error. For example, the error in final infection for the 20 minute

mobility updates is 4.5%. The error in terms of actual difference in the infection count for NRV1

network is 1,389 infections higher than with 1 second mobility resolution. This corresponds to 1.7%

of the total nodes in NRV1 network. Note that this error is different for different networks. For the

Miami2 network (not reported here) the % error between 20 minute and 1 sec mobility resolution

is 1.7 (11,793 infections and 0.07% of the total devices).

Figure 4.5 shows the error obtained by enabling the modeling approximations in addition to the

mobility approximations while studying the malware spread. Here we look at two different aspects

of the spread patterns and their effect on the instantaneous infection size and the spatial spread

patterns. The instantaneous infections are measured as a global measure of total infections across

all locations measured every second. This is shown in Figure 4.5a. The % error in the instantaneous

infections is shown in Figure 4.5a and find that is somewhat higher than for the original model.

However, the % error in the final infection sizes of the two is comparable. This shows that the error

introduced by employing an approximate model is not very significant and can yield significant

scaling in the ability of the simulator to study much larger networks significantly faster. For

the spatial spread patterns we look at all the locations in the simulation scenario and consider

each location while comparing the temporal infection counts at each location. We plot the actual

infection counts we observe in Figure 4.5b. All points that lie along the 45◦ diagonal show that the

number of infections at each location is the same whether the approximate or the detailed model

K. Channakeshava Computational Aspects of EpiNet 72

8AM 4 PM 12 Mid
−2

0

2

4

6

8

10

Time of Day

P
er

ce
nt

ag
e

E
rr

or
 (

%
)

0 1:30AM

0

20

40

2 sec
4 sec
8 sec

(a)

10
0

10
2

10
4

8 am 12 Noon

10
0

10
2

10
4

10
0

10
2

10
4

4 pm

Detailed Model

A
pp

ro
xi

m
at

e
M

od
el

10
0

10
2

10
4

Final

(b)

Figure 4.5: Error due to state elimination using MSE . Error in the final infection sizes as a result

of state elimination using MSE measured as a percentage of the devices for the NRV1 network.

(a): Sensitivity to model parameters increases % error in instantaneous infections when model

resolution is decreased. The inset shows the % error during the first few minutes of the epidemic.

Error in final infection numbers are low enough not to change the conclusions; (b): Comparison of

infections at a spatial level within locations at different instances during the spread of the malware.

Here we compare the approximate model with the detail model using the cumulative infections at

different instants (8 AM, 12 Noon, 4 PM, and 12 Midnight).

K. Channakeshava Computational Aspects of EpiNet 73

is used to study the malware. In this case, although we do not observe such a dramatic result,

we observe that the approximate model is accurate in predicting the number of infections in most

locations. This holds well when we look at the temporal infection spread across the locations.

0 500 1000 1500
0

0.01

0.02

0.03

0.04

0.045

Infection Time (min)

N
or

m
al

iz
ed

 n
um

be
r

of
 d

ev
ic

es

Detailed
Abstract

(a)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Device Vulnerability
N

or
m

al
iz

ed
 n

um
be

r
of

 d
ev

ic
es

Detailed
Abstract

(b)

Figure 4.6: Time to infect and device vulnerability due to model and mobility approximations.

Comparison of the time to infection and the device vulnerability for the NRV1 network between

the detailed approach and mobility and model approximations. (a): Distribution of infection

time to compare the abstract and detailed modeling approaches. In the abstract model infection

times of devices have moved to the left, indicating earlier infections than with the detailed model.

Nevertheless, the overall nature of infection times remain unaltered; (b): Device vulnerability

distribution comparison between detailed and abstract models with 100 trials. There are some

outliers when the abstract model is used as shown where a significant number of devices have

infection likelihood of 0.2. Most of the devices with high vulnerability for the detailed model are

not shown to be highly vulnerable.

In addition to measuring the difference in the final infection sizes between the detailed and the

approximate models, we measure two quantities: (1) the infection time distribution, and (2) the

device vulnerability distribution. The infection time distribution shows the distribution of the time

when the devices become infected starting with the same set of initially infected devices. This

provides another dimension to the analysis of the effect of modeling and network approximations

we perform to improve the scalability. Device vulnerability indicates the probability that a device

K. Channakeshava Computational Aspects of EpiNet 74

becomes infected irrespective of the initially infected devices and indicates how the modeling and

network approximations affect this metric. In this section, we compare the detailed and the approx-

imate methods by looking at these metrics. The detailed approach is with the mobility resolution

of 1 second and the original malware model (presented in Figure 3.8, Chapter 3). The approximate

approach is the one with both the reduced mobility resolution and state elimination using MSE.

Figure 4.6 shows the results for the infection time and vulnerability distributions measured for the

NRV1 network. Figure 4.6a shows the infection time distribution and compares the two approaches.

It shows that the two approaches are very close and the peaks have almost the same values,

but the infection time for the abstract model are slightly moved to the left, indicating that the

maximum number of devices were infected earlier than the detailed model. It shows that when

the approximations are enabled, the devices get infected earlier and more infections occur earlier.

There are fewer samples for the approximate model as the simulation interval is increased to 30

seconds but the results from the approximations do not significantly alter the infection times.

Figure 4.6b shows the distribution of the vulnerability obtained as a result of the approximations

and compares it to the detailed approach for the NRV1 network. The comparison indicates that

there is a significant change in the vulnerability distribution between the two models. Vulnerability

is a metric that has significant variability, especially in a scenario where there are a large number

of devices and the initial conditions (as to the initially infected devices) are changed. Determining

this metric with sufficient accuracy for a network with millions of devices requires a large number

of trials. This is the reason for the large variation in the two approaches, and more trials would

provide a better picture on the actual difference.

Key Findings: Of the two model approximation techniques, MSC and MSE , MSE provides 10X

improvement in computation time and contributes 2-3% error in the final infection size. Out of the

metrics we used to compare the two approaches, the vulnerability distributions show significant

differences. The infection time distributions compares very well with either approach. In this

section we have used the model approximation techniques in addition to reducing the mobility

resolution. In later sections, we use EpiNet with both these approximations in addition to the

system-level implementation optimized further for multi-core clusters.

K. Channakeshava Computational Aspects of EpiNet 75

Algorithm 2: EpiNet Algorithm with Intel TBB

Input/Output:(Same as sequential algorithm);

1 task(l);

foreach Infected device u ∈ Dl do

for n ∈ Nu do

2 if n ∈ S then

i
infects
−−−−−→

pi

n;

3 Store new infections;

if reader then

4 Read data from disk;

Send to home PEs of devices and locations;

else

Recv allocated devices and locations;

for t = 0 to T do

5 Set initial states of devices;

foreach d ∈ DP E do

if activity exists then

6 Send device to location;

7 Receive devices from other PEs;

8 Synchronize PEs;

9 parallel for(task(l), LP E);

for l ∈ LP E do

Send infection notification messages;

Receive notifications;

10 Synchronize PEs;

K. Channakeshava Computational Aspects of EpiNet 76

4.2.4 System-level optimizations using hybrid MPI-Threads

In today’s high performance computing environments, hierarchical hardware designs are employed –

shared memory nodes with several multi-core CPUs. So, it is important to be able to take advantage

of this and explore options to implement a hybrid approach with a single MPI process per node

and multiple threads performing specific tasks. We employ the Intel R©Threading Building Blocks

(TBB) for creating the multi-threaded implementation of the MPI-based parallel implementation

of EpiNet.

We use a simple form of loop parallelism through the parallel for construct provided in TBB.

Algorithm 2 shows the pseudo-code for EpiNet using TBB libraries. The task for each thread is

infection computation (Line 1). We alter the implementation to optimize the infection computation

part of the algorithm, which accounts for 50% of the total simulation runtime. Further, because

the infection computations at locations are independent (devices do not simultaneously exist in

multiple locations), we can process them in parallel. We implement the infection computation in

the original parallel implementation of EpiNet in parallel. The task is defined as shown here. TBB

uses the grainsize parameter to determine the number of tasks allocated to each thread. We design

each task to consist of processing a set of locations in LP E grainsize at a time. Aspects of notifying

the new infections and receiving infection notifications are moved outside the loop.

In the rest of this chapter, we refer to this implementation as EpiNet-TBB. Section 4.4.3 describes

the experiments we perform and analyzes the results.

4.3 Illustrative Case Studies using EpiNet

In this section, we use the EpiNet simulator to study the propagation of mobile malware on large

networks. We study the NRV and Miami networks with the people in two separate demographics –

one consists of people in the age-group of 20-50 years (NRV1 and Miami1) and another with people

in the age-group of 13-80 (NRV2 and Miami2). Figure 4.7 shows the configuration of these studies

and we use the EpiNet simulator instead of EpiNet.

K. Channakeshava Computational Aspects of EpiNet 77

1. Networks: (# Devices; # Locations)

(a) NRV1: 77,659; 30,896

(b) NRV2: 126,800; 39,766

(c) Miami1: 1,269,650; 448,453

(d) Miami2: 1,642,565; 465,267

2. Initial infections: 1%

3. Tidle: 20 s; Ttimeout: 12.80 s, Nresp: 4

4. Infection seed time: 12:00 Midnight

5. Simulated time: 24 Hours from 12 Midnight to 11:59 PM next day

6. Simulators used: EpiNet

7. Seeds: 5 (for each combination of input parameters). All plots show 95% confidence intervals.

8. Computing resources: SGI Cluster with 96 nodes, 3GHz Xeon processor with 8 cores/node

and 16GB RAM

9. # PEs: NRV1/NRV2: 5-30; Miami1/Miami2: 15-40 nodes

Figure 4.7: Experimental configurations and parameters.

K. Channakeshava Computational Aspects of EpiNet 78

We illustrate EpiNet via three illustrative studies. The first addresses the problem of finding the best

set of devices to patch in order to control the malware spread. We study an important dynamical

measure, vulnerability (defined below), and show that interventions based on this measure are much

more effective than interventions based on simple structural measures. Vulnerability is a dynamical

measure and require a large number of monte-carlo samples to get reliable estimates, and we use

EpiNet to achieve this. In the second study, we set up a factorial design to study the efficacy

of interventions as a function of spatial and demographic heterogeneity of the mobile network.

Our results show interesting differences between a rural setting and two urban regions that have

different demographics. The result highlights how such environments can be used in practice and

the importance of using realistic mobile networks.

5 10 20 40 50 80
0

0.2

0.4

0.6

0.8

1

% Device Patched

%
 D

ec
re

as
e

in
 a

ve
ra

ge
 e

pi
de

m
ic

 s
iz

e

Degree
Vulnerability
Age (20−50 yrs)
Deg+Age (20−50 yrs)

(a)

10 50 100 150 200
0

50

100

150

200

250

300

350

400

Replicates

N
or

m
 o

f V
ul

ne
ra

bi
lit

y
ve

ct
or

NRV1
NRV2

(b)

Figure 4.8: Vulnerability estimation on large dynamic networks. Case Study 1: Vulnerability as

an effective metric to select devices to patch. (a): Plots decrease in average epidemic size when

the % devices patched in increased. The devices are selected based on degree, vulnerability, owner

belonging to the 20–50 age group, and age and degree combined. Vulnerability provides the upper

bound for efficacy; (b): The number of replicates required to stabilize vulnerability estimation on

NRV1 and NRV2 networks; (c): Cumulative fraction of devices’ vulnerability as the number of

replicates is increased for NRV1. There is a high variability in vulnerability and a large number of

replicates is necessary to correctly estimate it.

K. Channakeshava Computational Aspects of EpiNet 79

4.3.1 Case Study 1: Computing dynamic measures in networks

The case study illustrates how simulations such as EpiNet can be used to solve the optimal control

problem (OCP): Given an instance of the wireless epidemic problem and a budget B on the total

number of devices that can be patched (e.g., due to time, bandwidth, or airtime restrictions), find

the optimal set of devices to apply patch so as to reduce the final attack size. The general problem

is computationally hard [28], and this motivates the use of simulation based methods.

Here we concentrate only on non-adaptive methods. We compare the selection of nodes based on

static structural measures (e.g., degree, betweenness, age) with a new dynamical measure we call

vulnerability; the vulnerability of node v (denoted by V (v)) is defined as the probability that it gets

infected (under specific initial conditions) – this is a dynamical measure, which depends on both

the temporal network and the dynamics. As shown in Figure 4.8, patching nodes in order of their

vulnerability outperforms other strategies for the OCP problem.

4.3.2 Case Study 2: Effect of device penetration

Our second study is motivated by recent work by Wang et al. [94]. We consider how adoption

of digital devices by progressively younger children is likely to affect the spread of malware and

interventions to control it. We consider proximity Bluetooth networks for the New River Valley

region in Virginia with two widely different populations – NRV1 (with 77,600 devices carried by

people in the age group 20–50 years) and NRV2 (with 126,800 devices carried by people in the

age group 13–80).

We study the propagation of mobile malware on these networks and the impact of one counter-

measure based on degree. Figure 4.9a shows the spread of the infection in the two networks in

terms of percentage of devices infected (y-axis) as the day progresses (x-axis). The solid lines

indicate the spread of the malware without counter-measures. We can make two observations from

this: (i) We see significant differences in the propagation dynamics between these two networks,

which can be explained by the network characteristics – NRV1 is not completely connected and has

K. Channakeshava Computational Aspects of EpiNet 80

138 components while NRV2 is much better connected with only 13 components (because of the

greater device penetration). (ii) The degree-based counter-measure shows different efficacy in these

two networks (as shown in Figure 4.9a) – with 20% of devices patched, there is a 75% reduction

in the number of infections in NRV1 but only 12% in NRV2. Thus, the nature of spread and the

effectiveness of counter-measures are a function of the network and result in one network not always

being translated to other networks.

0 8 AM 4 PM 12 Mid
0

0.2

0.4

0.6

0.8

1

Time of Day

%
 In

fe
ct

ed
 D

ev
ic

es

NRV1 (NoInt)
NRV2 (NoInt)
NRV1 (Deg,20%)
NRV2 (Deg,20%)

(a)

0 8 AM 4 PM 12 Mid
0

0.2

0.4

0.6

0.8

1

Time of Day

%
 In

fe
ct

ed
 D

ev
ic

es

Miami1 (NoInt)
Miami2 (NoInt)
Miami1 (Deg,20%)
Miami2 (Deg,20%)

(b)

Figure 4.9: Targeted patch application results in different outcomes. Case Study 2: Targeted

patch application on different networks. (a): % of devices infected with and without targeted

device patching for the NRV networks with different device ownership models. Patching 20%

achieves 80% (NRV1) and 10% (NRV2) reduction in final infection sizes; (b): Interventions for the

Miami1 network based on degree of the devices.

