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1. Introduction

What drives secular variation in stock return volatility? In a seminal paper, Schwert (1989) considers

several potential explanations, including the possibility that volatility fluctuates with the level of economic

activity. Although Schwert (1989) finds only limited support for links between volatility and macroeco-

nomic activity, subsequent papers report more encouraging evidence. This large body of literature is diffi-

cult to digest, as different studies examine different forecasting variables and apply different econometric

approaches.1

Understanding the robustness and magnitude of links between macroeconomic variables and volatility

represents an important empirical question in finance. From a risk-management perspective, understand-

ing how future aggregate stock market volatility responds to changing macroeconomic conditions is critical

for stress-testing and computing value-at-risk over longer horizons. From an asset allocation perspective,

quantities that forecast volatility become state variables in investors’ portfolio decisions. Finally, character-

izing the extent and pattern of time series variation in volatility is important for determining the appropriate

stylized facts against which asset pricing models should be evaluated.

Consistent with Schwert (1989) and other existing research, I find that stock return volatility behaves

countercyclically. Empirical measures of business conditions, such as the growth rate of gross domestic

product (GDP), co-move closely with sign-inverted measures of stock return volatility. From a forecasting

perspective, the strong contemporaneous relation between volatility and business conditions implies that

lagged volatility provides an efficient indicator of the economic state. Whether it is possible to improve

forecast performance by conditioning on additional macroeconomic and financial variables is unclear. To

be successful, such variables must capture information beyond that already contained in lagged volatility.

This paper provides a broad assessment of the ability of macroeconomic and financial variables to improve

volatility forecasts at monthly and quarterly horizons.

Recent literature identifies several channels that could drive time variation in volatility. These include

time-varying volatility in shocks to fundamentals (e.g., Bansal and Yaron, 2004), nonlinear relations between

time-varying expected returns and the business cycle (Mele, 2007), learning effects related to investors’

uncertainty about fundamentals (e.g., Veronesi, 1999), and amplification of shocks to asset markets via

financial intermediation (Brunnermeier and Pedersen, 2009). This body of theoretical work motivates the

1Relevant papers include Campbell (1987), Breen, Glosten, and Jagannathan (1989), Shanken (1990), Glosten, Jagannathan,
and Runkle (1993), Whitelaw (1994), Harvey (2001), Marquering and Verbeek (2004), Lettau and Ludvigson (2010), Ludvigson
and Ng (2007), Engle and Rangel (2008), Engle, Ghysels, and Sohn (2008), and Campbell and Diebold (2009).
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set of forecasting variables considered in the paper. These include a measure of corporate payout, several

interest rate and return spreads, a measure of changes in bank leverage, measures of current and expected

economic growth, a direct proxy for time-varying expected returns, volatilities for two key macroeconomic

series, and two ratios for the aggregate economy: consumption to wealth and investment to capital stock.

I emphasize an out-of-sample econometric approach, although in-sample results appear for reference and

comparison. This focus parallels the recent emphasis on out-of-sample inference in the literature on stock

return predictability, where an active debate continues regarding the extent to which returns are predictable.2

The paper distinguishes between two alternative notions of out-of-sample forecast improvement. The first

focuses on properties of the data generating process: Do macroeconomic variables Granger cause volatility,

such that volatility depends upon these variables conditional on past volatility? The second interpretation

adopts a normative stance: Do volatility models that incorporate macroeconomic variables improve the

accuracy of out-of-sample forecasts?

To see that these alternative interpretations are distinct, suppose that the conditional volatility of stock

returns depends on some macroeconomic variable, so that this variable Granger causes volatility. Out-of-

sample forecasts exploiting the variable could nevertheless under-perform forecasts based on a (misspec-

ified) model that omits it. This is because there is a bias-variance trade-off at play. The conditional bias

reduction afforded by including the macroeconomic predictor might not offset increased forecast variance

related to parameter estimation.

I conduct two econometric tests comparing the out-of-sample forecasting performance of a benchmark

model with a model augmented with one or more of the predictor variables. Both tests involve the out-of-

sample difference in mean square prediction error (MSPE) relative to the benchmark. The first test, proposed

by Giacomini and White (2006), is equivalent to the Diebold and Mariano (1995) test for equal predictive

ability. The second test, proposed by Clark and West (2007), adds an adjustment term to the out-of-sample

difference in MSPE that accounts for parameter estimation noise. The key difference between the two testing

frameworks lies in the specification of the null hypothesis. In the Clark and West (2007) framework, the

null hypothesis involves the population difference in MSPE between the two nested models. By contrast,

the null hypothesis in the Giacomini and White (2006) framework relates to the forecasting method and

2Goyal and Welch (2008) find little evidence that common stock return forecasting regressions succeed out-of-sample. Campbell
and Thompson (2008) find that imposing economically motivated constraints on coefficients and return forecasts delivers forecast
improvements relative to the historical average. Rapach, Strauss, and Zhou (2010) find that combining individual return forecasts
improves out-of-sample performance.
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explicitly incorporates parameter estimation as a source of forecast error. The Clark and West (2007) test is

appropriate when the underlying research question involves Granger causality, whereas the Giacomini and

White (2006) test is appropriate for addressing the normatively oriented question of whether one forecast

performs better than the other.

The empirical evidence from in-sample forecasting regressions is encouraging. Several variables appear

to Granger cause volatility, including the commercial paper-to-Treasury spread, the default spread, a bond

return spread, and the ratio of investment to capital in the aggregate economy. The null of no predictability

is also rejected for a kitchen sink specification that includes the full set of predictors. Although the statistical

evidence for Granger causality is compelling, the economic significance of the predictive power afforded by

these variables is relatively small. These findings are robust to several alternative sample periods, with the

strength of evidence for predictability being strongest between the 1950s and early 1980s.

Out-of-sample evidence regarding Granger causality largely confirms the results from in-sample predic-

tive regressions. The Clark and West (2007) test for Granger causality implicates essentially the same vari-

ables that are significant based on in-sample regressions. The null of no Granger causality is also typically

rejected for the kitchen sink model. Results are somewhat sensitive; however, to inclusion of the econom-

ically volatile 1970s in the out-of-sample evaluation period. Specifically, the out-of-sample evidence for

Granger causality is weaker over the period 1982–2010 relative to the equally long period 1972–2000 that

includes the 1970s.

The evidence for superior predictive ability (in the Giacomini and White sense) is mixed. Taken one

at a time, the individual predictors fail to generate statistically significant improvements in forecast accu-

racy relative to the benchmark. The heavily parameterized kitchen sink model also fairs poorly. In some

cases, this model significantly under-performs the benchmark. Not all of the evidence is negative, though.

Combinations of the underlying univariate forecasts often statistically outperform the benchmark. A simple

equal-weighted combination of the univariate forecasts often succeeds. These findings are consistent with

Rapach, Strauss, and Zhou (2010), who consider similar combination schemes in the context of stock return

forecasts. There are two caveats. First, the associated out-of-sample R2 improvements relative to the bench-

mark are relatively small. Second, evidence of superior performance is weaker when the out-of-sample

evaluation period does not include the 1970s.

The pattern of results highlights the distinction between the two types of out-of-sample tests applied in

the paper. In many instances, the Clark and West test rejects, while the Giacomini and White test fails to
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reject, or vice versa. Results for the kitchen sink model provide a useful illustration. Under the null hypothe-

sis of no Granger causality, this model is expected to substantially under-perform the benchmark, because it

includes a large number of spurious variables. Despite underwhelming out-of-sample R2 values, the kitchen

sink model often performs better than expected, and consequently the Clark and West test rejects the null.

To expand upon this point, I develop a simple Monte Carlo experiment. Simulated data are calibrated to

match the key empirical features of return volatility and a typical macroeconomic predictor. In one case, the

simulated variable Granger causes volatility, while a second case imposes the null of no Granger causality.

For empirically realistic sample sizes, the simulation results illustrate a pattern of divergence between the

Giacomini and White (2006) and Clark and West (2007) tests consistent with that observed in the data.

Weak forecasting results during the Great Moderation suggest connections between the business cycle

and relative forecast performance. Time series plots of cumulative forecast performance relative to the

benchmark display a striking pattern for the more successful predictors: Forecast improvements appear to

concentrate around the onset of recessions. Relative forecast performance, therefore, is countercyclical.3

Unfortunately, the linkage between forecast performance and recessions is complex, as different variables

exhibit different patterns of forecast performance around recessions. By exploiting information in multiple

predictors, the combined forecasts generate a more consistent pattern of forecast improvements.

The main findings survive a wide array of robustness checks. These include using alternative empirical

proxies for stock return volatility, using alternative dynamic specifications for the benchmark forecasts,

forecasting the level as opposed to the log of stock return volatility, and employing a recursive versus rolling

estimation scheme.

