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We consider an infinite-allele Markov branching process (IAMBP). Our main focus is the frequency spectrum of this process, that
is, the proportion of alleles having a given number of copies at a specified time point. We derive the variance of the frequency
spectrum, which is useful for interval estimation and hypothesis testing for process parameters. In addition, for a class of special
IAMBP with birth and death offspring distribution, we show that the mean of its limiting frequency spectrum has an explicit form
in terms of the hypergeometric function.We also derive an asymptotic expression for convergence rate to the limit. Simulations are
used to illustrate the results for the birth and death process.

1. Introduction

The infinite-allele branching process was first introduced by
Griffiths and Pakes [1]. As a special type of branching process,
this process allows individuals to mutate into infinitely many
allelic variants, each of which is “new” in the sense of being
different from all previously existing variants. This ideali-
zation is approximately correct for rare point mutations in
long DNA sequences. Fundamental results for the discrete-
time case (simple branching process) and for the continuous-
time case (Markov branching process) have been obtained in
[1, 2]. These include the number of alleles at a given genera-
tion or time, the generation number or time of the last muta-
tion, and the limiting frequency spectrum. There exists an
analogy between the results for the discrete-time and the con-
tinuous-time cases; however, the characteristics in the contin-
uous case are relatively easier to derive [2]. Many evolution-
ary processes may be considered time continuous, and fre-
quently we assumeMarkov property in modeling. A classical
example is the discrete-time Wright-Fisher model, which is
typically either approximated by a continuous-time diffusion
or replaced by a continuous-time Markov chain, the so-
called continuous-time Moran process [3]. Therefore, the
time-continuous infinite-allele Markov branching process

(TCIAMBP, or simply IAMBP) seems to be appropriate for
modeling evolution in population genetics.

Consider aMarkov branching process with neutral muta-
tions. Suppose that the process starts from a group of individ-
uals carrying the same allele, and individuals can mutate into
new allelic variants.We assume that the mutation is indepen-
dent of the previous history of the process, and the offspring
distribution is independent of the allelic type, that is, the
selection is neutral for all alleles.The process can be described
as an “infinitely-many-alleles” model (IAM). Whenever a
mutation happens, it yields a new allele, which differs from all
the previously existing ones. In this paper, we are interested in
the frequency spectrum of the IAMBP, which may be defined
as the number or proportion of alleles present in a given
number of individuals at a specified time point. Frequency
spectrum in this paper refers to random allele frequencies,
not their expected value as in Griffiths and Pakes [1] and in
Pakes [2], since we also consider the variance of the allele fre-
quency later on. Unless specified otherwise, we will use terms
“mean frequency spectrum” and “variance frequency spec-
trum” in the remainder of this paper to denote the expected
value and variance of the allele frequency. The frequency
spectrum plays an important role in many genetic processes,
such asDNAsequence evolution.As an example, Kimmel and
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Mathaes [4]modeled the Alu sequence data using an infinite-
allele simple branching process with linear-fractional off-
spring distribution, and the goodness of fit testing suggested
that Alu sequences do not evolve neutrally and might be
under selection. It has to be noted that the concept of the fre-
quency spectrum is in some sense similar to the Ewens’ sam-
pling formula [5] in population genetics. We will return to
this subject in the discussion, although analysis of the analo-
gies and differences transcends the scope of the present paper.

The paper is organized as follows. In Section 2, we rigor-
ously define the IAMBP and the mean frequency spectrum
of the IAMBP. Then, we provide explicit expressions for the
special case of the birth and death process. In Section 3, we
derive the variance frequency spectrum and discuss its use
in interval estimation for process parameters. We perform
simulations to illustrate the results using the birth and death
process example in Section 4. Section 5 is a summary.

2. IAMBP and Its Limiting Mean
Frequency Spectrum

2.1. Definition and Basic Properties in the Supercritical Case.
Let us consider a continuous-timeMarkov branching process
consisting of individuals with exponential life spans with
mean 𝑎−1. Let us assume that upon death, each individual
produces a random number of offspring. As usually assumed,
the offspring counts are identically distributed according to
probability generating function (pgf)𝑓(𝑠), and they are inde-
pendent conditional on the past process. The mean 𝑓(1−)
of the offspring distribution is 𝑚, regardless of the allelic
type. We further assume that a newborn individual mutates
into a new allelic type with probability 𝜇 independently of
the previous history of the process. Let us denote by ℎ(𝑠) =
𝑓(𝜇+(1−𝜇)𝑠) the offspring pgf in a clone, started by the overall
ancestor or any of mutants, containing only the like-type
individuals. The entire process is a union over all individual
types of such clones. The theory of the IAMBP has been
developed by Griffiths and Pakes [1] in the discrete-time case
and then by Pakes [2] in the continuous-time case. We will
assume 𝑚 > 1 and𝑀 = ℎ(1−) > 1, although some results
can be proved without this latter assumption.

