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The dynamic behavior of a microelectromechanical system (MEMS) parallel and electrically coupled double-layers (microbeams)
based resonator is investigated. Two numerical methods were used to solve the dynamical problem: the reduced-order modeling
(ROM) and the perturbation method. The ROM was derived using the so-called Galerkin expansion with considering the linear
undamped mode shapes of straight beam as the basis functions. The perturbation method was generated using the method
of multiple scales by direct attack of the equations of motion. Dynamic analyses, assuming the above two numerical methods
were performed, and a comparison of the results showed good agreement. Finally, a parametric study was performed using the
perturbation on different parameters and the results revealed different interesting features, which hopefully can be useful for some
MEMS based applications.

1. Introduction

Microelectromechanical systems (MEMS) were mostly
developed during the industrial revolution in the late of 20th
century [1]. From that moment, scientists have continuously
investigated the potential of these devices to apply them for
different applications. Nowadays, their existence became
indispensable in many fields [2, 3] and the continuous devel-
opment hopefully will lead to more importance in future.

When dealing with MEMS based devices, interesting
dynamical behaviors can be arising due to the nonlinearity of
those devices [4–6]. Among them is their hysteresis (soften-
ing and hardening) behavior during the resonance phenome-
non. The hardening effect shifts the linear resonance profile
to the right and hence produces higher frequencies for the
higher amplitude values [7]. A main source of this effect for
the clamped-clamped microbeam is the mid-plane stretch-
ing. On the other hand, the opposite can be said for the
softening effect, which depends on the quadratic nonlinearity
effect that may arise from the nonlinear electrical forces [8].

Solving nonlinear dynamical behaviors for MEMS devi-
ces is fundamental, since it helps in accurately characterizing

and designing them to obtain the desired features quickly and
effectively. However, the resolution could be sometime cum-
bersome and many researchers have struggled to find an
effective way to tackle this problem [9–12]. The key tech-
niques in solving such nonlinear problems involve reducing
the order of the partial differential governing equation, which
sometime is difficult to be solved, into ordinary differential
equations, which are much easier to deal with. Different
approaches are suggested to solve equation; the reduced-
order modeling (ROM) and the perturbation analysis are
among those approaches.

In recent years, many researchers extensively used
reduced-order modeling (ROM) techniques to obtain the
structural behavior of MEMS microstructures [13, 14]. It
became nowadays among the most common numerical
methods used in the MEMS community. In 2003, Younis et
al. [15] presented a new ROM (macromodel) to solve for the
nonlinear partial differential equation. They found that their
method is more attractive than the finite element method in
terms of accuracy and cost. Nayfeh et al. [16] reviewed the
work of ROM inMEMSdevices.They classified theROM into
two main categories: node and domain methods.
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Figure 1: 3D schematic of a MEMS double-layers MEMS based resonator configuration.

Perturbationmethod is also another approach used in the
investigation. Turner andAndrews [17] used the perturbation
method to obtain an approximation for the nonlinear reso-
nance frequency of a microbeam.They modeled the problem
by using a spring mass model, and they included a cubic
restoring force to represent the mid-plane stretching. Younis
and Nayfeh [6] used the method of multiple scales, as a per-
turbationmethod, in amodel that accounted for the electrical
loads (both DC and AC) and for the mid-plane stretching for
a clamped-clamped single-microbeam resonator.

In a previous study [18], we examined the static behav-
ior of a double-layers based clamped-clamped microbeams
MEMS based actuator configuration.This work considers the
nonlinear dynamical behaviors for this MEMS structure by
using the ROM and the perturbation method. This is due to
the different features this device has as it is comparedwith the
single microbeam. For example, the double-microbeam con-
figuration proved its capability in reducing the actuation and
the pull-in voltage, and nowadays there are many available
investigations that used this type of configuration [19–23].

We will start our present numerical investigation by
discussing first the problem formulation. Then, the reduced-
order model for double-layers MEMS based resonator will
be derived and followed by the analysis for the perturbation
method. Afterward, a comparison will be carried out for each
method to validate both approaches. Finally, a parametric
study will be done to investigate some dynamical features for
the microactuator.

2. Problem Formulation

The proposed model is shown in Figure 1. The suggested
MEMSdevice ismainlymade of two parallel electrically actu-
ated microbeams. Both microbeams are clamped-clamped
and actuated by both a static DC voltage (of amplitude 𝑉DC)
and a harmonic AC bias (of amplitude 𝑉AC).

The governing equations of motion for upper and lower
microbeams of the MEMS multilayers based resonator are
given, respectively, as follows:

𝐸𝐼𝜕4𝑤̂1𝜕𝑥̂4 + 𝜌𝑏ℎ𝜕
2𝑤̂1𝜕𝑡̂2 + 𝑐̂

𝜕𝑤̂1𝜕𝑡̂
= 𝐸𝐴2𝐿 ∫

𝐿

0
(𝜕𝑤̂1𝜕𝑥̂ )

2 𝑑𝑥̂𝜕2𝑤̂1𝜕𝑥̂2

+ 𝜀0𝑏 (𝑉DC + 𝑉ACcos (Ω̂𝑡̂))2
2 (𝑑1 − 𝑤̂1)2

− 𝜀0𝑏 (𝑉DC + 𝑉ACcos (Ω̂𝑡̂))2
2 (𝑑2 + 𝑤̂1 − 𝑤̂2)2 ,

(1)

𝐸𝐼𝜕4𝑤̂2𝜕𝑥̂4 + 𝜌𝑏ℎ𝜕
2𝑤̂2𝜕𝑡̂2 + 𝑐̂

𝜕𝑤̂2𝜕𝑡̂
= 𝐸𝐴2𝐿 ∫

𝐿

0
(𝜕𝑤̂2𝜕𝑥̂ )

2 𝑑𝑥̂𝜕2𝑤̂2𝜕𝑥̂2
+ 𝜀0𝑏 (𝑉DC + 𝑉AC cos (Ω̂𝑡̂))2

2 (𝑑2 + 𝑤̂1 − 𝑤̂2)2

(2)

and the associated clamped-clamped boundary conditions
are

𝑤̂1 (0, 𝑡̂) = 0,
𝑤̂1 (𝐿, 𝑡̂) = 0,
𝜕𝑤̂1𝜕𝑥̂ (0, 𝑡̂) = 0,
𝜕𝑤̂1𝜕𝑥̂ (𝐿, 𝑡̂) = 0,
𝑤̂2 (0, 𝑡̂) = 0,
𝑤̂2 (𝐿, 𝑡̂) = 0,
𝜕𝑤̂2𝜕𝑥̂ (0, 𝑡̂) = 0,
𝜕𝑤̂2𝜕𝑥̂ (𝐿, 𝑡̂) = 0.