Stock return volatility is persistent, while stock returns are not. Notwithstanding this important differ-

ence, there are striking similarities between results established here and findings reported in the extensive

literature on forecasting stock returns. Specifically, this paper shows that, from an ex post perspective,

certain macroeconomic and financial variables help explain time variation in stock return volatility. At

the same time, the additional predictive power afforded by these variables is small, and forecasting abil-

ity appears to concentrate during a subperiod from the 1950s through the early 1980s. Similar statements

well-characterize recent findings in the equity premium literature.4 Viewed from this perspective, the results

3This parallels findings in the return forecasting literature. Henkel, Martin, and Nardari (2011) employ a regime switching
model and find that return predictability is concentrated in recessions. Rapach, Strauss, and Zhou (2010) find that out-of-sample
return forecasting gains are concentrated in low growth episodes.

4Spiegel (2008) provides a recent synopsis of this literature.
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reported here conjure a distinct sense of déjà vu.

This paper is among several recent studies that embody a resurgence of interest in connections between

macroeconomic conditions and stock return volatility. Related work includes Adrian and Shin (2010), David

and Veronesi (2009), Engle, Ghysels, and Sohn (2008), and Ludvigson and Ng (2007). Relative to these

studies, the present paper focuses on applying recently developed econometric techniques to evaluate the

extent to which macroeconomic and financial variables improve volatility forecasts out-of-sample. While

the papers adopt different perspectives, important commonalities exist.

The remainder of the paper proceeds as follows. Section 2 discusses the statistical properties of stock

return volatility and analyzes connections between stock return volatility and the level of economic activity.

Section 3 discusses theoretical explanations for time variation in stock return volatility and describes the set

of forecasting variables used in the analysis. Sections 4 and 5 present empirical results, the former from an

in-sample perspective and the latter using an out-of-sample research design. Section 6 concludes.

2. Stock return volatility and the business cycle

This section discusses the measurement of stock return volatility and characterizes the relation between

stock return volatility and the business cycle.

2.1. Measuring stock return volatility
The conditional variance of a portfolio return is based on ex ante expectations and is fundamentally

unobservable. A regression-based approach to modeling conditional volatility relies on an ex post measure-

ment of variance. Following Taylor (1986), French, Schwert, and Stambaugh (1987), and Schwert (1989), I

sum squared daily returns to construct a proxy for the variance of excess returns on the Standard & Poor’s

(S&P) 500 index at both monthly and quarterly sampling frequencies:

RV(t) =
Nt

∑
i=1

R2
i,t , (1)

where Nt denotes the number of trading days in the tth month or quarter and Ri,t indicates the daily excess

return on the S&P 500 index on the ith trading day of the tth period.

The notation RV (t) emphasizes the connection between Eq. (1) and the realized variance literature that

employs intraday returns to measure return variation. Andersen, Bollerslev, Diebold, and Labys (2003) and

Barndorff-Nielsen and Shephard (2002) show that, as the intraperiod sampling frequency increases, Eq. (1)
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converges in probability to the quadratic variation of a frictionless, arbitrage-free asset price process.5

2.2. Statistical properties of stock return volatility
Aggregate stock return volatility is positively skewed and leptokurtotic. The leptokurtosis is partially at-

tributable to several concentrated episodes of stock return volatility, including the October 1987 stock market

crash and the dramatic plunge in equity values associated with the financial crisis of 2008. This paper focuses

on forecasting volatility using linear models estimated by ordinary least squares (OLS). When regression

errors are non-normal and fat-tailed, OLS might be inferior to nonlinear, robust estimation approaches. Tak-

ing the natural logarithm of realized volatility results in a series that is approximately Gaussian, as shown

by Andersen, Bollerslev, Diebold, and Ebens (2001). Consequently, the subsequent empirical analysis fo-

cuses on modeling and forecasting the natural logarithm of annualized volatility, LVOL(t)≡ ln(
√

mRV (t)),

where m corresponds to the number of periods within a year (four for quarterly sampling and 12 for monthly

sampling).6 The upper panel of Fig. 1 presents a time series plot of quarterly LVOL(t). Volatility is clearly

persistent, a fact well established in the literature.

2.3. The relation between stock return volatility and the business cycle
Stock return volatility tends to be higher during recessions relative to expansions. For example, Schwert

(1989) regresses volatility on a dummy variable that takes the value of one during National Bureau of

Economic Research (NBER) recessions and finds volatility to be significantly higher during these periods.

The middle and bottom panels of Fig. 1 provide visual evidence regarding the cyclical properties of stock

return volatility. These panels provide time series plots of sign-inverted log stock return volatility alongside

real GDP growth at the quarterly frequency. To facilitate comparison, both series are standardized prior

to plotting. The middle panel shows the raw series, and the bottom panel shows smoothed versions of the

series, constructed as six-quarter moving averages.

The affinity between stock return volatility and the level of economic activity is striking. Overall, the

volatility and GDP series track one another closely. The plots confirm conventional wisdom: When business

conditions are poor, stock return volatility tends to be higher. Interestingly, there appears to be time variation

in the degree of affinity between volatility and business conditions. The two series co-move tightly over a

period beginning in the the mid-1960s and extending through the early 1980s. During other periods, the

5An unpublished Appendix, available upon request, explores robustness to variations on Eq. (1), including alternative measures
based on absolute returns instead of squared returns, measures that attempt to correct for time variation in expected returns, and
measures that exploit intraday price data.

6The unpublished Appendix shows that most findings are robust to alternatively modeling the level of volatility.
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series are more divergent. For example, real business conditions do not respond to the spike in return

volatility in October 1987, and the two series appear out-of-phase during most of the 1990s.7

The close relation between stock return volatility and real economic conditions illustrates the challenge

in identifying macroeconomic and financial variables that can improve long-horizon volatility forecasts. Be-

cause lagged volatility captures a rich set of information regarding current economic conditions, successful

forecasting variables must capture additional relevant information to be helpful. The remaining sections of

the paper consider a set of potentially useful forecasting variables and empirically assess the extent to which

these variables improve volatility forecasts relative to a simple benchmark.

3. A set of forecasting variables motivated by theory

This section discusses potential explanations for time variation in stock return volatility and describes

the set of forecasting variables used in the empirical analysis.

3.1. Potential explanations for secular variation in stock return volatility
Conceptually, the conditional variance of market returns depends upon the conditional variances of

future cash flows, the conditional variances of discount rates, and conditional covariances between these

two series. Under a constant discount rate, the conditional variance of the aggregate return depends only

on the conditional variances of future aggregate cash flows. This illustrates one channel for time-varying,

countercyclical stock return volatility: shocks to fundamentals (dividends) that display exactly these fea-

tures. Bansal and Yaron (2004) provide a model in this spirit. The model assumes that the volatilities of

dividend and consumption growth are countercyclical and, consequently, generates countercyclical stock

market volatility.

Mele (2005, 2007) emphasizes that, separately from the fundamentals channel, time variation in dis-

count rates could, in and of itself, generate countercyclical variation in stock return volatility. For this

mechanism to operate, expected returns must be convex in a state variable that captures business conditions.

Intuitively, during bad times expected returns must be relatively sensitive to fluctuations in the state variable,

while during good times expected returns are less sensitive to such fluctuations. When this asymmetry is

sufficiently strong, Mele (2007) shows that the price dividend ratio is an increasing, concave function of the

state variable. Consequently, return volatility increases on the downside.

7Plots that employ alternative measures of US economic conditions, such as the Aruoba-Diebold-Scotti Business Conditions
Index developed by Aruoba, Diebold, and Scotti (2009), are very similar.
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A third explanation for time-varying stock market volatility focuses on the role of learning. In models

of this flavor, agents use information contained in public signals to make inferences about unknown as-

pects of the economy. Timmermann (1993, 1996) considers a setting where the stock price is the sum of

expected future dividends with an exogenously specified discount rate and shows that learning effects can

increase stock return volatility relative to a benchmark setting with observable dividend growth. Brennan

and Xia (2001) extend this finding to a stochastic dynamic general equilibrium model with rational learning.

Veronesi (1999) develops a dynamic, rational expectations equilibrium model of asset prices assuming that

the dividend growth rate shifts randomly between two unobservable states. In equilibrium, investors’ desire

to hedge against changes in their level of uncertainty makes asset prices more sensitive to bad news in good

times relative to good news in bad times. Consequently, stock return volatility is countercyclical, as in the

data.

Finally, the liquidity and credit crisis of 2007–2008 prompted academic interest in the capacity for

financial intermediation to amplify shocks to asset markets. Brunnermeier and Pedersen (2009) study the

interrelation between traders’ funding liquidity and asset market liquidity. In this setting, borrower’s balance

sheet effects can amplify relatively small initial shocks through a loss spiral and a reinforcing margin spiral.