Let 𝛼
𝑡

(𝑗) be the number of alleles present in 𝑗 individuals
at time 𝑡 and 𝜙

𝑖,𝑡

(𝑗) = 𝐸
𝑖

[𝛼
𝑡

(𝑗)], where subscript 𝑖 indicates
that the process begins with 𝑖 individuals carrying the same
allele. It has been shown that [2]

𝜙
𝑖,𝑡

(𝑗) = 𝑞
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where 𝜆 = 𝑎(𝑚−1) is theMalthusian parameter of the overall
process and 𝑞

𝑖𝑗

(𝑡) is the probability of observing 𝑗 individuals
(𝑗 ≥ 1) carrying the parental allele at time 𝑡 when starting
from 𝑖 individuals with the parental allele at time 𝑡 = 0.
Consequently, for the number𝐾

𝑡
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Let 𝐺
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= ∫
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(3)

as the limitingmean frequency spectrum, that is, the expected
proportion of alleles present in 𝑗 individuals as 𝑡 → ∞, then
we see that for the supercritical process such that 𝜆 > 0,

𝜓
𝑗

=

𝜆𝐺
𝑗

1 − 𝜆𝐺
0

, 𝑗 ≥ 1. (4)

If𝑀 > 1, then the process of the like-type clones is sup-
ercritical, and as it is known [6], 𝑞
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(𝑡) ↑ 𝑞
10

(∞) <

1 and 𝑞
1𝑗

(𝑡) → 0, 𝑗 ≥ 1, as 𝑡 → ∞.
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(5)

Details of the proof are omitted, since they appear elementary.

2.2. IAMBP with Birth and Death Offspring Distribution. For
the IAMBPwith birth and death offspring distribution𝑓(𝑠) =
𝛼 + 𝛽𝑠

2, 𝛼 + 𝛽 = 1, we are able to obtain an explicit form for
𝐺
𝑗

, 𝑗 ≥ 0; therefore, the limiting mean frequency spectrum
𝜓
𝑗

, 𝑗 ≥ 1 can be derived. The offspring pgf of the like-type
individuals clone in the birth and death IAMBP is written as

ℎ (𝑠) = 𝑓 (𝜇 + (1 − 𝜇) 𝑠) = 𝛼 + 𝛽[𝜇 + (1 − 𝜇) 𝑠]
2

, (6)

where 𝛼, 𝛽 and 𝜇 stand for the death, birth, and mutation
probabilities for every individual and 𝛼 + 𝛽 = 1. Note
that under another parameterization where the two newborn
individuals die, live, and mutate independently, this pgf may
be formulated differently as ℎ(𝑠) = [𝛼 + 𝛽𝜇 + 𝛽(1 − 𝜇)𝑠]2.
Under either parameterization, 𝜆 = 𝑎(2𝛽 − 1). If, as assumed,
𝑀 = 𝑚(1 − 𝜇) > 1, then parameters 𝛼 and 𝜇 are subject to a
constraint

(1 − 𝛼) (1 − 𝜇) >

1

2

. (7)
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Let us write 𝐴2 = 𝛼 + 𝛽𝜇2 and 𝐵2 = 𝛽(1 − 𝜇)2 (note, for
the other formulation, 𝐴2 = (𝛼 + 𝛽𝜇)2 and 𝐵2 = 𝛽2(1 − 𝜇)2).
The explicit form of 𝐺
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can be written as

𝐺
0

=

1

𝑐

𝐴
2

𝐵
2

Γ (𝜆/𝑐) Γ (2)

Γ (2 + (𝜆/𝑐))

× 𝐹(1,

𝜆

𝑐

; 2 +

𝜆

𝑐

;

𝐴
2

𝐵
2

) ,

𝐺
𝑗

=

1

𝑐

(1 −

𝐴
2

𝐵
2

)

2

Γ (1 + (𝜆/𝑐)) Γ (𝑗)

Γ (𝑗 + 1 + (𝜆/𝑐))

× 𝐹(𝑗 + 1, 1 +

𝜆

𝑐

; 𝑗 + 1 +

𝜆

𝑐

;

𝐴
2

𝐵
2

) , 𝑗 ≥ 1,

(8)

where 𝑐 = 𝑎(𝐵2 − 𝐴2) = 𝑎[2𝛽(1 − 𝜇) − 1] is the Malthusian
parameter of the like-type clone and 𝐹(⋅, ⋅; ⋅; ⋅) is the Gauss
hypergeometric function [7], defined as

𝐹 (𝑎, 𝑏; 𝑐; 𝑧)

=

Γ (𝑐)
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∫
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𝑐 > 𝑏 > 0.

(9)

For a detailed derivation, see Appendix A. Note that the
supercritical condition also guarantees that the argument of
the hypergeometric function remains within its region of
definiteness.

It follows that
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(10)

Figure 1 shows an example of the limitingmean frequency
spectrum for the birth and death process with parameters 𝑎 =
1, 𝛼 = 0.25, and 𝜇 = 10−4, based on formula (10). To see how
the spectrum varies with different parameter settings, we plot
in Figure 2(a), the 3-D surface of a major component of the
spectrum, 𝜓

1

, for different 𝛼’s and 𝜇’s. Figures 2(b) and 2(c)
illustrate the effect of one parameter on𝜓

1

given a fixed value
of the other parameter.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.3

0.2

0.5

0.4

𝑗

𝜓𝑗

Figure 1: Limiting mean frequency spectrum of the infinite-allele
birth and death process with 𝑎 = 1, 𝛼 = 0.25, and 𝜇 = 10−4.

We see that for fixed 𝛼, increasing 𝜇 causes an increase of
𝜓
1

. This can be intuitively explained by the offspring pgf ℎ(𝑠)
of the like-type clone. From the pgf expression ℎ(𝑠) = 𝛼 +
𝛽[𝜇 + (1 − 𝜇)𝑠]

2, we see that the probability of obtaining one
like-type individual in the offspring is 2(1−𝛼)𝜇(1−𝜇), which is
an increasing function of 𝜇 for a given 𝛼, under the constraint
(1 − 𝛼)(1 − 𝜇) > 1/2. Therefore, increasing 𝜇 will finally lead
to an increase of 𝜓

1

. The effect of 𝛼 on 𝜓
1

when fixing 𝜇 is
not so obvious, but we notice that when fixing 𝜇 very close to
0, as 𝛼 approaches 1/2, the process is approximately critical
binary fission; therefore, 𝜓

1

drops down because of almost
sure extinction of the process, as seen from the tail behavior
of the solid thick line in Figure 2(c).

