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Abstract 
 

Reinforced cylindrical shells are used in numerous industries; common examples include 
undersea vehicles and industrial piping. Current models typically incorporate approximate 
theories to determine shell behavior, which have limitations in terms of both thickness and 
frequency. In addition, many applications feature coatings on the shell surface that normally have 
thicknesses which must also be considered. To increase the fidelity of such systems, this work 
develops an analytical model of an elastic cylindrical shell featuring periodically spaced ring 
stiffeners with an acoustic coating applied to the outer surface. There is an external fluid 
environment. Beginning with the equations of elasticity for a solid, spatial-domain displacement 
field solutions are produced incorporating unknown wave propagation coefficients. These fields 
are used to determine stresses at the boundaries of the shell and coating, which are then coupled 
with stresses from the stiffeners and fluid. The stress boundary conditions contain double-index 
infinite summations, which are decoupled, truncated, and recombined into a global matrix 
equation. The solution to this global equation results in the displacement responses of the system 
as well as the scattered pressure field. Two distinct loadings are considered: a ring loading and 
an incident acoustic wave. Thin-shell reference models are used for validation, and the acoustic 
response of the system is examined. It is shown that the reinforcing ribs and acoustic coating 
have a considerable effect on system behavior. 
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General Audience Abstract 
 

Reinforced cylindrical shells are used in numerous industries; common examples include 
undersea vehicles and industrial piping. Current models typically incorporate approximate 
theories to determine shell behavior, which have limitations in terms of both thickness and 
frequency. In addition, many applications feature coatings on the shell surface that normally have 
thicknesses which must also be considered. To increase the fidelity of such systems, this work 
develops an analytical model of an elastic cylindrical shell featuring periodically spaced ring 
stiffeners with an acoustic coating applied to the outer surface. There is an external fluid 
environment. Beginning with elastic equations of motion for a solid, the displacements of the 
system can be found. These displacements are used to determine stresses at the boundaries of 
the shell and coating, which are then coupled with stresses from the stiffeners and fluid. 
Techniques are used to transform the stress boundary conditions into a large matrix equation, 
and the solution to this global equation results in the displacement responses of the system as 
well as the scattered pressure field. Two distinct loadings are considered: a ring loading and an 
incident acoustic wave. Thin-shell reference models are used for validation, and the acoustic 
response of the system is examined. It is shown that the reinforcing ribs and acoustic coating 
have a considerable effect on system behavior. 
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Chapter 1 
Introduction and Literature Review 
 

 

1.1 Introduction 

1.1.1 Motivation 

 Cylindrical shells can be found in a variety of applications, from industrial piping and 
pressure vessels to undersea vehicles. Often such systems experience large pressure 
differentials, either due to internal pressure or external loading from a fluid environment, which 
creates stresses in the shell and can lead to failure. To combat this issue, reinforcement is added 
to the shell to provide additional stiffness without significantly increasing the mass, offering an 
effective solution. Such reinforcement could be integrated into the shell itself (i.e. directional 
composites or rebar in concrete) or attached to the shell in some manner (i.e. ring stiffeners or 
longitudinal ribs). Unfortunately, the structural response of the system usually changes when 
fortification is implemented, and the interaction of the shell and the reinforcement must be 
considered.  

Acoustic coatings are generally used for undersea applications to damp radiated 
vibrations, reduce drag, enclose sonar sensors, and protect the exterior of the vehicle. In reality, 
the coatings can have a significant effect on acoustic characteristics of the object.  These polymer 
coatings can be very thick, often moreso than the body upon which they are applied, and often 
have more internal damping. While there are well known approximate theories present to 
describe such a combination, they are invalidated by both the thicknesses and the excitation 
frequencies. 

This project combines the difficulty of modeling the elastic shell with periodic stiffeners 
and the effect of the acoustic coating on the shell. Both challenges must be met in order to create 
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an accurate representation of a coated and reinforced elastic shell, which can be excited at high 
frequency. In the future, this work will lead to new models with finite length shells and variously 
shaped end-caps, but these remain ultimate goals far outside the scope of this project. 

1.1.2 Objective 

 This study seeks to develop a high-frequency fully elastic cylindrical shell model, which 
includes an external coating, fluid-loading and periodic finite-length reinforcing ribs. To achieve 
this goal, the final model will be built in discrete steps of increasing complexity: 

1. Fully-elastic cylindrical shell model with infinitesimally-thin periodic ribs, using simple 
linear spring stiffener model 

2. Fully-elastic cylindrical shell model with finite-length ribs, using linear spring stiffener 
model 

3. Fully-elastic cylindrical shell model with Timoshenko-beam based ribs 

4. Fully-elastic cylindrical shell model with beam ribs and external fluid loading 

5. Fully-elastic cylindrical shell model with acoustic coating, finite-length beam ribs and 
fluid loading 

Model 1 is referred to as the “base” model. It is an infinitely-long elastic cylindrical shell with ring 
stiffeners attached to the inner surface periodically along its length. These stiffeners have no 
thickness, but have a stiffness in all 3 directions; thus they strongly affect the behavior of the 
system. Model 2 takes the Base model and modifies the ribs to have a finite width, such that each 
rib transmits forces to and from the shell over a certain area. Model 3 replaces the linear spring 
stiffness of Model 2 with coupled Timoshenko beam ribs. Beam ribs more accurately describe 
the motion of a real rib and thus improve the fidelity of the system. Model 4 essentially 
submerges the beam-rib model in an acoustic fluid, which transmits vibration from the shell as 
fluid pressure and can be measured. This “scattered” pressure is an important measurement 
regarding how easily the acoustics of an object can be detected. 

The fifth and most advanced model features an acoustic coating encompassing the outer 
surface and includes all of the additions from versions 1 – 4; Model 5 meets the requirements set 
by the sponsor for this study. Scattered pressure, which is defined as the reflected pressure plus 
the radiated pressure due to shell motion, will also be calculated to determine the effect of the 
system on the surrounding fluid environment. It is measured at some chosen radial distance from 
the body. Along with the displacement responses of the shell itself, this acoustic radiation is used 
to measure system performance. Primary goals for this study are to develop Model 5, validate it 
with a reference, and determine the performance of the system undergoing 2 types of inputs. It 
is expected that the addition of the acoustic coating will have a large effect on the acoustic 
response of the shell and reduce the magnitude of scattered pressure waves measured away 
from the system. 
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1.1.3 Validation 

 Ensuring the quality and accuracy of the models described above requires a process to 
measure responses against known references. Ideally, this is accomplished with a real 
experiment, where a system (or approximated system) is tested under desired conditions and 
the performance is directly measured and compared to the simulation. Another possibility is 
finite element analysis (FEA), where the desired system is constructed from a large number of 
simple elements that can describe both the solid and fluid material quite accurately. 

For this project, laboratory testing and FEA are not possibilities due to the time and costs 
required, and both are deemed outside the desired scope. However, there are simpler, 
approximate models that have been validated with FEA, such as the thin-shell model. Using this 
as a reference, Models 1 – 5 can be configured to match the restrictions required by the thin-
shell. Therefore, if the new models match the reference then they can be considered properly 
validated. After this process, certain model parameters, including thickness and excitation 
frequency, will be adjusted outside the bounds of the reference to determine the system 
behavior and access performance. 

 

1.2 Literature Review 

 Isotropic cylindrical shells have been studied for many years, and analysis of such systems 
can be found in textbooks on acoustics and waves in solids [1,2]. Propagation of waves through 
solids can be quite complex and generally involve partial differential equations; solution of these 
differential equations can sometimes be solved by separation of variables for systems undergoing 
linear (low amplitude) motion. Applying elasticity theory to the study of thick cylindrical shells 
has been derived [3], and this is considered the foundation upon which this study builds. The 
interaction of acoustic waves with cylindrical shells has been investigated [5], and elastic wave 
scattering through a solid cylinder with discontinuity has also been analyzed [6]. 

 Adding ring stiffeners to the cylindrical model adds points of reflection where the 
characteristics change from waves propagating purely as a single longitudinal mode to 
propagating as multiple reflected waves. This requires the inclusion of multiple longitudinal 
modes to describe the motion of shell and stiffeners together. Interaction of periodic springs on 
a beam is one example of this phenomenon and requires changing the solution forms to account 
for the periodic elements [7]. This was extended to thin cylindrical shells using wave propagation 
coefficients [8]. Free wave propagation of periodic ring stiffeners on a cylindrical shell was 
examined using finite elements [9], and a Laplace method was developed to numerically analyze 
thin shells with periodic ring stiffeners [10]. Incorporating the effect of fluid loading on the 
acoustic radiation of ring-reinforced shells was considered in the spatial frequency 
(wavenumber) domain for doubly periodic rings [11]. Thin cylinders supported by ribs with T-
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cross-sections was also investigated [12]. For stiffeners that are wide relative to their periodicity, 
the combined structure can be assumed to behave as an orthotropic shell. Such system under 
hydrostatic pressure were solved using Flugge equations of motion [13], and axial factor term 
analysis was used to solve finite length structures [14]. Derivation of the curved Timoshenko 
beam rib models was completed using both a dynamic stiffness formulation [15] and couple 
stress theory [16].  

In the spatial wavenumber domain, an orthogonalization technique is used to decouple 
the infinite summations of modes inside the equations of motion for an infinite elastic plate with 
periodic masses [17]. This technique was used with periodic, finite-length linear spring ribs on a 
thin-plate [18] and on a thin-shell cylinder [19]. It was also used on a coated, elastic plate with 
periodic infinitesimally-thin ribs [20]. Acoustic coatings have found numerous applications in the 
oceanic and maritime industries.  The effect of coatings on the acoustic radiation from a fluid-
loaded shell was studied for flat plates using finite element methods [21], as well as for infinite 
cylindrical shells using Donnell-Mushtari equations [22]. 
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Chapter 2 
Base Model Development 
 

 

 This chapter focuses on the development of the Base model, described in the 
Introduction. First the unreinforced elastic shell is derived to establish the elasticity equations 
and the solution using separation of variables. Effects of periodic ribs including how the 
displacement field solutions are modified is examined, along with the types of rib models 
implemented and geometry. Next, the thin-shell reference model is derived, which features the 
orthogonalization technique used throughout this study, and the base elastic model is then 
constructed following a similar procedure. Finally, the 2 types of excitations: ring loading and 
acoustic wave, are introduced. 

 

2.1 Unreinforced Shell 

2.1.1 Modeling Unreinforced Shell 

Analysis of fully elastic cylindrical shells begins with the exact equations of elasticity. 
Unlike the simpler approximate theories, which generally must be restricted to lower frequency 
motion and thin-wall approximations, elasticity theory is best suited for wide frequency ranges 
and larger thicknesses. Currently, there are no reinforcing ribs. It is assumed that (1) the cylinder 
extends infinitely along its axis, (2) all displacements are linear, and (3) the material is 
homogeneous and isotropic. In cylindrical coordinates, the elasticity, or Navier-Cauchy, 
equations of motion for a fully elastic body are  

𝜇𝛻2𝒖(𝑟, 𝜃, 𝑧, 𝑡) + (𝜆 + 𝜇)𝛻𝛻 ∙ 𝒖(𝑟, 𝜃, 𝑧, 𝑡) = 𝜌
𝜕2𝒖(𝑟, 𝜃, 𝑧, 𝑡)

𝜕𝑡2
(2.1.1) 

where ρ is material density, λ and μ are Lamé constants and 𝐮 = [ur uθ uz]T = [w v u]T 
is the cylindrical displacement vector. w, v and u are the radial, circumferential, and axial 
displacements, respectively. Note that ∇2 refers to the vector Laplace operator. 
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Figure 2.1.1 – Geometry of cylindrical shell 

There is a single homogenous shell with two bounding surfaces, the inner surface at radius r = a, 
and the outer surface at r = c. Radial normal and radial shear stresses must equal 0 at these 
surfaces, and this serves as the 6 boundary conditions for the model 

𝜏𝑟𝑟 = 𝜏𝑟𝜃 = 𝜏𝑟𝑧 = 0  (𝑟 = 𝑎)

𝜏𝑟𝑟 = 𝜏𝑟𝜃 = 𝜏𝑟𝑧 = 0  (𝑟 = 𝑐) (2.1.2)
 

The stress tensor is given by Hooke’s Law of stress 

𝜏𝑖𝑗 = 𝜆(𝛻 ∙ 𝒖)𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 (2.1.3) 

where the Kronecker delta δij = 0 when i ≠ j, and ε is the strain tensor. Components of the strain 
tensor are composed of derivatives of u, 

𝜀𝑟𝑟 =
𝜕𝑤

𝜕𝑟
, 𝜀𝜃𝜃 =

1

𝑟

𝜕𝑣

𝜕𝜃
+
𝑤

𝑟
, 𝜀𝑧𝑧 =

𝜕𝑢

𝜕𝑧
 

𝜀𝑟𝜃 =
1

2
(
1

𝑟

𝜕𝑤

𝜕𝜃
+
𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
) , 𝜀𝑟𝑧 =

1

2
(
𝜕𝑢

𝜕𝑟
+
𝜕𝑤

𝜕𝑧
) , 𝜀𝜃𝑧 =

1

2
(
𝜕𝑣

𝜕𝑧
+
1

𝑟

𝜕𝑢

𝜕𝜃
) (2.1.4) 

Application of the theory for a cylindrical shell, as shown in Figure 2.1.1, follows the 
procedure outlined by Gazis [3] and Graf [2]. Stresses are calculated at the boundary conditions, 
and then unknown displacement field constants can be determined. First, the following model 
assumptions must be listed: (1) the cylinders have infinite spatial extent in the axial direction; (2) 
deflections of the shells are 3-dimensional and linear. In order to evaluate Equation 2.1.1, the 
displacement vector u is written in terms of a dilatational scalar potential, φ, and an 
equivoluminal vector potential, 𝑯 = [𝐻𝑟  𝐻𝜃  𝐻𝑧]

𝑇. 
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𝒖 = 𝜵𝛷 + 𝜵 ×𝑯, 𝜵 ∙ 𝑯 = 0 (2.1.5) 

This is often referred to as a Helmholtz resolution in field-based physics, and has the property of 
gauge invariance, meaning that the displacement field u is invariant to transformations of the 
potentials (Morse [23]). H can be chosen to be divergence-less, and this property will allow the 3 
components of u to be determined from the 4 potentials, φ and H. This property will be used 
later. Components of u are expressed in terms of the 4 potentials, taking the gradient and curl in 
cylindrical coordinates, shown as 

𝑤 =
𝜕𝛷

𝜕𝑟
+
1

𝑟

𝜕𝐻𝑟
𝜕𝜃

−
𝜕𝐻𝜃
𝜕𝑧

(2.1.6) 

𝑣 =
1

𝑟

𝜕𝛷

𝜕𝜃
+
𝜕𝐻𝑟
𝜕𝑧

−
𝜕𝐻𝑧
𝜕𝑟

(2.1.7) 

𝑢 =
𝜕𝛷

𝜕𝑧
+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝐻𝜃) −

1

𝑟

𝜕𝐻𝑟
𝜕𝜃

(2.1.8) 

Inserting the potential-form of u into the elasticity vector equation gives 

𝜇𝛻2(𝜵𝛷 + 𝜵 ×𝑯) + (𝜆 + 𝜇)𝛻𝛻 ∙ (𝜵𝛷 + 𝜵 ×𝑯) = 𝜌
𝜕2(𝜵𝛷 + 𝜵 × 𝑯)

𝜕𝑡2
(2.1.9) 

Taking advantage of certain vector identities: 

𝛻 ∙ (𝛻 × 𝑯) = 0, 𝛻 ∙ (𝛻𝛷) = 𝛻2𝛷, 𝛻2(𝛻𝛷) = 𝛻(𝛻2𝛷) (2.1.10) 

permits rewriting the above and gathering terms into two groups operated on by the gradient 
and the curl, which is written as 

𝛻 {(𝜆 + 2𝜇)𝛻2𝛷 − 𝜌
𝜕2𝛷

𝜕𝑡2
} + 𝛻 × {𝜇𝛻2𝑯− 𝜌

𝜕2𝑯

𝜕𝑡2
} = 0 (2.1.11) 

The bracketed terms must vanish for the equation to be satisfied, and this leads to the following 
independent scalar and vector wave equations 

𝛻2𝛷 =
1

𝑐1
2

𝜕2𝛷

𝜕𝑡2
,    𝑐1

2 =
𝜆 + 2𝜇

𝜌
(2.1.12) 

𝛻2𝑯 =
1

𝑐2
2

𝜕2𝑯

𝜕𝑡2
,            𝑐2

2 =
𝜇

𝜌
(2.1.13) 

in which c1 and c2 represents the scalar dilatational and distortional (rotational) wave speeds. 
Dilatational waves, sometimes referred to as P-waves or compression waves, cause oscillation in 
the direction of wave propagation. Rotational waves are sometimes referred to as S-waves, or 
shear waves, and cause no change in volume. Thus waves transmit through an elastic medium at 
two distinct speeds. Note that inelastic media, particularly Newtonian fluids like water, do not 
transmit shear waves. Laplacian operators have a different form for scalar and vector arguments 
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𝛻2𝛷 =
𝜕2𝛷

𝜕𝑟2
+
1

𝑟

𝜕𝛷

𝜕𝑟
+
1

𝑟2
𝜕2𝛷

𝜕𝜃2
+
𝜕2𝛷

𝜕𝑧2
(2.1.14) 

𝛻2𝑯 = (𝛻2𝐻𝑟 −
𝐻𝑟
𝑟2
−
2

𝑟2
𝜕𝐻𝜃
𝜕𝜃

) 𝒆𝒓 + (𝛻
2𝐻𝜃 −

𝐻𝜃
𝑟2
+
2

𝑟2
𝜕𝐻𝑟
𝜕𝜃

) 𝒆𝜽 + 𝛻
2𝐻𝑧𝒆𝒛 (2.1.15) 

where er, eθ and ez are the cylindrical unit vectors. 

2.1.2 Evaluating the Wave Equations 

In order to determine the displacement field, u, the potentials must be found using the 
wave equations. Since the displacements are assumed to be harmonic spatially (z) and 
temporally, the potential solutions will have the following general form 

𝛷 = 𝑓(𝑟)𝛩𝛷(𝜃)𝑒
𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.1.16) 

𝐻𝑟 = ℎ𝑟(𝑟)𝛩𝑟(𝜃)𝑒
𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.1.17) 

𝐻𝜃 = ℎ𝜃(𝑟)𝛩𝜃(𝜃)𝑒
𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.1.18) 

𝐻𝑧 = ℎ𝑧(𝑟)𝛩𝑧(𝜃)𝑒
𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.1.19) 

where ω is the frequency, k is the axial wavenumber f, hr, hθ, and hz are unknown functions of r, 
and Θ is an unknown function of θ. To find Θ, the proposed solutions must be inserted into their 
respective wave equation. For example, substituting φ into Equation 2.1.14, and canceling the 
common exponentials, gives 

𝑓′′𝛩𝛷 +
1

𝑟
𝑓′𝛩𝛷 +

1

𝑟2
𝑓𝛩𝛷

′′ − 𝑘2𝑓𝛩𝛷 = −
𝜔2

𝑐1
2 𝑓𝛩𝛷 (2.1.20) 

where the dash (‘) indicates a derivative with respect to the independent variable. Isolating the 
terms dependent on θ results in the separated equation, which allows the non-θ terms to be 
treated as a constant 

𝑟2𝑓′′

𝑓
+
𝑟𝑓′

𝑓
− (𝑘2 −

𝜔2

𝑐1
2) 𝑟

2 = −
𝛩𝛷
′′

𝛩𝛷
= 𝑛2 (2.1.21) 

Requirements on periodic ΘΦ ensure that Θ(0) = Θ(2πn), which forces n to be an integer. The 
following single variable equation has the well-known solution 

𝛩𝛷
′′ + 𝑛2𝛩𝛷 = 0   →    𝛩𝛷 = 𝐶1 𝑠𝑖𝑛(𝑛𝜃) + 𝐶2 𝑐𝑜𝑠(𝑛𝜃) (2.1.22) 

n can be thought of as the circumferential mode. A similar solution can be found for the 3 
components of H: Hr, Hθ and Hz. For each, either the sine or cosine term can be discarded. 
Referring back to the components of u, it is desirable to keep a consistent sinusoid configuration 
(only sines or only cosines) in each equation. Keeping this in mind, the general solutions now take 
the form 
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𝛷 = 𝑓(𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.1.23) 

𝐻𝑟 = ℎ𝑟(𝑟) 𝑠𝑖𝑛(𝑛𝜃) 𝑒
𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.1.24) 

𝐻𝜃 = ℎ𝜃(𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.1.25) 

𝐻𝑧 = ℎ𝑧(𝑟) 𝑠𝑖𝑛(𝑛𝜃) 𝑒
𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.1.26) 

Proceeding in a similar manner, the r-dependent functions can be found. Inserting the 4 
potentials into their respective wave equations and canceling the common trigonometric and 
exponential terms, results in the following r-dependent equations 

𝑑2𝑓

𝑑𝑟2
+
1

𝑟

𝑑𝑓

𝑑𝑟
+ (𝛼2 −

𝑛2

𝑟2
)𝑓 = 0 (2.1.27) 

𝑑2ℎ𝑧
𝑑𝑟2

+
1

𝑟

𝑑ℎ𝑧
𝑑𝑟

+ (𝛽2 −
𝑛2

𝑟2
)ℎ𝑧 = 0 (2.1.28) 

𝑑2ℎ𝑟
𝑑𝑟2

+
1

𝑟

𝑑ℎ𝑟
𝑑𝑟

+
1

𝑟2
(−𝑛2ℎ𝑟 + 2𝑛ℎ𝜃 − ℎ𝑟) − 𝑘

2ℎ𝑟 +
𝜔2

𝑐2
2 ℎ𝑟 = 0 (2.1.29) 

𝑑2ℎ𝜃
𝑑𝑟2

+
1

𝑟

𝑑ℎ𝜃
𝑑𝑟

+
1

𝑟2
(−𝑛2ℎ𝜃 + 2𝑛ℎ𝑟 − ℎ𝜃) − 𝑘

2ℎ𝜃 +
𝜔2

𝑐2
2 ℎ𝜃 = 0 (2.1.30) 

where the terms α2 = ω2/c1
2 – k2 and β2 = ω2/c2

2 – k2. The first two differential equations (in f and 
hz) have a special form: Bessel’s Equation, which has solutions composed of Bessel functions of 
order n. Due to the makeup of the cylindrical Laplacian, the equations in r and θ are coupled. 
These may be solved simultaneously to achieve the same structure by subtracting them 

𝑑2(ℎ𝑟 − ℎ𝜃)

𝑑𝑟2
+
1

𝑟

𝑑(ℎ𝑟 − ℎ𝜃)

𝑑𝑟
+ (𝛽2 −

(𝑛 + 1)2

𝑟2
) (ℎ𝑟 − ℎ𝜃) = 0 (2.1.31) 

and also by adding them 

𝑑2(ℎ𝑟 + ℎ𝜃)

𝑑𝑟2
+
1

𝑟

𝑑(ℎ𝑟 + ℎ𝜃)

𝑑𝑟
+ (𝛽2 −

(𝑛 − 1)2

𝑟2
) (ℎ𝑟 + ℎ𝜃) = 0 (2.1.32) 

The solutions of f, hz, (hr - hθ), and (hr + hθ), are all composed of Bessel functions dependent on r, 
with unknown constants that must be determined 

𝑓 = 𝐴𝐽𝑛(𝛼𝑟) + 𝐵𝑌𝑛(𝛼𝑟) (2.1.33) 

ℎ𝑧 = 𝐶𝐽𝑛(𝛽𝑟) + 𝐷𝑌𝑛(𝛽𝑟) (2.1.34) 

ℎ𝑟 − ℎ𝜃 = 2𝐸𝐽𝑛+1(𝛽𝑟) + 2𝐹𝑌𝑛+1(𝛽𝑟) (2.1.35) 

ℎ𝑟 + ℎ𝜃 = 2𝐸2𝐽𝑛−1(𝛽𝑟) + 2𝐹2𝑌𝑛−1(𝛽𝑟) (2.1.36) 
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where Jn is a nth order Bessel function of the first kind, Yn is a nth order Bessel function of the 
second kind, and A, B, C, D, E, F, E2, F2 are unknown integration constants. n is an integer. 

2.1.3 Bessel Functions 

 Bessel functions, Jn(x) and Yn(x) for real x, have a unique structure that resembles an 
oscillating sinusoid with amplitude decaying with 1/√x as the argument x goes to infinity. Jn(0) is 
finite, while Yn(0) diverges to -∞. Plots of the first 3 integer order functions are shown in Figure 
2.1.2. 

 

 
Figure 2.1.2 – Bessel Functions of first (left) and second kind (right) for order n = 0, 1, 2 

When the argument x is imaginary, Modified Bessel functions are used, designated In and Kn for 
nth order modified functions of the first and second kind, respectively. The Modified functions 
are non-oscillating; In(x) exponentially grows with x; Kn(x) exponentially decays with x, and 
diverges for x = 0. Plots of the first 3 integer order functions are shown in Figure 2.1.3. 
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Figure 2.1.3 – Modified Bessel Functions of first kind (left) and second kind (right) for 

order n = 0, 1, 2 

Fortunately, Matlab [24] is able to select the appropriate function to use based on the complex 
nature of the argument. Bessel functions (modified and unmodified) have helpful properties such 
as the recurrence relations 

2𝛼

𝑥
𝑍𝛼(𝑥) = 𝑍𝛼−1(𝑥) + 𝑍𝛼+1(𝑥) (2.1.37) 

2
𝜕𝑍𝛼(𝑥)

𝜕𝑥
= 𝑍𝛼−1(𝑥) − 𝑍𝛼+1(𝑥) (2.1.38) 

where Zα represents a Bessel function of the first or second kind (modified or unmodified). The 
recurrence relations must be used when a derivative is taken. 

2.1.4 Displacement Solutions 

Currently, there are 8 constants that must be solved using only 6 boundary conditions. 
However, the aforementioned gauge invariance property of the system allows 2 of the 
integration constants to be eliminated without loss of generality. Choosing E2 and F2 to be 0, 
ensures that hr = - hθ, leaving 6 unknown coefficients, A – F, to be solved with 6 boundary 
conditions. The components of u can now be expressed in terms of the potential solutions, with 
the functions f, hr, and hz dependent on r only and still unknown: 
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𝑤 = {𝑓′ +
𝑛

𝑟
ℎ𝑧 + 𝑘ℎ𝑟} 𝑐𝑜𝑠 𝑛𝜃 𝑒

𝑖(𝑘𝑧−𝜔𝑡) (2.1.39) 

𝑣 = {−
𝑛

𝑟
𝑓 + 𝑘ℎ𝑟 − ℎ𝑧

′ } 𝑠𝑖𝑛 𝑛𝜃 𝑒𝑖(𝑘𝑧−𝜔𝑡) (2.1.40) 

𝑢 = {𝑘𝑓 − ℎ𝑟
′ −

𝑛 + 1

𝑟
ℎ𝑟} 𝑐𝑜𝑠 𝑛𝜃 𝑒

𝑖(𝑘𝑧−𝜔𝑡) (2.1.41) 

in which the dash (‘) indicates a derivative with respect to r. The bracketed terms are dependent 
on r, but indexed by the circumferential mode n. Similarly, the radial normal and shear stresses 
in the shell can be found by first evaluating Hooke’s Law of Stress with the newly found 
displacements  

𝜏𝑟𝑟(𝑟, 𝜃, 𝑧, 𝑡) = (𝜆 + 2𝜇)
𝜕𝑤

𝜕𝑟
+
𝜆

𝑟
𝑤 +

𝜆

𝑟

𝜕𝑣

𝜕𝜃
+ 𝜆

𝜕𝑢

𝜕𝑧
(2.1.42) 

𝜏𝑟𝜃(𝑟, 𝜃, 𝑧, 𝑡) = 𝜇
𝜕𝑣

𝜕𝑟
−
𝜇

𝑟
𝑣 +

𝜇

𝑟

𝜕𝑤

𝜕𝜃
(2.1.43) 

𝜏𝑟𝑧(𝑟, 𝜃, 𝑧, 𝑡) = 𝜇
𝜕𝑤

𝜕𝑧
+ 𝜇

𝜕𝑢

𝜕𝑟
(2.1.44) 

and then substituting the potential solutions to get 

𝜏𝑟𝑟 = {−𝜆(𝛼
2 + 𝑘2)𝑓 + 2𝜇 [𝑓′′ +

𝑛

𝑟
(ℎ𝑧

′ −
ℎ𝑧
𝑟
) + 𝑘ℎ𝑟

′ ]} 𝑐𝑜𝑠 𝑛𝜃 𝑒𝑖(𝑘𝑧−𝜔𝑡) (2.1.45) 

𝜏𝑟𝜃 = 𝜇 {−
2𝑛

𝑟
(𝑓′ −

𝑓

𝑟
) − (2ℎ𝑧

′′ + 𝛽2ℎ𝑧) − 𝑘 (
𝑛 + 1

𝑟
ℎ𝑟 − ℎ𝑟

′ ) } 𝑠𝑖𝑛 𝑛𝜃 𝑒𝑖(𝑘𝑧−𝜔𝑡) (2.1.46) 

𝜏𝑟𝑧 = 𝜇 {−2𝑘𝑓′ −
𝑛

𝑟
[ℎ𝑟
′ + (

𝑛 + 1

𝑟
− 𝛽2 + 𝑘2) ℎ𝑟] −

𝑛𝑘

𝑟
ℎ𝑧} 𝑐𝑜𝑠 𝑛𝜃 𝑒

𝑖(𝑘𝑧−𝜔𝑡) (2.1.47) 

Note that there is a typo in Gazis, Equation 17 for τrθ: -β2hz should be +β2hz. At the boundary 
conditions: {𝜏𝑟𝑟 = 𝜏𝑟𝜃 = 𝜏𝑟𝑧 = 0 | 𝑟 = 𝑎, 𝑐}, these 6 equations and 6 unknown coefficients are 
grouped into a 6x6 matrix, AMAT. Since there are no external body forces present, there is no 
excitation, and thus there is no motion. However, taking the determinant of AMAT and setting 
equal to zero 

𝑑𝑒𝑡(𝐴𝑀𝐴𝑇) = 0 (2.1.48) 

provides the characteristic equation for the system, dependent upon wavenumber k, and 
circumferential mode, n. Gazis discusses numerous simplified motions when setting n or k to 
zero, but these (and the characteristic equation) are outside the scope of this study. Future 
models will feature excitation and will focus on forced vibration responses. Still, the use of Bessel 
functions and method of solving for stresses at the boundary conditions will be needed when 
stiffeners are added to the elastic model. 
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 Finally, because the linear displacement solutions 2.1.39 – 2.1.41 must be satisfied for an 
infinite number of circumferential modes, (n = 0, 1, 2, …), superposition can be applied to achieve 
the more general solutions 

𝑤(𝑟, 𝜃, 𝑧, 𝑡) = 𝑒𝑖(𝑘𝑧−𝜔𝑡)∑𝑊𝑛(𝑟)

∞

𝑛=0

𝑐𝑜𝑠 𝑛𝜃 (2.1.49) 

𝑣(𝑟, 𝜃, 𝑧, 𝑡) = 𝑒𝑖(𝑘𝑧−𝜔𝑡)∑𝑉𝑛(𝑟)

∞

𝑛=0

𝑠𝑖𝑛 𝑛𝜃 (2.1.50) 

𝑢(𝑟, 𝜃, 𝑧, 𝑡) = 𝑒𝑖(𝑘𝑧−𝜔𝑡)∑𝑈𝑛(𝑟)

∞

𝑛=0

𝑐𝑜𝑠 𝑛𝜃 (2.1.51) 

where Wn, Vn, and Un are the radial, tangential and axial wave propagation coefficients. These 
indexed coefficients are equal to the items inside the curly brackets of 2.1.39 – 2.1.41, and are 
functions of r.  

𝑊𝑛(𝑟) = 𝐴𝑛 [−𝛼𝐽𝑛+1(𝛼𝑟) +
𝑛

𝑟
𝐽𝑛(𝛼𝑟)] + 𝐵𝑛 [−𝛼𝑌𝑛+1(𝛼𝑟) +

𝑛

𝑟
𝑌𝑛(𝛼𝑟)] + 𝐶𝑛

𝑛

𝑟
𝐽𝑛(𝛽𝑟)

+𝐷𝑛
𝑛

𝑟
𝑌𝑛(𝛽𝑟) + 𝐸𝑛𝑖𝑘𝑧𝐽𝑛+1(𝛽𝑟) + 𝐹𝑛𝑖𝑘𝑧𝑌𝑛+1(𝛽𝑟) (2.1.52)

 

𝑉𝑛(𝑟) = −𝐴𝑛
𝑛

𝑟
𝐽𝑛(𝛼𝑟) − 𝐵𝑛

𝑛

𝑟
𝑌𝑛(𝛼𝑟) + 𝐶𝑛 [𝛽𝐽𝑛+1(𝛽𝑟) −

𝑛

𝑟
𝐽𝑛(𝛽𝑟)]

+𝐷𝑛 [𝛽𝑌𝑛+1(𝛽𝑟) −
𝑛

𝑟
𝑌𝑛(𝛽𝑟)] + 𝐸𝑛𝑖𝑘𝑧𝐽𝑛+1(𝛽𝑟) + 𝐹𝑛𝑖𝑘𝑧𝑌𝑛+1(𝛽𝑟) (2.1.53)

 

𝑈𝑛(𝑟) = 𝐴𝑛𝑖𝑘𝑧𝐽𝑛(𝛼𝑟) + 𝐵𝑛𝑖𝑘𝑧𝑌𝑛(𝛼𝑟) − 𝐸𝑛𝛽𝐽𝑛(𝛽𝑟) − 𝐹𝑛𝛽𝑌𝑛(𝛽𝑟) (2.1.54) 

An – Fn are the mode-indexed wave propagation coefficients. 

 

2.2 Modeling Ribs 

Adding reinforcing stiffeners to a structure can efficiently increase system stiffness 
without a large increase in system weight. In addition, ribs add stiffness in all directions, but ribs 
can be configured to affect the system more in certain directions, potentially to make up for 
structural weaknesses. Ring stiffeners, used to brace cylindrical shells, are a good example of this. 
Cylindrical shells generally have sufficient torsional strength due to the fact that all of the material 
is located at the maximum radius, making them more efficient, per weight, than a solid rod.  
However, radially, shells are hollow and often require additional support, particularly when there 
is an external pressure differential acting on the system. Placing ring stiffeners periodically along 
the length of the cylinder can greatly increase the stiffness for the entire length of shell. While 
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the axial strength can also be an issue in some cases, particularly in a fuselage with wing 
attachments, longitudinal ribs can be fitted.  For this study, only ring stiffeners are considered.  
Note that the ribs are assumed to be adhered to the inner surface of the shell body, they are not 
impregnated into the shell material. Thus, if the ribs were removed, the shell shape would be 
intact. 

2.2.1 Stiffener Periodicity 

 The cylindrical model is assumed to be infinitely long with periodic ring stiffeners spaced 
a distance L apart, thus there are an infinite number of stiffeners present in the system. 
Reinforcement changes the system response significantly relative to an unreinforced cylinder, 
particularly in the longitudinal direction. Without ribs and damping, waves propagate along the 
shell length without interruption. However, according to Mead [7], simple harmonic response 

waves of the form A0e
ikx−iωt cannot exist in a structure with periodic supports. The periodic 

constraints cause reflections which interfere with the response compared to an unconstrained 

structure. Nevertheless, if a supported structure is excited by a loading of the form 𝑃0𝑒
𝑖𝑘𝑥−𝑖𝜔𝑡, 

the resulting forced responses will be spatially periodic over the wavelength 2πL/σ, with phase σ 
= kL. This requires that motion amplitudes must be equal at any two locations a distance L apart, 
differing in phase by σ. Such motion can be represented by an infinite series of harmonic waves 
with phase differences of σ ± 2πm, with integer m = -∞, …,0, …, ∞.  In a simple single degree of 
freedom case, the transverse displacement response has the form 

𝑊(𝑥) = ∑ 𝐴𝑚𝑒
𝑖(𝜎+2𝜋𝑚)𝑥

𝐿 𝑒−𝑖𝜔𝑡
∞

𝑚=−∞

= ∑ 𝐴𝑚𝑒
𝑖(𝑘+

2𝜋𝑚
𝐿

)𝑥𝑒−𝑖𝜔𝑡
∞

𝑚=−∞

(2.2.1) 

in which Am is an unknown coefficient. For m = 0, the response matches the excitation, but there 
are wave components propagating at both faster and slower speeds than the excitation. Also, 
some components travel in the opposite direction of the excitation, denoted by the negative 
wavenumber values, which represent reflected waves.  It is important to note that the above 
form characterizes the displacement over a single period L, not the entire length of the cylinder, 
but the infinity of stiffeners in the structure still affect the output. Given that each cylinder length 
between ribs is equivalent, the entire cylinder length could be constructed, if desired. 