4.3.3 Case Study 3: Effect of Spatial and Demographic Heterogeneity

This study illustrates the importance of fast simulations and the need for realistic mobile networks

for formulating policies as they pertain to controlling malware spread; note that the focus is only on

illustrating the use of environments like EpiNet, rather than the specific conclusions. We consider

a spatial individualized dynamic intervention scheme where individuals proactively obtain updates

when malware prevalence in their neighborhood reaches a certain threshold. They may be alerted

by a device-based detection scheme such as [103]. The individuals that actually obtain updates

K. Channakeshava Computational Aspects of EpiNet 81

0

0.05

0.1

0.15

0.2

0.25

0.3

Increase in individual sensitivity to malware

%
 D

ec
re

as
e

in
 a

vg
. e

pi
de

m
ic

 s
iz

e

NRV2
MIAMI1
MIAMI2

Figure 4.10: Individualized dynamic intervention based on malware prevalence. Case Study 3:

Effect of individualized dynamic interventions with heightened individual’s sensitivity to malware.

High sensitivity decreases infection size by only 30%, 10%, and 5% in NRV2, Miami1, and Miami2

networks, respectively, when only the 20-50 age group applies patches.

belong to the 20-50 year old demographic. We use a factorial design with 2 factors – sensitivity

of individuals (s) and the likely-hood (l) that they apply the patch with 4 levels for each factor

(s = 10%, 30%, 50%, 70% and l = 0.1, 0.3, 0.5, 0.7). Figure 4.10 shows the % decrease in infection

size as the sensitivity of the individual increases. Even with a very high level of sensitivity, a 10%

infection rate in the neighborhood triggers an individual to obtain a patch.

Table 4.2: Runtime for a 2-factor, 4 level, 5 replicate individualized intervention study. Study

and individual runtime in minutes for the networks used in Case Study 3. The study is a factorial

design with 2 factors, 4 levels, and 5 replicates conducted on a 100 node cluster. Runtime shows

execution time without and with interventions (in parentheses) in minutes.

Networks Nodes Runtime (min.) Study Runtime (hrs)

NRV2 5 22 (22) 1.5

Miami1 15 86 (85) 5.5

Miami2 15 135 (131) 33.75

These dynamic interventions require computations to keep track of individual neighborhoods and

messaging to update global variables. Studying such interventions requires the framework scale to

K. Channakeshava Computational Aspects of EpiNet 82

efficiently manage these schemes for large networks. We determine the runtime for the complete

study for each network and the individual runs and are reported in Table 4.2. The case study for

the Miami2 network takes 35 hours of wall clock time on a cluster of size 100 nodes.

4.4 Performance Evaluation

In this section, we evaluate the scaling improvements described previously. The cluster we use

is a SGI ICE with 96 nodes, each consisting of two quad-core 3 GHz Xeon processors with 16

GB of RAM. The system uses InfiniBand interconnections. The networks we consider for this

study include the NRV1 and Miami1 networks. Figure 4.7 shows the details of these networks and

the other parameters used for the study. We model a basic infection spread scenario using the

approximate model similar to that described in first case study (Section 4.3.1).

We evaluate the following areas: strong scaling (constant problem size with an increasing number

of PEs), weak scaling (scaling problem size and number of PEs proportionally), and effects on

performance by varying the ratio of number of MPI processes to the number of cores on multicore

PEs and the scaling improvements of the hybrid MPI-threads implementation. Finally, we evaluate

EpiNet’s basic partitioning scheme against a static, graph-partitioning based approach.

With our proposed enhancements, we are successfully able to simulate a network with 1.2 million

devices for a 24 hour simulation time with a runtime of 30 min with 40 PEs. This is a significant

improvement over a previous implementation which could simulate ≈60000 device network in the

same time - a 20X improvement. The following sub-sections elaborate on each of our results.

4.4.1 Scaling Behavior of EpiNet

Figure 4.11 illustrates the strong scaling using the approximate model for a fixed network size

and structure. We observe that the total simulation time scales well as more PEs are added. The

reasons for this include (1) reduced memory footprint within each PE because it needs to maintain

only a subset of devices and locations where interactions take place, and (2) independent, parallel

K. Channakeshava Computational Aspects of EpiNet 83

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

Processing Elements (PEs)

T
ot

al
 S

im
ul

at
io

n
T

im
e

(s
)

NRV
MIAMI

(a)

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

Processing Elements (PEs)

S
pe

ed
up

s

NRV
MIAMI

(b)

Figure 4.11: Strong Scaling of EpiNet for NRV and Miami networks. (a): Total simulation time

as the number of PEs are increased; (b): Relative speedup with respect to the lowest PE number,

5 for NRV1 and 15 for Miami1.

processing of the locations at each PE. We use the runtime with 5 nodes as a reference for the

NRV model and with 15 nodes for the Miami model to compute the scaling as number of PEs are

increased.

Table 4.3 shows the weak scaling results, which indicate the scalability of the approximate model

with problem size. The Miami1 network is roughly 16 times larger than NRV1. The runtime for

perfect weak scaling is shown in row 6. The number within parentheses shows the scaling factor to

the observed runtime (row 4). As we increase the problem size and the number of PEs, we see that

simulation time scales accordingly. This confirms that EpiNet has good weak scaling properties

and can be used to study larger networks simply by adding more PEs.

4.4.2 Scaling MPI processes on multiple cores of same node

In this sub-section, we evaluate the impact of multicore architecture on the scaling behavior of

EpiNet. Figure 4.12 shows the effects on runtime when using various numbers of MPI processes

spawned on each node using the Miami1 network (note that the x-axis in these plots is the number

of PEs). We use the default OS scheduling algorithm and do not modify the affinity of any MPI

process.

K. Channakeshava Computational Aspects of EpiNet 84

Table 4.3: Runtime under weak scaling for EpiNet. Row 2 and 3 indicates the approximate size of

the network and the number of PEs used in simulations. Rows 4 and 5 displays simulation runtime

(in seconds) and the average devices per PE. Row 6 shows the normalized runtime and the factor

by which the weak scaling is off from perfect weak scaling. The columns shows the values for the

NRV1 and Miami1 networks used in the weak scaling study.

Network NRV1 Miami1

Size 1 16×

PEs 5 80 96

Runtime(s)
730.35

±0.65

944.95

±5.16

820.36

±4.23
Average

devices/node
15532 15871 13226

Norm.

(Factor)
–

746.29

(1.26×)

621.91

(1.32×)

15 20 30 50 90 150 320
1000

1500

2000

2500

3000

3500

4000

4500

5000

Processing Elements (PEs)

T
ot

al
 S

im
ul

at
io

n
T

im
e

(s
)

Cores=1

Cores=2

Cores=4

Cores=8

(a)

15 20 30 50 90 150 320
500

1000

1500

2000

2500

3000

3500

Processing Elements (PEs)

C
om

pu
te

 T
im

e
(s

)

Cores=1

Cores=2

Cores=4

Cores=8

(b)

15 20 30 50 90 150 320

400

600

800

1000

1200

1400

1600

1800

2000

Processing Elements (PEs)

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Cores=1

Cores=2

Cores=4

Cores=8

(c)

Figure 4.12: Scaling studies for MPI processes on multiple cores for the Miami1 network. (a):

Total simulation time when using 1 core and multiple cores on each node (2, 4, and 8 cores),

respectively. Using more PEs on the same network does not result in runtime improvements when

more than 2 cores/nodes are used; (b): Compute times comparison when the number of PEs

and the cores/PEs are increased for the Miami1 network. Compute time does not improve when

more than 80 PEs are used; (c): The communication time when multiple cores are considered.

Communication overhead starts to increase when more than 80 PEs are used.

K. Channakeshava Computational Aspects of EpiNet 85

We observe that adding more MPI processes per node and utilizing the available cores provides

diminishing returns as more and more PEs are used. Specifically, runtime improved proportionally

to the number of nodes for the 2 (‘Cores=2’) and 4 (‘Cores=4’) MPI processes per node cases, but

only by about 33% for 8 (‘Cores=8’) MPI processes per node case. On a single node, the possible

reasons for the slowdown include cache poisoning, network contention, memory contention, and lack

of core affinity. More analysis of the execution characteristics of EpiNet is required to determine the

contribution of each of these candidates. Across multiple nodes, as more PEs and MPI processes

per PE are added, communication costs eventually start dominating. Runtime scaling stops or

reverses beyond about 35-40 nodes due to communication costs of this particular network model.

One way of amortizing the performance degradation due to multiple MPI processes on a single

node is to employ a hybrid MPI-threads implementation, which can potentially improve per-node

utilization. These results are presented next.

LocationDevice d1

d1

d2

d3

d4

l1, l2

l2

l3, l2

l4, l3

d2 d3

l1 l2 l3 l4

d4

1 3 2 1

1 1 1 1

1 11 1111

Figure 4.13: Activity information converted to device–location network for METIS. Converting

the activity information into device – location graph for METIS. The numbers in the graph indicate

the weights assigned to the vertices and edges.

4.4.3 Scaling with a hybrid MPI-Threads Implementation

This section presents the scaling results for a EpiNet-MPI implementation of EpiNet using Intel’s

TBB framework. To recap, the TBB implementation parallelizes the infection computation using

TBB tasks (or threads) and groups all communication of new infections at the end of the computa-

tion step. In our implementation, a single MPI process is used on each node and the computation is

distributed across 8 TBB tasks. We use the default TBB task scheduler. We have also experimented

K. Channakeshava Computational Aspects of EpiNet 86

10 20 30 40 50
1000

2000

3000

4000

5000

6000

Processing Elements (PEs)

T
ot

al
 S

im
ul

at
io

n
T

im
e

(s
)

EpiNet
METIS

(a)

10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

4000

Processing Elements (PEs)

T
ot

al
 S

im
ul

at
io

n
T

im
e

(s
)

EpiNet (Proc)
EpiNet (Comm)
METIS (Proc)
METIS (Comm)

(b)

Figure 4.14: Study and comparison of load balancing strategies. (a): Total simulation time

comparison between load balancing based on identifiers (implemented in EpiNet) and METIS par-

titioning of the device–location graph. Not much improvement is obtained when METIS is used for

partitioning the load; (b): Processing and communication times for two load balancing schemes.

Improvements obtained in processing (communication) are offset by communication (processing)

overheads, thus reducing the advantage gained.

K. Channakeshava Computational Aspects of EpiNet 87

with a different number of TBB tasks but present representative results with 8 tasks.

EpiNet-TBB still maintains the strong scaling behavior of EpiNet-MPI. However, we do not see a

marked improvement in the overall performance (Figure 4.17). Digging deeper, we found that while

the infection computation time in EpiNet-TBB decreased noticeably (Figure 4.15b) as compared to

EpiNet-MPI, this gain was offset by an increase in the communication time (Figure 4.15a). This is

an artifact of our implementation choice of separating out infection computation and communication

in EpiNet-TBB. We are currently investigating a technique to better overlap computation and

communication to improve the runtime for the hybrid implementation.

1 2 3 4 5
1000

1500

2000

2500

3000

3500

Runs

C
om

m
un

ic
at

io
n

T
im

e
(s

)

(a)

1 2 3 4 5
2500

2750

3000

3250

Runs

C
om

pu
te

 T
im

e
(s

)

MPI−only

T=2

T=4

T=8

T=16

T=32

(b)

Figure 4.15: Comparing compute and communication time of EpiNet-MPI and EpiNet-TBB.

Computation and communication timing comparison between EpiNet-MPI and EpiNet-TBB with

different thread counts in the Miami1 network. (a) & (b): Total communication and computation

time for 5 simulation runs compared with EpiNet-MPI and EpiNet-TBB implementation (Note

both use the same legend).

4.4.4 Evaluation of Load Balancing Approaches

The current implementation of EpiNet distributes the data in a round robin manner using an iden-

tifier assigned to each device and location. This strategy results in a relatively even distribution of

load across compute nodes and has a simple implementation. However, we were interested in evalu-

ating this approach against a partitioning method using static knowledge about the communication

K. Channakeshava Computational Aspects of EpiNet 88

1 2 4 8 16 32
1000

1500

2000

2500

3000

3500

4000

Thread Number

T
im

e
(s

)

Communication
Processing

Figure 4.16: Tradeoff in processing and com-

munication costs in EpiNet-TBB. Tradeoff be-

tween processing and communication tasks is

shown as the number of threads exploited for in-

fection computation. Note that ‘Thread = 1’ is

the case for EpiNet-MPI implementation. Best

performance is obtained when 4 or 8 threads are

used.

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

Processing Elements (PEs)

S
pe

ed
up

s

NRV (MPI−only)

NRV (T=8)

Miami (MPI−only)

Miami (T=8)

Figure 4.17: Scaling of the EpiNet-TBB im-

plementation. Comparing the speedups of the

EpiNet-MPI and EpiNet-TBB (with 8 threads

per node) implementations. Infection computa-

tion with multiple cores does not improve when

multiple cores are used.

patterns.

To this end, we employ METIS [86], a widely used graph partitioning program to achieve these

partitions. A graph was created with nodes that correspond to locations and edges that correspond

to the communication induced between these locations. It is assumed that the computational load

is proportional to the number of devices at a location. METIS attempts to partition the nodes

in such a way that each partition does the same amount of processing and the total edge weight

between the partitions is minimized. Each partition is then assigned to a particular node.

We observe in Figure 4.14a that partitioning using METIS does not yield significant improvements

over our round-robin strategy. The reason lies in the nature of the problem we are simulating. The

contact graph of device interactions exhibits a relatively low amount of clustering. Intuitively, it

is hard to partition people in groups, where the location that every group visits is disjoint from

the location that other groups visit. Additionally, contact and device networks are essentially dy-

K. Channakeshava Computational Aspects of EpiNet 89

namic and depend on the individual and service provider responses as the simulation proceeds.

There may be cases where static partitioning may help, but it is certainly not a general solution

as our results indicate. We plan to explore more adaptive load balancing schemes in our future work.

4.5 Summary

In this chapter, we have described the improvements in the computational aspects of EpiNet.

EpiNet is now a highly expressive and scalable HPC-based wireless epidemiology framework. To

our knowledge, this is the only framework for malware spread that can scale to device networks of

over 100K nodes and has the capability to use realistic device contact and mobility models, detailed

diffusion processes, and intervention strategies. We have proposed three approaches to improve the

scalability of EpiNet: (1) a lower mobility resolution to reduce communication overhead; (2) a

model reduction technique to simplify the malware model; (3) a hybrid MPI-TBB implementation,

EpiNet-TBB. The reduced mobility resolution provides a 100X improvement in communication

(with respect to 1 sec. resolution) and contributes to < 1% error. The model reduction approach

provides a speedup of 20X (with respect to the detailed model) and suffers a loss in accuracy of

≈ 5%. We observed that EpiNet algorithm scales well both with respect to problem size and

number of PEs. We evaluated a static load balancing technique and found that it does not help in

improving the scalability. Our current EpiNet-TBB implementation does not provide a noticeable

speed-up due to dominating communication costs, but we have identified potential solutions.

