ISPRS Journal of Photogrammetry and Remote Sensing 122 (2016) 116-125

o isprs

PHOTOGRAMMETRY
AND REMOTE SENSING

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Characterizing major agricultural land change trends in the Western
Corn Belt

@ CrossMark

Yang Shao**, Gregory N. Taff®, Jie Ren?, James B. Campbell ?

2 Virginia Tech, College of Natural Resources and Environment, Geography Department, 115 Major Williams Hall, Blacksburg, VA 24061, USA
b Norwegian Forest and Landscape Institute — Northern Office, Tromss 9037, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 3 May 2016

Received in revised form 11 October 2016
Accepted 24 October 2016

Available online 11 November 2016

In this study we developed annual corn/soybean maps for the Western Corn Belt within the United States
using multi-temporal MODIS NDVI products from 2001 to 2015 to support long-term cropland change
analysis. Based on the availability of training data (cropland data layer from the USDA-NASS), we
designed a cross-validation scheme for 2006-2015 MODIS data to examine the spatial generalization
capability of a neural network classifier. Training data points were derived from a three-state sub-
region consisting of North Dakota, Nebraska, and lowa. Trained neural networks were applied to the test-
ing sub-region (South Dakota, Kansas, Minnesota, and Missouri) to generate corn/soybean maps. Using a
default threshold value (neural network output signal > 0.5), the neural networks performed well for
South Dakota and Minnesota. Overall accuracy was higher than 80% (kappa > 0.55) for all testing years
from 2006 to 2015. However, we observed high variation of classification performance for Kansas (overall
accuracy: 0.71-0.82) and Missouri (overall accuracy: 0.65-0.77) for various testing years. We developed a
threshold-moving method that decreases/increases threshold values of neural network output signals to
match MODIS-derived corn/soybean acreage with the NASS acreage statistics. Over 70% of testing states
and years showed improved classification performance compared to the use of a default 0.5 threshold.
The largest improvement of kappa value was about 0.08. This threshold-moving method was used to gen-
erate MODIS-based annual corn/soybean map products for 2001-2015. A non-parametric Mann-Kendall
test was then used to identify areas that showed significant (p < 0.05) upward/downward trends. Areas
showing fast increase of corn/soybean intensities were mainly located in North Dakota, South Dakota,
and the west portion of Minnesota. The highest annual increase rate for a 5-km moving window was
about 6.8%.
© 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.
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1. Introduction

From the early 2000s until now, the US Corn Belt has experi-
enced a significant land use and land cover change (LUCC) event
characterized by conversion of grasslands and wetlands to crop-
lands (Wright and Wimberly, 2013) and intensive corn/soybean
production (Lunetta et al., 2010; Sahajpal et al., 2014; Ren et al.,
2016). Assessing LUCC in such a large agricultural landscape pre-
sents an important challenge, given that agricultural land use is
continuously changing and may have sharp year-to-year differ-
ences. The Cropland Data Layer (CDL), developed by the United
States Department of Agriculture — National Agricultural Statistics
Service (USDA-NASS), is currently the only ready-to-use data
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product for evaluating large-scale agricultural land change at
annual intervals (Boryan et al, 2011; Hansen and Loveland,
2012; Lark et al., 2015). Using CDLs, researchers are just beginning
to characterize and understand rates and patterns of agricultural-
specific LUCC in the Corn Belt. For example, Wright and
Wimberly (2013) examined CDLs from 2006 to 2011 and reported
a 1.0-5.4% of annual grass-to-corn/soy conversion in the Western
Corn Belt (WCB). Their research mainly focused on two temporal
snapshots (2006 and 2011), thus the authors suggested that
change rates may be attributed to both an underlying trend of land
use change and short-term crop rotation patterns (e.g., grassland/
hay-corn/soybean rotation). Analyses of longer-term annual corn/-
soybean map products may reduce the confusion from short-term
crop rotation patterns and highlight overall change trends and spa-
tial patterns.
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Complete CDLs are now available for the conterminous United
States for 2008-2015. The spatial resolution of CDLs ranges from
30 m to 56 m, depending on the satellite data source used and pro-
cessing protocols. Older CDLs, however, are not available for sev-
eral states in the WCB region. For Kansas, Minnesota, Missouri,
and South Dakota, CDLs are entirely missing for 2001-2005
(Fig. 1). Without CDLs for 2001-2005 as baseline datasets, it is a
challenge to conduct a thorough analysis of corn/soybean-related
agricultural land changes and examine their links to key US biofuel
energy policies such as the Energy Policy Act of 2005 and the
Energy Independence and Security Act of 2007. Developing CDLs
requires multiple cloud-free images for each crop-growing season.
It also requires good training/validation data. In the early 2000s,
the USDA-NASS primarily used NASS June Area Survey (JAS) data
as training/validation and an in-house software package (Peditor)
for developing CDLs. In 2006-2007, NASS started to use high qual-
ity training/validation data points derived from detailed Common
Land Unit (CLU) data from the Farm Service Agency (FSA) and com-
mercial software (See5 Decision Tree) to improve CDL quality
(Johnson, 2010; Johnson and Mueller, 2010; Boryan et al., 2011).
By 2008, CDLs are considered nationally operational and the pro-
duction was expanded to include all 48 conterminous states in
the US. The availability of high quality training data (e.g., CLU from
FSA) is one of the main reasons that the USDA-NASS did not pro-
vide high quality CDLs for the conterminous US before 2008. It is
unclear whether the USDA-NASS plans to generate CDLs backward
in time to extend the available time-series of cropland map
products.