Applying the above argument to the cylindrical shell model, the response forms must also 
be indexed based on the stiffener mode. Displacement fields of an unreinforced cylinder, 
discussed in section 2.1, have the following form 

𝑢(𝑟, 𝜃, 𝑧, 𝑡) = 𝑒𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡∑𝑈𝑛(𝑟) 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

(2.2.2) 

𝑣(𝑟, 𝜃, 𝑧, 𝑡) = 𝑒𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡∑𝑉𝑛(𝑟) 𝑠𝑖𝑛(𝑛𝜃)

∞

𝑛=0

(2.2.3) 
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𝑤(𝑟, 𝜃, 𝑧, 𝑡) = 𝑒𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡∑𝑊𝑛(𝑟) 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

(2.2.4) 

where kz is the longitudinal wavenumber, which is constant for a specified input. For the 
reinforced cylinder shell system, the displacement fields must take into account the interaction 
of the periodic stiffeners with the shell response, 

𝑢(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑈𝑚𝑛(𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(2.2.5) 

𝑣(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑉𝑚𝑛(𝑟) 𝑠𝑖𝑛(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(2.2.6) 

𝑤(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑊𝑚𝑛(𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(2.2.7) 

where km = k + 2πm/L is an indexed longitudinal wavenumber that depends on the rib mode term, 
m. Displacement responses are now described as series of circumferential modes, n, and 
longitudinal modes, m. 

Models for the ring stiffeners must couple the displacements of the shell at the rib 
location with stresses applied to the shell from the stiffener. There are two separate parts of the 
stiffener system: the rib-shell connection, and the rib model. 

2.2.2 Rib-Shell Connection 

Connections between the shell model and rib model determine both how stresses are applied 
to the shell system, and also where the stresses are applied. They are one of the major identifying 
elements of the model list from section 1.1.2. Essentially, the connection is separate from the rib 
model, as it is only concerned with transmitting stress into the shell. New rib models can be 
employed without changes to the connection. There are two types of rib connections: 

1.) Delta (infinitesimal width) 

2.) Step (finite width) 

Delta connections use dirac-delta functions, δ(z) to transmit stress into the shell. Delta functions 
have infinitesimal width and extend to infinity 

𝛿(𝑧) = {
∞, 𝑧 = 0 
0, 𝑧 ≠ 0

(2.2.8) 
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Figure 2.2.1 – Delta function δ(z) 

The delta function connection represents an infinitesimally thin rib, which simplifies the system 
equations. If the rib width, b, is small relative to the periodic stiffener spacing, L, (b << L), then 
this is an appropriate assumption. For larger rib widths, the approximation is less accurate. Note 
that even if the rib model includes a non-zero width, the connection applies stress to the model 
only at a single spatial location. The location can be offset to a non-zero location (z ≠ 0), but the 
rib is kept at z = 0 for this study. 

The reinforced shell includes an infinite number of periodic stiffeners, which all influence 
the motion of the system. Thus there will be an infinite series of delta connections, and this can 
be written as a Fourier series. Beginning with the definition of an exponential Fourier series 

∑ δ(z − sL)

∞

s=−∞

= ∑ dse
2πisz
L

∞

s=−∞

(2.2.9) 

with the Fourier series coefficients, ds 

𝑑𝑠 =
1

𝐿
∫ ∑ 𝛿(𝑧 − 𝑠𝐿) 

∞

𝑠=−∞

𝑒−
2𝜋𝑖𝑠𝑧
𝐿 𝑑𝑧

𝐿
2

−
𝐿
2

=
1

𝐿
∫ 𝛿(𝑧)𝑒−

2𝜋𝑖𝑠𝑧
𝐿 𝑑𝑧

𝐿

0

=
1

𝐿
(2.2.10) 

Thus the Fourier Series for the Delta connectors, also known as a “Dirac Comb”, along the cylinder 
is given as 
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∑ 𝛿(𝑧 − 𝑠𝐿)

∞

𝑠=−∞

=
1

𝐿
∑ 𝑒

2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

(2.2.11) 

which is differentiable and compatible with the shell model equations.  Unfortunately, if the 
above series is evaluated with a small number of terms, then the series of connections will poorly 
represent a series of delta functions. Delta connectors have units of m-1. 

Step connections use Heaviside functions, H(z), to transmit stress into the shell. Heaviside 
functions have a step at z = 0, and are equal to 1 for z > 0 

𝐻(𝑧 − 𝑏) = {
1, 𝑧 ≥ 𝑏
0, 𝑧 < 𝑏

(2.2.12) 

where z0 is an offset. Subtracting an offset Heaviside function from another, H(z) – H(z – b), results 
in a pulse of specified width, b.  The finite pulse width is a more accurate representation of real 
ribs. 

 
Figure 2.2.2 – Heaviside functions H(z) – H(z – 1) 

Step connections distribute the stiffener stresses over the entire finite rib width, which is equal 
to the width used in the rib model calculations. As rib widths become smaller the applied stresses 
from a step connection must converge to the stresses from a delta connection.  As with the delta 
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functions, it will be necessary later to write the infinite series of step connections as a Fourier 
series 

∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

= ∑ 𝑑𝑠𝑒
2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

(2.2.13) 

It is easiest to first determine the Fourier series for a pulse wave centered about z = 0, then shift 
the result b/2 to ensure the pulse starts at z = 0. Solving for the centered wave Fourier 
coefficients, ds’ 

𝑑𝑠
′ =

1

𝐿
∫ ∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)] 

∞

𝑠=−∞

𝑒−
2𝜋𝑖𝑠𝑧
𝐿 𝑑𝑧

𝐿
2

−
𝐿
2

=
1

𝐿
∫ (1)𝑒−

2𝜋𝑖𝑠𝑧
𝐿 𝑑𝑧

𝑏
2

−
𝑏
2

(2.2.14) 

which evaluates to 

𝑑𝑠
′ =

1

−2𝜋𝑖𝑠
(𝑒−

𝜋𝑖𝑠𝑏
𝐿 − 𝑒

𝜋𝑖𝑠𝑏
𝐿 ) (2.2.15) 

Performing the b/2 shift on the resultant, represents the Fourier Series of the Step connectors, 
which starts at z = 0 

∑ 𝑑𝑠
′𝑒
2𝜋𝑖𝑠(𝑧−

𝑏
2
)

𝐿

∞

𝑠=−∞

= ∑
1

−2𝜋𝑖𝑠
(𝑒−

𝜋𝑖𝑠𝑏
𝐿 − 𝑒

𝜋𝑖𝑠𝑏
𝐿 ) 𝑒−

𝜋𝑖𝑠𝑏
𝐿 𝑒

2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

= ∑
1

2𝜋𝑖𝑠
(1 − 𝑒

−2𝜋𝑖𝑠𝑏
𝐿 ) 𝑒

2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

(2.2.16)

 

For the s = 0 term, the lim
𝑠→0

𝑑𝑠
′ = 𝑏/𝐿. Combining the above, and using ds to represent the z-shifted 

Fourier coefficients, results in 

∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

= ∑ 𝑑𝑠𝑒
2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

(2.2.17) 

where 

𝑑𝑠 =

{
 
 

 
 

𝑏

𝐿
, 𝑠 = 0

1 − 𝑒−
2𝜋𝑖𝑠𝑏
𝐿

2𝜋𝑖𝑠
, 𝑠 ≠ 0

(2.2.18) 

Equation [2.2.17] is also differentiable and is compatible with the orthogonalization process that 
will be described later. As with the delta series, if the number of terms, s, is too small then the 
step connections will poorly characterize a series of Heaviside functions. 
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Step connectors distribute displacement and force over a finite length, b. Accordingly, 
when integrating the Step connectors into a model, it is necessary to divide the by the stiffener 
length, giving units of m-1. This is consistent with both the Delta connectors and ensures that the 
shell equations are given in terms of stress. Therefore, Step connections are included in stress 
equations of motion as 

1

𝑏
∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

=
1

𝑏
∑ 𝑑𝑠𝑒

2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

(2.2.19) 

2.2.3 Rib Models 

Stiffeners must generate stresses based upon the shell displacements, and there are 
numerous ways to achieve this. The simplest approach is to model the rib as distributed linear 
springs, with independent stiffness in the axial, tangential and radial directions. Such springs have 
no frequency dependence, and have no mass. Linear spring models are quite useful because they 
are easy to implement and the independent stiffnesses can be independently tuned to 
characterize their effects on the system response. 

Modeling the rib structures as beams has many advantages over the simple spring 
version. The following is a list of effects than can now be considered with beam models: 

1.) The beam material has a density and thus inertial effects are included. 

2.) Higher order rib motions are possible. 

3.) Realistic coupling between displacements is possible. 

4.) Better accuracy at higher excitation frequencies. 

The Euler-Bernoulli beam model is common and provides all four of the advantages listed above. 
Compared to more advanced beam models, it requires some restrictive assumptions. Notably, 
the effects of shear deformation and rotary inertia are ignored. The slope of the beam is 

approximated as 𝜓 =
1

𝑅

𝜕𝑤

𝜕𝜃
. So long as the frequencies of interest are small, these assumptions 

are usually acceptable. Derivations for curved Euler beam models can be found in Graf [2]. Also, 
the out-of-plane (axial) motion is independent, while the in-plane motion is coupled. The 
equations of motion are in the radial and circumferential directions 

𝐸𝐼

𝑎𝑟
3 (
𝜕3𝑣

𝜕𝜃3
−
𝜕4𝑤

𝜕𝜃4
) −

𝐸𝐴

𝑎𝑟
(
𝜕𝑣

𝜕𝜃
+ 𝑤) + 𝑓𝑟 = 𝜌𝐴𝑎𝑟

𝜕2𝑤

𝜕𝑡2
(2.2.21) 

𝐸𝐼

𝑎𝑟
3 (
𝜕2𝑣

𝜕𝜃2
−
𝜕3𝑤

𝜕𝜃3
) +

𝐸𝐴

𝑎𝑟
(
𝜕2𝑣

𝜕𝜃2
+
𝜕𝑤

𝜕𝜃
) + 𝑓𝜃 = 𝜌𝐴𝑎𝑟

𝜕2𝑣

𝜕𝑡2
(2.2.22) 

in which E is the Young’s modulus, I is the moment of area, ar is the in-plane radius of curvature, 
A is the cross-sectional area (rectangular), ρ is the density of the rib. fr and fθ are the radial and 
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tangential external forces, respectively. The out-of-plane motion is governed by the torsional 
wave equation 

𝐺𝐽

𝑎𝑟2
𝜕2𝛼

𝜕𝜃2
−
ℎ

2
𝑓𝑧 = 𝜌𝐽

𝜕2𝛼

𝜕𝑡2
,   𝛼 =

𝜕𝑤

𝜕𝑧
(2.2.23) 

where J is the polar moment of inertia, G is the shear modulus, fz is the external axial force, and 
α is the rib out-of-plane twist angle.  Solving for the rib forces provides the relationship between 
the rib/shell displacements and the rib forces. 

 Unfortunately, ignoring shear forces and rotary inertia is a significant disadvantage, so a 
Timoshenko based model is a natural progression in complexity. Timoshenko beam theory 
includes the effects of rotary inertia and shear forces, and thus is more accurate than Euler-
Bernoulli, especially at higher frequencies. The angular deflection due to bending (ψ) is included 
as a state variable, unlike the Euler model, which approximates the bending angle; this requires 
an additional partial differential equation. Derivations for curved Timoshenko beams are 
somewhat more involved than those for straight beams, and can be found in the Appendix. The 
out-of-plane motion is again independent, and the same torsional model is used as before. 
Equations for the radial, circumferential and in-plane rotational motion are 

𝐸𝐴

𝑎𝑟
(
𝜕𝑣

𝜕𝜃
− 𝑤) +

𝐾𝑠𝐺𝐴

𝑎𝑟
(
𝜕2𝑤

𝜕𝜃2
+
𝜕𝑣

𝜕𝜃
− 𝑎𝑟

𝜕𝜓

𝜕𝜃
) + 𝑓𝑟 = 𝜌𝐴𝑎𝑟

𝜕2𝑤

𝜕𝑡2
(2.2.24) 

𝐸𝐴

𝑎𝑟
(
𝜕2𝑣

𝜕𝜃2
−
𝜕𝑤

𝜕𝜃
) −

𝐾𝑠𝐺𝐴

𝑎𝑟
(
𝜕𝑤

𝜕𝜃
+ 𝑣 − 𝑎𝑟𝜓) + 𝑓𝜃 = 𝜌𝐴𝑎𝑟

𝜕2𝑣

𝜕𝑡2
(2.2.25) 

𝐸𝐼

𝑎𝑟

𝜕2𝜓

𝜕𝜃2
+ 𝐾𝑠𝐺𝐴 (

𝜕𝑣

𝜕𝜃
+ 𝑤 − 𝑎𝑟𝜓) = 𝜌𝐼𝑎𝑟

𝜕2𝜓

𝜕𝑡2
(2.2.26) 

Ks is the cross-section shape factor, dependent on the rib dimensions. In order to be compatible 
with the shell system, it is necessary to find a decoupled form that eliminates the bending 
variable, ψ. This is done symbolically using the following steps: 

For the bending-decoupled radial equation: 

1. Solve Equation 2.2.24 for ψ, and evaluate: 
∂ψ

∂θ
,
∂3ψ

∂θ3
,
∂3ψ

∂θ∂t2
 

2. Differentiate Equation 2.2.26, 
∂

∂θ
(… ) 

3. Input the derivatives from Step 1 into the differentiated Equation from Step 2. 

For the bending-decoupled circumferential equation: 

1. Solve Equation 2.2.25 for ψ, and evaluate:  
∂2ψ

∂θ2
,
∂2ψ

∂t2
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2. Input the derivatives from Step 1 into the Equation 2.2.26. 

Including the axial equation of motion, reused from the Euler-Bernoulli model, the final 
Timoshenko beam rib equations are given in the radial direction as 

1

KsGar
3 (IE

2
∂3v

∂θ3
− ρEIar

2
∂3v

∂θ ∂t2
+ KsGIE

2
∂3v

∂θ3
− KsGIρar

∂3v

∂θ ∂t2
+ KsGAEar

2
∂v

∂θ
+ IE2

∂2w

∂θ2

− ρEIar
2
∂4w

∂θ2 ∂t2
− ρEIar

2
∂2w

∂t2
+ KsGIE

∂4w

∂θ4
+ ρ2Iar

4
∂4w

∂t4
− ρKsGAar

4
∂2w

∂t2

− KsGIar
2ρ

∂4w

∂θ2 ∂t2
+ KsGAEar

2w) = fr 

(2.2.27) 

in the tangential direction as 

(
𝐸𝐴

𝑎𝑟

𝜕𝑣2

𝜕𝜃2
− 𝜌𝐴𝑎𝑟

𝜕2𝑣

𝜕𝑡2
−
𝜌𝐼

𝑎𝑟

𝜕2𝑣

𝜕𝑡2
+
𝐸𝐼

𝑎𝑟
3

𝜕2𝑣

𝜕𝜃2
+
𝜌2𝐼𝑎𝑟
𝐾𝑠𝐺

𝜕4𝑣

𝜕𝑡4
+

𝐸2𝐼

𝐾𝑠𝐺𝑎𝑟
3

𝜕4𝑣

𝜕𝜃4
−
2𝐸𝐼𝜌

𝐾𝑠𝐺𝑎𝑟

𝜕4𝑣

𝜕𝜃2𝜕𝑡2
)

+
1

𝐾𝑠𝐺𝑎𝑟
3 (𝐼𝐸

2
𝜕3𝑤

𝜕𝜃3
− 𝜌𝐸𝐼𝑎𝑟

2
𝜕3𝑤

𝜕𝜃𝜕𝑡2
+ 𝐾𝑠𝐺𝐼𝐸

𝜕3𝑤

𝜕𝜃3
− 𝐾𝑠𝐺𝐼𝜌𝑎𝑟

2
𝜕3𝑤

𝜕𝜃𝜕𝑡2

+ 𝐾𝑠𝐺𝐴𝐸𝑎𝑟
2
𝜕𝑤

𝜕𝜃
) = 𝑓𝜃  

(2.2.28) 

and in the axial direction as 

−
2𝐺𝐽

ℎ𝑎𝑟2
𝜕3𝑤

𝜕𝜃2𝜕𝑧
−
2𝜌𝐽

ℎ

𝜕2𝑤

𝜕𝑡2𝜕𝑧
= 𝑓𝑧 (2.2.29) 

Shell displacements have the harmonic form shown in Equations 2.2.5 – 2.2.7, and inputting them 
into the above equations leads to a homogeneous structure that is compatible with the 
orthogonalization method. This means that the entire radial equation is composed of cos(nθ) 
terms only instead of mixed cosines and sines, and the tangential equation is composed only of 
sin(nθ) terms.  Those equations will be shown later. 

Rib stiffeners have many different cross-sections, depending on the desired overall 
system effect. More complicated cross-sectional shapes require more complicated rib models. 
Solid, rectangular cross-section ribs are implemented in the model, shown in Figure 2.2.3. 
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Figure 2.2.3 – Rib cross-sectional dimensions shown on the left in the rz-plane, and radial 

dimensions shown on the right in the rθ-plane. Rib shown in red, shell in gray 

Values of the shape factor, Ks, for rectangular cross-sections are based on the ratio of h/b, but 
5/6 is a valid when h > 2b.  

 

2.3 Thin-Shell Reference 

2.3.1 Derivation of Reinforced Thin-shell Model 

 Before adding reinforcement to the fully elastic model, it is necessary to discuss the rib-
reinforced thin-shell model, which is used as the reference for validation purposes. The 
techniques used here to integrate the period stiffeners with the shell model and to orthogonalize 
the matrix system of equations will also be employed with the elastic model in Chapter 2.4. A 
derivation of the thin-shell equations of motion, also known as the Donnell equations, will not 
be included in this study, but can be found in Gould [1]. Instead, this analysis will start with the 
dynamic formulation of the Donnell shell equations and develop the displacement field 
responses. The displacement response of a thin cylindrical shell with finite-length ring stiffeners 
was investigated by Hull [19] and is summarized here. 
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 The thin-shell system includes a cylindrical shell and periodically spaced ring stiffeners of 
finite length, as shown in Figure 2.3.1. Donnell shell equations govern the cylinder, while the 
stiffeners are modeled as independent linear springs, spatially distributed along the stiffener 
length. As discussed in the Rib Chapter 2.2, finite length ribs require a Step connector type. Also, 
more complicated beam models are not considered here, but could be used with this system. 
First the assumptions of the model must be listed: (1) the cylinder extends infinitely along its axis, 
(2) cylinder displacements are linear and 3-dimensional, (3) cylinder displacements are constant 
across the shell thickness, (4) ribs are periodically spaced, (5) rib forces are independent and 
proportional to displacement. Assumption 3 is a necessary condition of a thin-shell model; 
Assumption 5 is due to the spring rib model. 

 
Figure 2.3.1 – Diagram of the thin-shell system geometry including stiffening ribs 

Donnell equations (and Figure 2.3.1) only present a single radius, r = a; thickness, h, is assumed 
to be symmetric about this nominal radius.  

Behavior of the system is governed by the equations of motion, expressed in terms of the 
displacement vector u = [w(θ, z, t), v(θ, z, t), u(θ, z, t)]T, where w, v, and u are the radial, tangential 
(circumferential), and axial displacement, respectively. Unlike the fully elastic system, these 
displacements are not functions of r, due to assumption 4. The equations include the stresses 
from the reinforcing ribs and are written in the axial direction as 

𝜌ℎ
𝜕2𝑢

𝜕𝑡2
− 𝜌ℎ𝑐𝑝

2
𝜕2𝑢

𝜕𝑧2
−
(1 − 𝜈)𝜌ℎ𝑐𝑝

2

2𝑎2
𝜕2𝑢

𝜕𝜃2
−
(1 + 𝜈)𝜌ℎ𝑐𝑝

2

2𝑎2
𝜕2𝑣

𝜕𝑧𝜕𝜃
−
𝜈𝜌ℎ𝑐𝑝

2

𝑎

𝜕𝑤

𝜕𝑧

= −
𝐾𝑧
𝑎𝑏
𝑢 ∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

(2.3.1)
 

in the tangential direction as 
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−
(1 + 𝜈)𝜌ℎ𝑐𝑝

2

2𝑎

𝜕2𝑢

𝜕𝑧𝜕𝜃
−
(1 − 𝜈)𝜌ℎ𝑐𝑝

2

2

𝜕2𝑣

𝜕𝑧2
−
𝜌ℎ𝑐𝑝

2

𝑎2
𝜕2𝑣

𝜕𝜃2
+ 𝜌ℎ

𝜕2𝑣

𝜕𝑡2
−
𝜌ℎ𝑐𝑝

2

𝑎2
𝜕𝑤

𝜕𝜃

= −
𝐾𝑡
𝑎𝑏
𝑣 ∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

(2.3.2)
 

and in the radial direction as 

𝜈𝜌ℎ𝑐𝑝
2

𝑎

𝜕𝑢

𝜕𝑧
+
𝜌ℎ𝑐𝑝

2

𝑎2
𝜕𝑣

𝜕𝜃
+
𝜌ℎ𝑐𝑝

2

𝑎2
𝑤 +

𝜌ℎ3𝑐𝑝
2

12

𝜕4𝑤

𝜕𝑧4
+
𝜌ℎ𝑐𝑝

2

6𝑎2
𝜕4𝑤

𝜕𝑧2𝜕𝜃2
+
𝜌ℎ𝑐𝑝

2

12𝑎4
𝜕4𝑤

𝜕𝜃4
+ 𝜌ℎ

𝜕2𝑤

𝜕𝑡2

= −
𝐾𝑟
𝑎𝑏
𝑤 ∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

+ 𝑃𝑎(𝜃, 𝑧, 𝑡) (2.3.3)
 

where b is the stiffener length in the axial direction, L is the periodic spacing, ρ is the shell density, 
a is the shell radius, h is the thickness, ν is Poisson’s ratio for the shell, Pa is the external applied 
radial pressure. Kz, Kt, and Kr are the axial, tangential, and radial linear spring rates. H is the 
Heaviside step function, n is the stiffener index, and cp is the plate wave speed 

𝑐𝑝
2 =

𝐸

𝜌(1 − 𝜈2)
(2.3.4) 

The applied external pressure, Pa, is a ring load as discussed in the Excitations Chapter 2.5 

𝑃𝑎 = 𝑃0𝑒
𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.3.5) 

The same harmonic displacement solutions from the elastic model developed previously can be 
applied to the thin-shell model, except that the wave propagation constants can be solved 
directly; they are not functions of other constants. From the Ribs Chapter 2.2, the effect of the 
periodic ribs on the displacement form requires an additional summation of axial modes (m), 
resulting in 

𝑢(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑈𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(2.3.6) 

𝑣(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑉𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(2.3.7) 

𝑤(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(2.3.8) 

where Umn, Vmn, and Wmn are the unknown wave propagation coefficients, and km is the 
wavenumber indexed by the rib modes 

𝑘𝑚 = 𝑘𝑧 +
2𝜋𝑚

𝐿
(2.3.9) 
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Note that the exponential in time is suppressed for all further developments. Substituting the 
displacements into the equations of motion leads to 

∑ ∑{[𝜌ℎ𝑐𝑝
2𝑘𝑚

2 +
𝜌ℎ𝑐𝑝

2(1 − 𝜈)𝑛2

2𝑎2
− 𝜌ℎ𝜔2] 𝑈𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

                                   

+ [−
𝜌ℎ𝑐𝑝

2(1 + 𝜈)𝑖𝑘𝑚𝑛

2𝑎
] 𝑉𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

+ [−
𝜌ℎ𝑐𝑝

2𝜈𝑖𝑘𝑚

𝑎
]𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧}

= −
𝐾𝑧
𝑎𝑏

∑ ∑𝑈𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

(2.3.10)

 

∑ ∑{[
𝜌ℎ𝑐𝑝

2(1 + 𝜈)𝑖𝑘𝑚𝑛

2𝑎
]𝑈𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

                                                                   

+ [
𝜌ℎ𝑐𝑝

2(1 − 𝜈)𝑘𝑚
2

2
+
𝜌ℎ𝑐𝑝

2𝑛2

𝑎2
− 𝜌ℎ𝜔2] 𝑉𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

+ [
𝜌ℎ𝑐𝑝

2𝑛

𝑎2
]𝑊𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧}

= −
𝐾𝑡
𝑎𝑏

∑ ∑𝑉𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

(2.3.11)

 

 

 

∑ ∑{[
𝜌ℎ𝑐𝑝

2𝜈𝑖𝑘𝑚

𝑎
]𝑈𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧 + [
𝜌ℎ𝑐𝑝

2𝑛

𝑎2
] 𝑉𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

                         

+ [
𝜌ℎ𝑐𝑝

2

𝑎2
+
𝜌ℎ3𝑐𝑝

2𝑘𝑚
4

12
+
𝜌ℎ3𝑐𝑝

2𝑘𝑚
2 𝑛2

6𝑎2
+
𝜌ℎ𝑐𝑝

2𝑛4

12𝑎4
− 𝜌ℎ𝜔2]𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧}

= −
𝐾𝑟
𝑎𝑏

∑ ∑𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

+ 𝑃0𝑒
𝑖𝑘𝑧 (2.3.12)

 

As described in the Ribs Chapter, the Heaviside functions can be represented by a Fourier Series. 
Replacing the summation of step functions in each equation with a summation of exponentials 
yields 
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∑ ∑{[𝜌ℎ𝑐𝑝
2𝑘𝑚

2 +
𝜌ℎ𝑐𝑝

2(1 − 𝜈)𝑛2

2𝑎2
− 𝜌ℎ𝜔2] 𝑈𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

                                   

+ [−
𝜌ℎ𝑐𝑝

2(1 + 𝜈)𝑖𝑘𝑚𝑛

2𝑎
] 𝑉𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧 + [−
𝜌ℎ𝑐𝑝

2𝜈𝑖𝑘𝑚

𝑎
]𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧}

= −
𝐾𝑧
𝑎𝑏

∑ ∑𝑈𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

∑ 𝑑𝑠𝑒
2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

(2.3.13)

 

 

∑ ∑

{
 
 
 

 
 
 [

𝜌ℎ𝑐𝑝
2(1 + 𝜈)𝑖𝑘𝑚𝑛

2𝑎
]𝑈𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

+ [
𝜌ℎ𝑐𝑝

2(1 − 𝜈)𝑘𝑚
2

2
+
𝜌ℎ𝑐𝑝

2𝑛2

𝑎2
− 𝜌ℎ𝜔2] 𝑉𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

+[
𝜌ℎ𝑐𝑝

2𝑛

𝑎2
]𝑊𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

}
 
 
 

 
 
 

∞

𝑛=0

∞

𝑚=−∞

= −
𝐾𝑡
𝑎𝑏

∑ ∑𝑉𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

∑ 𝑑𝑠𝑒
2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

(2.3.14)

 

 

∑ ∑{[
𝜌ℎ𝑐𝑝

2𝜈𝑖𝑘𝑚

𝑎
]𝑈𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

+ [
𝜌ℎ𝑐𝑝

2𝑛

𝑎2
] 𝑉𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧                         

+ [
𝜌ℎ𝑐𝑝

2

𝑎2
+
𝜌ℎ3𝑐𝑝

2𝑘𝑚
4

12
+
𝜌ℎ3𝑐𝑝

2𝑘𝑚
2 𝑛2

6𝑎2
+
𝜌ℎ𝑐𝑝

2𝑛4

12𝑎4
− 𝜌ℎ𝜔2]𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧}

= −
𝐾𝑟
𝑎𝑏

∑ ∑𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∑ 𝑑𝑠𝑒
2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

∞

𝑚=−∞

+ 𝑃0𝑒
𝑖𝑘𝑧 (2.3.15)

 

The n-summations of the last term in each of Equations 2.3.13 – 2.3.15 can be reworked by 
shifting the index of the term dn. A proof of this can be found in the Appendix. For example, in 
Equation 2.3.13 

∑ ∑Umn cos(nθ) e
ikmz

∞

n=0

∞

m=−∞

∑ dse
2πisz
L

∞

s=−∞

=∑{ ∑ ∑ Usndm−se
ikmz

∞

m=−∞

∞

s=−∞

} cos(nθ)

∞

n=0

 

(2.3.16) 

Note the change of index on the propagation coefficient. A similar transformation is used on 
Equations 2.3.14 and 2.3.15. 
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∑ ∑{[𝜌ℎ𝑐𝑝
2𝑘𝑚

2 +
𝜌ℎ𝑐𝑝

2(1 − 𝜈)𝑛2

2𝑎2
− 𝜌ℎ𝜔2] 𝑈𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

                                   

+ [−
𝜌ℎ𝑐𝑝

2(1 + 𝜈)𝑖𝑘𝑚𝑛

2𝑎
] 𝑉𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧 + [−
𝜌ℎ𝑐𝑝

2𝜈𝑖𝑘𝑚

𝑎
]𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧}

= −
𝐾𝑧
𝑎𝑏
∑ { ∑ ∑ 𝑈𝑠𝑛𝑑𝑚−𝑠𝑒

𝑖𝑘𝑚𝑧

∞

𝑚=−∞

∞

𝑠=−∞

} 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

(2.3.17)

 

 

∑ ∑{[
𝜌ℎ𝑐𝑝

2(1 + 𝜈)𝑖𝑘𝑚𝑛

2𝑎
]𝑈𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

+[
𝜌ℎ𝑐𝑝

2(1 − 𝜈)𝑘𝑚
2

2
+
𝜌ℎ𝑐𝑝

2𝑛2

𝑎2
− 𝜌ℎ𝜔2] 𝑉𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

+[
𝜌ℎ𝑐𝑝

2𝑛

𝑎2
]𝑊𝑚𝑛 𝑠𝑖𝑛(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧} = −
𝐾𝑡
𝑎𝑏
∑ { ∑ ∑ 𝑉𝑠𝑛𝑑𝑚−𝑠𝑒

𝑖𝑘𝑚𝑧

∞

𝑚=−∞

∞

𝑠=−∞

} 𝑠𝑖𝑛(𝑛𝜃)

∞

𝑛=0

(2.3.18)

 

 

∑ ∑{[
𝜌ℎ𝑐𝑝

2𝜈𝑖𝑘𝑚

𝑎
]𝑈𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧 + [
𝜌ℎ𝑐𝑝

2𝑛

𝑎2
] 𝑉𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

+ [
𝜌ℎ𝑐𝑝

2

𝑎2
+
𝜌ℎ3𝑐𝑝

2𝑘𝑚
4

12
+
𝜌ℎ3𝑐𝑝

2𝑘𝑚
2 𝑛2

6𝑎2
+
𝜌ℎ𝑐𝑝

2𝑛4

12𝑎4
− 𝜌ℎ𝜔2]𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧}  

= −
𝐾𝑟
𝑎𝑏
∑ { ∑ ∑ 𝑊𝑠𝑛𝑑𝑚−𝑠𝑒

𝑖𝑘𝑚𝑧

∞

𝑚=−∞

∞

𝑠=−∞

} 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

+ 𝑃0𝑒
𝑖𝑘𝑧 

Finally, the equations of motion have been derived. Currently, the 3 equations of motion are 
expressed with infinite summations, but the orthogonalization process will now be described to 
show how these equations can be broken down. 

2.3.2 Orthogonalization 

 Using the method of orthogonalization, the equations comprised of infinite summations 
can be decomposed into an infinite set of indexed equations. This process is analogous to 
developing a Fourier series, making use of orthogonal harmonic functions, namely trigonometric 
and exponentials. Multiplying by an orthogonal integer counterpart and then integrating over 
that period results in 0 except when the counterpart is equal to the original expression. This is 
described with the following properties of sinusoids 

∫ 𝑐𝑜𝑠 𝑛𝜃 𝑐𝑜𝑠 𝑛2𝜃 𝑑𝜃
2𝜋

0

= {
1, 𝑛 = 𝑛2
0, 𝑛 ≠ 𝑛2

(2.3.20) 
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∫ 𝑠𝑖𝑛 𝑛𝜃 𝑠𝑖𝑛 𝑛2𝜃 𝑑𝜃
2𝜋

0

= {
1, 𝑛 = 𝑛2
0, 𝑛 ≠ 𝑛2

(2.3.21) 

∫ 𝑐𝑜𝑠 𝑛𝜃 𝑠𝑖𝑛 𝑛2𝜃 𝑑𝜃
2𝜋

0

= 0 (2.3.22) 

where n and n2 are integers. Only when the integer index n is equal to n2 is the integrated product 
nonzero. Similarly, for exponentials 

∫ 𝑒𝑖𝑘𝑚𝑧𝑒−𝑖𝑘𝑚2𝑧
𝐿

0

= {
𝐿, 𝑘𝑚 = 𝑘𝑚2
0, 𝑘𝑚 ≠ 𝑘𝑚2

(2.3.23) 

where km and km2 are integers. These properties are very helpful when incorporated inside an 
infinite summation because, all summed elements of the summation are zero except when n = 
n2 and/or km = km2. Putting it all together, the double summation equations can be decomposed 

by multiplying Equations 2.3.17 and 2.3.19 with cos n2θ e
−ikm2z and Equation 2.3.18 with 

sin n2θ e
−ikm2z, and then integrating [0, 2π] on θ and [0, L] on z 

∫ ∫ ∑ ∑𝑐𝑜𝑠 𝑛𝜃 𝑒𝑖𝑘𝑚𝑧 𝑐𝑜𝑠 𝑛2𝜃 𝑒
−𝑖𝑘𝑚2𝑧

∞

𝑛=0

∞

𝑚=−∞

𝑑𝜃
2𝜋

0

𝑑𝑧
𝐿

0

= {
𝐿, 𝑛 = 𝑛2, 𝑘𝑚 = 𝑘𝑚2
0, 𝑛 ≠ 𝑛2, 𝑘𝑚 ≠ 𝑘𝑚2

(2.3.24) 

Instead of 3 distinct equations made up of infinite summations, the orthogonalization process 
has decomposed them into an infinite set of (m2, n2) modal equations. For each individual modal 
equation, the infinite summation and the respective harmonic function is eliminated. Note that 
the indexed equations will still be referred to using the (m, n) index rather than the (m2, n2) index. 
Orthogonalization can be implemented even when the harmonic function has a constant 
argument (ie. e-ikz). In this case, the result is still indexed, but is only nonzero for the 0th index (m 
= 0) and will include the Kronecker delta function, δ0m. 