(3)

The functions 𝑤̂1(𝑥̂, 𝑡̂) and 𝑤̂2(𝑥̂, 𝑡̂) are, respectively, the in-
plane deflections of the upper and lower microbeam, respec-
tively. For convenience, the equation of the system will be
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normalized while considering the following nondimensional
parameters:

𝑤1 = 𝑤̂1𝑑1 ,
𝑤2 = 𝑤̂2𝑑1 ,
𝑥 = 𝑥̂𝐿 ,
𝑡 = 𝑡̂𝑇 ,

(4)

where 𝑇 is a time scale parameter and is chosen to be√𝜌𝑏ℎ𝐿4/𝐸𝐼.
Therefore, substituting (4) into (1)–(3) will give

𝜕4𝑤1𝜕𝑥4 + 𝜕
2𝑤1𝜕𝑡2 + 𝑐𝜕𝑤1𝜕𝑡

= 𝛼3Γ1 𝜕2𝑤1𝜕𝑥2 + 𝛼4 (𝑉DC + 𝑉AC cos (Ω𝑡))2(1 − 𝑤1)2
− 𝛼4 (𝑉DC + 𝑉AC cos (Ω𝑡))2(𝑑2/𝑑1 + 𝑤1 − 𝑤2)2 ,

(5)

𝜕4𝑤2𝜕𝑥4 + 𝜕
2𝑤2𝜕𝑡2 + 𝑐𝜕𝑤2𝜕𝑡

= 𝛼3Γ2 𝜕2𝑤2𝜕𝑥2 + 𝛼4 (𝑉DC + 𝑉AC cos (Ω𝑡))2(𝑑2/𝑑1 + 𝑤1 − 𝑤2)2 ,
(6)

𝑤1 (0, 𝑡) = 0,
𝑤1 (1, 𝑡) = 0,
𝜕𝑤1𝜕𝑥 (0, 𝑡) = 0,
𝜕𝑤1𝜕𝑥 (1, 𝑡) = 0,
𝑤2 (0, 𝑡) = 0,
𝑤2 (1, 𝑡) = 0,
𝜕𝑤2𝜕𝑥 (0, 𝑡) = 0,
𝜕𝑤2𝜕𝑥 (1, 𝑡) = 0,

(7)

where the nondimensional parameters defined in (5)-(6) are
given as follows:

𝛼1 = 6 (𝐷ℎ )
2 ;

𝛼2 = 6𝜀0𝐿4𝐸ℎ3𝐷3 ;

𝛼3 = 6(𝑑1ℎ )
2 ;

𝛼4 = 6𝜀0𝐿4𝐸ℎ3𝑑13 ;
𝑐 = 𝑐̂𝐿4𝑇𝐸𝐼 ;
Γ = ∫1
0
(𝜕𝑤𝜕𝑥 )

2 𝑑𝑥;
Γ𝑖 = ∫1

0
(𝜕𝑤𝑖𝜕𝑥 )

2 𝑑𝑥.
(8)

3. Reduced-Order Modeling (ROM)

Reduced-order modeling (ROM) for the above described
nonlinear problem can be obtained by discretizing (5) and
(6) using the Galerkin expansion. Therefore, the deflection
for the lower and upper microbeams will have the following
forms, respectively:

𝑤1 (𝑥, 𝑡) = 𝑁∑
𝑖=1

𝑝𝑖 (𝑡) 𝜙𝑖 (𝑥) , (9)

𝑤2 (𝑥, 𝑡) = 𝑁∑
𝑖=1

𝑞𝑖 (𝑡) 𝜙𝑖 (𝑥) , (10)

where 𝜙𝑖(𝑥) are the linear undamped mode shapes of a
clamped-clamped microbeam, which are orthogonal. After
that, (5) will be multiplied by (1 − 𝑤1)2(𝑑2/𝑑1 − 𝑤1 − 𝑤2)2
and (6) will be multiplied by (𝑑2/𝑑1−𝑤1−𝑤2)2 since this will
help in reducing the computational cost. Next, the outcome
will be multiplied by 𝜙𝑗(𝑥) and then integrated from 𝑥 = 0 to𝑥 = 1 to give the following ROM equations:

∫1
𝑥=0
𝜙𝑗 (𝑥)(1 − 𝑁∑

𝑖=1

𝑝𝑖 (𝑡) 𝜙𝑖 (𝑥))
2 ∗ (𝑑2𝑑1

+ 𝑁∑
𝑖=1

𝑝𝑖 (𝑡) 𝜙𝑖 (𝑥) − 𝑁∑
𝑖=1

𝑞𝑖 (𝑡) 𝜙𝑖 (𝑥))
2

∗ ( 𝑁∑
𝑖=1

𝑝𝑖 (𝑡) 𝜙𝑖V𝑖 (𝑥) + 𝑁∑
𝑖=1

𝑝̈𝑖 (𝑡) 𝜙𝑖 (𝑥)
+ 𝑐 𝑁∑
𝑖=1

𝑝̇𝑖 (𝑡) 𝜙𝑖 (𝑥))𝑑𝑥 = ∫1
𝑥=0
𝜙𝑗 (𝑥)

⋅ ((1 − 𝑁∑
𝑖=1

𝑝𝑖 (𝑡) 𝜙𝑖 (𝑥))
2

∗ (𝑑2𝑑1 +
𝑁∑
𝑖=1

𝑝𝑖 (𝑡) 𝜙𝑖 (𝑥) − 𝑁∑
𝑖=1

𝑞𝑖 (𝑡) 𝜙𝑖 (𝑥))
2
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∗ 𝛼3Γ1 𝑁∑
𝑖=1

𝑝𝑖 (𝑡) 𝜙󸀠󸀠𝑖 (𝑥)

+ (𝑑2𝑑1 +
𝑁∑
𝑖=1

𝑝𝑖 (𝑡) 𝜙𝑖 (𝑥) − 𝑁∑
𝑖=1

𝑞𝑖 (𝑡) 𝜙𝑖 (𝑥))
2

⋅ 𝛼4 (𝑉DC + 𝑉AC cos (Ω𝑡))2
− (1 − 𝑁∑

𝑖=1

𝑝𝑖 (𝑡) 𝜙𝑖 (𝑥))
2

⋅ 𝛼4 (𝑉DC + 𝑉AC cos (Ω𝑡))2)𝑑𝑥,

∫1
𝑥=0
𝜙𝑗 (𝑥)(𝑑2𝑑1 +

𝑁∑
𝑖=1

𝑝𝑖 (𝑡) 𝜙𝑖 (𝑥) − 𝑁∑
𝑖=1

𝑞𝑖 (𝑡) 𝜙𝑖 (𝑥))
2

∗ ( 𝑁∑
𝑖=1

𝑞𝑖 (𝑡) 𝜙𝑖V𝑖 (𝑥) + 𝑁∑
𝑖=1

𝑞̈𝑖 (𝑡) 𝜙𝑖 (𝑥)
+ 𝑐 𝑁∑
𝑖=1

𝑞̇𝑖 (𝑡) 𝜙𝑖 (𝑥))𝑑𝑥 = ∫1
𝑥=0
𝜙𝑗 (𝑥)

