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ABSTRACT 

A quantitative understanding of thermal field evolution is vital for quality control in additive 

manufacturing (AM). Because of the unknown material parameters, high computational costs, and 

imperfect understanding of the underlying science, physically-based approaches alone are 

insufficient for component-scale thermal field prediction. Here, I present a new framework that 

integrates physically-based and data-driven approaches with quasi in situ thermal imaging to 

address this problem. The framework consists of (i) thermal modeling using 3D finite element 

analysis (FEA), (ii) surrogate modeling using functional Gaussian process, and (iii) Bayesian 

calibration using the thermal imaging data. Based on heat transfer laws, I first investigate the 

transient thermal behavior during AM using 3D FEA. A functional Gaussian process-based 

surrogate model is then constructed to reduce the computational costs from the high-fidelity, 

physically-based model. I finally employ a Bayesian calibration method, which incorporates the 

surrogate model and thermal measurements, to enable layer-to-layer thermal field prediction 

across the whole component.  A case study on fused deposition modeling is conducted for 

components with 7 to 16 layers. The cross-validation results show that the proposed framework 

allows for accurate and fast thermal field prediction for components with different process settings 

and geometric designs. 
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GENERAL AUDIENCE ABSTRACT 

This paper aims to achieve the layer to layer temperature monitoring and consequently predict the 

temperature distribution for any new freeform geometry. An engineering statistical synergistic 

model is proposed to integrate the pure statistical methods and finite element modeling (FEM), 

which is physically meaningful as well as accurate for temperature prediction. Besides, this 

proposed synergistic model contains geometry information, which can be applied to any freeform 

geometry. This paper serves to enable a holistic cyber physical systems-based approach for the 

additive manufacturing (AM) not only restricted in fused deposition modeling (FDM) process but 

also can be extended to powder-based process like laser engineered net shaping (LENS) and 

selective laser sintering (SLS). This paper as well as the scheduled future works will make it 

affordable for customized AM including customized geometries and materials, which will greatly 

accelerate the transition from rapid prototyping to rapid manufacturing. This article demonstrates 

a first evaluation of engineering statistical synergistic model in AM technology, which gives a 

perspective on future researches about online quality monitoring and control of AM based data 

fusion principles. 
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Chapter 1: Introduction 

Additive Manufacturing (AM), also referred to as rapid prototyping, solid freeform fabrication, 

and three dimensional (3D) printing, fabricates 3D parts by additively fusing one layer of raw 

materials over the previously fused layers [1]. As an alternative to the conventional subtractive 

manufacturing techniques, AM has a large number of key advantages, like the elimination of 

molds, less material wastes [2], more complex geometrical designs [3], and mass customization. 

However, poor part integrity and various quality defects are among the biggest problems for AM 

to overcome. The defects like porosity, low surface finish, delamination, cracking, swelling, and 

residual stress are the major drawbacks encountered in AM processes [4-6], which will finally 

deteriorate the process outputs like static or dynamic mechanical properties and geometric 

conformity.  

The physically-based modeling, like finite element analysis (FEA) simulation, has been applied to 

simulate thermal field evolution as well as calculating the local cooling rates[7] in AM. The 

physically-based modeling can help understand the manufacturing system through engineering 

knowledge, but always time consuming. Therefore, statistical methods are necessary to help 

capture the unavoidable model discrepancy in a timely efficient way.  

The goal of this research is to have a quantitative understanding of thermal field evolution, which 

is vital for quality control in AM. To achieve this goal, I propose a new framework integrating 

physically-based and data-driven approaches for component-scale, layer-to-layer thermal field 

prediction in AM. The physically-based (i.e. thermal modeling) and data-driven (i.e. surrogate 

model using functional Gaussian process) approaches are integrated to link the process inputs to 

the thermal field evolution, involving using the thermal imaging data for Bayesian calibration [8]. 

Assisted by statistical inferences and informed by experimental measurements, this framework 

enables fast, accurate prediction of the thermal field evolution under different AM process 

conditions and with new component geometries. As a proof of concept, I demonstrate this 

framework using fused deposition modeling (FDM) of polymers; I expect this framework to be 

effective for other AM processes, such as directed energy deposition or powder bed fusion of 

metals.  
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Chapter 2: Review of Literature 

2.1 Additive Manufacturing  

Additive Manufacturing (AM), also referred to as rapid prototyping, solid freeform fabrication, 

and three dimensional (3D) printing, fabricates 3D parts by additively fusing one layer of raw 

materials over the previously fused layers [1]. Different in the way layers are deposited and in the 

used material types, there are a large number of AM processes available nowadays. In general, as 

illustrated in [9], the AM processes can be classified into the following aspects: laser-based 

processes, extrusion-based processes, material jetting processes, adhesive-based processes, 

electron beam processes. In the laser-based processes, a laser source is applied to melt, solidify or 

cure the material. Based on the phase change mechanism, the laser-based processes can be grouped 

into two sub-categories: laser melting [10], where the powders are melt by a laser beam; and laser 

polymerization [11], where the material is a photosensitive resin. In the extrusion-based processes, 

a heated extrusion nozzle is used to soften plastic material, including two typical methods: FDM 

process [12], which applies a moveable head to deposit a thread of molten thermoplastic material 

onto a substrate; and robocasting processes [13], which is a layer-wise deposition for colloidal 

slurries freeform fabrication technology. In the material jetting processes, an adhesive binder is 

used to bind the powder in a solid object, which includes inkjet printing processes [14], multijet 

modeling [15], ballistic particle manufacturing [16]. In the adhesive-based processes, which is of 

limited use currently, a thin film of plastic is cut and then pressed down onto the previous one by 

a heated compactor. Laminated object manufacturing [17] and solid foil polymerization [18] are 

two typical processes in the adhesive-based processes. Similar to the laser-melting processes, 

electron beam processes [19] melt or sinter the material by an electron beam instead of a laser 

beam. 

As an alternative to the conventional subtractive manufacturing techniques, AM has a large 

number of key advantages, like the elimination of molds, less material wastes [2], more complex 

geometrical designs [3], and mass customization. However, poor part integrity and various quality 

defects are among the biggest problems for AM to overcome. The defects like porosity, low surface 

finish, delamination, cracking, swelling, and residual stress are the major drawbacks encountered 
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in AM processes [4-6], which will finally deteriorate the process outputs like static or dynamic 

mechanical properties and geometric conformity. In order to achieve better product quality, the 

most significant task is to figure out what process parameters are related to build quality and what 

defects can be resulted in by these improper process parameters. As illustrated in the process 

mapping flowchart in [20], the significant process inputs include AM machine settings, part 

geometrical designs, build environment factors, and feedstock qualities. There have been 

numerous researches on the influence of AM machine settings like laser printing strategies [21], 

laser power, speed, spot diameter [22], powder layer thickness, preheat temperature [23], and 

hatching spacing [24] [25] on part quality as summarized in [26]. 

Similar to those traditional manufacturing methods, like casting and welding, porosity is a common 

issue in AM processes which can seriously influence the mechanical properties [20]. Porosity can 

be classified into two groups as powder induced and process-induced [27], where the powder 

induced porosity is directly translated from gas pores inside the powder feedstock while the 

process induced porosity results from unsuitable process parameters. Some techniques like hot 

isostatic pressing and double melt method [28] were proposed to eliminate the feedstock internal 

porosity and furtherly to reduce the powder induced porosity in the final parts [29, 30]. Compared 

with the powder induced porosity, the process induced one has received more research attention 

since it can be eliminated by tuning the process parameters properly. The high viscosity [31] and 

the solubility decrease [32] of molten powder materials, improper laser scanning strategies [21], 

laser power, speed [33], spot diameter, powder layer thickness, preheat temperature [23], hatching 

spacing [24] would detrimentally cause porosity since low energy input would decrease the area 

of melt pool and lead to incomplete consolidation [25]. The porosity will continuously have 

influence on surface roughness and finally geometrical accuracy [20, 31, 34-36]. Cracking is also 

a common defect generated in AM processes, which can be grouped into microscopic cracks and 

macroscopic ones. Among the microscopic cracks, solidification cracking often occurs in the case 

when the high applied energy causes the high thermal gradients, as well as the large thermal stress 

on the melt pool [37]. Another type of microscopic cracking called grain boundary cracking 

nucleates along material grain boundaries, which depends on the formation of precipitate phases 

and the grain boundary morphology [37]. Macroscopic cracks are different from microscopic ones, 

which may relate to defects like delamination caused by incomplete melting between layers [38]. 
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Swelling is another type of defect, where the solid materials rise above powder distribution plane 

due to the melt pool surface tension effects [27]. Besides swelling, surface tension is also the driver 

for melt ball formation [39]. Residual stresses are always introduced in AM parts by large thermal 

gradients during processing, which can have seriously negative impact on mechanical properties 

[40]. In powder bed fusion (PBF) and direct energy deposition (DED) parts, the residual stresses 

are always compressive in the center and tensile at the edge [41-44]. Some researchers have been 

conducted to relieve the residual stresses, like preheating the substrate [40] and applying island 

scanning [45, 46].  

 

Figure 1. Fish bone graph of root causes related to SLM defects. 