2.3.3 Indexed Equations of Motion 

 After implementing the orthogonalization process, Equations 2.3.17 – 2.3.19 have been 
decomposed into an infinite set of (m, n) indexed equations. Each individual equation is 
expressed as 

[𝜌ℎ𝑐𝑝
2𝑘𝑚

2 +
𝜌ℎ𝑐𝑝

2(1 − 𝜈)𝑛2

2𝑎2
− 𝜌ℎ𝜔2] 𝑈𝑚𝑛 − [

𝜌ℎ𝑐𝑝
2(1 + 𝜈)𝑖𝑘𝑚𝑛

2𝑎
] 𝑉𝑚𝑛

−[
𝜌ℎ𝑐𝑝

2𝜈𝑖𝑘𝑚

𝑎
]𝑊𝑚𝑛 = −

𝐾𝑧
𝑎𝑏

∑ 𝑈𝑠𝑛𝑑𝑚−𝑠

∞

𝑠=−∞

(2.3.25)
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[
𝜌ℎ𝑐𝑝

2(1 + 𝜈)𝑖𝑘𝑚𝑛

2𝑎
]𝑈𝑚𝑛 + [

𝜌ℎ𝑐𝑝
2(1 − 𝜈)𝑘𝑚

2

2
+
𝜌ℎ𝑐𝑝

2𝑛2

𝑎2
− 𝜌ℎ𝜔2] 𝑉𝑚𝑛 + [

𝜌ℎ𝑐𝑝
2𝑛

𝑎2
]𝑊𝑚𝑛

= −
𝐾𝑡
𝑎𝑏

∑ 𝑉𝑠𝑛𝑑𝑚−𝑠

∞

𝑠=−∞

(2.3.26)

 

[
𝜌ℎ𝑐𝑝

2𝜈𝑖𝑘𝑚

𝑎
]𝑈𝑚𝑛 + [

𝜌ℎ𝑐𝑝
2𝑛

𝑎2
] 𝑉𝑚𝑛 + [

𝜌ℎ𝑐𝑝
2

𝑎2
+
𝜌ℎ3𝑐𝑝

2𝑘𝑚
4

12
+
𝜌ℎ3𝑐𝑝

2𝑘𝑚
2 𝑛2

6𝑎2
+
𝜌ℎ𝑐𝑝

2𝑛4

12𝑎4
− 𝜌ℎ𝜔2]𝑊𝑚𝑛

= −
𝐾𝑟
𝑎𝑏

∑ 𝑊𝑠𝑛𝑑𝑚−𝑠

∞

𝑠=−∞

+ 𝑃0𝛿𝑚0,𝑛0      (2.3.27)

 

in which the excitation pressure, P0, is only present for the m = n = 0 index. This implies that n > 
0 circumferential modes have no effect on the response under a ring loading. The 3 individual 
equations can be grouped into a matrix equation that separates the shell dynamics from the 
stiffener dynamics and external loading. For each (m, n) index, Equations 2.3.25 – 2.3.27 are 
written as 

𝑨𝑚𝑛𝒙𝑚𝑛 = −
𝐾𝑧
𝑎𝑏

∑ 𝒁𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

−
𝐾𝑡
𝑎𝑏

∑ 𝑻𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

−
𝐾𝑟
𝑎𝑏

∑ 𝑹𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

+ 𝒇𝛿𝑚0,𝑛0 (2.3.28) 

Amn is a 3x3 matrix that describes the shell dynamics, vector xmn = [Umn, Vmn, Wmn]T, Z, T, and R 
are the 3x3 stiffness matrices in the axial, tangential, and radial directions, and the external force 
vector, f = [0, 0, P0]T, is only present for the (0, 0) index. The elements of matrix A are extracted 
from the indexed equations, and are shown in the Appendix, and the individual stiffener matrices 
are given as 

𝒁𝒎−𝒔 = [
𝑑𝑚−𝑠 0 0
0 0 0
0 0 0

] , 𝑻𝒎−𝒔 = [
0 0 0
0 𝑑𝑚−𝑠 0
0 0 0

] , 𝑹𝒎−𝒔 = [
0 0 0
0 0 0
0 0 𝑑𝑚−𝑠

] (2.3.29) 

2.3.4 Global Matrix Equation System 

 Each indexed (m, n) matrix equation above could be combined into a global matrix 
equation and solved simultaneously. However, this global system can be assembled in a more 
efficient manner, as described by Hull [19]. The n index is individually decoupled in each (m, n) 
matrix equation, unlike the m index, which is coupled inside the stiffener matrices and s-
summation; axial modes of the shell are effectively coupled by the stiffener forces. Therefore, for 
each single value of n, a global matrix equation of varying m can be constructed and solved. The 
solutions from this m-global matrix equation is then summed in n as shown in the original 
displacement equations 2.3.6 – 2.3.8. For each value of n, the m-global matrix equation can be 
expressed as 

�̂�𝒏𝒙𝒏 = −
𝐾𝑧
𝑎𝑏
�̂�𝒏�̂�𝑛 −

𝐾𝑡
𝑎𝑏
�̂�𝒏�̂�𝑛 −

𝐾𝑟
𝑎𝑏
�̂�𝒏�̂�𝒏 + �̂�𝒏 (2.3.30) 
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where �̂�𝒏 is a block diagonal matrix that describes the nth circumferential mode shell dynamics, 

�̂�n is the m-indexed vector of displacement coefficients, �̂�𝐧, �̂�𝐧, and �̂�𝐧 are the block partitioned 
matrices composed of the individual Zm, Tm and Rm stiffener matrices for the nth mode. The 

structure of the global rib matrices accounts for the s-summation in 2.3.30. �̂�𝒏 is the system 
excitation vector for the nth mode. 

�̂�𝑛 =

[
 
 
 
 
 
 
 
⋱ ⋮ ⋰

𝑨−𝟐𝒏 𝟎 𝟎 𝟎 𝟎

𝟎 𝑨−𝟏𝒏 𝟎 𝟎 𝟎
⋯ 𝟎 𝟎 𝑨𝟎𝒏 𝟎 𝟎 ⋯

𝟎 𝟎 𝟎 𝑨𝟏𝒏 𝟎

𝟎 𝟎 𝟎 𝟎 𝑨𝟐𝒏
⋰ ⋮ ⋱ ]

 
 
 
 
 
 
 

, �̂�𝑛 =

[
 
 
 
 
 
 
⋮

𝒙−𝟐𝒏
𝒙−𝟏𝒏
𝒙𝟎𝒏
𝒙𝟏𝒏
𝒙𝟐𝒏
⋮ ]
 
 
 
 
 
 

 

  �̂�𝑛 =

[
 
 
 
 
 
 
 
⋱ ⋮ ⋰

𝒁𝟎 𝒁−𝟏 𝒁−𝟐 𝒁−𝟑 𝒁−𝟒
𝒁𝟏 𝒁𝟎 𝒁−𝟏 𝒁−𝟐 𝒁−𝟑

⋯ 𝒁𝟐 𝒁𝟏 𝒁𝟎 𝒁−𝟏 𝒁−𝟐 ⋯

𝒁𝟑 𝒁𝟐 𝒁𝟏 𝒁𝟎 𝒁−𝟏
𝒁𝟒 𝒁𝟑 𝒁𝟐 𝒁𝟏 𝒁𝟎

⋰ ⋮ ⋱ ]
 
 
 
 
 
 
 

, �̂�𝑛 =

[
 
 
 
 
 
 
 
⋱ ⋮ ⋰

𝑻𝟎 𝑻−𝟏 𝑻−𝟐 𝑻−𝟑 𝑻−𝟒
𝑻𝟏 𝑻𝟎 𝑻−𝟏 𝑻−𝟐 𝑻−𝟑

⋯ 𝑻𝟐 𝑻𝟏 𝑻𝟎 𝑻−𝟏 𝑻−𝟐 ⋯

𝑻𝟑 𝑻𝟐 𝑻𝟏 𝑻𝟎 𝑻−𝟏
𝑻𝟒 𝑻𝟑 𝑻𝟐 𝑻𝟏 𝑻𝟎

⋰ ⋮ ⋱ ]
 
 
 
 
 
 
 

, 

�̂�𝑛 =

[
 
 
 
 
 
 
 
⋱ ⋮ ⋰

𝑹𝟎 𝑹−𝟏 𝑹−𝟐 𝑹−𝟑 𝑹−𝟒
𝑹𝟏 𝑹𝟎 𝑹−𝟏 𝑹−𝟐 𝑹−𝟑

⋯ 𝑹𝟐 𝑹𝟏 𝑹𝟎 𝑹−𝟏 𝑹−𝟐 ⋯

𝑹𝟑 𝑹𝟐 𝑹𝟏 𝑹𝟎 𝑹−𝟏
𝑹𝟒 𝑹𝟑 𝑹𝟐 𝑹𝟏 𝑹𝟎

⋰ ⋮ ⋱ ]
 
 
 
 
 
 
 

, �̂�𝑛 =

[
 
 
 
 
 
 
⋮
𝟎
𝟎
𝒇
𝟎
𝟎
⋮ ]
 
 
 
 
 
 

(2.3.31) 

Note that the m-global stiffener matrices are all rank-deficient, due to the singularity of their 
component matrices, however, the global A matrix is invertible for real material parameters. The 
solution for �̂�𝐧 is obtained by solving Equation 2.3.32 

�̂�𝒏 = [�̂�𝒏 +
𝐾𝑧
𝑎𝑏
�̂�𝒏 +

𝐾𝑡
𝑎𝑏
�̂�𝒏 +

𝐾𝑟
𝑎𝑏
�̂�𝒏]

−1

�̂�𝒏 (2.3.32) 

To find the displacement solutions, u(r, θ, z, t), v(r, θ, z, t), and w(r, θ, z, t), the n-mode solutions 
are combined with 2.3.6 – 2.3.8. The details of the solution method involve numerous challenges 
that will be described later. 

2.3.5 Modifications for Delta Rib Connectors 

 In the derivation above the thin-shell system featured finite-length ring stiffeners. Step 
connectors are more general than the Delta connectors, and the derivation follows the work of 
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Hull [19] directly. However, if it is desired to use an infinitesimal-length ring stiffener the final 
equations can be converted quite easily.  

 
Figure 2.3.2 – Diagram of the thin-shell system geometry with Delta stiffening ribs 

 

Stiffener stresses in the original equation of motion are rewritten as 

𝜏𝑧 = −
𝐾𝑧
𝑎
𝑢 ∑ 𝛿(𝑧 − 𝑠𝐿)

∞

𝑠=−∞

, 𝜏𝜃 = −
𝐾𝑡
𝑎
𝑣 ∑ 𝛿(𝑧 − 𝑠𝐿)

∞

𝑠=−∞

,

𝜏𝑟 = −
𝐾𝑧
𝑎
𝑤 ∑ 𝛿(𝑧 − 𝑠𝐿)

∞

𝑠=−∞

(2.3.33)

 

The Fourier Series of the Delta functions was derived in Chapter 2.2, and is given as 

∑ 𝛿(𝑧 − 𝑠𝐿)

∞

𝑠=−∞

=
1

𝐿
∑ 𝑒

2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

(2.3.34) 

Therefore, it is necessary to replace dm-s in the stiffener matrices, Zm-s, Tm-s, Rm-s with 1, and the 
global matrix equation takes on a similar form 

�̂�𝒏�̂�𝒏 = −
𝐾𝑧
𝑎𝐿
�̂�𝒏�̂�𝑛 −

𝐾𝑡
𝑎𝐿
�̂�𝒏�̂�𝑛 −

𝐾𝑟
𝑎𝐿
�̂�𝒏�̂�𝒏 + �̂�𝒏 (2.3.35) 

which can be solved in the same manner as the original system 

𝒙𝒏 = [�̂�𝒏 +
𝐾𝑧
𝑎𝐿
�̂�𝒏 +

𝐾𝑡
𝑎𝐿
�̂�𝒏 +

𝐾𝑟
𝑎𝐿
�̂�𝒏]

−1

�̂�𝒏 (2.3.36) 
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2.4 Elastic Base Model 

2.4.1 Derivation of Reinforced Thick-Shell Model 

 Adding reinforcement to the fully elastic shell model builds off of the previous 3 chapters, 
and uses the same solution techniques developed by Hull [19], employed with the thin-shell 
model. Analysis of the reinforced thick-shell system begins with the Navier-Cauchy elasticity 
equations, which have been derived in the Appendix. This formulation provides better accuracy 
at higher frequencies than the shell described in Chapter 2.3, and does not require constant 
displacement across the shell thickness. Unlike the thin-shell system, however, where the 
displacement coefficients (U, V, W) were arranged in a 3-dimensional matrix system, the thick-
shell model requires finding 6 coefficients (A, B, C, D, E, F) within a 6-dimensional system. 
Displacement field responses, u(r, θ, z, t), will be found for the entire shell. 

The thick-shell system features the same shell as discussed in Chapter 2.2, with the 
infinitesimal-length periodic ring stiffeners described at the end of Chapter 2.3 (Modifications for 
Delta Connectors). This rib model features Delta connectors and linear translational springs. 
More complicated rib systems will be discussed later. Assumptions of the model are: (1) the 
cylinder extends infinitely along its axis, (2) cylinder displacements are linear and 3-dimensional, 
(3) shell and rib material is homogenous, isotropic, and symmetric about cylindrical axis, (4) ribs 
are periodically spaced, (5) rib forces are independent and proportional to displacement. A 
sidelong cross-sectional view of the cylinder system is shown in Figure 2.4.1. 

 
Figure 2.4.1 – Diagram of the thick-shell system geometry including the Delta ribs 

System behavior is governed by the vector elasticity equation, expressed in cylindrical 
coordinates as 

𝜇𝛻2𝒖(𝑟, 𝜃, 𝑧, 𝑡) + (𝜆 + 𝜇)𝛻𝛻 ∙ 𝒖(𝑟, 𝜃, 𝑧, 𝑡) = 𝜌
𝜕2𝒖(𝑟, 𝜃, 𝑧, 𝑡)

𝜕𝑡2
 (2.4.1) 
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As with the thin-shell system, the effect of the periodic ribs on the displacement form requires 
an additional summation of axial modes (m), resulting in 

𝑤(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑊𝑚𝑛(𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(2.4.2) 

𝑣(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑉𝑚𝑛(𝑟) 𝑠𝑖𝑛(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(2.4.3) 

𝑢(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑈𝑚𝑛(𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(2.4.4) 

where n is the circumferential mode index, m is the axial mode index, Umn, Vmn, and Wmn are the 
wave propagation coefficients, and km is the wavenumber indexed by the rib modes 

𝑘𝑚 = 𝑘𝑧 +
2𝜋𝑚

𝐿
(2.4.5) 

However, these propagation coefficients cannot be solved directly, but are composed of Bessel 
functions and additional constants. To re-use the coefficient formulation given at the end of the 
unreinforced elastic shell derivation, it is necessary to make a few changes to include the effects 
from the periodic ribs. The propagation coefficients are now functions of r, and are written as 

𝑊𝑚𝑛(𝑟) = 𝐴𝑚𝑛 [−𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑟) +
𝑛

𝑟
𝐽𝑛(𝛼𝑚𝑟)] + 𝐵𝑚𝑛 [−𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑟) +

𝑛

𝑟
𝑌𝑛(𝛼𝑚𝑟)]

+𝐶𝑚𝑛
𝑛

𝑟
𝐽𝑛(𝛽𝑚𝑟) + 𝐷𝑚𝑛

𝑛

𝑟
𝑌𝑛(𝛽𝑚𝑟) + 𝐸𝑚𝑛𝑖𝑘𝑚𝐽𝑛+1(𝛽𝑚𝑟) + 𝐹𝑚𝑛𝑖𝑘𝑚𝑌𝑛+1(𝛽𝑚𝑟) (2.4.6)

 

𝑉𝑚𝑛(𝑟) = −𝐴𝑚𝑛
𝑛

𝑟
𝐽𝑛(𝛼𝑚𝑟) − 𝐵𝑚𝑛

𝑛

𝑟
𝑌𝑛(𝛼𝑚𝑟) + 𝐶𝑚𝑛 [𝛽𝑚𝐽𝑛+1(𝛽𝑚𝑟) −

𝑛

𝑟
𝐽𝑛(𝛽𝑚𝑟)]

+𝐷𝑚𝑛 [𝛽𝑚𝑌𝑛+1(𝛽𝑚𝑟) −
𝑛

𝑟
𝑌𝑛(𝛽𝑚𝑟)] + 𝐸𝑚𝑛𝑖𝑘𝑚𝐽𝑛+1(𝛽𝑚𝑟) + 𝐹𝑚𝑛𝑖𝑘𝑚𝑌𝑛+1(𝛽𝑚𝑟) (2.4.7)

 

𝑈𝑚𝑛(𝑟) = 𝐴𝑚𝑛𝑖𝑘𝑚𝐽𝑛(𝛼𝑚𝑟) + 𝐵𝑚𝑛𝑖𝑘𝑚𝑌𝑛(𝛼𝑚𝑟) − 𝐸𝑚𝑛𝛽𝑚𝐽𝑛(𝛽𝑚𝑟) − 𝐹𝑚𝑛𝛽𝑚𝑌𝑛(𝛽𝑚𝑟) (2.4.8) 

where Amn – Fmn are the (m, n) mode-indexed unknown coefficients, and the modified dilatational 
and shear wavenumbers are now indexed by the axial mode, m 

𝛼𝑚 = √(
𝜔

𝑐1
)
2

− 𝑘𝑚2 , 𝛽𝑚 = √(
𝜔

𝑐2
)
2

− 𝑘𝑚2 (2.4.9 − 10) 

Once again the applied external pressure, Pa, is a ring load with constant excitation wavenumber, 
k. More involved loadings will be discussed later. As before, the temporal harmonic will be 
suppressed for the remainder of this Chapter. 

𝑃𝑎 = 𝑃0𝑒
𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.4.11) 
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2.4.2 Evaluating the Boundary Conditions 

In the case of the unreinforced shell with no external loading, the radial normal and radial 
shear stresses vanished at the bounding inner (r = a) and outer (r = c) surfaces. With the addition 
of stiffeners at the inner surface and the applied radial excitation at the outer surface, these 
stress equations must be reformulated. Evaluating Hooke’s Law of Stress at r = a gives 

𝜏𝑟𝑟(𝑎, 𝜃, 𝑧, 𝑡) = (𝜆 + 2𝜇)
𝜕𝑤

𝜕𝑟
+
𝜆

𝑎
𝑤 +

𝜆

𝑎

𝜕𝑣

𝜕𝜃
+ 𝜆

𝜕𝑢

𝜕𝑧
= 𝑓𝑟 (2.4.12) 

𝜏𝑟𝜃(𝑎, 𝜃, 𝑧, 𝑡) = 𝜇
𝜕𝑣

𝜕𝑟
−
𝜇

𝑎
𝑣 +

𝜇

𝑎

𝜕𝑤

𝜕𝜃
= 𝑓𝜃 (2.4.13) 

𝜏𝑟𝑧(𝑎, 𝜃, 𝑧, 𝑡) = 𝜇
𝜕𝑤

𝜕𝑧
+ 𝜇

𝜕𝑢

𝜕𝑟
= 𝑓𝑧 (2.4.14) 

where fr, fθ, and fz are the radial, tangential, and axial stresses applied by the stiffeners. Likewise, 
the stresses at the outer surface (r = c) result in 

𝜏𝑟𝑟(𝑐, 𝜃, 𝑧, 𝑡) = (𝜆 + 2𝜇)
𝜕𝑤

𝜕𝑟
+
𝜆

𝑐
𝑤 +

𝜆

𝑐

𝜕𝑣

𝜕𝜃
+ 𝜆

𝜕𝑢

𝜕𝑧
= 𝑃𝑎 (2.4.15) 

𝜏𝑟𝜃(𝑐, 𝜃, 𝑧, 𝑡) = 𝜇
𝜕𝑣

𝜕𝑟
−
𝜇

𝑐
𝑣 +

𝜇

𝑐

𝜕𝑤

𝜕𝜃
= 0 (2.4.16) 

𝜏𝑟𝑧(𝑐, 𝜃, 𝑧, 𝑡) = 𝜇
𝜕𝑤

𝜕𝑧
+ 𝜇

𝜕𝑢

𝜕𝑟
= 0 (2.4.17) 

Substituting the displacements (2.4.2 – 2.4.4) into the 6 stress boundary conditions provides the 
shell dynamic equations. At the inner surface, Equations 2.4.12 – 2.4.14 become 

∑ ∑{(𝜆 + 2𝜇)
𝑑𝑊𝑚𝑛(𝑎)

𝑑𝑟
+
𝜆

𝑎
𝑊𝑚𝑛(𝑎) +

𝜆𝑛

𝑎
𝑉𝑚𝑛(𝑎) + 𝜆𝑖𝑘𝑚𝑈𝑚𝑛(𝑎)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

= −
𝐾𝑟
𝑎

∑ ∑𝑊𝑚𝑛 𝑐𝑜𝑠(𝑞𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

∑ 𝛿(𝑧 − 𝑠𝐿)

∞

𝑠=−∞

                                  (2.4.18) 

∑ ∑{𝜇
𝑑𝑉𝑚𝑛(𝑎)

𝑑𝑟
−
𝜇

𝑎
𝑉𝑚𝑛(𝑎) −

𝜇𝑛

𝑎
𝑊𝑚𝑛(𝑎)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

= −
𝐾𝑡
𝑎

∑ ∑𝑉𝑚𝑛 𝑠𝑖𝑛(𝑞𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

∑ 𝛿(𝑧 − 𝑠𝐿)

∞

𝑠=−∞

(2.4.19)
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∑ ∑{𝜇𝑖𝑘𝑚𝑊𝑚𝑛(𝑎) + 𝜇
𝑑𝑈𝑚𝑛(𝑎)

𝑑𝑟
}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

= −
𝐾𝑧
𝑎

∑ ∑𝑈𝑚𝑛 𝑐𝑜𝑠(𝑞𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

∑ 𝛿(𝑧 − 𝑠𝐿)

∞

𝑠=−∞

(2.4.20)

 

At the outer boundary surface, Equations (2.4.15 – 2.4.17) become 

∑ ∑{(𝜆 + 2𝜇)
𝑑𝑊𝑚𝑛(𝑐)

𝑑𝑟
+
𝜆

𝑐
𝑊𝑚𝑛(𝑐) +

𝜆𝑛

𝑐
𝑉𝑚𝑛(𝑐) + 𝜆𝑖𝑘𝑚𝑈𝑚𝑛(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧

= 𝑃0𝑒
𝑖𝑘𝑧                                                                                                                     (2.4.21) 

∑ ∑{𝜇
𝑑𝑉𝑚𝑛(𝑐)

𝑑𝑟
−
𝜇

𝑐
𝑉𝑚𝑛(𝑐) −

𝜇𝑛

𝑐
𝑊𝑚𝑛(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧 = 0 (2.4.22) 

∑ ∑{𝜇𝑖𝑘𝑚𝑊𝑚𝑛(𝑐) + 𝜇
𝑑𝑈𝑚𝑛(𝑐)

𝑑𝑟
}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧 = 0 (2.4.23) 

which includes the excitation, 2.4.11. As before, the Fourier Series of the Delta function 
summations are converted into a series of exponentials (2.2.11). Also, the same index shift 
(Equation 2.3.16) is performed on the stiffener term to rearrange the summation order.  

∑ ∑{(𝜆 + 2𝜇)
𝑑𝑊𝑚𝑛(𝑎)

𝑑𝑟
+
𝜆

𝑎
𝑊𝑚𝑛(𝑎) +

𝜆𝑛

𝑎
𝑉𝑚𝑛(𝑎) + 𝜆𝑖𝑘𝑚𝑈𝑚𝑛(𝑎)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

= −
𝐾𝑟
𝑎𝐿
∑ { ∑ ∑ 𝑊𝑠𝑛𝑒

𝑖𝑘𝑚𝑧

∞

𝑚=−∞

∞

𝑠=−∞

} 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

                                                    (2.4.24) 

∑ ∑{𝜇
𝑑𝑉𝑚𝑛(𝑎)

𝑑𝑟
−
𝜇

𝑎
𝑉𝑚𝑛(𝑎) −

𝜇𝑛

𝑎
𝑊𝑚𝑛(𝑎)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

= −
𝐾𝑡
𝑎𝐿
∑ { ∑ ∑ 𝑉𝑠𝑛𝑒

𝑖𝑘𝑚𝑧

∞

𝑚=−∞

∞

𝑠=−∞

} 𝑠𝑖𝑛(𝑛𝜃)

∞

𝑛=0

(2.4.25)

 

∑ ∑{𝜇𝑖𝑘𝑚𝑊𝑚𝑛(𝑎) + 𝜇
𝑑𝑈𝑚𝑛(𝑎)

𝑑𝑟
}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

= −
𝐾𝑧
𝑎𝐿
∑ { ∑ ∑ 𝑈𝑠𝑛𝑒

𝑖𝑘𝑚𝑧

∞

𝑚=−∞

∞

𝑠=−∞

} 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

(2.4.26)

 

The system equations (2.4.24 – 2.4.26 and 2.4.21 – 2.4.23) are now ready for orthogonalization.  
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2.4.3 Mode Decoupled Form 

 Following the procedure of Hull [19] with the thin-shell model, the stress equations can 
be orthogonalized into an infinite set of (m, n) indexed equations. Equations 2.4.21, 2.4.23, 

2.4.24, and 2.4.26 are multiplied with cos n2θ e
−ikm2z, while Equations 2.4.22 and 2.4.25 are 

multiplied with sin n2θ e
−ikm2z. Each is then integrated [0, 2π] on θ and [0, L] on z. The 

orthogonalization process is described in detail in Chapter 2.3. The infinite summations in m and 
n are decoupled into (m, n)-indexed equations with the exponentials and sinusoids eliminated. 
Each set of 6 (m, n) decoupled equations includes the three radial-normal (τrr) and radial-shear 
(τrθ, τrz) stress equations at the inner boundary (r = a) 

(𝜆 + 2𝜇)
𝑑𝑊𝑚𝑛(𝑎)

𝑑𝑟
+
𝜆

𝑎
𝑊𝑚𝑛(𝑎) +

𝜆𝑛

𝑎
𝑉𝑚𝑛(𝑎) + 𝜆𝑖𝑘𝑚𝑈𝑚𝑛(𝑎) = −

𝐾𝑟
𝑎𝐿

∑ 𝑊𝑠𝑛

∞

𝑠=−∞

(2.4.27) 

𝜇
𝑑𝑉𝑚𝑛(𝑎)

𝑑𝑟
−
𝜇

𝑎
𝑉𝑚𝑛(𝑎) −

𝜇𝑛

𝑎
𝑊𝑚𝑛(𝑎) = −

𝐾𝑡
𝑎𝐿

∑ 𝑉𝑠𝑛

∞

𝑠=−∞

(2.4.28) 

𝜇𝑖𝑘𝑚𝑊𝑚𝑛(𝑎) + 𝜇
𝑑𝑈𝑚𝑛(𝑎)

𝑑𝑟
= −

𝐾𝑧
𝑎𝐿

∑ 𝑈𝑠𝑛

∞

𝑠=−∞

(2.4.29) 

where the displacement coefficients inside the stiffener summation are indexed with respect to 
the stiffener index (s). The same 3 radial stress equations at the outer boundary (r = c) are 

(𝜆 + 2𝜇)
𝑑𝑊𝑚𝑛(𝑐)

𝑑𝑟
+
𝜆

𝑐
𝑊𝑚𝑛(𝑐) +

𝜆𝑛

𝑐
𝑉𝑚𝑛(𝑐) + 𝜆𝑖𝑘𝑚𝑈𝑚𝑛(𝑐) = 𝑃0𝛿𝑚0,𝑛0 (2.4.30) 

𝜇
𝑑𝑉𝑚𝑛(𝑐)

𝑑𝑟
−
𝜇

𝑐
𝑉𝑚𝑛(𝑐) −

𝜇𝑛

𝑐
𝑊𝑚𝑛(𝑐) = 0 (2.4.31) 

𝜇𝑖𝑘𝑚𝑊𝑚𝑛(𝑐) + 𝜇
𝑑𝑈𝑚𝑛(𝑐)

𝑑𝑟
= 0 (2.4.32) 

Combining the displacement formulations (2.4.6 – 2.4.8) with the (m, n) decoupled equations 
results in the final indexed set of equations. The first 3 equations include the stiffener stresses 
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[
2𝛼𝑚𝜇

𝑎
𝐽𝑛+1(𝛼𝑚𝑎) + (

2𝑛(𝑛 − 1)𝜇

𝑎2
− 𝛼𝑚

2 𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆) 𝐽𝑛(𝛼𝑚𝑎)] 𝐴𝑚𝑛

+[
2𝛼𝑚𝜇

𝑎
𝑌𝑛+1(𝛼𝑚𝑎) + (

2𝑛(𝑛 − 1)𝜇

𝑎2
− 𝛼𝑚

2 𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆)𝑌𝑛(𝛼𝑚𝑎)] 𝐵𝑚𝑛

+[−
2𝑛𝛽𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) +

2𝑛(𝑛 − 1)𝜇

𝑎2
𝐽𝑛(𝛽𝑚𝑎)] 𝐶𝑚𝑛

+[−
2𝑛𝛽𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) +

2𝑛(𝑛 − 1)𝜇

𝑎2
𝑌𝑛(𝛽𝑚𝑎)]𝐷𝑚𝑛

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝐽𝑛(𝛽𝑚𝑎)]𝐸𝑚𝑛

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝑌𝑛(𝛽𝑚𝑎)]𝐹𝑚𝑛

= −
𝐾𝑟
𝑎𝐿

∑ {[−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +
𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)] 𝐴𝑠𝑛 + [−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)] 𝐵𝑠𝑛

∞

𝑠=−∞

+
𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)𝐶𝑠𝑛 +

𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)𝐷𝑠𝑛 + 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛 + 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛 } (2.4.33)

 

 

[
2𝑛𝛼𝑚𝜇

𝑎
𝐽𝑛+1(𝛼𝑚𝑎) −

2𝑛(𝑛 − 1)𝜇

𝑎2
𝐽𝑛(𝛼𝑚𝑎)]𝐴𝑚𝑛

+ [
2𝑛𝛼𝑚𝜇

𝑎
𝑌𝑛+1(𝛼𝑚𝑎) −

2𝑛(𝑛 − 1)𝜇

𝑎2
𝑌𝑛(𝛼𝑚𝑎)] 𝐵𝑚𝑛

+[−
𝛽𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + (𝛽𝑚

2 𝜇 −
2𝑛(𝑛 − 1)𝜇

𝑎2
) 𝐽𝑛(𝛽𝑚𝑎)] 𝐶𝑚𝑛

+ [−
𝛽𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + (𝛽𝑚

2 𝜇 −
2𝑛(𝑛 − 1)𝜇

𝑎2
)𝑌𝑛(𝛽𝑚𝑎)]𝐷𝑚𝑛

+[−
2(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + 𝑖𝑘𝑚𝛽𝑚𝜇𝐽𝑛(𝛽𝑚𝑎)]𝐸𝑚𝑛

+ [−
2(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + 𝑖𝑘𝑚𝛽𝑚𝜇𝑌𝑛(𝛽𝑚𝑎)]𝐹𝑚𝑛

= −
𝐾𝑡
𝑎𝐿

∑ {−
𝑛

𝑎
𝐽𝑛(𝛼𝑠𝑎)𝐴𝑠𝑛 −

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)𝐵𝑠𝑛 + [𝛽𝑠𝐽𝑛+1(𝛽𝑠𝑎) −

𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)] 𝐶𝑠𝑛

∞

𝑠=−∞

+[𝛽𝑠𝑌𝑛+1(𝛽𝑠𝑎) −
𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)]𝐷𝑠𝑛 + 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛 + 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛} (2.4.34)
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[−2𝑖𝑘𝑚𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑎) +
2𝑛𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛(𝛼𝑚𝑎)] 𝐴𝑚𝑛

+ [−2𝑖𝑘𝑚𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑎) +
2𝑛𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛(𝛼𝑚𝑎)] 𝐵𝑚𝑛

+[
𝑛𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛(𝛽𝑚𝑎)]𝐶𝑚𝑛 + [

𝑛𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛(𝛽𝑚𝑎)]𝐷𝑚𝑛

+[𝜇(𝛽𝑚
2 − 𝑘𝑚

2 )𝐽𝑛+1(𝛽𝑚𝑎) −
𝑛𝛽𝑚𝜇

𝑎
𝐽𝑛(𝛽𝑚𝑎)] 𝐸𝑚𝑛

+[𝜇(𝛽𝑚
2 − 𝑘𝑚

2 )𝑌𝑛+1(𝛽𝑚𝑎) −
𝑛𝛽𝑚𝜇

𝑎
𝑌𝑛(𝛽𝑚𝑎)]𝐹𝑚𝑛

= −
𝐾𝑧
𝑎𝐿

∑ {𝑘𝑠𝐽𝑛(𝛼𝑠𝑎)𝐴𝑠𝑛 + 𝑖𝑘𝑠𝑌𝑛(𝛼𝑠𝑎)𝐵𝑠𝑛 − 𝛽𝑠𝐽𝑛(𝛽𝑠𝑎)𝐸𝑠𝑛 − 𝛽𝑠𝑌𝑛(𝛽𝑠𝑎)𝐹𝑠𝑛}

∞

𝑠=−∞

(2.4.35)

 

and the second 3 include the external pressures applied to the outer surface 

[
2𝛼𝜇

𝑐
𝐽𝑛+1(𝛼𝑚𝑐) + (

2𝑛(𝑛 − 1)𝜇

𝑐2
− 𝛼𝑚

2 𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆) 𝐽𝑛(𝛼𝑚𝑐)] 𝐴𝑚𝑛

+[
2𝛼𝜇

𝑐
𝑌𝑛+1(𝛼𝑚𝑐) + (

2𝑛(𝑛 − 1)𝜇

𝑐2
− 𝛼𝑚

2 𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆)𝑌𝑛(𝛼𝑚𝑐)]𝐵𝑚𝑛

+[−
2𝑛𝛽𝑚𝜇

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) +

2𝑛(𝑛 − 1)𝜇

𝑐2
𝐽𝑛(𝛽𝑚𝑐)] 𝐶𝑚𝑛

+[−
2𝑛𝛽𝑚𝜇

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) +

2𝑛(𝑛 − 1)𝜇

𝑐2
𝑌𝑛(𝛽𝑚𝑐)] 𝐷𝑚𝑛

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝐽𝑛(𝛽𝑚𝑐)] 𝐸𝑚𝑛

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝑌𝑛(𝛽𝑚𝑐)] 𝐹𝑚𝑛 = 𝑃0𝛿𝑚0,𝑛0 (2.4.36)
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[
2𝑛𝛼𝜇

𝑐
𝐽𝑛+1(𝛼𝑚𝑐) −

2𝑛(𝑛 − 1)𝜇

𝑎2
𝐽𝑛(𝛼𝑚𝑐)] 𝐴𝑚𝑛

+[
2𝑛𝛼𝜇

𝑐
𝑌𝑛+1(𝛼𝑚𝑐) −

2𝑛(𝑛 − 1)𝜇

𝑐2
𝑌𝑛(𝛼𝑚𝑐)] 𝐵𝑚𝑛

+ [−
𝛽𝑚𝜇

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) + (𝛽𝑚

2 𝜇 −
2𝑛(𝑛 − 1)𝜇

𝑐2
) 𝐽𝑛(𝛽𝑚𝑐)] 𝐶𝑚𝑛

+[−
𝛽𝑚𝜇

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) + (𝛽𝑚

2 𝜇 −
2𝑛(𝑛 − 1)𝜇

𝑐2
)𝑌𝑛(𝛽𝑚𝑐)]𝐷𝑚𝑛

+[−
2(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) + 𝑖𝑘𝑚𝛽𝑚𝜇𝐽𝑛(𝛽𝑚𝑐)] 𝐸𝑚𝑛

+[−
2(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) + 𝑖𝑘𝑚𝛽𝑚𝜇𝑌𝑛(𝛽𝑚𝑐)] 𝐹𝑚𝑛 = 0 (2.4.37)

 

 

[−2𝑖𝑘𝑚𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑐) +
2𝑛𝑖𝑘𝑚𝜇

𝑐
𝐽𝑛(𝛼𝑚𝑐)] 𝐴𝑚𝑛

+ [−2𝑖𝑘𝑚𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑐) +
2𝑛𝑖𝑘𝑚𝜇

𝑐
𝑌𝑛(𝛼𝑚𝑐)] 𝐵𝑚𝑛

+ [
𝑛𝑖𝑘𝑚𝜇

𝑐
𝐽𝑛(𝛽𝑚𝑐)] 𝐶𝑚𝑛 + [

𝑛𝑖𝑘𝑚𝜇

𝑐
𝑌𝑛(𝛽𝑚𝑐)]𝐷𝑚𝑛

+[𝜇(𝛽𝑚
2 − 𝑘𝑚

2 )𝐽𝑛+1(𝛽𝑚𝑐) −
𝑛𝛽𝑚𝜇

𝑐
𝐽𝑛(𝛽𝑚𝑐)] 𝐸𝑚𝑛

+[𝜇(𝛽𝑚
2 − 𝑘𝑚

2 )𝑌𝑛+1(𝛽𝑚𝑐) −
𝑛𝛽𝑚𝜇

𝑐
𝑌𝑛(𝛽𝑚𝑐)] 𝐹𝑚𝑛 = 0 (2.4.38)

 

The outer surface experiences the ring load excitation only at index (m, n) = (0, 0). Higher 
circumferential modes, n > 0, have no effect on the response for the ring load excitation. 