Several studies showed promise for multi-temporal Moderate
Resolution Imaging Spectroradiometer (MODIS) Normalized Differ-
ence Vegetation Index (NDVI) data to perform crop-specific map-
ping with reasonable accuracy (Chang et al., 2007; Doraiswamy

et al, 2007; Wardlow and Egbert, 2008; Shao et al, 2010;
Wardlow and Egbert, 2010; Zhang et al., 2014; Chen et al., 2016;
Zhong et al., 2016). However, many of these studies focused on
short-term (e.g., 1-3 year) image classification experiments and
their methods have yet to be expanded for annual cropland map-
ping. Furthermore, it was found that the main summer crops such
as corn and soybean have similar spectral-temporal signals that
typically lead to moderate-low cropland map accuracy (Wardlow
et al., 2007; Shao et al., 2010). A combined corn/soybean class, as
defined by Wright and Wimberly (2013), may substantially
improve thematic map accuracy to support longer-term cropland
change analysis. Both corn and soybean are considered to be inten-
sive cropping compared to hay/pasture or natural lands. Analyzing
trends in corn/soybean planting thus might be sufficient to charac-
terize key agricultural intensification processes and patterns in the
WCB.

Annual corn/soybean mapping with multi-temporal MODIS
data requires high quality training data points for image classifica-
tion. The currently available, but spatially-limited, 2001-2005
CDLs (North Dakota, Nebraska and Iowa, Fig. 1) could be used for
reference to generate a large number of training data points for
corn/soybean mapping. This possibility raises an interesting ques-
tion of the capability of spatial generalization of US crop mapping
through image classification — whether a trained multi-temporal
classifier for a region can be directly applied to a different region
(Kansas, Minnesota, Missouri, and South Dakota) where CDLs are
not available. There is no guarantee that a trained classifier would
produce acceptable results because corn/soybean phenologies and
general land cover compositions may vary substantially across
regions. Previous published studies showed promising results for
Neural Networks (NN) and Random Forest in both spatial and tem-
poral generalization (Shao and Lunetta, 2012; H. Wang et al., 2014,
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Fig. 1. Spatial coverage of the Cropland Data Layer for the Western Corn Belt, 2001-2006.
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Q. Wang et al., 2014). There is a need to examine their spatial gen-
eralization capability for long-term operational corn/soybean map-
ping tasks.

Another useful resource for corn/soybean mapping is the annual
NASS crop acreage statistics (e.g., corn/soybean planted) at state or
county levels. The NASS acreage statistics are mainly derived
through survey-statistical methods and routinely provided at
national, state, and county levels. These numbers are often differ-
ent from results of remote sensing pixel counting (e.g., CDLs) at
aggregated levels. The NASS acreage statistics have been com-
monly used for accuracy assessment of remote sensing cropland
mapping (Chang et al., 2007; Wardlow and Egbert, 2008). Good
agreement between remote sensing-derived corn/soybean acreage
and the NASS acreage statistics generally suggests acceptable crop-
land mapping results. Few previously published studies have effec-
tively integrated the NASS statistics for improving remote sensing
cropland mapping, other than for use in accuracy assessment.