Arguably, the frequency spectrum can only be observed
in finite time. The finite-time mean frequency spectrum can
be obtained by computing 𝐺

𝑗

(𝑡) = ∫

𝑡

0

𝑒
−𝜆𝑥

𝑞
1𝑗

(𝑥)𝑑𝑥, 𝑗 ≥ 0
numerically. For the birth and death process, this involves
the computation of the incomplete hypergeometric function.
The following is a valid question in this context. In order
to safely use the limiting mean frequency spectrum, how
long should the process history be? Figure 3(a) compares
the limiting mean frequency spectrum with some long-term
mean frequency spectra, for the birth and death process
with parameters 𝑎 = 1, 𝛼 = 0.25, and 𝜇 = 10−4. We
see that under this setting, the long-term mean frequency
spectrum is almost identical to the limiting mean frequency
spectrum when 𝑡 ≥ 28. In general, this result depends
strongly on parameters 𝑎, 𝛼, and 𝜇, for example, small 𝜇 leads
to longer 𝑡. This provides us with some intuitions concerning
the sufficiently large 𝑡 for approximating the limiting mean
frequency spectrum. Figure 3(b) illustrates the difference
between the finite-time mean frequency spectrum and the
limiting mean frequency spectrum as a function of 𝑡, for
large 𝑡, 𝑡 ∈ [15, 35] and for 𝑗 = 1, 2, where lines represent
the true difference and markers represent the asymptotic
approximation by formula (5). To emphasize the agreement
for 𝑡 large, this figure is plotted in semilogarithmic scale. We
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see that the true difference drops exponentially fast, and the
asymptotic approximation is good for large 𝑡.

Given the observed long-termmean frequency spectrum,
the parameters 𝜃 of the IAMBP, such as 𝛼, 𝜇 in the birth and
death process, can be estimated by equating the observed
long-term mean frequency spectrum 𝜓obs from the sample
to the expected limiting mean frequency spectrum 𝜓exp from
formula (3) and solving for the process parameters. In the case
of the birth and death process, we may estimate 𝛼 and 𝜇 for
example by solving
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for positive integers 𝑗
1

̸= 𝑘
1

, 𝑗
2

̸= 𝑘
2

, where 𝜆/𝑐 and 𝐴2/𝐵2 are
both functions of 𝛼 and 𝜇.

There is no explicit solution for such estimator, but num-
erical search according to some criteria is feasible. Another

possibility is to minimize the distance (such as the 𝑙2 norm)
between the observed long-term mean frequency spectrum
and the expected limiting mean frequency spectrum, that is,
̂
𝜃 = argmin

𝜃

‖𝜓obs − 𝜓exp(𝜃)‖2.
The estimated parameters can be used to check the good-

ness of fit of the IAMBP model. Another interesting problem
is to test whether two sets of parameters are identical, given
two observed mean frequency spectra. A simple approach
is to use Pearson’s 𝜒2 test, such as in Kimmel and Mathaes
[4]. However, there may be restrictions to applying the 𝜒2
test, such as small cell counts and inappropriateness due to
the finite length of the observed spectrum. This motivates
us to develop an interval estimator for the IAMBP para-
meters.

3. Variance of the Frequency Spectrum

Moment estimators based on the mean frequency spectrum
only give point estimates of the process parameters. In order
to quantify the uncertainty of point estimates, an interval
estimator is needed, which requires more information about
the distribution of the statistic 𝛼

𝑡

(𝑗). First, it can be seen that
[2]
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𝑁
𝑡

is the number of split times in (0, 𝑡], and𝑈
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Figure 2: (a) Surface of 𝜓
1

at different 𝛼 and 𝜇, for the infinite-allele birth and death process. (b) Relation between 𝜓
1

and 𝜇 when fixing 𝛼.
(c) Relation between 𝜓

1

and 𝛼 when fixing 𝜇.

where

𝐶 (𝑡) = 𝑎∫

𝑡

0

[𝑞
2

1𝑗

(𝑥) + (𝜎
2

+ 𝑚
2

) 𝛽
2

1

(𝑥)] 𝑒
−𝑎(𝑡−𝑥)

𝑑𝑥

− [𝑎∫

𝑡

0

𝑞
1𝑗

(𝑥)𝑒
−𝑎(𝑡−𝑥)

𝑑𝑥]

2

− [𝑎𝑚∫

𝑡

0

𝛽
1

(𝑥)𝑒
−𝑎(𝑡−𝑥)

𝑑𝑥]

2

.

(14)

In Expression (14), 𝛽
1

(𝑥) = 𝑎𝑒
𝜆𝑥

∫

𝑥

0

𝑒
−𝜆𝑢

𝑞
1𝑗

(𝑢)𝑑𝑢, and 𝜎2 is
the variance of the offspring distribution, regardless of the
allelic types.

Similarly as in Expression (3), we may define a limiting
variance frequency spectrum 𝜉

𝑗

= lim
𝑡→∞

𝜂
𝑖,𝑡

(𝑗)/(𝐸
𝑖

[𝐾
𝑡

])
2.