For leveraged investors, declines in asset values erode net worth much faster than gross worth. Such investors

might need to sell assets to maintain leverage, leading to further asset price drops. The margin spiral refers to

the fact that margins tend to increase in the wake of large price drops. This exacerbates pressure on leveraged

investors to sell off assets, leading to larger subsequent price drops, further increases in margins, and so on.

Brunnermeier and Pedersen (2009) show that a vicious cycle can ensue in which multiple equilibria exist.

Adrian and Shin (2010) provide supporting empirical evidence for investment banks. In addition to balance

sheet effects, lenders’ capital limitations, network effects, and bank runs could amplify shocks in financial

markets.

3.2. Forecasting variables
The theoretical explanations for time variation in volatility rely on key unobservable concepts, such

as investors’ uncertainty regarding the true economic state and expected stock returns. In the empirical

analysis that follows, I consider a number of observable series plausibly correlated with one or more of

these theoretical drivers. The set of forecasting variables includes:

• Changes in bank leverage (blev): Following Adrian and Shin (2010), bank leverage is computed as

the ratio of total assets to total equity using US Flow of Funds data for securities, brokers, and dealers.
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• Consumption-wealth ratio (cay): The consumption-wealth ratio (cay), proposed by Lettau and Lud-

vigson (2001), is the residual obtained from estimating a co-integrating relation between aggregate

consumption, wealth, and labor income.

• Commercial paper-to-Treasury spread (cp): This variable captures the spread between the three-month

commercial paper rate and the rate on three-month Treasury bills.

• Default return spread (dfr): The default return spread is the difference between long-term corporate

bond and long-term government bond returns.

• Default spread (dfy): The default spread is the difference between the yield on BAA-rated corporate

bonds and the yield on long term US government bonds.

• Expected return (exret): This variable is a regression-based estimate of the expected excess return on

the S&P 500 index. The predictive regression for stock returns includes several variables common in

the return forecasting literature, such as the default spread, the net payout yield, and the consumption-

wealth ratio.

• Current and expected GDP growth (gdp and egdp): Current economic activity is measured using the

annualized growth rate in real, seasonally adjusted GDP. Expectations of future economic growth are

based on six- to 12-month GDP growth forecasts from the Livingston Survey. The Livingston Survey

captures economists’ real time macroeconomic forecasts at a bi-annual frequency. I follow Campbell

and Diebold (2009) in constructing expected GDP growth rate using nominal GDP and consumer

price index (CPI) forecasts in six and 12 months’ time.

• Investment-capital ratio (ik): The investment-to-capital ratio proposed by Cochrane (1991) is the ratio

of aggregate investment to aggregate capital for the US economy.

• Volatility of growth in industrial production (ipvol): This variable is a proxy for the conditional volatil-

ity of growth in US industrial production. The construction of this variable follows Engle, Ghysels,

and Sohn (2008).

• Net payout (npy): Following Boudoukh, Michaely, Richardson, and Roberts (2007), the net payout

yield is constructed using monthly data on aggregate market capitalization, dividends, and net equity

issuance from the Center for Research in Security Prices (CRSP).
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• Volatility of inflation growth (ppivol): This variable is a proxy for the conditional volatility of inflation

growth based on the producer’s price index (PPI). The construction of this variable follows Engle,

Ghysels, and Sohn (2008).

• Term spread (tms): The term spread is the difference between the long term yield on government

bonds and the Treasury bill rate.

When possible, all variables are sampled at both the quarterly and monthly frequency. Several variables

are not available at the monthly frequency, including changes in bank leverage, the consumption-wealth

ratio, current and expected GDP growth, and the investment-capital ratio. For the empirical analysis using

monthly data, I use the growth in industrial production (ip) as an alternative measure of economic activity.

The unpublished Appendices to the paper list data sources and provide additional details regarding the

construction of several variables.

3.3. Discussion
Motivated by Mele (2005, 2007), the set of predictors includes several prominent variables from the

literature on return predictability. Return forecasting regressions often feature some measure of corporate

payout yield. Although the dividend yield is frequently employed, Lettau and Van Nieuwerburgh (2008) find

that this yield exhibits breaks in level. Boudoukh, Michaely, Richardson, and Roberts (2007) show that an

alternative yield based on net payout exhibits greater stability over time and better forecasts returns relative

to the dividend yield. I use the net payout yield in this study. However, results are robust to alternatively

using the dividend yield. The default yield and consumption-wealth ratio are also heavily used in return

forecasting regressions. Campbell and Diebold (2009) find that expected GDP growth predicts stock returns

and volatility. Finally, the derived variable exret provides a direct proxy for unobserved expected stock

returns.

The inclusion of the volatilities of inflation and production growth follows Schwert (1989) and En-

gle, Ghysels, and Sohn (2008). These volatilities provide information regarding the extent of uncertainty

surrounding macroeconomic prospects, a feature emphasized by the literature linking learning and stock

market volatility. Variables such as the default spread, commercial paper-to-Treasury spread, and default

return respond aggressively at the onset of economic crises, when default probabilities for corporate debt

increase dramatically. In a similar vein, Estrella and Hardouvelis (1991) find that the term spread forecasts

recessions.
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Changes in bank leverage help measure liquidity and credit conditions that are crucial when shocks to

the economy are amplified via financial intermediation. Adrian and Shin (2010) find a positive relation

between asset values and leverage for security brokers and dealers. As bank leverage increases, banks

become more susceptible to the possibility of loss spirals and margin spirals. Interest rate spreads could

also convey information regarding credit and liquidity conditions. For example, the commercial paper-to-

Treasury spread widened in late 2007 and again in late 2008 as the financial crisis intensified.

3.4. Descriptive Statistics
Table 1 presents summary statistics for the full set of forecasting variables over the period 1952–2010.

Panels A and B provide statistics for data sampled at the quarterly and monthly frequencies, respectively.

The forecasting variables exhibit a wide range of persistence. The first-order autocorrelation ρ1 is positive

for most variables and is greater than 0.8 for roughly half of the variables. Highly persistent forecasting

variables could cause econometric problems in forecasting regressions, particularly when shocks to the

target and predictor variables are correlated (Stambaugh, 1999). To determine whether standard asymptotic

results are likely to provide reasonable guidance, I report results for the unit root test suggested by Phillips

and Perron (1998). The test rejects the null hypothesis of a unit root for most variables. This suggests

that, while some of the forecasting variables are persistent, this persistence is not so severe so as to require

alternative inference frameworks, such as near unit root asymptotics (see, e.g., Campbell and Yogo, 2006;

Jansson and Moreira, 2006; and Tourus, Valkanov, and Yan, 2004).

4. In-sample analysis

Consider the following specification for log volatility:

LVOLt = α +
K

∑
k=1

ρkLVOLt−k +β
′Xt−1 + εt . (2)

Under the null hypothesis of no Granger causality, β = 0. This hypothesis can be tested in a standard

regression framework. When Xt is a scalar, the test takes the form of a standard t-test, whereas for vector-

valued Xt the null hypothesis can be tested via an F-test.

11



4.1. Results
Table 2 presents estimation results at a quarterly horizon over a variety of sample periods. The speci-

fication includes two lags of the dependent variable [K = 2 in Eq. (2)].8 For each forecasting variable, the

table displays the estimated slope coefficient (β̂ ) as well as the increase in R2 for the regression relative to

a benchmark univariate AR(2) model, expressed as a percentage. To facilitate comparisons across different

forecasting variables, all variables are standardized prior to regression.9

For the 1927–2010 period, the null of no predictability is rejected for several variables, including the

commercial paper-to-Treasury spread, the default return, and the default yield. The 1952–2010 period in-

cludes several additional forecasting variables that do not extend back to 1927. Among these, the investment-

to-capital ratio emerges as a highly significant predictor. The evidence also suggests that the net payout yield

and expected return proxy forecast stock return volatility over the 1952–2010 sample period.

The remaining columns of Table 2 partition the full sample into three roughly equal subsamples. The

first covers 1927-1951 and includes the Great Depression, World War II, and its aftermath. The second

begins in 1952 with passage of the Treasury Accord that gave the Federal Reserve the ability to pursue active

monetary policy. The final subperiod begins in 1986 and covers the Great Moderation. The evidence for

predictability appears strongest during the 1952–1985 subsample, both in terms of statistical and economic

significance. During this period, five of the individual forecasting variables are statistically significant, and

increases in R2 relative to the benchmark univariate model tend to be higher.

Table 2 also reports results for a kitchen sink specification that includes all available forecasting vari-

ables. In place of the slope estimate β̂ , the table displays the F-statistic testing the null hypothesis of no

Granger causality; that is, the null that (vector-valued) β = 0. The increase in R2 relative to the benchmark

AR(2) specification is also reported. The null hypothesis of no Granger causality is rejected for all sam-

ple periods. Consistent with results for regressions that consider the predictive variables one by one, the

evidence for predictability is particularly strong during the 1952–1985 subsample.