In this research, the FDM in AM processes is mainly studied. FDM is a process of layer to layer 

deposition of extruded material through a nozzle using feedstock filaments from a spool [47], 

which is an alternative to the conventional manufacturing techniques that enables the direct 

fabrication of products with complex shapes. FDM process involves heat and mass transfer, 

thermos-mechanical field and phase changes, which will often has deviations from the design 

specifications. Thus, low dimensional accuracy and poor part mechanical properties seriously limit 

the wide commercial application of FDM process.  
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2.2 Finite Element Analysis 

As summarized in [26], the part microstructure, distortion, and mechanical property are all related 

to thermal field evolution, which shows the importance of understanding the transient heat transfer 

associated with AM processes [48]. The physically-based modeling, like finite element analysis 

(FEA) simulation, has been applied to simulate thermal field evolution as well as calculating the 

local cooling rates[7]. The previous thermal field simulation researches mainly focused on the 1D 

model like a single track [49, 50] or the 2D model like a single layer [51-53]. Although 1D and 

2D FEA models have advantages in saving computation time and illustrating the key 

characteristics, a 3D model can better reflect the actual AM processes by considering the 

interaction among layers [54]. However, the existing researches on 3D FEA simulation are 

typically applied to simple geometries like a three-layer component [55] or a small cuboid [48, 

56]. Although a thermomechanical modeling of large parts in AM processes were investigated in 

[57], it was restricted to the specific component geometry, which cannot be widely applied to 

geometry of freeform. 

FEA approach has been used to evaluate the performance of various printing process variables. 

Wang et al. [58] analyzed the essence of warp deformation of FDM part and constructed a 

simplified mathematical model. Beuth and Narayan researched the delamination of multi-layer 

depositions by FEA in [59]. Zhang and Chou [60, 61] established an FEA model using the element 

activation function to evaluate the stress distribution at different process parameter combinations 

as well as the tool path effects. No restricted in FDM process, FEA has been gradually used in 

laser based additive manufacturing processes. Bugeda et al. [62] studied the influence of different 

parameters on the curl distortion in stereolithography processes using FEA. Nickel et al. [63] 

conducted a 3D FEA model of shape deposition manufacturing process to find out the relationship 

between deposition patterns and deflections. Dai and Shaw [64-66] investigated the temperature 

distribution and residual stresses of a solid freeform fabrication process by developing a 3D 

thermomechanical FEA model.  
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Figure 2. Finite element analysis steps in additive manufacturing processes [67-76]. 

Although the physically-based modeling methods like FEA can help understand the system 

through engineering knowledge, they are always time consuming, e.g., about 100 hours for a beam 

substrate with 15.2 × 2.5 × 0.6 𝑐𝑚3 in FEA simulation introduced in [63]. Thus, some 

simplification assumptions, like not considering radiation or latent heat, are employed to speed up 

the computation.  Besides, some parameters in the FEA simulation like heat convection coefficient 

[61] are hard to determine. Furtherly, both the assumptions and unsuitable selection of model 

parameters will lead to the model discrepancy between the FEA simulation and the actual 

experiments. 

2.3 Sensor-based Process Monitoring in Additive Manufacturing 

In laser-based systems, CMOS camera and photodiode are usually coaxially mounted to directly 

investigate the melt pool shape and temperature. As the laser uses the same optical path, the field 

of view of the observation system is always on the melt pool. Melt pool properties as area, length 

and width of the melt, together with the photodiode signal are obtained through the proposed sensor 

system. The major difference between the photodiode and the camera is the integrating effect of 

the photodiode (process light from larger zone around the melt is captured by the diode), while the 

camera can only give local information [77, 78]. Furthermore, a novel way of representing the 

melt pool data, namely mapping the melt pool data on the XY-plane is employed for detection of 
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typical processing problems during SLM [10]. Because the field of view is moving with the laser 

beam, this setup eliminates the necessity to simultaneously look at the whole build platform [79]. 

Through the correlation of the melt pool size which is obtained by the CMOS camera and the 

integrated signal of the photodiode, the system can adjust the laser output power according to areas 

of varying thermal conductivity [80]. The revised edition of the above system combines imaging 

sensors with an external illumination of the interaction zone and its neighborhood for high resolved 

pictures at high scanning velocities to capture the surface structure and the melt pool dynamics 

[81]. High-speed near-infrared thermal CMOS camera and a photodiode coaxial with the laser 

beam ensure a high quality measurement of the melt pool, while the data analysis system to 

translate and visualize measured sensor values in the format of interpretable process quality images 

[82]. 

In traditional polymer manufacturing process, temperature measurements like Infrared (IR) 

thermography and fluorescent has been widely investigated and used. Golzar et al. proposed to use 

IR camera to measure online temperature and estimate filament diameter in fiber melt spinning 

process [83]. Marla et al. employed IR camera to measure the temperature of polymer filaments 

held in a stream of hot air [84, 85]. Bur et al. proposed to use a temperature-sensitive fluorescent 

dye to measure temperature profiles during extrusion of polycarbonate [86, 87]. In FDM process, 

there have been some researches related to online temperature measurements by thermocouple and 

IR camera. Rao et al. applied multiple sensors including 4 thermocouples on build table and 1 near 

extruder head to realize online quality monitoring [88]. Sun et al. embedded the thermocouple in 

the platform to measure the temperature profile and furtherly investigate the bonding between 

polymer layers [89]. Two thermocouples were placed with 90∘ degree on the build plate to estimate 

cooling rate [90]. Dinwiddie et al. proposed an online temperature monitoring system with two IR 

cameras, where the extended range camera captured the view of whole build part while the 

lightweight one mounted on the liquefier heat collected the small view of extrusion tip [91]. 

Seppala and Migler were interested in the cooling rate near newly extruded region and investigated 

the weld zone properties through side view IR thermography [92]. As summarized in [93], one of 

the key advantages in applying pyrometry is to collect temperature without physical contact, which 

makes it possible to monitor surfaces of any geometry. Besides, another important advantage is to 

minimize the potential degradation of the sensor. Thus, compared with low-cost thermocouple, 
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pyrometer or IR camera is more attractive for researchers to monitor the AM processes. Apart from 

the sensors used to measure temperature distribution, displacement sensors (distance sensors or 

proximity sensors) can also be applied to detect the presence of objects [94]. These sensors are 

widely used in direct energy deposition processes to monitor the layer height during the build. In 

this work, I choose to apply IR thermography to measure the temperature distribution of every 

layer under different printing process and geometries. Different from the previous researches, I try 

to get the top view of the temperature distribution rather than the side view. Besides, I focus on 

the temperature evolution along the printing path instead of the simple location.  

2.4 Statistical Methods 

To improve the part quality and decrease the mechanical defects, various statistical designs of 

experiments techniques are applied to optimize process parameters. The Taguchi’s design matrix, 

signal to noise ratio (S/N), and analysis of variance (ANOVA) were used by Anitha et al. [95] to 

figure out that road width, deposition speed, and layer thickness are the important process 

parameters on ABS part surface roughness. The similar conclusion was also obtained by 

Nancharaiah et al. [96] through Taguchi and ANOVA methods. Besides, Thrimurthulu et al. [97] 

predict the optimum build orientation through an analytical model developed by genetic algorithm. 

Horvath et al. [98] and Wang et al. [99] also pointed that layer thickness and part fill style were 

the most process parameters to improve the surface roughness by factorial design and the 

integration of Taguchi method with the Gray relational analysis individually. Sood et al. [100] 

used artificial neural network (ANN) and fuzzy logic to predict the shrinkage along the length, 

width and diameter. Bansal [101] studied the effect of process parameters on dimension accuracy 

via Response surface methodology.  

As introduced in Section 2.2, a physically-based model can take several days to simulate the 

thermal field of FDM process. Therefore, design optimization or sensitivity analysis would 

become impossible because they need thousands of simulation evaluations. Thus, a surrogate 

model (also known as meta-model, kriging, or emulator) [102, 103] is established using the 

historical data sets of the FEA simulation results. The surrogate model can mimic the results of 

the simulation model in a computationally cheaper way. When building the surrogate model, the 

underlying physics of the simulation model is not important and it even can be assumed to be 
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unknown. Only the input-output relationship is significant. This method can be also called as 

black-box modeling [104]. Kriging [105] is the most popular method for surrogate modeling 

because of its good interpolating property. Nevertheless, for the model with functional response 

like the thermal field, kriging is not suitable since computational issues may be caused due to the 

high dimensionality. To overcome this challenge, Bayarri et al. applied wavelet decomposition on 

the functional data [106], Ramsay [107]  and Higdon et al. [108] utilized principal component 

analysis to transform the functional data to scalars. Fang et al. [109] made use of functional linear 

regression model to handle the functional response. However, these methods are lack of 

interpolation property, which cause a gap between analysis methods for scalar and functional 

outputs. Liu and West [110] proposed a methodology that takes the functional variable as an 

additional input to the model, which extended kriging to functional response. One biggest issue of 

this method is that the size of the correlation matrix would become too large to calculate its 

inversion and determinant. To solve the computational issue, Kronecker product formulation have 

been applied to build the correlation matrix in [111-113]. By the Kronecker product assumption, 

the computation complexity is reduced to a large extent, which makes it possible to investigate for 

kriging model with functional responses.    