Expression (13) is complicated and usually does not assume
an explicit form, even for the special case of the birth and
death process. Therefore, we will only give numerical solu-
tions for the finite-time variance frequency spectrum. Figure
4 shows an example of the “2𝜎”-bands of the finite-time
frequency spectrum for the infinite-allele birth and death
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Figure 3: Comparison between the finite-time mean frequency spectrum and the limiting mean frequency spectrum of the infinite-allele
birth and death process. (a) 𝜓
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(𝑡) and 𝜓
𝑗

for 1 ≤ 𝑗 ≤ 15, 𝑡 = 15, 20, 28 and∞. (b) Difference between 𝜓
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(𝑡) and 𝜓
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as a function of 𝑡,
𝑡 ∈ [15, 35] for 𝑗 = 1, 2. Lines represent the true difference and markers represent asymptotic approximations.
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Figure 4: “2𝜎”-bands in semi-logarithmic scale of the finite-time
(𝑡 = 28) frequency spectrum for the infinite-allele birth and death
process with 𝑖 = 100, 𝑎 = 1, 𝛼 = 0.25, and 𝜇 = 10−4.

process with 𝑖 = 100, 𝛼 = 0.25, 𝜇 = 10−4, 𝑎 = 1, and
𝑡 = 28. To emphasize the tail probabilities, we draw this plot
in semilogarithmic scale.

From the finite-time variance frequency spectrum, it is
possible to define a CI [𝜃

𝑙

, 𝜃
𝑢

] where the upper and lower
bounds can be written as

arg min
𝜃








𝜓obs (𝑡) − [𝜓exp (𝜃, 𝑡) ± 2√𝜉exp (𝜃, 𝑡)]






2

. (15)

This CI is useful for checking model validity and for testing
whether two observed mean frequency spectra are from the
same IAMBP model.

4. Simulation Study

We perform a simulation study of the birth and death process
to illustrate the finite-time mean and variance frequency
spectra. First we generate samples (genealogical trees) from
an IAMBP with birth and death offspring distribution start-
ing from 100 individuals carrying the same parental allele.
Due to memory restrictions caused by forward simulation,
we limit our simulations to 12 generations and a relatively
large mutation probability 𝜇 = 0.01. The other parameters
of the process are set to be 𝑎 = 1 and 𝛼 = 0.25. At time
𝑡 = 2, we record the number of alleles 𝛼

𝑡

(𝑗) represented by 𝑗
copies, for 𝑗 = 1, 2, . . .. Repeating the simulation 1000 times,
we then obtain the simulated finite-time mean and variance
frequency spectra from the replicates.

Figure 5 shows side-by-side bar plots of the simulated and
expected finite-time mean and variance frequency spectra,
for 𝑗 = 1, . . . , 10. We plot the mean frequency spectrum
and the variance frequency spectrum in semi-logarithmic
scale to emphasize the tail probabilities. In each bar plot,
the first black bar represents the expected finite-time mean
frequency spectrum 𝜓

𝑗

or variance frequency spectrum 𝜉
𝑗

.
The remaining ten white bars represent ten replicates of the
simulated finite-time mean or variance frequency spectrum
as described above.We see that for some classes, the expected
mean or variance frequency spectrum is slightly different
from the simulated spectrum. Beside sampling bias, this may
be caused by the small scale of the simulations. For small
mutation probability 𝜇, we have to set large initial population
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Figure 5: Comparison between the simulated and expected finite-time (𝑡 = 2) frequency spectra of the infinite-allele birth and death process
with 𝑖 = 100, 𝑎 = 1, 𝛼 = 0.25, and 𝜇 = 0.01. In each class 𝑗, 1 ≤ 𝑗 ≤ 10, the first black bar represents the expected frequency spectrum and the
rest 10 white bars represent 10 replicates of the simulated frequency spectrum. (a) mean frequency spectrum 𝜓

𝑗

in semi-logarithmic scale;
(b) variance frequency spectrum 𝜉

𝑗

in semi-logarithmic scale.

size 𝑖 and a long time 𝑡 to obtain acceptable values of 𝜓
𝑖,𝑡

(𝑗)

and 𝜉
𝑖,𝑡

(𝑗) from the simulated genealogical trees. We note
that if one tries to use a naive method to calculate the
variance frequency spectrum, that is, assume the proportions
𝜓
𝑗

of alleles having 𝑗 representatives to be the mean of
some independent Bernoulli random variables (they are not
independent) and employ 𝜉

𝑗

= 𝜓
𝑗

(1 − 𝜓
𝑗

), such method per-
formsmuchworse than 𝜉

𝑗

based on the derivation of the vari-
ance frequency spectrum.

5. Summary

In this paper, we consider the frequency spectrum of the
IAMBP of Pakes [2]. We develop an explicit expression for
the limiting mean frequency spectrum for the special case
of the birth and death process, which can be stated in terms
of the hypergeometric function. We also derive an asympto-
tic expression for the rate of convergence of the finite-time
mean frequency spectrum to the limiting mean frequency
spectrum and illustrate the convergence using the birth and
death process.We further state and prove a theorem concern-
ing the variance frequency spectrum of the IAMBP, which
helps to quantify uncertainty in parameter estimation and
hypothesis testing. We illustrate the results using simulations
of the birth and death process case.