Our performance results indicate that in addition to its expressiveness, EpiNet is also a highly

scalable framework to study mobile malware diffusion over large, dynamic networks. By using a

relatively simple partitioning technique, EpiNet is able to partition and distribute the work evenly

across available PEs and scale up to a large number of PEs. Our results show that the current

implementation has two main performance impediments: communication costs and optimization

related to multicore architectures. We are addressing the former by looking at better partitioning

strategies and the latter through improved EpiNet-TBB implementations. EpiNet can be extended

K. Channakeshava Computational Aspects of EpiNet 90

to study diffusion problems arising in the study of mobile social networks (e.g., opportunistic off

loading of messages for viral information propagation) as well as malware propagation in hybrid

networks with infrastructure support.

Chapter 5

Spread of Mobile Malware

The primary application of the EpiNet simulation environment is its ability to study the spread of

mobile malware. In this chapter, we conduct simulation studies to understand the propagation of

mobile malware over realistic, dynamic networks. First, we present the comparison of the results

with the activity-based mobility model with RWP. Because the simulation platform used for the

RWP mobility model is ns-2, we can only conduct small scale studies with the simulator. So,

our comparisons are performed on a single location. Next, we outline the configuration for the

simulation studies we have conducted using the environment. We discuss the networks and the

experiment design for the studies presented here. The initial set of experiments were conducted

using EpiNet, the initial version of the simulation framework. Due to scalability limitations, we

conduct the initial set of experiments on a smaller network of the Chicago downtown area. We

also present the spread patterns obtained on larger networks using a more scalable version of the

EpiNet simulator. Third, we present and analyze the nature of the spread we obtain on the Chicago

network with no strategies implemented to control the spread. We then evaluate the effect of the

within-host malware model parameters (such as idle time and probability of infection) and network

parameters (such as market share). We perform a 3 factor analysis of variance (ANOVA) on the

simulation response to determine the interactions between these parameters.

The nature of the malware spread is largely dependent on the underlying network. For accurate

91

K. Channakeshava Spread of Mobile Malware 92

estimates of the growth of the malware, an accurate network representation is extremely important.

The spreading patterns with RWP and the activity-based mobility models are very different. RWP

shows a dramatic spread of the malware and almost all the nodes become infected in a few seconds.

This can be attributed to the property of RWP that the nodes tend to concentrate at the center of

the location and thus exhibit different network characteristics that are a side effect of the mobility

generated. The activity-based models indicate a much slower spread than RWP. This is due to

the nature of the mobility where people (and devices) remain at locations for the duration of their

activities and and then move to other locations. Thus, the network is dynamic, and under such

a scenario, the device density at locations tends to vary and thus the propagation is slower. The

sensitivity analysis on the various malware model and network parameters indicates that the spread

is very strongly influenced by the market share of the susceptible device. Market share of devices

has a significant impact on the speed of the spread. We perform a formal statistical test, ANOVA,

to determine the interaction between the malware related parameters and the network parameters.

Our findings indicate that there is significant interaction between the parameters and that the most

interaction is between the idle time between infection cycles and the market share of the susceptible

devices.

5.1 Comparison with RWP

In this section, we attempt to compare the malware spread with the most commonly used mobility

model, random waypoint (RWP) model. Before going into the details of the malware spread,

we look at the differences in the structure of the network created by these models. The RWP

mobility model uses several parameters for generating the mobility—number of nodes, location

area, minimum and maximum speeds, and pause times. The activity-based model on the other

hand uses the synthetic population and their activities to generate occupancy in a location. The

occupancy of a location in activity-based mobility is time varying and so for the comparison with

RWP, we obtain average occupancy as the number of devices for RWP. RWP model generates the

mobility information with minimum speed 0.5 m/s and maximum speed 1.5 m/s with pause times

K. Channakeshava Spread of Mobile Malware 93

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

Node Degree

P
ro

ba
bi

lit
y

8 AM 10 AM 12 Noon 2 PM 4 PM

Random Waypoint

Activity−based

(a)

0
0.1
0.2

0.3
0.4
0.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Clustering Co−efficient

P
ro

ba
bi

lit
y

8 AM 10 AM 12 Noon 2 PM 4 PM

Activity−based

Random Waypoint

(b)

Figure 5.1: Graph Characteristics obtained from activity-based mobility models. (a): Comparison

of degree distribution between activity-based (top) and RWP models (bottom) at different snap

shots during the 8 hour duration of simulation; (b): Clustering co-efficient distributions for activity-

based (top) and RWP (bottom) for the same time instants.

of 300 s and 600 s. Table 5.1 shows the parameters we use for the mobility model comparison. We

generate the mobility using both models for the duration of 8 hours and take hourly snapshots of

the network.

Figure 5.1 shows the network structure in terms of the degree and clustering at different instants

of the simulation and compares the two models. Clearly, the network structure is different. The

hourly degree distribution for the two networks is shown in Figure 5.1a. Note that the x-axis in

Figure 5.1a is different for each sub-plot. This clearly shows that the RWP model results in nodes

with larger degrees than the activity-based model even when the location has a lower number of

nodes. The maximum degree in case of activity-based model is 7. From Figure 5.1b we can see that

the clustering in RWP models is slightly more than ABMM and also results in a faster spread of

the malware. It is well known that RWP exhibits the property of high device density at the center

of any given area under stable conditions. Figure 5.2 shows the density at the locations using RWP

(Figure 5.2a) and activity-based model (Figure 5.2b). We can observe that in the RWP model

the nodes are concentrated at the center of the location whereas for the activity-based model, the

nodes are distributed throughout the location. This concentration at the center causes the higher

K. Channakeshava Spread of Mobile Malware 94

8 AM 12 Noon 4 PM

0

0.05

0.1

(a) Random Waypoint Mobility Model

8 AM 12 Noon 4 PM

0

0.05

0.1

(b) Activity-based Mobility Model

Figure 5.2: Node density comparison of RWP and ABMM. Node density distribution snapshots

at a location of RWP and activity-based mobility models at different times of the day. (a): Node

density at the location at 8 AM, 12 Noon, and 4 PM for RWP model; (b): Node densities for the

same instants for activity-based mobility model.

K. Channakeshava Spread of Mobile Malware 95

Table 5.1: Simulation parameters for RWP and activity-based mobility models for the comparative

study. RWP scenario was simulated with NS-2 and the activity-based mobility model was studied

using EpiNet.

Parameters Random Waypoint Model Activity-based Model

Number of Locations 1 1

Node Number 109 91–147

Node Velocity 0.5–1.5 m/s –

Pause Time 300 s, 600 s –

Node arrival & departure No arrivals/departures Every 300 s nodes arrive or de-

part

Initially infected 1 infected device 1%, 5% & 10%

degree and slightly higher clustering observed in RWP network. This property has been observed

by Bettstetter [14].

We will now look at the worm spread dynamics in the two networks. Making comparisons between

activity-based and RWP models is not straight-forward as they depend on different parameters.

The instantaneous occupancy of the location (computed for every 300 s interval) for the activity

model ranges from 91–147. Because the arrivals and departures are rounded to a 300 s interval,

the occupancy does not change in the interval we consider. The total occupancy of the location is

572 individuals. For RWP we consider 109 devices, the average occupancy for the duration of the

simulation. Because the scenarios have a different number of nodes, we cannot perform a direct

one-to-one comparison. We varied the parameters of the initial infection sizes in case of ABMM

(1%, 5%, and 10% devices initially infected) and the pause time (300 s and 600 s) and speeds

ranging from 0.5 m/s and 1.5 m/s in case of RWP. The simulations were conducted using EpiNet

and NS-2 for ABMM and RWP, respectively.

We simulate the scenario for an hour (between 8 AM and 9 AM) and observe the number of

nodes infected by 9 AM. In case of the activity models, we randomly select 1%, 5% and 10% of

the location’s total occupancy as the initial infection size and consider a single randomly infected

K. Channakeshava Spread of Mobile Malware 96

8 AM 8:15 AM 8:30 AM 8:45 AM 9 AM
0

20

40

60

80

100

120

140

Time of Day

T
ot

al
 In

fe
ct

io
ns

EpiNet (1 %)

EpiNet (5 %)

EpiNet (10 %)

RWP−300s

RWP−600s

Figure 5.3: Infection spread comparison with RWP at a single location. Comparison between

the infection spread with RWP and activity-based mobility models within a single location. RWP

shows shows a much faster rate of propagation due to a property of RWP that causes a high density

of devices at center of the area.

device for RWP. Because there is no direct relationship between devices in RWP and activity

models, we cannot select the same device to be infected in both cases. We compare the number

of devices infected at the end of the hour. Figure 5.3 shows the infection growth (averaged over 5

seeds) comparison between EpiNet (EpiNet 1%, EpiNet 5%, and EpiNet 10%) and RWP models

(RWP-300s and RWP-600s). For the RWP model, the infections surge initially and infect almost

all of the devices present in the location within the first hour. This can be attributed to the higher

degree of the RWP network as seen in Figure 5.1a and the mixing of the devices in the location. In

fact, we observe a higher rate of infection spread for the case when pause times are lower (300 s).

Clearly, the mixing of the devices with other infected devices causes the higher rate. However, the

initial surge of infections quickly saturates for activity models. Note that the initial infection size is

different in both cases. When 1% of devices are infected, we have actually infected 5 devices. Yet

the infection spread does not go beyond 10 devices. This can be attributed to the activities of the

individuals and the duration of contact with other infected devices. For example, a person carrying

an infected device may leave the location without interacting with a lot of people or devices due to

a density variation in the location. Random models as shown in Figure 5.3 can predict a very high

level of growth in the infection when in reality, the growth saturates. The activity-based mobility

is much more accurate in representing human mobility and is extremely important to consider in

K. Channakeshava Spread of Mobile Malware 97

evaluating mobile epidemics.

5.2 Data set, Assumptions, and Experimental Design

We use the methods outlined in Section 3.2.1 to construct a Bluetooth network for a region in

Chicago downtown corresponding to the zip code 60602 and select the locations in this area. The

size of the population is 30474 device/people and 2200 activity locations. The activity extracted is

for a duration of 8 hours, from 8 AM to 4 PM, at these locations. Figure 5.5 shows some properties

of the resulting proximity network; notice the non-Poisson nature of these distributions. People

within an age range of 20–50 are selected to own digital devices. For some experiments we use the

smart phone penetration or market share of a device as a parameter for people in this demographic

class. In all others we consider that the entire network is composed of similar devices, i.e., all

of them having the same vulnerability (or a market share of 100%). This provides the worst-case

estimates of the dynamics and the final infection size as there is no heterogeneity. In a real scenario,

market share of the devices rarely reaches 50–60%. Although in future the market share is expected

to consolidate on a few popular phones – when this issue is going to bring some homogeneity in

the device distributions. Each experiment takes approximately 2 hours when no response schemes

are implemented and is repeated for 5 seeds. We report the average spread values in the plots.

Figure 5.4 shows the high level design and the parameters of the experiments. We study the

dynamics of worm spread using two measures: (i) the cumulative number of infections, as a function

of time of day, and (ii) a function T (q, .), that denotes the time taken for a q-fraction of devices to

get infected, and (.) indicates the variable that is being altered in the study. For example, when

we study the spread by varying the idle time of the worm Tidle, then (.) represents Tidle.

Now, we study the malware propagation characteristics and look at some of the malware and

network properties and study their impact. The following experiments are performed on the Chicago

network. Some of the results obtained are specific to the network and its underlying structure.

First, we look at the effect of the malware parameters’ idle time (Tidle) and probability of timeout

occurring after the inquiry request with no responses (pto). Malware implementations can use the

K. Channakeshava Spread of Mobile Malware 98

1. Network: Synthetic population from the city of Chicago (zip 60602). Activities

and activity durations are rounded to 5 minute intervals (300 s).

2. Network Size (People/devices and locations): 30474, 2209

3. Computing resources: 1 CPUs of 1GHz Pentium III Linux with 1 GB RAM

4. Number of initial infections: 1%, 5%, 10%

5. Tidle: 20 s; Tto: 12.80 s, Nresp: 4

6. Infection seed time: 8 AM (at the beginning of simulation)

7. Simulator used: EpiNet (an initial version of EpiNet was used in these exper-

iments.)

8. Seeds: 5 (for each combination of input parameters)

9. Simulation duration: 8 hours, from 8 AM to 4 PM

10. Studies:

(a) Influence of worm parameters: Tidle, pto

(b) Influence of network parameters: Market share (m), Location Density (d)

(c) Responses to Malware Spread:

• Graph metrics: Degree and Betweenness

• Device-based detection: Passive self-detection (sdth =

{1, 2, 4, 6, 8, 10})

• Detection with Signature dissemination: Local and Centralized signa-

ture dissemination

11. Average runtime: ≈ 2 hours (much shorter when responses are implemented)

Figure 5.4: Experimental setting and parameters studied

K. Channakeshava Spread of Mobile Malware 99

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Node Degree

P
ro

ba
bi

lit
y

8 Hrs
2 Hrs
4 Hrs

(a)

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Component Size

F
re

qu
en

cy

Size of Largest Component = 7837

components of size > 50 = 19

(b)

Figure 5.5: Network characteristics for the data set used in the experiments. Network charac-

teristics obtained as a result of the activity-based mobility models and the sub-location modeling.

We use a union graph for determining these measures from individual networks constructed every

300 s. (a): Degree distribution of the network; (b): Histogram of the component sizes in the

network.

idle time parameter to create stealth while propagating to susceptible devices. These techniques

can make it difficult to detect the malware. pto is the probability that an inquiry request does

not discover any neighboring Bluetooth devices. This parameter is interesting as it can help us

understand the effect of configuring a Bluetooth device as non-discoverable. Next, we will vary the

network level parameters that change the underlying network. In this evaluation, we consider the

location density (d) and market share (m) to observe the effect.

5.3 Sensitivity of Bluetooth and worm parameters

Figure 5.6a shows the spread characteristics. Comparing the studies performed in earlier work, we

find that the worm spreads much more slowly in our model than in [99, 94]. Additionally, we find

that a smaller fraction of devices is infected; e.g., at most 50% of devices become infected during

8 hours starting with 10% initially infected devices. This is clear evidence of the specific mobility

model underlying our data-set, which mixes much slower than uniform mobility, and is much more

K. Channakeshava Spread of Mobile Malware 100

heterogeneous.

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 In

fe
ct

ed
 D

ev
ic

es

p=0.1
p=0.7
p=0.9
p=0.95
p=0.97
p=0.99

(a)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

p
to

T
(q

,p
to

)
(m

in
ut

es
)

q=0.15
q=0.20
q=0.25
q=0.30
q=0.35
q=0.40

(b)

Figure 5.6: Infection spread dynamics with variation in pto. (a): Infection spread with varying

pto starting with 10% initially infected devices; b: T (q, pto) for the varying pto values in the same

scenario.