In usual, the physically-based models do not represent reality because of assumptions made to 

simplify the complex system. To compensate the possible inaccuracy, field experiment is 

conducted to collect real data from the system and estimate the unknown parameters (i.e., 

calibration parameters) in the physically-based model. Through this calibration, the model 

prediction would become more realistic. To capture the discrepancy between real observation and 

physically-based model, Kennedy and O’Hagan [8] proposed to represent it using Gaussian 

process models. The further improvements for the GP modeling approach were made in [106, 114-

116]. 
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Chapter 3: Methods and Experiments 

3.1 Integration of Physically-based and Data-driven Modeling  

A new framework is proposed in this paper for geometry of freeform prediction in the extrusion-

based AM process. In this framework, the physics-based and data-driven approaches are integrated 

to build a synergistic model, which can be continuously updated with comparisons to the 

experimental measurements through Bayesian calibration (see Figure 3). Assisted by statistical 

inferences and informed by experimental measurements, the final synergistic model is able to 

predict the temperature and stress distribution in components with new processing variables and 

new geometry designs.  

To capture the underlying processes such as heat transfer, glass transition, and thermo-mechanical 

coupling, I started from physics-based modeling for extrusion-based additive manufacturing, and 

simulate the model using 3-D FEM method. To avoid the potentially high computational cost, a 

surrogate model is then established to link the model inputs, such as processing variables, to the 

model outs, such as temperature and stress distribution during manufacturing. In the proposed 

framework, the surrogate model is established by training several sets of the FEM simulation data 

using a statistical approach, called functional Gaussian process modeling [113]. The surrogate 

modeling results are then compared with experimental measurements through Bayesian calibration 

[8], in which the unknown parameters are determined with quantified uncertainties and the model 

discrepancy is identified. As it is trained and updated with the new experimental data, the 

synergistic model not only captures the physical processes in extrusion-based AM, but also 

corrects for the discrepancy associated with the physical models. Finally, the synergistic model 

will be validated under a different set of processing variables and with a different geometrical 

design. The algorithm of our proposed method is summarized in Table 1.   

I investigate the effectiveness of using this framework to predict thermal field evolution during 

extrusion-based AM. In the rest of this chapter, I elaborate on the steps of applying the proposed 

framework to predict thermal field evolution. 
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Figure 3. Illustration of the proposed framework. 

 

Table 1. Algorithm of the engineering statistical calibrated model. 

Steps Descriptions 

Step 1 Run the computer simulations. 

Step 2 Establish the surrogate model for the computer simulations. 

Step 3 Conduct the physical experiments. 

Step 4 Integrate the physical experiments with the surrogate model to do online 

updating Bayesian calibration. 

Step 5 Test the prediction performance of the proposed calibrated model with new 

input settings and new geometrical designs. 
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3.2 Experimental Methods 

I use an open-chambered ORION DELTA™ desktop 3D printer for sample manufacturing. The 

filament material is semi-crystalline poly-lactic acid (PLA), with its properties listed in Table 2. 

All the experiments are assumed to be conducted under the fixed environment conditions. The 

nozzle temperature and printing speed are set according to the design of experiment (DOE) plans, 

ranging from 493.15~518.20 𝐾 and 20~50 𝑚𝑚/𝑠, respectively.  

Table 2. Poly-lactic acid material properties. 

Properties Values 

Latent heat of fusion [𝑱/𝒈] 10~40 

Density [𝒌𝒈/𝒎³] ~1250 

Heat capacity [𝑱/(𝒌𝒈 ∙ 𝑲)] ~2020 

Thermal conductivity [𝑾/(𝒎 ∙ 𝑲)] ~0.13 

In this work, three different geometries were investigated (as shown in Figure 4): standard part 

(𝑔1), peanut part (𝑔2), and gear part (𝑔3). The size of 𝑔1was 44.45 × 44.45 × 2.5 𝑚𝑚3, which 

was revised based on the National Institute of Standards and Technology standard part [117]. It 

has been widely used as testing sample in additive manufacturing [88]. 𝑔2 was of a contour 

function 𝑟(𝜃) = 𝑟0(1 − 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃), where polar angle 𝜃 ∈ [0𝑜 , 360𝑜), polar radius 𝑟0 = 20 𝑚𝑚, 

and its height was 2 𝑚𝑚. 𝑔3 was with the outer diameter of 55 𝑚𝑚 and the height of 2 𝑚𝑚. The 

number of layers in one sample varied from 7 to 16 depending on the layer thickness in the DOE 

plan. It took about 30 𝑠 to print one layer. The three geometric contours were composed of various 

basic and representative contour elements like straight line, circle, sharp corner, concave curve, 

arc and etc.; these geometries were chosen to test the proposed method potential for any geometry 

of freeform.  
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Figure 4. Three geometrical designs: (a) 𝑔1: standard part; (b) 𝑔2: peanut; (c) 𝑔3: gear. 

The layer-to-layer thermal images were captured by a calibrated FLIR A655sc IR camera during 

printing, with resolution of 640×480 pixels and frame rate of 50 Hz. Because the printing head 

would block the view of IR camera (Figure 5 (a)), the G-code was revised in advance to enable 

nozzle lifting once a layer was finished. The IR images can be captured during the printing (Figure 

5 (b)) and when the nozzle is lifted (Figure 5 (c)). Although the IR camera is not set just above the 

printing part, image processing methods were applied to register the original IR images into the 

top-view format. The time delay from nozzle lifting was less than 1 𝑠, which had been considered 

in both computer simulations and experiments for model calibration. As a result, this was 

essentially quasi in situ thermal imaging.  

 

Figure 5. (a) Desktop 3D printer and IR camera setup; (b) IR image during printing; (c) IR 
image when the nozzle is lifted for the whole view of part. 
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3.3 Physically-based Modeling 

3.3.1 Constitutive modeling  

In FDM processes, the material filament is heated during extrusion, while the temperature of the 

printing table is kept constant [88]. The energy input originates from the addition of hot filament 

from the printing nozzle, which can be viewed as a moving heat source [60, 61]. The heat transfer 

during AM is mostly by heat conduction (internal and surface material voxels) and heat convection 

(surface material voxels).  

 Take 𝑔1 part as an example, given the surface temperature as 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ≈ 400𝐾, the emissivity 

coefficient of PLA 𝜀𝑃𝐿𝐴 = 0.96, the surface area 𝐴𝑔1
≈ 4.40 × 10−3 𝑚2, the Stefan-Boltzmann 

constant 𝜎 =  5.6703 × 10−8 𝑊/𝑚−2𝐾−4, the radiation energy per unit time can be calculated 

as 𝜀𝑃𝐿𝐴𝜎𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
4 𝐴𝑔1

= 6.13 𝑊, which is relatively low compared with other heat transfer 

mechanisms. Thus, I assume that the thermal loss by radiation can be negligible. The energy 

conservation equation can be given by [61]: 

 𝜕(𝜌𝐶𝑃𝑇)

𝜕𝑡
= ∇. (𝜅∇𝑇) + 𝑞�̇�, (1) 

where 𝜌 is the materials density, 𝐶𝑃 is the specific heat capacity, ∇𝑇 is the spatial gradient of the 

temperature, and 𝜅 is the thermal conductivity. Here, 𝑞�̇� is the volumetric heat generation rate 

caused by the addition of the heated filament, which can be modeled as a function of the printing 

process inputs and the material properties:  

 𝑞�̇� = 𝑄(𝑇𝑛𝑜𝑧𝑧𝑙𝑒 , 𝑣, 𝐿, 𝜌, 𝐶𝑃). (2) 

Here 𝑇𝑛𝑜𝑧𝑧𝑙𝑒 is the nozzle temperature, 𝑣 is the printing speed, and 𝐿 is the latent heat during 

solidification of the semi-crystalline PLA. Because the distance from the nozzle to the printing 

layer is short, the heat transfer from nozzle heating to filament extrusion is insignificant. Then 𝑞�̇� 

may be approximated the same as the heat input rate by nozzle heating, which can be written as 
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 𝑞�̇� =
𝜌𝑣[𝐶𝑃(𝑇𝑛𝑜𝑧𝑧𝑙𝑒−𝑇𝑒𝑛𝑣)+𝐿]

𝑙𝑓
, (3) 

where 𝑇𝑒𝑛𝑣 is the surrounding environment temperature and 𝑙𝑓 is the heated filament length in the 

nozzle. Other treatments in modeling the volumetric heat generation rate are also found in the 

literature. For example, in [61, 118] the initial temperature of the newly deposited filament is 

assumed to be the same as the nozzle temperature. In [47, 119],  the filament temperature is 

assumed to rise to a certain value after entering the melt flow channel. In [120], the input of 

material accompanied with a heat reservoir is simulated but without a specific expression. All these 

approximation treatments may lead to model discrepancies; possible discrepancy from the 

proposed treatment is expected to be corrected by the data-driven component (Section 5) in the 

proposed framework. 

Regarding the boundary conditions, the part bottom surface is maintained at the same temperature 

with the printing bed 𝑇 = 𝑇𝑏𝑒𝑑. All the other surfaces transfer heat by convection 𝑞�̇� = ℎ(𝑇 −

𝑇𝑒𝑛𝑣), where 𝑞�̇� is the convective heat flux, and ℎ is the natural convection heat transfer coefficient 

for air. Note that the glass transition temperature of the semi-crystalline PLA is about 

333.15 ~ 338.15 𝐾, lower than the printing bed temperature of 363.15 𝐾. As a result, glass 

transition can only occur after the printing is finished and the printing bed heater is turned off.   