Table 3 presents in-sample regression results at a monthly sampling frequency, with six lags of the

dependent variable included in the specification [K = 6 in Eq. (2)]. Moving from quarterly to monthly

sampling constrains the set of forecasting variables, as some predictors are not available monthly. However,

8The choice of two lags of the dependent variable is supported by information criteria such as AIC and BIC, which select
an AR(2) specification among AR alternatives over most subsamples examined. Results reported in the unpublished Appendix
illustrate similar findings for regressions that include four lags of the dependent variable.

9Because all variables are standardized prior to estimation, the intercept α in Eq. (2) is omitted. Results apply standard errors
corrected for heteroskedasticity and serial correlation.
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monthly sampling might provide additional power to detect forecasting ability. The results under monthly

sampling are consistent with those under quarterly sampling. Strong statistical evidence exists that the

commercial paper-to-Treasury spread and the default return Granger cause volatility. For some subsamples,

the evidence suggests that the default spread, net payout yield, expected return proxy, and inflation volatility

forecast volatility. Consistent with results under quarterly sampling, the null of no Granger causality is

strongly rejected for the kitchen sink specification that includes all variables simultaneously.

4.2. Economic significance and summary
Because all variables are standardized prior to analysis, the β̂ values reported in Tables 2 and 3 reflect

the impact on the log volatility forecast, measured in units of a standard deviation, of a 1 standard deviation

change in the forecasting variable, ceteris paribus. For example, a coefficient estimate of 0.25 implies that a 1

standard deviation shock to the forecasting variable increases the forecast for log volatility in the subsequent

period by one-quarter of a standard deviation. Most of the actual estimates reported in Tables 2 and 3 are

smaller than 0.25, with many smaller than 0.1.

The increase in R2 attributable to adding a given forecasting variable (or variables) to the benchmark

model provides another metric to assess the economic significance of forecast improvements. For univariate

models (in the sense of including a single macroeconomic or financial predictor), the increase in R2 is often

less than 1%, and is usually less than 3% even in cases with strong statistical evidence for predictability.

One exception is the relatively large increase in R2 of 7.78% achieved by the commercial paper-to-Treasury

spread over the 1952–1985 subsample (see Table 2). At a quarterly sampling frequency, the kitchen sink

specifications generate (unadjusted) R2 improvements ranging from 3% to 11.5%, depending on the sample

period examined, with the most optimistic results occuring over the 1952–1985 sample period.

Overall, the in-sample results suggest that macroeconomic economic variables do Granger cause stock

return volatility at monthly and quarterly horizons. Among the variables considered, the most useful appear

to be the commercial paper-to-Treasury spread, the default return, the default spread, the expected return

proxy, and the investment-to-capital ratio. Two empirical facts temper the optimistic tone of these results.

First, the economic significance of the predictive power afforded by these variables is relatively small.

Second, the evidence for predictability is particularly strong from 1952 to 1985 and less emphatic during

the Great Moderation that follows. These points raise the question of whether in-sample predictive power

extends to an out-of-sample research design.
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5. Out-of-sample analysis

The extensive literature on stock return predictability warns that models that appear superior from an

in-sample perspective could perform poorly out-of-sample. In particular, Goyal and Welch (2008) show

that many return forecasting models perform poorly from an out-of-sample perspective and appear to break

down during the Great Moderation. This section applies similar scrutiny to volatility forecasting models

that include macroeconomic and financial predictors. The forecasting models are of the form Eq. (2).

As benchmarks, I consider simple univariate AR models, i.e., models of the form Eq. (2) with β = 0.

Under quarterly sampling the benchmark model is an AR(2) specification, and under monthly sampling the

benchmark is an AR(6) specification.

Out-of-sample tests split the data into two subsets, the first R observations constituting an estimation

sample and the final P observations constituting a holdout sample used to estimate the MSPE associated

with each model. Under the out-of-sample approach, forecasts for the holdout sample are constructed using

past information, as though the econometrician were constructing real time forecasts.10

The question of interest is whether models that include additional macroeconomic and financial predic-

tors are superior to the benchmark from an out-of-sample perspective. Unfortunately, the notion of a superior

model is somewhat vague, with multiple potential interpretations. One interpretation emphasizes properties

of the data generating process: Does an out-of-sample analysis support the notion that macroeconomic vari-

ables Granger cause stock return volatility? An alternative interpretation focuses on a normative stance:

Do volatility models that incorporate macroeconomic variables improve the accuracy of out-of-sample fore-

casts?

To illustrate the distinction between these two interpretations, suppose the true model is

LVOLt = α +ρ1LVOLt−1 +ρ2LVOLt−2 +βXt−1 + εt , (3)

where Xt represents some forecasting variable. So long as β 6= 0, Xt Granger causes volatility. In this case,

the population MSPE of forecasts associated with Eq. (3) must be lower than the population MSPE for the

benchmark univariate AR(2) model.

In the realistic case in which model parameters must be estimated using historical data, forecasts pro-

10Implementations vary in terms of how the estimation sample evolves through time. In some cases, parameter values are
estimated once using the initial R observations (fixed sample), in others a moving window of size R is used to produce forecasts
(rolling), and in some cases an initial window of size R is expanded as new data become available (recursive).

14



duced under model Eq. (3) could, in fact, under-perform forecasts based on the benchmark, even when the

latter is misspecified. This is due to the well-known bias-variance trade-off under mean square error loss.

Intuitively, when β 6= 0, there is both a benefit and a cost to adding Xt−1 to the forecasting model. The

benefit is a reduction in conditional forecast bias. The cost is higher forecast variability related to the need

to estimate the additional parameter β . The latter could outweigh the former. In such a case, the benchmark

model is superior in terms of mean square forecast error, while, at the same time, the alternative model is

superior in the sense that it is correctly specified.

For further intuition, suppose that a target variable Yt follows an independent and identically distributed

normal distribution with unknown mean µ and standard deviation σ2. A researcher poses the following

alternative models for Yt :

Model 1 Yt = 0.

Model 2 Yt = µ + εt , εt ∼ i.i.d. N(0,σ2).

The misspecified Model 1 assumes that Yt is zero in every period, while Model 2 is correctly specified.

If the relevant empirical question is whether Model 1 or Model 2 provides a more appropriate description of

the DGP for Yt , the answer is obvious. It is trivial to reject Model 1 in favor of Model 2 (a sample size as

small as one is sufficient, because the probability that Yt = 0 is zero).

Now suppose the empirical focus centers on which model delivers more accurate forecasts for a given

sample size N, assuming squared error loss. There is no need to estimate model parameters to produce

forecasts under Model 1. The MSPE for this model is σ2+µ2, where the term µ2 captures a cost associated

with forecast bias and the term σ2 reflects unforecastable noise in Yt . For Model 2, assume that the unknown

parameter µ is estimated using the sample mean of Yt . Forecasts under Model 2 are consequently unbiased,

but estimation error associated with µ generates an additional component in MSPE. The MSPE for this

forecast is σ2 + σ2

N , where the second term captures the cost due to parameter estimation. Comparing the

two MSPEs, the obviously misspecified Model 1 produces more accurate forecasts whenever µ2 < σ2

N . All

else equal, this is more likely to occur when |µ| is smaller, σ2 is larger, and the sample size N is smaller. In

the empirical exercise of interest in this paper, the models are more complicated, and the random variables

involved are persistent. Still, the intuition from this example remains useful. Even if a variable Granger

causes volatility, such that β 6= 0 in Eq. (3), the benchmark univariate model could yield more accurate

forecasts. This is more likely to occur when β is relatively small, and for smaller sample sizes.
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5.1. Out-of-sample forecasting tests
This section describes out-of-sample tests for Granger causality and superior predictive ability.

5.1.1. Testing for Granger causality
Let ε1,t and ε2,t represent the (population) forecast errors for the benchmark and augmented models,

respectively. Under the null of no Granger causality, the benchmark and alternative models have equal

population MSPE, i.e., E(ε2
1,t) = E(ε2

2,t). In most applications, inference is complicated by the fact that

forecasts are based on estimates of population parameters. West (1996) provides a general treatment of

asymptotically valid inference when forecasts are constructed based on estimated parameters and states

conditions under which standard t-tests of the null are asymptotically standard normal. Unfortunately, the

cases of interest in this paper violate the conditions for asymptotic normality, because the forecasting models

of interest are nested.

Clark and West (2007) suggest a test for equal MSPE for nested models that is approximately standard

normal. The approach of Clark and West (2007) rests on the following idea. Under the null hypothesis,

the more parsimonious model (the benchmark model) generates the data and the MSPE for this model is

expected to be smaller than the MSPE for the larger model. Clark and West (2007) adjust the out-of-sample

estimate of the MSPE difference to account for additional noise associated with the larger model’s forecast.