⋅ ((𝑑2𝑑1 +
𝑁∑
𝑖=1

𝑝𝑖 (𝑡) 𝜙𝑖 (𝑥) − 𝑁∑
𝑖=1

𝑞𝑖 (𝑡) 𝜙𝑖 (𝑥))
2

∗ 𝛼3Γ2 𝑁∑
𝑖=1

𝑞𝑖 (𝑡) 𝜙󸀠󸀠𝑖 (𝑥)

+ 𝛼4 (𝑉DC + 𝑉AC cos (Ω𝑡))2)𝑑𝑥.
(11)

4. Perturbation Analysis

Numerical solutions of the ROM dynamical equations pro-
vide good results for low nonlinearity values. However, when
tuning the system’s geometrical parameters as well as the forc-
ing amplitudes, one can increase the source of the nonlinear-
ity, leading to nonlinear frequency responses which cannot
be fully captured by ROM. As a result, perturbation theory
was investigated to find the resonance of the double-microb-
eams especially for any high nonlinearity factors.Themethod
of multiple scales was used by direct attack of the equations
of motion [6, 24]. So, the variable for the time scales and its
derivatives were defined as follows:

𝑇0 = 𝑡,
𝐷0 = 𝜕𝜕𝑇0 ,
𝑇1 = 𝜀𝑡,

𝐷1 = 𝜕𝜕𝑇1 ,
𝑇2 = 𝜀2𝑡,
𝐷2 = 𝜕𝜕𝑇2 .

(12)

Next, the damping coefficient 𝑐 and the forcing amplitude𝑉AC
were scaled so that their nonlinearity effect will be balanced
in the modulation equations [6, 24] as follows:

𝑐 = 𝜀2𝑐,
𝑉AC = 𝜀3𝑉AC, (13)

where 𝜀 is a bookkeeping parameter.
We seek a solution for the lower and upper electrodes in

the following form, respectively:

𝑤1 (𝑥, 𝑡, 𝜀) = 𝑤𝑠1 (𝑥) + 𝑢1 (𝑥, 𝑡)
= 𝑤𝑠1 (𝑥) + 𝜀𝑢11 (𝑥, 𝑇0, 𝑇2)
+ 𝜀2𝑢12 (𝑥, 𝑇0, 𝑇2) + 𝜀3𝑢13 (𝑥, 𝑇0, 𝑇2)
+ ⋅ ⋅ ⋅ ,

(14)

𝑤2 (𝑥, 𝑡, 𝜀) = 𝑤𝑠2 (𝑥) + 𝑢2 (𝑥, 𝑡)
= 𝑤𝑠2 (𝑥) + 𝜀𝑢21 (𝑥, 𝑇0, 𝑇2)
+ 𝜀2𝑢22 (𝑥, 𝑇0, 𝑇2) + 𝜀3𝑢23 (𝑥, 𝑇0, 𝑇2)
+ ⋅ ⋅ ⋅ ,

(15)

where 𝑤𝑠1 and 𝑤𝑠2 are the static components of the microb-
eams’ deflection and 𝑢1 and 𝑢2 are their dynamic components
for the lower and upper microbeams, respectively.

Substituting (14) and (15) into (5) and (6) gives

𝜕4𝑤𝑠1𝜕𝑥4 + 𝜕
4𝑢1𝜕𝑥4 + 𝜕

2𝑢1𝜕𝑡2 + 𝑐𝜕𝑢1𝜕𝑡
= 𝛼3Γ (𝑤𝑠1 + 𝑢1, 𝑤𝑠1 + 𝑢1) (𝜕2𝑤𝑠1𝜕𝑥2 + 𝜕

2𝑢1𝜕𝑥2 )
+ 𝛼4 (𝑉DC + 𝑉AC cos (Ω𝑡))2(1 − 𝑤𝑠1 − 𝑢1)2
− 𝛼4 (𝑉DC + 𝑉AC cos (Ω𝑡))2(𝑑2/𝑑1 + 𝑤𝑠1 + 𝑢1 − 𝑤𝑠2 − 𝑢2)2 ,

(16)

𝜕4𝑤𝑠2𝜕𝑥4 + 𝜕
4𝑢2𝜕𝑥4 + 𝜕

2𝑢2𝜕𝑡2 + 𝑐𝜕𝑢2𝜕𝑡
= 𝛼3Γ (𝑤𝑠2 + 𝑢2, 𝑤𝑠2 + 𝑢2) (𝜕2𝑤𝑠2𝜕𝑥2 + 𝜕

2𝑢2𝜕𝑥2 )
+ 𝛼4 (𝑉DC + 𝑉AC cos (Ω𝑡))2(𝑑2/𝑑1 + 𝑤𝑠1 + 𝑢1 − 𝑤𝑠2 − 𝑢2)2 .

(17)
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The electrical forces 𝛼4(𝑉DC + 𝑉AC cos(Ω𝑡))2/(1 − 𝑤𝑠1 − 𝑢1)2
and 𝛼4(𝑉DC + 𝑉ACcos(Ω𝑡))2/(𝑑2/𝑑1 + 𝑤𝑠1 + 𝑢1 − 𝑤𝑠2 −𝑢2)2 are expanded around (𝑢1) and (𝑢1 − 𝑢2), respectively,
using a Taylor-series expansion. Further, the expression
of (𝑉DC + 𝑉AC cos(Ω𝑡))2 will be approximated as 𝑉2DC +2𝑉DC𝑉AC cos(Ω𝑡). Using the aforementioned expressions and
canceling the static equations and neglecting all small terms
while equating the coefficients of like powers of 𝜀, the
following equations are obtained:

For the upper microbeam, that is, (16),

(i) order 𝜀1:
L1 (𝑢11, 𝑢21) = 0, (18)

(ii) order 𝜀2:
L1 (𝑢12, 𝑢22) = 𝛼3𝑤󸀠󸀠𝑠1Γ (𝑢11, 𝑢11)

+ 2𝛼3𝑢󸀠󸀠11Γ (𝑤𝑠1, 𝑢11) + 3𝛼4𝑉2DC𝑢211(1 − 𝑤𝑠1)4
− 3𝛼4𝑉2DC (𝑢211 − 2𝑢11𝑢21 + 𝑢221)(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)4 ,