Many classification algorithms can be trained to generate fuzzy
outputs or approximate posterior probabilities (Richard and
Lippmann, 1991; Moody et al., 1996; Shao et al., 2011). An impor-
tant practice within the machine learning community is that clas-
sification performance can be significantly improved by simply
adjusting the output threshold value instead of using a default
one (e.g., 0.5) to label each target class (Provost, 2000; Zhou and
Liu, 2006). This threshold-moving method has not been routinely
applied in land cover mapping application, especially for spatial
generalization problems where differences in spectral/temporal
signals across regions may require adjustments in classification
methods when compared to applications where training data are
derived from the region where the classification is performed.

The main objective of this study was to develop annual MODIS-
based corn/soybean map products for 2001-2015 to support long-
term agricultural land change analysis in the WCB states. We use a
NN classifier to address the following specific research objectives:
(1) examine whether a classifier trained for one region can be spa-
tially generalized to another region; spatial generalization perfor-
mance was assessed for study years of 2006-2015 since
reference CDLs are available for the entire WCB study region; (2)
develop a classifier output threshold-moving method by integrat-
ing the NASS statistics; our main motivation was to use the NASS
acreage statistics to support automated threshold value selection
for the NN classification; and (3) generate annual corn/soybean
map products and characterize long-term corn/soybean change
trends for the period 2001-2015.

2. Methods
2.1. Study area and data preparation

The study area for MODIS-based annual corn/soybean mapping
was the WCB region include seven main corn/soybean producing
states: North Dakota, South Dakota, Nebraska, Kansas, Minnesota,
Towa, and Missouri. We obtained 2001-2015 Terra-MODIS 250 m
16-day composite of vegetation index data (MOD13Q1, Collection
5) from the NASA Reverb website (http://reverb.echo.nasa.gov/)
for the WCB. MODIS NDVI mosaics were created for each of the
16-day composite images and then projected to an Albers Equal-
Area Conic projection. The 16-day MODIS NDVI data were stacked
to build a time-series data cube. MODIS pixels with quality issues
were identified using the reliability index (RI) and new values were
estimated for these pixels through a Whittaker smoother (Eilers,
2003; Atzberger and Eilers, 2011; Shao et al., 2016). The Whittaker
smoother was implemented in the Matlab environment and the
smoothing parameter was automatically adjusted through a
pixel-by-pixel cross-validation approach (Eilers, 2003). The

cleaned NDVI time-series data were then clipped to the 7-State
WCB boundary.

All available CDLs from 2001 to 2015 for the WCB were down-
loaded from the USDA-NASS CropScape (http://nassgeodata.gmu.
edu/CropScape/). For major crop types such as corn and soybean,
the USDA-NASS reported high classification accuracies of over
85% for all states. We expected that the combined corn/soybean
class has even higher accuracy, because the confusion between
these two classes is reduced. Using annual CDLs as input, we calcu-
lated proportional corn/soybean area within each 250 m MODIS
grid. For each year from 2001 to 2015, we then generated a binary
corn/soybean (1) and other class (0) map using 50% proportional
corn/soybean as a threshold. These corn/soybean binary map prod-
ucts were used as the primary reference data to support MODIS-
based annual corn/soybean mapping. We stacked the 2006-2015
corn/soybean binary maps to build a large corn/soybean mask
layer, which includes all pixels used for at least one year out of
ten total years. This large corn/soybean mask was used to remove
the pixels that were never corn/soybean. Our assumption is that
corn/soybean fields have been expanding since 2001, therefore a
mask from later years (2006-2015) would include all corn/soybean
fields in 2001-2005. We verified this for states of North Dakota and
Iowa, where CDLs are available for 2001-2005; the large corn/soy-
bean mask covered above 99% of corn/soybean pixels for each indi-
vidual year from 2001 to 2005. Our annual corn/soybean mapping
efforts were conducted within this large cropland mask layer. A
similar approach has been used in Johnson’s (2013) annually tilled
cropland mapping and Shao et al.’s (2015) crop yield prediction
work. We also obtained the USDA-NASS state level agricultural
statistics from http://www.nass.usda.gov/Quick_Stats/. Corn and
soybean planted acreage statistics were obtained for the WCB
states for 2001-2015.