3.3.2 Transient finite element analysis 

With constitutive modeling, the thermal field evolution can be simulated using 3D transient FEA, 

in which the concept of “element activation and deactivation” [61] is employed to simulate the 

material addition processes. At the beginning of simulation, the meshes are constructed for both 

the deposited and to-be-deposited material voxels. The material properties of the deactivated 

elements are assigned with extremely low values, while the activated elements are applied with 

the regular property values. Take the part in Figure 6 (a) as an example, the values of the assigned 

material properties vary among the whole component during printing, where the red part 

corresponds to the activated elements and the blue part corresponds to the deactivated elements at 

a given time. Such distribution evolves as new material voxels are deposited. Since this simulation 

covers the whole component rather than a single layer or a single track, the elements are activated 

layer-by-layer to minimize the computational costs. The resultant modeling discrepancy can be 
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corrected by the data-driven approaches discussed in Section 3.4; this is an advantage by 

integrating the physical science and data science in the proposed framework. Close to the 

deposition region, the mesh sizes need to be fine to characterize the high temperature gradients. 

Nevertheless, it is unnecessary to build such high density meshes in the material voxels that are 

far from the nozzle (i.e. the heat source) [121]. Therefore, I use the adaptive mesh approach to 

make the mesh sizes adaptive to the local physical conditions [122-125] (see Figure 6 (b)). 

 

Figure 6. Use of activation and deactivation of elements, and adaptive meshes. (a) Thermal 

conductivity distribution during FDM of a 𝑔1 component, where the blue and red regions 

correspond to the thermal conductivity values of 10−4 for deactivated elements and 0.13 𝑊/(𝑚 ∙

𝐾) for activated elements, respectively. (b) Adaptive mesh refinement of the bottom surface of a 

𝑔1 component, with the interval of 10 simulation steps. The newly deposited material voxels with 

the finest meshes are highlighted in the red box. 

Once the CAD design file and the printing process settings are given, the G-code [126] can be 

generated by slicing software, such as Slic3r. Both the printing paths (i.e. hatch patterns) in FEA 

simulations and in physical experiments are based on the generated G-code. The CAD design file, 

printing process settings, material information, and printing path can all be automatically loaded 

into the developed 3D FEA model. This significantly increases the flexibility of AM process 

simulations and reduces the changeover cost between different geometrical designs.  
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3.3.3 Representative simulation results and validation 

With the high-fidelity thermal model, the “element activation and deactivation” method, and the 

adaptive mesh approach, the temperature distribution across the component can be computed at 

any given time during FDM processes. I adopt a time step size of 0.03 𝑠 in the transient FEA 

simulation. Thus, a printing speed of 20 𝑚𝑚/𝑠 leads to a 0.6 𝑚𝑚 spatial resolution of the G-code, 

which is fine compared to the size of the heat affected zone in FDM [127]. Figure 7 shows the 

simulation results of the temperature distribution in Layer 5 of a g1 part during FDM, using the 

printing speed of 44 𝑚𝑚/𝑠, nozzle temperature of 493.15 𝐾, convection coefficient of  

11 𝑊/(𝑚2𝐾) [128] and latent heat of 18 𝐽/𝑔 [129]. The new material voxels are being deposited 

at the lower-left corner. The time interval between each snapshot is 0.3𝑠 (10 time steps in the 

transient FEA model), where 𝑡 refers to the time span from the beginning of the printing to the 

current time point. The simulation well captures the rapid cooling process near the extrusion 

region, with the cooling rate computed to be of the order of 100 𝐾/𝑠. This value is consistent with 

the previous estimation using FEA in literature [130].  

 

Figure 7. A representative simulation result of temperature evolution in FDM (unit: K). 
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The printing path of the same sample is illustrated in Figure 8 (a) and (b). The z-axis in Figure 8 

(a) represents the printing sequence of every voxel. For example, the upper left corner in Figure 8 

(b) has the largest z values in Figure 8 (a), which demonstrates that this corner is deposited at the 

latter stage of the whole printing process.  

 

Figure 8. (a) Printing path in 3D; (b) printing path in 2D; (c) thermal field by simulation; (d) 

thermal field by experimental measurements (unit: K). 

Take two layers from different process settings of 𝑔1 as examples to validate the FEA model. The 

simulation results (Figure 9 (a, c)) are compared to the actual experimental measurements (Figure 

9 (b, d)). Even with uncalibrated values of the heat convection coefficient and latent heat, the 

simulation leads to a temperature distribution quantitatively similar to the experimental 

measurements, showing the efficacy of the proposed physically-based modeling. The local 

deviations between the simulation and experiment suggest the importance of model calibration, 

which will be detailed in Section 3.4. 
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Figure 9. (a) Thermal field by simulation of 𝑔1 part 1 layer 5 ; (b) thermal field by experimental 

measurements of 𝑔1 part 1 layer 5; (c) thermal field by simulation of 𝑔1 part 5 layer 6; (d) 

thermal field by experimental measurements of 𝑔1 part 5 layer 6 (unit: K). 

3.4 Data-driven Approaches 

3.4.1 Surrogate Modeling 

The high-fidelity, physically-based 3D FEA model, though captures the heat transfer process 

during the whole printing process, is computationally expensive. For a time-step of 0.03 second in 

the transient FEA model, the total time for simulating the temperature distribution of the whole 

part (𝑔1) is ~ 103 minutes using a conventional desktop computer. To reduce the computational 

cost, I employ a surrogate model to link the model inputs with the model outputs.  

The main model output for thermal field evolution is the layer-to-layer temperature distribution. 

This is of a typical functional response format [131], resulting in critical challenges in surrogate 

modeling associated with the high computation requirements and the inadequacy of interpolation. 
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Here, I follow the approach proposed by Hung et al. [113] and use functional Gaussian process for 

surrogate modeling, in which the functional output responses could be solved by integrating the 

correlation functions from both the input setting space and the time space.  

Using similar notations as those in [113], suppose that 𝒙 = (𝑥1, … , 𝑥𝑝)
𝑇
 are the 𝑝 input settings 

(including 𝑝1 input variables and 𝑝2 calibration parameters) for engineering model, and the time 

index is 𝑡, over which functional responses 𝒇 are collected. For the purpose of reducing 

computation cost, only regular grid situation is considered, which assumes that the functional 

response for every run are in the same length regardless of layer index or geometry type. Thus, the 

functional kriging model for computer model can be given by: 

 𝒇(𝒙, 𝑡) = 𝒗(𝒙, 𝑡)𝑇𝝁 + 𝑍(𝒙, 𝑡), (3) 

where 𝑓(𝒙, 𝑡) is the response at input 𝒙 and time point 𝑡, 𝒗(𝒙, 𝑡)𝑇 =

(1, 𝑣1(𝒙, 𝑡), 𝑣2(𝒙, 𝑡), … 𝑣𝐿(𝒙, 𝑡)) is a set of known basis functions, and 𝝁 is the corresponding 

parameter vector with length (1 + 𝐿). It is assumed that 𝑍(𝒙, 𝑡) follows a Gaussian process with 

zero mean and covariance function 𝜎2𝒓(𝒙, 𝑡), where 𝒓(𝒙, 𝑡) is the correlation function which can 

be separated as below: 

 𝒓(𝒙𝟏 − 𝒙𝟐, 𝑡1 − 𝑡2) = (∏ 𝑟𝑖(𝑥𝑖1 − 𝑥𝑖2)𝑝
𝑖=1 )𝑟𝑇(𝑡1 − 𝑡2), (4) 

where 𝑟𝑖(𝑥𝑖1 − 𝑥𝑖2) = exp {−𝛼𝑖(𝑥𝑖1 − 𝑥𝑖2)2} and 𝑟𝑇(𝑡1 − 𝑡2) = exp {−𝛽(𝑡1 − 𝑡2)2}. Let 𝜉 =

(𝛼1, … , 𝛼𝑝, 𝛽). 

Suppose all the functional responses are rearranged into one 𝑁 × 1 vector 𝑓 = (𝑓1
𝑇 , … , 𝑓𝑛

𝑇), where 

𝑁 = 𝑛 × 𝑚, 𝑛 is the number of simulation runs, and 𝑚 is the number of time points in each run. 

The input settings can be written in the form 𝑿 = (𝟏𝑚
𝑇 ⨂𝒙1, … , 𝟏𝑚

𝑇 ⨂𝒙𝒏)𝑇 = (𝑿1, … , 𝑿𝑁) and the 

functional space can be represented as 𝑻 = (𝒕1
𝑻, … , 𝒕𝑛

𝑻)𝑇= (𝑡1, … , 𝑡𝑁).  