 For each (m, n) index, Equations 2.4.33 – 2.4.38 are grouped together to form a 6-
dimensional matrix equation, with unknown wave coefficients are grouped together into a 
vector, x 

𝑨𝑚𝑛𝒙𝑚𝑛 = −
𝐾𝑧
𝑎𝐿

∑ 𝒁𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

−
𝐾𝑡
𝑎𝐿

∑ 𝑻𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

−
𝐾𝑟
𝑎𝐿

∑ 𝑹𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

+ 𝒇𝛿𝑚0,𝑛0 (2.4.39) 

Amn is a 6x6 matrix that describes the shell dynamics for the (m, n) mode and is shown in the 
Appendix. xmn is the vector of wave coefficients 

𝒙𝒎𝒏 = [𝐴𝑚𝑛, 𝐵𝑚𝑛, 𝐶𝑚𝑛, 𝐷𝑚𝑛, 𝐸𝑚𝑛, 𝐹𝑚𝑛]
𝑇 (2.4.40) 
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Z, T, and R are the 6x6 stiffness matrices in the axial, tangential, and radial directions, and the 
external force vector, f, is only present for the (0, 0) index. Each stiffener matrix has a single 
nonzero row 

𝑹𝒎−𝒔(1, 1: 6) = [(−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +
𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)) , (−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑟
𝑌𝑛(𝛼𝑠𝑎)) ,…

𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎), 𝑖

𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎), 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎), 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)] (2.4.41)

 

𝑻𝒎−𝒔(2, 1: 6) = [−
𝑛

𝑎
𝐽𝑛(𝛼𝑠𝑎), −

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎), (𝛽𝑠𝐽𝑛+1(𝛽𝑠𝑎) −

𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)) ,…

(𝛽𝑠𝑌𝑛+1(𝛽𝑠𝑎) −
𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)) , 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎), 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)] (2.4.42)

 

𝒁𝒎−𝒔(3, 1: 6) = [𝑘𝑠𝐽𝑛(𝛼𝑠𝑎), 𝑖𝑘𝑠𝑌𝑛(𝛼𝑠𝑎), 0, 0, −𝛽𝑠𝐽𝑛(𝛽𝑠𝑎), −𝛽𝑠𝑌𝑛(𝛽𝑠𝑎)] (2.4.43) 

For the ring load considered in this current system, the excitation vector is specified as 

𝐟 = [0, 0, 0, P0, 0, 0]
T (2.4.44) 

 2.4.4 Global Matrix Equation System 

 Following the procedure used with the thin-shell system, a global matrix equation of 
varying m is constructed for each circumferential mode, n. Note that each (m, n) stiffener matrix 
only has a single value of n, so the circumferential mode is still totally decoupled. Specifically, the 
global matrix equation matches Equation 2.3.35. For each value of n, the m-global matrix 
equation can be expressed as 

�̂�𝒏�̂�𝒏 = −
𝐾𝑧
𝑎𝐿
�̂�𝒏�̂�𝑛 −

𝐾𝑡
𝑎𝐿
�̂�𝒏�̂�𝑛 −

𝐾𝑟
𝑎𝐿
�̂�𝒏�̂�𝒏 + �̂�𝒏 (2.4.45) 

where �̂�n is the block diagonal matrix that describes the nth circumferential mode shell dynamics, 
�̂�𝐧 is the m-indexed vector of displacement coefficients, �̂�𝐧, �̂�𝐧, �̂�𝐧 are the global matrices 

comprised of the individual Zm-s, Tm-s and Rm-s stiffener matrices for the nth mode. 𝐟𝐧 is the system 
excitation vector, with nonzero elements only at m = 0. 

�̂�𝑛 =

[
 
 
 
 
 
 
 
⋱ ⋮ ⋰

𝑨−𝟐𝒏 𝟎 𝟎 𝟎 𝟎

𝟎 𝑨−𝟏𝒏 𝟎 𝟎 𝟎
⋯ 𝟎 𝟎 𝑨𝟎𝒏 𝟎 𝟎 ⋯

𝟎 𝟎 𝟎 𝑨𝟏𝒏 𝟎

𝟎 𝟎 𝟎 𝟎 𝑨𝟐𝒏
⋰ ⋮ ⋱ ]

 
 
 
 
 
 
 

, �̂�𝑛 =

[
 
 
 
 
 
 
⋮

𝒙−𝟐𝒏
𝒙−𝟏𝒏
𝒙𝟎𝒏
𝒙𝟏𝒏
𝒙𝟐𝒏
⋮ ]
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  �̂�𝑛 =

[
 
 
 
 
 
 
 
⋱ ⋮ ⋰

𝒁𝟎 𝒁−𝟏 𝒁−𝟐 𝒁−𝟑 𝒁−𝟒
𝒁𝟏 𝒁𝟎 𝒁−𝟏 𝒁−𝟐 𝒁−𝟑

⋯ 𝒁𝟐 𝒁𝟏 𝒁𝟎 𝒁−𝟏 𝒁−𝟐 ⋯

𝒁𝟑 𝒁𝟐 𝒁𝟏 𝒁𝟎 𝒁−𝟏
𝒁𝟒 𝒁𝟑 𝒁𝟐 𝒁𝟏 𝒁𝟎

⋰ ⋮ ⋱ ]
 
 
 
 
 
 
 

, �̂�𝑛 =

[
 
 
 
 
 
 
 
⋱ ⋮ ⋰

𝑻𝟎 𝑻−𝟏 𝑻−𝟐 𝑻−𝟑 𝑻−𝟒
𝑻𝟏 𝑻𝟎 𝑻−𝟏 𝑻−𝟐 𝑻−𝟑

⋯ 𝑻𝟐 𝑻𝟏 𝑻𝟎 𝑻−𝟏 𝑻−𝟐 ⋯

𝑻𝟑 𝑻𝟐 𝑻𝟏 𝑻𝟎 𝑻−𝟏
𝑻𝟒 𝑻𝟑 𝑻𝟐 𝑻𝟏 𝑻𝟎

⋰ ⋮ ⋱ ]
 
 
 
 
 
 
 

,  

�̂�𝑛 =

[
 
 
 
 
 
 
 
⋱ ⋮ ⋰

𝑹𝟎 𝑹−𝟏 𝑹−𝟐 𝑹−𝟑 𝑹−𝟒
𝑹𝟏 𝑹𝟎 𝑹−𝟏 𝑹−𝟐 𝑹−𝟑

⋯ 𝑹𝟐 𝑹𝟏 𝑹𝟎 𝑹−𝟏 𝑹−𝟐 ⋯

𝑹𝟑 𝑹𝟐 𝑹𝟏 𝑹𝟎 𝑹−𝟏
𝑹𝟒 𝑹𝟑 𝑹𝟐 𝑹𝟏 𝑹𝟎

⋰ ⋮ ⋱ ]
 
 
 
 
 
 
 

, �̂�𝑛 =

[
 
 
 
 
 
 
⋮
𝟎
𝟎
𝒇
𝟎
𝟎
⋮ ]
 
 
 
 
 
 

(2.4.46) 

As with the thin-shell model, the matrix is invertible for real material parameter values and the 
global stiffener matrices are rank-deficient. The unknown coefficients are found by solving 

�̂�𝒏 = [�̂�𝒏 +
𝐾𝑧
𝑎𝑏
�̂�𝒏 +

𝐾𝑡
𝑎𝑏
�̂�𝒏 +

𝐾𝑟
𝑎𝑏
�̂�𝒏]

−1

�̂�𝒏 (2.4.47) 

The  �̂�𝐧 solutions contain the unknown coefficients Amn – Fmn which define the displacement 
coefficients, Wmn, Vmn, Umn, according to 2.4.6 – 2.4.8. Finally, the overall displacements w(r, θ, 
z, t), v(r, θ, z, t) and u(r, θ, z, t) are found using 2.4.2 – 2.4.4. 

 

2.5 Excitations 

All excitations considered in this study are harmonic pressure waveforms; in fact, the 
techniques used to solve the system displacements require a harmonic input. This is not 
necessarily a restrictive condition as pure waves propagating through a medium, whether solid 
or fluid, will be spatially and temporally harmonic. Since the main equations of motion are written 
in terms of stress, the inputs must be given in terms of pressure. Excitations are applied at the 
outermost shell surface (r = c). There are 2 input types that are applied to the model: a ring load, 
and an incident plane wave. 

2.5.1 Ring Load Excitation 

The ring load is the simplest input, representing a radial pressure wave that propagates 
along the cylinder axis, according to 

𝑃𝑖(𝑟, 𝜃, 𝑧, 𝑡) = 𝑃0𝑒
𝑖𝑘𝑧𝑒−𝑖𝜔𝑡 (2.5.1) 
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P0 is the constant pressure magnitude, ω is the excitation frequency, and k is the excitation 
wavenumber. Ring loads create a radial expansion that travels axially. Note that the ring load is 
symmetric about the cylinder longitudinal axis, causing no circumferential deformation. While a 
ring loading may not represent a realistic input, it is very useful for characterization of the system. 
Figure 2.5.1 shows an example of the cylindrical shell (without stiffeners or damping) response 
from a ring load with exaggerated magnitude. 

 
Figure 2.5.1 – Ring load excitation applied to unreinforced cylindrical shell 

 

2.5.2 Incident Plane Wave (Acoustic Wave) 

 Incident plane waves are representative of an incoming oscillatory signal such as sonar, 
and travel in a distinct direction. They are monochromatic, meaning the excitation frequency is 
constant. Fluids generally do not support shear wave transmission and the waves considered 
here are purely dilatational (irrotational) or compressional. Pressure waves used in the model are 
derived from a plane wave given in Cartesian coordinates as 

𝑃𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑃0𝑒
𝑖(𝒌∙𝒓−𝜔𝑡) (2.5.2) 

Unit vector r = [x, y, z]T denotes the wave location and vector k = [k cos φi, 0, k sin φi]T is the 
excitation wave vector, which denotes the wavenumber and direction of propagation.  
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Figure 2.5.2 – Acoustic wave exciting outer cylinder surface, with angle of incidence, φi 

Plane wave excitations can have an oblique angle of travel relative to the z-axis, shown in Figure 
2.5.2 with the angle φi, but must always point towards the cylinder center-line (cannot be 
vertically offset, for example). Note that the system is symmetric about cylinder axis, even with 
stiffeners, so it can always be assumed that the incoming wave is perpendicular with the y-axis 
without loss of generality. For use with the model, the plane wave excitation must be converted 
into cylindrical coordinates using the relationships 

𝑥 = 𝑟 𝑐𝑜𝑠 𝜃 , 𝑦 = 𝑟 𝑠𝑖𝑛 𝜃 , 𝑧 = 𝑧 (2.5.3) 

Expanding the original equation results in 

𝑃𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑃0𝑒
𝑖(𝒌∙𝒓−𝜔𝑡) = 𝑃0𝑒

𝑖𝑘𝑥𝑥𝑒𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡 (2.5.4) 

with ky = 0 as it is parallel to the y-axis, kx = kr = k cos φi, and kz = k sin φi. The norm of k is related 
to the excitation frequency and the properties of the fluid 

|𝒌| = 𝑘 =
𝜔

𝑐𝑓
(2.5.5) 

in which cf is the surrounding fluid wave speed. Unlike the ring load, which simply specifies a 
wavenumber value, k, it makes sense to link the plane wave input to the wave speed of the 
surrounding medium. Changing the above pressure wave equation into cylindrical coordinates 
using the relationships above results in 

 𝑃𝑖(𝑟, 𝜃, 𝑧, 𝑡) = 𝑃0𝑒
𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡𝑒𝑖𝑘𝑟𝑟 𝑐𝑜𝑠 𝜃 (2.5.6) 

The last exponential in r and θ can be expanded using the Jacobi-Anger identity in order to 
achieve a series of circumferential modes 

𝑃𝑖(𝑟, 𝜃, 𝑧, 𝑡) = 𝑃0𝑒
𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡 [𝐽0(𝑘𝑟𝑟) + 2∑ 𝑖𝑛𝐽𝑛(𝑘𝑟𝑟) 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=1

] (2.5.7) 
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where Jn are nth order Bessel functions of the 1st kind. Finally, the bracketed term can be 
consolidated by introducing the Neumann factor, εn 

𝜀𝑛 = {
1, 𝑛 = 0
2, 𝑛 > 0

(2.5.8) 

to result in the condensed form of the plane wave in cylindrical coordinates. The excitation is 
applied only at the outermost surface of constant radius (r = c) 

𝑃𝑖(𝜃, 𝑧, 𝑡) = 𝑃0𝑒
𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡∑𝜀𝑛𝑖

𝑛𝐽𝑛(𝑘𝑟𝑐) 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

(2.5.9) 

Though this form unfortunately involves an infinite series of Bessel functions, it eliminates the 
last exponential of Equation 2.5.6, and gives the input in terms of circumferential modes which 
will complement the model solution techniques nicely. 

Incident plane wave excitation is not symmetric about the cylindrical axis like the ring load, and 
can cause circumferential deformations. The resulting deformations can be quite complex even 
without reinforcement. Figure 2.5.2 shows an example plane wave incident on the left hand side 
of an unreinforced shell, with exaggerated displacements. 

 
Figure 2.5.2 – Plane Wave excitation applied to the left side of unreinforced cylindrical shell 
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2.5.3 Modifications to System Equations for Plane Wave Input 

 Chapter 2.3 and 2.4 fully derived the reference and baseline models excited by a ring load. 
Recall that n > 0 circumferential modes have no effect on the system when excited by a ring 
loading. For a plane wave load, there are some small but important modifications that must be 
made to the decoupled and matrix equations. The radial-normal stress, τrr, at the outer radius (r 
= c) must be rewritten. Equation 2.4.21 is now given as 

∑ ∑{(𝜆 + 2𝜇)
𝑑𝑊𝑚𝑛(𝑐)

𝑑𝑟
+
𝜆

𝑐
𝑊𝑚𝑛(𝑐) +

𝜆𝑛

𝑐
𝑉𝑚𝑛(𝑐) + 𝜆𝑖𝑘𝑚𝑈𝑚𝑛(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧  

= 𝑃0𝑒
𝑖𝑘𝑧𝑧∑𝜀𝑛𝑖

𝑛𝐽𝑛(𝑘𝑟𝑐) 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

                                                                                     (2.5.10) 

with the excitation term shown above now includes an infinite summation of n. The 
orthogonalization process is performed as before, but n-dependence means that the decoupled 
τrr equation (2.4.36) is also slightly different 

[
2𝛼𝜇

𝑐
𝐽𝑛+1(𝛼𝑚𝑐) + (

2𝑛(𝑛 − 1)𝜇

𝑐2
− 𝛼𝑚

2 𝑙𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆) 𝐽𝑛(𝛼𝑚𝑐)] 𝐴𝑚𝑛

+[
2𝛼𝜇

𝑐
𝑌𝑛+1(𝛼𝑚𝑐) + (

2𝑛(𝑛 − 1)𝜇

𝑐2
− 𝛼𝑚

2 𝑙𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆)𝑌𝑛(𝛼𝑚𝑐)] 𝐵𝑚𝑛

+[−
2𝑛𝛽𝑚𝜇

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) +

2𝑛(𝑛 − 1)𝜇

𝑐2
𝐽𝑛(𝛽𝑚𝑐)] 𝐶𝑚𝑛

+[−
2𝑛𝛽𝑚𝜇

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) +

2𝑛(𝑛 − 1)𝜇

𝑐2
𝑌𝑛(𝛽𝑚𝑐)] 𝐷𝑚𝑛

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝐽𝑛(𝛽𝑚𝑐)] 𝐸𝑚𝑛

+ [−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝑌𝑛(𝛽𝑚𝑐)] 𝐹𝑚𝑛 = 𝑃0𝜀𝑛𝑖

𝑛𝐽𝑛(𝑘𝑟𝑐)𝛿𝑚0 (2.5.11)

 

In addition to the new Bessel function, the Kroncker delta only requires m = 0. Thus the plane 
wave input is present for all circumferential modes, and these modes now have an effect on the 
response, unlike the ring load excited system. Grouping the modified equations into a matrix 
results in the following system 

𝑨𝑚𝑛𝒙𝑚𝑛 = −
𝐾𝑧
𝑎𝐿

∑ 𝒁𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

−
𝐾𝑡
𝑎𝐿

∑ 𝑻𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

−
𝐾𝑟
𝑎𝐿

∑ 𝑹𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

+ 𝒇𝛿𝑚0 (2.5.12) 

𝒇 = [0, 0, 0, 𝑃0𝜀𝑛𝑖
𝑛𝐽𝑛(𝑘𝑟𝑐), 0, 0]

𝑇 (2.5.13) 

where the (m, n) indexed input vector is multiplied with the new Kronecker delta, δm0. All the 
global equations are unchanged. 
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Chapter 3 
Base Model Simulation Results 
 

 

 Before continuing on to develop the more advanced systems (Models 2 – 5 from the 
Introduction), the base model and reference behavior is examined. Unreinforced shell responses 
are given to illustrate the motion of the shell without stiffeners, and the reference model 
behavior is shown for both types of excitations. Validation of the new elastic base model with 
the reference model is an important step, and here the convergence of the model is checked to 
ensure there is an adequate number of modes present in the simulation. Lastly, the base model 
is excited with high-frequency inputs and its response is investigated. 

 

 3.1 Shell Displacement Response 

3.1.1 Model Parameters 

 With the baseline reinforced thick-shell model derived in Chapter 2.4, the displacement 
response can be evaluated for systems with realistic material and geometry. Most applications 
for reinforced cylinders will require high strength, especially if designing for internal or external 
fluid loading. Steel (and its alloys) is often a sensible choice for both the shell as well as the rib, 
and is found in pressure vessels, undersea vehicle hulls, and industrial piping. Table 3.1.1 displays 
the relevant material properties for the shell and rib. 
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Property Symbol Value Units 

Young’s Modulus E 210x109 N/m2 

Poisson’s Ratio ν 0.30 None 

Structural Damping η 0.00 None 

Density ρ 7850 kg/m3 

Lamé 1st Parameter λ 1.212 x1011 N/m2 

Shear Modulus μ, G 8.077x1010 N/m2 

Table 3.1.1 – Material Properties for Shell and Ribs 

Some applications may employ a stiffer or softer rib material relative to the shell, depending on 
the stiffness needs. Often, the primary motivation for choosing a certain rib material is 
compatibility with the shell, especially in terms of attachment. For welding, a similar alloy metal 
as the shell is required; for bonding, riveting, or bolted connections, material similarity may not 
be a concern. The parameters displayed in Table 3.1.1 are used for any shell model, thin or thick. 
Structural damping (η) is implemented as a hysteretic loss component of the elastic modulus, 
resulting in a complex modulus with the imaginary part dependent upon η. 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸 − 𝐸𝑙𝑜𝑠𝑠𝑖 = 𝐸(1 − 𝑖𝜂) (3.1.1) 

However, for steel, there is very little internal damping and thus the hysteretic element can be 
ignored. For non-steel materials, the damping factor is important and will be revisited later. 
Properties such as Young’s Modulus and Poisson’s Ratio are related to the Lamé Parameters 

𝜆 =
𝐸𝑡𝑜𝑡𝑎𝑙𝜈

(1 + 𝜈)(1 − 2𝜈)
, 𝜇 =

𝐸𝑡𝑜𝑡𝑎𝑙
2(1 + 𝜈)

(3.1.2) 

Lambda and mu are found in the derived model equations from prior Chapters. Mu is often 
referred to as the Shear Modulus (G).  

Shell and rib geometry is dependent upon whether the baseline (thick) or reference (thin) model 
is used. A restrictive assumption of the thin-shell model is that there exits only a single nominal 
radius with a thickness centered about it. Thus the shell radius for thin-shell systems is the 
average of the inner and outer radius. Table 3.1.2 displays the relevant dimensions for the shell. 
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Shell Property Symbol Value Units 

Inner Radius a 4.500 m 

Thickness h 0.0254 m 

Outer Radius c 4.5254 m 

Rib Spacing L 0.8 m 

Table 3.1.2 – Dimensional Properties for Shell 

Rib dimensions are dependent upon the cross-section. For this study, rectangular cross-sections 
are used, as described in Figure 2.2.3 of Chapter 2.2. Table 3.1.3 displays the pertinent 
dimensions for the stiffening ribs. 

Rib Property Symbol Value Units 

Width b 0.0254 m 

Height hr 0.1016 m 

Radius ar 4.4374 m 

Area (Cross-section) A 0.00258 m2 

Area Moment of Inertia I 2.083x10-6 m4 

Polar Moment of Inertia J 4.391x10-7 m4 

Table 3.1.3 – Dimensional Properties for Ribs 

The last 4 properties of Table 3.1.3 are computed from the rib width and height. 

𝑎𝑟 = 𝑎 −
ℎ

2
−
ℎ𝑟
2
, 𝐴 = 𝑏ℎ𝑟 , 𝐼 =

1

12
𝑏ℎ𝑟

3, 𝐽 = 0.281𝑏3ℎ𝑟 (3.1.3) 

3.1.2 Simulation Settings 

After establishing the model parameters for the chosen material and geometry, the settings for 
the simulation must be determined. Recall the displacement field equations from the base model 
(Equations 2.4.2 – 2.4.4) 

𝑢(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑈𝑚𝑛(𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(3.1.4) 

𝑣(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑉𝑚𝑛(𝑟) 𝑠𝑖𝑛(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(3.1.5) 

𝑤(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑊𝑚𝑛(𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(3.1.6) 
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First, the temporal frequency, ω, for the input must be chosen; see the Excitations section of 
Chapter 2.5. Since the system is linear, the displacement response has the same harmonic 
frequency as the excitation wave; ω in 3.1.4 – 3.1.6 is the same as the input. Unfortunately, the 
3 displacement equations involve infinite summations, which must be approximated to execute 
a simulation. By using a finite number of terms that are large enough to represent all relevant 
motion, the real system can be simulated.  

Setting Symbol Units 

Input Frequency ω rad/s 

Number of 
Circumferential Modes  

npts None (Integer) 

Number of Axial Modes mpts None (Integer) 

Table 3.1.4 – Simulation settings 

The settings shown in Table 3.1.4 will be varied for different simulations. Integer circumferential 
and axial modes are set on the intervals 

𝑛: 0,1,2,3, … , 𝑛𝑝𝑡𝑠                  𝑚:−
𝑚𝑝𝑡𝑠

2
,… ,−2,−1,0,1,2, … ,

𝑚𝑝𝑡𝑠

2
(3.1.7) 

to account for the limits on the respective summations. For odd values of mpts, floor or ceiling 
functions ensure that mpts/2 is an integer. 
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3.1.3 Unreinforced Model Results 

 This is study is focused on the spatial displacement responses, such that the temporal 
component is not considered. However, the range of excitation frequencies has an important 
effect on the spatial response, particularly if the input wavenumber and frequency are coupled 
(k = ω/cf). Both ring loading and plane-wave loadings will be discussed. Parameters presented in 
Tables 3.1.1 – 3.1.3 are constant during this study, but each model will have additional 
parameters that must be set (fluid, beam, etc) in addition to the simulation settings displayed in 
Table 3.1.4.  

 The unreinforced model has been explored by many authors including Gazis and Graf, and 
the responses are included in this study to better show the effect of the stiffeners. First the ring 
loading is examined. Since there are no stiffeners, only the m = 0 mode is needed; since the input 
is a ring load, only the n = 0 circumferential mode affects the model.  

Setting Symbol Value Units 

Input Frequency f 10 to 10000 Hz 

Input Wavenumber k 0 or 2πf/cf 1/m 

Thickness h 0.0254 m 

Number of 
Circumferential Modes  

npts 1 or 101 None 

Number of Axial Modes mpts 1 None 

Table 3.1.5 – Unreinforced base model (elastic) settings 

If the excitation wavenumber k = 0, then the radial response is constant along the cylinder length. 
Figure 3.1.1 and 3.1.2 display the unreinforced response of the shell for this input. 
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Figure 3.1.1 – Unreinforced radial response for ring load (k = 0, f = 10hz) 

 
Figure 3.1.2 – Unreinforced axial response for ring load (k = 0, f = 10hz) 
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There is no axial displacement in the shell, because the ring load only applies a radial pressure; 
the displacement is constant along the cylinder length, as expected. Excitation frequency can be 
swept from 10Hz to 10kHz to determine any notable resonances. 

 
Figure 3.1.3 – Unreinforced radial frequency response (z = 0) for ring load (k = 0) 

The z-constant ring load causes only a single radial resonance at 190Hz. When k = ω/cf, where cf 
is a nominal fluid wave speed (m/s), the ring load excitation is no longer constant along the 
cylinder length, and the shell displacements now vary axially. 
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Figure 3.1.4 – Unreinforced radial response for ring load (k = ω/cf, f = 10hz) 

 
Figure 3.1.5 – Unreinforced axial response for ring load (k = ω/cf, f = 10hz) 



 

54 
 

Increasing the excitation frequency to 5000Hz shows the sinusoidal nature of the shell motion, 
seen in Figure 3.1.6 and 3.1.7. 

 
Figure 3.1.6 – Unreinforced radial response for ring load (k = ω/cf, f = 5000hz) 

 
Figure 3.1.7 – Unreinforced axial response for ring load (k = ω/cf, f = 5000hz) 
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Figures 3.1.4 to 3.1.7 have a constant magnitude, but are broken down into real and imaginary 
components. Note that there is now an axial response as well as a radial response to the ring 
loading. If the excitation frequency ω = 2πcf/L = 3700π then there will be one sinusoidal period 
along the z axis. As before, the input is swept from 10 to 10000Hz, but there is both an axial and 
radial response. 

 
Figure 3.1.8 – Unreinforced radial/axial frequency response (z = 0) for ring load (k = ω/cf) 

There are 2 resonances of the system now, the radial resonance at 180Hz and a longitudinal 
resonance at 8770Hz.  

Next the plane-wave excitation is applied to the system, at an oblique angle φi = π/12, 
which is 15 degrees from a broadside impact (see Chapter 2.5). Plane-wave excitation is not 
circumferentially symmetric, and thus non-zero circumferential modes (n > 0) are required; npts 
= 101 is chosen to ensure that any important modes are not being ignored. Figure 3.1.8 displays 
the total cylinder response for a 10hz plane-wave excitation. 
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Figure 3.1.9 – Unreinforced cylinder radial (top), tangential (mid), and axial (bottom) 

displacement response for plane-wave: 10Hz, φi = π/12, npts = 101 

Figure 3.1.9 is essentially an unwrapped cylinder, with the vertical axis designating the angular 
position around the circumference and the horizontal axis designating the axial position along 
the cylinder length. Contour color designates the magnitude of the displacement in absolute 
value (log scale). The plane wave input is not symmetric about the cylinder axis and impacts at θ 
= 0. At this angular position, the radial magnitude is largest, and the tangential is a minimum 
(scales are equal); the tangential deformation is inverted relative to the radial deformation, but 
there is little angular dependence for the axial displacement. This shows behavior dominated by 
a low order circumferential mode: the middle plot shows a dilatational circumferential mode and 
the upper plot shows a circumferential shear mode. For dilatational waves, the amplitude is 
parallel to the direction of travel; for shear waves, the amplitude is perpendicular to the direction 
of travel. Shear waves are denoted by the direction of wave propagation and the direction of 
amplitude is assumed by context. At 5000Hz, the shape is similar but the magnitudes have 
decreased significantly, requiring a change in scale. 
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Figure 3.1.10 – Unreinforced cylinder radial (top), tangential (mid), and axial (bottom) 

displacement response for plane-wave: 5000Hz, φi = π/12, npts = 101 

At 5000Hz, there are numerous bands indicating that the motion is dominated by a higher-order 
circumferential mode: the lower plot indicates a circumferential shear mode is present. 
Unfortunately, sweeping excitation frequency with an applied plane-wave does not show the 
distinct resonances of the ring loading. 
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Figure 3.1.11 – Unreinforced radial/axial/tangential frequency response (z = 0, θ = 36deg) 

for plane-wave loading 

The frequency response of the shell at position z = 0 and θ = 36deg shows harmonics of a 137Hz 
fundamental frequency. Ring-loading resonances of 180Hz and 8770Hz are present, but are not 
distinct from the other harmonics. All three displacements have matching resonances. Even for 
unreinforced systems, the frequency response is not especially helpful. 

3.1.4 Thin-Shell Model Results 

The Donnell-based model derived in Chapter 2.3 provides the validation for the newly 
developed elastic base model (Chapter 2.4). Hull [19] used FEA to support the results from the 
thin-shell system and achieved excellent agreement between the two methods. FEA is outside 
the scope of this study, but the elastic model can be configured to match the thin-shell system. 
Thus, the thin-shell results will be presented first using the data described above. The number of 
modes (mpts and npts) simulated is very limiting because the computational cost can become 
substantial, especially when evaluating Bessel functions. 

 By design, the ring load is symmetric about the cylinder axis, such that there is no 
tangential displacement and circumferential modes have no effect on the forced response (see 
Equation 2.3.28). Thus the radial and axial displacement is constant around the shell 
circumference, so it is only necessary to observe the response at a single point on the 
circumference; θ = 0 is chosen for all ring load responses. Table 3.1.6 shows the parameters 
chosen for the base thin-shell model with delta connectors and linear spring stiffeners. 
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Setting Symbol Value Units 

Input Frequency f 10 to 5000 Hz 

Input Wavenumber k 0 or 2πf/cf 1/m 

Thickness h 0.001 m 

Number of 
Circumferential Modes  

npts 1 or 21 None 

Number of Axial Modes mpts 201 None 

Rib Stiffness Radial Kr 1x1010 N/m 

Rib Stiffness Tangential Kt 1x1010 N/m 

Rib Stiffness Axial Kz 1x1010 N/m 

Table 3.1.6 – Thin-shell base model settings 

Instead of displaying real and imaginary components, which begin to become confusing when 
the model is reinforced, the magnitude in absolute value (log scale) will be plotted. Displacement 
magnitude is more important than the direction of displacement especially at higher frequencies. 
Figure 3.1.12 and 3.1.13 show the radial and axial displacements of the thin-shell model for a 
10Hz, 1000Hz, and 5000Hz ring load with k = 0 wavenumber.  

 
Figure 3.1.12 – Thin-shell radial response for ring load (k = 0, f = 10, 1000, 5000Hz) 
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Figure 3.1.13 – Thin-shell axial response for ring load (k = 0, f = 10, 1000, 5000Hz) 

Unlike the unreinforced model, the thin-shell model with periodic stiffeners has a significant axial 
response even though the input is purely radial with no axial variation. Both the thin-shell and 
thick-shell equations of motion are coupled, so if the system becomes non-uniform (due to the 
ribs) then the response will be coupled. Responses are sinusoidal and symmetric about the mid-
point of the cylinder length (z = 0.4); magnitudes are far lower than the low frequency case, as 
expected. For the k = ω/cf wavenumber input, the responses become more complicated. 
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Figure 3.1.14 – Thin-shell radial response for ring load (k = ω/cf, f = 10, 1000, 5000Hz) 

 
Figure 3.1.15 – Thin-shell axial response for ring load (k = ω/cf, f = 10, 1000, 5000Hz) 

Periodic reinforcing ribs add significant content compared to the unreinforced model due to the 
wave reflections from the stiffeners. 
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 Plane-wave loading at the same oblique angle (φi = π/12) is now applied to the thin-shell 
system and the unwrapped shell displacements are plotted for a 10Hz and 5000Hz excitation in 
Figures 3.1.16 and 3.1.17. This requires additional circumferential modes (n > 0), which are more 
expensive to generate so npts = 21 is chosen. 

 
Figure 3.1.16 – Thin-shell cylinder radial (top), tangential (mid), and axial (bottom) 

displacement response for plane-wave: 10Hz, φi = π/12, npts = 20 
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Figure 3.1.17 – Thin-shell cylinder radial (top), tangential (mid), and axial (bottom) 

displacement response for plane-wave: 5000Hz, φi = π/12, npts = 20 

The low frequency (10Hz) response shows a dependency on the z-position of cylinder, but does 
not have much variation with angular position. The higher frequency response shows a high order 
circumferential mode and also a longitudinal shear mode seen in the radial displacement (top of 
3.1.18). 

3.1.5 Validation of Elastic Model with Thin-Shell 

 To support the use of the elastic model, it is necessary to compare it to the thin-shell 
model. Hull had compared the thin-shell results with a very small thickness, h = 0.001m, and 
Figure 3.1.18 shows the unreinforced thin-shell and unreinforced thick-shell models diverging at 
higher frequencies for larger thicknesses.  
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Figure 3.1.18 – Unreinforced models compared for h = 0.001m (left) and h = 0.05m (right) 

Figure 3.1.18 shows that the two models will diverge for non-small thicknesses (h >> 0.001) at 
higher frequencies (f > 1000Hz). Therefore, it is necessary to change the thickness of the elastic 
model to h = 0.001m, and excite at low frequencies. Another important parameter is the number 
of stiffener terms, mpts, which must be equal for both models to ensure a fair assessment. Relative 
to the thin-shell model, evaluating the elastic model is computationally expensive, and thus mpts 
must be kept to a minimum acceptable value. Table 3.1.7 presents the simulation parameters for 
the elastic validation. 

Setting Symbol Value Units 

Input Frequency f 10, 50, 90 Hz 

Input Wavenumber k 2πf/cf 1/m 

Thickness h 0.001 m 

Number of Circ. Modes  npts 1 None 

Number of Axial Modes mpts 31 None 

Rib Stiffness Radial Kr 1x1010 N/m 

Rib Stiffness Tangential Kt 1x1010 N/m 

Rib Stiffness Axial Kz 1x1010 N/m 

Table 3.1.7 – Elastic and Thin-shell base model settings for validation 
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A comparison between the thin-shell and elastic model for 10, 50, and 90Hz is presented in Figure 
3.1.19 and 3.1.20. 

 
Figure 3.1.19 – Comparison of thin and thick-shell (mpts = 31) radial displacement excited 

by 10, 50 and 90Hz Ring Loading (k = 0) 
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Figure 3.1.20 – Comparison of thin and thick-shell (mpts = 31) axial displacement excited by 

10, 50 and 90Hz Ring Loading (k = 0) 

Both the radial and axial displacement from the elastic model match the reference thin-shell 
model very well, the magnitudes are nearly indistinguishable. As mentioned, the number of axial 
modes must be kept to the minimum value that achieves convergence. Plotting the magnitude 
of each mode shows the diminishing contributions as the index number increases. 
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Figure 3.1.21 – Magnitude of displacement modes for each axial index, m 

For mpts = 31, the modes are truncated at m = ±15, which are significantly smaller than the 
primary (largest) modes; the magnitude of the 15th axial displacement mode is -70dB less than 
the primary mode (roughly 3x10-4). Thus, the elastic model is deemed converged at mpts = 31, and 
is validated by the reference model. Note that there is no appreciable tangential displacement 
for the symmetric ring load, so it is not shown. 

 Acoustic plane-wave inputs do not cause a symmetric response and are dependent upon 
the circumferential mode, n. Therefore, the acoustic wave produces more complex motion and 
is a more thorough test for validation. It is necessary to compute a nominalized error, which can 
be displayed as a contour similar to the thin and thick-shell results. 

𝐸𝑟𝑟𝑜𝑟 (𝑑𝐵) = 20 log10 |
|(𝑊, 𝑉, 𝑈)𝑡ℎ𝑖𝑛 − (𝑊,𝑉, 𝑈)𝑡ℎ𝑖𝑐𝑘|

|(𝑊, 𝑉, 𝑈)𝑡ℎ𝑖𝑛|
| (3.1.8) 
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Figure 3.1.22 – Thin and Thick-shell radial (top), tangential (mid), and axial (bottom) 

Normalized Error in dB for plane-wave: 50Hz, φi = π/12, mpts = 31, npts = 7 

Figure 3.1.22 presents the normalized error, in which a value of 0 indicates 100% error and -80dB 
indicates 0.01% error. Axial displacement error has a peak level of -30dB which is roughly 4% 
error, which is satisfactory considering the small amplitude scales; the radial and tangential error 
is less than 1%. Convergence of the thick-shell solution is determined by investigating the relative 
magnitude of the m and n modes. Figure 3.1.23 to 3.1.25 display the mode contributions for the 
axial modes, circumferential modes and the normalized 2-dimensional contour, respectively.  
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Figure 3.1.23 – Magnitude of displacement modes for each axial index, m 

 
Figure 3.1.24 – Magnitude of displacement modes for each circumferential index, n 
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Figure 3.1.25 – Normalized magnitude of displacement modes for each circumferential 

index, n and axial index, m 

There is at least a 60dB reduction in magnitude from the largest mode to the smallest for each 
displacement, indicating that the simulation has converged. Consequently, mpts and npts will be 
set to 31 and 7, respectively, for the following simulations. 