(19)

(iii) order 𝜀3:
L1 (𝑢13, 𝑢23)
= −2𝐷0𝐷2𝑢11 − 𝑐𝐷0𝑢11 + 2𝛼3𝑤󸀠󸀠𝑠1Γ (𝑢11, 𝑢12)
+ 2𝛼3𝑢󸀠󸀠11Γ (𝑤𝑠1, 𝑢12) + 2𝛼3𝑢󸀠󸀠12Γ (𝑤𝑠1, 𝑢11)
+ 𝛼3Γ (𝑢11, 𝑢11) 𝑢󸀠󸀠11 + 6𝛼4𝑉2DC𝑢11𝑢12(1 − 𝑤𝑠1)4
+ 4𝛼4𝑉2DC𝑢311(1 − 𝑤𝑠1)5
+ 6𝛼4𝑉2DC (−𝑢11𝑢12 + 𝑢11𝑢22 + 𝑢12𝑢21 − 𝑢21𝑢22)(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)4
+ 4𝛼4𝑉2DC (𝑢311 − 3𝑢211𝑢21 + 3𝑢11𝑢221 − 𝑢321)(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)5
+ 2𝐹̃1 cos (Ω𝑇0) − 2𝐹̃2 cos (Ω𝑇0) ,

(20)

where L1 is a linear differential operator defined for
any two functions (𝑓 and 𝑔) by
L1 (𝑓, 𝑔) = 𝐷02𝑓 + 𝑓𝑖V − 𝛼3Γ (𝑤𝑠1, 𝑤𝑠1) 𝑓󸀠󸀠

− 2𝛼3𝑤󸀠󸀠𝑠1Γ (𝑤𝑠1, 𝑓) − 2𝛼4𝑉2DC𝑓(1 − 𝑤𝑠1)3

− 2𝛼4𝑉2DC𝑓(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3
+ 2𝛼4𝑉2DC𝑔(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 = 0,

(21)

and where

𝐹̃1 = 𝛼4𝑉DC𝑉AC(1 − 𝑤𝑠1)2 ,
𝐹̃2 = 𝛼4𝑉DC𝑉AC((𝑑2/𝑑1) + 𝑤𝑠1 − 𝑤𝑠2)2 .

(22)

For the upper microbeam, that is, (17),

(i) order 𝜀1:
L2 (𝑢11, 𝑢21) = 0, (23)

(ii) order 𝜀2:
L2 (𝑢12, 𝑢22) = 𝛼3𝑤󸀠󸀠𝑠2Γ (𝑢21, 𝑢21)

+ 2𝛼3𝑢󸀠󸀠21Γ (𝑤𝑠2, 𝑢21)
+ 3𝛼4𝑉2DC (𝑢211 − 2𝑢11𝑢21 + 𝑢221)(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)4 ,

(24)

(iii) order 𝜀3:
L2 (𝑢13, 𝑢23)
= −2𝐷0𝐷2𝑢21 − 𝑐𝐷0𝑢21 + 2𝛼3𝑤󸀠󸀠𝑠2Γ (𝑢21, 𝑢22)
+ 2𝛼3𝑢󸀠󸀠21Γ (𝑤𝑠2, 𝑢22) + 2𝛼3𝑢󸀠󸀠22Γ (𝑤𝑠2, 𝑢21)
+ 𝛼3Γ (𝑢21, 𝑢21) 𝑢󸀠󸀠21
+ 6𝛼4𝑉2DC (𝑢11𝑢12 − 𝑢11𝑢22 − 𝑢12𝑢21 + 𝑢21𝑢22)(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)4
+ 4𝛼4𝑉2DC (−𝑢311 + 3𝑢211𝑢21 − 3𝑢11𝑢221 + 𝑢321)(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)5
+ 2𝐹̃2cos (Ω𝑇0) ,

(25)

where L2 is a linear differential operator defined for
any two functions (𝑓 and 𝑔) by
L2 (𝑓, 𝑔) = 𝐷02𝑔 + 𝑔𝑖V − 𝛼3Γ (𝑤𝑠2, 𝑤𝑠2) 𝑔󸀠󸀠

− 2𝛼3𝑤󸀠󸀠𝑠2Γ (𝑤𝑠2, 𝑔)
+ 2𝛼4𝑉2DC𝑓(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3
− 2𝛼4𝑉2DC𝑔(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 .

(26)
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Assuming no internal resonances situations, the solutions
of (18) and (23) are assumed to consist of only the directly
excited modes, Φ(𝑥), since the indirectly excited modes will
die out in the presence of damping. As a result, the solutions
of the dynamic components 𝑢11 and 𝑢21 of the lower and
upper microbeams, respectively, are

𝑢11 (𝑥, 𝑇0, 𝑇2)
= [𝐴 (𝑇2) 𝑒𝑖𝜔𝑇0 + 𝐴 (𝑇2) 𝑒−𝑖𝜔𝑇0]Φ1 (𝑥) , (27)

𝑢21 (𝑥, 𝑇0, 𝑇2)
= [𝐴 (𝑇2) 𝑒𝑖𝜔𝑇0 + 𝐴 (𝑇2) 𝑒−𝑖𝜔𝑇0]Φ2 (𝑥) , (28)

where𝐴(𝑇2) is a complex-valued function that is determined
by imposing the solvability condition at the third order, the
overbar denotes the complex conjugate, and 𝜔 and Φ(𝑥) are
the natural frequency and corresponding eigenfunction of
the directly excited modes, respectively. Here, the complex-
valued function is considered to be the same for both
microbeams, while the mode shapes will compensate for the
resulting difference.This will help in obtaining the eigenvalue
problem. Substituting (27) and (28) into (18) and (23) we
obtain the following nonlinear coupled eigenvalue problem
(EVP):

− 𝜔2Φ1 + Φ𝑖V1 − 𝛼3Γ (𝑤𝑠1, 𝑤𝑠1)Φ󸀠󸀠1
− 2𝛼3𝑤󸀠󸀠𝑠1Γ (𝑤𝑠1, Φ1) − 2𝛼4𝑉2DCΦ1(1 − 𝑤𝑠1)3
− 2𝛼4𝑉2DCΦ1(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3
+ 2𝛼4𝑉2DCΦ2(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 = 0,

− 𝜔2Φ2 + Φ𝑖V2 − 𝛼3Γ (𝑤𝑠2, 𝑤𝑠2)Φ󸀠󸀠2
− 2𝛼3𝑤󸀠󸀠𝑠2Γ (𝑤𝑠2, Φ2) − 2𝛼4𝑉2DCΦ2(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3
+ 2𝛼4𝑉2DCΦ1(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 = 0.