Therefore, once I have the 𝜉 in the correlation functions, I can easily predict the responses by: 

 𝑓(𝒙, 𝑡) = 𝒗(𝒙, 𝑡)𝑇�̂� + 𝒓(𝒙, 𝑡)𝑹𝑿,𝒕
−𝟏(𝒇 − 𝑽�̂�), , (5) 
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where, 𝑽 = (𝒗(𝑿1, 𝑡1), … , 𝒗(𝑿𝑁 , 𝑡𝑁))𝑇, �̂� = (𝑽𝑇𝑹𝑿,𝒕
−𝟏𝑽)−𝟏𝑽𝑇𝑹𝑿,𝒕

−𝟏𝒇, 𝒓(𝒙, 𝑡) = (𝑟(𝒙 − 𝑿1, 𝑡 −

𝑡1), … , 𝑟(𝒙 − 𝑿𝑁 , 𝑡 − 𝑡𝑁))𝑇, and 𝑹𝑿,𝒕 is the 𝑁 × 𝑁 correlation matrix.  

In order to estimate the correlation parameters 𝜉, the method introduced in [132] is utilized which 

minimizes the negative log- likelihood: 

 𝜉 = 𝑎𝑟𝑔𝑚𝑖𝑛[𝑁𝑙𝑜𝑔�̂�2 + 𝑙𝑜𝑔|𝑹𝑿,𝒕|], (6) 

where �̂�2 =
1

𝑁
(𝒇 − 𝑽�̂�)𝑇𝑹𝑿,𝒕

−𝟏(𝒇 − 𝑽�̂�).   

To get the optimal 𝜉 from equation (6), 𝑹𝑿,𝒕
−𝟏 and |𝑹𝑿,𝒕| must be calculated multiple times, which 

is extremely computationally cost or even unachievable. Thus, specific procedures are needed to 

overcome the computation difficulty caused by functional responses. 

In [113], the initial 𝜉 is estimated by fitting two Gaussian processes of marginal profiles in 𝒙 and 

𝑡, which is the first stage. By including the interactions between 𝒙 and 𝑡 into 𝑍(𝒙, 𝑡) term in the 

equation (3), it can be expressed as: 

 𝒇(𝒙, 𝑡) = 𝜇0 + 𝒌𝑇(𝑡)𝒖𝑡 + 𝒈𝑇(𝒙)𝒗𝒙 + 𝑍(𝒙, 𝑡), (7) 

where 𝒌(𝑡) = (𝑘1(𝑡), … , 𝑘𝑎(𝑡))
𝑇
 and 𝒈(𝒙) = (𝑔1(𝒙), … , 𝑔𝑏(𝒙))

𝑇
 are mean functions. 

Suppose �̅�.𝑗 =
1

𝑛
∑ (𝑓𝑖𝑗 − 𝑓�̅�.)

𝑛
𝑖=1 , 𝑓�̅�. =

1

𝑚
∑ (𝑓𝑖𝑗)𝑚

𝑗=1 , where 𝑖 = 1, … , 𝑛, 𝑗 = 1, … 𝑚. Based on 

�̅�.1, … , �̅�.𝑚, and 𝑓1̅., … 𝑓�̅�., equation (10) and (11) are individually fitted: 

 �̅�(𝑡) = 𝜇𝑡0 + 𝒌𝑇(𝑡)𝒖𝑡 +  𝑍(𝑡),  (8) 

 𝑓(̅𝒙) = 𝜇𝒙0 + 𝒈𝑇(𝒙)𝒗𝒙 +  𝑍(𝒙), (9) 

where 𝑍(𝑡)~𝐺𝑃(0, 𝜎𝑒
2𝑟𝑇(∙)) and 𝑍(𝒙)~𝐺𝑃(0, 𝜎𝑦

2𝑟𝒙(∙)) 

The correlation parameters estimated in this stage are indexed as 𝜉(0) = (𝛼1
(0)

, … 𝛼𝑝
(0)

, 𝛽(0)), which 

will be used in the following stage. 
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In the case where functional responses are collected over a regular grid, it is easy to calculate 

𝑹𝑿,𝒕 = 𝑹𝑿 ⊗ 𝑹𝒕 based on the product correlation assumption [111]. 𝑹𝑿 and 𝑹𝒕 are individually 

the correlation matrix of 𝒙 and 𝑡. Similarly, it is reasonable to get 𝑹𝑿,𝒕
−𝟏 = 𝑹𝑿

−𝟏 ⊗ 𝑹𝒕
−𝟏. By the 

Kronecker product assumption, the computation complexity is reduced to a large extent, which 

makes the minimizing negative log-likelihood method work for kriging model with functional 

responses.    

To prepare for the following calibration process, both computer model 𝒇(𝒙, 𝑡) and discrepancy 

model 𝜹(𝒙𝒐, 𝑡) should be represented as functional Gaussian process models. I denote that 𝒙𝒐 =

(𝑥𝑜1, … , 𝑥𝑜𝑝1
)

𝑇
 are the input variables and 𝜼 = (𝜂1, … , 𝜂𝑝2

)
𝑇
 are the calibration parameters. Note 

that 𝒙 = (𝑥𝑜1, … , 𝑥𝑜𝑝1
, 𝜂1, … , 𝜂𝑝2

)
𝑇

= (𝒙𝒐
𝑇, 𝜼𝒐

𝑇)𝑇 .  Thus, the discrepancy model can be represented 

as:  

 𝛿(𝒙𝒐, 𝑡) = 𝒗𝜹(𝒙𝒐, 𝑡)𝑇𝝁𝜹 + 𝑍𝛿(𝒙𝒐, 𝑡). (10) 

Suppose 𝑍𝛿(𝒙𝒐, 𝑡)~𝐺𝑃(0, 𝜏2𝒓𝜹(𝒙𝒐, 𝑡)), where 𝒓𝜹(𝒙𝒐, 𝑡) is a Gaussian correlation function of 

model bias, which can be separated as below: 

 𝒓𝜹(𝒙𝒐𝟏 − 𝒙𝒐𝟐, 𝑡1 − 𝑡2) = (∏ 𝑟𝛿𝑖(𝑥𝑜𝑖1 − 𝑥𝑜𝑖2)𝑝1
𝑖=1 )𝑟𝛿𝑇(𝑡1 − 𝑡2), (11) 

where 𝑟𝛿𝑖(𝑥𝑜𝑖1 − 𝑥𝑜𝑖2) = exp {−𝛼𝛿𝑖(𝑥𝑜𝑖1 − 𝑥𝑜𝑖2)2} and 𝑟𝛿𝑇(𝑡1 − 𝑡2) = exp {−𝛽𝛿(𝑡1 − 𝑡2)2}. Let 

𝜉𝛿 = (𝛼𝛿1, … , 𝛼𝛿𝑝1
, 𝛽𝛿) are the correlation parameters for model discrepancy.  

Similar to the computer model, suppose the discrepancy responses are rearranged into one 𝑁𝛿 × 1 

vector 𝛿 = (𝛿1
𝑇, … , 𝛿𝑛𝛿

𝑇 ), where 𝑁𝛿 = 𝑛𝛿 × 𝑚, 𝑛𝛿  is the number of experiment runs, and 𝑚 is the 

same as above. The input settings can be written in the form 𝑿𝒐 = (𝟏𝑚
𝑇 ⨂𝒙𝑜1, … , 𝟏𝑚

𝑇 ⨂𝒙𝒐𝒏𝜹
)𝑇 =

(𝑿𝑜1, … , 𝑿𝑜𝑁𝛿
) and the functional space can be represented as 𝑻𝒐 = (𝒕1

𝑇 , … , 𝒕𝑛𝛿

𝑇 )𝑇 =

 (𝑡1, … , 𝑡𝑁𝛿
). Then the responses can be predicted by: 

 𝛿(𝒙𝒐, 𝑡) = 𝒗𝜹(𝒙𝒐, 𝑡)𝑇�̂�𝜹 + 𝒓𝜹(𝒙𝒐, 𝑡)𝑹𝑿𝒐,𝒕
−𝟏 (𝜹 − 𝑽𝜹�̂�𝜹), (12) 
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where 𝑽𝜹 = (𝒗𝜹(𝑿𝑜1, 𝑡1), … , 𝒗𝜹(𝑿𝑜𝑁𝛿
, 𝑡𝑁𝛿

))𝑇, �̂�𝜹 = (𝑽𝜹
𝑇𝑹𝑿𝒐,𝒕

−𝟏 𝑽𝜹)−𝟏𝑽𝜹
𝑇𝑹𝑿𝒐,𝒕

−𝟏 𝜹, 𝒓𝜹(𝒙𝒐, 𝑡) =

(𝑟𝛿(𝒙𝒐 − 𝑿𝑜1, 𝑡 − 𝑡1), … , 𝑟(𝒙𝒐 − 𝑿𝑜𝑁𝛿
, 𝑡 − 𝑡𝑁𝛿

))
𝑇

, and 𝑹𝑿𝒐,𝒕 is the 𝑁𝛿 × 𝑁𝛿 correlation matrix.  

The correlation parameter set 𝜉𝛿 can be estimated by: 

 𝜉𝛿 = 𝑎𝑟𝑔𝑚𝑖𝑛[𝑁𝛿𝑙𝑜𝑔�̂�2 + 𝑙𝑜𝑔|𝑹𝜹𝑿𝒐,𝒕|], (13) 

where �̂�2 =
1

𝑁𝛿
(𝜹 − 𝑽𝜹�̂�𝜹)𝑇𝑹𝑿𝒐,𝒕

−𝟏 (𝜹 − 𝑽𝜹�̂�𝜹).   