We now study the sensitivity to some of the parameters in the worm model in Figure 3.8, namely

the timeout probability (pto) and the idle time (Tidle). First, we look at the effect of varying the

probability that an inquiry request timeout occurs without a single inquiry response. We denote

this probability by pto. Surprisingly, as shown in Figure 5.6, there is a very limited effect of pto on

the total infections seen. Until pto becomes 0.9—meaning that the infected devices’ timeout occurs

in 90% of inquiry requests—the infection still spreads to a large number of devices (about 45%).

Beyond this, the successful completion of inquiry with a response reduces and the infection does

not seem to take off. Only about 20% of the devices become infected starting with 10% initially

infected devices. Clearly, this shows that disabling the discoverable mode in Bluetooth devices can

cause a large slowdown in the spread of the malware. Figure 5.6b shows the plot of T (q, pto), i.e,

the time taken to infect q-percentage of devices when varying pto.

Next, we vary the idle time of the worm to observe the effect of a stealthier worm on the spread.

Figure 5.7 shows the effect on the infection spread. Figure 5.7a shows the cumulative percentage

of infected devices as Tidle is increased. Intuitively, it would seem that an intelligent worm can

K. Channakeshava Spread of Mobile Malware 101

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 In

fe
ct

ed
 D

ev
ic

es

T

idle
=10s

T
idle

=60s

T
idle

=300s

T
idle

=600s

T
idle

=900s

T
idle

=1200s

(a)

060 300 600 900 1200
0

100

200

300

400

500

T
idle

 (seconds)

T
(q

, T
id

le
)

(m
in

ut
es

)

q=0.15
q=0.20
q=0.25
q=0.30
q=0.35
q=0.40

(b)

Figure 5.7: Infection spread dynamics with variation in Tidle. (a): Infection spread with varying

Tidle starting with 10% initially infected devices; (b): T (q, Tidle) for the varying Tidle values in the

same scenario.

adapt its idle time to maximize the spread. However, we find that the spread obtained with 20 s

idle time denotes the upper limit of the worm propagation. Reducing the idle time to 10 s does

not result in an increase in the total infected devices. As expected, the idle time does affect the

initial speed of the spread as the devices wait longer in each infection cycle. Nevertheless, once a

certain number of devices become infected, eventually the speed increases to infect more devices.

Figure 5.7b shows the T (q, Tidle) values for the variation in Tidle. For most values of idle time at

least 35% of devices become infected starting with 10% initially infected devices.

5.4 Sensitivity to Network parameters

We study the effects of network structure on the worm dynamics by comparing with the dynamics

based on random waypoint mobility and by altering the network structure in a controlled manner.

We conduct two studies that alter the network structure. Market share of smart phones have a large

impact on the malware spread. Because device susceptibility depends on the operating system (OS)

and applications on a device, market share of the OS and applications directly impact the malware

K. Channakeshava Spread of Mobile Malware 102

spread. So, we evaluate the effect of market share on the spread characteristics. We denote market

share by m. The other aspect that we are interested in studying is the effect of density of locations.

The sub-location modeling we perform is dependent on the area allocated to locations. Because

we do not have data on the actual areas, we make assumptions by keeping a certain density at

the locations and based on the occupancy, determine the area assigned. We denote the density of

locations by d.

5.4.1 Effect of market share

In this section, we evaluate the effect of the market share on the infection spread. We consider

different market share values for the devices. The market share, m, represents the number of

devices that have similar characteristics to the infected device and are susceptible to the same

malware (e.g., a market share m = 0.1 means that only 10% of the devices are susceptible among

the entire device population). The market share is a simple parameter that allows us control over

the susceptible fraction, and here we study its impact on the worm dynamics. We consider a range

of m values from 10% to 90%.

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 D

ev
ic

es
 In

fe
ct

ed

m = 1.0

m = 0.9

m = 0.7

m = 0.5

m = 0.3

m = 0.1

(a)

0 0.2 0.4 0.6 0.8 1

10
1

10
2

10
3

Market Share(m)

T
(q

,m
)

in
 m

in
ut

es

q=0.15

q=0.20

q=0.25

q=0.30

q=0.35

q=0.40

(b)

Figure 5.8: Effect of market share on the infection spread. a: Infection spread with varying market

share of the susceptible devices; b: T (q, m) for different values of q and varying market shares of

the susceptible devices.

K. Channakeshava Spread of Mobile Malware 103

Figure 5.8a shows that the speed of the worm is directly proportional to m, as expected, and both

the speed and the final outbreak size are reduced with m. However, we find that the T (q, m)

function (Figure 5.8b) shows very different characteristics, when compared with the results of [94];

in particular, we find a steeper variation in T (q, m), and this suggests effects arising out of our

detailed mobility model, because [94] assumes a uniform distribution of susceptible devices within

a cell. We can also see a threshold effect. The time taken to infect at least 20% of the devices

starting with 10% initially infected changes drastically for all values of market share. This kind of

behavior indicates that there is a significant amount of time to implement response mechanisms to

control the spread during this interval.

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 D

ev
ic

es
 In

fe
ct

ed

orig
d=0.1
d=0.07
d=0.05
d=0.03
d=0.015

(a)

0 0.04 0.08 0.12
0

100

200

300

400

500

Density (d)

T
(q

, d
)

(m
in

ut
es

)

q=0.15
q=0.20
q=0.25
q=0.30
q=0.35
q=0.40

(b)

Figure 5.9: Infection spread dynamics with variation in location density (d). (a): Infection spread

with varying d; b: T (q, d) changes with varying density of locations.

5.4.2 Effect of location density

Next, we control the network structure by altering the density within the locations in our dataset.

Clearly, a higher density implies higher degree, and would suggest faster spread (analogous to the

impact of higher speed in [99]). This is indeed borne out in Figure 5.9a, where we reduce the

density by a parameter d, and examine the rate of spread. A surprising observation is that there

seems to be some kind of threshold effect, and the dynamics do not change until the density has

K. Channakeshava Spread of Mobile Malware 104

been altered quite a bit (by a factor of 10).

5.5 Characterizing interactions between parameters

An important research question important to address in any study with a large number of param-

eters is whether there is any interaction among them. The worm model parameters such as Tidle

and pinf and network parameters such as market share m and density of locations are of particular

interest. Understanding how they couple together and change the response, in this case the final

% of devices infected, is important. We set up a balanced, factorial experiment design for these

parameters with 5 levels each and measure the response variable, the final % devices infected for

10 replicates. We use analysis of variance (ANOVA) to perform statistical analysis and present the

results in this section. These experiments are performed using the EpiNet simulator on the NRV1

network.

Our findings are that these factors interact very strongly with each other; specifically, Tidle and m

interact the most among the three factors.

5.5.1 Analysis of Variance Study

We set up a statistical study to evaluate the outcome of the following three independent factors

(variables):

• Idle time between infection cycles, denoted by Tidle,

• probability of infection, pinf , and

• market share of the devices, m.

Some of these factors are derived from malware characteristics and the networks that are being

evaluated. Each of these factors have five levels (values each variable takes). Each experiment

in the design is repeated 10 times (replicates). See Table 5.2 for the levels for each factor. Tidle

K. Channakeshava Spread of Mobile Malware 105

indicates how stealthily the malware propagates and evades detection. The larger the Tidle, the

slower the malware spreads and the harder it becomes to detect. pinf indicates the probability with

which a susceptible device exposed to an infected device becomes infected. It basically indicates

the efficacy of the propagation method. The higher the probability, the more effective the infection

propagation becomes and the higher the total number of infected devices. The market share

m decides the proportion of susceptible devices that are present in the network and indirectly

represents the community within which a particular malware can spread. The higher the market

share, the larger the susceptible device population and probability an infected device will come into

contact with a susceptible device.

Table 5.2: Levels for the factors in the ANOVA study. There are 5 levels for each factor and 10

replicates for each combination of these parameters.

Factors Levels

Tidle 30s, 5min, 10min, 20min, 30min

pinf 0.1, 0.3, 0.5, 0.7, 0.9

m 10%, 30%, 50%, 70%, 90%

The mathematical model for 3-factor ANOVA is as shown below:

yijkl = µ + αj + βk + γl + (αβ)jk + (αγ)jl + (βγ)kl + (αβγ)jkl + ǫijkl (5.1)

where

1. yijkl is the measurement of the response variable; in this case, it is the percentage of devices

infected at the end of the simulation (or the % Final Infections)

2. αj , βk, and γl are the effects of the Tidle, pinf , and m on the outcome.

3. i is the number of replicates in the experiments; in this case, it is 10 as we repeat the

experiment 10 times for different seed values.

K. Channakeshava Spread of Mobile Malware 106

In addition to the effect of individual factors, we have also computed the interactions among them.

Here we present the interactions between the probability of infection (pinf), idle time (Tidle), and

the market share of the devices (m). pinf is a malware parameter and identifies a more virulent

malware and how effectively it can spread. The market share m denotes the available susceptible

device population and reflects the network structure. It is expected that there is a big influence

of both these parameters, and we are trying to understand which parameter actually has a higher

influence and under what conditions.

Table 5.3: Interaction study for Tidle, pinf , and m. 3-factor balanced ANOVA to determine the

interaction between idle time Tidle, probability of infection pinf , and market share m. T, P, and

M represent the Tidle, pinf and m, respectively. There is a high level of interaction between all the

parameters and Tidle, and m interact the most (Model 3).

No. Interactions Source SS DF F test

1 All 1-way [T][P][M] 12053 1237 3791.923*

2 2-way [TP][TM] 4669 1205 4063.270*

3 2-way [TP][PM] 7514 1205 6880.722*

4 2-way [TM][PM] 1002 1205 431.778*

5 All 2-way [TP][TM][PM] 566 1189 120.075*

6 All 3-way [TPM] 71 1125 -

Table 5.3 shows the results for 3-factor ANOVA to determine the interaction between Tidle, pinf , and

m study for malware propagation. Column 1 shows the model number for each of the interaction

models indicated in column 2. The parameters that interact are listed in column 3. Columns

4-6 show the interaction study on the response variable, the final % of devices infected. The F-

statistic shows the interaction and the level of interaction from among the factors. From the table,

we see that there is significant interaction between the 3 factors. The interaction in the 3-way

automatically indicates this. Among the factors, Tidle and m interact the most (model 3 in row

4). The two way interaction that is dropped from model 5 is [TM] and so it shows the interaction

between the 2 factors.

K. Channakeshava Spread of Mobile Malware 107

30 300 600 1200 1800
0.22

0.26

0.3

0.34

0.38

T
idle

 (s)

%
 F

in
al

 In
fe

ct
io

ns

p=0.1
p=0.3
p=0.5
p=0.7
p=0.9

(a)

0 500 1000 1500
0

2

4

6

8

10

12

T
idle

 (s)

%
 F

in
al

 In
fe

ct
io

ns

m=10%
m=30%
m=50%
m=70%
m=90%

(b)

Figure 5.10: Interaction of idle time Tidle with pinf and m for the NRV1 network. We plot the

interaction as a function of the percentages of devices infected at the end of the day (denoted as

“% Final Infections”). (a): Shows the interaction between Tidle and pinf for a low market share

(m = 10%); b: Plots the interaction between Tidle and market share, m for a low probability of

infection (pinf = 0.1).

K. Channakeshava Spread of Mobile Malware 108

Figure 5.10 shows the interaction of Tidle with pinf and m for the NRV1 network. The x-axis shows

the variations in Tidle and the y-axis shows the percentage of devices finally infected at the end of

the day.

30 300 600 1200 1800
5

10

15

20

25

30

35

T
idle

 (s)

%
 F

in
al

 In
fe

ct
io

ns

p=0.1
p=0.3
p=0.5
p=0.7
p=0.9

(a)

30 300 600 1200 1800
5

10

15

20

25

30

35

T
idle

 (s)

%
 F

in
al

 In
fe

ct
io

ns

m=10%
m=30%
m=50%
m=70%
m=90%

(b)

Figure 5.11: Interaction of idle time, Tidle with pinf and m for the NRV1 network. We plot the

interaction a function of the percentages of devices infected at the end of the day (denoted as

“% Final Infections”). (a): Shows the interaction between Tidle and pinf for a low market share

(m = 10%); b: Plots the interaction between Tidle and market share, m for a low probability of

infection (pinf = 0.1).

5.6 Study of SMS/MMS Malware and their propagation

In this section, we study the dynamics of the SMS/MMS malware spread and differentiate it from

the proximity based Bluetooth malware. The social network we use for this study is derived from

the SG module discussed in Section 3.2.2. Here we conduct two simple experiments to determine

the speed and dynamics of a purely SMS/MMS malware that propagates using the SMS/MMS

message. We refer to such malware as sms-only. We also study hybrid malware that jump from

device to device over proximity Bluetooth link as well as a link over the cellular infrastructure

through SMS/MMS messages. We refer to these malware as hybrid. We find that the dynamics of

K. Channakeshava Spread of Mobile Malware 109

Table 5.4: Networks studied using the EpiNet framework. Characteristics of the proximity networks

studied in this section. The networks have varying sizes and structural properties that make

it necessary to study the spread and control of mobile malware for each network. The EpiNet

framework is not able to study these networks as efficiently as EpiNetdoes.

NRV1 NRV2 Miami1 Miami2
Demographics

(age group)
20-50 13-80 20-50 13-80

Devices 77,659 126,800 1,269,650 1,642,565

Links 284,941 1,507,328 4,495,755 17,266,216

Social Links 699,984 1,478,686 22,652,784 35,796,647

13-20 years – 10.28% – 12.85%

50-80 years – 29.92% – 32.48%

the SMSsms-only malware under some conditions are almost similar to the Bluetooth malware in

nature. When hybrid malware spread, their dynamics are different from sms-only malware. They

spread quickly and infect almost the entire susceptible population within a few hours.

5.6.1 Implementation of SMS/MMS malware

The EpiNet framework has the capability to study communication networks in addition to prox-

imity networks created by Bluetooth. In this section we highlight this aspect and perform some

simple studies on the propagation characteristics of malware that use the communication infras-

tructure on mobile devices. SMS malware is implemented in the framework as stealthy malware

that intermittently sends SMS messages to the people in the address book of an infected device.

These malware can be of differing kinds and can select the victim number at random or select the

user based on call statistics. A more frequently called individual is targeted before an infrequent

one and so on. We evaluate the two approaches and find that in a fast spreading SMS malware the

randomness or preferred selection strategy results in similar dynamics.

K. Channakeshava Spread of Mobile Malware 110

5.6.1.1 Comparing the propagation dynamics

In this section, we observe the propagation under 3 conditions – (1) only Bluetooth malware, (2)

only SMS malware and, (3) hybrid malware that propagates on both mediums. We use this to

determine network structures that cause change in the patterns of infections.