(29)

Next, the solutions 𝑢11 and 𝑢21 will be substituted in the
second-order equations (𝜀2), which will give

L1 (𝑢12, 𝑢22)
= (𝐴2𝑒2𝑖𝜔𝑇0 + 2𝐴𝐴 + 𝐴2𝑒−2𝑖𝜔𝑇0) ℎ1 (𝑥) ,

L2 (𝑢12, 𝑢22)
= (𝐴2𝑒2𝑖𝜔𝑇0 + 2𝐴𝐴 + 𝐴2𝑒−2𝑖𝜔𝑇0) ℎ2 (𝑥) ,

(30)

where

ℎ1 (𝑥) = 𝛼3𝑤󸀠󸀠𝑠1Γ (Φ1, Φ1) + 2𝛼3Φ󸀠󸀠1 Γ (𝑤𝑠1, Φ1)
+ 3𝛼4𝑉2DCΦ12(1 − 𝑤𝑠1)4 −

3𝛼4𝑉2DCΦ12(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)4
+ 6𝛼4𝑉2DCΦ1Φ2(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)4
− 3𝛼4𝑉2DCΦ22(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)4 ,

ℎ2 (𝑥) = 𝛼3𝑤󸀠󸀠𝑠2Γ (Φ2, Φ2) + 2𝛼3Φ󸀠󸀠2 Γ (𝑤𝑠2, Φ2)
+ 3𝛼4𝑉2DCΦ12(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)4
− 6𝛼4𝑉2DCΦ1Φ2(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)4
+ 3𝛼4𝑉2DCΦ22(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)4 .

(31)

Assume the particular solution of 𝑢12 and 𝑢22 as
𝑢12 = (𝐴2𝑒2𝑖𝜔𝑇0Ψ11 + 2𝐴𝐴Ψ12 + 𝐴2𝑒−2𝑖𝜔𝑇0Ψ11) ,
𝑢22 = (𝐴2𝑒2𝑖𝜔𝑇0Ψ21 + 2𝐴𝐴Ψ22 + 𝐴2𝑒−2𝑖𝜔𝑇0Ψ21) , (32)

where the functions Ψ𝑖𝑗 are the solutions of the boundary
value problems:

𝑀1 (Ψ1𝑖, 2𝜔𝛿1𝑖) = ℎ1 (𝑥) ,
𝑀2 (Ψ2𝑖, 2𝜔𝛿1𝑖) = ℎ2 (𝑥) ,

Ψ1𝑗 = 0;
Ψ󸀠1𝑗 = 0;
Ψ2𝑗 = 0;
Ψ󸀠2𝑗 = 0;
all evaluated at 𝑥 = 0, 𝑥 = 1 for 𝑗 = 1, 2,

(33)

and where 𝛿 is the Kronecker delta operator and the two
linear differential operators𝑀1 and𝑀2 are defined as

𝑀1 (Ψ1𝑖, 𝜔) = Ψ𝑖V1𝑖 − 𝜔2Ψ1𝑖 − 𝛼3Γ (𝑤𝑠1, 𝑤𝑠1) Ψ󸀠󸀠1𝑖
− 2𝛼3𝑤󸀠󸀠𝑠1Γ (𝑤𝑠1, Ψ1𝑖) − 2𝛼4𝑉2DCΨ1𝑖(1 − 𝑤𝑠1)3
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− 2𝛼4𝑉2DCΨ1𝑖(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3
+ 2𝛼4𝑉2DCΨ2𝑖(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 ,

𝑀2 (Ψ2𝑖, 𝜔) = Ψ𝑖V2𝑖 − 𝜔2Ψ2𝑖 − 𝛼3Γ (𝑤𝑠2, 𝑤𝑠2) Ψ󸀠󸀠2𝑖
− 2𝛼3𝑤󸀠󸀠𝑠2Γ (𝑤𝑠2, Ψ2𝑖)
+ 2𝛼4𝑉2DCΨ1𝑖(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3
− 2𝛼4𝑉2DCΨ2𝑖(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 .

(34)

Introduce the detuning parameter 𝜎 to describe the nearness
of the excitation frequency Ω to the fundamental natural
frequency of the excited mode 𝜔 as

Ω = 𝜔 + 𝜀2𝜎. (35)

The solutions of the first and second order are then substi-
tuted in (20) and (25), leading to

L1 (𝑢13, 𝑢23) = 𝐷02𝑢13 + 𝑢𝑖V13 − 𝛼3Γ (𝑤𝑠1, 𝑤𝑠1) 𝑢󸀠󸀠13
− 2𝛼3𝑤󸀠󸀠𝑠1Γ (𝑤𝑠1, 𝑢13) − 2𝛼4𝑉2DC𝑢13(1 − 𝑤𝑠1)3
− 2𝛼4𝑉2DC𝑢13(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 +

2𝛼4𝑉2DC𝑢23(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3
= (−2𝑖𝜔𝐴󸀠Φ1 (𝑥) − 𝑖𝑐𝜔Φ1 (𝑥) 𝐴 + 𝜒1 (𝑥) 𝐴2𝐴
+ 𝐹̃1𝑒𝑖𝜎1𝑇2 − 𝐹̃2𝑒𝑖𝜎2𝑇2) 𝑒𝑖𝜔𝑇0 + 𝑐𝑐 +NST;

L2 (𝑢13, 𝑢23) = 𝐷02𝑢23 + 𝑢𝑖V23 − 𝛼3Γ (𝑤𝑠2, 𝑤𝑠2) 𝑢󸀠󸀠23
− 2𝛼3𝑤󸀠󸀠𝑠2Γ (𝑤𝑠2, 𝑢23) + 2𝛼4𝑉2DC𝑢13(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3
− 2𝛼4𝑉2DC𝑢23(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 = (−2𝑖𝜔𝐴

󸀠Φ2 (𝑥)
− 𝑖𝑐𝜔𝐴Φ2 (𝑥) + 𝐴2𝐴𝜒2 (𝑥) + 𝐹̃2𝑒𝑖𝜎2𝑇2) 𝑒𝑖𝜔𝑇0 + 𝑐𝑐
+NST,

(36)

where NST stands for the nonsecular terms and the functions𝜒𝑖 are defined as

𝜒1 (𝑥) = 2𝛼3𝑤󸀠󸀠𝑠1 (Γ (Φ1, Ψ11) + 2Γ (Φ1, Ψ12))
+ 2𝛼3Φ󸀠󸀠1 (Γ (𝑤𝑠1, Ψ11) + 2Γ (𝑤𝑠1, Ψ12))
+ 2𝛼3Γ (𝑤𝑠1, Φ1) (Ψ󸀠󸀠11 + 2Ψ󸀠󸀠12) + 3𝛼3Γ (Φ1, Φ1)Φ󸀠󸀠1