3.1.6 Base Model Displacement Response 

 With the elastic model validated, the thickness can be increased back to the nominal 
value, h = 0.0254m, and higher frequencies can be investigated. Shell displacements are output 
at the mid-point radius of the shell thickness (matching the thin-shell output radius); the behavior 
of the shell throughout its thickness will be investigated in the final model with coating. First the 
base model ring-loading response is shown in Figures 3.1.26 – 3.1.27. 
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Figure 3.1.26 – Base model radial displacement response excited by 50, 1000 and 5000Hz 

Ring Loading (k = 0) 

 
Figure 3.1.27 – Base model axial displacement response excited by 50, 1000 and 5000Hz 

Ring Loading (k = 0) 
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Increasing the thickness has a large effect on the structure stiffness, and the displacement 
magnitudes are much lower than before. Also, the radial response has very little variation along 
the Z axis; the slight sinusoidal amplitude is hidden by the plot scales. 

The base model is also excited with an acoustic plane-wave. Results and are presented as 
2-dimensional contours of magnitude in Figures 3.1.28 – 3.1.30. 

 
Figure 3.1.28 – Elastic base model radial (top), tangential (mid), and axial (bottom) 

displacement response for acoustic-wave: 50Hz, φi = 15 deg of broadside, mpts = 31, npts = 7 
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Figure 3.1.29 – Elastic base model radial (top), tangential (mid), and axial (bottom) 

displacement response for acoustic-wave: 1000Hz, φi = 15 deg, mpts = 31, npts = 7 

 
Figure 3.1.30 – Elastic base model radial (top), tangential (mid), and axial (bottom) 

displacement response for acoustic-wave: 5000Hz, φi = 15 deg, mpts = 31, npts = 7 
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A unique feature of the acoustic wave, which impacts the shell at θ = 0, is that the tangential 
displacement (V) has zero magnitude at θ = 0 and θ = 180; as expected, all 3 displacements are 
symmetric about the θ = 180 horizontal line. At 50Hz excitation, the radial and axial 
displacements express a low wavenumber sine wave traveling along the Z axis. At higher input 
frequencies, the motion is dominated by dilatational and shear circumferential modes, presented 
by the lines of constant magnitude propagating along the Z axis. Generally, the displacement 
magnitude lessens with increasing excitation frequency. 

 

3.2 Numerical Challenges 

3.2.1 Bessel Function Evaluations 

 Bessel functions and the related Hankel functions are an integral part of developing the 
elasticity solution for cylindrical solids, with or without reinforcement. The separation of 
variables method eventually leads to the Bessel’s equation in terms of the radial variable, r, and 
circumferential index, n. Bessel functions are the solutions to this equation. Development of the 
unreinforced elastic cylindrical shell concludes with a formulation of the displacement field 
coefficients in terms of Bessel functions (Equation 2.1.52 – 2.1.54):  

𝐽𝑛(𝛼𝑟), 𝑌𝑛(𝛼𝑟), 𝐽𝑛(𝛽𝑟), 𝑌𝑛(𝛽𝑟) (3.2.1) 

where α and β are the modified wavenumbers given by 

𝛼 = √
𝜔2

𝑐1
2 − 𝑘

2, 𝛽 = √
𝜔2

𝑐2
2 − 𝑘

2 (3.2.2) 

If the argument is imaginary, the modified Bessel functions are used. Figure 2.1.3 shows that the 
modified Bessel functions become asymptotic for arguments approaching zero (K type) or 
arguments away from zero (I type). 

 When reinforcement is considered, the modified wavenumbers are indexed with the axial 
mode, m, to produce the following 

αm = √
ω2

c1
2 − km

2 = √
ω2

c1
2 − (kz +

2πm

L
)
2

,

βm = √
ω2

c2
2 − km

2 = √
ω2

c2
2 − (kz +

2πm

L
)
2

(3.2.3)
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For higher order m, the modified wavenumbers become imaginary with large amplitude, thus 
they can certainly pose numerical problems once the Bessel functions are evaluated, unless L, 
the periodic rib spacing, is unrealistically large.  

 With the parameters used in the model and 31 axial terms, mpts, the modified 
wavenumbers reach approximately 120.0i, which evaluates to 1e230 from the Bessel functions. 
Understandably, this will cause serious issues when solving the matrix equation. Unfortunately 
using asymptotic approximate forms of the Bessel functions produces similarly large numbers. 

3.2.2 Ill-conditioned A Matrix 

 After forming the global matrices for the shell dynamics (A) and the stiffener stresses (Z, 
T, and R), the matrix equation must be solved, as seen in Equation 2.3.32 and Equation 2.4.47. 

�̂�𝒏 = [�̂�𝒏 +
𝐾𝑧
𝑎𝑏
�̂�𝒏 +

𝐾𝑡
𝑎𝑏
�̂�𝒏 +

𝐾𝑟
𝑎𝑏
�̂�𝒏]

−1

�̂�𝒏 (3.2.4) 

Generally, this matrix equation can be considered as the standard matrix equation 

[�̂�𝒏 +
𝐾𝑧
𝑎𝑏
�̂�𝒏 +

𝐾𝑡
𝑎𝑏
�̂�𝒏 +

𝐾𝑟
𝑎𝑏
�̂�𝒏] �̂�𝒏 = �̂�𝒏 → 𝑨𝒙 = 𝒃 (3.2.5) 

which is not solved by finding the matrix inverse of A. Instead, more efficient methods exist and 
are used by the Matlab “mldivide” operator, based on the properties of the A matrix [24]. For 
the thin-shell reference model, with a ring loading input of magnitude P0 = 1: 

[𝐴]

[
 
 
 
 
 
 
⋮
𝑥−2
𝑥−1
𝑥0
𝑥1
𝑥2
⋮ ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
⋮
0
0
𝑏′

0
0
⋮ ]
 
 
 
 
 
 

, 𝑥𝑚 = [
𝑈𝑚
𝑉𝑚
𝑊𝑚

] , 𝑏′ = [
0
0
1
] (3.2.6) 

Each equation/row of the thin-shell model represents the 3 stress equations, [τrr τrθ τrz]T. 
For the thick-shell with the same input: 

[𝐴]

[
 
 
 
 
 
 
⋮
𝑥−2
𝑥−1
𝑥0
𝑥1
𝑥2
⋮ ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
⋮
0
0
𝑏′

0
0
⋮ ]
 
 
 
 
 
 

,  𝑥𝑚 =

[
 
 
 
 
 
𝐴𝑚
𝐵𝑚
𝐶𝑚
𝐷𝑚
𝐸𝑚
𝐹𝑚 ]
 
 
 
 
 

, 𝑏′ =

[
 
 
 
 
 
0
0
0
1
0
0]
 
 
 
 
 

(3.2.7) 

Each equation/row of the thick-shell model represents the 3 stress equations at the 2 boundary 
conditions (inner surface r = a, and outer surface r = c) resulting in 6 total equations, 
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[τrr,a τrθ,a τrz,a τrr,c τrθ,c τrz,c]T.  The solved coefficients, Am through Fm, are then input 
into Equation 2.1.52 – 2.1.54 to get the shell displacements, Um Vm and Wm. Recall that the global 
A matrix of 3.2.6 and 3.2.7 is for each circumferential mode. 

The A matrix has the following properties: Non-Hermitian, Non-orthogonal, Non-symmetric, 
Non-sparse, Square. Mldivide will use an LU factorization technique to numerically solve Ax = b. 
Unfortunately, the matrix is severely ill-conditioned:  

𝑐𝑜𝑛𝑑(𝐴) = 10240 

Unsurprisingly, any conventional solution method fails when presented a matrix with such a high 
condition number. Thus, it is not possible to solve the global matrix equation Ax = b using 
standard double precision. 

3.2.3 Multi-precision Toolbox 

 In order to solve Equation 3.2.5, it is necessary to increase the numerical precision 
available. The Advanpix Multi-Precision Toolbox integrates into Matlab and provides a library of 
classes and functions that operate with user-defined precision [25]. All of the Bessel and Hankel 
functions are present in the library, as well as the mldivide linear system solver. Even though the 
matrix is so poorly conditioned, with a high enough precision it can still be solved at the expense 
of simulation run-time. 

3.2.4 Simulation Performance 

 Thus there is a balancing act of including enough modes, mpts, such that the simulation 
has properly converged, and keeping the simulation run-time reasonable. Adding more modes 
not only affects the condition number of the A matrix and the precision required to solve the 
matrix equation, but it also increases the size of the system, which is equal to 6mpts x 6mpts. When 
the coating is added to the system for Model 5, the size grows to 12mpts x 12mpts. The process 
repeats for each circumferential mode, n, such that the Ax = b must be solved npts times for each 
solution at a single excitation frequency, ω. Table 3.2.1 displays the number of modes, the 
precision required and the simulation run-time for the base model. 
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mpts Precision (digits) Run-time (sec) 

1 16 (double) <1 

3 64 1.5 

7 128 5.5 

11 170 18 

15 256 53 

21 340 183 

25 500 409 

31 560 980 

Table 3.2.1 – Simulation performance, Base model 

Simulation run-times shown in Table 3.2.1 are for the base model with a single circumferential 
mode and a single excitation frequency. The coated elastic model, derived in Chapter 4.4 requires 
a 2x larger matrix system to be solved. This system, consequently, has much longer running times 
for each configuration. Fortunately, the matrix condition number doesn’t change significantly for 
each value of mpts between the base and coated model, so the same precision can be used. Table 
3.2.2 displays the coated model simulation performance. 

mpts Precision (digits) Run-time (sec) 

1 16 (double) <1 

3 64 3.6 

7 128 12.5 

11 170 31.7 

15 256 85 

21 340 262 

25 500 565 

31 560 1585 

Table 3.2.2 – Simulation performance, Coated model 

Adding additional circumferential modes to the simulation increases solve times considerably, 
though the number of digits need not increase. Solving the base model with npts = 7 requires 
nearly 7 hours (25,000 sec) per frequency. While this project is a good candidate for parallel 
processing, the project sponsor desires that the simulation code is able to run on an isolated 
machine with a single processor core. However, parallelization will be discussed in future work. 
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Chapter 4 

Advanced Features and Validation 

 

 

 With the base model validated and its behavior studied, the more advanced models are 
developed and each one is validated with an appropriate reference. The infinitesimally-thin delta 
connectors of the base system are modified to be finite-length step connectors, which transmits 
force to and from the shell over a finite area. Linear spring rib models have been used for Model 
1 and 2; Model 3 derives the curved Timoshenko-beam based rib system and implements them 
with the standard elastic shell. After validation, the model is submerged in an infinite pool of 
acoustic fluid, which strongly affects the response of the system. Finally, in section 4.4, the 
acoustic coating is applied to the reinforced elastic shell and is validated and the convergence 
checked. This final model incorporates all the prior changes from Chapter 4. 

 

4.1 Finite-Width Ribs 

4.1.1 Step Rib Validation 

 Finite rib widths are discussed in Chapter 2.2, and were incorporated in the thin-shell 
model of Chapter 2.3. Making use of Step connectors (Heaviside functions) means that the rib 
forces are transmitted into the shell across the entire rib width, b, which is roughly 1 inch or 
0.025m. The connectors are independent of the rib model (spring, beam) and the shell model 
(thin, elastic), so there are no other changes required to assess the elastic model results. 
Convergence has been achieved with 31 axial and 7 circumferential modes, as shown in Figures 
3.1.23 and 3.1.24 from the Base Results Chapter. 



 

79 
 

 
Figure 4.1.1 – Comparison of reference (mpts = 31) and elastic (mpts = 31) radial 

displacement magnitude for ring load (k = 0) 
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Figure 4.1.2 – Comparison of reference (mpts = 31) and elastic (mpts = 31) axial 

displacement magnitude for ring load (k = 0) 

Using the same number of truncated terms (mpts = 31), the elastic and reference model 

match extremely well. The finite-length rib is located between z = 0 and z = b, denoted on 

the plots by the vertical dashed black line. Displacement responses are symmetric within 

the rib width, 0 ≤ z ≤ b, and also in the space between the ribs, b ≤ z ≤ L, where the next rib 

(and next section) starts. Since the displacement response from 0 ≤ z ≤ L is period, the 

values at the endpoints must be continuous to ensure continuity. 
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 Inputting an acoustic wave into the base model with finite-ribs excites the shell in a 

more complex manner; tangential motion is present and nonzero circumferential modes 

are required to describe the behavior. Following the method of Chapter 3.1, the normalized 

error between the thin and thick models is calculated according to Equation 3.1.8. 

 
Figure 4.1.3 – Thin and Thick-shell radial (top), tangential (mid), and axial (bottom) 

Normalized Error in dB for plane-wave: 50Hz, φi = π/12, mpts = 31, npts = 7. Rib is located 
between the left edge (z = 0) and the red dashed line. 

Once again, the axial response contains the largest error, however the maximum magnitude is -
47dB representing roughly 0.5% error. Within the rib region (0 ≤ z ≤ 0.025) of the radial response, 
the error does grow to 6%, but the magnitude of this region drops significantly (-80dB) relative 
to the rest of the shell element displacement. 
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4.2 Timoshenko Beam Rib Model 

4.2.1 Integrating Beam Model 

 One of the major limitations of the base model is the accuracy of the linear spring rib 
model at higher frequencies. Improving the bandwidth of the stiffeners allows the total system 
to be excited over a much larger range, and thus a Timoshenko beam model is introduced. The 
dynamic beam equations were derived and decoupled to remove the angular beam deflection 
variable in Chapter 2.2. This puts them in a format compatible with the rest of the model, but 
with a significant increase in complexity compared to the spring model. Finite-length (step) 
connectors discussed previously will be implemented to present the most general case. Starting 
with the new rib equations (2.2.27 – 2.2.29) provides the stiffener forces in the radial direction 
as 

1

KsGar
3 (IE

2
∂3v

∂θ3
− ρEIar

2
∂3v

∂θ ∂t2
+ KsGIE

2
∂3v

∂θ3
− KsGIρar

∂3v

∂θ ∂t2
+ KsGAEar

2
∂v

∂θ
+ IE2

∂2w

∂θ2

− ρEIar
2
∂4w

∂θ2 ∂t2
− ρEIar

2
∂2w

∂t2
+ KsGIE

∂4w

∂θ4
+ ρ2Iar

4
∂4w

∂t4
− ρKsGAar

4
∂2w

∂t2

− KsGIar
2ρ

∂4w

∂θ2 ∂t2
+ KsGAEar

2w) = fr 

(4.2.1) 

in the tangential direction as 

(
𝐸𝐴

𝑎𝑟

𝜕𝑣2

𝜕𝜃2
− 𝜌𝐴𝑎𝑟

𝜕2𝑣

𝜕𝑡2
−
𝜌𝐼

𝑎𝑟

𝜕2𝑣

𝜕𝑡2
+
𝐸𝐼

𝑎𝑟
3

𝜕2𝑣

𝜕𝜃2
+
𝜌2𝐼𝑎𝑟
𝐾𝑠𝐺

𝜕4𝑣

𝜕𝑡4
+

𝐸2𝐼

𝐾𝑠𝐺𝑎𝑟
3

𝜕4𝑣

𝜕𝜃4
−
2𝐸𝐼𝜌

𝐾𝑠𝐺𝑎𝑟

𝜕4𝑣

𝜕𝜃2𝜕𝑡2
)

+
1

𝐾𝑠𝐺𝑎𝑟
3 (𝐼𝐸

2
𝜕3𝑤

𝜕𝜃3
− 𝜌𝐸𝐼𝑎𝑟

2
𝜕3𝑤

𝜕𝜃𝜕𝑡2
+ 𝐾𝑠𝐺𝐼𝐸

𝜕3𝑤

𝜕𝜃3
− 𝐾𝑠𝐺𝐼𝜌𝑎𝑟

2
𝜕3𝑤

𝜕𝜃𝜕𝑡2

+ 𝐾𝑠𝐺𝐴𝐸𝑎𝑟
2
𝜕𝑤

𝜕𝜃
) = 𝑓𝜃  

(4.2.2) 

and in the axial direction as 

−
2𝐺𝐽

ℎ𝑎𝑟2
𝜕3𝑤

𝜕𝜃2𝜕𝑧
−
2𝜌𝐽

ℎ

𝜕2𝑤

𝜕𝑡2𝜕𝑧
= 𝑓𝑧 (4.2.3) 

Recall that the axial stiffener force 4.2.3 is independent from the circular beam 4.2.1 – 4.2.2. To 
simplify the equations, the following effective stiffness terms are defined, taking advantage of 
the harmonic forms of the displacements 
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𝐾𝑟𝑤 =
1

𝐾𝑠𝐺𝑎𝑟
3
(−𝐼𝐸2𝑛2 − 𝜌𝐸𝐼𝑎𝑟

2𝑛2𝜔2 + 𝜌𝐸𝐼𝑎𝑟
2𝜔2 + 𝐾𝑠𝐺𝐼𝐸𝑛

4

+𝜌2𝐼𝑎𝑟
4𝜔4 + 𝜌𝐾𝑠𝐺𝐴𝑎𝑟

4𝜔2 − 𝐾𝑠𝐺𝐼𝑎𝑟
2𝜌𝑛2𝜔2 + 𝐾𝑠𝐺𝐴𝐸𝑎𝑟

2) (4.2.4)

 

𝐾𝑟𝑣 =
1

𝐾𝑠𝐺𝑎𝑟
3
(−𝐼𝐸2𝑛3 + 𝜌𝐸𝐼𝑎𝑟

2𝑛𝜔2 − 𝐾𝑠𝐺𝐼𝐸
2𝑛3 + 𝐾𝑠𝐺𝐼𝜌𝑎𝑟𝑛𝜔

2 − 𝐾𝑠𝐺𝐴𝐸𝑎𝑟
2𝑛2) (4.2.5) 

𝐾𝜃𝑤 =
1

𝐾𝑠𝐺𝑎𝑟
3
(𝐼𝐸2𝑛3 + 𝜌𝐸𝐼𝑎𝑟

2𝑛𝜔2 + 𝐾𝑠𝐺𝐼𝐸𝑛
3 +𝐾𝑠𝐺𝐼𝜌𝑎𝑟

2𝑛𝜔2 − 𝐾𝑠𝐺𝐴𝐸𝑎𝑟
2𝑛) (4.2.6) 
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𝜔2 −

𝐸𝐼

𝑎𝑟
3 𝑛

2 +
𝜌2𝐼𝑎𝑟
𝐾𝑠𝐺

𝜔4 +
𝐸2𝐼

𝐾𝑠𝐺𝑎𝑟
3 𝑛

4 −
2𝐸𝐼𝜌

𝐾𝑠𝐺𝑎𝑟
𝑛2𝜔2 (4.2.7) 

𝐾𝑧𝑤 =
2𝐺𝐽

ℎ𝑎𝑟2
𝑘𝑚𝑛

2 +
2𝜌𝐽

ℎ
𝑘𝑚𝜔

2 (4.2.8) 

Note that the stiffness terms are dependent on circumferential index, n. To integrate the above 
rib equations with the shell, they can be inserted into the inner surface boundary conditions, 
Equations 2.4.12 – 2.4.14.  

∑ ∑{(𝜆 + 2𝜇)
𝑑𝑊𝑚𝑛(𝑎)

𝑑𝑟
+
𝜆

𝑎
𝑊𝑚𝑛(𝑎) +

𝜆𝑛

𝑎
𝑉𝑚𝑛(𝑎) + 𝜆𝑖𝑘𝑚𝑈𝑚𝑛(𝑎)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 

=
1

𝑎𝑏
∑ ∑{𝐾𝑟𝑤𝑊𝑚𝑛 + 𝐾𝑟𝑣𝑉𝑚𝑛}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 ∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

 

(4.2.9) 

∑ ∑{𝜇
𝑑𝑉𝑚𝑛(𝑎)

𝑑𝑟
−
𝜇

𝑎
𝑉𝑚𝑛(𝑎) −

𝜇𝑛

𝑎
𝑊𝑚𝑛(𝑎)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

=
1

𝑎𝑏
∑ ∑{𝐾𝜃𝑤𝑊𝑚𝑛 + 𝐾𝜃𝑣𝑉𝑚𝑛}

∞

𝑛=0

∞

𝑚=−∞

sin(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 ∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

(4.2.10)

 

∑ ∑{𝜇𝑖𝑘𝑚𝑊𝑚𝑛(𝑎) + 𝜇
𝑑𝑈𝑚𝑛(𝑎)

𝑑𝑟
}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

=
1

𝑎𝑏
∑ ∑{𝐾𝑧𝑤𝑊𝑚𝑛} 𝑐𝑜𝑠(𝑞𝜃) 𝑒

𝑖𝑘𝑚𝑧

∞

𝑛=0

∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑆𝐿)]

∞

𝑠=−∞

∞

𝑚=−∞

(4.2.11)

 

With the Timoshenko beam rib model integrated into the inner surface (r = a) boundary 
conditions, the procedure described in Chapter 2.3 and 2.4 can be followed. Step functions are 
converted into their Fourier series, and the index shift (Equation 2.3.16) is applied. Combining 
the inner boundary equations with the unchanged outer boundary equations (2.4.21 – 2.4.23). 
Finally, the orthogonalization process is performed. 
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4.2.2 Decoupled Form and Global Matrix Equation 

 Multiplying by e−ikm2zcos (n2θ) and integrating from [0, 2π] on n and [0, L] on z results in 
the 6 stress equations, decomposed into an infinite set of (m, n)-indexed equations with the 
harmonic terms eliminated. At the inner boundary, the radial-normal and radial shear equations 
now include the beam model 

(𝜆 + 2𝜇)
𝑑𝑊𝑚𝑛(𝑎)

𝑑𝑟
+
𝜆

𝑎
𝑊𝑚𝑛(𝑎) +

𝜆𝑛

𝑎
𝑉𝑚𝑛(𝑎) + 𝜆𝑖𝑘𝑚𝑈𝑚𝑛(𝑎)

=
1

𝑎𝑏
∑ {𝐾𝑟𝑤𝑊𝑠𝑛 + 𝐾𝑟𝑣𝑉𝑠𝑛}

∞

𝑠=−∞

𝑑𝑚−𝑠 (4.2.12)
 

𝜇
𝑑𝑉𝑚𝑛(𝑎)

𝑑𝑟
−
𝜇

𝑎
𝑉𝑚𝑛(𝑎) −

𝜇𝑛

𝑎
𝑊𝑚𝑛(𝑎) =

1

𝑎𝑏
∑ {𝐾𝜃𝑤𝑊𝑠𝑛 + 𝐾𝜃𝑣𝑉𝑠𝑛}

∞

𝑠=−∞

𝑑𝑚−𝑠 (4.2.13) 

𝜇𝑖𝑘𝑚𝑊𝑚𝑛(𝑎) + 𝜇
𝑑𝑈𝑚𝑛(𝑎)

𝑑𝑟
=
1

𝑎𝑏
∑ 𝐾𝑧𝑤𝑊𝑠𝑛𝑑𝑚−𝑠

∞

𝑠=−∞

(4.2.14) 

with dm-s resulting from the Step connector Fourier series, described in Chapter 2.2. At the outer 
boundary, 2.4.30 – 2.4.32 remain unchanged. Displacement coefficients (Wmn, Vmn, Umn) must 
now be replaced by their unknown propagation coefficients (Amn, Bmn, Cmn, Dmn, Emn, Fmn), as 
specified in Equations 2.4.6 – 2.4.8. Only the first 3 equations of 2.4.33 – 2.4.38 have been 
modified and are 
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[
2𝛼𝑚𝜇

𝑎
𝐽𝑛+1(𝛼𝑚𝑎) + (

2𝑛(𝑛 − 1)𝜇

𝑎2
− 𝛼𝑚

2 𝑙𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆) 𝐽𝑛(𝛼𝑚𝑎)]𝐴𝑚𝑛

+ [
2𝛼𝑚𝜇

𝑎
𝑌𝑛+1(𝛼𝑚𝑎) + (

2𝑛(𝑛 − 1)𝜇

𝑎2
− 𝛼𝑚

2 𝑙𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆)𝑌𝑛(𝛼𝑚𝑎)] 𝐵𝑚𝑛

+[−
2𝑛𝛽𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) +

2𝑛(𝑛 − 1)𝜇

𝑎2
𝐽𝑛(𝛽𝑚𝑎)] 𝐶𝑚𝑛

+[−
2𝑛𝛽𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) +

2𝑛(𝑛 − 1)𝜇

𝑎2
𝑌𝑛(𝛽𝑚𝑎)]𝐷𝑚𝑛

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝐽𝑛(𝛽𝑚𝑎)]𝐸𝑚𝑛

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝑌𝑛(𝛽𝑚𝑎)]𝐹𝑚𝑛

=
1

𝑎𝑏
∑ 𝐾𝑟𝑤 {[−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)]𝐴𝑠𝑛 + [−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)] 𝐵𝑠𝑛

∞

𝑠=−∞

+
𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)𝐶𝑠𝑛 +

𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)𝐷𝑠𝑛 + 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛 + 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛 } 𝑑𝑚−𝑠

+𝐾𝑟𝑣 {−
𝑛

𝑎
𝐽𝑛(𝛼𝑠𝑎)𝐴𝑠𝑛 −

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)𝐵𝑠𝑛 + [𝛽𝑠𝐽𝑛+1(𝛽𝑠𝑎) −

𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)] 𝐶𝑠𝑛

+[𝛽𝑠𝑌𝑛+1(𝛽𝑠𝑎) −
𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)]𝐷𝑠𝑛 + 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛 + 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛} 𝑑𝑚−𝑠 (4.2.15)
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[
2𝑛𝛼𝑚𝜇

𝑎
𝐽𝑛+1(𝛼𝑚𝑎) −

2𝑛(𝑛 − 1)𝜇

𝑎2
𝐽𝑛(𝛼𝑚𝑎)]𝐴𝑚𝑛

+ [
2𝑛𝛼𝑚𝜇

𝑎
𝑌𝑛+1(𝛼𝑚𝑎) −

2𝑛(𝑛 − 1)𝜇

𝑎2
𝑌𝑛(𝛼𝑚𝑎)] 𝐵𝑚𝑛

+[−
𝛽𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + (𝛽𝑚

2 𝜇 −
2𝑛(𝑛 − 1)𝜇

𝑎2
) 𝐽𝑛(𝛽𝑚𝑎)] 𝐶𝑚𝑛

+ [−
𝛽𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + (𝛽𝑚

2 𝜇 −
2𝑛(𝑛 − 1)𝜇

𝑎2
)𝑌𝑛(𝛽𝑚𝑎)]𝐷𝑚𝑛

+[−
2(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + 𝑖𝑘𝑚𝛽𝑚𝜇𝐽𝑛(𝛽𝑚𝑎)]𝐸𝑚𝑛

+ [−
2(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + 𝑖𝑘𝑚𝛽𝑚𝜇𝑌𝑛(𝛽𝑚𝑎)]𝐹𝑚𝑛

=
1

𝑎𝑏
∑ 𝐾𝜃𝑣 {−

𝑛

𝑎
𝐽𝑛(𝛼𝑠𝑎)𝐴𝑠𝑛 −

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)𝐵𝑠𝑛 + [𝛽𝑠𝐽𝑛+1(𝛽𝑠𝑎) −

𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)] 𝐶𝑠𝑛

∞

𝑠=−∞

+[𝛽𝑠𝑌𝑛+1(𝛽𝑠𝑎) −
𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)]𝐷𝑠𝑛 + 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛 + 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛} 𝑑𝑚−𝑠

𝐾𝑟𝑤 {[−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +
𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)] 𝐴𝑠𝑛 + [−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)] 𝐵𝑠𝑛

+
𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)𝐶𝑠𝑛 +

𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)𝐷𝑠𝑛 + 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛 + 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛 } 𝑑𝑚−𝑠 (4.2.16)

 

 

[−2𝑖𝑘𝑚𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑎) +
2𝑛𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛(𝛼𝑚𝑎)] 𝐴𝑚𝑛

+ [−2𝑖𝑘𝑚𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑎) +
2𝑛𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛(𝛼𝑚𝑎)] 𝐵𝑚𝑛

+[
𝑛𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛(𝛽𝑚𝑎)]𝐶𝑚𝑛 + [

𝑛𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛(𝛽𝑚𝑎)]𝐷𝑚𝑛

+[𝜇(𝛽𝑚
2 − 𝑘𝑚

2 )𝐽𝑛+1(𝛽𝑚𝑎) −
𝑛𝛽𝑚𝜇

𝑎
𝐽𝑛(𝛽𝑚𝑎)] 𝐸𝑚𝑛

+[𝜇(𝛽𝑚
2 − 𝑘𝑚

2 )𝑌𝑛+1(𝛽𝑚𝑎) −
𝑛𝛽𝑚𝜇

𝑎
𝑌𝑛(𝛽𝑚𝑎)]𝐹𝑚𝑛

=
1

𝑎𝑏
∑ 𝐾𝑟𝑤 {[−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)]𝐴𝑠𝑛 + [−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)] 𝐵𝑠𝑛

∞

𝑠=−∞

+
𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)𝐶𝑠𝑛 +

𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)𝐷𝑠𝑛 + 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛 + 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛 } 𝑑𝑚−𝑠 (4.2.17)

 

Implementing the new beam rib model has no effect on the shell dynamics, and thus the 
system Amn matrix is unaffected compared to Chapter 2.4. In fact, only the elements of the 
stiffener matrices (Rm-s, Tm-s, Zm-s) are different. Each are 6x6, and contain only a single non-zero 
row shown below 
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𝑹𝒎−𝒔(1, 1: 6) = 𝑑𝑚−𝑠 {𝐾𝑟𝑤 [(−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +
𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)) , (−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑟
𝑌𝑛(𝛼𝑠𝑎)) ,…

𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎), 𝑖

𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎), 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎), 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)]

+𝐾𝑟𝑣 [−
𝑛

𝑎
𝐽𝑛(𝛼𝑠𝑎), −

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎), (𝛽𝑠𝐽𝑛+1(𝛽𝑠𝑎) −

𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)) , …

(𝛽𝑠𝑌𝑛+1(𝛽𝑠𝑎) −
𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)) , 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎), 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)]}

 

(4.2.18) 

𝑻𝒎−𝒔(2, 1: 6) = 𝑑𝑚−𝑠 {𝐾𝜃𝑤 [(−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +
𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)) , (−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑟
𝑌𝑛(𝛼𝑠𝑎)) ,…

𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎), 𝑖

𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎), 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎), 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)]

𝐾𝜃𝑣 [−
𝑛

𝑎
𝐽𝑛(𝛼𝑠𝑎), −

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎), (𝛽𝑠𝐽𝑛+1(𝛽𝑠𝑎) −

𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)) ,…

(𝛽𝑠𝑌𝑛+1(𝛽𝑠𝑎) −
𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)) , 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎), 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)]}

 

(4.2.19) 

𝒁𝒎−𝒔(3, 1: 6) = 𝑑𝑚−𝑠𝐾𝑧𝑤 [(−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +
𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)) , (−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑟
𝑌𝑛(𝛼𝑠𝑎)) ,…

𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎), 𝑖

𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎), 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎), 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)]

 

(4.2.20) 

The global matrices can be constructed in the same manner as before, only the stiffness terms 
(eg Krw) have been absorbed into the stiffener matrices. Thus the global matrix equation 2.4.45 
becomes 

�̂�𝒏𝒙𝒏 = −
1

𝑎𝑏
�̂�𝒏�̂�𝑛 −

1

𝑎𝑏
�̂�𝒏�̂�𝑛 −

1

𝑎𝑏
�̂�𝒏�̂�𝒏 + �̂�𝒏 (4.2.21) 

4.2.3 Validation with Thin-Shell Model 

 Timoshenko beam ribs can be implemented with the thin-shell model in the same manner 
as derived above, and this provides a good method to ensure that the model behavior is sensible. 
Following the convergence criteria from Base Results Chapter, 31 axial modes and 7 
circumferential modes are simulated. First the ring load (k = 0) is applied. 
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Figure 4.2.1 – Comparison of beam-rib reference and elastic radial displacement magnitude 

for ring load (k = 0), mpts = 31 
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Figure 4.2.2 – Comparison of beam-rib reference and elastic axial displacement magnitude 

for ring load (k = 0), mpts = 31 

Elastic displacement matches the reference model extremely well. Radial deformation 
characteristics have changed from the linear-spring rib model of Chapter 4.1, revealing that the 
beam ribs are less stiff than the linear-spring versions. Overall, the displacement filed is still very 
similar, and the largest effect of the beam rib should be in its higher frequency accuracy and the 
coupling of radial and tangential displacement.  

 The response to an acoustic wave, incident at θ = 0 and φi = 15 deg from broadside, is 
given in Figures 4.2.3 in terms of normalized error (Equation 3.1.8). 
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Figure 4.2.3 – Thin and Thick-shell radial (top), tangential (mid), and axial (bottom) 

Normalized Error in dB for plane-wave: 50Hz, φi = π/12, mpts = 31, npts = 7. Rib is located 
between the left edge (z = 0) and the red dashed line 

Overall errors are roughly -70dB or lower, which corresponds to less than 0.05%. In the upper 
plot of 4.2.3, there are 4 distinct locations of high error (> 50%) at θ = 90 and 270deg and z = 0.11 
and 0.71. These locations correspond to nodes in the magnitude response, where the values drop 
close to zero; an example at θ = 90deg is shown below. 
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Figure 4.2.4 – Acoustic Wave radial response of reference and elastic model at θ = 90deg 

Note that Figure 4.2.4 is showing magnitude, not relative error; it is essentially a horizontal slice 
through the top of Figure 4.2.3 at θ = 90deg. The magnitude of both the reference and elastic 
model drops -40dB below the remaining data at the two nodes. 

 

4.3 Fluid Loading 

4.3.1 Scattered Fluid Pressure 

Fluid surrounding the shell model is assumed to extent infinitely in all directions and be 
lossless, such that viscous effects are neglected. Thus the inertial effect is dominant, and the fluid 
is treated as an acoustic medium, where shear stress cannot be transmitted. Total fluid pressure 
is defined as 

𝑃𝑎 = 𝑃𝑖 + 𝑃𝑓 (4.3.1) 

where Pa is the applied fluid pressure, Pi is the incident fluid pressure exciting the system and Pf 
is the scattered fluid pressure caused by the system displacements.  The model excitation Pi is a 
dilatational plane wave input at the outer surface (r = c) of the cylinder, which is defined as 
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𝑃𝑖 = 𝑃0𝑒
𝑖𝑘𝑧𝑧∑𝜀𝑛𝑖

𝑛𝐽𝑛(𝑘𝑟𝑟) 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

𝑒−𝑖𝜔𝑡 (4.3.2) 

where ε is the Neumann factor and Jn is a nth order Bessel function of the 1st kind, kr and kz are 
the radial and longitudinal components of the input wavenumber, k. This wave is derived in 
Excitations Chapter 2.5.  Fluid pressure is governed by the three-dimensional wave equation 
(cylindrical coordinates) expressed as 

𝜕2𝑃𝑓

𝜕𝑟2
+
1

𝑟

𝜕𝑃𝑓

𝜕𝑟
+
1

𝑟2
𝜕2𝑃𝑓

𝜕𝜃2
+
𝜕2𝑃𝑓

𝜕𝑧2
=
1

𝑐𝑓
2

𝜕2𝑃𝑓

𝜕𝑡2
(4.3.3) 

where cf is the compression wave speed. To find the scattered wave, the equation must be solved 
for Pf. General solutions for the 3D wave equation (for scalars) are found via separation of 
variables. The procedure is outlined in the Appendix [*]. 

𝑃𝑓 = 𝑒
𝑖𝑘𝑧𝑧∑𝑅𝑛𝐻𝑛

1(𝑘𝑟𝑟) 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

𝑒−𝑖𝜔𝑡 (4.3.4) 

in which Rn is the unknown coefficient, and Hn
1 is a nth order Hankel function of the first kind. kr 

and kz are the constant radial and axial wavenumbers, respectively.  For the reinforced system, 
however, radial displacements are affected by the periodic stiffeners, discussed in detail in 
Chapter 2.2 Ribs Section. Due to continuity at the fluid interface, the fluid term, Pf, must be 
modified in the same manner as the shell radial displacement. Recall that the radial displacement, 
w, is defined as: 

𝑤 = ∑ ∑𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(4.3.5) 

To include the effects of ribs, the Pf term is rewritten as: 

𝑃𝑓 = ∑ ∑𝑅𝑚𝑛𝐻𝑛
1(𝛾𝑚𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡
∞

𝑛=0

∞

𝑚=−∞

(4.3.6) 

Pi does not change. Rmn are unknown scattered wave coefficients; km and γm are both indexed to 
represent the periodicity of the reinforcing ribs. 