As noted in the introduction, the frequency spectrum
is similar to the Ewens’ sampling formula [5] in population
genetics, since they both concern the count or frequency
spectrum based on an infinite-allele model under neutral
selection. However, they differ in several aspects. (1) Our
frequency spectrum describes population property under a
branching process, whereas the Ewens’ sampling formula
describes allelic class count probabilities caused by a sampling
procedure and further requires the sample size 𝑛 to be small
compared to the size of the whole population which is

assumed constant. (2) Our results concerning the frequency
spectrum only provide the first and secondmoments and not
the distribution function of the proportion of alleles having
a given number of copies at a specified time point, whereas
the Ewens’ sampling formula gives the joint probability of all
allelic classes.We also note that the Poisson-Dirichlet process
[8] is usually used to describe the equilibrium behavior of the
neutral infinite-allele model. Study of the relation between
variations of the frequency spectrum under different models
is of our future interest.

The question of validity of the Wright-Fisher and Moran
models of population genetics [3], as compared to stochastic
population processes such as the IAMBP or O’Connell pro-
cess [9], has importance for estimation of parameters based
on genetic data. As an example, Cyran and Kimmel [10]
compared estimates of the age of theMitochondrial Eve based
on the various versions of theWright-Fishermodelwith those
based on various branching process models. The outcomes
showed differences of about 10–15%.

Appendices

A. Derivation of 𝐺
𝑗

, 𝑗 ≥ 0 for the Birth and
Death Process

For the birth and death process, the offspring pgf of the like-
type individuals clone assumes either the form ℎ

1

(𝑠) = 𝛼 +

𝛽[𝜇 + (1 − 𝜇)𝑠]
2 or the form ℎ

2

(𝑠) = [𝛼 + 𝛽𝜇 + 𝛽(1 − 𝜇)𝑠]
2.

In both cases, the backward Kolmogorov equation gives a
unified expression for the process pgf 𝐹(𝑠, 𝑡):

𝜕𝐹

𝜕𝑡

= 𝑎 [𝐵
2

𝐹
2

− (𝐴
2

+ 𝐵
2

) 𝐹 + 𝐴
2

]

= 𝑎 (𝐴
2

+ 𝐵
2

) [

1

𝐴
2

+ 𝐵
2

(𝐴
2

+ 𝐵
2

𝐹
2

) − 𝐹] ,

(A.1)
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under different parameterizations, where for offspring pgf ℎ
1

,
𝐴
2

= 𝛼+𝛽𝜇
2 and𝐵2 = 𝛽(1−𝜇)2, whereas for offspring pgf ℎ

2

,
𝐴
2

= (𝛼 + 𝛽𝜇)
2 and 𝐵2 = 𝛽2(1 − 𝜇)2. We see that this process

is equivalent to a birth and death process with 𝑎 = 𝑎(𝐴2 +𝐵2)
and offspring pgf ̃ℎ(𝑠) = (1/(𝐴2 + 𝐵2))(𝐴2 + 𝐵2𝑠2). Using the
known result of the birth and death process pgf [6], we obtain

𝐹 (𝑠, 𝑡) =

𝐴
2

(1 − 𝑠) − (𝐴
2

− 𝐵
2

𝑠) 𝑒
−𝑐𝑡

𝐵
2

(1 − 𝑠) − (𝐴
2

− 𝐵
2

𝑠) 𝑒
−𝑐𝑡

, (A.2)

where 𝑐 = 𝑎(𝐵2 − 𝐴2) > 0.
To obtain an explicit form for 𝐺

𝑗

, we may use two
approaches.The first approach is to start from finding the pgf
of 𝐺
𝑗

, which then leads to 𝐺
𝑗

. The second approach is to find
𝑞
1𝑗

(𝑡)directly and then obtain𝐺
𝑗

. Both approaches lead to the
same result. Here, we give derivation for the second approach
only.

From the explicit form of 𝐹(𝑠, 𝑡), we can directly read
𝑞
10

(𝑡) and 𝑞
1𝑗

(𝑡), 𝑗 ≥ 1. Consider

𝐹 (𝑠, 𝑡)

=

𝐴
2

(1 − 𝑒
−𝑐𝑡

)

𝐵
2

− 𝐴
2

𝑒
−𝑐𝑡

+ 𝐵
2

(𝑒
−𝑐𝑡

− 1) 𝑠

+

(𝐵
2

𝑒
−𝑐𝑡

− 𝐴
2

) 𝑠

𝐵
2

− 𝐴
2

𝑒
−𝑐𝑡

+ 𝐵
2

(𝑒
−𝑐𝑡

− 1) 𝑠

=

𝐴
2

(1 − 𝑒
−𝑐𝑡

)

𝐵
2

− 𝐴
2

𝑒
−𝑐𝑡

⋅

1

1 − (𝐵
2

(1 − 𝑒
−𝑐𝑡

) / (𝐵
2

− 𝐴
2

𝑒
−𝑐𝑡

)) 𝑠

+

𝐵
2

𝑒
−𝑐𝑡

− 𝐴
2

𝐵
2

− 𝐴
2

𝑒
−𝑐𝑡

⋅

𝑠

1 − (𝐵
2

(1 − 𝑒
−𝑐𝑡

) / (𝐵
2

− 𝐴
2

𝑒
−𝑐𝑡

)) 𝑠

.