+ 6𝛼4𝑉2DC(1 − 𝑤𝑠1)4 (Ψ11Φ1 + 2Ψ12Φ1) +
12𝛼4𝑉2DC(1 − 𝑤𝑠1)5Φ1

3

+ 6𝛼4𝑉2DC((𝑑2/𝑑1) + 𝑤𝑠1 − 𝑤𝑠2)4 (−Φ1Ψ11 − 2Φ1Ψ12
+ Φ1Ψ21 + 2Φ1Ψ22 + Φ2Ψ11 + 2Φ2Ψ12 − Φ2Ψ21
− 2Φ2Ψ22) + 12𝛼4𝑉2DC((𝑑2/𝑑1) + 𝑤𝑠1 − 𝑤𝑠2)5 (Φ1

3

− 3Φ12Φ2 + 3Φ1Φ22 − Φ23) ;
𝜒2 (𝑥) = 2𝛼3𝑤󸀠󸀠𝑠2 (Γ (Φ2, Ψ21) + 2Γ (Φ2, Ψ22))
+ 2𝛼3Φ󸀠󸀠2 (Γ (𝑤𝑠2, Ψ21) + 2Γ (𝑤𝑠2, Ψ22))
+ 2𝛼3Γ (𝑤𝑠2, Φ2) (Ψ󸀠󸀠21 + 2Ψ󸀠󸀠22) + 3𝛼3Γ (Φ2, Φ2)Φ󸀠󸀠2
+ 6𝛼4𝑉2DC((𝑑2/𝑑1) + 𝑤𝑠1 − 𝑤𝑠2)4 (Φ1Ψ11 + 2Φ1Ψ12
− Φ1Ψ21 − 2Φ1Ψ22 − Φ2Ψ11 − 2Φ2Ψ12 + Φ2Ψ21
+ 2Φ2Ψ22) + 12𝛼4𝑉2DC((𝑑2/𝑑1) + 𝑤𝑠1 − 𝑤𝑠2)5 (−Φ1

3

+ 3Φ12Φ2 − 3Φ1Φ22 + Φ23) .
(37)

Hence, we need to eliminate the secular terms in (36) by
seeking a particular solution free of secular terms in the form:

𝑢13 (𝑥, 𝑇0, 𝑇2) = Υ1 (𝑥, 𝑇2) 𝑒𝑖𝜔𝑇0 ,
𝑢23 (𝑥, 𝑇0, 𝑇2) = Υ2 (𝑥, 𝑇2) 𝑒𝑖𝜔𝑇0 . (38)

Then, (38) are substituted into (36). Next, the coefficients of𝑒𝑖𝜔𝑇0 in the resultant equations will be equated. The outcome
of two equations will be thenmultiplied by two adjoints func-
tions𝑃(𝑥) and𝑄(𝑥), respectively, and then integrated by parts
to transfer the derivatives from Υ to the adjoints, leading to

∫1
𝑥=0
Υ1(−𝜔2𝑃 + 𝑃𝑖V − 𝛼3Γ (𝑤𝑠1, 𝑤𝑠1) 𝑃󸀠󸀠

− 2𝛼3𝑤󸀠󸀠𝑠1Γ (𝑃, 𝑤𝑠1) − 2𝛼4𝑉2DC𝑃(1 − 𝑤𝑠1)3
− 2𝛼4𝑉2DC𝑃(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3)𝑑𝑥 + [𝑃Υ

󸀠󸀠󸀠
1

− 𝑃󸀠Υ󸀠󸀠1 + 𝑃󸀠󸀠Υ󸀠1 − 𝑃󸀠󸀠󸀠Υ1 − 𝛼3Γ (𝑤𝑠1, 𝑤𝑠1) (𝑃Υ󸀠1
− 𝑃󸀠Υ1) + 2𝛼3𝑤󸀠𝑠1𝑃∫1

𝑥=0
𝑤󸀠󸀠𝑠1Υ1𝑑𝑥 − 2𝛼3𝑤󸀠𝑠12𝑃Υ1
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+ 2𝛼3𝑤󸀠𝑠1Υ1Γ (𝑃, 𝑤𝑠1)]1
𝑥=0

+ ∫1
𝑥=0
Υ2

⋅ 2𝛼4𝑉2DC𝑃(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 𝑑𝑥
= ∫1
𝑥=0
𝑃 (−2𝑖𝜔𝐴󸀠Φ1 (𝑥) − 𝑖𝑐𝜔Φ1 (𝑥) 𝐴

+ 𝜒1 (𝑥) 𝐴2𝐴 + 𝐹̃1𝑒𝑖𝜎1𝑇2 − 𝐹̃2𝑒𝑖𝜎2𝑇2) 𝑑𝑥;
∫1
𝑥=0
Υ2(−𝜔2𝑄 + 𝑄𝑖V − 𝛼3Γ (𝑤𝑠2, 𝑤𝑠2) 𝑄󸀠󸀠

− 2𝛼3𝑤󸀠󸀠𝑠2Γ (𝑄,𝑤𝑠2)
− 2𝛼4𝑉2DC𝑄(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3)𝑑𝑥 + ∫

1

𝑥=0
Υ1

⋅ 2𝛼4𝑉2DC𝑄(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 𝑑𝑥 + [𝑄Υ
󸀠󸀠󸀠
2 − 𝑄󸀠Υ󸀠󸀠2

+ 𝑄󸀠󸀠Υ󸀠2 − 𝑄󸀠󸀠󸀠Υ2 − 𝛼3Γ (𝑤𝑠2, 𝑤𝑠2) (𝑄Υ󸀠2 − 𝑄󸀠Υ2)
+ 2𝛼3𝑤󸀠𝑠2𝑄∫1

𝑥=0
𝑤󸀠󸀠𝑠2Υ2𝑑𝑥 − 2𝛼3𝑤󸀠𝑠22𝑄Υ2

+ 2𝛼3𝑤󸀠𝑠2Υ2Γ (𝑄,𝑤𝑠2)]1
𝑥=0

= ∫1
𝑥=0
𝑄(−2𝑖𝜔𝐴󸀠Φ2 (𝑥) − 𝑖𝑐𝜔𝐴Φ2 (𝑥)

+ 𝐴2𝐴𝜒2 (𝑥) + 𝐹̃2𝑒𝑖𝜎2𝑇2) 𝑑𝑥.
(39)