𝑘𝑚 = 𝑘𝑧 +
2𝜋𝑚

𝐿
, 𝛾𝑚 = √𝑘2 − 𝑘𝑚2 (4.3.7) 

The coefficients must first be dealt with before the fluid model can be used with the shell system. 
Conservation of linear momentum across the fluid interface requires that  

𝜌𝑓
𝜕2𝑤

𝜕𝑡2
= −

𝜕𝑃𝑎
𝜕𝑟
|
𝑟=𝑐

(4.3.8) 
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Inputting the equations for displacement and fluid pressure into the momentum equation results 
in the following 

−𝜌𝑓𝜔
2 ∑ ∑𝑊𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒

𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

= −𝑃0𝑒
𝑖𝑘𝑧𝑧∑𝜀𝑛𝑖

𝑛
𝜕𝐽𝑛(𝑘𝑟𝑟)

𝜕𝑟
𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

− ∑ ∑𝑅𝑚𝑛
𝜕𝐻𝑛(𝛾𝑚𝑟)

𝜕𝑟
𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

(4.3.9)

 

The 𝑒−𝑖𝜔𝑡term is canceled. It is possible to isolate the entire ∑ ∑ Rmncos (nθ)e
ikmz∞

n=0
∞
m=−∞  

term, via dividing by the Hankel derivative term. When dividing by the Hankel derivative, the 
summation in m must be included. Derivatives of the Bessel and Hankel functions can be written 
as 

𝜕𝐽𝑛(𝑘𝑟𝑟)

𝜕𝑟
=
𝑘𝑟
2
(𝐽𝑛−1(𝑘𝑟𝑟) − 𝐽𝑛+1(𝑘𝑟𝑟)) (4.3.10) 

𝜕𝐻𝑛(𝛾𝑚𝑟)

𝜕𝑟
=
𝛾𝑚
2
(𝐻𝑛−1(𝛾𝑚𝑟) − 𝐻𝑛+1(𝛾𝑚𝑟)) (4.3.11) 

which are then substituted into Equation 4.3.9 and the unknown coefficients have been isolated. 

∑ ∑𝑅𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

                                                                                             

= −𝑃0𝑒
𝑖𝑘𝑧𝑧 ∑ ∑𝜀𝑛𝑖

𝑛
𝑘𝑟(𝐽𝑛−1(𝑘𝑟𝑐) − 𝐽𝑛+1(𝑘𝑟𝑐))

𝛾𝑚(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))
𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

∞

𝑚=−∞

+ ∑ ∑(
2𝜌𝑓𝜔

2

𝛾𝑚
)

𝑊𝑚𝑛

(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))
𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

(4.3.12)

 

 

Inserting the above into the pressure equation, Pa, gives the following 

Pa = P0e
ikzz∑εni

nJn(krc) cos(nθ)

∞

n=0

−P0e
ikzz ∑ ∑εni

n
kr(Jn−1(krc) − Jn+1(krc))Hn(γmc)

γm(Hn−1(γmc) − Hn+1(γmc))
cos(nθ)

∞

n=0

∞

m=−∞

+ ∑ ∑(
2ρfω

2

γm
)

WmnHn(γmc)

(Hn−1(γmc) − Hn+1(γmc))
cos(nθ) eikmz

∞

n=0

∞

m=−∞

(4.3.13)

 

and the unknown coefficients Rmn have been eliminated. Radial stress equations can now be 
reformulated taking into account the fluid pressure exerted on the exterior surface. 
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As shown before, the pressure equation can be orthogonalized in both n and m to create 
an infinite set of (n, m) decoupled equations, which are evaluated at r = c.  Multiplying by 

e−ikm2zcos (n2θ) and integrating from [0, 2π] on n and [0, L] on z results in the indexed set of 
equations 

𝑃𝑎[𝑚, 𝑛] = 𝑃0𝜀𝑛𝑖
𝑛 [𝐽𝑛(𝑘𝑟𝑐) −

𝑘𝑟(𝐽𝑛−1(𝑘𝑟𝑐) − 𝐽𝑛+1(𝑘𝑟𝑐))𝐻𝑛(𝛾𝑚𝑐)

𝛾𝑚(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))
] 𝛿𝑚0

+(
2𝜌𝑓𝜔

2

𝛾𝑚
)

𝑊𝑚𝑛𝐻𝑛(𝛾𝑚𝑐)

(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))
(4.3.14)

 

where δm0 is the Kroncker delta, which is 0 for all indices of m expect m = 0. The first term is 
referred to as the “blocked pressure” and is independent of the displacement coefficients, Wmn. 
The second term must be integrated into the dynamic A matrix of the system. 

4.3.2 Fluid Pressure Effect on Shell 

 Due to the assumptions regarding viscosity the fluid cannot transmit shear forces with 
the shell, so only radial pressure is considered and only a single boundary condition (τrr) is 
affected. 2.4.21 is rewritten as 

∑ ∑{(𝜆 + 2𝜇)
𝑑𝑊𝑚𝑛(𝑐)

𝑑𝑟
+
𝜆

𝑐
𝑊𝑚𝑛(𝑐) +

𝜆𝑛

𝑐
𝑉𝑚𝑛(𝑐) + 𝜆𝑖𝑘𝑚𝑈𝑚𝑛(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧

+ ∑ ∑(
2𝜌𝑓𝜔

2

𝛾𝑚
)

𝑊𝑚𝑛𝐻𝑛(𝛾𝑚𝑐)

(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))
𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚=−∞

= −𝑃0𝑒
𝑖𝑘𝑧𝑧∑𝜀𝑛𝑖

𝑛𝐽𝑛(𝑘𝑟𝑐) 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

            +𝑃0𝑒
𝑖𝑘𝑧𝑧 ∑ ∑𝜀𝑛𝑖

𝑛
𝑘𝑟(𝐽𝑛−1(𝑘𝑟𝑐) − 𝐽𝑛+1(𝑘𝑟𝑐))𝐻𝑛(𝛾𝑚𝑐)

𝛾𝑚(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))
𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

∞

𝑚=−∞

                  (4.3.15)

 

The second term of 4.3.15 could be combined with the first term, but the equation will be 
orthogonalized in either case, and the decoupled result is given by 4.3.14. This leads to the (m, 
n)-indexed 2.4.30 to be modified 

(𝜆 + 2𝜇)
𝑑𝑊𝑚𝑛(𝑐)

𝑑𝑟
+
𝜆

𝑐
𝑊𝑚𝑛(𝑐) +

𝜆𝑛

𝑐
𝑉𝑚𝑛(𝑐) + 𝜆𝑖𝑘𝑚𝑈𝑚𝑛(𝑐)

+(
2𝜌𝑓𝜔

2

𝛾𝑚
)

𝑊𝑚𝑛(𝑐)𝐻𝑛(𝛾𝑚𝑐)

(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))

= −𝑃0𝜀𝑛𝑖
𝑛 [𝐽𝑛(𝑘𝑟𝑐) −

𝑘𝑟(𝐽𝑛−1(𝑘𝑟𝑐) − 𝐽𝑛+1(𝑘𝑟𝑐))𝐻𝑛(𝛾𝑚𝑐)

𝛾𝑚(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))
] 𝛿𝑚0 (4.3.16)

 

To simplify 4.3.16, a fluid pressure gradient term is defined 
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𝛿𝑃𝑓𝑚 = (
2𝜌𝑓𝜔

2

𝛾𝑚
)

𝐻𝑛(𝛾𝑚𝑐)

(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))
(4.3.17) 

Inserting the unknown coefficients using 2.4.6 – 2.4.8 and 4.3.17 results in the final decoupled 
equation 

[
2𝛼𝜇

𝑐
𝐽𝑛+1(𝛼𝑚𝑐) + (

2𝑛(𝑛 − 1)𝜇

𝑐2
− 𝛼𝑚

2 𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆) 𝐽𝑛(𝛼𝑚𝑐) + ⋯

+(−𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑐) +
𝑛

𝑐
𝐽𝑛(𝛼𝑚𝑐))𝛿𝑃𝑓𝑚] 𝐴𝑚𝑛

+[
2𝛼𝜇

𝑐
𝑌𝑛+1(𝛼𝑚𝑐) + (

2𝑛(𝑛 − 1)𝜇

𝑐2
− 𝛼𝑚

2 𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆)𝑌𝑛(𝛼𝑚𝑐) + ⋯

+(−𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑐) +
𝑛

𝑐
𝑌𝑛(𝛼𝑚𝑐)) 𝛿𝑃𝑓𝑚] 𝐵𝑚𝑛

+[−
2𝑛𝛽𝑚𝜇

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) +

2𝑛(𝑛 − 1)𝜇

𝑐2
𝐽𝑛(𝛽𝑚𝑐) +

𝑛

𝑐
𝐽𝑛(𝛽𝑚𝑐)𝛿𝑃𝑓𝑚] 𝐶𝑚𝑛

+[−
2𝑛𝛽𝑚𝜇

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) +

2𝑛(𝑛 − 1)𝜇

𝑐2
𝑌𝑛(𝛽𝑚𝑐) +

𝑛

𝑐
𝑌𝑛(𝛽𝑚𝑐)𝛿𝑃𝑓𝑚]𝐷𝑚𝑛

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝐽𝑛(𝛽𝑚𝑐) + 𝑖𝑘𝑚𝐽𝑛+1(𝛽𝑚𝑐)𝛿𝑃𝑓𝑚] 𝐸𝑚𝑛

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝑌𝑛(𝛽𝑚𝑐) + 𝑖𝑘𝑚𝑌𝑛+1(𝛽𝑚𝑐)𝛿𝑃𝑓𝑚] 𝐹𝑚𝑛

= −𝑃0𝜀𝑛𝑖
𝑛 [𝐽𝑛(𝑘𝑟𝑐) −

𝑘𝑟(𝐽𝑛−1(𝑘𝑟𝑐) − 𝐽𝑛+1(𝑘𝑟𝑐))𝐻𝑛(𝛾𝑚𝑐)

𝛾𝑚(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))
] 𝛿𝑚0 (4.3.18)

 

There are two important points to note. The first is that the new excitation form (last term of 
4.3.18), which includes the original plane wave excitation as well as the interaction of the 
excitation with the fluid. This input is dependent on circumferential mode, n, which is why a less 
restrictive Kroncker delta is used (instead of δm0,n0) compared to the ring load. Secondly, the fluid 
has a direct effect on the shell dynamics and will be included in 4th row of the system A matrix. 
Finally, the excitation vector, f, must also be modified to account for the blocked pressure 

𝒇 = [0, 0, 0, −𝑃0𝜀𝑛𝑖
𝑛 (𝐽𝑛(𝑘𝑟𝑐) −

𝑘𝑟(𝐽𝑛−1(𝑘𝑟𝑐) − 𝐽𝑛+1(𝑘𝑟𝑐))𝐻𝑛(𝛾𝑚𝑐)

𝛾𝑚(𝐻𝑛−1(𝛾𝑚𝑐) − 𝐻𝑛+1(𝛾𝑚𝑐))
) , 0, 0]

𝑇

(4.3.19) 

All other parts of the global matrix are unchanged. 

4.3.3 Model Validation 

With the fluid model derived above implemented into the elastic shell model, the system 
can be validated against the reference, which also incorporates the same fluid model. Figures 
4.3.1 and 4.3.2 give the spatial displacement fields for the ring loading (k = 0). 
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Figure 4.3.1 – Comparison of fluid reference and elastic radial displacement magnitude for 

ring load (k = 0), mpts = 31 
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Figure 4.3.2 – Comparison of fluid reference and elastic axial displacement magnitude for 

ring load (k = 0), mpts = 31 

Again, the elastic and reference model match very well, especially considering the small 
amplitudes. Even at frequencies below 100Hz, the fluid model has a significant effect on the 
spatial response of the periodic cylinder section. Displacements are much more sensitive to 
temporal excitation frequency. Scattered pressure is an additional measurement which the fluid-
loaded models can provide. Both the reflected pressure, denoted Pinf because it assumed an 
infinite-impedance (rigid) system, and the radiated pressure, Prad, are output from the models. 
Scattered pressure can be measured at any radial distance from the system, but 1 meter from 
the outer surface is a typical measurement location and is chosen for this study. 



 

98 
 

 
Figure 4.3.3 – Comparison of fluid reference and elastic radiated (top) and reflected 

(bottom) pressure magnitude for ring load (k = 0), mpts = 31 

Radiated and reflected pressure both match very well, but have tremendously different scales. 
This is due to the nature of the ring load which propagates only in the axial direction. The ring 
load does cause significant radial shell deformation which radiates to the measurement location 
(1 meter from outer surface).  

 For the acoustic wave input, the normalized error is computer between the reference and 
the fluid-loaded elastic model. Figure 4.3.3 displays the errors in each displacement as an 
unwrapped cylinder; refer to Equation 3.1.8 for the expression for normalized error. 
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Figure 4.3.3 – Thin and Thick-shell radial (top), tangential (mid), and axial (bottom) 

Normalized Error in dB for plane-wave: 50Hz, φi = π/12, mpts = 31, npts = 7. Rib is located 
between the left edge (z = 0) and the red dashed line. 

Tangential and axial errors are -60dB across the entire cylindrical section, representing 
approximately 0.1% error. Radial error again has 4 locations of high error (> 20%), which occur at 
displacement nodes; the nodes at θ = 230deg is highlighted in Figure 4.3.4. 
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Figure 4.3.4 – Acoustic Wave radial response of reference and elastic model at θ = 230deg 

Nodes are seen at positions z = 2.7 and 5.6m, which lines up with the regions of high error in 
Figure 4.3.3. The normalized error is shown in Figure 4.3.5. 
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Figure 4.3.5 – Thin and Thick-shell radiated pressure (top) and reflected pressure (bottom) 
Normalized Error in dB for plane-wave: 50Hz, φi = π/12, mpts = 31, npts = 7. Rib is located 

between the left edge (z = 0) and the red dashed line. 

Error magnitude is less than -70dB for both pressures, indicating less than 0.05% error. Taking 
this into account, the elastic model with fluid-loading matches the reference well. 

 

4.4 Acoustic Coating 

4.4.1 Acoustic Coating Derivation 

 Combining the elastic shell model with an acoustic coating adds a significant layer of 
complexity to the base model described in Chapter 2.4. By design, the damping and stiffness 
properties of the coating significantly modify the overall system response to a disturbance, and 
acoustic coatings generally have a thickness large enough to warrant modeling as an independent 
elastic body. Thus the Navier-Cauchy elasticity equations are employed to describe both the shell 
as well as the coating behavior. Continuity equations for stress and displacement are used to 
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model the shared interface between the bodies, and represents the adhesion of the coating on 
the shell. Displacement responses are found for the entire system, shell and coating. 

 The coated system derived here includes the elastic shell with finite-length Step 
connectors, with ribs are modeled as Timoshenko beams, and with fluid loading. Additional 
assumptions of the coating are: (1) the coating extends, along with the cylinder, infinitely along 
the cylindrical axis, (2) coating displacements are 3-dimensional and linear, (3) the coating 
material is homogenous and isotropic. Fluid pressure is applied to the outer coating surface (r = 
c’). Figure 4.4.1 displays an isometric view and Figure 4.4.2 displays a sidelong cross-section of 
the system. 

 
Figure 4.4.1 – Isometric view of the coated shell system 

 
Figure 4.4.2 – Cross-section view of the coated shell system 
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Boundary surfaces of the system are found at the inner shell surface (r = a), the shell-coating 
interface (r = c) and the outer coating surface (r = c’). Displacement of the shell (system 1) and 
coating (system 2) are denoted by u1(r, θ, z, t) and u2(r, θ, z, t), respectively. In cylindrical 
coordinates, the independent elasticity equations are 

μ1∇
2𝐮𝟏(r, θ, z, t) + (λ1 + μ1)∇∇ ∙ 𝐮𝟏(r, θ, z, t) = ρ1

∂2𝐮𝟏(r, θ, z, t)

∂t2
 (4.4.1) 

μ2∇
2𝐮𝟐(r, θ, z, t) + (λ2 + μ2)∇∇ ∙ 𝐮𝟐(r, θ, z, t) = ρ2

∂2𝐮𝟐(r, θ, z, t)

∂t2
 (4.4.2) 

Displacements, densities, and the Lamé parameters are specific to each system, which will be 
designated by the subscript j. The reinforced shell is denoted by j = 1, the acoustic coating is 
denoted by j = 2. Displacement has the same form as Equations 2.4.2 – 2.4.4 

𝑤𝑗(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑊𝑚𝑛
(𝑗)(𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(4.4.3) 

𝑣𝑗(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑉𝑚𝑛
(𝑗)(𝑟) 𝑠𝑖𝑛(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(4.4.4) 

𝑢𝑗(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑𝑈𝑚𝑛
(𝑗) (𝑟) 𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

∞

𝑚=−∞

(4.4.5) 

Wmn, Vmn, and Umn are the radial, tangential, and axial wave propagation coefficients specific to 
the shell (j = 1) or coating (j = 2), and each are comprised of unknown coefficients 

𝑊𝑚𝑛
(𝑗)(𝑟) = 𝐴𝑚𝑛

(𝑗)
[−𝛼𝑚

(𝑗)
𝐽𝑛+1(𝛼𝑚

(𝑗)
𝑟) +

𝑛

𝑟
𝐽𝑛(𝛼𝑚

(𝑗)
𝑟)] + 𝐵𝑚𝑛

(𝑗)
[−𝛼𝑚

(𝑗)
𝑌𝑛+1(𝛼𝑚

(𝑗)
𝑟) +

𝑛

𝑟
𝑌𝑛(𝛼𝑚

(𝑗)
𝑟)]

+𝐶𝑚𝑛
(𝑗) 𝑛

𝑟
𝐽𝑛(𝛽𝑚

(𝑗)
𝑟) + 𝐷𝑚𝑛

(𝑗) 𝑛

𝑟
𝑌𝑛(𝛽𝑚

(𝑗)
𝑟) + 𝐸𝑚𝑛

(𝑗)
𝑖𝑘𝑚𝐽𝑛+1(𝛽𝑚

(𝑗)
𝑟) + 𝐹𝑚𝑛

(𝑗)
𝑖𝑘𝑚𝑌𝑛+1(𝛽𝑚

(𝑗)
𝑟)        (4.4.6)

 

𝑉𝑚𝑛
(𝑗)(𝑟) = −𝐴𝑚𝑛

(𝑗) 𝑛

𝑟
𝐽𝑛 (𝛼𝑚

(𝑗)
𝑟) − 𝐵𝑚𝑛

(𝑗) 𝑛

𝑟
𝑌𝑛 (𝛼𝑚

(𝑗)
𝑟) + 𝐶𝑚𝑛

(𝑗)
[𝛽𝑚

(𝑗)
𝐽𝑛+1(𝛽𝑚

(𝑗)
𝑟) −

𝑛

𝑟
𝐽𝑛(𝛽𝑚

(𝑗)
𝑟)]

+𝐷𝑚𝑛
(𝑗)
[𝛽𝑚

(𝑗)
𝑌𝑛+1(𝛽𝑚

(𝑗)
𝑟) −

𝑛

𝑟
𝑌𝑛(𝛽𝑚

(𝑗)
𝑟)] + 𝐸𝑚𝑛

(𝑗)
𝑖𝑘𝑚𝐽𝑛+1(𝛽𝑚

(𝑗)
𝑟) + 𝐹𝑚𝑛

(𝑗)
𝑖𝑘𝑚𝑌𝑛+1(𝛽𝑚

(𝑗)
𝑟) (4.4.7)

 

𝑈𝑚𝑛
(𝑗) (𝑟) = 𝐴𝑚𝑛

(𝑗)
𝑖𝑘𝑚𝐽𝑛 (𝛼𝑚

(𝑗)
𝑟) + 𝐵𝑚𝑛

(𝑗)
𝑖𝑘𝑚𝑌𝑛 (𝛼𝑚

(𝑗)
𝑟)

−𝐸𝑚𝑛
(𝑗)
𝛽𝑚
(𝑗)
𝐽𝑛 (𝛽𝑚

(𝑗)
𝑟) − 𝐹𝑚𝑛

(𝑗)
𝛽𝑚
(𝑗)
𝑌𝑛 (𝛽𝑚

(𝑗)
𝑟) (4.4.8)

 

Note that the modified dilatational and shear wavenumbers are also distinct to each body 

𝛼𝑚
(𝑗)
= √(

𝜔

𝑐1
)
2

− 𝑘𝑚2 , 𝛽𝑚
(𝑗)
= √(

𝜔

𝑐2
)
2

− 𝑘𝑚2 (4.4.9) 
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where the wave speeds can be expanded in terms of Lamé parameters 

𝑐1
2 =

𝜆𝑗 + 2𝜇𝑗

𝜌𝑗
, 𝑐2

2 =
𝜇𝑗

𝜌𝑗
(4.4.10) 

4.4.2 Evaluating the Boundary Conditions 

 There are three boundary surfaces in the model noted in Figures 4.4.1 and 4.4.2: the 
reinforced inner shell surface (r = a), the shell-coating interface (r = c), and the outer fluid-loaded 
surface (r = c’).  The inner shell surface can be treated similarly to the thick-shell model of Chapter 
2.4, and the outer surface boundary condition was derived in Chapter 4.3.  However, at the 
shared interface, continuity of stress and displacement require a new set of equations. Continuity 
of stress τ(1) = τ(2) is given as 

𝜏𝑟𝑟
(1)(𝑐, 𝜃, 𝑧, 𝑡) = 𝜏𝑟𝑟

(2)(𝑐, 𝜃, 𝑧, 𝑡) (4.4.11) 

𝜏𝑟𝜃
(1)(𝑐, 𝜃, 𝑧, 𝑡) = 𝜏𝑟𝜃

(2)(𝑐, 𝜃, 𝑧, 𝑡) (4.4.12) 

𝜏𝑟𝑧
(1)(𝑐, 𝜃, 𝑧, 𝑡) = 𝜏𝑟𝑧

(2)(𝑐, 𝜃, 𝑧, 𝑡) (4.4.13) 

and continuity of displacement at the interface requires that 

𝑤1(𝑐, 𝜃, 𝑧, 𝑡) = 𝑤2(𝑐, 𝜃, 𝑧, 𝑡) (4.4.14) 

𝑣1(𝑐, 𝜃, 𝑧, 𝑡) = 𝑣2(𝑐, 𝜃, 𝑧, 𝑡) (4.4.15) 

𝑢1(𝑐, 𝜃, 𝑧, 𝑡) = 𝑢2(𝑐, 𝜃, 𝑧, 𝑡) (4.4.16) 

At the inner surface (r = a), the shell stresses are equal to the external stiffener stresses resulting 
in 3 equations, originally derived as Equations 2.4.12 – 2.4.14. Similarly, at the outer coating 
surface (r = c’), radial stress is equal to fluid pressure and applied excitation, while the tangential 
and axial stresses are zero. Combining Equations 4.4.11 – 4.4.16 with the 3 inner equations and 
3 outer equations leads to the following 12 equation system 

(𝜆1 + 2𝜇1)
𝜕𝑤1
𝜕𝑟

+
𝜆1
𝑎
𝑤1 +

𝜆1
𝑎

𝜕𝑣1
𝜕𝜃

+ 𝜆1
𝜕𝑢1
𝜕𝑧

= 𝑓𝑟 (4.4.17) 

𝜇1
𝜕𝑣1
𝜕𝑟

−
𝜇1
𝑎
𝑣1 +

𝜇1
𝑎

𝜕𝑤1
𝜕𝜃

= 𝑓𝜃 (4.4.18) 

𝜇1
𝜕𝑤1
𝜕𝑧

+ 𝜇1
𝜕𝑢1
𝜕𝑟

= 𝑓𝑧 (4.4.19) 

(𝜆1 + 2𝜇1)
𝜕𝑤1
𝜕𝑟

+
𝜆1
𝑐
𝑤1 +

𝜆1
𝑐

𝜕𝑣1
𝜕𝜃

+ 𝜆1
𝜕𝑢1
𝜕𝑧

= (𝜆2 + 2𝜇2)
𝜕𝑤2
𝜕𝑟

+
𝜆2
𝑐
𝑤2 +

𝜆2
𝑐

𝜕𝑣2
𝜕𝜃

+ 𝜆2
𝜕𝑢2
𝜕𝑧

(4.4.20)
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𝜇1
𝜕𝑣1
𝜕𝑟

−
𝜇1
𝑐
𝑣1 +

𝜇1
𝑐

𝜕𝑤1
𝜕𝜃

= 𝜇2
𝜕𝑣2
𝜕𝑟

−
𝜇2
𝑐
𝑣2 +

𝜇1
𝑐

𝜕𝑤1
𝜕𝜃

(4.4.21) 

𝜇1
𝜕𝑤1
𝜕𝑧

+ 𝜇1
𝜕𝑢1
𝜕𝑟

= 𝜇2
𝜕𝑤2
𝜕𝑧

+ 𝜇2
𝜕𝑢2
𝜕𝑟

(4.4.22) 

𝑤1(𝑐, 𝜃, 𝑧, 𝑡) = 𝑤2(𝑐, 𝜃, 𝑧, 𝑡) (4.4.23) 

𝑣1(𝑐, 𝜃, 𝑧, 𝑡) = 𝑣2(𝑐, 𝜃, 𝑧, 𝑡) (4.4.24) 

𝑢1(𝑐, 𝜃, 𝑧, 𝑡) = 𝑢2(𝑐, 𝜃, 𝑧, 𝑡) (4.4.25) 

(𝜆2 + 2𝜇2)
𝜕𝑤2
𝜕𝑟

+
𝜆2
𝑐′
𝑤2 +

𝜆2
𝑐′

𝜕𝑣2
𝜕𝜃

+ 𝜆2
𝜕𝑢2
𝜕𝑧

= −𝑃𝑎 (4.4.26) 

𝜇2
𝜕𝑣2
𝜕𝑟

−
𝜇2
𝑐′
𝑣2 +

𝜇2
𝑐′

𝜕𝑤2
𝜕𝜃

= 0 (4.4.27) 

𝜇2
𝜕𝑤2
𝜕𝑧

+ 𝜇2
𝜕𝑢2
𝜕𝑟

= 0 (4.4.28) 

Building off of the models derived in Chapter 2.4 (thick-shell), 4.1 (step connectors), 4.2 (beam 
ribs), and 4.3 (fluid loading), the system of equations 4.4.17 – 4.4.28 is written as 

∑ ∑{(𝜆1 + 2𝜇1)
𝑑𝑊𝑚𝑛

(1)(𝑎)

𝑑𝑟
+
𝜆1
𝑎
𝑊𝑚𝑛

(1)(𝑎) +
𝜆1𝑛

𝑎
𝑉𝑚𝑛
(1)(𝑎) + 𝜆1𝑖𝑘𝑚𝑈𝑚𝑛

(1)(𝑎)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 

=
1

𝑎𝑏
∑ ∑{𝐾𝑟𝑤𝑊𝑚𝑛

(1)
+ 𝐾𝑟𝑣𝑉𝑚𝑛

(1)
}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 ∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

 

(4.4.29) 

∑ ∑{𝜇1
𝑑𝑉𝑚𝑛

(1)(𝑎)

𝑑𝑟
−
𝜇1
𝑎
𝑉𝑚𝑛
(1)(𝑎) −

𝜇1𝑛

𝑎
𝑊𝑚𝑛

(1)(𝑎)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

=
1

𝑎𝑏
∑ ∑{𝐾𝜃𝑤𝑊𝑚𝑛

(1) + 𝐾𝜃𝑣𝑉𝑚𝑛
(1)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 ∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑠𝐿)]

∞

𝑠=−∞

 

(4.4.30) 

∑ ∑{𝜇1𝑖𝑘𝑚𝑊𝑚𝑛
(1)(𝑎) + 𝜇1

𝑑𝑈𝑚𝑛
(1)(𝑎)

𝑑𝑟
}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

=
1

𝑎𝑏
∑ ∑{𝐾𝑧𝑤𝑊𝑚𝑛

(1)
} 𝑐𝑜𝑠(𝑞𝜃) 𝑒𝑖𝑘𝑚𝑧

∞

𝑛=0

∑ [𝐻(𝑧 − 𝑠𝐿) − 𝐻(𝑧 − 𝑏 − 𝑆𝐿)]

∞

𝑠=−∞

∞

𝑚=−∞

(4.4.31)
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∑ ∑{(𝜆1 + 2𝜇1)
𝑑𝑊𝑚𝑛

(1)(𝑐)

𝑑𝑟
+
𝜆1
𝑐
𝑊𝑚𝑛

(1)(𝑐) +
𝜆1𝑛

𝑐
𝑉𝑚𝑛
(1)(𝑐) + 𝜆1𝑖𝑘𝑚𝑈𝑚𝑛

(1)(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

= ∑ ∑{(𝜆2 + 2𝜇2)
𝑑𝑊𝑚𝑛

(2)(𝑐)

𝑑𝑟
+
𝜆2
𝑐
𝑊𝑚𝑛

(2)(𝑐) +
𝜆2𝑛

𝑐
𝑉𝑚𝑛
(2)(𝑐)

∞

𝑛=0

∞

𝑚=−∞

+ 𝜆2𝑖𝑘𝑚𝑈𝑚𝑛
(2)(𝑐)} 𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 

(4.4.32) 

∑ ∑{𝜇1
𝑑𝑉𝑚𝑛

(1)(𝑐)

𝑑𝑟
−
𝜇1
𝑐
𝑉𝑚𝑛
(1)(𝑐) −

𝜇1𝑛

𝑐
𝑊𝑚𝑛

(1)(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

= ∑ ∑{𝜇2
𝑑𝑉𝑚𝑛

(2)(𝑐)

𝑑𝑟
−
𝜇2
𝑐
𝑉𝑚𝑛
(2)(𝑐) −

𝜇2𝑛

𝑐
𝑊𝑚𝑛

(2)(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 (4.4.33)

 

∑ ∑{𝜇1𝑖𝑘𝑚𝑊𝑚𝑛
(1)(𝑐) + 𝜇1

𝑑𝑈𝑚𝑛
(1)(𝑐)

𝑑𝑟
}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧

= ∑ ∑{𝜇2𝑖𝑘𝑚𝑊𝑚𝑛
(2)(𝑐) + 𝜇2

𝑑𝑈𝑚𝑛
(2)(𝑐)

𝑑𝑟
}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 (4.4.34)

 

∑ ∑{𝑊𝑚𝑛
(1)(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 = ∑ ∑{𝑊𝑚𝑛
(2)(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 (4.4.35) 

∑ ∑{𝑉𝑚𝑛
(1)(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 = ∑ ∑{𝑉𝑚𝑛
(2)(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 (4.4.36) 

∑ ∑{𝑈𝑚𝑛
(1)(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 = ∑ ∑{𝑈𝑚𝑛
(2)(𝑐)}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒−𝑖𝑘𝑚𝑧 (4.4.37) 

∑ ∑{(𝜆2 + 2𝜇2)
𝑑𝑊𝑚𝑛

(2)(𝑐′)

𝑑𝑟
+
𝜆2
𝑐′
𝑊𝑚𝑛

(2)(𝑐′) +
𝜆2𝑛

𝑐′
𝑉𝑚𝑛
(2)(𝑐′)

∞

𝑛=0

∞

𝑚=−∞

+𝜆2𝑖𝑘𝑚𝑈𝑚𝑛
(2)(𝑐′) + 𝛿𝑃𝑓𝑚𝑊𝑚𝑛

(2)(𝑐′)} 𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧

= −𝑃0𝑒
𝑖𝑘𝑧𝑧∑𝜀𝑛𝑖

𝑛𝐽𝑛(𝑘𝑟𝑐′) 𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

            +𝑃0𝑒
𝑖𝑘𝑧𝑧 ∑ ∑𝜀𝑛𝑖

𝑛
𝑘𝑟(𝐽𝑛−1(𝑘𝑟𝑐′) − 𝐽𝑛+1(𝑘𝑟𝑐′))𝐻𝑛(𝛾𝑚𝑐′)

𝛾𝑚(𝐻𝑛−1(𝛾𝑚𝑐′) − 𝐻𝑛+1(𝛾𝑚𝑐′))
𝑐𝑜𝑠(𝑛𝜃)

∞

𝑛=0

∞

𝑚=−∞

(4.4.38)
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∑ ∑{𝜇2
𝑑𝑉𝑚𝑛

(2)(𝑐′)

𝑑𝑟
−
𝜇2
𝑐′
𝑉𝑚𝑛
(2)(𝑐′) −

𝜇2𝑛

𝑐′
𝑊𝑚𝑛

(2)(𝑐′)}

∞

𝑛=0

∞

𝑚=−∞

𝑠𝑖𝑛(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧 = 0 (4.4.39) 

∑ ∑{𝜇2𝑖𝑘𝑚𝑊𝑚𝑛
(2)(𝑐′) + 𝜇2

𝑑𝑈𝑚𝑛
(2)(𝑐′)

𝑑𝑟
}

∞

𝑛=0

∞

𝑚=−∞

𝑐𝑜𝑠(𝑛𝜃) 𝑒𝑖𝑘𝑚𝑧 = 0 (4.4.40) 

Before decoupling the 12 system equations into their indexed sets, it is necessary to make the 
same changes to the summation of stiffener terms: taking the Fourier series of the step functions 
using 2.2.17 – 2.2.18 and then shifting the index of the results using 2.3.16. 