Let L̂VOL1,t+1 and L̂VOL2,t+1 denote one-step ahead forecasts of LVOLt+1 for the benchmark and aug-

mented models, respectively. The corresponding sample MSPEs are σ̂2
1 and σ̂2

2 , with

σ̂
2
i ≡ P−1

∑(LVOLt+1− L̂VOLi,t+1)
2 (4)

for i = 1,2 and where P denotes the number of out-of-sample forecast observations. Clark and West (2007)

propose a test of the null of equal MSPE based on the statistic:

Clark and West (CW) = σ̂
2
1 − σ̂

2
2 +P−1

∑(L̂VOL1,t+1− L̂VOL2,t+1)
2︸ ︷︷ ︸

Adjustment

. (5)

The final term in Eq. (5) captures the adjustment for additional noise associated with the larger model’s

forecast. This adjustment involves the average squared difference between forecasts generated by the smaller

and larger models. When the forecasts from the larger model are highly volatile relative to forecasts based

on the benchmark (parsimonious) model, the additional noise related to parameter estimation is large, and

the adjustment term in Eq. (5) is correspondingly large. Although their proposed adjusted-MSPE statistic
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is not asymptotically normal, Clark and West (2007) argue that standard normal critical values lead to tests

with actual sizes close to, but slightly smaller than, nominal size for reasonably large samples. The test is

one-sided, because under the alternative σ2
2 < σ2

1 .11

5.1.2. Testing for superior predictive ability
The alternative question of whether macroeconomic and financial variables improve out-of-sample fore-

casts is nuanced, as this question involves the entire forecasting method and not simply the forecasting

model. A forecasting method is a broad concept that encompasses not only a set of model specifications, but

also the detailed procedure used to obtain forecasts. This procedure includes the method(s) used to estimate

unknown parameters, the choice of estimation window, and so forth.12

Given two alternative forecasting methods, Giacomini and White (2006) propose a test for superior

predictive ability. Let Gt represent some set of information available at time t. Under the null hypothesis,

the two models possess equal forecasting ability. Adapted to the setting of interest in this paper, the null is

H0 : E(σ̂2
1 − σ̂

2
2 |Gt) = 0. (6)

The null hypothesis (6) differs from that considered by West (1996), Clark and West (2007), and related

studies in an important way. The null hypothesis involves expectations of the estimated MSPE, not the

population MSPE, of the two forecasting models. Consequently, the test explicitly captures the impact

of parameter estimation uncertainty on forecast performance. Because the test involves forecast methods

instead of forecast models, virtually any forecast can be accommodated, including forecasts formed as

data-driven combinations of underlying forecasts. The Clark and West testing framework, by comparison,

assumes that forecasts are based on linear parametric models estimated using least squares.

The general framework developed by Giacomini and White (2006) permits conditional comparison of

forecast performance. Taking Gt = { /0,Ω}, the trivial information set, results in an unconditional test of

equal predictive ability. The Giacomini and White (2006) test then takes the form

Giacomini and White (GW) =
σ̂2

1 − σ̂2
2

σ̂P/
√

P
, (7)

11Computationally, the test can be executed by regressing the adjusted out-of-sample squared forecast error differences on a
constant and examining the associated t-statistic.

12For example, two forecasts produced from the same model, one based on a rolling estimation window and the other produced
using an expanding window, represent different forecasting methods.
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where σ̂P is a heteroskedasticity and autocorrelation consistent (HAC) estimator of the asymptotic variance

σ2
P = var

[√
P(σ̂2

1 − σ̂2
2 )
]
. By contrast with the Clark and West test, the Giacomini and White test of equal

(unconditional) predictive ability is a two-sided test. The test statistic Eq. (7) is equivalent to the test statistic

proposed by Diebold and Mariano (1995), and the asymptotic results in Giacomini and White (2006) provide

a rigorous justification for this test when forecast parameters are estimated.

5.2. Design specifics
Forecasting models are estimated using either a rolling or recursive procedure with an initial sample

of 20 years of data (80 quarters or 240 months). The analysis explores several alternative out-of-sample

periods. The first extends from 1947 through 2010. While this period affords a long horizon over which to

assess forecasting ability, several forecasting variables are unavailable. An alternative out-of-sample period

covers 1972–2010 and includes additional forecasting variables such as the investment-to-capital ratio and

expected GDP growth. The final two out-of-sample periods cover 1972–2000 and 1982–2010. These periods

focus on the sensitivity of results to inclusion of the 1970s in the out-of-sample period. Goyal and Welch

(2008) find that the apparent ability of some variables to forecast stock returns is heavily influenced by the

oil shock of 1973–1975. The 1972–2000 and 1982–2010 periods contain the same number of out-of-sample

observations, but the former period includes the turbulent 1970s, while the latter does not.

In addition to univariate models that include only a single macroeconomic predictor, and a kitchen sink

model that includes all predictors, I evaluate several forecast combinations. Rapach, Strauss, and Zhou

(2010) show that simple forecast combination methods improve the out-of-sample performance of stock

return forecasts based on multiple predictors. The combined forecasts take the form

L̂VOLt+1 =
N

∑
n=1

ω̂n,t L̂VOLn,t+1, (8)

where ω̂n,t represents the combining weight on the nth individual forecast at time t. The notation emphasizes

that combining weights are permitted to be data-driven.

The first two combined forecasts are computed as the mean and median across the N individual forecasts.

The third combined forecast is a trimmed mean that sets ω̂n,t = 0 for the largest and smallest volatility

forecast each period, with the remaining N − 2 forecasts equally weighted. The final combined forecast

(labeled “MSPE”) follows Stock and Watson (2004) and adjusts combining weights based on historical

out-of-sample performance. Specifically, the combining weights evolve according to
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ω̂
MSPE
n,t =

φ
−1
n,t

∑
N
j=1 φ

−1
j,t

, (9)

where

φn,t ≡
t−1

∑
p=R

(
LVOLp+1− L̂VOLn,p+1

)2
. (10)

5.3. Results
Tables 4 and 5 present out-of-sample results using a rolling estimation scheme for quarterly and monthly

sampling frequencies, respectively. For each model and each out-of-sample period, the table presents as CW

the adjusted MSPE test statistic Eq. (5) of Clark and West (2007). Asterisks indicate rejections of the null

of no Granger causality at conventional levels.13

To convey the economic significance of differences in forecast performance, I follow Campbell and

Thompson (2008), Goyal and Welch (2008), and Rapach, Strauss, and Zhou (2010) and consider the out-of-

sample R2 statistic, defined as

R2
OOS = 1− σ̂2

σ̂2
0
, (11)

where σ̂2 represents the out-of-sample MSPE for the model of interest and σ̂2
0 represents the out-of-sample

MSPE based on the historical average. A measure of the economic significance of forecast improvement

relative to the univariate benchmark is

∆R2
OOS ≡

(
1− σ̂2

2

σ̂2
0

)
−
(

1− σ̂2
1

σ̂2
0

)
=

σ̂2
1 − σ̂2

2

σ̂2
0

, (12)

expressed as a percentage. Intuitively, this is the out-of-sample analog of the ∆R2 statistic reported in Tables

2 and 3 for in-sample regressions. Asterisks following the ∆R2
OOS statistic indicate rejections of the null of

equal predictive ability based on the Giacomini and White test [Eq. (7)].

The Clark and West test results largely corroborate in-sample findings. Under quarterly sampling (Ta-

ble 4), the commercial paper-to-Treasury spread, default return, and inflation volatility Granger cause stock

return volatility over the 1947–2010 out-of-sample period. For the 1972–2010 out-of-sample period, these

same variables, along with bank leverage and the investment-to-capital ratio, Granger cause volatility. Com-

paring results for 1972–2000 with those for 1982–2010 shows that evidence of forecasting power for stock

13To enhance readability, the statistic is scaled by a factor of one thousand. I report Clark and West (2007) test statistics for the
combined forecasts. However, these forecasts are not technically covered by the asymptotic results in Clark and West (2007), which
require that forecasts be generated from linear models estimated by OLS.
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return volatility is sensitive to inclusion of the turbulent 1970s in the sample. As an example, the null of no

Granger causality is rejected for the kitchen sink model over the 1972–2000 out-of-sample period, but not

for the 1982–2010 period of equal length.

The evidence for superior predictive ability, as captured by ∆R2
OOS values and the Giacomini and White

(2006) test results, is weaker. Forecasts from univariate models (in the sense of including a single lagged

macroeconomic predictor) generally yield ∆R2
OOS values that are negative, or small. In most cases, the null

of equal predictive ability cannot be rejected. For the univariate models, the only instances of rejections

correspond to instances in which the benchmark produces superior forecasts. The kitchen sink model yields

∆R2
OOS values that are negative. With the exception of the 1972–2000 period, the null of equal predictive

ability is rejected in favor of the univariate benchmark model. Consistent with the equity premium analysis

in Rapach, Strauss, and Zhou (2010), forecast combinations deliver improved out-of-sample performance.