(A.3)

Let𝑤
1

= 𝐴
2

(1 − 𝑒
−𝑐𝑡

)/(𝐵
2

−𝐴
2

)𝑒
−𝑐𝑡,𝑤
2

= (𝐵
2

𝑒
−𝑐𝑡

−𝐴
2

)/(𝐵
2

−

𝐴
2

)𝑒
−𝑐𝑡, and 𝑝 = (𝐵2 − 𝐴2)𝑒−𝑐𝑡/(𝐵2 − 𝐴2𝑒−𝑐𝑡), the above

expression becomes

𝐹 (𝑠, 𝑡) = 𝑤
1

𝑝

1 − 𝑠 (1 − 𝑝)

+ 𝑤
2

𝑠𝑝

1 − 𝑠 (1 − 𝑝)

, (A.4)

and 𝑤
1

+ 𝑤
2

= 1.
This is a mixture of two geometric pgf ’s with the same

parameter 𝑝 but different supports, one is the set {0, 1, . . .},
the other is the set {1, 2, . . .}. Therefore,

𝑞
10

(𝑡) = 𝑤
1

𝑝 =

𝐴
2

(1 − 𝑒
−𝑐𝑡

)

𝐵
2

− 𝐴
2

𝑒
−𝑐𝑡

, (A.5)

𝑞
1𝑗

(𝑡) = 𝑤
1

𝑝(1 − 𝑝)
𝑗

+ 𝑤
2

𝑝(1 − 𝑝)
𝑗−1

=

(𝐵
2

− 𝐴
2

)

2

[𝐵
2

(1 − 𝑒
−𝑐𝑡

)]

𝑗−1

𝑒
−𝑐𝑡

(𝐵
2

− 𝐴
2

𝑒
−𝑐𝑡

)
𝑗+1

, 𝑗 ≥ 1.

(A.6)

Hence,

𝐺
0

= ∫

∞

0

𝑒
−𝜆𝑡

𝑞
10

(𝑡) 𝑑𝑡

= ∫

∞

0

𝐴
2

(1 − 𝑒
−𝑐𝑡

)

(𝐵
2

− 𝐴
2

𝑒
−𝑐𝑡

)

𝑒
−𝜆𝑡

𝑑𝑡

=

1

𝑐

𝐴
2

𝐵
2

∫

1

0

𝑣
(𝜆/𝑐)−1

(1 − 𝑣)

1 − (𝐴
2

/𝐵
2

) 𝑣

𝑑𝑣

=

1

𝑐

𝐴
2

𝐵
2

Γ (𝜆/𝑐) Γ (2)

Γ (2 + (𝜆/𝑐))

𝐹(1,

𝜆

𝑐

; 2 +

𝜆

𝑐

;

𝐴
2

𝐵
2

) ,

(A.7)

𝐺
𝑗

= ∫

∞

0

𝑒
−𝜆𝑡

𝑞
1𝑗

(𝑡) 𝑑𝑡

= ∫

∞

0

(𝐵
2

− 𝐴
2

)

2

[𝐵
2

(1 − 𝑒
−𝑐𝑡
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𝑗−1

(𝐵
2

− 𝐴
2

𝑒
−𝑐𝑡

)
𝑗+1

𝑒
−(𝜆+𝑐)𝑡

𝑑𝑡

=

(𝐵
2

− 𝐴
2

)

2

𝑐𝐵
4

∫

1

0

𝑣
𝜆/𝑐

(1 − 𝑣)
𝑗−1

(1 − (𝐴
2

/𝐵
2

) 𝑣)
𝑗+1

𝑑𝑣

=

1

𝑐

(1 −

𝐴
2

𝐵
2

)

2

Γ (1 + (𝜆/𝑐)) Γ (𝑗)

Γ (𝑗 + 1 + (𝜆/𝑐))

× 𝐹(𝑗 + 1, 1 +

𝜆

𝑐

; 𝑗 + 1 +

𝜆

𝑐

;

𝐴
2

𝐵
2

) , 𝑗 ≥ 1.

(A.8)

B. Derivation of the Variance Frequency
Spectrum for IAMBP

Let 𝑇
1

, 𝑇
2

, . . . be the successive split times, let 𝑁
𝑡

be the
number of split times till time 𝑡, and let 𝑈

𝑛

be the number
of offspring produced at split time 𝑇

𝑛

. Consider that at
time 𝑡, the alleles which are represented by 𝑗 individuals
are from two sources: the initial allele or the mutant alleles.
Correspondingly, we define two indicator functions. 𝐼

0,𝑗

(𝑡) =

1 if there are 𝑗 individuals carrying the initial allele alive at
time 𝑡, and 𝐼

𝑛,𝑘,𝑗

(𝑡) = 1, for 𝑛, 𝑘 ≥ 1 if the 𝑘th individual born
at time 𝑇

𝑛

(𝑇
𝑛

< 𝑡) mutates to a new allelic type and further
produces 𝑗 individuals carrying this allele 𝑡 units later. Then

𝛼
𝑡

(𝑗) = 𝐼
0,𝑗

(𝑡) +

𝑁

𝑡

∑

𝑛=1

𝑈

𝑛

∑

𝑘=1

𝐼
𝑛,𝑘,𝑗

(𝑡 − 𝑇
𝑛

) . (B.1)

For each 𝑛, 𝐼
𝑛,𝑘,𝑗

(𝑡) is independent of𝑈
𝑛

and 𝑇
𝑛

, as well as
𝐼
0,𝑗

(𝑡), and it can be seen that𝐸
𝑖

[𝐼
0,𝑗

(𝑡)] = 𝑞
𝑖𝑗

(𝑡), Var
𝑖

(𝐼
0,𝑗

(𝑡)) =

𝑞
𝑖𝑗

(𝑡)[1 − 𝑞
𝑖𝑗

(𝑡)], 𝐸[𝐼
𝑛,𝑘,𝑗

(𝑡) | 𝑈
𝑛

, 𝑇
𝑛

] = 𝜇𝑞
1𝑗

(𝑡), Var(𝐼
𝑛,𝑘,𝑗

(𝑡) |
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𝑈
𝑛

, 𝑇
𝑛

) = 𝜇𝑞
1𝑗

(𝑡)[1−𝜇𝑞
1𝑗

(𝑡)]. By the law of total variance, the
variance frequency spectrum takes the form