2.2. Corn/soybean mapping through NN spatial generalization

CDLs from North Dakota, Nebraska and lowa were used as ref-
erence to select training data points for MODIS-NDVI classification.
For each study year from 2006 to 2015, a number of training data-
sets were examined by randomly selecting 1/2000, 1/1500, 1/1000,
1/500, 1/100, and 1/20 of total MODIS pixels to evaluate the
impacts of training sample size on classification results. We used
a three-layer perceptron NN to separate corn/soybean from the
other class. The output layer consisted of one output node (corn/-
soybean = 1; other =0) for this two-class classification problem.
The NN input layer included 13 nodes representing thirteen 16-
day MODIS NDVI layers from Julian day-of-year (DOY) 97 to 289.
This subset of multi-temporal MODIS NDVI data was used since
winter-early spring images for the WCB region have significant
snow cover, and do not provide valuable information in corn/soy-
bean mapping (Shao et al., 2011). Different numbers of nodes (20,
30, and 40) in the NN hidden layer were tested. Additional adjus-
table NN parameters included learning rate and momentum. To
achieve high generalization performance, each training dataset
was further divided into 5 sets and a 5-fold cross-validation was
used to determine the optimal NN parameters.

For each year from 2006 to 2015, the trained NN networks were
applied to multi-temporal MODIS-NDVI data for the other states,
Kansas, Minnesota, Missouri, and South Dakota. The NN outputs
were retained in fuzzy values from 0 to 1, which allowed us to
adjust threshold values to generate a range of corn/soybean map
products. We first used a default threshold value (0.5) to develop
corn/soybean maps. The 2006-2015 CDLs for the above-
mentioned four states were used to assess map accuracy. Overall
accuracy, kappa coefficient, and user’s and producer’s accuracies
were calculated (Congalton, 1991). To further evaluate the NN
model’s spatial generalization performances, we designed a simple
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control to benchmark map accuracy for the four-state testing
region. Specifically, we randomly selected training data points
e.g., (1/2000 to 1/20 of total points) from this four-state region.
Independent NN training and testing were then conducted to clas-
sify this same four-state region to generate the benchmark map
accuracies. Classification accuracies from the spatial generalization
and benchmark approach were compared for the entire four-state
region as well as each individual state. We were particularly inter-
ested in differences in classification accuracies between the spatial
generalization and the benchmark approaches. Similar accuracy
levels would indicate a potential solution in generating corn/soy-
bean map products for 2001-2005 using a spatial generalization
of NN classification.

2.3. Integration of NN threshold-moving and the NASS statistics

From the spatial generalization approach, the NN output signals
were retained in a fuzzy manner (i.e., between 0 and 1) and we
examined how different threshold values affect crop/soybean map-
ping performance. For each study year from 2006 to 2015, we
examined all potential threshold values from 0.2 to 0.8 with 0.02
incremental steps. At each step, the initial fuzzy corn/soybean
map was converted to a binary value (corn/soybean-=1,
others = 0). Each binary corn/soybean map was compared to the
250 m corn/soybean binary map derived from the CDLs. Overall
accuracies and kappa statistics were computed for different
threshold values.

For each threshold value, the total number of corn/soybean pix-
els from the MODIS-derived binary map was summarized to esti-
mate the remote sensing-based corn/soybean acreage. Such
remote sensing-based crop/soybean acreages were compared to
the NASS statistics to support automated threshold selection. An
‘optimal’ threshold could be identified where remote sensing-
derived corn/soybean acreage is in agreement with the NASS acre-
age statistics. It should be noted that the NASS has reported that
such remote sensing pixel counting approaches could be down-
wardly biased compared to the official NASS acreage statistics
(Gallego, 2004). The NASS acreage statistics are obtained through
standard survey-statistical methods (Boryan et al., 2011). To exam-
ine the general relationship between the remote sensing-derived
acreage and the NASS statistics, we computed the simple ratio
between the CDL-derived corn/soybean acreage and the NASS
statistics for each state and then obtained an average ratio for
2010-2015:

1<~/ CDL.area;

R= HZ (NASS_area,->

where CDL_area denotes the corn/soybean acreage estimated
through CDL pixel counting and NASS_area is the official NASS
corn/soybean acreage. The main reason to focus on 2010-2015
was that NASS continued developing their CDL processing protocols
and the CDL products in recent years tend to have higher consis-
tency (Kline et al., 2013). We also note that the calculation of total
acreage from the binary corn/soybean map is based on previously
processed CDLs to have a proportional corn/soybean value in each
250 m pixel, with a 0.5 threshold value used to generate binary
corn/soybean map. The rescaling of CDLs was designed to match
the 250 m MODIS spatial resolution.

We hoped that there would be a relatively stable ratio between
CDL-derived acreage and the NASS acreage statistics across different
study years for each state. The average ratio (R) for each state can
then combined with the annual state-level NASS statistics to esti-
mate total corn/soybean acreage (pixel counts at 250 m scale) for
any given study year. With such MODIS pixel counts, we could iden-
tify an ‘optimal’ threshold value by applying the threshold-moving

approach (0.2-0.8 with 0.02 incremental steps) to the NN output
signals. It should be noted that the ‘optimal’ threshold is associated
with NASS statistics and it may not always be linked to optimal clas-
sification performance at pixel-by-pixel scale. This automated
threshold selection method was repeated for each study year and
state to produce the NASS-adjusted corn/soybean map products.
We then evaluated the per-pixel classification accuracies of the
NASS-adjusted corn/soybean map products using overall accuracy
and kappa statistics.

2.4. Analysis of long-term trends of corn/soybean planting from 2001
to 2015

Classification accuracies from (1) the simple spatial generaliza-
tion and (2) the threshold-moving approaches were compared
using the 2006-2015 experimental data. The classification results
with highest overall accuracy (and kappa coefficient) were used
to support the long-term land change analysis. Percent corn/soy-
bean area, or “crop intensity” values, were calculated for 5 km by
5km moving windows (Lunetta et al., 2010). The long-term
(2001-2015) crop intensity trends were then examined window-
by-window using a non-parametric Mann-Kendall test. The
Mann-Kendall test evaluates the monotonic downward/upward
trend over time. One appealing feature of the Mann-Kendall test
is its robustness to outliers (Hamed, 2008). For each 5 km window
showing significant upward/downward trend, we used Sen’s slope
estimator to assess the average annual change rate. Sen’s slope is a
nonparametric alternative for estimating a slope (change rate) and
it is not sensitive to outliers.

3. Results
3.1. NN spatial generalization without threshold moving

Fig. 2(a) and (b) compare overall classification accuracies from
the spatial generalization approach and the benchmark approach
for the testing region. Each box presents summary statistics of
overall accuracies (or kappa coefficients) from 2006 to 2015. Using
a spatial generalization approach and a default threshold value of
0.5, the average overall accuracy ranged from 0.77 to 0.79 when
training data points increased from 0.05 percent to 5 percent of
the total MODIS pixels. The average overall accuracy for the bench-
mark approach was 0.80 and 0.82 using 0.05 percent and 5 percent
of total MODIS pixels, respectively. On average, there was about 3%
difference of overall accuracy. The variability of the overall accu-
racy (and kappa value) was slightly smaller when more training
data points were used for NN training. In general, classification
performance tended to saturate when 1% of total MODIS pixels
were used for training and there was no significant improvement
when more training data points were added to the NN training.

The classification performance was further examined for each
state within the four-state testing-region (Table 1). We focused
on results derived from the largest training datasets (5% of total
MODIS pixels) where the highest overall classification accuracies
were obtained. For Minnesota and South Dakota, the lowest classi-
fication accuracy in one year was 0.82 and 0.80, respectively, sug-
gesting good overall performance of spatial generalization
approach. More importantly, the classification accuracy statistics
from the spatial generalization and benchmark approach were
quite similar for the mean, minimum, and maximum values. For
Kansas and Missouri, the average overall accuracy for 2006-2015
was 0.77 (kappa=0.49) and 0.73 (kappa =0.46). Such accuracy
statistics are acceptable for most remote sensing land cover map-
ping studies, however the overall accuracies were about 4% and
5% lower than the benchmark statistics. Furthermore, the lowest
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Fig. 2. Comparison of corn/soybean classification performance: (a) overall accuracy and (b) kappa value. A number of training datasets with different training sample sizes

were examined using spatial generalization and benchmark approaches.