For all out-of-sample periods except 1982–2010, the combined forecasts outperform the benchmark. In

several cases, primarily associated with the 1972–2000 period, the forecast improvements are statistically

significant.

The results reported in Table 4 starkly illustrate the distinction between the two out-of-sample tests.

In many instances in which the Clark and West test rejects, the Giacomini and White test fails to reject,

and vice versa. As an illustrative example, consider the performance of the kitchen sink specification over

the 1972–2000 out-of-sample period. The Clark and West test statistic is positive and significant, yet the

∆R2
OOS value is negative, implying that the benchmark model performs better. The large, positive Clark

and West test statistic is attributable to a large upward adjustment term in Eq. (5). This adjustment is

based on the variability of forecasts under the more heavily parameterized model relative to the benchmark.

Forecasts under the kitchen sink model are substantially more variable than those under the benchmark,

so the adjustment term is relatively large. Intuitively, although the kitchen sink model under-performs the

benchmark out-of-sample, it does not under-perform it by enough to be consistent with the null hypothesis

of no Granger causality. Hence, the Clark and West test rejects.

Table 5 presents out-of-sample results at the quarterly frequency under a recursive, as opposed to rolling,

estimation scheme. Most major findings continue to obtain. Specifically, the Clark and West test indicates

that several of the individual macroeconomic variables, including the commercial paper-to-Treasury spread,

default return, and investment-to-capital ratio, Granger cause stock return volatility. The Giacomini and

White test, however, rarely rejects the null of equal predictive ability for the univariate models, and the few
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rejections are in favor of the benchmark. Finally, the combined forecasting models again outperform the

benchmark, with forecast improvements that are often statistically significant, except over the 1982–2010

subperiod.14

The contrast between results under rolling and recursive schemes is more substantial for the kitchen

sink specification. Under a rolling scheme (Table 4), the kitchen sink model significantly under-performs

the benchmark, with the difference being both statistically and economically significant in some subsamples.

By contrast, the kitchen sink model often outperforms the benchmark under the recursive scheme (Table 5),

although the differences tend not to be significant. To understand this pattern of results, recall that, under

the rolling scheme, the estimation sample is limited to 20 years of historical data throughout the out-of-

sample period. Under the recursive scheme, the estimation sample grows continually. The increasing sample

sizes under the recursive scheme deliver less volatile forecasts and superior out-of-sample performance.15

While this intuition holds for univariate models as well as the kitchen sink model, effects tend to be more

pronounced in the latter case, as the model is relatively heavily parameterized.

Table 6 presents out-of-sample results at a monthly frequency based on a rolling estimation window.

These results exhibit the same main features as results at the quarterly frequency. Among the variables

available at a monthly frequency, strong evidence exists that the commercial paper-to-Treasury spread and

default return Granger cause stock return volatility. The Clark and West test also rejects the null of no

Granger causality for the kitchen sink model. At the same time, the Giacomini and White test rarely rejects

the null of equal predictive ability. As with previous results, forecast combinations yield statistically signif-

icant improvements over the benchmark, although the forecasting gains are rather small. An unpublished

Appendix contains monthly results using a recursive estimation scheme, as well as additional results explor-

ing robustness to alternative proxies for volatility, attempts to forecast the level (as opposed to logarithm) of

volatility, and the specification of the benchmark model. In all cases the findings are qualitatively similar.

5.4. Monte Carlo analysis
To shed additional light on the pattern of results obtained in the out-of-sample study, I conduct a Monte

Carlo simulation experiment. Data are simulated from the following bivariate data generating process:

14The asymptotic results in Giacomini and White (2006) require that the estimation sample remain bounded. Strictly speaking,
this condition is violated under a recursive scheme in which the sample grows without bound. With this caveat in place, I report
inference results in Table 5 for comparison with those in Table 4.

15This reasoning suggests that recursive schemes are always preferable to rolling schemes. In practice, it is less clear which
scheme is preferable, because forecasts could better adapt to unmodeled structural change under a rolling scheme.
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Yt = −0.61+0.52Yt−1 +0.22Yt−2 +βXt−1 + εt ,

Xt = 0.27+0.60Xt−1 +νt ,

var(εt) = 0.092, var(νt) = 0.160, and cov(εt ,νt) = 0.026, (13)

where εt and νt are independent, bivariate normal shocks with the indicated covariance structure. The

calibration is based on estimates of a restricted VAR(2) for log volatility and the commercial paper-to-

Treasury spread (cp) at the quarterly frequency. In one set of simulations, the parameter β in Eq. (13) is

set to the corresponding in-sample estimate.16 A second set of simulations imposes the null of no Granger

causality by setting β = 0.

The simulation analysis focuses on a rolling estimation scheme and considers estimation sample sizes R

ranging from 20 (five years of quarterly data) to one thousand (250 years of quarterly data). Most sample

sizes cluster in the empirically relevant range of five to 40 years of historical data. Two choices for the

out-of-sample size P are entertained: P = 120 (30 years) and P = 240 (60 years). These roughly correspond

to the out-of-sample periods featured in the empirical results. For each set of simulated data, one-step-

ahead predictions are computed for t = R+1 through t = R+P for both a benchmark AR(2) specification

and a forecasting regression that also includes Xt−1. The resulting out-of-sample squared forecast error

differences are used to construct the CW and GW test statistics. Of central interest are the probabilities that

these tests reject their respective null hypotheses at the 10% level. The Monte Carlo exercise approximates

these probabilities via the proportion of rejections over ten thousand simulated samples.

Panel A of Table 7 presents results for the case β > 0, and Panel B presents results for the case β = 0 (no

Granger causality). For reference, the far-right column of the table presents the true ∆R2
OOS, i.e., the value of

∆R2
OOS for P = ∞. This is computed via simulation for each value of R. To understand the pattern of ∆R2

OOS

values, consider the simulation where β > 0 (Panel A), so that Xt Granger causes Yt . For sufficiently large

R, estimation uncertainty regarding β is minimal and the model that includes Xt−1 has superior predictive

ability (lower MSPE). For very small sample sizes, estimation error associated with β is sufficiently severe

such that the misspecified, but simpler, benchmark model achieves superior predictive ability. Consistent

16This estimate implies an increase in population R2 relative to an AR(2) benchmark of slightly over 1%. This is consistent with
the typical increase in forecasting power associated with statistically significant predictors (see Table 3).

22



with this reasoning, the ∆R2
OOS values reported in Panel A range from around -3.5% for R = 20 to just

under 1% for R = 1,000. It is notable that ∆R2
OOS = 0 (equal predictive ability) for a sample size in the

neighborhood of 60 observations (15 years). In Panel B, ∆R2
OOS is always negative, because in this case

Xt−1 is an extraneous forecasting variable. At the smallest sample size, ∆R2
OOS is approximately -5%. As

expected, ∆R2
OOS approaches zero as the estimation sample becomes very large.

Panel A addresses the case in which Xt Granger causes Yt , so that the relevant null for the CW test is

false. In the calibrated simulations, the CW test exhibits reasonable power, particularly for the longer out-

of-sample evaluation period (P = 240). Power for the CW test is strictly increasing in the estimation sample

size R. For R = 80, which corresponds to the sample size in the actual empirical analysis, the power of the

test is approximately 40% when P = 120 and 60% when P = 240.

Turning to the GW test, the null hypothesis of equal predictive ability is virtually true when R = 60, in

the sense that ∆R2
OOS ≈ 0. Rejections for this case reflect the size of the test, and it appears that the test is

slightly undersized. For most sample sizes, the difference in predictive ability between the two models, as

measured by ∆R2
OOS, is small. Consequently, it is not surprising that the power of the GW test is close to its

theoretical size of 10%. In short, the GW test has little power to distinguish between the two models when

the true difference in MSPE is so slight. Only for extreme sample sizes (large or small) does the GW test

exhibit much power, and even in these cases power is well below 50%. Finally, when the CW test rejects, it

is typically the case that the GW test fails to reject. For example, the CW test rejects around 60% of the time

when R = 80 and P = 240, while the event “CW test rejects and the GW test fails to reject” occurs nearly as

often (56% of the time).

Under the null of no Granger causality (results presented in Panel B), the rejection proportions reported

for the CW test characterize size. However, the null hypothesis of equal predictive ability is false, so the

rejection probabilities for the GW test indicate power. The CW test appears to be relatively well-sized.

For the smallest sample sizes the test is slightly oversized, and for larger sample sizes the test is slightly

undersized, consistent with simulation results reported by Clark and West (2007). The power of the GW test

is decreasing in R, which reflects that fact that as R increases the deviation from the null of equal predictive

ability decreases. For smaller sample sizes, the GW test has noticeably higher power relative to similar

sample sizes in Panel A. This is due to the fact that the magnitude of the ∆R2
OOS values tends to be larger,

i.e., the deviation from the null of equal predictive ability is larger.