There are in total six input variables and two calibration parameters as listed in Table 3. Three of 

them are related to printing process: layer thickness (𝑥1), printing speed (𝑥2), nozzle temperature 

(𝑥3); and four are related to the layer (𝑥4), printing pattern direction (𝑥5), and neighborhood time 

difference (NTD) (𝑥6). The concept of NTD is used to index the specific time location along the 

printing path on a printed layer, which is explained in details in the Appendix A [133]. The two 

calibration parameters are natural heat convection coefficient for air (𝜂1) and latent heat of fusion 

(𝜂2), which are treated as fixed values during the whole printing process. I use 16 sets of model 

input variables for data training in surrogate modeling, with the values of each set of input variables 

determined by the nested space filling design method [134], as shown in Table 4. 

Table 3. Input variables and calibration parameters list. 

Input Variables Calibration Parameters 

Printing Settings Index Variables 

 Layer thickness 
 Printing speed 
 Nozzle temperature 

 Layer index 
 Printing pattern direction 
 NTD 

 Natural convection 
coefficient  

 Latent heat of fusion 

 

Table 4. Surrogate modeling: design of experiments (DOE) for computer simulations. 

Runs 𝑥1 [𝑚𝑚] 𝑥2 [𝑚𝑚/𝑠] 𝑥3 [𝐾] 𝜂1 [𝑊/(𝑚2𝐾)] 𝜂2 [𝐽/𝑔] 

1 0.27 44 493.15 11 18 
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2 0.15 28 499.83 7 20 

3 0.19 46 506.51 8 10 

4 0.23 36 494.82 9 34 

5 0.16 20 496.49 3 12 

6 0.28 22 513.19 10 26 

7 0.24 48 501.50 4 28 

8 0.25 30 514.86 12 14 

9 0.17 50 516.53 15 36 

10 0.26 24 508.18 16 22 

11 0.18 38 509.85 13 30 

12 0.20 26 503.17 14 38 

13 0.29 32 511.52 5 40 

14 0.21 40 518.20 6 24 

15 0.30 42 504.84 17 16 

16 0.22 34 498.16 18 32 

3.4.2 Experimental data collection from quasi in situ thermal imaging: spatial-temporal 

registration 

Once the surrogate model is constructed for the 3D FEA model, the experimental data of thermal 

field can be collected for Bayesian calibration. I use a spatial-temporal registration method to map 

the temperature distribution along the printing path. For the experimental data, the pixels in each 

IR image are ordered by the printing sequence as demonstrated by Figure 21 in Appendix A. As a 
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result, a 2D IR image in the spatial space can be transformed to a 1D temporal space vector based 

on the engineering knowledge instead of simply concatenating the pixels line by line [135, 136]. 

One example is shown in Figure 10, which corresponds to the same sample and process setting as 

in Figures 7 and 8. Using the spatial-temporal registration method, the as-measured thermal image 

in Figure 9 (b) is transformed to a curve in Figure 10 based on the printing path information in 

Figure 8 (a) and (b). This curve shows that the temperature generally increases along the printing 

path owing to the energy input associated with the deposition of new materials during printing. 

However, the high temperature points at the first half of the printing process are against this trend. 

By mapping these points back to the 2D image and investigating the printing path in detail, I 

conclude that these high temperature points originate from the reheating effects, as they are close 

to the deposition region.  

 

Figure 10. Temperature measurement of Layer 5 in 𝑔1 component at 𝑡 = 334.5𝑠 represented 

along printing path (unit: K). 

While the simulation results can be collected with the temporal resolution of 0.03 𝑠, the IR images 

can only be collected discretely after a layer is finished, like snapshots (Figure 11). As a result, I 

only use the layer-to-layer thermal field as the model output. Because the length of the printing 

path is different for each layer, spline interpolation [137] is conducted to guarantee the same length 

for every sample so that the problem can be fitted into a regular grid and solved efficiently [113]. 

In addition, the simulation model has a spatial resolution of 0.5 𝑚𝑚 as determined by the G-code, 
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but the IR images have coarser resolution around 1 𝑚𝑚 per pixel. To align these two data sets, the 

simulated temperature values are averaged over  1 × 1 𝑚𝑚2 areas. 

 

Figure 11. A comparison between the temporal resolution of simulation and experiment. The 

simulation has a temporal resolution of 0.03 𝑠 , while the experiment is layer-to-layer. 

3.4.3 Online Updating Bayesian Calibration 

After obtaining the experimental data and simulation data, I am able to conduct Bayesian 

calibration. The basic idea about Bayesian calibration introduced here is from Kennedy and 

O’Hagan [8]. Suppose 𝒚 be the output of the actual experiment, 𝒇(𝒙𝒐, 𝜼, 𝑡) the engineering model, 

𝜹(𝒙𝒐, 𝑡) is model bias or discrepancy function, and 𝜖~
𝑖𝑖𝑑𝑁(0, 𝜆2) is the observation or measurement 

error. Then the model is expressed as: 

 𝒚 = 𝒇(𝒙𝒐, 𝜼, 𝑡) + 𝜹(𝒙𝒐, 𝑡) + ϵ. (16) 

Combine simulation outputs with experiment ones, I get 𝒅𝑇 = (𝒚𝑇 , 𝒇𝑇). Combine simulation and 

experiments design points as introduced in [8], I then get 𝒙𝑻𝒐𝒕𝒂𝒍(𝜼) by: 

 𝒙𝑻𝒐𝒕𝒂𝒍(𝜼) = ( 𝑫𝟏
𝑫𝟐(𝜼)

  𝟎
𝑫𝟐

), (17) 
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where 𝑫𝟏 = 𝒙 and 𝑫𝟐 = 𝒙𝒐 individually denote the design points of computer model and 

experiment model, and 𝑫𝟐(𝜼) = {(𝒙𝒐𝟏, 𝜼), … , (𝒙𝒐𝒏𝜹
, 𝜼)} are the integration of experiment model 

design points and calibration parameters. 

The functional kriging model for the combined data set can be given by: 

 𝒅(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡) = 𝒗𝑻𝒐𝒕𝒂𝒍(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡)𝑇𝝁𝑻𝒐𝒕𝒂𝒍 + 𝑍𝑇𝑜𝑡𝑎𝑙(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡), (18) 

where 𝒗𝑻𝒐𝒕𝒂𝒍(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡)𝑇 = (1, 𝑣𝑇𝑜𝑡𝑎𝑙,1(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡), 𝑣𝑇𝑜𝑡𝑎𝑙,2(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡), … 𝑣𝑇𝑜𝑡𝑎𝑙,𝐿𝑇𝑜𝑡𝑎𝑙
(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡)) is 

a set of known functions, and 𝝁𝑻𝒐𝒕𝒂𝒍 is the corresponding parameter vector with length (1 +

𝐿𝑇𝑜𝑡𝑎𝑙). It is assumed that 𝑍𝑇𝑜𝑡𝑎𝑙(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡) follows a Gaussian process with zero mean and 

covariance function 𝜎𝑇𝑜𝑡𝑎𝑙
2 𝒓𝑻𝒐𝒕𝒂𝒍(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡). Similar to equation (4, 11), the covariance function 

can be separated to input space and functional space as: 

 𝒓𝑻𝒐𝒕𝒂𝒍(𝒙𝑻𝒐𝒕𝒂𝒍,𝟏 − 𝒙𝑻𝒐𝒕𝒂𝒍,𝟐, 𝑡1 − 𝑡2) = (∏ 𝑟𝑇𝑜𝑡𝑎𝑙,𝑖(𝑥𝑇𝑜𝑡𝑎𝑙,𝑖1 −𝑝+𝑝1
𝑖=1

𝑥𝑇𝑜𝑡𝑎𝑙,𝑖2))𝑟𝑇𝑜𝑡𝑎𝑙,𝑇(𝑡1 − 𝑡2), 

(19) 

where  𝑟𝑇𝑜𝑡𝑎𝑙,𝑖(𝑥𝑇𝑜𝑡𝑎𝑙,𝑖1 − 𝑥𝑇𝑜𝑡𝑎𝑙,𝑖2) = exp {−𝛼𝑇𝑜𝑡𝑎𝑙,𝑖(𝑥𝑇𝑜𝑡𝑎𝑙,𝑖1 − 𝑥𝑇𝑜𝑡𝑎𝑙,𝑖2)
2

} and 𝑟𝑇𝑜𝑡𝑎𝑙,𝑇(𝑡1 −

𝑡2) = exp{−𝛽𝑇𝑜𝑡𝑎𝑙(𝑡1 − 𝑡2)2}. Let 𝜉𝑇𝑜𝑡𝑎𝑙 = (𝛼1, … , 𝛼𝑝, 𝛼𝛿1, … , 𝛼𝛿𝑝1
, 𝛽𝑇𝑜𝑡𝑎𝑙), which are all 

estimated in Section 3.4.1 except for 𝛽𝑇𝑜𝑡𝑎𝑙. Thus, in the following stage, both 𝛽𝑇𝑜𝑡𝑎𝑙 and 

calibration parameters should be inferenced.  