By adding (39) and rearranging the terms, we can obtain the
two adjoints equations governing both functions 𝑃(𝑥) and𝑄(𝑥) as follows:
− 𝜔2𝑃 + 𝑃𝑖V − 𝛼3Γ (𝑤𝑠1, 𝑤𝑠1) 𝑃󸀠󸀠 − 2𝛼3𝑤󸀠󸀠𝑠1Γ (𝑃, 𝑤𝑠1)
− 2𝛼4𝑉2DC𝑃(1 − 𝑤𝑠1)3 −

2𝛼4𝑉2DC𝑃(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3
+ 2𝛼4𝑉2DC𝑄(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 = 0;

− 𝜔2𝑄 + 𝑄𝑖V − 𝛼3Γ (𝑤𝑠2, 𝑤𝑠2) 𝑄󸀠󸀠 − 2𝛼3𝑤󸀠󸀠𝑠2Γ (𝑄,𝑤𝑠2)
− 2𝛼4𝑉2DC𝑄(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3
+ 2𝛼4𝑉2DC𝑃(𝑑2/𝑑1 + 𝑤𝑠1 − 𝑤𝑠2)3 = 0;

(40)

which are the same as the first-order equations (29) so we call
them self-adjoint equations. The solvability condition can be
then obtained as

∫1
𝑥=0
(−2𝑖𝜔𝐴󸀠 (𝑃Φ1 + 𝑄Φ2) − 𝑖𝑐𝜔𝐴 (𝑃Φ1 + 𝑄Φ2)

+ 𝐴2𝐴 (𝑃𝜒1 + 𝑄𝜒2) + 𝐹̃1𝑃𝑒𝑖𝜎1𝑇2
+ 𝐹̃2𝑒𝑖𝜎2𝑇2 (𝑄 − 𝑃)) 𝑑𝑥 = 0.

(41)

Using Euler’s formula for 𝑒𝑖𝜎1𝑇2 and 𝑒𝑖𝜎2𝑇2 , then separating the
real and imaginary parts of the solvability condition will give
the following two coupled equations:

𝛽󸀠𝑎 (𝑧1 + 𝑧2) + 18𝜔𝑎3 (𝑆1 + 𝑆2)
= −𝐹1𝜔 cos 𝛾1 − 1𝜔 (𝐹22 − 𝐹21) cos 𝛾2,

(42)

𝑎󸀠 (𝑧1 + 𝑧2) + 𝑐2𝑎 (𝑧1 + 𝑧2)
= 𝐹1𝜔 sin 𝛾1 + 1𝜔 (𝐹22 − 𝐹21) sin 𝛾2,

(43)

where

𝑧1 = ∫1
𝑥=0
𝑃Φ1𝑑𝑥,

𝑧2 = ∫1
𝑥=0
𝑄Φ2𝑑𝑥,

𝑆1 = ∫1
𝑥=0
𝑃𝜒1𝑑𝑥,

𝑆2 = ∫1
𝑥=0
𝑄𝜒2𝑑𝑥,

𝐹1 = ∫1
𝑥=0
𝐹̃1𝑃𝑑𝑥,

𝐹21 = ∫1
𝑥=0
𝐹̃2𝑃𝑑𝑥,

𝐹22 = ∫1
𝑥=0
𝐹̃2𝑄𝑑𝑥,

𝛾 = 𝜎𝑇2 − 𝛽.

(44)

By squaring both sides of (42) and (43) and then adding the
results, while remembering that (𝛽󸀠 = 𝜎 − 𝛾󸀠), we get

𝑎20 ((𝜎 (𝑧1 + 𝑧2) + 18𝜔𝑎20 (𝑆1 + 𝑆2))
2

+ 𝑐24 (𝑧1 + 𝑧2)2) = (𝐹1 + 𝐹22 − 𝐹21)
2

𝜔2 .
(45)

Since the quality factor is related to the damping coefficient
(𝑐) by

𝑄 = 𝜔𝑐 (𝑧1 + 𝑧2) (46)
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it can be replaced in the solvability equation (45) to examine
the effect of the quality factor on the system dynamics.

5. ROM and Perturbation Results

To solve for the coupled equations ofmotion of both the lower
anduppermicrobeams using theROM, it is necessary to solve
for the unknown functions 𝑝𝑖(𝑡) and 𝑞𝑖(𝑡) in (11) and then
substituting them back into (9) and (10), which will give the
deflection of both microbeams.

For the method of multiple scales based perturbation
technique, we start first by scaling the first-order coupled
equations, (29) for both functions B1 and B2. Then, we
substitute them into the boundary value problems equations
(33) to solve for the unknown functions Ψ11, Ψ12, Ψ21, andΨ22. Then, we solve for the unknown dynamic amplitude
from (45) and the phase from either (42) or (43). Finally, the
deflection of the lower and upper microbeams can be calcu-
lated using (14) and (15), respectively. More details about this
numerical resolution technique can be found in [16]. Figure 2
is also accommodating the above numerical method descrip-
tion in summarizing the sequence of operations done in this
particular method of multiple scales (MMS) technique.

Since each two consecutive natural frequencies of this sys-
tem are very close to each other, the equations of the pertur-
bationwill be solved twice for each one of those two, and then
the deflections around the two natural frequencies for each
microbeam will be added to give the resultant deflections
of both microbeams. A comparison of the obtained results
for the two above described methods for the case of double-
microbeams is shown in Figures 3–5.The selected parameters
are the same as assumed in the static analysis [18] and shown
in Table 1, with the only difference being the applied voltages,𝑉DC = 10 Volts and𝑉AC = 0.5 Volts. In this present case, it can
be seen from all figures that overall both assumed numerical
methods are in good agreement for all different cases. While
the perturbation analysis technique is less accurate than the
ROM, it showed better global results in the presence of gross
nonlinearity. It can predict all of the stable and unstable
branches which the ROM is not capable of capturing. Also,
it gives a better global and local dynamical picture about the
microsystem’s behavior. Hence, the perturbation technique
will be used in the following parametric study.

6. Parametric Study

In order to investigate the effect of different physical and
geometrical parameters on the dynamical amplitude of the
double-microbeams based actuator, three different values
were selected (low, medium, and high) for each chosen
parameter; then the frequency response curve was generated
for each microbeam to investigate the effects of each tuned
parameter.The selected parameters are the length, the quality
factor, and the DC and AC voltages. For all those cases, the
depths of both air gaps are kept equal (𝑑1 = 𝑑2 = 1.25 𝜇m)
and the width (𝑏) and height (ℎ) for both microbeams are
initially assumed to be 20𝜇m and 1.5 𝜇m, respectively. The
length (𝐿) and the quality factor (𝑄) were equal to 210 𝜇m
and 50, respectively, for all the cases except when they are
intentionally varied.