Figure 5.12 shows the propagation of the 3 kinds of malware on the NRV1 and NRV2 networks. We

observe a strange behavior in the NRV2 network. The propagation dynamics for the two networks

are different because the NRV2 network has more social links (as shown in Table 5.4) than the NRV1

network. As expected, the hybrid malware propagates faster than either the Bluetooth malware

or the SMS malware alone (Figure 5.12a and Figure 5.12b). There is an interesting dynamic for

the SMS malware in the NRV2 network as shown in Figure 5.12b. We observe that the Bluetooth

malware propagates slowly initially and still achieves a significant growth beyond 12 Noon and

infects almost the same % of devices as the hybrid malware. This is an interesting behavior and is

due to the number of social links shown in Table 5.4. The social links indicate the contacts in the

SMS network (or the social network of the individuals). It appears that the devices are coming in

proximity more than communicating through the SMS links. This can be the result of having high

density locations, where devices are in range of other devices. This is an interesting case where we

see that the proximity malware spreads much faster than the SMS malware. Accurately modeling

the network is a necessity to obtain the right conclusions and depends heavily on aspects of human

mobility.

5.7 Summary

In this chapter, we have presented the study of the Bluetooth malware using the EpiNet and

EpiNet simulation infrastructures. We compare the results of malware propagation with RWP

mobility model and find that an accurate representation of the network is important to obtain

correct results. Using the EpiNet simulator we have studied the influence of various malware

properties such as idle time and probability of inquiry timeout. Further, we have looked at the

K. Channakeshava Spread of Mobile Malware 111

0 8 AM 4 PM 12 Mid
0

0.2

0.4

0.6

0.8

Time of Day

%
 In

fe
ct

ed
 D

ev
ic

es

BT−only
SMS−only
Hybrid

(a)

0 8 AM 4 PM 12 Mid
0

0.2

0.4

0.6

0.8

1

Time of Day

%
 In

fe
ct

ed
 D

ev
ic

es

BT−only
SMS−only
Hybrid

(b)

Figure 5.12: Comparing the dynamics of Bluetooth, SMS, and hybrid malware in the NRV network.

Propagation dynamics in the NRV1 networks for the 3 kinds of malware. We consider Bluetooth

alone, SMS alone, and hybrid malware that spreads through both means.

influence of network aspects such as market share of susceptible devices and density of activity

locations on the spread dynamics. We find that each of these parameters have a significant influence

on the spread. We conduct a more formal statistical test, analysis of variance, to determine the

interaction of parameters. For this, we create a factorial experiment design with 3 factors – Tidle,

pinf , and m – with 5 levels for each factor. From this analysis we determine that the 3 factors idle

time between infectious cycles and the market share have a significant interaction.

The comparison results between RWP and the activity-based mobility models in addition to the

preliminary results with the EpiNet environment on the Chicago network were published in [22].

This work was performed in collaboration with Dr. Madhav Marathe, Dr. Anil Vullikanti, Dr.

Keith Bisset, and Dr. Deepti Chafekar. The later studies on the NRV and Miami networks with

the scalable EpiNet simulator appear in [23] and was submitted on October 1st. This work was

performed in collaboration with Dr. Madhav Marathe, Dr. Anil Vullikanti, Dr. Keith Bisset and

Mr. Shrirang Yardi.

In the next chapter, we study and analyze methods and strategies to control the malware spread

on these networks.

Chapter 6

Controlling the spread of mobile malware

Responses to malware are primarily initiated by the service provider to protect the infrastructure

and mobile devices from the malware. It is possible to detect malware that spread through SMS

or MMS messages as they use the infrastructure and remedial measures such as black-listing and

throttling network bandwidth to slow the spread. Not all manifestations spread in this manner.

Proximity malware that spread locally (in the immediate neighborhood of the infected device) are

hard to detect and respond to. Mobile-based detection rather than network-based detections can

perform better in detecting and responding to such worms.

In this chapter, we study several mobile-based detection and mitigation schemes and measure their

effectiveness in detecting and responding to malware. We classify the response mechanisms into

(a) static and (b) mobile-based. In the static mechanisms, we study the influence of simple graph

metrics such as degree and betweenness. Here, we are assuming that the service provider has some

means to compute the proximity network for devices and then applies responses online based on

the metrics computed on them. The provider uses these measures to identify the best candidates

for applying the patches. The other and probably more effective response strategy in such ad hoc

proximity networks is mobile-based detection and response, where devices can themselves detect

their anomalous behavior [19, 54, 33, 72] and take some action: (1) disable the sub-system that is

infected, (2) generate signatures that can help other infected devices know about their infection,

112

K. Channakeshava Controlling the spread of mobile malware 113

and (3) inform a centralized server of the infection to take remedial action. We are interested in

determining the effective parameters values that can control the malware spread. Here again we

are making an important assumption that the software and/or hardware involved in device-based

detection is not affected by the malware. Further, in some of the response mechanisms, we are

assuming that the sub-systems can be disabled temporarily and that on effective removal of the

malware (through human interventions) these systems will be back online.

6.1 Graph Centrality Measures

Epidemiology studies for humans have long considered graph metrics based interventions or re-

sponses for epidemics. In this set of experiments, we are evaluating these strategies with the

assumption that such networks can be constructed by the service provider. We study the effect

of choosing devices that have a higher rank based on two graph centrality measures—degree and

betweenness. Degree is defined as the number of links incident upon a node and defines in some

ways the risk of infection from the malware propagating through the network. Betweenness is a

measure of the number of shortest paths between any two nodes a given node is present on. It

indicates the importance of a certain node in the topology. For all the studies involved in the graph

measures, we consider the union graph for determining the rank of the devices. A union graph at a

particular instant of time t, (G(t)) is the graph constructed by considering the union of all graphs

created at the locations at t, i.e., G(t) =
⋃

l∈L

Gl(t), where L is the set of all locations and Gl(t) is

the graph in location l at time t. The union graph G is the union of all G(t), i.e., G =
⋃

t∈D

G(t),

where D is the duration of the simulation and time is incremented in steps of 300 s, the interval for

new arrivals and departures at locations. We use G to calculate the graph metrics for individual

devices and rank them in decreasing order of the metric. Devices are selected to be patched in

rank order of the metrics and the change in spread characteristics are observed. Devices so selected

are not susceptible to the malware at the instant the patch is applied. We consider applying this

intervention before and after the malware starts spreading.

Here, we study the effects of patching 10% or 50% of devices selected based on the rank of de-

K. Channakeshava Controlling the spread of mobile malware 114

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 D

ev
ic

es
 In

fe
ct

ed

NoPatch
Deg−10
Deg−50
Random−10
Random−50

8 AM 9 AM

0.1

0.2

(a)

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 D

ev
ic

es
 In

fe
ct

ed

NoPatch
ED−10
ED−50
LD−10
LD−50

(b)

Figure 6.1: Comparison of degree-based response strategy. (a): Comparing random device selec-

tion to selection based on degree rank from the union graph; (b): Infection spread with devices

patched early and late with devices selected with degree rank.

gree and betweenness of devices. We compute the union graph G from the activity-based mobility

model and compute the metrics on G. Human epidemic studies have indicated that degree based

responses outperform betweenness based measures. Figure 6.1a shows a comparison between ran-

domly selecting devices for patching and selecting devices based on the degree rank (the total

devices patched remain same). ‘Deg-10’, ‘Deg-50’ indicate the result for patching 10% and 50% of

devices by selecting the devices based on degree rank. ‘Random-10’ and ‘Random-50’ indicate 10%

and 50% of devices being selected at random, respectively. The final infection size clearly indicates

that degree based responses are better than random selection. The inset plot in Figure 6.1a shows

that initially the random is slightly better than degree. From 9 AM onwards, the graph based

metrics start to perform better. This effect is observed because high degree devices are determined

from the union graph and are patched initially. Patching 10% devices does not have a significant

impact on the spread characteristics and there is only a slight reduction in the final infection size.

Any response strategy based on degree requires more than 10% of devices to be patched in order

to be effective in controlling the spread.

K. Channakeshava Controlling the spread of mobile malware 115

Surprisingly, the effect of selecting devices based on the betweenness of devices has a similar effect

on the control. Contrary to human epidemics where degree-based response mechanisms are more

effective than betweenness, we find the effect with patching devices based on betweenness metrics

identical to degree-based metrics.

6.2 Mobile device based Responses

The studies conducted in the earlier sections observe the spread characteristics with heterogeneous

networks and device market share. We also studied some static random and graph measure based

responses and provide a base line for comparison with more advanced and practical responses. In

this section, we explore the response schemes that use device-based detection mechanisms with and

without service provider involvement in patching devices. In these responses, we mostly study self

detection and other responses such as local and centralized signature dissemination that depend on

self detection.

6.2.1 Passive Self Detection

Traditional network defenses are centralized and depend on information from packet traces to

identify anomalous behavior. Such defense mechanisms cannot be applied to proximity malware as

observations tend to be local and in the proximity of the infected devices. Recent research direction

for recognizing local effects involve deployment of sensors in locations where device densities are

expected to be high [43, 77]. In other, more recent schemes the potential victim serves as a

detector. Monitoring sequence of system calls [33], power signatures [54] and behavior [19, 44] have

the potential to be implemented in mobile devices to sense new infections.

We consider such detection mechanisms which allow devices to detect their own infection using

behavior identification methods; this is passive in the sense that it uses the knowledge of the

infection to prevent further spreading, but does not inform neighboring devices or service provider

of the infection. Here we are interested in evaluating (a) whether such schemes reduce infection

K. Channakeshava Controlling the spread of mobile malware 116

spread and (b) the effect of varying the sensitivity—number of infections required to trigger the

self detection—of the self detection system. We define the number of infections that trigger the

self-detection as self-detection threshold and denote it by sdth. In these experiments we vary sdth

between 1 and 10 to determine the best threshold value to control the spread. The devices that

become aware of their own infection are informed and have a means to stop further infections (by

either alerting the user or disabling the sub-system or application spreading the malware).

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 D

ev
ic

es
 In

fe
ct

ed

sd

th
 = 10

sd
th

 = 8

sd
th

 = 6

sd
th

 = 4

sd
th

 = 2

sd
th

 = 1

(a)

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.05

0.1

0.15

0.2

Time of Day

%
 D

ev
ic

es
 In

fo
rm

ed

sd

th
=4,10%

sd
th

=2,10%

sd
th

=1,10%

sd
th

=4,5%

sd
th

=2,5%

sd
th

=1,5%

(b)

Figure 6.2: Passive Self-detection performance with varying detection thresholds. (a): Passive

self-detection with 10% initially infected devices and sdth = {1, 2, 4, 6, 8, 10}; (b): Total devices

informed as the infection spreads with sdth = {1, 2, 4} for 10% and 5% initially infected devices.

Figure 6.2 shows the infection spread characteristics for 10% initial infection size (Figure 6.2a)

with varying self detection thresholds (sdth) from 1–10. sdth is defined as the number of infections

caused by the infected device before the self detection system is triggered. The devices that become

aware of the infection are called informed devices and assume that they do not cause new infections.

From Figure 6.2a, we see that for any sdth > 4 the spread does not slow and for sdth = 8 and

sdth = 10 no devices self detect. This clearly shows that no single infected device causes more

than 6 infections and only 2% infect more than 4 devices within the simulation duration. Further,

even when sdth = 1, the final infection size reduces by only 20%, implying that the self detection

K. Channakeshava Controlling the spread of mobile malware 117

mechanism has to be fairly accurate and extremely quick to detect an infection.

6.2.2 Detection with Signature Dissemination

Malware signatures are extensively used in existing anti-virus software to identify attacks and pre-

vent infections requiring constant signature updates. Nevertheless, about 60% of malware developed

to steal personal information are not detected by updated anti-virus software [3]. Automatic sig-

nature generation programs [72] or behavior identification systems [66] can help improve detection.

Such approaches generate signatures online using the malware’s characteristics and help keep the

signatures updated. Here we evaluate such schemes implemented in mobile devices. We consider

two approaches: (a) local dissemination of the signatures generated and (b) upload signatures to

service provider for centralized dissemination. For this study we still use the same self detection

discussed in Section 6.2.1, but improve the signature generation and dissemination process.

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 D

ev
ic

es
 In

fe
ct

ed

L,sd

th
=10

L,sd
th

=8

L,sd
th

=6

L,sd
th

=4

L,sd
th

=2

L,sd
th

=1

(a)

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 D

ev
ic

es
 In

fe
ct

ed

sd

th
=4

sd
th

=2

sd
th

=1

L,sd
th

=4

L,sd
th

=2

L,sd
th

=1

(b)

Figure 6.3: Comparison between passive and local signature dissemination. (a): Local Signature

dissemination for different sdth values; (b): Comparison between passive self detection and self

detection with local signature dissemination for sdth = {2, 4, 6} values.

K. Channakeshava Controlling the spread of mobile malware 118

6.2.2.1 Local Signature Dissemination

For local signature dissemination we consider that the informed device follows a reactive process—

signature is shared only when an infected device tries to infect an informed device. We do not

study a pro-active approach, as it becomes similar to the malware and would require significant

resources from the mobile.

Figure 6.3a shows the results of performing local signature update to neighboring infected device

by an informed device. ‘L,sdth=2’ indicates the local (L) signature update with a self detection

threshold sdth of 2. From Figure 6.3a it is clear that lower sdth values result in slowing the spread

(similar to Figure 6.2a), but local signature updates slow the spread drastically when compared to

passive self detection. Further, when sdth = 1, some of the initially infected devices are informed

of the infection and final infection size is smaller than the 10%. Thus, we find that in the current

setting, local signature distribution (with passive self detection) is more effective than the passive

detection approach. This approach requires the mobile to communicate with the neighboring

infected devices and transfer the signature.

6.2.2.2 Centralized Signature Dissemination

With local signature dissemination, the spread of the signatures is local to the position of the

infected devices and does not have a spatial impact. So, here we evaluate the case where the

informed devices send one infection report (or Irep) to a centralized location. Infection reports

are concise packets of information regarding the mobile’s behavior or signatures generated after

self-detection. The centralized entity can either generate the signature or serve merely to make

decisions for distributing the signatures. We study the impact on the infection spread when the

centralized entity applies patches on receiving a certain number of reports. We select different

percentages of devices to patch and observe the spreading.

Figure 6.4 shows the results we have obtained for the different experiments with centralized sig-

nature dissemination. Here we are randomly deciding on the devices that receive the patches and

K. Channakeshava Controlling the spread of mobile malware 119

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 D

ev
ic

es
 In

fe
ct

ed

I
rep

=500,sd
th

=2

I
rep

=500,sd
th

=4

I
rep

=500,sd
th

=6

(a)

8 AM 10 AM 12 Noon 2 PM 4 PM
0

0.05

0.1

0.15

0.2

Time of Day

%
 D

ev
ic

es
 In

fe
ct

ed

I
rep

=500,25%

I
rep

=500,50%

I
rep

=500,75%

(b)

Figure 6.4: Centralized signature dissemination for controling the malware spread. (a): Malware

dynamics with centralized signature distribution with sdth = {2, 4, 6}, Irep = 500 and 25% devices

patched; (b): Effect of patching 25%, 50%, and 75% of devices after receiving Irep = 500 reports.

are not patching only the devices that are infected. For all the experiments presented here, we

have used a fixed Irep threshold of 500 messages from the detectors. From Figure 6.4a we can see

that lower detection threshold causes a faster response from the central server for patches. Even

after application of the patches, for all the cases, the infection does not completely die out, but has

significantly slowed down.