4.4.3 Mode Indexed and Global System 

 Transforming the system of 12 equations with infinite summations into mode decoupled 
sets involves the same orthogonalization process used throughout this study. Next, the 6 
displacement coefficients (W, V, U for each body) are replaced with the 12 unknown coefficients 
according to 4.4.6 – 4.4.8, which leads to the (m, n)-indexed set 

[
2𝛼𝑚

(1)𝜇1
𝑎

𝐽𝑛+1(𝛼𝑚
(1)𝑎) + (

2𝑛(𝑛 − 1)𝜇1
𝑎2

− 𝛼𝑚
2(1)𝜆1 − 2𝛼𝑚

2(1)𝜇1 − 𝑘𝑧𝑚
2 𝜆1) 𝐽𝑛(𝛼𝑚

(1)𝑎)]𝐴𝑚𝑛
(1)

+ [
2𝛼𝑚

(1)𝜇

𝑎
𝑌𝑛+1(𝛼𝑚

(1)𝑎) + (
2𝑛(𝑛 − 1)𝜇1

𝑎2
− 𝛼𝑚

2(1)𝜆1 − 2𝛼𝑚
2(1)𝜇1 − 𝑘𝑧𝑚

2 𝜆1)𝑌𝑛(𝛼𝑚𝑎)] 𝐵𝑚𝑛
(1)

+ [−
2𝑛𝛽𝑚𝜇1

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) +

2𝑛(𝑛 − 1)𝜇1
𝑎2

𝐽𝑛(𝛽𝑚𝑎)] 𝐶𝑚𝑛
(1)

+[−
2𝑛𝛽𝑚𝜇1

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) +

2𝑛(𝑛 − 1)𝜇1
𝑎2

𝑌𝑛(𝛽𝑚𝑎)]𝐷𝑚𝑛
(1)

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇1

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + 2𝑖𝑘𝑚𝛽𝑚𝜇1𝐽𝑛(𝛽𝑚𝑎)]𝐸𝑚𝑛

(1)

+ [−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇1

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + 2𝑖𝑘𝑚𝛽𝑚𝜇1𝑌𝑛(𝛽𝑚𝑎)]𝐹𝑚𝑛

(1)

=
1

𝑎𝑏
∑ 𝐾𝑟𝑤 {[−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)]𝐴𝑠𝑛

(1)
+ [−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)] 𝐵𝑠𝑛

(1)

∞

𝑠=−∞

+
𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)𝐶𝑠𝑛 +

𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)𝐷𝑠𝑛

(1)
+ 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛

(1)
+ 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛

(1)
 } 𝑑𝑚−𝑠

+𝐾𝑟𝑣 {−
𝑛

𝑎
𝐽𝑛(𝛼𝑠𝑎)𝐴𝑠𝑛

(1) −
𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)𝐵𝑠𝑛

(1) + [𝛽𝑠𝐽𝑛+1(𝛽𝑠𝑎) −
𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)] 𝐶𝑠𝑛

(1)

+[𝛽𝑠𝑌𝑛+1(𝛽𝑠𝑎) −
𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)]𝐷𝑠𝑛

(1)
+ 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛

(1)
+ 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛

(1)
} 𝑑𝑚−𝑠

 

(4.4.41) 
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[
2𝑛𝛼𝑚𝜇1

𝑎
𝐽𝑛+1(𝛼𝑚𝑎) −

2𝑛(𝑛 − 1)𝜇1
𝑎2

𝐽𝑛(𝛼𝑚𝑎)]𝐴𝑚𝑛
(1)

+[
2𝑛𝛼𝑚𝜇1

𝑎
𝑌𝑛+1(𝛼𝑚𝑎) −

2𝑛(𝑛 − 1)𝜇1
𝑎2

𝑌𝑛(𝛼𝑚𝑎)] 𝐵𝑚𝑛
(1)

+[−
𝛽𝑚𝜇1
𝑎

𝐽𝑛+1(𝛽𝑚𝑎) + (𝛽𝑚
2 𝜇1 −

2𝑛(𝑛 − 1)𝜇1
𝑎2

) 𝐽𝑛(𝛽𝑚𝑎)] 𝐶𝑚𝑛
(1)

+[−
𝛽𝑚𝜇1
𝑎

𝑌𝑛+1(𝛽𝑚𝑎) + (𝛽𝑚
2 𝜇1 −

2𝑛(𝑛 − 1)𝜇1
𝑎2

)𝑌𝑛(𝛽𝑚𝑎)]𝐷𝑚𝑛
(1)

+ [−
2(𝑛 + 1)𝑖𝑘𝑚𝜇1

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + 𝑖𝑘𝑚𝛽𝑚𝜇1𝐽𝑛(𝛽𝑚𝑎)]𝐸𝑚𝑛

(1)

+[−
2(𝑛 + 1)𝑖𝑘𝑚𝜇1

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + 𝑖𝑘𝑚𝛽𝑚𝜇1𝑌𝑛(𝛽𝑚𝑎)]𝐹𝑚𝑛

(1)

=
1

𝑎𝑏
∑ 𝐾𝜃𝑣 {−

𝑛

𝑎
𝐽𝑛(𝛼𝑠𝑎)𝐴𝑠𝑛

(1) −
𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)𝐵𝑠𝑛

(1) + [𝛽𝑠𝐽𝑛+1(𝛽𝑠𝑎) −
𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)] 𝐶𝑠𝑛

(1)

∞

𝑠=−∞

+ [𝛽𝑠𝑌𝑛+1(𝛽𝑠𝑎) −
𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)]𝐷𝑠𝑛

(1) + 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛
(1) + 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛

(1)} 𝑑𝑚−𝑠

𝐾𝑟𝑤 {[−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +
𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)] 𝐴𝑠𝑛

(1) + [−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +
𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)] 𝐵𝑠𝑛

(1)

+
𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)𝐶𝑠𝑛

(1) +
𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)𝐷𝑠𝑛

(1) + 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛
(1) + 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛

(1) } 𝑑𝑚−𝑠

 

(4.4.42) 

[−2𝑖𝑘𝑚𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑎) +
2𝑛𝑖𝑘𝑚𝜇1

𝑎
𝐽𝑛(𝛼𝑚𝑎)] 𝐴𝑚𝑛

(1)

+[−2𝑖𝑘𝑚𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑎) +
2𝑛𝑖𝑘𝑚𝜇1

𝑎
𝑌𝑛(𝛼𝑚𝑎)]𝐵𝑚𝑛

(1)

+ [
𝑛𝑖𝑘𝑚𝜇1
𝑎

𝐽𝑛(𝛽𝑚𝑎)] 𝐶𝑚𝑛 + [
𝑛𝑖𝑘𝑚𝜇1
𝑎

𝑌𝑛(𝛽𝑚𝑎)]𝐷𝑚𝑛
(1)

+ [𝜇1(𝛽𝑚
2 − 𝑘𝑚

2 )𝐽𝑛+1(𝛽𝑚𝑎) −
𝑛𝛽𝑚𝜇1
𝑎

𝐽𝑛(𝛽𝑚𝑎)] 𝐸𝑚𝑛
(1)

+[𝜇1(𝛽𝑚
2 − 𝑘𝑚

2 )𝑌𝑛+1(𝛽𝑚𝑎) −
𝑛𝛽𝑚𝜇1
𝑎

𝑌𝑛(𝛽𝑚𝑎)]𝐹𝑚𝑛
(1)

=
1

𝑎𝑏
∑ 𝐾𝑟𝑤 {[−𝛼𝑠𝐽𝑛+1(𝛼𝑠𝑎) +

𝑛

𝑟
𝐽𝑛(𝛼𝑠𝑎)] 𝐴𝑠𝑛

(1) + [−𝛼𝑠𝑌𝑛+1(𝛼𝑠𝑎) +
𝑛

𝑎
𝑌𝑛(𝛼𝑠𝑎)] 𝐵𝑠𝑛

(1)

∞

𝑠=−∞

+
𝑛

𝑎
𝐽𝑛(𝛽𝑠𝑎)𝐶𝑠𝑛

(1) +
𝑛

𝑎
𝑌𝑛(𝛽𝑠𝑎)𝐷𝑠𝑛

(1)  + 𝑖𝑘𝑠𝐽𝑛+1(𝛽𝑠𝑎)𝐸𝑠𝑛
(1) + 𝑖𝑘𝑠𝑌𝑛+1(𝛽𝑠𝑎)𝐹𝑠𝑛

(1) } 𝑑𝑚−𝑠

 

(4.4.43) 
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[
2𝛼𝑚

(1)𝜇1
𝑐

𝐽𝑛+1(𝛼𝑚
(1)𝑐) + (

2𝑛(𝑛 − 1)𝜇1
𝑐2

− 𝛼𝑚
2(1)𝜆1 − 2𝛼𝑚

2(1)𝜇1 − 𝑘𝑧𝑚
2 𝜆1) 𝐽𝑛(𝛼𝑚

(1)𝑐)] 𝐴𝑚𝑛
(1)

+[
2𝛼𝑚

(1)𝜇1
𝑐

𝑌𝑛+1(𝛼𝑚
(1)𝑐) + (

2𝑛(𝑛 − 1)𝜇1
𝑐2

− 𝛼𝑚
2(1)𝜆1 − 2𝛼𝑚

2(1)𝜇1 − 𝑘𝑧𝑚
2 𝜆1)𝑌𝑛(𝛼𝑚𝑐)]𝐵𝑚𝑛

(1)

+[−
2𝑛𝛽𝑚𝜇1

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) +

2𝑛(𝑛 − 1)𝜇1
𝑐2

𝐽𝑛(𝛽𝑚𝑐)] 𝐶𝑚𝑛
(1)

+ [−
2𝑛𝛽𝑚𝜇1

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) +

2𝑛(𝑛 − 1)𝜇1
𝑐2

𝑌𝑛(𝛽𝑚𝑐)] 𝐷𝑚𝑛
(1)

+ [−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇1

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) + 2𝑖𝑘𝑚𝛽𝑚𝜇1𝐽𝑛(𝛽𝑚𝑐)] 𝐸𝑚𝑛

(1)

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇1

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) + 2𝑖𝑘𝑚𝛽𝑚𝜇1𝑌𝑛(𝛽𝑚𝑐)] 𝐹𝑚𝑛

(1)

= [
2𝛼𝑚

(2)𝜇2
𝑐

𝐽𝑛+1(𝛼𝑚
(2)𝑐) + (

2𝑛(𝑛 − 1)𝜇2
𝑐2

− 𝛼𝑚
(2)2𝜆2 − 2𝛼𝑚

2(2)𝜇2 − 𝑘𝑧𝑚
2 𝜆2) 𝐽𝑛(𝛼𝑚

(2)𝑐)] 𝐴𝑚𝑛
(2)

+[
2𝛼𝑚

(2)𝜇2
𝑐

𝑌𝑛+1(𝛼𝑚
(2)𝑐) + (

2𝑛(𝑛 − 1)𝜇2
𝑐2

− 𝛼𝑚
(2)2𝜆2 − 2𝛼𝑚

2(2)𝜇2 − 𝑘𝑧𝑚
2 𝜆2)𝑌𝑛(𝛼𝑚

(2)𝑐)] 𝐵𝑚𝑛
(2)

+ [−
2𝑛𝛽𝑚𝜇2

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) +

2𝑛(𝑛 − 1)𝜇2
𝑐2

𝐽𝑛(𝛽𝑚𝑐)] 𝐶𝑚𝑛
(2)

+[−
2𝑛𝛽𝑚𝜇2

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) +

2𝑛(𝑛 − 1)𝜇2
𝑐2

𝑌𝑛(𝛽𝑚𝑐)]𝐷𝑚𝑛
(2)

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇2

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) + 2𝑖𝑘𝑚𝛽𝑚𝜇2𝐽𝑛(𝛽𝑚𝑐)] 𝐸𝑚𝑛

(2)

+ [−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇2

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) + 2𝑖𝑘𝑚𝛽𝑚𝜇2𝑌𝑛(𝛽𝑚𝑐)] 𝐹𝑚𝑛

(2)

 

(4.4.45) 
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[
2𝑛𝛼𝑚𝜇1

𝑐
𝐽𝑛+1(𝛼𝑚𝑐) −

2𝑛(𝑛 − 1)𝜇1
𝑐2

𝐽𝑛(𝛼𝑚𝑐)] 𝐴𝑚𝑛
(1)

+[
2𝑛𝛼𝑚𝜇1

𝑐
𝑌𝑛+1(𝛼𝑚𝑐) −

2𝑛(𝑛 − 1)𝜇1
𝑐2

𝑌𝑛(𝛼𝑚𝑐)] 𝐵𝑚𝑛
(1)

+ [−
𝛽𝑚𝜇1
𝑐

𝐽𝑛+1(𝛽𝑚𝑐) + (𝛽𝑚
2 𝜇1 −

2𝑛(𝑛 − 1)𝜇1
𝑐2

) 𝐽𝑛(𝛽𝑚𝑐)] 𝐶𝑚𝑛
(1)

+[−
𝛽𝑚𝜇1
𝑐

𝑌𝑛+1(𝛽𝑚𝑐) + (𝛽𝑚
2 𝜇1 −

2𝑛(𝑛 − 1)𝜇1
𝑐2

)𝑌𝑛(𝛽𝑚𝑐)]𝐷𝑚𝑛
(1)

+[−
2(𝑛 + 1)𝑖𝑘𝑚𝜇1

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) + 𝑖𝑘𝑚𝛽𝑚𝜇1𝐽𝑛(𝛽𝑚𝑐)] 𝐸𝑚𝑛

(1)

+[−
2(𝑛 + 1)𝑖𝑘𝑚𝜇1

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) + 𝑖𝑘𝑚𝛽𝑚𝜇1𝑌𝑛(𝛽𝑚𝑐)] 𝐹𝑚𝑛

(1)

= [
2𝑛𝛼𝑚𝜇2

𝑐
𝐽𝑛+1(𝛼𝑚𝑐) −

2𝑛(𝑛 − 1)𝜇2
𝑐2

𝐽𝑛(𝛼𝑚𝑐)] 𝐴𝑚𝑛
(2)

+[
2𝑛𝛼𝑚𝜇2

𝑐
𝑌𝑛+1(𝛼𝑚𝑐) −

2𝑛(𝑛 − 1)𝜇2
𝑐2

𝑌𝑛(𝛼𝑚𝑐)]𝐵𝑚𝑛
(2)

+[−
𝛽𝑚𝜇2
𝑐

𝐽𝑛+1(𝛽𝑚𝑐) + (𝛽𝑚
2 𝜇2 −

2𝑛(𝑛 − 1)𝜇2
𝑐2

) 𝐽𝑛(𝛽𝑚𝑐)] 𝐶𝑚𝑛
(2)

+[−
𝛽𝑚𝜇2
𝑐

𝑌𝑛+1(𝛽𝑚𝑐) + (𝛽𝑚
2 𝜇2 −

2𝑛(𝑛 − 1)𝜇2
𝑐2

)𝑌𝑛(𝛽𝑚𝑐)]𝐷𝑚𝑛
(2)

+ [−
2(𝑛 + 1)𝑖𝑘𝑚𝜇2

𝑐
𝐽𝑛+1(𝛽𝑚𝑐) + 𝑖𝑘𝑚𝛽𝑚𝜇2𝐽𝑛(𝛽𝑚𝑐)] 𝐸𝑚𝑛

(2)

+[−
2(𝑛 + 1)𝑖𝑘𝑚𝜇2

𝑐
𝑌𝑛+1(𝛽𝑚𝑐) + 𝑖𝑘𝑚𝛽𝑚𝜇2𝑌𝑛(𝛽𝑚𝑐)] 𝐹𝑚𝑛

(2) (4.4.46)
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[−2𝑖𝑘𝑚𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑐) +
2𝑛𝑖𝑘𝑚𝜇1

𝑐
𝐽𝑛(𝛼𝑚𝑐)] 𝐴𝑚𝑛

(1)

+[−2𝑖𝑘𝑚𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑐) +
2𝑛𝑖𝑘𝑚𝜇1

𝑐
𝑌𝑛(𝛼𝑚𝑐)] 𝐵𝑚𝑛

(1)

+ [
𝑛𝑖𝑘𝑚𝜇1
𝑐

𝐽𝑛(𝛽𝑚𝑐)] 𝐶𝑚𝑛 + [
𝑛𝑖𝑘𝑚𝜇1
𝑐

𝑌𝑛(𝛽𝑚𝑐)]𝐷𝑚𝑛
(1)

+ [𝜇1(𝛽𝑚
2 − 𝑘𝑚

2 )𝐽𝑛+1(𝛽𝑚𝑐) −
𝑛𝛽𝑚𝜇1
𝑐

𝐽𝑛(𝛽𝑚𝑐)] 𝐸𝑚𝑛
(1)

+[𝜇1(𝛽𝑚
2 − 𝑘𝑚

2 )𝑌𝑛+1(𝛽𝑚𝑐) −
𝑛𝛽𝑚𝜇1
𝑐

𝑌𝑛(𝛽𝑚𝑐)]𝐹𝑚𝑛
(1)

= [−2𝑖𝑘𝑚𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑐) +
2𝑛𝑖𝑘𝑚𝜇2

𝑐
𝐽𝑛(𝛼𝑚𝑐)] 𝐴𝑚𝑛

(2)

+[−2𝑖𝑘𝑚𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑐) +
2𝑛𝑖𝑘𝑚𝜇2

𝑐
𝑌𝑛(𝛼𝑚𝑐)] 𝐵𝑚𝑛

(2)

+[
𝑛𝑖𝑘𝑚𝜇2
𝑐

𝐽𝑛(𝛽𝑚𝑐)] 𝐶𝑚𝑛 + [
𝑛𝑖𝑘𝑚𝜇2
𝑐

𝑌𝑛(𝛽𝑚𝑐)]𝐷𝑚𝑛
(2)

+[𝜇2(𝛽𝑚
2 − 𝑘𝑚

2 )𝐽𝑛+1(𝛽𝑚𝑐) −
𝑛𝛽𝑚𝜇2
𝑐

𝐽𝑛(𝛽𝑚𝑐)] 𝐸𝑚𝑛
(2)

+ [𝜇2(𝛽𝑚
2 − 𝑘𝑚

2 )𝑌𝑛+1(𝛽𝑚𝑐) −
𝑛𝛽𝑚𝜇2
𝑐

𝑌𝑛(𝛽𝑚𝑐)] 𝐹𝑚𝑛
(2)

 

(4.4.47) 

 

[−𝛼𝑚
(1)𝐽𝑛+1(𝛼𝑚

(1)𝑐) +
𝑛

𝑐
𝐽𝑛(𝛼𝑚

(1)𝑐)] 𝐴𝑚𝑛
(1) + [−𝛼𝑚

(1)𝑌𝑛+1(𝛼𝑚
(1)𝑐) +

𝑛

𝑐
𝑌𝑛(𝛼𝑚

(1)𝑐)] 𝐵𝑚𝑛
(1)

+
𝑛

𝑐
𝐽𝑛(𝛽𝑚

(1)𝑐)𝐶𝑚𝑛
(1) +

𝑛

𝑐
𝑌𝑛(𝛽𝑚

(1)𝑐)𝐷𝑚𝑛
(1) + 𝑖𝑘𝑚𝐽𝑛+1(𝛽𝑚

(1)𝑐)𝐸𝑚𝑛
(1) + 𝑖𝑘𝑚𝑌𝑛+1(𝛽𝑚

(1)𝑐)𝐹𝑚𝑛
(1)

= [−𝛼𝑚
(2)𝐽𝑛+1(𝛼𝑚

(2)𝑐) +
𝑛

𝑐
𝐽𝑛(𝛼𝑚

(2)𝑐)] 𝐴𝑚𝑛
(2) + [−𝛼𝑚

(2)𝑌𝑛+1(𝛼𝑚
(2)𝑐) +

𝑛

𝑐
𝑌𝑛(𝛼𝑚

(2)𝑐)] 𝐵𝑚𝑛
(2)

+
𝑛

𝑐
𝐽𝑛(𝛽𝑚

(2)𝑐)𝐶𝑚𝑛
(2) +

𝑛

𝑐
𝑌𝑛(𝛽𝑚

(2)𝑐)𝐷𝑚𝑛
(2) + 𝑖𝑘𝑚𝐽𝑛+1(𝛽𝑚

(2)𝑐)𝐸𝑚𝑛
(2) + 𝑖𝑘𝑚𝑌𝑛+1(𝛽𝑚

(2)𝑐)𝐹𝑚𝑛
(2)

 

(4.4.47) 

−
𝑛

𝑐
𝐽𝑛(𝛼𝑚

(1)𝑐)𝐴𝑚𝑛
(1) −

𝑛

𝑐
𝑌𝑛(𝛼𝑚

(1)𝑐)𝐵𝑚𝑛
(1) + [𝛽𝑚

(1)𝐽𝑛+1(𝛽𝑚
(1)𝑐) −

𝑛

𝑐
𝐽𝑛(𝛽𝑚

(1)𝑐)] 𝐶𝑚𝑛
(1)

+ [𝛽𝑚
(1)𝑌𝑛+1(𝛽𝑚

(1)𝑐) −
𝑛

𝑐
𝑌𝑛(𝛽𝑚

(1)𝑐)]𝐷𝑚𝑛
(1) + 𝑖𝑘𝑚𝐽𝑛+1(𝛽𝑚

(1)𝑐)𝐸𝑚𝑛
(1) + 𝑖𝑘𝑚𝑌𝑛+1(𝛽𝑚

(1)𝑐)𝐹𝑚𝑛
(1)

= −
𝑛

𝑐
𝐽𝑛(𝛼𝑚

(1)𝑐)𝐴𝑚𝑛
(1) −

𝑛

𝑐
𝑌𝑛(𝛼𝑚

(1)𝑐)𝐵𝑚𝑛
(1) + [𝛽𝑚

(1)𝐽𝑛+1(𝛽𝑚
(1)𝑐) −

𝑛

𝑐
𝐽𝑛(𝛽𝑚

(1)𝑐)] 𝐶𝑚𝑛
(1)

+ [𝛽𝑚
(1)𝑌𝑛+1(𝛽𝑚

(1)𝑐) −
𝑛

𝑐
𝑌𝑛(𝛽𝑚

(1)𝑐)]𝐷𝑚𝑛
(1) + 𝑖𝑘𝑚𝐽𝑛+1(𝛽𝑚

(1)𝑐)𝐸𝑚𝑛
(1) + 𝑖𝑘𝑚𝑌𝑛+1(𝛽𝑚

(1)𝑐)𝐹𝑚𝑛
(1)

 

(4.4.48) 
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𝑖𝑘𝑚𝐽𝑛(𝛼𝑚
(1)𝑐)𝐴𝑚𝑛

(1) + 𝑖𝑘𝑚𝑌𝑛(𝛼𝑚
(1)
𝑐)𝐵𝑚𝑛

(1) − 𝛽𝑚
(1)𝐽𝑛(𝛽𝑚

(1)𝑐)𝐸𝑚𝑛
(1) − 𝛽𝑚

(1)𝑌𝑛(𝛽𝑚
(1)𝑐)𝐹𝑚𝑛

(1)

= 𝑖𝑘𝑚𝐽𝑛(𝛼𝑚
(2)𝑐)𝐴𝑚𝑛

(2) + 𝑖𝑘𝑚𝑌𝑛(𝛼𝑚
(2)
𝑐)𝐵𝑚𝑛

(2) − 𝛽𝑚
(2)𝐽𝑛(𝛽𝑚

(2)𝑐)𝐸𝑚𝑛
(2) − 𝛽𝑚

(2)𝑌𝑛(𝛽𝑚
(2)𝑐)𝐹𝑚𝑛

(2) (4.4.49)
 

 

[
2𝛼𝜇2
𝑐′

𝐽𝑛+1(𝛼𝑚𝑐′) + (
2𝑛(𝑛 − 1)𝜇2

𝑐′2
− 𝛼𝑚

2 𝜆2 − 2𝛼𝑚
2 𝜇2 − 𝑘𝑧𝑚

2 𝜆2) 𝐽𝑛(𝛼𝑚𝑐′) + ⋯

+(−𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑐′) +
𝑛

𝑐′
𝐽𝑛(𝛼𝑚𝑐′)) 𝛿𝑃𝑓𝑚] 𝐴𝑚𝑛

(2)

+[
2𝛼𝜇2
𝑐′

𝑌𝑛+1(𝛼𝑚𝑐′) + (
2𝑛(𝑛 − 1)𝜇2

𝑐′2
− 𝛼𝑚

2 𝜆2 − 2𝛼𝑚
2 𝜇2 − 𝑘𝑧𝑚

2 𝜆2)𝑌𝑛(𝛼𝑚𝑐′) + ⋯

+(−𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑐′) +
𝑛

𝑐′
𝑌𝑛(𝛼𝑚𝑐′)) 𝛿𝑃𝑓𝑚] 𝐵𝑚𝑛

(2)

+ [−
2𝑛𝛽𝑚𝜇2
𝑐′

𝐽𝑛+1(𝛽𝑚𝑐′) +
2𝑛(𝑛 − 1)𝜇2

𝑐′2
𝐽𝑛(𝛽𝑚𝑐′) +

𝑛

𝑐′
𝐽𝑛(𝛽𝑚𝑐′)𝛿𝑃𝑓𝑚] 𝐶𝑚𝑛

(2)

+ [−
2𝑛𝛽𝑚𝜇2
𝑐′

𝑌𝑛+1(𝛽𝑚𝑐′) +
2𝑛(𝑛 − 1)𝜇2

𝑐′2
𝑌𝑛(𝛽𝑚𝑐′) +

𝑛

𝑐′
𝑌𝑛(𝛽𝑚𝑐′)𝛿𝑃𝑓𝑚]𝐷𝑚𝑛

(2)

+[−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇2

𝑐′
𝐽𝑛+1(𝛽𝑚𝑐

′) + 2𝑖𝑘𝑚𝛽𝑚𝜇2𝐽𝑛(𝛽𝑚𝑐′) + 𝑖𝑘𝑚𝐽𝑛+1(𝛽𝑚𝑐′)𝛿𝑃𝑓𝑚] 𝐸𝑚𝑛
(2)

+ [−
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇2

𝑐′
𝑌𝑛+1(𝛽𝑚𝑐

′) + 2𝑖𝑘𝑚𝛽𝑚𝜇2𝑌𝑛(𝛽𝑚𝑐′) + 𝑖𝑘𝑚𝑌𝑛+1(𝛽𝑚𝑐′)𝛿𝑃𝑓𝑚] 𝐹𝑚𝑛
(2)

= −𝑃0𝜀𝑛𝑖
𝑛 [𝐽𝑛(𝑘𝑟𝑐′) −

𝑘𝑟(𝐽𝑛−1(𝑘𝑟𝑐′) − 𝐽𝑛+1(𝑘𝑟𝑐′))𝐻𝑛(𝛾𝑚𝑐′)

𝛾𝑚(𝐻𝑛−1(𝛾𝑚𝑐′) − 𝐻𝑛+1(𝛾𝑚𝑐′))
] 𝛿𝑚0 (4.4.50)

 

 

[
2𝑛𝛼𝜇2
𝑐′

𝐽𝑛+1(𝛼𝑚𝑐′) −
2𝑛(𝑛 − 1)𝜇2

𝑐′2
𝐽𝑛(𝛼𝑚𝑐′)] 𝐴𝑚𝑛

(2)

+ [
2𝑛𝛼𝜇2
𝑐′

𝑌𝑛+1(𝛼𝑚𝑐′) −
2𝑛(𝑛 − 1)𝜇2

𝑐′2
𝑌𝑛(𝛼𝑚𝑐′)]𝐵𝑚𝑛

(2)

+ [−
𝛽𝑚𝜇2
𝑐′

𝐽𝑛+1(𝛽𝑚𝑐′) + (𝛽𝑚
2 𝜇2 −

2𝑛(𝑛 − 1)𝜇2
𝑐′2

) 𝐽𝑛(𝛽𝑚𝑐′)] 𝐶𝑚𝑛
(2)

+[−
𝛽𝑚𝜇2
𝑐′

𝑌𝑛+1(𝛽𝑚𝑐′) + (𝛽𝑚
2 𝜇2 −

2𝑛(𝑛 − 1)𝜇2
𝑐′2

)𝑌𝑛(𝛽𝑚𝑐′)] 𝐷𝑚𝑛
(2)

+[−
2(𝑛 + 1)𝑖𝑘𝑚𝜇2

𝑐′
𝐽𝑛+1(𝛽𝑚𝑐′) + 𝑖𝑘𝑚𝛽𝑚𝜇2𝐽𝑛(𝛽𝑚𝑐′)] 𝐸𝑚𝑛

(2)

+ [−
2(𝑛 + 1)𝑖𝑘𝑚𝜇2

𝑐′
𝑌𝑛+1(𝛽𝑚𝑐′) + 𝑖𝑘𝑚𝛽𝑚𝜇2𝑌𝑛(𝛽𝑚𝑐′)] 𝐹𝑚𝑛

(2)
= 0 (4.4.51)
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[−2𝑖𝑘𝑚𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑐′) +
2𝑛𝑖𝑘𝑚𝜇2

𝑐′
𝐽𝑛(𝛼𝑚𝑐′)] 𝐴𝑚𝑛

(2)

+ [−2𝑖𝑘𝑚𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑐′) +
2𝑛𝑖𝑘𝑚𝜇2

𝑐′
𝑌𝑛(𝛼𝑚𝑐′)] 𝐵𝑚𝑛

(2)

+ [
𝑛𝑖𝑘𝑚𝜇2
𝑐′

𝐽𝑛(𝛽𝑚𝑐′)] 𝐶𝑚𝑛
(2)
+ [
𝑛𝑖𝑘𝑚𝜇2
𝑐′

𝑌𝑛(𝛽𝑚𝑐′)]𝐷𝑚𝑛
(2)

+ [𝜇2(𝛽𝑚
2 − 𝑘𝑚

2 )𝐽𝑛+1(𝛽𝑚𝑐′) −
𝑛𝛽𝑚𝜇2
𝑐′

𝐽𝑛(𝛽𝑚𝑐′)] 𝐸𝑚𝑛
(2)

+[𝜇2(𝛽𝑚
2 − 𝑘𝑚

2 )𝑌𝑛+1(𝛽𝑚𝑐′) −
𝑛𝛽𝑚𝜇2
𝑐′

𝑌𝑛(𝛽𝑚𝑐′)] 𝐹𝑚𝑛
(2)
= 0 (4.4.52)

 

For each (m, n) index, Equations 4.4.41 – 4.4.52 are grouped together to form a 12-
dimensional matrix equation, with unknown wave coefficients are grouped together into a 
vector, x 

𝑨𝑚𝑛𝒙𝑚𝑛 = −
1

𝑎𝑏
∑ 𝒁𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

−
1

𝑎𝑏
∑ 𝑻𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

−
1

𝑎𝑏
∑ 𝑹𝑚−𝑠𝒙𝑠𝑛

∞

𝑠=−∞

+ 𝒇𝛿𝑚0 (4.4.53) 

Amn is a 12x12 matrix that describes the shell dynamics for the (m, n) mode in which the rows 
represent the 12 boundary conditions and the columns are multiplied with the 12-element vector 
of unknown coefficients, xmn 

𝒙𝒎𝒏 = [𝐴𝑚𝑛
(1)
, 𝐵𝑚𝑛

(1)
, 𝐶𝑚𝑛

(1)
, 𝐷𝑚𝑛

(1)
, 𝐸𝑚𝑛

(1)
, 𝐹𝑚𝑛

(1)
, 𝐴𝑚𝑛

(2)
, 𝐵𝑚𝑛

(2)
, 𝐶𝑚𝑛

(2)
, 𝐷𝑚𝑛

(2)
, 𝐸𝑚𝑛

(2)
, 𝐹𝑚𝑛

(2)
]
𝑇

(4.4.54) 

For this system, the 12x12 stiffener matrices (Rm-s, Tm-s, Zm-s) are mostly zeros with the non-
zero elements given by 4.2.18 – 4.2.20, and external excitation f was presented previously as 
4.3.19 for the fluid plane wave. Each (m, n) mode of 4.4.53 is grouped into a global matrix 
equation of circumferential modes, n, 

�̂�𝒏𝒙𝒏 = −
1

𝑎𝑏
�̂�𝒏�̂�𝑛 −

1

𝑎𝑏
�̂�𝒏�̂�𝑛 −

1

𝑎𝑏
�̂�𝒏�̂�𝒏 + �̂�𝒏 (4.4.55) 

where each component has the exact structure of 2.4.46. To determine the n-mode vector of 
coefficients �̂�𝐧, 4.4.55 must be solved. 

�̂�𝒏 = [�̂�𝒏 +
1

𝑎𝑏
�̂�𝒏 +

1

𝑎𝑏
�̂�𝒏 +

1

𝑎𝑏
�̂�𝒏]

−1

�̂�𝒏 (4.4.56) 

Finally, the solution of 4.4.56 for each n-mode is used with 4.4.3 – 4.4.8 to construct the 
displacement responses of the entire shell and coating. 

4.4.4 Model Validation 

 Comparing the coated elastic system with the reference thin-shell model is a bit more 
complicated than with the prior models. The thin-shell formulation can’t support additional 
bodies, so the coated elastic model must be configured to match a solid single shell. Using steel 
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material properties for the coating and setting the thicknesses to be equal and half of the 
reference shell, allows the new model to be validated. Parameters used for validation are 
displayed in Table 4.4.1. 

Property Symbol Value Units 

Young’s Modulus E 210x109 N/m2 

Poisson’s Ratio ν 0.30 None 

Structural Damping η 0.00 None 

Density ρ 7850 kg/m3 

Lamé 1st Parameter λ 1.212 x1011 N/m2 

Shear Modulus μ, G 8.077x1010 N/m2 

Thickness (Shell) h 0.0005 m 

Thickness (Coating) hc 0.0005 m 

Table 4.4.1 – Material and Geometry Properties for Shell and Coating 

The combined thickness of the new model is h = 0.001m, and the material properties are all 
identical; rib material is steel and the same as above.  

 Following the validation procedure from the prior models, both a ring loading and 
acoustic wave are used. Applying a ring loading with zero wavenumber (k = 0) at low frequency 
excites the new and reference systems as shown in Figures 4.4.3 and 4.4.4. 
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Figure 4.4.3 – Comparison of radial displacement of reference and coated-elastic system 

excited by 10, 50 and 90Hz Ring Loading (k = 0), mpts = 31 
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Figure 4.4.4 – Comparison of axial displacement of reference and coated-elastic system 

excited by 10, 50 and 90Hz Ring Loading (k = 0), mpts = 31 

It is important that the radius of the output displacement fields matches that of the reference 
model, because the elastic outputs vary significantly across the thickness. The elastic model has 
been configured to output responses at the nominal shell radius, r = 4.5m, which is the nominal 
radius of the thin-shell system. The elastic model matches the reference quite well. The acoustic 
wave response is shown in Figure 4.4.5. 
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Figure 4.4.5 – Thin and Thick-shell radial (top), tangential (mid), and axial (bottom) 

Normalized Error in dB for plane-wave: 50Hz, φi = π/12, mpts = 31, npts = 7. Rib is located 
between the left edge (z = 0) and the red dashed line. 

Normalized errors between the reference thin-shell model (with fluid-loading) and the coated 
elastic model are less than -40dB throughout each displacement field, representing less than 1% 
error. There are 4 nodes within the radial displacement response which cause artificially high 
errors along the slice θ = 130deg and θ = 230deg. Refer to Figure 4.3.6 for a plot of the response 
along these slices. It is a good idea to check the convergence of the coated validation model, and 
thus the normalized magnitudes of the displacement coefficients are shown for each axial and 
circumferential mode. 
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Figure 4.4.6 – Normalized magnitude of displacement modes for each circumferential 

index, n and axial index, m 

As seen with the base model (Figure 3.1.25), the largest modes are located at m = 0, n = 0, and 
the magnitudes have dropped considerably at the outer edges, indicating that the simulation has 
converged. Finally, the scattered pressure errors are displayed. 
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Figure 4.4.7 – Thin and Thick-shell radiated pressure (top) and reflected pressure (bottom) 
Normalized Error in dB for plane-wave: 50Hz, φi = π/12, mpts = 31, npts = 7. Rib is located 

between the left edge (z = 0) and the red dashed line. 

Scattered pressure error values are at least -70dB, less than 0.05%. Considering this, the coated 
elastic model with fluid-loading and Timoshenko beam-ribs of finite width is considered to be 
validated. 
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Chapter 5 
Coated Elastic Shell Results 
 

 

 Combining each of the features described in Chapter 4, Model 5 adds an acoustic coating, 
represented as a solid elastic body. Coating material properties are quite different from the steel 
shell, and are portrayed below. The system is excited by ring load and acoustic wave inputs, and 
the resultant displacement and pressure fields are described. Backscatter pressure is compared 
to the fluid-loaded Model 4. 

 

5.1 Final Model Results 

5.1.1 Material and Geometric Properties 

 With the validation of each model fulfilled, it is time to discuss the behavior of the coated 
elastic fluid-loaded beam-rib model with real parameters. The shell and rib materials are the 
same as the base model, but the coating now represents a urethane polymer, and has a much 
larger thickness than before. Tables 5.1.1 display the material properties for the coating 
subsystem. 
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Property Symbol Value Units 

Young’s Modulus E 158x106 N/m2 

Poisson’s Ratio ν 0.487 None 

Structural Damping (λ) η1 0.01 None 

Structural Damping (μ) η2 0.10 None 

Density ρ 1100 kg/m3 

Lamé 1st Parameter λ 2.11x109 N/m2 

Shear Modulus μ, G 53.2x106 N/m2 

Table 5.1.1 – Material Properties for Coating 

Urethane is obviously much softer and less dense than steel, but it also has significant structural 
damping. Structural damping is handled differently compared to steel, because it is distinct for 
dilatational waves and shear waves. Equation 5.1.1 and 5.1.2 give new modified expressions for 
λ and μ for the coating 

𝜆𝑐 = 𝜆(1 − 𝑖𝜂1) (5.1.1) 

𝜇𝑐 = 𝜇(1 − 𝑖𝜂2) (5.1.2) 

while the coating Young’s Modulus is simply the nominal value given in Table 5.1.1. Likewise, the 
geometry of the coating is far different than that used for validation. 

Property Symbol Value Units 

Inner Radius c 4.5254 m 

Thickness hc 0.0762 m 

Outer Radius c’ 4.6016 m 

Table 5.1.2 – Dimensional Properties for Coating 

Coating thickness is 3 times that of the shell thickness, leading to an overall system thickness of 
0.1016m. 

5.1.2 Ring Loading 

 With the parameters established, the results from both types of excitations can be 
investigated. There is no need to check the convergence for these runs; the validation simulation 
has a much more aggressive response due to the soft shell, and thus requires more modes to 
achieve sufficient results. Applying the ring load with zero wavenumber results in radial and axial 
displacement fields at the outer coating surface shown in Figures 5.1.1 and 5.1.2. 



 

122 
 

 
Figure 5.1.1 – Radial surface displacement response of coated elastic model excited by ring 

loading (k = 0) at 50, 1000, 5000Hz 

 
Figure 5.1.2 – Axial surface displacement response of coated elastic model excited by ring 

loading (k = 0) at 50, 1000, 5000Hz 
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As expected the response is symmetric inside the rib region, and also outside. There is much 
spatial variation in the axial response. Amplitudes are certainly less than the base model (Figures 
3.1.26 and 3.1.27), but this expected due to the effects of the external fluid.  

The coating has an effect on the attenuation of waves closer to the surface, but this is 
hard to see in a single trajectory. Figure 5.1.3 displays a contour of the radial displacement 
through the thickness. 