The Monte Carlo results are consistent with the paper’s empirical findings. First, the simulations suggest
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that, for univariate models, the GW test is unlikely to have much power to discern between the benchmark

and alternative models. When the GW test does have power, it is likely to be in the direction of rejecting

the null in favor of the benchmark model. Under the same conditions, the CW test has reasonable power to

detect Granger causality out-of-sample. Situations in which the CW test rejects the null, while the GW test

fails to reject, occur frequently in the simulations as in the actual data.

5.5. Out-of-sample forecast performance and the business cycle
Exploring connections between the business cycle and relative forecast performance may shed light on

the sources of predictive power contained in the macroeconomic and financial variables. Let ∆SEi,t represent

the difference between the squared forecast error for the benchmark univariate model (indexed as UV) and

the squared forecast error for the ith forecasting model:

∆SEi,t ≡
(

LVOLt − L̂VOLUV,t

)2
−
(

LVOLt − L̂VOLi,t

)2
. (14)

Fig. 2 displays time series plots of cumulative ∆SEi,t for the out-of-sample period 1947–2010.17 Periods

when the plot line slopes upward represent periods in which the corresponding forecast model outperforms

the benchmark, while downward-sloping segments indicate periods when the benchmark forecast is more

accurate. Vertical lines indicate business cycle peaks, i.e., the point at which an economic expansion tran-

sitions to a recession based on NBER business cycle dating. Under the null of no Granger causality (the

relevant null for the Clark and West test), one would expect these plots to trend steadily downward, as ad-

ditional estimation error associated with the more heavily parameterized model increases the cumulative

squared error relative to the benchmark.

Fig. 2 shows that the timing of out-of-sample predictive power for several models concentrates near the

onset of recession periods. For example, the commercial paper-to-Treasury spread forecasts well following

a series of recessions in the 1960s and 1970s. The default return delivers significant out-of-sample improve-

ments following the financial crisis of 2008. Inflation volatility forecasts well following recessions in the

1970s and following the financial crisis of 2008. Other variables, such as the term spread and the volatility

of industrial production, seem to perform poorly independently of economic conditions, consistent with the

null of no Granger causality.

17The figure is based on quarterly sampling and a recursive estimation window. This corresponds to the left-most set of results
in Table 5. Plots based on monthly data, or rolling estimation windows, are qualitatively similar.
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To supplement the graphical analysis presented in Fig. 2, I also examine regressions of ∆SEi,t on the

growth rate in quarterly GDP (gdp):

∆SEi,t = α +β gd pt + εt . (15)

This regression explores whether differences in forecast performance vary over the business cycle. Table 8

reports the estimated coefficient β̂ , the t-statistic associated with this coefficient, and the R2-value for the

regression (as a percentage). The variables ∆SEi,t and gd pt are standardized prior to regression. Hence, the

regression intercept α is omitted from the specification.

A negative estimate of β indicates a countercyclical pattern in forecasting power (relative to the bench-

mark). Consistent with the plots of cumulative differences in squared forecast error, the relative performance

for several forecasts appears to be countercyclical. The evidence is particularly strong for the 1972–2010

subsample, where the null that forecast performance is unrelated to the business cycle is rejected for a num-

ber of predictors including the commercial paper-to-Treasury spread, the default spread, and the net payout

yield. The last variable is somewhat anomalous, as its forecasting power appears to be procyclical. Both the

kitchen sink and combined forecasts exhibit countercyclical performance over both sample periods. This

suggests that, on the whole, forecast improvements relative to the benchmark are countercyclical.

The evidence in Fig. 2 and Table 8 suggests an economic interpretation for more successful forecast-

ing variables: These variables appear to capture a second factor beyond current economic conditions and

related to the onset of recessions. For example, the commercial paper-to-Treasury spread and the default

return could capture information regarding liquidity and credit conditions around the onset of recessions,

when financial intermediation amplifies negative shocks as discussed in Brunnermeier and Pedersen (2009).

Alternatively, or in addition, uncertainty about future economic growth rates could be high during these pe-

riods. The linkage between forecast performance and recessions appears to be complex. Different variables

exhibit different patterns of forecast performance around recessions. For example, the default return re-

sponds aggressively to the financial crisis of 2008, but not to earlier recessions in the 1960s and 1970s. The

opposite holds for the commercial paper-to-Treasury spread. A two-state characterization of the economy

(expansion versus recession) could be an oversimplification. Linkages between macroeconomic variables

and stock market returns might evolve with underlying shifts in the economic and policy environment. This

provides a further motivation for combining forecasts based on different variables, as the extent to which

such variables characterize the true economic state could vary with time.
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6. Conclusion

This study examines forecasting regressions for stock return volatility that attempt to exploit informa-

tion contained in macroeconomic and financial variables. Motivated by theoretical literature, I identify a set

of candidate predictors and test the ability of these variables to improve volatility forecasts. Out-of-sample

tests for Granger causality confirm in-sample results indicating that several variables, including the com-

mercial paper-to-Treasury spread, default return, default spread, and the investment-to-capital ratio do help

forecast volatility in a population sense. The Giacomini and White (2006) test for superior (unconditional)

predictive ability, however, rarely indicates a statistical difference in the mean square prediction error be-

tween these forecasts and the univariate benchmark. Simple forecast combination schemes do statistically

outperform the benchmark, although not by a large margin. Finally, the forecasting ability possessed by the

macroeconomic variables concentrates around the onset of recessions, consistent with the notion that these

variables capture information regarding factors that drive volatility, including macroeconomic uncertainty,

time-varying expected stock returns, and credit conditions.

Macroeconomic and financial data are more abundant than ever before. Because volatility co-varies

with business conditions, a tendency exists to suspect that incorporating macroeconomic information should

greatly improve longer horizon volatility forecasts. The relatively comprehensive analysis in this paper

shows that only modest forecasting gains are possible. The explanation has not changed since Schwert

(1989): Volatility co-moves tightly with the business cycle, and lagged volatility itself contains a wealth

of information about business conditions. While some evidence shows that interest rate spreads and other

variables help predict volatility increases around the onset of recessions, leveraging these variables into large

out-of-sample forecast improvements is difficult.

The paper relies on a realized variance paradigm, in which volatility is treated as observed, and focuses

on simple, linear forecasting models. A multitude of alternative approaches exist for modeling and fore-

casting volatility. These include generalized autoregressive conditional heteroskedasticity (GARCH) and

related parametric specifications, stochastic volatility models, regime switching models, approaches based

on implied volatility, and so on. Along these lines, several recent, related papers propose sophisticated ap-

proaches for incorporating macroeconomic information into volatility forecasts. Engle, Ghysels, and Sohn

(2008) develop a GARCH-MIDAS (mixed data sampling) modeling framework that decomposes variation

in volatility into a short run and a secular component. Macroeconomic factors can be incorporated through

a MIDAS polynomial (see, e.g., Ghysels, Santa-Clara, and Valkanov, 2005), while the short-run volatility

component adheres to a standard GARCH process. David and Veronesi (2009) propose and estimate a struc-
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tural model in which investors learn about regular and unusual states for earnings growth and inflation. In

their framework, the econometrician (or forecaster) is not assumed to possess the same information set as

market participants but extracts this information using prices. The present paper complements these studies

by suggesting other useful observable signals that might be incorporated into more sophisticated modeling

approaches. Investigating the relative merits of different modeling approaches represents an important topic

for future research.
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Fig. 1. This figures illustrates the relation between stock return volatility and the business cycle. The top panel presents
a time series plot of log realized volatility on the Standard & Poor’s (S&P) 500 index at the quarterly frequency for the
period 1927–2010. The bottom two panels illustrate the covariation between stock return volatility and the business
cycle. These panels contain quarterly time series plots of the opposite of standardized log realized volatility on the S&P
500 [i.e., (-1) x standardized log volatility], along with standardized US real gross domestic product (GDP) growth
over the period 1947–2010. Panel B presents raw time series, and Panel C presents smoothed series constructed as a
six quarter moving average.
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Fig. 2. This figures shows the relation between out-of-sample forecast performance and the business cycle. The figure
shows time series plots of the cumulative squared error difference (CSED) between forecasts of log volatility based on
the indicated macroeconomic variable(s) and a benchmark univariate AR(2) forecasting model. Vertical lines indicate
business cycle peaks, i.e., the point at which an economic expansion transitions to a recession, based on National
Bureau of Economic Research business cycle dating. The sample period is quarterly 1947Q3–2010Q4.
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Table 1
Forecasting variables: descriptive statistics

The table presents descriptive statistics for the forecasting variables considered in the paper. The mean, standard deviation,
skewness, and kurtosis are reported for each variable, as well the first- and second-order sample autocorrelations (ρ1 and ρ2). The
final two columns of the table report the Zt test statistic for the Phillips and Perron unit root test and the associated MacKinnon
approximate p-value (see Phillips and Perron, 1998; and MacKinnon, 1994). Panel A presents statistics for variables sampled at a
quarterly frequency over the period 1952Q2–2010Q4 and Panel B presents statistics for variables sampled at a monthly frequency
over the period 1952.2–2010.12. CP = commercial paper; GDP = gross domestic product.