6.3 Device Vulnerability

The earlier sections targeted the responses based on graph metrics such as degree as they are found

to be effective in human epidemiological studies. From our findings in the above sections, we note

that static graph metrics such as degree and betweenness of the devices are not effective. Simply

selecting devices based on the number of neighbors they have and ranking them according to this

is not effective in slowing the spread. The other metric that has been shown to be effective is

vulnerability. In this section, we explore the vulnerability of a device as a metric to decide which of

K. Channakeshava Controlling the spread of mobile malware 120

the nodes to patch and determine if that is effective in controlling the spread of mobile malware.

Vulnerability denoted by V (v) for a node v is defined as the probability with which v gets infected

under different initial infected devices. Vulnerability is a dynamical measure dependent on the

temporal network and the dynamics of the malware. As we will show later, vulnerability is found

to be an effective metric to control the malware spread. In a sense vulnerability of a device

provides information regarding the probability of a node to be infected irrespective of which set

of devices are initially infected. Because the Bluetooth device network is large and dynamic, we

estimate vulnerability through simulation studies with a different set of devices initially infected

and repeating the experiment for multiple replicates. For the purposes of this dissertation, we

use 100 replicates while determining the vulnerability of a device. Figure 6.5 shows the effect of

the vulnerability metrics when a different number of replicates are used to estimate vulnerability.

Note that the initially infected devices are not counted while determining the number of replicates

in which a given devices is infected. We can see that the metric varies largely depending on the

number of replicates used to estimate the vulnerability of a device. Figure 6.5a and Figure 6.5b

show the variation in the vulnerability for the NRV and Miami networks, respectively. Clearly the

variations are different for each network.

The cumulative probability distribution is shown in Figure 6.6 and indicates that as the number of

replicates increases, there is a large variation in the percentage of devices that are highly vulnerable.

This indicates that more replicates would yield a better understanding of the vulnerability of the

device. From Figure 6.6a we can see that 75% of the devices have a vulnerability less than 0.2 for 20

and 50 iterations, while this number drops to 30% after 100 iterations. In Figure 6.6b, the variation

is not that drastic. Although it is clear that the vulnerability metric varies with the number of

iterations, it is not necessary that the variation is observed in all networks. It is important to

identify the reasons why certain devices are vulnerable and others are not and also see if one can

make general statements about the vulnerability across different networks. Next, we determine the

effects of using vulnerability as a metric to identify the device to patch and observe the effect of

such a response mechanism. In later sections, we make an attempt to obtain correlation of the

vulnerability metric and explain the reasons why certain devices are more vulnerable than others.

K. Channakeshava Controlling the spread of mobile malware 121

0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

10
0

Device Vulnerability

F
ra

ct
io

n
of

 d
ev

ic
es

20 reps
50 reps
100 reps

(a)

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

Vulnerability

P
ro

ba
bi

lit
y

20 reps
50 reps
100 reps

(b)

Figure 6.5: Device vulnerability as the number of replicates are varied. We use 20, 50, and 100

replicates to illustrate that a significant number of replicates are required for determining this

metric and the number of replicates also depends on the structure of the network itself. (a):

Probability distribution for device vulnerability on the NRV network as a function of the number

of replicates used to determine the vulnerability of each node; (b): Probability distribution for the

Miami network as the replicates are increased.

K. Channakeshava Controlling the spread of mobile malware 122

Without a scalable and expressive environment like EpiNet it is difficult to perform analysis on

dynamic metrics such as vulnerability.

0 0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Device Vulnerability

F
ra

ct
io

n
of

 d
ev

ic
es

20 reps
50 reps
100 reps

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Vulnerability
F

ra
ct

io
n

of
 d

ev
ic

es

20 reps
50 reps
100 reps

(b)

Figure 6.6: Cumulative distribution of device vulnerability as the number of replicates are varied

for the NRV and Miami networks. (a): The cumulative distribution for device vulnerability of each

device for the NRV network; (b): The cumulative distribution for the Miami network.

Next, we look at the convergence of the vulnerability metric on these networks. Because the

vulnerability is a dynamic metric, the number of replicates required for each network varies and we

need to determine whether the values have converged, or we need to consider more replicates.

6.3.1 Vulnerability based responses

Although there is variation in the vulnerability values for a node in different replicates, vulnerability

indicates the importance of a certain device in the infection progression and thus can be used as

a metric for controlling the spread of the malware. Here, we look at how effective vulnerability is

in controlling the malware spread, if the metric was used to identify susceptible devices and apply

targeted patching. Like degree based metrics, we need to know the network or at least conduct

simulations on the network to determine if a device is vulnerable or not. Usually a significant

number of replicates may be required to obtain the vulnerability irrespective of the initial infections.

K. Channakeshava Controlling the spread of mobile malware 123

In this section, we conduct these experiments for the NRV and Miami networks. The strategy is

to identify the devices’ vulnerability using a certain number of replicates. We use 100 replicates

for each network and determine the vulnerability for each device. The devices are then ranked

based on the vulnerability measured for the 100 replicates and a certain percentage of the total

population (in this case, 5%, 10%, and 20%) are selected to apply the patch in the order of this

rank. The highest vulnerability node is first, and so on, until the required percentage of devices

has been selected.

0 8 AM 4 PM 12 Mid
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 In

fe
ct

ed
 D

ev
ic

es

NoInt
5%
10%
20%

(a)

0 8 AM 4 PM 12 Mid
0

0.2

0.4

0.6

0.8

1

Time of Day

%
 In

fe
ct

ed
 D

ev
ic

es

NoInt
5%
10%
20%

(b)

Figure 6.7: Performance of the vulnerability based targeted patching of devices in NRV1 and

NRV2 networks. (a): Patching devices based on the vulnerability rank has a very good effect on

the reduction in the final infection size in the NRV1 network; (b): For the NRV2 network the

increase in the same percentage of patched devices does not lead to increased gains. Only 20% of

the devices patched devices remain uninfected at the end of the day in the NRV2 network.

Figure 6.7 shows the results we obtain for the two NRV networks. We observe in Figure 6.7a that

selecting devices based on the vulnerability metric is effective in the NRV1 network and increasing

the percentage of devices patched leads to increased gains. Patching slightly more than 20% of the

devices actually stops the spread of the malware. The same does not apply to the NRV2 network

(as shown in Figure 6.7b). The reduction in the number of final infections is not much and remains

almost equal to the total percentage of the devices that are patched, i.e. 5%, 10%, and 20%,

respectively.

K. Channakeshava Controlling the spread of mobile malware 124

6.3.2 Comparing Degree and Vulnerability Metrics

0 8 AM 4 PM 12 Mid
0

0.1

0.2

0.3

0.4

0.5

Time of Day

%
 In

fe
ct

ed
 D

ev
ic

es

NoInt
20% (Degree)
20% (Vulnerability)

(a)

0 8 AM 4 PM 12 Mid
0

0.2

0.4

0.6

0.8

1

Time of Day
%

 In
fe

ct
ed

 D
ev

ic
es

NoInt
20% (Degree)
20% (Vulnerability)

(b)

Figure 6.8: Comparing degree and vulnerability metrics on the NRV networks. We find that the

effect of the control mechanism is dependent on the network. Vulnerability works only slightly

better in a more well connected network. (a): Control of malware on the NRV1 network. Selecting

devices based on the degree rank is more effective than vulnerability; (b): NRV2 network has a

slightly different outcome. Vulnerability metric fares better in controlling the spread.

Figure 6.8 shows the comparison between vulnerability and degree for the two NRV networks. It

shows the difference in the effect of similar interventions on different networks. In Figure 6.8a,

the effect of patching devices using degree- and vulnerability-based metrics are both effective in

controlling the spread. The network they are deployed on is the NRV1 network. The same two

metrics deployed on the NRV2 network indicate that the spread is not controlled effectively, as

shown in Figure 6.8b. This indicates that the effectiveness of these metrics depends heavily on

the network structure and it is important to have the ability to evaluate these metrics on device

networks, and then deploy them on real networks. EpiNet provides an environment for performing

such a detailed evaluation and analysis.

K. Channakeshava Controlling the spread of mobile malware 125

6.3.3 Estimating Vulnerability

According to Figure 4.8a, in the case study (presented in Section 4.3.1 of Chapter 4) we find that

vulnerability is the upper bound on the effective intervention schemes. Here we are interested in

investigating whether there are other metrics that are easier to obtain from than vulnerability.

If some other metrics are correlated with it, we can then choose that metric and avoid trying to

compute vulnerability for each network. We need to look at metrics that are dependent on the

demographic metric rather than the network metrics. Network metrics such as degree would require

a network to be generated to be calculated. This may not be possible. The demographic metric we

look at is the age. Figure 6.9 shows the correlation between the two metrics in the NRV network.

Recall that NRV1 and NRV2 contain slightly different demographics, 20-50 year olds and 13-80

year olds, respectively.

0 0.2 0.4 0.6 0.8 1

20

25

30

35

40

45

50

Vulnerability

In
di

vi
du

al
’s

 A
ge

(a)

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

Vulnerability

In
di

vi
du

al
’s

 A
ge

(b)

Figure 6.9: Correlation between age and vulnerability obtained by the diffusion of Bluetooth

malware through the proximity network. No correlation is seen in NRV1 when 13–20 and 50–80

year olds are not included. It is not possible to make a clean bifurcation of the devices into high,

and low vulnerability devices for the NRV2 network.

For NRV1, there is no correlation between the vulnerability and age and almost every age value

has the entire range of vulnerability values. This can also be attributed to the replicates that were

used in the study. In Figure 6.10 we see vulnerability correlation of neighbors and see how the

K. Channakeshava Controlling the spread of mobile malware 126

0

0.5

1

0 0.5 1
0

0.5

1

Vulnerability of Source

V
ul

ne
ra

bi
lit

y
of

 T
ar

ge
t

0 0.5 1

20 50

100 200

Figure 6.10: Vulnerability correlation between neighbors as the replicates are increased in the

NRV1 network. The number in each subplot is the number of replicates used for the respective

plot. Even after 200 replicates the correlation has not reached steady state.

correlation is changing as the number of replicates is changed. This shows that the vulnerability

has not yet reached a steady state in the NRV1 network after 200 replicates. When people in the

age groups of 13–20 and 50–80 are included in the population by assigning devices, the vulnerability

of the people becomes higher. This is because the kids and the elderly are making the network

more connected, thus dividing the nodes into highly vulnerable and not vulnerable.

In this section, we have investigated different demographic metrics and do not find a suitable

metric that can replace vulnerability. Each network has a slightly different characteristic and it is

extremely difficult to obtain a single metric that works on all the networks and effectively control

the spread of proximity malware.

6.4 Summary

In this chapter, we have studied various control mechanisms for stopping the flow of the malware

over realistic urban Bluetooth networks. There are several methods in the literature on applying

patches to infected mobile devices. Some of them are device based detection and patch mechanisms,

while others are surveillance approaches where infected devices are patched based on the surveillance

information. Here we show that EpiNet environment is capable of evaluating these interventions

K. Channakeshava Controlling the spread of mobile malware 127

in addition to other new methods and evaluate the efficacy of particular schemes.

We have looked at non-adaptive responses based on static graph metrics such as degree and be-

tweenness. We have studied device-based interventions where detection software on the device is

in a position to detect a self infection and disable certain features to stop the spread. We have

looked at policy-based centralized patch dissemination where the service provider applies patches

to devices when the infection count reaches a certain number. We also evaluate how effective dis-

seminating signatures in a local environment is in controlling the spread. We then evaluate the

efficacy of dynamic graph metrics such as vulnerability in controlling the spread. We find that

vulnerability performs well on some networks and performs better than other metrics on others.

We try to find estimates for vulnerability from other metrics, but do not find any one metric that

effectively maps to the vulnerability. In this chapter, we show how the framework can be employed

to study aspects in the control of malware spread over mobile networks.

We find that it is very difficult to control the malware spread in a proximity network and there

is no single metric that can effectively control the spread. Early detection will go a long way to

show efficacy of some of the metrics and usually also requires a large fraction of the devices to be

patched in order to control the spread.

Chapter 7

Conclusions and Future Directions

7.1 Summary of Contributions

Large scale simulations of malware on mobile wireless networks have become important applications

of high-performance computing. In this dissertation, we have proposed EpiNet, an individual-based,

scalable high performance modeling environment, to study the propagation of mobile malware. It

is designed specifically to work on commodity clusters. The environment serves as a evaluation

environment for studying current and future generation malware. We summarize the contributions

as follows:

1. We propose and implement EpiNet a highly expressive, scalable, parallel HPC-based wireless

epidemiology framework. To our knowledge, this is the only framework for malware studies

that scales to large device deployments of over 100K nodes and considers realistic high-

fidelity human mobility models. EpiNet has the capability to represent realistic device contact

networks created as a result of human mobility based on activity patterns.

2. EpiNet exports an expressive interface to configure and study complex interventions based

on static and dynamic graph metrics applied non-adaptively or adaptively. The interface also

allows for applying centralized policy interventions and individualized adaptive interventions.

The ability to model interventions makes it possible to evaluate the efficacy of interventions

128

K. Channakeshava Conclusions and Future Directions 129

with respect to different malware parameters.

3. We propose and construct an abstract representation of Bluetooth malware to model within-

host behavior. We calibrate the model using small scale packet level simulations using network

simulators. We validate this model and find that the results obtained by using this model

are accurate for small networks. We construct realistic proximity networks formed by mobile

devices to study the propagation of Bluetooth malware.

4. Approximations implemented in the mobility resolution provide 100X reduction in messages

exchanged and corresponding reduction in communication time. Reducing the model resolu-

tion helps obtain 10X speedup in computation from an initial high resolution model. Both

these approximations contribute to < 5% error in the final infection size.

5. We implement and study the dynamics of SMS/MMS malware that spread over the cellu-

lar infrastructure and study hybrid networks that can spread over Bluetooth and through

SMS/MMS messages.

7.2 Our Key Findings

In this dissertation we have studied the dynamics of mobile malware propagation and make the

following conclusions.

1. Although it is strongly believed that Bluetooth based malware cannot propagate to a lot of

devices, our finding suggest the opposite. The current market share of smart phones is a

contributing factor. Once a large market share is gained by smart phones, we will see an

increase in the number of malware outbreaks.

2. Access to communication and information allows devices to interconnect multiple networks

together – proximity networks created around the devices and social contact and communica-

tion networks, created by e-mail, IM, and SMS/MMS communications. This interconnection

provides multiple pathways for a sophisticated malware and is extremely difficult to control.