Table 1

NN classification accuracy statistics for the four-state testing region. A default threshold of 0.5 was applied to generate a binary corn/soybean map. Benchmark statistics are

provided as if training data were available for the four-state region.

Kansas Mean (2006-2015) Minimum (2006-2015) Maximum (2006-2015)
SG Benchmark SG Benchmark SG Benchmark
Overall 0.77 0.81 0.71 0.78 0.82 0.85
Kappa 0.49 0.59 0.40 0.56 0.56 0.64
Minnesota
Overall 0.84 0.85 0.82 0.83 0.86 0.86
Kappa 0.61 0.63 0.56 0.57 0.69 0.69
Missouri
Overall 0.73 0.78 0.65 0.76 0.77 0.81
Kappa 0.46 0.55 033 0.50 0.53 0.61
South Dakota
Overall 0.82 0.83 0.80 0.82 0.84 0.85
Kappa 0.61 0.64 0.55 0.57 0.67 0.70

classification accuracy for a given year was 0.71 and 0.65 for Kan-
sas and Missouri; both were substantially lower compared to the
benchmark statistics (0.78 and 0.76). Kansas is a major winter
wheat-producing state, recognized for double-cropping (winter
wheat followed by a late planted soybean) in some areas of the
state. This effect leads to much of the soybean crop in Kansas hav-
ing a different phenology from soybeans in other states, which
likely contributed to reduced accuracy here. Such differences in
cropping practices or phenology thus potentially limit NN spatial
generalization effectiveness. In addition, Kansas and Missouri are
located beyond the southern border of the extent of the training
data, which may lead to phenologies that are not so well-trained
for within the training data. The states with the best accuracy, Min-
nesota and South Dakota, may exhibit such accuracies because
they are located mostly within the geographic extent of regions
where training data were selected. In addition, their dominant
corn/soybean summer crop may contribute to relatively higher
classification performance.

3.2. Impacts of NN threshold-moving on classification performance

Classification performance was highly dependent on the thresh-
old selection to label the corn/soybean pixels. We use image clas-
sification results for Missouri as an example to illustrate the
impacts of threshold-moving. Fig.3(a) and (b) shows variations
of overall accuracies and kappa coefficients by moving threshold

values from 0.2 to 0.8 for 2012 corn/soybean classification for Mis-
souri. The overall accuracies ranged from 0.51 to 0.70 (kappa 0.15-
0.37). A default 0.5 threshold value led to an overall accuracy of
0.65 (kappa = 0.33). The optimal threshold value should be around
0.3, a much smaller threshold value compared to a default 0.5.
Fig. 3(c) shows the ratio of MODIS-derived corn/soybean acreage
to the NASS acreage statistics. For 2012, the NASS-reported official
corn/soybean acreage was about 36,422 km? in Missouri. Depend-
ing on the various threshold values (0.2-0.8) selected, MODIS-
estimated acreage ranged from 36,427 to 8741 km?, corresponding
to MODIS_area/NASS_area ratio of 1.00-0.24. Such results were
expected because fewer MODIS pixels were labeled as corn/soy-
bean when the threshold increased to higher values. The highest
image classification accuracy was associated with a ratio value of
around 0.83.

Table 2 compares classification confusion matrices and accu-
racy statistics for three selected threshold values of 0.3, 0.5 and
0.7. The threshold value of 0.3 generated the highest overall accu-
racy of 70.2% (kappa = 0.37). The user’s and producer’s accuracy for
corn/soybean class was 77.1% and 75.0%, respectively. For a default
threshold value of 0.5, the user’s accuracy for corn/soybean class
increased to 83.8%, but the producer’s accuracy decreased to
54.3%, the less balanced user’s and producer’s accuracies led to a
lower kappa value (0.33). A higher threshold value of 0.7 led to a
high user’s accuracy (86.9%) and a much lower producer’s accuracy
(34.0%), so about 66% of actual corn/soybean pixels in the CDL were
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Fig. 3. Classification results for Missouri 2012 were used as an example to evaluate impacts of threshold values (0.2-0.8) on overall accuracy (a), kappa value (b), and

MODIS_area/NASS_area ratio (c).