The combination outputs can be predicted by: 

 �̂�(𝒙, 𝑡) = 𝒗𝑻𝒐𝒕𝒂𝒍(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡)𝑇�̂�𝑻𝒐𝒕𝒂𝒍 + 𝒓𝑻𝒐𝒕𝒂𝒍(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡)𝑹𝑿𝑻𝒐𝒕𝒂𝒍,𝒕
−𝟏 (𝒅 − 𝑽𝑻𝒐𝒕𝒂𝒍�̂�𝑻𝒐𝒕𝒂𝒍), (20) 

where 𝑽𝑻𝒐𝒕𝒂𝒍, �̂�𝑻𝒐𝒕𝒂𝒍, 𝒓𝑻𝒐𝒕𝒂𝒍(𝒙𝑻𝒐𝒕𝒂𝒍, 𝑡), and 𝑹𝑿𝑻𝒐𝒕𝒂𝒍 ,𝒕
−𝟏  are defined similarly to those in Section 3.4.1. 

Thus, the calibration parameters can be estimated by minimizing the negative log- likelihood: 

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛[𝑁𝑇𝑜𝑡𝑎𝑙𝑙𝑜𝑔�̂�𝑇𝑜𝑡𝑎𝑙
2 + 𝑙𝑜𝑔|𝑹𝑿𝑻𝒐𝒕𝒂𝒍,𝒕|], (21) 

where 𝑁𝑇𝑜𝑡𝑎𝑙 = 𝑁 + 𝑁𝛿, �̂�𝑇𝑜𝑡𝑎𝑙
2 =

1

𝑁𝑇𝑜𝑡𝑎𝑙
(𝒅 − 𝑽𝑻𝒐𝒕𝒂𝒍�̂�𝑻𝒐𝒕𝒂𝒍)

𝑇𝑹𝑿𝑻𝒐𝒕𝒂𝒍,𝒕
−𝟏 (𝒅 − 𝑽𝑻𝒐𝒕𝒂𝒍�̂�𝑻𝒐𝒕𝒂𝒍).   
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The posterior distribution of the calibration parameters can be calculated by:  

 𝑝(𝜼|𝒅, �̂�) ∝ 𝑝(𝒅|𝜼, �̂�)𝑝(𝜼), (22) 

𝑝(𝜼) is the prior distribution of the calibration parameters. The likelihood function 𝑝(𝒅|𝜼, �̂�) is 

represented as in Equation (21). One of Markov Chain Monte Carlo (MCMC) methods, 

Metropolis–Hastings algorithm, is used here for obtaining a sequence of random samples from the 

posterior density, particularly from multi-dimensional distributions.  

The main steps of Metropolis–Hastings algorithm is summarized as below: 

 Beginning at a random initial parameter value. 

 Selecting a new set of parameters close to the initial ones based on the proposal function 

 Jumping to the new point with a probability 𝑝(𝜼𝑛𝑒𝑤|𝒅, �̂�)/𝑝(𝜼𝑛𝑒𝑤|𝒅, �̂�).  

By the above steps, MCMC can sample from the posterior and calculate the desired posterior 

quantities of the calibration parameters. 

Since the temperature information is registered along the printing path, the error term has a time 

series structure, which violates the independent and identically distributed (iid) assumption made 

in [8]. I therefore propose an online updating Bayesian calibration method to consider the 

autocorrelation of the error term. “Online updating” here means that the observation error term is 

of a time series structure, and its prediction at a given time t is influenced by the values at previous 

times. This is in contrast with conventional Bayesian calibration like in [8], where the observation 

error is a white noise and unrelated to real-time measurements.  

The autoregressive (AR) model [138] is used to identify the pattern from the error term, which can 

be rewritten as: 

 𝜀𝑡 = 𝛼 + 𝜙1𝜀𝑡−1 + 𝜙2𝜀𝑡−2 + ⋯ + 𝜙𝑘𝜀𝑡−𝑘 + 𝜔𝑡. (23) 

Here 𝜔𝑡 ~
𝑖𝑖𝑑𝑁(0, 𝜎2) is the white noise term, 𝛼 is the intercept, and 𝜱 = [𝜙1, … , 𝜙𝑘]𝑇 are the 

coefficients to indicate the relationship between the current error with the previous 𝑘 ones. The 

possible autocorrelation in the observation error is removed with the first-order AR model (𝐴𝑅(1)) 

in the error term (see Appendix B for details). After obtaining the coefficient and intercept of the 
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𝐴𝑅(1) model from the training samples, the response of a new testing sample can be estimated 

accordingly. 

I conduct the Bayesian calibration by comparing the experimental data and surrogate modeling 

results and estimating the values of hyperparameters and calibration parameters. In general, the 

number of available experimental samples is limited, as it takes more resources (e.g. materials and 

equipment) to run the actual manufacturing processes and temperature measurements. Thus, 

properly selecting representative sets of experimental conditions using DOE methods is essential. 

As shown in Table 5, using the maxi-min distance criteria [139], four different input settings with 

two replicates of each are selected for Bayesian calibration. With the calibrated model, the 

proposed framework will allow for thermal field prediction of components with different process 

settings and geometric designs, as shown in the following. 

Table 5. Bayesian calibration: DOE for physical experiments. 

Runs 𝑥1 [𝑚𝑚] 𝑥2 [𝑚𝑚/𝑠] 𝑥3 [𝐾] 

1 0.27 44 493.15 

2 0.16 20 496.49 

3 0.28 22 513.19 

4 0.17 50 516.53 

5 0.28 22 513.19 

6 0.27 44 493.15 

7 0.16 20 496.49 

8 0.17 50 516.53 
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Chapter 4: Results and Discussion 

4.1 Data training plans 

To evaluate the performance of the proposed framework, I use it for two types of thermal field 

prediction, i.e. prediction with different process settings and prediction with different component 

geometric designs. These correspond to two data training plans: (i) “leave one setting out” 

(Training Plan 1), which uses the experimental data of six samples to predict the remaining two 

samples with the same geometry but different process settings; (ii) “leave one geometry out” 

(Training Plan 2), which uses the experimental data of the two geometries to predict the remaining 

geometry. These two training plans are illustrated in Figures 12 and 13.  

 

Figure 12. Training Plan 1: “leave one setting out”. 

In Training Plan 1, every time two samples with the same process setting are left out as the testing 

data, with the six remaining samples being used as the training data. In the end, I get eight 

prediction evaluations, with the mean value representing the final prediction performance. The 
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experimental samples are selected to best cover the future potential process settings, so Training 

Plan 1 is used to test if the proposed framework works well in the whole feasible design space of 

𝑥1~𝑥3. In Training Plan 2, I aim to predict for a new component geometry by using the 

experimental data of two different geometries.  

 

Figure 13. Training Plan 2: “leave one geometry out”. 
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4.2 Prediction for different process settings using Training Plan 1 

Training Plan 1 is applied for prediction with different process settings, including layer 

thickness, printing speed, and nozzle temperature. I use the root mean square error (RMSE) to 

represent the difference between the predicted values and actual experiments. Through cross-

validation, the proposed framework leads to a RMSE of 5.55 𝐾 for 𝑔1, 5.87 𝐾 for 𝑔2, and 5.70 𝐾 

for 𝑔3, respectively, which is independent on component geometry. The averaged RMSE for these 

three geometries is 5.71 𝐾, which is 1.23% of the maximum measured temperature. Figure 14 

shows the comparison between the results from the proposed calibrated model and the original 

simulation. The computational time for building the physically-based simulation models is 

17.42 ℎ, 6.84 ℎ, and 15.12 ℎ for 𝑔1, 𝑔2, and 𝑔3, respectively, with an averaged value of 13.13 ℎ. 

For comparison, the averaged computational time for predicting one component using the 

proposed framework is 0.31 ℎ, which is more than 40 times faster compared to the FEA simulation 

models.  

 

Figure 14. RMSEs comparison between the simulation and the proposed calibration model for 

training plan 1. 

To validate the model error iid assumption, residual plots are drawn separately for two cases: the 

ordinary calibration approach without considering autocorrelation and the proposed calibration 

approach considering autocorrelation. Figure 15 shows the 2D distribution of residuals and the 𝜀�̂� 
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𝑣𝑠 𝜀�̂�−1plot. The residuals are randomly distributed in the latter case (Figure 15 (c)) but not in the 

former case (Figure 15 (a)). The 𝜀�̂� 𝑣𝑠 𝜀�̂�−1 plot of the proposed model (Figure 15 (d)) does not 

have apparent patterns like Figure 15 (b), where a linear increasing trend can be found. By 

considering the autocorrelation in the error term, therefore, the proposed model better captures the 

autoregressive pattern in the discrepancy term, and further improves the prediction performance.  

 

Figure 15. Diagnosis plots using the ordinary calibration approach without considering 

autocorrelation: (a) |𝜀̂ | in 2D; (b) 𝜀�̂� 𝑣𝑠 𝜀�̂�−1; and using the proposed calibration approach 

considering autocorrelation: (c) |𝜀̂ | in 2D; (d) 𝜀�̂� 𝑣𝑠 𝜀�̂�−1 (unit: K). 
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Figure 16. (a), (c), (e): temperature measurements for a layer in 𝑔1, 𝑔2, and 𝑔3. (b), (d), (f): 

predictions using Training Plan 1 (unit: K). 