𝜂
𝑖,𝑡

(𝑗)

= Var
𝑖

(𝛼
𝑡

(𝑗))

= Var
𝑖

(𝐼
0,𝑗
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𝑖

(

𝑁

𝑡

∑
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𝑈

𝑛

∑

𝑘=1

𝐼
𝑛,𝑘,𝑗

(𝑡 − 𝑇
𝑛
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𝑖𝑗

(𝑡) [1 − 𝑞
𝑖𝑗
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𝑖
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𝑁
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𝑛
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𝐼
𝑛,𝑘,𝑗

(𝑡 − 𝑇
𝑛

)












𝑁
𝑡

])

+ 𝐸
𝑖

[Var(
𝑁

𝑡

∑

𝑛=1

𝑈

𝑛

∑

𝑘=1

𝐼
𝑛,𝑘,𝑗

(𝑡 − 𝑇
𝑛

)












𝑁
𝑡

)]

(B.2)

For the second term, we know from independence among
the indicator functions conditional on𝑁

𝑡

that

Var
𝑖

(𝐸[

𝑁

𝑡

∑

𝑛=1

𝑈

𝑛

∑

𝑘=1

𝐼
𝑛,𝑘,𝑗

(𝑡 − 𝑇
𝑛

)












𝑁
𝑡

])

= 𝑚
2

𝜇
2Var
𝑖

(

𝑁

𝑡

∑

𝑛=1

𝑞
1𝑗

(𝑡 − 𝑇
𝑛

)) .

(B.3)

The variance on the right hand side can be obtained from the
following theorem, which is an analogue to Lemma 3.1.1 in
[2]: 𝛽
𝑖

(𝑡) = 𝐸
𝑖

[∑
𝑁

𝑡

𝑛=1

𝛼(𝑡 − 𝑇
𝑛

)] = 𝑖𝑎𝑒
𝜆𝑡

∫

𝑡

0

𝑒
−𝜆𝑥

𝛼(𝑥)𝑑𝑥.

Theorem B.1. Let 𝛼(𝑡) be a bounded continuous function.
Then

𝛾
𝑖

(𝑡) = Var
𝑖

(

𝑁

𝑡

∑

𝑛=1

𝛼 (𝑡 − 𝑇
𝑛

))

= 𝑖𝐶 (𝑡) + 𝑖 (𝜆 + 𝑎) 𝑒
𝜆𝑡

∫

𝑡

0

𝑒
−𝜆𝑥

𝐶 (𝑥) 𝑑𝑥,

(B.4)

where

𝐶 (𝑡) = 𝑎∫

𝑡

0

[𝛼
2

(𝑥) + (𝜎
2

+ 𝑚
2

) 𝛽
2

1

(𝑥)] 𝑒
−𝑎(𝑡−𝑥)

𝑑𝑥

− [𝑎∫

𝑡

0

𝛼 (𝑥) 𝑒
−𝑎(𝑡−𝑥)

𝑑𝑥]

2

− [𝑎𝑚∫

𝑡

0

𝛽
1

(𝑥) 𝑒
−𝑎(𝑡−𝑥)

𝑑𝑥]

2

.

(B.5)

Proof. By independence of family lines, 𝛾
𝑖

(𝑡) = 𝑖𝛾
1

(𝑡). By the
law of total variance,

𝛾
1

(𝑡) = Var
1

(

𝑁

𝑡

∑

𝑛=1

𝛼 (𝑡 − 𝑇
𝑛

))

= Var(𝐸[
𝑁

𝑡

∑

𝑛=1

𝛼 (𝑡 − 𝑇
𝑛

) | 𝑇
1

, 𝑈
1

])

+ 𝐸[Var(
𝑁

𝑡

∑

𝑛=1

𝛼 (𝑡 − 𝑇
𝑛

) | 𝑇
1

, 𝑈
1

)]

= Var(𝛼 (𝑡 − 𝑇
1

) + 𝑈
1

𝐸
[

[

𝑁



𝑡

∑

𝑛=1

𝛼 (𝑡 − 𝑇
1

− 𝑇


𝑛

) | 𝑇
1

]

]

)

+ 𝐸
[

[

𝑈
1

Var(
𝑁



𝑡

∑

𝑛=1

𝛼 (𝑡 − 𝑇
1

− 𝑇


𝑛

) | 𝑇
1

)
]

]

,

(B.6)

where 𝑇
𝑛

= 𝑇
𝑛

− 𝑇
1

and 𝑁
𝑡

is the number of split times in
(𝑇
1

, 𝑡]. The right hand side can be further written as

𝐸 [𝛼
2

(𝑡 − 𝑇
1

)] − 𝐸
2

[𝛼 (𝑡 − 𝑇
1

)] + (𝜎
2

+ 𝑚
2

) 𝐸 [𝛽
2

1

(𝑡 − 𝑇
1

)]

− 𝑚
2

𝐸
2

[𝛽
1

(𝑡 − 𝑇
1

)] + 𝑚𝐸 [𝛾
1

(𝑡 − 𝑇
1

)]

= 𝑎∫

𝑡

0

[𝛼
2

(𝑡 − 𝑥) + (𝜎
2

+ 𝑚
2

) 𝛽
2

1

(𝑡 − 𝑥)

+𝑚𝛾
1

(𝑡 − 𝑥) ] 𝑒
−𝑎𝑥

𝑑𝑥

−[𝑎∫

𝑡

0

𝛼(𝑡−𝑥)𝑒
−𝑎𝑥

𝑑𝑥]

2

−[𝑎𝑚∫

𝑡

0

𝛽
1

(𝑡−𝑥)𝑒
−𝑎𝑥

𝑑𝑥]

2

= 𝑎𝑚∫

𝑡

0

𝛾
1

(𝑡 − 𝑥) 𝑒
−𝑎𝑥

𝑑𝑥 + 𝐶 (𝑡) .