Table 2

Comparison of confusion matrices of NN classification using three different threshold values of 0.3, 0.5, and 0.7.

Threshold = 0.3

CDL reference

% correct

Corn/soybean Other Total

Corn/soybean 37,148 11,051 48,199 771

Other 12,385 18,304 30,689 59.6

Total 49,533 29,355 78,888

%correct 75.0 62.4 Overall = 70.2% Kappa =0.37
Threshold = 0.5 Corn/soybean Other Total % correct
Corn/soybean 26,906 5194 32,100 83.8

Other 22,627 24,161 46,788 51.6

Total 49,533 29,355 78,888

%correct 54.3 823 Overall = 64.7% Kappa=0.33
Threshold = 0.7 Corn/soybean Other Total % correct
Corn/soybean 16,835 2544 19,379 86.9

Other 32,698 26,811 59,509 45.1

Total 49,533 29,355 78,888

%correct 34.0 91.3 Overall = 55.3% Kappa=0.21

Table 3

Ratios between the CDL-derived corn/soybean crop acreage and the NASS acreage statistics for 2010-2015.

Kansas Minnesota Missouri South Dakota
2010 0.80 1.00 0.87 1.01
2011 0.80 1.04 0.82 1.06
2012 0.76 1.01 0.85 1.01
2013 0.81 1.04 0.85 1.01
2014 0.73 1.05 0.85 1.02
2015 0.76 1.01 0.84 1.00
Average 0.78 1.02 0.85 1.02

mis-classified as other lands. Z-statistic testing suggests these
three classification results were significantly different from each
other (p < 0.05).

3.3. Integration of NASS statistics

Table 3 shows the ratio between the CDL-derived corn/soybean
crop acreage (based on the 250 m MODIS grid) and the NASS

statistics for four states for the years 2010-2015. For Missouri,
the average ratio was around 0.85 which matched well with the
previously identified optimal threshold value for image classifica-
tion performance (Fig. 3c). The average ratio for Kansas was 0.78.
Such ratio values suggest that remote sensing pixel counting could
lead to downward biased estimation for some states. However, for
Minnesota and South Dakota, the ratios were slightly above 1.
More importantly, for 2010-2015, we observed relatively consis-
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Fig. 4. Comparison of overall accuracy (a) and kappa coefficients (b) using simple NN spatial generalization (threshold = 0.5) and the threshold-moving approach.

tent ratio values for Minnesota, Missouri, and South Dakota. Such
results suggest that it might be feasible to use the average ratio
and the annual state-level NASS statistics to estimate total number
of corn/soybean pixels for each year - a potential solution to auto-
matically select a threshold value in the NN classification.

We applied the automated NN threshold selection method to
four states and compared classification accuracy statistics to those
derived from the spatial generalization approach which always
uses 0.5 as a threshold (Fig. 4). For all study years from 2006 to
2015, the average overall accuracy was 0.789 and 0.793 for spatial
generalization and threshold-moving approach, respectively. For
most study years and states, the performance from the two
approaches were quite similar. The main improvement can be seen
for Missouri and South Dakota, where the threshold-moving
approach improved as much as 4% of overall accuracy. The average
kappa value was 0.54 and 0.56 for the spatial generalization and
the threshold-moving approach, respectively. Above 70% of testing
states-years showed improved classification accuracy using the
threshold-moving method. The largest improvement of kappa
value was approximately 0.08. A closer look at the confusion
matrixes showed that higher kappa coefficients were often linked
to lower and more balanced commission-omission errors for corn/-
soybean and the other crop class.