K. Channakeshava Conclusions and Future Directions 130

We find that an aggressive hybrid malware spread to 50% of the devices within a matter of

2-3 hours.

3. Access to real data of current and previous generation malware are limited. Very little infor-

mation is available in public domain, making it extremely difficult to validate our modeling

approach with respect to real malware. This will help in making the modeling more realistic.

7.3 Future Directions

There are several directions future work in this area can take.

1. More accurate proximity networks for Bluetooth malware. The proximity malware we study

use the high fidelity model to construct intra-location Bluetooth networks. This model can be

made more accurate by taking existing data on Bluetooth networks from sources such as [1].

This would make a high resolution network within the location and can offer more accurate

networks.

2. Consider the introduction of hybrid networks. The current simulation environment considers

proximity- and infrastructure-based propagation and a combination of the two. It does not

consider the impact of crossover malware that spread between PC and mobile device. This

would require the consideration of hybrid networks at locations in addition to proximity

networks. This would result in a completely different dynamic.

3. Building real-time simulations of mobile malware infections. The current framework is imple-

mented to execute a particular scenario of malware propagation and allows for implementing

dynamic intervention. Dynamic changes to these strategies may be interesting to try out

where an analyst can try dynamic interventions that change as a result of how a certain

interventions is playing out in controlling the spread.

Bibliography

[1] A Community Resource for Archiving Wireless Data at Dartmouth. http://crawdad.cs.

dartmouth.edu/.

[2] Scalable Simulation Framework. http://www.ssfnet.org/homePage.html.

[3] AusCERT. Australian computer crime and security survey. http://www.auscert.org.au/

images/ACCSS2006.pdf, 2006.

[4] Anand Balachandran, Geoffrey M. Voelker, Paramvir Bahl, and P. Venkat Rangan. Charac-

terizing user behavior and network performance in a public wireless lan. In ACM SIGMET-

RICS, 2002.

[5] C. L. Barrett, R. J. Beckman, K. P. Berkbigler, B. W. Bush K. R. Bisset, K. Campbell,

S. Eubank, K. M. Henson, J. M. Hurford, D. A. Kubicek, M. V. Marathe, O. Ramos Jr.,

S. Ree, P. R. Romero, J. P. Smith, L. L. Smith, P. L. Speckman, P. E. Stretz, G. L. Thayer,

E. Van Eeckhout, and M. D. Williams. TRANSIMS 2.0: Transportation Analysis Simulation

System. Technical Report LA-UR-00-1723–LA-UR-00-1767, Los Alamos National Laboratory,

2000. Online.

[6] Christopher Barrett, Richard Beckman, Karthik Channakeshava, Fei Huang, VSA Kumar,

Achla Marathe, Madhav Marathe, and Guanhong Pei. Cascading Failures in Multiple Infras-

tructures: From Transportation to Communication Network. In In Proceedings of Interacting

Critical Infrastructures for the 21st Century, 2010.

[7] Christopher L. Barrett, Harry B. Hunt III, Madhav V. Marathe, S. S. Ravi, Daniel J.

131

http://crawdad.cs.dartmouth.edu/
http://crawdad.cs.dartmouth.edu/
http://www.ssfnet.org/homePage.html
http://www.auscert.org.au/images/ACCSS2006.pdf
http://www.auscert.org.au/images/ACCSS2006.pdf

K. Channakeshava Bibliography 132

Rosenkrantz, and Richard Edwin Stearns. Complexity of reachability problems for finite

discrete dynamical systems. J. Comput. Syst. Sci., 72(8):1317–1345, 2006.

[8] Christopher L. Barrett, Keith R. Bisset, Stephen G. Eubank, Xizhou Feng, and Madhav V.

Marathe. EpiSimdemics: an Efficient Algorithm for Simulating the Spread of Infectious

Disease over Large Realistic Social Networks. In SC ’08: Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, pages 1–12, 2008.

[9] R. Beckman, K. Channakeshava, Fei Huang, V.S.A. Kumar, A. Marathe, M.V. Marathe, and

Guanhong Pei. Synthesis and Analysis of Spatio-Temporal Spectrum Demand Patterns: A

First Principles Approach. In New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium

on, pages 1–12, April 2010.

[10] R. Beckman, K. Channakeshava, Fei Huang, V.S.A. Kumar, A. Marathe, M.V. Marathe,

and Guanhong Pei. Implications of Dynamic Spectrum Access on the Efficiency of Primary

Wireless Market. In New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, pages

1–12, April 2010.

[11] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Ostrenga, and

S. Schwab. Experience with DETER: a Testbed for Security Research. In Testbeds and

Research Infrastructures for the Development of Networks and Communities, 2006. TRI-

DENTCOM 2006. 2nd International Conference on, 2006.

[12] Rob Beschizza. iPhone Game Developer Accused of Stealing Players’ Phone Numbers.

[13] Beselo. SymbOS/Beselo, January 2008. http://vil.nai.com/vil/content/v_144005.htm.

[14] Christian Bettstetter. Smooth is Better than Sharp: a Random Mobility Model for Simulation

of Wireless Networks. In MSWIM ’01, pages 19–27, 2001.

[15] Christian Bettstetter, Hannes Hartenstein, and Xavier Pérez-Costa. Stochastic Properties of

the Random Waypoint Mobility Model. Wireless Networks, 10(5):555–567, 2004.

http://vil.nai.com/vil/content/v_144005.htm

K. Channakeshava Bibliography 133

[16] Christian Bettstetter, Michael Gyarmati, and Udo Schilcher. An Inhomogeneous Spatial

Node Distribution and its Stochastic Properties. In MSWiM ’07: Proceedings of the 10th

ACM Symposium on Modeling, analysis, and simulation of wireless and mobile systems, pages

400–404, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-851-0. doi: http://doi.acm.

org/10.1145/1298126.1298195.

[17] R. Bo and S. Lowen. Fractal traffic models for internet simulation. In IEEE Computers and

Communications (ISCC), 2000.

[18] Abhijit Bose and Kang G. Shin. Proactive Security for Mobile Messaging Networks. In WiSe

’06: Proceedings of the 5th ACM Workshop on Wireless Security, pages 95–104, New York,

NY, USA, 2006. ACM.

[19] Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon Park. Behavioral Detection of Malware on

Mobile Handsets. In MobiSys ’08: Proceeding of the 6th international conference on Mobile

Systems, Applications, and Services, pages 225–238. ACM, 2008.

[20] Liane Cassavoy. iPhone Security Flaw: Separating Fact from Fiction. PCWorld, August

2010. http://www.pcworld.com/article/202538/iphone_security_flaw_separating_

fact_from_fiction.html.

[21] Center for Disease Control. National Health Interview Survey (NHIS). http://www.cdc.

gov/nchs/about/major/nhis/nhis_2007_data_release.htm.

[22] K. Channakeshava, D. Chafekar, K. Bisset, V. S. Anil Kumar, and M. Marathe. EpiNet:A

Simulation Framework to Study the Spread of Malware in Wireless Networks. In In Pro-

ceedings 2nd International Conference on Simulation Tools and Techniques (SIMUTools’09),

March 2009.

[23] K. Channakeshava, K. Bisset, V.S.A. Kumar, M. Marathe, and S. Yardi. High Performance

Scalable and Expressive Modeling Environment to Study Mobile Malware in Large Dynamic

Networks. In 25th IEEE International Parallel & Distributed Processing Symposium (IEEE

IPDPS 2011), 2011. Sumbitted.

 http://www.pcworld.com/article/202538/iphone_security_flaw_separating_fact_fro m_fiction.html
 http://www.pcworld.com/article/202538/iphone_security_flaw_separating_fact_fro m_fiction.html
http://www.cdc.gov/nchs/about/major/nhis/nhis_2007_data_release.htm
http://www.cdc.gov/nchs/about/major/nhis/nhis_2007_data_release.htm

K. Channakeshava Bibliography 134

[24] Credant Technologies. Survey demonstrates poor smartphone security attitude amongst

users. http://www.prosecurityzone.com/Customisation/News/IT_Security/Mobile_

computing_security/Survey_demonstrates_poor_smartphone_security_attitude_

amongst_users.asp, June 2009. Online.

[25] Drever. Drever.C. http://www.f-secure.com/v-descs/drever_c.shtml, March 2005.

[26] A. Dwivedi and R. Wagner. Traffic Model for USA Long-distance Optical Network. In IEEE

Optical Fiber Communication Conference, 2002.

[27] Daniel R. Ellis, John G. Aiken, Kira S. Attwood, and Scott D. Tenaglia. A Behavioral

Approach to Worm Detection. In WORM ’04: Proceedings of the 2004 ACM workshop on

Rapid malcode, pages 43–53, New York, NY, USA, 2004. ACM. ISBN 1-58113-970-5. doi:

http://doi.acm.org/10.1145/1029618.1029625.

[28] S. Eubank, V.S. Anil Kumar, M. Marathe, A. Srinivasan, and N. Wang. Structure of So-

cial Contact Networks, and Their Impact on Epidemics. AMS-DIMACS Special Issue on

Epidemiology, 2006.

[29] P. Ferrie, P. Szor, R. Stanev, and R. Mouritzen. Security Responses: Symbos.cabir. Symantec

Corporation, June 2004.

[30] Kevin Finisterre. InqTana Through the Eyes of Dr. Frankenstein, 2006. http://www.

digitalmunition.com/InqTanaThroughTheEyes.txt.

[31] Chris Fleizach, Michael Liljenstam, Per Johansson, Geoffrey M. Voelker, and Andras Mehes.

Can you infect me now?: Malware Propagation in Mobile Phone Networks. In WORM

’07: Proceedings of the 2007 ACM workshop on Recurring malcode, pages 61–68, New York,

NY, USA, 2007. ACM. ISBN 978-1-59593-886-2. doi: http://doi.acm.org/10.1145/1314389.

1314402.

[32] Sally Floyd and Vern Paxson. Difficulties in Simulating the Internet. IEEE/ACM Transac-

tions on Networking, 2001.

http://www.prosecurityzone.com/Customisation/News/IT_Security/Mobile_computing_security/Survey_demonstrates_poor_smartphone_security_attitude_amongst_users.asp
http://www.prosecurityzone.com/Customisation/News/IT_Security/Mobile_computing_security/Survey_demonstrates_poor_smartphone_security_attitude_amongst_users.asp
http://www.prosecurityzone.com/Customisation/News/IT_Security/Mobile_computing_security/Survey_demonstrates_poor_smartphone_security_attitude_amongst_users.asp
http://www.f-secure.com/v-descs/drever_c.shtml
http://www.digitalmunition.com/InqTanaThroughTheEyes.txt
http://www.digitalmunition.com/InqTanaThroughTheEyes.txt

K. Channakeshava Bibliography 135

[33] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. The Evolution of System-Call Mon-

itoring. In ACSAC ’08: Proceedings of the 2008 Annual Computer Security Applications

Conference, pages 418–430. IEEE Computer Society, 2008.

[34] Priya Ganapati. Malware Sneaks Into Android Market, January 2010. http://www.wired.

com/gadgetlab/2010/01/android-malware-fears/.

[35] Gartner, Inc. Gartner Says Worldwide Mobile Phone Sales Increased 16 Per Cent in 2007.

http://www.gartner.com/it/page.jsp?id=612207, February 2008. Press Release.

[36] Gartner, Inc. Gartner Identifies the Top 10 Strategic Technologies for 2010. http://www.

gartner.com/it/page.jsp?id=1210613, October 2009. Press Release.

[37] Georgia Tech Information Security Center. Emerging Cyber Threats Report for 2009.

http://www.gtiscsecuritysummit.com/pdf/CyberThreatsReport2009.pdf, 2009.

[38] Georgia Tech Information Security Center. Emerging Cyber Threats Report for 2009.

http://www.gtiscsecuritysummit.com/pdf/CyberThreatsReport2009.pdf, 2009.

[39] Daniel T. Gillespie. A General Method for Numerically Simulating the Stochastic Time

Evolution of Coupled Chemical Reactions. Journal of Computational Physics, 22(4):403 –

434, 1976.

[40] Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi. Understanding Individual

Human Mobility Patterns. Nature, 453(7196):779–782, June 2008. ISSN 0028-0836. URL

http://dx.doi.org/10.1038/nature06958.

[41] GTNetS. The Georgia Tech Network Simulator (GTNetS). http://www.ece.gatech.edu/

research/labs/MANIACS/GTNetS/.

[42] Mikko Hypponen. Malware Goes Mobile. Scientific American, November 2006.

[43] Gianluca Iannaccone, Christophe Diot, Derek McAuley, Andrew Moore, Ian Pratt, and Luigi

Rizzo. The CoMo White Paper. Technical report, Intel Research, September 2004.

http://www.wired.com/gadgetlab/2010/01/android-malware-fears/
http://www.wired.com/gadgetlab/2010/01/android-malware-fears/
http://www.gartner.com/it/page.jsp?id=612207
http://www.gartner.com/it/page.jsp?id=1210613
http://www.gartner.com/it/page.jsp?id=1210613
http://www.gtiscsecuritysummit.com/pdf/CyberThreatsReport2009.pdf
 http://www.gtiscsecuritysummit.com/pdf/Cyber ThreatsReport2009.pdf
http://dx.doi.org/10.1038/nature06958
http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/
http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/

K. Channakeshava Bibliography 136

[44] Grégoire Jacob, Hervé Debar, and Eric Filiol. Behavioral Detection of Malware: from a

Survey Towards an Established Taxonomy. Journal in Computer Virology, 4(3):251–266, 08

2008.

[45] Markus Jakobsson and Karl-Anders Johansson. Retroactive Detection of Malware With

Applications to Mobile Platforms. In HotSec 2010. USENIX, USENIX, August 2010.

[46] Markus Jakobsson and Ari Juels. Server-Side Detection of Malware Infection. In New Security

Paradigms Workshop (NSPW). ACM, September 2009.

[47] Ryan Kairer. Smartphones Showed Strong Growth in 2007, February 2008. http://www.

palminfocenter.com/news/9617/smartphones-showed-strong-growth-in-2007.

[48] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido. A Nonstationary Poisson View of

Internet Traffic. In INFOCOM ’04, 2004.

[49] Brendan P. Kehoe. Zen and the Art of the Internet. 1992. http://www.cs.indiana.edu/

docproject/zen/zen-1.0_toc.html.

[50] Jeffrey O. Kephart and Steve R. White. Directed-Graph Epidemiological Models of Computer

Viruses. Research in Security and Privacy, 1991. Proceedings., 1991 IEEE Computer Society

Symposium on, 00:343–359, May 1991.

[51] Jeffrey O. Kephart and Steve R. White. Measuring and Modeling Computer Virus Preva-

lence. In SP ’93: Proceedings of the 1993 IEEE Symposium on Security and Privacy, page 2,

Washington, DC, USA, 1993. IEEE Computer Society.