6.1. Effect of the Actuator Length (𝐿). Figure 6 shows the
amplitude versus the excitation frequency for three different
lengths (210𝜇m, 410 𝜇m, and 610 𝜇m). From both figures,
the significance of changing the length on the dynamical
amplitude, even when small voltages were applied (i.e.,𝑉DC =2 Volts and 𝑉AC = 0.1 Volts), is clear. When the length is of a
small value (𝐿 = 210 𝜇m), the two resonance peaks are very
close to each other, which means that the applied voltages
have a slight effect on the microstructure and so do not
change its fundamental frequencies. However, when the value
of the microbeam length is increased (𝐿 = 410 and 610 𝜇m),
the distance between the two peaks becomes larger, meaning
the fundamental frequency becomes lowered and the system
is prone to experience a pull-in instability. Also, with a high
value of the microbeam length, the nonlinearity becomes
more dominant, producing a softening-type of behavior at the
fundamental frequency for both microbeams.

6.2. Effect of the Quality Factor (𝑄). Figure 7 shows the
amplitude versus the excitation frequency for three different
quality factors (50, 150, and 500) at high DC and AC voltages
(i.e., 𝑉DC = 10 Volts and 𝑉AC = 0.5 Volts). It can be noticed
that there is no effect for the quality factor on the resonance
locations, which is reasonable since increasing the quality
factor will decrease the damping which has no effect on the
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Figure 3: Frequency response curves of the (a) upper microbeam and (b) lower microbeam assuming both ROM and perturbation method
for the case of 𝑑1 = 𝑑2.
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Figure 4: Frequency response curves of the (a) upper microbeam and (b) lower microbeam assuming both ROM and perturbation method
for the case of 𝑑1 < 𝑑2.
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Figure 5: Frequency response curves of the (a) upper microbeam and (b) lower microbeam assuming both ROM and perturbation method
for the case of 𝑑1 > 𝑑2.
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Table 1: Assumed geometrical and material properties.

Parameter Value Parameter Value
Beam length (𝐿) 150𝜇m Effective Young’s modulus (𝐸) 166GPa
Beam thickness (ℎ) 1.0 𝜇m Density (𝜌) 2,332 kg/m3

Beam width (𝑏) 4.0 𝜇m Air gap depths (𝑑1 and 𝑑2, resp.) Case 𝑑1 = 𝑑2 1.25𝜇m 1.25 𝜇m
Case 𝑑1 < 𝑑2 1 𝜇m 1.5𝜇m
Case 𝑑1 > 𝑑2 1.5 𝜇m 1 𝜇m
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Figure 6: Effect of the microbeam length (𝐿) on the frequency responses of the (a) lower microbeam and (b) upper microbeam for 𝑉DC = 2
Volts and 𝑉AC = 0.1 Volts.
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Figure 7: Effect of the quality factor (𝑄) on the frequency responses of the (a) lower microbeam and (b) upper microbeam for 𝑉DC = 10
Volts and 𝑉AC = 0.5 Volts.

natural frequencies. However, the quality factor is shown to
maximize the amplitude and with a high quality factor the
nonlinearity becomes prominent (see hardening behavior in
both figures).

6.3. Effect of the Applied DC Static Load (𝑉DC). The effects of
the applied DC voltage on the amplitude are shown in Fig-
ure 8. Three different voltages were selected, which are 5, 10,
and 15 Volts. At a lowDC voltage, the fundamental frequency
is not affected by the applied voltage, so it is very close to
its consecutive one. However, an increase in the value of the
DC voltage causes the fundamental frequency to shift from its
initial position, and hence the system gets closer and closer to

the pull-in instability. Since the termof the appliedACvoltage
is small there is no presence for the nonlinearity. So, wewould
like to investigate the nonlinearity effect for the applied DC
voltage at a highACvoltage. As it can be shown fromFigure 9,
by increasing the value of the applied AC voltage to 5 Volts,
the hardening-type nonlinearity appears at high values of the
DC voltage.This indicates that the mid-plane stretching term
is significant, since it is responsible for this nonlinearity.

6.4. Effect of the Applied AC Harmonic Load (𝑉AC). Fig-
ure 10 shows the effect of the applied AC voltage on the
amplitude. For this investigation, three different AC voltages
were selected which are 5, 10, and 15 Volts. Unlike the DC
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Figure 8: Effect of the applied DC voltage (𝑉DC) on the frequency responses of the (a) lower microbeam and (b) upper microbeam for𝑉AC =
0.1 Volts.
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Figure 9: Effect of the applied DC voltage (𝑉DC) on the frequency responses of the (a) lower microbeam and (b) upper microbeam for𝑉AC =
5 Volts.
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Figure 10: Effect of the applied AC voltage (𝑉AC) on the frequency responses of the (a) lower microbeam and (b) upper microbeam for𝑉DC =
2 Volts.

voltage, the applied AC voltage has no effect on the natural
frequencies, which is predictable since the dynamic loading
has no effect on the natural frequencies. As shown in the
figures, increasing the AC voltage increases the amplitude as
well as producing a hardening type of nonlinearity.

7. Conclusion

An investigation into the nonlinear dynamics of a multi-
layers based MEMS resonator made of clamped-clamped
microbeams under electrostatic actuation was conducted. A
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nonlinear Euler-Bernoulli beammodel was utilized account-
ing for both geometric (mid-plane stretching) and actuation
nonlinearities. Two numerical methods were used to dis-
cretize the continuous beam model, which are perturbation
analysis andGalerkin based reduced-ordermodeling (ROM).
The results showed that the outcomes of the two methods are
in good agreement. Although the ROM is more accurate in
obtaining the behavior, it cannot capture all of the solution’s
branches, where perturbation can be accomplished princi-
pally when the nonlinearity is becoming nontrivial.

The influences of different geometrical and design param-
eters were examined. Based on the parametric study, the
effects of the resonator parameters selection were shown to
be significant on the MEMSmultilayers resonator dynamical
profiles. For example, increasing the resonator length (𝐿)
revealed a significant softening nonlinearity. The resonator
quality factor (𝑄) decrease showed a huge effect in max-
imizing the resonator dynamical response. Regarding the
electric force actuating loads, increasing theDCvoltage (𝑉DC)
indicated a shift in theMEMSmultilayers resonator resonant
peaks away from each other, while producing a hardening-
type nonlinearity for higher AC voltages. Furthermore,
assume that higher AC load (𝑉AC) produced more developed
hardening behavior of the multilayers MEMS resonator.
Consequently, interesting dynamical features can be achieved
by controlling these resonator parameters, which may be
useful in numerous MEMS resonating/sensing applications.
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