(B.7)

Differentiating both sides and solving the resulting differen-
tial equation, we obtain

𝛾
1

(𝑡) = 𝑒
𝜆𝑡

∫

𝑡

0

𝑒
−𝜆𝑥

[𝐶


(𝑥) + 𝑎𝐶 (𝑥)] 𝑑𝑥

= 𝐶 (𝑡) + (𝜆 + 𝑎) 𝑒
𝜆𝑡

∫

𝑡

0

𝑒
−𝜆𝑥

𝐶 (𝑥) 𝑑𝑥.

(B.8)

Replacing 𝛼(𝑥) by 𝑞
1𝑗

(𝑥) and replacing 𝛽
1

(𝑥) by
𝑎𝑒
𝜆𝑥

∫

𝑥

0

𝑒
−𝜆𝑢

𝑞
1𝑗

(𝑢)𝑑𝑢, we see that (B.3) becomes

Var
𝑖

(𝐸[

𝑁

𝑡

∑

𝑛=1

𝑈

𝑛

∑

𝑘=1

𝐼
𝑛,𝑘,𝑗

(𝑡 − 𝑇
𝑛

)












𝑁
𝑡

])

= 𝑖𝑚
2

𝜇
2

[𝐶 (𝑡) + (𝜆 + 𝑎) 𝑒
𝜆𝑡

∫

𝑡

0

𝑒
−𝜆𝑥

𝐶 (𝑥) 𝑑𝑥] .

(B.9)
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For the third term, we have the expression inside the
expectation as
𝑁

𝑡

∑

𝑛=1

Var(
𝑈

𝑛

∑

𝑘=1

𝐼
𝑛,𝑘,𝑗

(𝑡 − 𝑇
𝑛

))

=

𝑁

𝑡

∑

𝑛=1

{Var(𝐸[
𝑈

𝑛

∑

𝑘=1

𝐼
𝑛,𝑘,𝑗

(𝑡 − 𝑇
𝑛

) | 𝑈
𝑛

, 𝑇
𝑛

])

+𝐸[Var(
𝑈

𝑛

∑

𝑘=1

𝐼
𝑛,𝑘,𝑗

(𝑡 − 𝑇
𝑛

) | 𝑈
𝑛

, 𝑇
𝑛

)]}

=

𝑁

𝑡

∑

𝑛=1

[𝑚𝜇𝑞
1𝑗

(𝑡 − 𝑇
𝑛

) + (𝜎
2

− 𝑚)𝜇
2

𝑞
2

1𝑗

(𝑡 − 𝑇
𝑛

)] ,

(B.10)

where 𝜎2 is the variance of the offspring distribution, regard-
less of the allelic types. Therefore,

𝐸
𝑖

[

𝑁

𝑡

∑

𝑛=1

Var(
𝑈

𝑛

∑

𝑘=1

𝐼
𝑛,𝑘,𝑗

(𝑡 − 𝑇
𝑛

))]

= 𝑚𝜇𝐸
𝑖

[

𝑁

𝑡

∑

𝑛=1

𝑞
1𝑗

(𝑡 − 𝑇
𝑛

)]

+ (𝜎
2

− 𝑚)𝜇
2

𝐸
𝑖

[

𝑁

𝑡

∑

𝑛=1

𝑞
2

1𝑗

(𝑡 − 𝑇
𝑛

)]

= 𝑖𝑎𝑚𝜇𝑒
𝜆𝑡

∫

𝑡

0

𝑒
−𝜆𝑥

𝑞
1𝑗

(𝑥) 𝑑𝑥 + 𝑖𝑎 (𝜎
2

− 𝑚)𝜇
2

𝑒
𝜆𝑡

× ∫

𝑡

0

𝑒
−𝜆𝑥

𝑞
2

1𝑗

(𝑥) 𝑑𝑥

(B.11)

By (B.2), (B.9) and (B.11), the final expression of 𝜂
𝑖,𝑡

(𝑗) is
then
𝜂
𝑖,𝑡

(𝑗) = 𝑞
𝑖𝑗

(𝑡) [1 − 𝑞
𝑖𝑗

(𝑡)]

+ 𝑖𝑚
2

𝜇
2

[𝐶 (𝑡) + (𝜆 + 𝑎) 𝑒
𝜆𝑡

∫

𝑡

0

𝑒
−𝜆𝑥

𝐶 (𝑥) 𝑑𝑥]

+ 𝑖𝑎𝑚𝜇𝑒
𝜆𝑡

∫

𝑡

0

𝑒
−𝜆𝑥

𝑞
1𝑗

(𝑥) 𝑑𝑥 + 𝑖𝑎 (𝜎
2

− 𝑚)𝜇
2

𝑒
𝜆𝑡

× ∫

𝑡

0

𝑒
−𝜆𝑥

𝑞
2

1𝑗

(𝑥) 𝑑𝑥.

(B.12)
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