  
Figure 5.1.3 – Radial displacement field of coated system for cross-section through the 
cylinder thickness at angle θ = 0, for ring loading (k = 0, f = 50Hz); red lines are the rib 

The figure above can be thought of as a slice through the center of the cylinder along the z axis; 
it cuts the system into 2 halves and the upper half is shown, with the space between the plots 
representing the shared interface. The coating thickness is 3x larger than the shell thickness, so 
the two subplots are to relative scale. Since the ring loading is symmetric, the other angular 
positions are identical. Though the scale is small (0.5dB total), the differences is roughly 6% from 
the lower surface at r = 4.48725m to the upper surface at r = 4.5127m. However, looking at the 
axial displacement field from the same slice shows a very interesting displacement response 
shown in Figure 5.1.4. 
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Figure 5.1.4 – Axial displacement field of coated system for cross-section through the 

cylinder thickness at angle θ = 0, for ring loading (k = 0, f = 50Hz). 

Note the large difference in scale between Figure 5.1.3 and 5.1.4, both the average value and the 
range in each plot. The radial displacement field is mostly uniform across the thickness, with 
some slight variation, but the axial response shows a distinct effect from the single stiffener (0 ≤ 
z ≤ 0.025). The rib is located only at the inner shell surface (r = 4.4875m), and is represented by 
the red rectangle at z = 0. There is actually less axial attenuation at the coating outer surface (r = 
4.589m), while the smallest magnitude is found within the stiffener region, as expected. The 
vertical lines are areas of low displacement, and the middle of the shell (r = 4.5m) deforms less 
than any other radius in the system. At 5000Hz, the ring load creates a similar response (1000Hz 
response not shown). 
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Figure 5.1.5 – Radial displacement field of coated system for cross-section through the 

cylinder thickness at angle θ = 0, for ring loading (k = 0, f = 5000Hz) 

Magnitudes are more attenuated, but there is more radial variation as seen by the larger dB 
range required. Vertical lines of low deformation are now showing, where the displacement field 
near the rib is being repeated through the cylinder length. 
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Figure 5.1.6 – Axial displacement field of coated system for cross-section through the 

cylinder thickness at angle θ = 0, for ring loading (k = 0, f = 5000Hz) 

Using the same scale as Figure 5.1.4, the overall amplitude has lowered compared to the low 
frequency response. However, the same overall shape is present, with relatively little motion 
occurring within the rib section. 

5.1.3 Acoustic Wave 

 An incoming plane wave, with angle of incidence of 15 degrees from broadside, impacts 
the outer coating surface. In terms of accessing performance, both the displacement response of 
the system and the scattered radiation are important. First the displacement fields of the outer 
coating surface are shown in Figures 5.1.7 – 5.1.9. 
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Figure 5.1.7 – Coating surface radial (top), tangential (mid), and axial (bottom) 

displacement response for acoustic-wave: 50Hz, φi = 15 deg, mpts = 31, npts = 7 



 

128 
 

 
Figure 5.1.8 – Coating surface radial (top), tangential (mid), and axial (bottom) 

displacement response for acoustic-wave: 1000Hz, φi = 15 deg, mpts = 31, npts = 7 
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Figure 5.1.9 – Coating surface radial (top), tangential (mid), and axial (bottom) 

displacement response for acoustic-wave: 5000Hz, φi = 15 deg, mpts = 31, npts = 7 

Circumferential spatial waves dominate the responses at all excitation frequencies; at 50Hz there 
is a low order mode present, while at 1-5kHz the same higher order circumferential dilatational 
and shear modes dominate. Vertical bands begin to show up at 5kHz in the radial and tangential 
responses, and the axial shear mode is of higher order than seen in the base model (Figure 
3.1.30). 

 Taking a “slice” along the radius provides a view of the displacement variation within the 
thickness, analogous to Figures 5.1.3 – 5.1.6. With the acoustic input, the response is not 
symmetric along the circumferential direction; thus each angular position will produce a slice 
with a different contour. The 5000Hz response shows interesting behavior around θ = 10deg and 
is shown below. 
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Figure 5.1.10 – Radial displacement field of coated system for cross-section of cylinder 

thickness at angle θ = 10deg, for acoustic wave loading (φi = 15deg, f = 5000Hz); red lines 
represent the rib 
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Figure 5.1.11 – Tangential displacement field of coated system for cross-section of cylinder 
thickness at angle θ = 10deg, for acoustic wave loading (φi = 15deg, f = 5000Hz); red lines 

represent the rib 
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Figure 5.1.12 – Axial displacement field of coated system for cross-section of cylinder 

thickness at angle θ = 10deg, for acoustic wave loading (φi = 15deg, f = 5000Hz). Dashed 
black line represents a reference 15deg line; red lines represent the rib 

The 5000Hz acoustic wave input produces a similar radial pattern as the ring load case (Figure 
5.1.5), but the axial displacement field features a band of tiny magnitude inside the coating. This 
band appears to be angled matching the incoming wave incidence angle of 15deg. A black 
reference line is superimposed on Figure 5.1.12 to indicate the relation. The tangential field 
shows a low order circumferential shear wave dominating inside the shell that disperses into the 
coating. These slices are a unique way to explore the spatial response of the shell throughout the 
thickness, and provide insight how the coating and shell interact. 

Radiation pressure (Prad) is related to the radial motion at the outer surface; while the 
infinite-impedance pressure (Pinf) is independent of the cylinder motion. Together these pressure 
waves combine to form the scattered pressure, but they can be observed in isolation. Typically, 
the scattered pressure is measured at a single angular location relative to the object; θ = 180 deg 
is commonly referred to as “backscatter”.  
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Figure 5.1.10 – Radiated (top), and reflected (bottom) pressure response for acoustic-

wave: 50Hz, φi = 15 deg, mpts = 31, npts = 7 
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Figure 5.1.11 – Radiated (top), and reflected (bottom) pressure response for acoustic-

wave: 1000Hz, φi = 15 deg, mpts = 31, npts = 7 
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Figure 5.1.12 – Radiated (top), and reflected (bottom) pressure response for acoustic-

wave: 5000Hz, φi = 15 deg, mpts = 31, npts = 7 

Predictably, radiated pressure mirrors the radial displacement response. There is very little axial 
dependency for radiated pressure and none for reflected pressure at any excitation level. All 
variation appears to be dependent only on the angular position, θ. Consequently, Figure 5.1.13 
and 5.1.15 are more informative. 
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Figure 5.1.13 – Radiated pressure response versus angular position for acoustic-wave: φi = 

15 deg, mpts = 31, npts = 7 

 
Figure 5.1.14 – Reflected pressure response versus angular position for acoustic-wave: φi = 

15 deg, mpts = 31, npts = 7 
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The backscatter location is at 180deg and is a maximum for each excitation. Recall that this 
measurement is taken 1 meter from the outer surface of the coating. Interestingly, the infinite-
impedance pressure has slightly less magnitude at the backscatter location, but is very similar at 
θ = 0 and θ = 180deg. 

 Comparing the radiated and reflected pressures from Model 4 and 5 reveals the effect of 
the coating on the performance of the system. Figures 5.1.15 and 5.1.16 show the pressure 
responses at a radial distance of 1 meter from the nominal radius (5.5 m). 

 
Figure 5.1.15 – Comparison of radiated pressure response between Model 4 and 5 for 

acoustic-wave: φi = 15 deg, mpts = 31, npts = 7 
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Figure 5.1.16 – Comparison of reflected pressure response between Model 4 and 5 for 

acoustic-wave: φi = 15 deg, mpts = 31, npts = 7 

Lower pressure indicate the system is more difficult to detect and is acoustically quieter. This also 
has an effect on the disturbance of the environment due to vibrations of the structure. Reflected 
pressure is dependent upon the system geometry, which are equivalent for the two models 
except for the added surface area from the acoustic coating of Model 5. Therefore, it is not 
surprising that the reflected pressure is roughly the same. However, there is a substantial 
difference in radiated pressure. At the θ = 180deg angular location, the coated model pressure is 
45% lower at 50Hz, 15% lower at 1000Hz, and 55% lower at 5000Hz.  Obviously, the acoustic 
coating has a significant effect on the acoustic performance of the shell. 
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Chapter 6 
Conclusions and Future Work 
 

 

 The results and performance portrayed in Chapter 5 are discussed along with some 
possibilities of extending this project in the future. 

 

Conclusions 

 An elastic reinforced cylindrical shell model with acoustic coating, finite-length ribs, and 
fluid loading has been developed.  It has been validated using a thin-shell reference system, which 
certifies that the model behaves appropriately at low frequency and low thickness. The model is 
then adjusted to match realistic geometry, excited at high frequencies and the displacement and 
pressure responses are measured. 

There are a number of improvements relative to the thin-shell reference model: 

1.) Elastic shell requires fewer assumptions compared to the Donnell equation based 
model. This includes a displacement field dependent upon radial position, such that 
responses across the thickness are variable and affect the behavior. 

2.) Acoustic coating treated as a second elastic body inherits the advantages of elasticity 
and transmits stress to and from the shell model. Adding an attached body is restricted 
when using thin-shell approximations. 

3.) Fluid loading is incorporated into the shell dynamic equations such that the radiated 
pressure response is included as a response. The effect of the fluid on the shell is 
significant. 

4.) Beam ribs provide coupling in the radial and tangential directions and includes inertia 
that is accounted. 
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It was shown that the acoustic coating lessened the scattered pressure response by between 15 
and 60%, depending on the excitation frequency. Clearly, it has a large effect on making an 
acoustically quieter system. 

 

Future Work 

 While this study has progressed the reinforced shell to a more advanced state, there are 
still limitations present within the model that could be addressed. In particular, the Timoshenko-
beam rib model is certainly superior to linear spring and Euler-Bernoulli based models, in terms 
of applicable frequency range, but there are more advanced beam models available. Further, it 
is possible that the elasticity theory applied to the shell system could also be applied to the 
stiffeners. While parallelization was not a focus for this study, it would certainly help with the 
long simulation times, when using many modes and excitations. 

 Validation using a real laboratory experiment would be hugely beneficial and increase 
confidence in the use of the model developed. This would require a setup with an acoustic pool 
and non-contact sensors to measure the system displacement. Additional coatings and geometry 
could be investigated. 

Finally, this work can be more effective if it is extended to include finite length structures. This 
would require a reformulation of the theory and orthogonalization techniques used, but would 
make a more realistic model. An additional difficulty would be adding end-caps to such a model, 
where waves would reflect in complex ways. 
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Appendix 
A.1 Proof of Stiffener Index Shift 

 In Chapter 2.3, Equation 2.3.16 applied an index shift to eliminate the stiffener 
exponential and convert Equations 2.3.13 – 2.3.15 into a more convenient form. The following is 
performed on 2.3.13, but is representative 2.3.14 and 2.3.15; the final stiffener term of 2.3.13 is 
written as 

∑ ∑𝑈𝑚𝑛 𝑐𝑜𝑠(𝑛𝜃) 𝑒
𝑖𝑘𝑚𝑧

∞

𝑛=0

∞

𝑚= −∞

∑ 𝑑𝑠𝑒
2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

(𝐴. 1.1) 

Substituting the indexed axial wavenumber, km, according to definition 2.3.9 and rearranging 

𝑒𝑖𝑘𝑧𝑧∑ ∑ { ∑ 𝑈𝑚𝑛𝑒
2𝜋𝑖𝑚𝑧
𝐿

∞

𝑚=−∞

}

∞

𝑠=−∞

∞

𝑛=0

𝑑𝑠𝑒
2𝜋𝑖𝑠𝑧
𝐿 𝑐𝑜𝑠 (𝑛𝜃) (𝐴. 1.2) 

Expanding the m=summation yields 

𝑒𝑖𝑘𝑧𝑧∑ ∑ {…+ 𝑈−1𝑛𝑒
2𝜋𝑖(−1)𝑧

𝐿 + 𝑈0𝑛𝑒
2𝜋𝑖(0)𝑧

𝐿 + 𝑈1𝑛𝑒
2𝜋𝑖(1)𝑧

𝐿 +⋯}𝑑𝑠𝑒
2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

∞

𝑛=0

𝑐𝑜𝑠 (𝑛𝜃) (𝐴. 1.3) 

And the expanding the s-summation results in 

𝑒𝑖𝑘𝑧𝑧∑[⋯+ {…+ 𝑈−1𝑛𝑒
2𝜋𝑖(−1)𝑧

𝐿 + 𝑈0𝑛𝑒
2𝜋𝑖(0)𝑧

𝐿 + 𝑈1𝑛𝑒
2𝜋𝑖(1)𝑧

𝐿 +⋯}𝑑−1𝑒
2𝜋𝑖(−1)𝑧

𝐿

∞

𝑛=0

+ {…+ 𝑈−1𝑛𝑒
2𝜋𝑖(−1)𝑧

𝐿 + 𝑈0𝑛𝑒
2𝜋𝑖(0)𝑧

𝐿 + 𝑈1𝑛𝑒
2𝜋𝑖(1)𝑧

𝐿 +⋯}𝑑0𝑒
2𝜋𝑖(0)𝑧

𝐿

+ {…+ 𝑈−1𝑛𝑒
2𝜋𝑖(−1)𝑧

𝐿 + 𝑈0𝑛𝑒
2𝜋𝑖(0)𝑧

𝐿 + 𝑈1𝑛𝑒
2𝜋𝑖(1)𝑧

𝐿 +⋯}𝑑1𝑒
2𝜋𝑖(1)𝑧

𝐿

+⋯] 𝑐𝑜𝑠 (𝑛𝜃)                                                                                                           (𝐴. 1.4) 

Multiplying the outer exponentials with the inners gives 

𝑒𝑖𝑘𝑧𝑧∑[⋯+ {⋯+ 𝑈−1𝑛𝑑−1𝑒
2𝜋𝑖(−2)𝑧

𝐿 + 𝑈0𝑛𝑑−1𝑒
2𝜋𝑖(−1)𝑧

𝐿 + 𝑈1𝑛𝑑−1𝑒
2𝜋𝑖(0)𝑧

𝐿 +⋯}

∞

𝑛=0

+ {⋯+ 𝑈−1𝑛𝑑0𝑒
2𝜋𝑖(−1)𝑧

𝐿 + 𝑈0𝑛𝑑0𝑒
2𝜋𝑖(0)𝑧

𝐿 + 𝑈1𝑛𝑑0𝑒
2𝜋𝑖(1)𝑧

𝐿 +⋯}

+ {⋯+ 𝑈−1𝑛𝑑1𝑒
2𝜋𝑖(0)𝑧

𝐿 + 𝑈0𝑛𝑑1𝑒
2𝜋𝑖(1)𝑧

𝐿 + 𝑈1𝑛𝑑1𝑒
2𝜋𝑖(2)𝑧

𝐿 +⋯}

+⋯ ] 𝑐𝑜𝑠 (𝑛𝜃)                                                                                                           (𝐴. 1.5) 
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Now the square bracketed term can be individually summed using common exponentials 

𝑒𝑖𝑘𝑧𝑧∑[⋯+ ∑ 𝑈𝑠𝑛𝑑−𝑠𝑒
2𝜋𝑖(−1)𝑧

𝐿

∞

𝑠=−∞

+ ∑ 𝑈𝑠𝑛𝑑−𝑠𝑒
2𝜋𝑖(0)𝑧

𝐿

∞

𝑠=−∞

∞

𝑛=0

+ ∑ 𝑈𝑠𝑛𝑑−𝑠𝑒
2𝜋𝑖(1)𝑧

𝐿

∞

𝑠=−∞

+⋯] 𝑐𝑜𝑠(𝑛𝜃) (𝐴. 1.6)

 

The summations within the square brackets can be incorporated into an m-summation 

𝑒𝑖𝑘𝑧𝑧∑[ ∑ ∑ 𝑈𝑠𝑛𝑑𝑚−𝑠𝑒
2𝜋𝑖𝑚𝑧
𝐿

∞

𝑚=−∞

∞

𝑠=−∞

]

∞

𝑛=0

𝑐𝑜𝑠(𝑛𝜃) (𝐴. 1.7) 

Finally, the constant exponential in front can be reintroduced into the summations 

∑[ ∑ ∑ 𝑈𝑠𝑛𝑑𝑚−𝑠𝑒
𝑖𝑘𝑚𝑧

∞

𝑚=−∞

∞

𝑠=−∞

]

∞

𝑛=0

𝑐𝑜𝑠(𝑛𝜃) (𝐴. 1.8) 

which results in the final form given in Equation 2.3.16 

∑ ∑𝑈𝑚𝑛𝑐𝑜𝑠 (𝑛𝜃)𝑒
𝑖𝑘𝑚𝑧 ∑ 𝑑𝑠𝑒

2𝜋𝑖𝑠𝑧
𝐿

∞

𝑠=−∞

∞

𝑛=0

∞

𝑚=−∞

=∑[ ∑ ∑ 𝑈𝑠𝑛𝑑𝑚−𝑠𝑒
𝑖𝑘𝑚𝑧

∞

𝑚=−∞

∞

𝑠=−∞

]

∞

𝑛=0

𝑐𝑜𝑠(𝑛𝜃) (𝐴. 1.9) 

 

A.2 Elements of Thin-Shell A Matrix 

 The Amn matrix introduced in Chapter 2.3 Equation 2.3.28 is defined as a 3x3 matrix with 
the following elements, shown in [row, column] format: 

𝐴𝑚𝑛[1,1] = ℎ𝑐𝑝
2𝑘𝑚

2 +
𝜌ℎ𝑐𝑝

2(1 − 𝜈)𝑛2

2𝑎2
− 𝜌ℎ𝜔2 (𝐴. 2.1) 

𝐴𝑚𝑛[1,2] = −
𝜌ℎ𝑐𝑝

2(1 + 𝜈)𝑖𝑘𝑚𝑛

2𝑎
(𝐴. 2.2) 

𝐴𝑚𝑛[1,3] = −
𝜌ℎ𝑐𝑝

2𝜈𝑖𝑘𝑚
𝑎

(𝐴. 2.3) 

𝐴𝑚𝑛[2,1] =
𝜌ℎ𝑐𝑝

2(1 + 𝜈)𝑖𝑘𝑚𝑛

2𝑎
(𝐴. 2.4) 

𝐴𝑚𝑛[2,2] =
𝜌ℎ𝑐𝑝

2(1 − 𝜈)𝑘𝑚
2

2
+
𝜌ℎ𝑐𝑝

2𝑛2

𝑎2
− 𝜌ℎ𝜔2 (𝐴. 2.5) 
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𝐴𝑚𝑛[2,3] =
𝜌ℎ𝑐𝑝

2𝑛

𝑎2
(𝐴. 2.6) 

𝐴𝑚𝑛[3,1] =
𝜌ℎ𝑐𝑝

2𝜈𝑖𝑘𝑚
𝑎

(𝐴. 2.7) 

𝐴𝑚𝑛[3,2] =
𝜌ℎ𝑐𝑝

2𝑛

𝑎2
(𝐴. 2.8) 

𝐴𝑚𝑛[3,3] =
𝜌ℎ𝑐𝑝

2

𝑎2
+
𝜌ℎ3𝑐𝑝

2𝑘𝑚
4

12
+
𝜌ℎ3𝑐𝑝

2𝑘𝑚
2 𝑛2

6𝑎2
+
𝜌ℎ𝑐𝑝

2𝑛4

12𝑎4
− 𝜌ℎ𝜔2 (𝐴. 2.9) 

 

A.3 Elements of Thick-Shell A Matrix 

The Amn matrix introduced in Chapter 2.4 Equation 2.4.39 is defined as a 6x6 matrix with 
the following elements, shown in [row, column] format: 

𝐴𝑚𝑛[1,1] =
2𝛼𝑚𝜇

𝑎
𝐽𝑛+1(𝛼𝑚𝑎) + (

2𝑛(𝑛 − 1)𝜇

𝑎2
− 𝛼𝑚

2 𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆) 𝐽𝑛(𝛼𝑚𝑎) (𝐴. 3.1) 

𝐴𝑚𝑛[1,2] =
2𝛼𝑚𝜇

𝑎
𝑌𝑛+1(𝛼𝑚𝑎) + (

2𝑛(𝑛 − 1)𝜇

𝑎2
− 𝛼𝑚

2 𝜆 − 2𝛼𝑚
2 𝜇 − 𝑘𝑧𝑚

2 𝜆)𝑌𝑛(𝛼𝑚𝑎) (𝐴. 3.2) 

𝐴𝑚𝑛[1,3] = −
2𝑛𝛽𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) +

2𝑛(𝑛 − 1)𝜇

𝑎2
𝐽𝑛(𝛽𝑚𝑎) (𝐴. 3.3) 

𝐴𝑚𝑛[1,4] = −
2𝑛𝛽𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) +

2𝑛(𝑛 − 1)𝜇

𝑎2
𝑌𝑛(𝛽𝑚𝑎) (𝐴. 3.4) 

𝐴𝑚𝑛[1,5] = −
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝐽𝑛(𝛽𝑚𝑎) (𝐴. 3.5) 

𝐴𝑚𝑛[1,6] = −
2𝑛(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + 2𝑖𝑘𝑚𝛽𝑚𝜇𝑌𝑛(𝛽𝑚𝑎) (𝐴. 3.6) 

𝐴𝑚𝑛[2,1] =
2𝑛𝛼𝑚𝜇

𝑎
𝐽𝑛+1(𝛼𝑚𝑎) −

2𝑛(𝑛 − 1)𝜇

𝑎2
𝐽𝑛(𝛼𝑚𝑎) (𝐴. 3.7) 

𝐴𝑚𝑛[2,2] =
2𝑛𝛼𝑚𝜇

𝑎
𝑌𝑛+1(𝛼𝑚𝑎) −

2𝑛(𝑛 − 1)𝜇

𝑎2
𝑌𝑛(𝛼𝑚𝑎) (𝐴. 3.8) 

𝐴𝑚𝑛[2,3] = −
𝛽𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + (𝛽𝑚

2 𝜇 −
2𝑛(𝑛 − 1)𝜇

𝑎2
) 𝐽𝑛(𝛽𝑚𝑎) (𝐴. 3.9) 
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𝐴𝑚𝑛[2,4] = −
𝛽𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + (𝛽𝑚

2 𝜇 −
2𝑛(𝑛 − 1)𝜇

𝑎2
)𝑌𝑛(𝛽𝑚𝑎) (𝐴. 3.10) 

𝐴𝑚𝑛[2,5] = −
2(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛+1(𝛽𝑚𝑎) + 𝑖𝑘𝑚𝛽𝑚𝜇𝐽𝑛(𝛽𝑚𝑎) (𝐴. 3.11) 

𝐴𝑚𝑛[2,6] = −
2(𝑛 + 1)𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛+1(𝛽𝑚𝑎) + 𝑖𝑘𝑚𝛽𝑚𝜇𝑌𝑛(𝛽𝑚𝑎) (𝐴. 3.12) 

𝐴𝑚𝑛[3,1] = −2𝑖𝑘𝑚𝛼𝑚𝐽𝑛+1(𝛼𝑚𝑎) +
2𝑛𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛(𝛼𝑚𝑎) (𝐴. 3.13) 

𝐴𝑚𝑛[3,2] = −2𝑖𝑘𝑚𝛼𝑚𝑌𝑛+1(𝛼𝑚𝑎) +
2𝑛𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛(𝛼𝑚𝑎) (𝐴. 3.14) 

𝐴𝑚𝑛[3,3] =
𝑛𝑖𝑘𝑚𝜇

𝑎
𝐽𝑛(𝛽𝑚𝑎) (𝐴. 3.15) 

𝐴𝑚𝑛[3,4] =
𝑛𝑖𝑘𝑚𝜇

𝑎
𝑌𝑛(𝛽𝑚𝑎) (𝐴. 3.16) 

𝐴𝑚𝑛[3,5] = 𝜇(𝛽𝑚
2 − 𝑘𝑚

2 )𝐽𝑛+1(𝛽𝑚𝑎) −
𝑛𝛽𝑚𝜇

𝑎
𝐽𝑛(𝛽𝑚𝑎) (𝐴. 3.17) 

𝐴𝑚𝑛[3,6] = 𝜇(𝛽𝑚
2 − 𝑘𝑚

2 )𝑌𝑛+1(𝛽𝑚𝑎) −
𝑛𝛽𝑚𝜇

𝑎
𝑌𝑛(𝛽𝑚𝑎) (𝐴. 3.18) 

Rows 4 – 6 are identical to rows 1 – 3 except that radius a is replaced by radius c. 

 

A.4 Timoshenko Curved Beam Equations 

Following the work of Issa [15], deriving the equations of motion for the ring stiffeners using 
Timoshenko beams, involves a free-body-diagram (FBD) of an infinitesimal section of the r, θ 
plane, shown below in Figure A.3.1 
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Figure A.3.1 – FBD of infinitesimal section of circular beam 

where V and N are the shear and tangential forces, respectively, Mz is the moment about the z-
axis (out-of-plane). R is the ring radius of curvature of the neutral axis. Summing forces in the r 
and θ directions, and moments in the z direction results in the following equilibrium equations 

−𝑉 + (𝑉 +
𝜕𝑉

𝜕𝜃
𝑑𝜃) − (𝑁 +

𝜕𝑁

𝜕𝜃
𝑑𝜃)𝑑𝜃 = 𝜌𝐴𝑅

𝜕2𝑤

𝜕𝑡2
𝑑𝜃 (𝐴. 4.1) 

−𝑁 + (𝑁 +
𝜕𝑁

𝜕𝜃
𝑑𝜃) − (𝑉 +

𝜕𝑉

𝜕𝜃
𝑑𝜃)𝑑𝜃 = 𝜌𝐴𝑅

𝜕2𝑣

𝜕𝑡2
𝑑𝜃 (𝐴. 4.2) 

𝑀 − (𝑀 +
𝜕𝑀

𝜕𝜃
𝑑𝜃) − (𝑉 +

𝜕𝑉

𝜕𝜃
𝑑𝜃)𝑅𝑑𝜃 = 𝜌𝐼𝑅

𝜕2𝜓

𝜕𝑡2
𝑑𝜃 (𝐴. 4.3) 

in which I is the moment of inertia, w is the radial rib displacement, v is the circumferential rib 
displacement and ψ is the angular deflection due to bending. First terms of order (dθ)2 are 
approximately 0, and then the remaining dθ term can be canceled in each equation leaving 
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𝜕𝑉

𝜕𝜃
− 𝑁 = 𝜌𝐴𝑅

𝜕2𝑤

𝜕𝑡2
(𝐴. 4.4) 

𝜕𝑁

𝜕𝜃
+ 𝑉 = 𝜌𝐴𝑅

𝜕2𝑣

𝜕𝑡2
(𝐴. 4.5) 

𝜕𝑀

𝜕𝜃
+ 𝑅𝑉 = 𝜌𝐼𝑅

𝜕2𝜓

𝜕𝑡2
(𝐴. 4.6) 

The total angular deformation of the neutral axis compared to the undeformed tangential axis 
consists of a rotation due to bending (ψ) and shear (β) 

𝜑 = 𝜓 + 𝛽 

 
Figure A.3.2 – Curved beam element undergoing deformation and rotation 

Figure [*] shows the deformation and rotation of a curved beam element, compared to its initial 
state (ds0). Rotation of the element due to tangential and radial displacement is calculated as 
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𝜑𝑣 =
𝑣

𝑅
, 𝜑𝑤 =

𝑢 +
𝜕𝑤
𝜕𝑠
𝑑𝑠 − 𝑢

𝑑𝑠
=
𝜕𝑤

𝜕𝑠
=
1

𝑅

𝜕𝑤

𝜕𝜃
, 𝜑 =

1

𝑅
(𝑣 +

𝜕𝑤

𝜕𝜃
) (𝐴. 4.7) 

Thus the angle due to shear can be determined as 

𝛽 =
1

𝑅
(𝑣 +

𝜕𝑤

𝜕𝜃
− 𝑅𝜓) (𝐴. 4.8) 

while the extensional deformation of the curved beam is the change in length, ds, given as 

𝑑𝑒 = 𝑑𝑠 − 𝑑𝑠0 = [(𝑅 − 𝑤)𝑑𝜃 + (𝑣 +
𝜕𝑣

𝜕𝑠
𝑑𝑠) − 𝑣] − 𝑅𝑑𝜃 = (

𝜕𝑣

𝜕𝜃
− 𝑤)𝑑𝜃 (𝐴. 4.9) 

From the rotation and extension of the infinitesimal beam segment, the normal and shear forces 
and moment can be found using elementary beam theory 

𝑁 = 𝐸𝐴
𝑑𝑒

𝑑𝑠
=
𝐸𝐴

𝑅

𝑑𝑒

𝑑𝜃
=
𝐸𝐴

𝑅
(
𝜕𝑣

𝜕𝜃
− 𝑤) (𝐴. 4.10) 

𝑉 = 𝐾𝑠𝐺𝐴𝛽 =
𝐾𝑠𝐺𝐴

𝑅
(𝑣 +

𝜕𝑤

𝜕𝜃
− 𝑅𝜓) (𝐴. 4.11) 

𝑀 = −
𝐸𝐼

𝑅

𝜕𝜓

𝜕𝜃
(𝐴. 4.12) 

where E is Young’s modulus, G is the shear modulus, and Ks is the shape factor.  Substituting these 
into the equilibrium equations results in the final Timoshenko curved beam equations of motion 
in the radial direction 

𝐸𝐴

𝑅
(
𝜕𝑣

𝜕𝜃
− 𝑤) +

𝐾𝑠𝐺𝐴

𝑅
(
𝜕2𝑤

𝜕𝜃2
+
𝜕𝑣

𝜕𝜃
− 𝑅

𝜕𝜓

𝜕𝜃
) + 𝑓𝑟 = 𝜌𝐴𝑅

𝜕2𝑤

𝜕𝑡2
(𝐴. 4.13) 

in the circumferential direction 

𝐸𝐴

𝑅
(
𝜕2𝑣

𝜕𝜃2
−
𝜕𝑤

𝜕𝜃
) −

𝐾𝑠𝐺𝐴

𝑅
(
𝜕𝑤

𝜕𝜃
+ 𝑣 − 𝑅𝜓) + 𝑓𝜃 = 𝜌𝐴𝑅

𝜕2𝑣

𝜕𝑡2
(𝐴. 4.14) 

and in the z-rotational direction 

𝐸𝐼

𝑅

𝜕2𝜓

𝜕𝜃2
+ 𝐾𝑠𝐺𝐴 (

𝜕𝑣

𝜕𝜃
+ 𝑤 − 𝑅𝜓) = 𝜌𝐼𝑅

𝜕2𝜓

𝜕𝑡2
(𝐴. 4.15) 

The added terms fr and fθ are the external radial and tangential rib forces, respectively; there is 
no external moment. 
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A.5 Solution of the 3D Wave Equation (for Scalars) 

The three dimensional wave equation in cylindrical coordinates is given as 

𝜕2𝑓

𝜕𝑟2
+
1

𝑟

𝜕𝑓

𝜕𝑟
+
1

𝑟2
𝜕2𝑓

𝜕𝜃2
+
𝜕2𝑓

𝜕𝑧2
=
1

𝑐2
𝜕2𝑓

𝜕𝑡2
(𝐴. 5.1) 

with c the material speed of sound. The solution to the wave equation for scalar harmonic 
functions can be found via the separation of variables method. Assuming the solution can be 
written as a combination of functions for each independent variable (r, θ, z, t), it takes the 
following form 

𝑓(𝑟, 𝜃, 𝑧, 𝑡) = 𝑅(𝑟)𝛷(𝜃)𝑍(𝑧)𝑇(𝑡) (𝐴. 5.2) 

Substituting the proposed solution into the wave equation results in 

−
1

𝑐2
𝑇′′𝑅𝛷𝑍 + 𝑅′′𝛷𝑍𝑇 +

1

𝑟
𝑅′𝛷𝑍𝑇 +

1

𝑟2
𝑅𝛷′′𝑍𝑇 + 𝑅𝛷𝑍′′𝑇 = 0 (𝐴. 5.3) 

where the dashes indicate a derivative with respect to the function’s sole independent variable. 
Dividing by RΦTZ leads to an equation with the temporal (T) functions isolated from the other 
variables. Therefore, the remaining equation is independent of t and can be considered constant. 

1

𝑐2
𝑇′′

𝑇
=
𝑅′′

𝑅
+
1

𝑟

𝑅′

𝑅
+
1

𝑟2
𝛷′′

𝛷
 +
𝑍′′

𝑍
= −𝑘2 (𝐴. 5.4) 

k = ω/c is the constant wavenumber. Ignoring the non-temporal part of the above, the equation 
for a single degree of freedom, 2nd order differential equation remains. The solution is an 
exponential function, in which only the negative exponent has been kept. 

𝑇′′ + 𝜔2𝑇 = 0 → 𝑇(𝑡) = 𝐶1𝑒
−𝑖𝜔𝑡 (𝐴. 5.5) 

Returning to Equation [*], isolating the z-dependent terms means that the RHS is independent of 
z, and thus can be considered a constant. 

𝑍′′

𝑍
= −𝑘2 −

𝑅′′

𝑅
−
1

𝑟

𝑅′

𝑅
−
1

𝑟2
𝛷′′

𝛷
= −𝑘𝑧

2 (𝐴. 5.6) 

kz is the axial wavenumber. This forms another 2nd order differential equation with an 
exponential solution, and the positive exponent is kept. 

𝑍′′ + 𝑘𝑧
2𝑍 = 0 → 𝑍(𝑧) = 𝐶2𝑒

𝑖𝑘𝑧𝑧 (𝐴. 5.7) 

Defining a new constant, kr
2 = k2 − kz

2 will help reduce some of the constants present. Isolating 
the θ terms of Equation [*] results in gives the following 

𝛷′′

𝛷
= −𝑟2𝑘𝑟

2 − 𝑟2
𝑅′′

𝑅
− 𝑟

𝑅′

𝑅
= −𝑛2 (𝐴. 5.8) 
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Again this leads to a 2nd order differential equation with exponential solution. 

𝛷′′ + 𝑛2𝛷 = 0 → 𝛷(𝜃) = 𝐶3𝑒
𝑖𝑛𝜃 (𝐴. 5.9) 

Unlike the temporal and axial solutions, the circumferential solution is periodic, Φ(θ) = Φ(θ + 2π). 
Since e0 = 1 = e2πin, n must be an integer and the solution can be rewritten as a sinusoid; the sin 
term is disregarded. 

𝛷𝑛(𝜃) = 𝐶3 𝑐𝑜𝑠(𝑛𝜃) , 𝑛 = 0,1,2,3… (𝐴. 5.10) 

The circumferential solution Returning to Equation [*], the r-dependent terms remain, which can 
be rearranged into Bessel’s Equation in r 

𝑟2𝑅′′ + 𝑟𝑅′ + ((𝑘𝑟𝑟)
2 − 𝑛2)𝑅 = 0 (𝐴. 5.11) 

There are two linearly independent solutions to Bessel’s Equation, made up of Bessel functions 
of the first and second kind. 

𝑅𝑛1(𝑟) = 𝐶4𝐽𝑛(𝑘𝑟𝑟), 𝑅𝑛2(𝑟) = 𝐶5𝑌𝑛(𝑘𝑟𝑟) (𝐴. 5.12) 

Jn and Yn are a nth order Bessel functions of the first and second kind, respectively. Yn diverges as 
r goes to 0. For systems that require finite displacement at the origin (solid rods, fluids), this is 
not realistic and the Yn solution must be thrown out. Combining the four independent solutions, 
the original wave equation function, f, can be reconstructed.  The solutions in r and θ, involving 
the integer n, must be summed. All the constants are combined into a single constant. 

𝑓(𝑟, 𝜃, 𝑧, 𝑡) = ∑𝐴𝑛 𝐽𝑛(𝑘𝑟𝑟) 𝑐𝑜𝑠 𝑛𝜃 𝑒
𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡

∞

𝑛=0

(𝐴. 5.13) 

Note that the Hankel function is a linear combination of Jn and Yn and thus also solves the Bessel 
Equation. Therefore, the function f can be expressed with a Hankel function of the first kind as 
well. 

𝐻𝑛
(1)(𝑥) =  𝐽𝑛(𝑥) + 𝑖𝑌𝑛(𝑥), 𝐻𝑛

(2)(𝑥) =  𝐽𝑛(𝑥) − 𝑖𝑌𝑛(𝑥) (𝐴. 5.14) 

𝑓(𝑟, 𝜃, 𝑧, 𝑡) = ∑𝐴𝑛 𝐻𝑛
(1)(𝑘𝑟𝑟) 𝑐𝑜𝑠 𝑛𝜃 𝑒

𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡
∞

𝑛=0

(𝐴. 5.15) 

 

 