Figure 16 shows a representative comparison of the thermal field from the actual experiments (the 

first row) and prediction results (the second row). Here, (a) and (b) are the thermal field of Layer 

6 of a 𝑔1 component at the process setting specified in Line 6 in Table 5; (c) and (d) are the thermal 

field of Layer 7 of a 𝑔2 component at the process setting specified in Line 2 in Table 5; (e) and (f) 

are the thermal field of Layer 6 of a 𝑔3 component at the process setting specified in Line 6 in 

Table 5. With only six data sets used for training, the prediction results well match the experiments 

with the RMSE of 5.51 𝐾, 4.86 𝐾, and 5.56 𝐾 in these specific examples.  

Uncertainty quantification is evaluated using the same layer and same process setting as those in 

Figure 16. The 95% confidence interval for the prediction (illustrated in Figure 17) is given by 

[132], which is decided by the upper 0.25 critical point of the standard normal distribution, 

correlation matrix, and known basis functions. The blue solid line represents the actual 

experimental measurement, and the black dashed line shows the predicted temperature by the 

proposed framework. The red dashed lines illustrate the upper and lower bounds of the 95% 

confidence interval, where the averaged confidence interval width for the three samples are 

21.61 𝐾, 20.51 𝐾, and 14.23 𝐾, respectively. Almost all of the observations (blue line) are in the 
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acceptable range (grey area). The results in Figs. 10 and 11 show that the proposed framework 

enables accurate thermal field prediction for different process settings in FDM. 

 

Figure 17. Prediction and 95% confidence interval in Training Plan 1 of (a) 𝑔1, (b) 𝑔2, and 

(c) 𝑔3. 

 

4.3 Prediction for different component geometries using Training Plan 2 

From Training Plan 1, the mean and standard deviation values of the calibration parameters are 

determined and shown in Table 6. The averaged calibration values �̂� = (0.43, 0.30) 

in [0,1] correspond to the convection coefficient h ~9.45 𝑊/(𝑚2𝐾) and latent heat of fusion L 

~19.00 𝐽/𝑔. These values are consistent with other findings of PLA [129, 140]. It is interesting to 

note that the calibration results are similar for the three different geometries, suggesting a weak 
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dependence of calibration results on geometric designs. Figure 18 shows the discrepancy terms of 

the three geometries, which are generally within the same range and follow a similar decreasing 

trend at the end of printing.  

Table 6. Estimated calibration parameters in [0, 1] interval of different geometry types. 

Geometry Types 𝜂1 Mean  𝜂1 Standard Deviation 𝜂2 Mean  𝜂2 Standard Deviation 

𝑔1 0.38 0.16 0.26 0.21 

𝑔2 0.45 0.11 0.32 0.07 

𝑔3 0.45 0.10 0.30 0.14 

Average 0.43 0.12 0.30 0.14 

 

Figure 18. The discrepancy term (a) of 𝑔1; (b) of 𝑔2; (c) of 𝑔3. 
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The proposed framework includes some geometry information as model inputs (e.g. printing 

pattern direction) and uses spatial-temporal registration to characterize the thermal field. With the 

weak geometric dependences of the calibration parameters and model discrepancy, I therefore 

hypothesize that the proposed data training and calibration approaches apply for different 

component geometries. To test this hypothesis, I evaluate the performances of the proposed 

framework using Training Plan 2. The cross-validation gives the RMSE results of 6.32 𝐾 for 𝑔1, 

5.12 𝐾 for 𝑔2, and 6.97 𝐾 for 𝑔3, respectively. The averaged RMSE for these three geometries 

is 6.14 𝐾, which is 1.33% of the maximum measured temperature. As illustrated in Figure 19, the 

proposed model also has better prediction performances than the computer simulations in Training 

Plan 2. Figure 20 compares the layer-wise thermal field between the actual experimental 

measurements (the first row) and the prediction results of the “leave one geometry out” plan (the 

second row). Among the three geometric designs, the proposed framework has the best prediction 

performance in 𝑔2 , which is of a relative simple smooth contour. In contrast, the contours of 𝑔1 

and 𝑔3 are of complex geometric features. These features can lead to intricate printing path, which 

may cause unexpected reheating in the corresponding regions. This finding suggests that the 

proposed framework works best when using complicated geometries (like 𝑔1 and 𝑔3) to predict a 

simple geometry (like 𝑔2).  

 

Figure 19. RMSEs comparison between the simulation and the calibration model considering 

autocorrelation for training plan 2. 
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Figure 20. (a), (c), (e) Temperature measurements for 𝑔1, 𝑔2, and 𝑔3; (b), (d), (f) temperature 

predictions for 𝑔1, 𝑔2, and 𝑔3 in Training Plan 2 (unit: K). 

In summary, the averaged testing RMSEs are  5.71 𝐾 in Training Plan 1 and 6.14 𝐾 in Training 

Plan 2, corresponding to 1.23% and 1.33% of the maximum measured temperature, respectively. 

These relatively small numbers show the success of using the proposed framework for component-

scale prediction in AM processes. To compare with the previous work in literature, a selective 

laser sintering (SLS) process is investigated in reference [15] based on continuous media theory, 

where the maximum temperature value is compared between simulations and experiments with a 

relative prediction error percentage more than 5.00%. In reference [141], the maximum 

temperature during laser melting of metal powder  is evaluated and the relative error of the FEA 

results from the experimental results [142] is 2.8%. It should be noted that the work in these 

references does not enable component-scale prediction, let alone the higher prediction error and 

higher computational cost as compared to the proposed framework.
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Chapter 5: Summary and Conclusion 

By integrating physically-based and data-driven approaches, I have developed a new framework 

to enable component-scale, layer-to-layer thermal field prediction in AM. The most significant 

contributions of this work are summarized as follows: 

 A physically-based model using “element activation and deactivation” and adaptive mesh 

methods is constructed to investigate the layer-to-layer thermal field during AM processes. The 

CAD design file, G-code file, and process variables can be directly imported into the 3D FEA 

model, which makes it generally applicable to any geometry of freeform and under any process 

setting.  

 To minimize the computational costs from the high-fidelity 3D FEA model, a data-driven 

surrogate model is built based on functional Gaussian process. By training the historical FEA 

results, the surrogate model effectively represents the relationship between process settings 

and model responses.  A spatial-temporal registration method is proposed to map the layer-to-

layer thermal field along the printing path, which enables the proposed framework for different 

geometric designs.  

 Through Bayesian calibration, the final model not only determines the unknown parameters in 

the computer simulations but also explains and corrects for the model discrepancy. In 

particular, an online updating approach is proposed to remove the possible autocorrelation in 

the observation error.   

 As shown by cross-validation, the proposed framework enables accurate and fast prediction of 

the layer-to-layer thermal field for components with different process settings and geometric 

designs. For the latter, the proposed framework shows better performance for predicting simple 

geometries using the complicated geometries as training data. 
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Appendices 

A. Neighborhood time difference 

In computer graphics area, pixel connectivity [133] is a common approach to relate the pixels in 

two dimensional (2D) images to their neighbors. 8-connected pixels, similar with the concept 

called “Moore neighborhood” in cellular automata, are neighbors to every pixel that touches one 

of their edges or corners [143]. Besides the 4-connected pixels that touch one edge of the central 

pixel horizontally or vertically, the pixels with coordinates (𝑥 ± 1, 𝑦 ± 1) are also connected to 

the central pixel at (𝑥, 𝑦) diagonally [144]. The concept of NTD is proposed to index the specific 

time location along the printing path on a printed layer. As shown in Figure 21, there are in total 

25 elements in the interested region, where the arrow shows the printing pattern of the 3D printer. 

The number index inside every pixel indicates the extrusion sequence, which can be regarded as 

the functional space 𝑡 as mentioned in previously. Here, I take pixel 13 (indicated as dark gray in 

Figure 21) as the interested pixel to illustrate how to calculate its NTD.  
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Figure 21. “Neighborhood time difference” illustration. 

There are eight pixels 7-9, 12, 14, 17-19 (indicated as shallow gray in Figure 21) connected with 

pixel 13 based on the “8-connected pixels” rule. The NTD can be calculated by: 

 
𝑵𝑻𝑫 =

∑ |𝒕𝒊−𝒕𝟎|𝟖
𝒊=𝟏

𝟖
, 

where 𝑡𝑖  (𝑖 = 1, … ,8) means the time index of the 8 neighborhood pixels and 𝑡0 is the time index 

of the central pixel.  

By substituting the time indexes of the 8-connected pixels of pixel 13 into the above equation, it 

can be obtained as: 

 𝑁𝑇𝐷13 =
(|7−13|+|8−13|+|9−13|+|12−13|+|14−13|+|17−13|+|18−13|+|19−13|)

8
= 4.  

 

B. Sensitivity Analysis of the Surrogate Model 
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The sensitivity analysis of the surrogate model is conducted for the two calibration parameters as 

illustrated in Figure 22. By fixing one calibration parameter to 0.5, the prediction results may vary 

with the other calibration parameter. The calibration parameters are evaluated at 11 separate 

values, resulting in 11 curves in Figure 22 (a) and (b), respectively. Changes of the calibration 

parameters are shown to significantly influence the model output, which suggests a successful 

construction of the surrogate model.  

 

 

Figure 22. Sensitivity study of the surrogate model (a) for 𝜂1; (b) for 𝜂2 (unit: K). 

 