Phillips and
Standard Perron test

Symbol Name Mean deviation Skewness Kurtosis ρ1 ρ2 Zt p-value

Panel A: Quarterly sampling frequency

blev Changes in bank leverage 0.0072 0.1344 -0.68 4.88 -0.19 0.13 -18.95 0.00
cay Consumption-wealth ratio 0.0001 0.0193 0.09 2.52 0.92 0.86 -2.75 0.07
cp CP-to-Treasury spread 0.6461 0.4920 2.25 10.55 0.60 0.45 -8.04 0.00
dfr Default return -0.0002 0.0995 0.03 15.80 -0.02 0.06 -16.99 0.00
dfy Default yield 0.0158 0.0072 1.41 7.02 0.85 0.73 -4.23 0.00
egdp Expected GDP growth 2.5364 1.4331 -0.66 5.37 0.86 0.72 -3.87 0.00
exret Expected return 0.0199 0.0201 0.90 3.78 0.78 0.67 -5.40 0.00
gdp GDP growth 3.0439 3.8156 -0.38 4.34 0.37 0.19 -9.99 0.00
ik Investment-capital ratio 0.0358 0.0036 0.27 2.43 0.96 0.89 -2.57 0.10
ipvol Industrial production volatility 0.0045 0.0046 2.25 8.86 0.26 0.11 -12.71 0.00
npy Net payout yield -2.1916 0.2064 -1.63 7.23 0.94 0.87 -2.59 0.10
ppivol Inflation volatility 0.0036 0.0046 4.36 33.26 0.42 0.28 -10.39 0.00
tms Term spread 0.0160 0.0143 -0.11 3.00 0.83 0.69 -4.61 0.00

Panel B: Monthly sampling frequency
cp CP-to-Treasury spread 0.6147 0.4646 2.42 13.61 0.86 0.74 -7.40 0.00
dfr Default return -0.0091 0.2236 1.64 37.78 -0.12 -0.03 -30.61 0.00
dfy Default yield 0.0157 0.0072 1.30 6.10 0.93 0.87 -4.92 0.00
exret Expected return 0.0052 0.0040 1.19 5.87 0.89 0.82 -6.52 0.00
ip Growth in industrial production 0.0024 0.0095 0.27 9.43 0.39 0.24 -18.35 0.00
ipvol Industrial production volatility 0.0062 0.0064 3.31 23.01 0.24 0.14 -23.20 0.00
npy Net payout -2.1905 0.2069 -1.67 7.34 0.98 0.96 -2.75 0.07
ppivol Inflation volatility 0.0044 0.0056 3.79 24.67 0.37 0.39 -24.17 0.00
tms Term spread 0.0162 0.0142 -0.05 2.85 0.95 0.90 -4.19 0.00
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Table 7
Out-of-sample tests for predictive ability: simulation analysis

The table reports the percentage of simulations in which the Clark and West (CW) and Giacomini and White (GW) tests reject
their respective null hypotheses at the 10% level. Data are simulated from the process described in Eq. (13). Forecasts of Yt from a
benchmark AR(2) model are compared against those from an alternative model that also includes the lagged value of the simulated
variable Xt . Panel A corresponds to simulations under the alternative, corresponding to β = 0.09 in Eq. (13). Panel B corresponds
to the case of no Granger causality, i.e., β = 0 in Eq. (13). Results are presented for a range of estimation sample sizes (R). The
out-of-sample period is alternatively set to P = 120 (30 years of quarterly data) or P = 240 (60 years of quarterly data). Columns
labeled CW present the percentage of simulations in which the CW test rejects, and columns labeled GW present the percentage
of simulations in which the GW test rejects (both at the 10% level). Columns labeled CW∩(¬ GW) present the percentage of
simulations in which the CW test rejects and the GW test fails to reject. For reference, the table also presents a simulation-based
estimate of ∆R2

OOS, a measure of the difference in predictive ability between the two forecasting models. The simulation size is ten
thousand.

P = 120 P = 240

R CW GW CW∩(¬GW) CW GW CW∩(¬GW) ∆R2
OOS

Panel A: Simulation under the alternative
20 32.16 26.19 31.93 44.34 37.32 43.33 -3.50
30 33.85 15.58 33.19 47.59 19.08 47.41 -1.45
40 36.23 11.03 35.03 51.33 11.64 50.80 -0.65
60 39.59 8.81 37.13 55.92 7.25 54.05 0.01
80 41.82 8.89 37.68 59.91 6.96 56.22 0.31
120 47.31 10.01 40.83 64.63 9.17 57.48 0.56
160 49.28 11.74 39.88 67.56 11.14 57.91 0.67
400 56.90 16.59 41.29 77.29 21.60 56.11 0.86
1,000 60.04 19.73 41.14 81.18 27.35 54.06 0.94

Panel B: Simulation under the null of no Granger causality
20 11.68 44.03 11.66 14.05 70.04 13.46 -5.44
30 9.60 33.15 9.55 10.78 52.54 10.74 -2.97
40 8.33 25.18 8.30 9.27 42.71 9.27 -2.03
60 7.21 19.96 7.08 7.54 30.20 7.54 -1.20
80 6.89 17.24 6.64 7.00 24.06 6.98 -0.83
120 6.79 14.55 6.32 6.22 18.98 6.12 -0.53
160 6.69 13.44 6.03 5.91 16.73 5.81 -0.39
400 7.41 13.18 5.53 6.31 13.51 5.41 -0.14
1,000 8.42 12.01 5.71 7.13 12.54 5.26 -0.05
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Table 8
Forecast performance and the business cycle

This table reports results for regressions of squared forecast error differences on a measure of business conditions at the quarterly
frequency. The regressions are of the form

∆SEi,t = α +β gd pt + εt .

The dependent variable ∆SEi,t is the time series of differences in squared forecast error between a forecast produced using a
benchmark univariate AR(2) model for log volatility and a forecast produced using using an AR(2) model augmented with the cor-
responding predictive variable(s). The regressor gdp is the growth in quarterly gross domestic product (GDP). The table reports the
estimated coefficient β̂ as well as the t-statistic associated with this coefficient based on standard errors corrected for heteroskedas-
ticity and serial correlation. The table also presents the R2 value for the regression (as a percentage). Variables are standardized
prior to running the regression and, consequently, the intercept α is omitted. In the left-hand portion of the table, the underlying
forecasts are based on an expanding estimation sample beginning in 1927Q3 and covering the evaluation period 1947Q3–2010Q4.
In the right-hand portion of the table, the underlying forecasts are based on an expanding estimation sample beginning in 1952Q3
and covering the evaluation period 1972Q3–2010Q4. Dashes indicate estimation samples in which the corresponding forecasting
variable is not available. ∗∗∗, ∗∗ and ∗ designate statistical significance at the 1%, 5%, and 10% level, respectively. CP = commercial
paper; GDP = gross domestic product.

Estimation 1927Q3 onward, Estimation 1952Q3 onward,
evaluation 1947Q3–2010Q4 evaluation 1972Q3–2010Q4

Symbol Name β̂ t-statistic R2 β̂ t-statistic R2

blev Changes in bank leverage – – – 0.14 1.18 1.41
cay Consumption-wealth ratio – – – -0.03 -0.28 0.05
cp CP-to-Treasury spread -0.02 -0.20 0.03 -0.28∗ -1.97 5.87
dfr Default return -0.23 -1.07 3.41 -0.34 -1.31 8.48
dfy Default yield -0.05 -0.56 0.19 -0.23∗ -1.78 3.82
egdp Expected GDP growth – – – -0.01 -0.11 0.02
exret Expected return -0.08 -0.77 0.39 -0.07 -0.56 0.32
gdp GDP growth – – – 0.19 1.41 2.60
ik Investment-capital ratio – – – 0.11 1.15 0.97
ipvol Industrial production volatility -0.08 -1.47 1.26 0.37 1.26 9.94
npy Net payout 0.06 0.91 0.25 0.31∗∗ 2.33 6.93
ppivol Inflation volatility -0.14 -0.82 1.34 -0.20 -1.06 2.94
tms Term spread 0.13 1.18 1.12 0.00 -0.02 0.00

sink Kitchen sink -0.17∗ -1.75 2.14 -0.33∗∗ -2.44 7.96

Combination (mean) -0.18∗ -1.81 2.32 -0.24∗ -1.77 4.36
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