[52] Jeffrey O. Kephart, Steve R. White, and David M. Chess. Computers and Epidemiology. IEEE

Spectrum, 30(5):20–26, 1993. ISSN 0018-9235. doi: http://dx.doi.org/10.1109/6.275061.

[53] M.H. R. Khouzani, Saswati Sarkar, and Eitan Altman. Optimal Propagation of Security

Patches in Mobile Wireless Networks: Extended Abstract. SIGMETRICS Perform. Eval.

Rev., 38(1):355–356, 2010.

http://www.palminfocenter.com/news/9617/smartphones-showed-strong-growth-in-2007
http://www.palminfocenter.com/news/9617/smartphones-showed-strong-growth-in-2007
http://www.cs.indiana.edu/docproject/zen/zen-1.0_toc.html
http://www.cs.indiana.edu/docproject/zen/zen-1.0_toc.html

K. Channakeshava Bibliography 137

[54] Hahnsang Kim, Joshua Smith, and Kang G. Shin. Detecting Energy-greedy Anomalies and

Mobile Malware Variants. In MobiSys ’08: Proceeding of the 6th international conference on

Mobile systems, applications, and services, pages 239–252, New York, NY, USA, 2008. ACM.

ISBN 978-1-60558-139-2. doi: http://doi.acm.org/10.1145/1378600.1378627.

[55] David Kotz and Kobby Essien. Analysis of a campus-wide wireless network. Wireless Net-

works, 2005.

[56] L. Kroc, S. Eidenbenz, and J. Smith. SessionSim: Activity-Based Session Generation for

Network Simulation. In Winter Simulation Conference, 2009.

[57] M. Lactaotao. Security Information: Virus Encyclopedia: Symbos comwar.a. Trend Micro

Incorporated, March 2005.

[58] Lasco. Cabir!lasco. http://vil.nai.com/vil/content/v_131604.htm, January 2005.

[59] George Lawton. Is It Finally Time to Worry about Mobile Malware? Computer, 41(5):12–14,

2008. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/MC.2008.159.

[60] Rafal Leszczyna, Igor Nai Fovino, and Marcelo Masera. Simulating malware with malsim.

Journal in Computer Virology, 6:65–75, 2010.

[61] Liberty. Palm/Liberty. http://www.f-secure.com/v-descs/lib_palm.shtml, August

2000.

[62] Michael Liljenstam, David M. Nicol, Vincent H. Berk, and Robert S. Gray. Simulating

Realistic Network Worm Traffic for Worm Warning System Design and Testing. In WORM

’03: Proceedings of the 2003 ACM workshop on Rapid malcode, pages 24–33, New York, NY,

USA, 2003. ACM.

[63] J. Ma, G. Voelker, and S. Savage. Self-stopping Worms. In WORM ’05, 2005.

[64] Mabir. Mabir.a!sis. http://vil.nai.com/vil/content/v_132804.htm, April 2005.

http://vil.nai.com/vil/content/v_131604.htm
http://www.f-secure.com/v-descs/lib_palm.shtml
http://vil.nai.com/vil/content/v_132804.htm

K. Channakeshava Bibliography 138

[65] P. Mel, K. Kent, and J. Nusbaum. Guide to Malware Incident Prevention and Handling.

http://csrc.nist.gov/publications/nistpubs/800-83/SP800-83.pdf, November 2005.

NIST 800-83.

[66] Ellen Messmer. New Approaches to Malware Detection Coming into View. http://www.

networkworld.com/news/2007/042507-malware-detection.html?page=1, April 2007.

Online.

[67] James W. Mickens and Brian D. Noble. Modeling Epidemic Spreading in Mobile Environ-

ments. In WiSe ’05: Proceedings of the 4th ACM workshop on Wireless security, pages 77–86.

ACM, 2005.

[68] James W. Mickens and Brian D. Noble. Analytical Models for Epidemics in Mobile Networks.

In Wireless and Mobile Computing, Networking and Communication, IEEE International

Conference on, pages 77–84, Los Alamitos, CA, USA, 2007. IEEE Computer Society. ISBN

0-7695-2889-9.

[69] David Moore, Colleen Shannon, and k claffy. Code-Red: A Case Study on the Spread and

Victims of an Internet Worm. In IMW ’02: Proceedings of the 2nd ACM SIGCOMM Workshop

on Internet measurment, pages 273–284, New York, NY, USA, 2002. ACM. ISBN 1-58113-

603-X. doi: http://doi.acm.org/10.1145/637201.637244.

[70] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and Nicholas

Weaver. Inside the Slammer Worm. IEEE Security and Privacy, 1(4):33–39, 2003. ISSN

1540-7993. doi: http://dx.doi.org/10.1109/MSECP.2003.1219056.

[71] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and Stefan Sav-

age. Inferring Internet Denial-of-Service Activity. ACM Transactions on Computer Systems

(TOCS), 24(2):115–139, 2006.

[72] Susanta Nanda and Tzi-Cker Chiueh. Execution Trace-Driven Automated Attack Signature

Generation. In ACSAC ’08: Proceedings of the 2008 Annual Computer Security Applications

Conference, pages 195–204. IEEE Computer Society, 2008.

http://csrc.nist.gov/publications/nistpubs/800-83/SP800-83.pdf
http://www.networkworld.com/news/2007/042507-malware-detection.html?page=1
http://www.networkworld.com/news/2007/042507-malware-detection.html?page=1

K. Channakeshava Bibliography 139

[73] Maziar Nekovee. Worm Epidemics in Wireless Ad Hoc Networks. New Journal of Physics, 9

(6):189, 2007. URL http://stacks.iop.org/1367-2630/9/189.

[74] Maziar Nekovee. Epidemic Spreading of Computer Worms in Fixed Wireless Networks. Bio-

Inspired Computing and Communication, pages 105–115, 2008. URL http://dx.doi.org/

10.1007/978-3-540-92191-2_10.

[75] Zoran Nikoloski, Narsingh Deo, and Ludek Kucera. Correlation Model of Worm Propagation

on Scale-Free Networks. Complexus, pages 169–182, March 2006.

[76] NS-2. Network Simulator (NS-2). http://www.isi.edu/nsnam/ns/.

[77] Terrence OConnor and Douglas Reeves. Bluetooth Network-Based Misuse Detection. In

ACSAC ’08: Proceedings of the 2008 Annual Computer Security Applications Conference,

pages 377–391. IEEE Computer Society, 2008.

[78] V Paxson and S Floyd. Wide Area Traffic: The Failure of Poisson Modeling. IEEE/ACM

Transactions on Networking, 1995.

[79] Cyrus Peikari. Analyzing the Crossover Virus: The First PC to Windows Handheld Cross-

infector. http://www.informit.com/articles/article.aspx?p=458169&seqNum=5, March

2006.

[80] Lisa Phifer. Defeating Malicious Mobiles. Business Communications Review, April 2007.

[81] Redbrowser. Redbrowser.A. http://www.f-secure.com/v-descs/redbrowser_a.shtml,

March 2006.

[82] Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee, and Song Chong. On the Levy-

Walk Nature of Human Mobility. In INFOCOM 2008. The 27th Conference on Computer

Communications. IEEE, pages 924–932, April 2009.

[83] C.J. Rhodes and M. Nekovee. The Opportunistic Transmission of Wireless Worms between

Mobile Devices. Physica A: Statistical Mechanics and its Applications, 387(27):6837–6844,

2008.

http://stacks.iop.org/1367-2630/9/189
http://dx.doi.org/10.1007/978-3-540-92191-2_10
http://dx.doi.org/10.1007/978-3-540-92191-2_10
http://www.isi.edu/nsnam/ns/
http://www.informit.com/articles/article.aspx?p=458169&seqNum=5
http://www.f-secure.com/v-descs/redbrowser_a.shtml

K. Channakeshava Bibliography 140

[84] E. Van Ruitenbeek, T. Courtney, W. H. Sanders, and F. Stevens. Quantifying the Effective-

ness of Mobile Phone Virus Response Mechanisms. In Dependable Systems and Networks,

2007. DSN ’07. 37th Annual IEEE/IFIP International Conference on, pages 790–800, 2007.

[85] Scalable Network Technologies. QualNet. http://www.scalable-networks.com/.

[86] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel Multilevel Algorithms for Multi-

constraint Graph Partitioning. In Euro-Par ’00, pages 296–310. Springer-Verlag, 2000.

[87] Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos Faloutsos, and

Jure Leskove. Mobile Call Graphs: Beyond Power-law and Lognormal Distributions. In KDD

’08: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 596–604. ACM, 2008.

[88] Skulls. Skulls.A. http://www.f-secure.com/v-descs/skulls.shtml, March 2005.

[89] Jing Su, Kelvin K. W. Chan, Andrew G. Miklas, Kenneth Po, Ali Akhavan, Stefan Saroiu,

Eyal de Lara, and Ashvin Goel. A Preliminary Investigation of Worm Infections in a Bluetooth

Environment. In WORM ’06: Proceedings of the 4th ACM Workshop on Recurring Malcode,

pages 9–16, 2006.

[90] Symantec. SymbOS.Cardtrp.A. http://www.symantec.com/security_response/writeup.

jsp?docid=2005-092215-2634-99, September 2005.

[91] D. Tang and M. Baker. Analysis of a Local-Area Wireless Network. In ACM MobiCom, pages

1–10, 2000.

[92] John Tang, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Vincenzo Nicosia. Analyzing

Information Flows and Key Mediators Through Temporal Centrality Metrics. In SNS ’10,

pages 1–6. ACM, 2010.

[93] UCBT. UCBT: Bluetooth Extension for NS2 at University of Cincinnatti. http://www.

ececs.uc.edu/˜cdmc/ucbt/.

http://www.scalable-networks.com/
http://www.f-secure.com/v-descs/skulls.shtml
http://www.symantec.com/security_response/writeup.jsp?docid=2005-092215-2634-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-092215-2634-99
http://www.ececs.uc.edu/~cdmc/ucbt/
http://www.ececs.uc.edu/~cdmc/ucbt/

K. Channakeshava Bibliography 141

[94] Pu Wang, Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi. Understanding

the Spreading Patterns of Mobile Phone Viruses. Science, pages 1167053–, April 2009.

[95] Songjie Wei, Jelena Mirkovic, and Martin Swany. Distributed Worm Simulation with a

Realistic Internet Model. In PADS ’05: Proceedings of the 19th Workshop on Principles of

Advanced and Distributed Simulation, pages 71–79. IEEE Computer Society, 2005. ISBN

0-7695-2383-8.

[96] Songjie Wei, Alefiya Hussain, Jelena Mirkovic, and Calvin Ko. Tools for Worm Experimen-

tation on the DETER Testbed. Int. J. Commun. Netw. Distrib. Syst., 5(1/2):151–171, 2010.

[97] D. Willkomm, S. Machiraju, J. Bolot, and A. Wolisz. Primary Users in Cellular Networks: A

Large-Scale Measurement Study. In New Frontiers in Dynamic Spectrum Access Networks,

2008. DySPAN 2008. 3rd IEEE Symposium on, pages 1–11, October 2008.

[98] Guanhua Yan and Stephan Eidenbenz. Bluetooth Worms: Models, Dynamics, and Defense

Implications. In ACSAC ’06: Proceedings of the 22nd Annual Computer Security Applications

Conference on Annual Computer Security Applications Conference, pages 245–256. IEEE

Computer Society, 2006.

[99] Guanhua Yan and Stephan Eidenbenz. Modeling Propagation Dynamics of Bluetooth Worms.

In ICDCS, pages 42–52. IEEE Computer Society, 2007.

[100] Guanhua Yan, Hector D. Flores, Leticia Cuellar, Nicolas Hengartner, Stephan Eidenbenz,

and Vincent Vu. Bluetooth Worm Propagation: Mobility Pattern Matters! In ASIACCS ’07:

Proceedings of the 2nd ACM symposium on Information, Computer and Communications

Security, pages 32–44. ACM, 2007.

[101] Cliff Changchun Zou, Weibo Gong, and Don Towsley. Code Red Worm Propagation Mod-

eling and Analysis. In CCS ’02: Proceedings of the 9th ACM Conference on Computer and

Communications Security, pages 138–147. ACM, 2002.

[102] Cliff Changchun Zou, Weibo Gong, and Don Towsley. Worm propagation modeling and

K. Channakeshava Bibliography 142

analysis under dynamic quarantine defense. In WORM ’03: Proceedings of the 2003 ACM

workshop on Rapid malcode, pages 51–60. ACM, 2003.

[103] Gjergji Zyba, Geoffrey M. Voelker, Michael Liljenstam, Andras Mehes, and Per Johansson.

Defending Mobile Phones from Proximity Malware. In INFOCOM 2009. The 27th Conference

on Computer Communications. IEEE, April 2009.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	The Problem
	Motivation
	Our Contributions
	Summary of Results
	Organization

	Related Work
	Computer Epidemiology
	Mobile malware threats and their study
	Simulation and Emulation Infrastructures
	Studying mobile malware spread
	Defenses against mobile malware

	Drawbacks in existing approaches

	The EpiNet Simulation Environment
	The EpiNet Infrastructure
	Construction of Realistic Networks
	Construction of Realistic Proximity Networks
	Construction of Realistic Communication Networks

	Within-host malware model
	Modeling the Bluetooth Malware
	Model Calibration
	Validation of malware Model

	The Parallel Simulator
	EpiNet Implementation
	Interventions in EpiNet

	Summary

	Computational Aspects of EpiNet
	Enhancements to EpiNet
	Scalability of EpiNet
	Interventions in EpiNet

	Scaling improvements for EpiNet
	Approximating the host-to-host interaction network
	Approximating the Within-host model
	Error Measurements for the approximations
	System-level optimizations using hybrid MPI-Threads

	Illustrative Case Studies using EpiNet
	Case Study 1: Computing dynamic measures in networks
	Case Study 2: Effect of device penetration
	Case Study 3: Effect of Spatial and Demographic Heterogeneity

	Performance Evaluation
	Scaling Behavior of EpiNet
	Scaling MPI processes on multiple cores of same node
	Scaling with a hybrid MPI-Threads Implementation
	Evaluation of Load Balancing Approaches

	Summary

	Spread of Mobile Malware
	Comparison with RWP
	Data set, Assumptions, and Experimental Design
	Sensitivity of Bluetooth and worm parameters
	Sensitivity to Network parameters
	Effect of market share
	Effect of location density

	Characterizing interactions between parameters
	Analysis of Variance Study

	Study of SMS/MMS Malware and their propagation
	Implementation of SMS/MMS malware

	Summary

	Controlling the spread of mobile malware
	Graph Centrality Measures
	Mobile device based Responses
	Passive Self Detection
	Detection with Signature Dissemination

	Device Vulnerability
	Vulnerability based responses
	Comparing Degree and Vulnerability Metrics
	Estimating Vulnerability

	Summary

	Conclusions and Future Directions
	Summary of Contributions
	Our Key Findings
	Future Directions

	Bibliography