3.4. Corn/soybean planting intensity from 2001 to 2015

Comparisons of classification performance for the years 2006-
2015 suggested that the threshold-moving approach outperformed
the spatial generalization method. We thus used the threshold-
moving method and the annual NASS corn/soybean acreage statis-
tics to generate annual corn/soybean map products for 2001-2015.
Although complete CDL products were available for 2006-2015,
we still generated the 250 m MODIS-based corn/soybean maps to
maintain the data consistency. The 250 m corn/soybean maps were
further aggregated to 5 km resolution to compute crop intensities
to support the 15-year trend analysis. To further verify that
MODIS-derived crop intensities approximate the CDL-derived crop
intensities, we conducted a correlation analysis to compare
MODIS- and CDL-derived corn/soybean proportions at the 5 km
resolution for North Dakota and lowa, where the CDLs are available
for all study years from 2001 to 2015. The r value was 0.97, sug-
gesting excellent agreement between the two crop intensity
datasets.

Fig. 5 depicts window-by-window slope coefficients of Sen’s
slope estimation developed for 2001-2015. Note that only win-
dows that showed significant (p < 0.05) upward/downward trends
based on the Mann-Kendall test were included for trend model
development. The highest slope coefficient was 0.068. For a 15-
year time period, the average increase rate of 6.8% per year was
considerably high. A total of 6110 5 x 5km windows (around
152,750 km?) showed at least 1% of average annual increase in
corn/soybean intensity. Areas showing fast increases of corn/soy-
bean intensities were mainly located in North Dakota, South
Dakota, and the western portion of Minnesota. We conducted addi-
tional correlation analysis to compare MODIS-derived change rates
(or slope coefficients) with CDL-derived rates for North Dakota and
Iowa for the 2001 to 2015 study period, and the r value was 0.91.
Such high correlation indicates that MODIS-derived change rates
were consistent with CDL-derived rates. Furthermore, the average
change rate derived for the entire study area appeared to be similar
to results reported by Wright and Wimberly (2013).

4. Discussion

Performance of NN spatial generalization using multi-temporal
MODIS data is dependent on several interrelated factors: classifica-
tion scheme, spectral-temporal characteristics of land cover classes
in both training and testing regions, NN configuration and param-
eter selection, training method (e.g., cross-validation), and thresh-
old value used to label target classes. In this study, a simple two-
class classification scheme was used following Wright and
Wimberly’s (2013) cropland change research for the WCB. The
combined corn/soybean class provides a meaningful thematic class
to characterize major cropland change patterns in the WCB and it
also potentially improves classification accuracy by removing con-
fusion between corn and soybean classes. Low classification accu-
racy may confound the long-term cropland change trends. The
trained NN classifiers for North Dakota, Nebraska, and lowa were
directly applicable to corn/soybean mapping for Minnesota and
South Dakota without integrating the NASS statistics and
threshold-moving. Such results suggest that corn/soybean’s
spectral-temporal signals from these states may have similar
characteristics.

We noticed that overall accuracies were substantially lower for
Missouri (overall accuracy >0.65) and Kansas (overall accu-
racy > 0.71) compared to those of South Dakota and Minnesota
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(i.e., >80% for all testing years from 2006 to 2015). For Missouri,
using a default threshold value of 0.5, remote sensing-estimated
corn/soybean acreage was highly inconsistent with the NASS acre-
age statistics across different study years (i.e., ratio ranged from
0.43 to 0.83 for 2006-2015), which further proved the difficulty
in spatial generalization of the NN classifier for corn/soybean map-
ping. In the southern portion of the WCB region (Missouri and Kan-
sas), the warmer climate allows earlier planting of corn/soybean
compared the northern states in the WCB (Ren et al., submitted
for publication). The differences in crop planting dates may con-
tribute to the poor performance of NN spatial generalization, espe-
cially since no training data came from areas in the south.
Additionally, warmer climate in the southern portion of the WCB
may allow more double-cropping (e.g., wheat-soybean) and a
wider variety of summer crops, both of which will contribute to
difficulty in NN spatial generalization. All these factors may con-
tribute to large variations in crop phenology and lead to significant
challenges in designing and implementing image classification
algorithms. Previous studies have used ecoregion-based stratifica-
tion of study areas to reduce phenological differences before image

classification (e.g., Shao et al., 2010), however, such an approach
typically requires training data points from each ecoregion and
multiple classifiers need to be trained and validated. Additional
types of neural networks (e.g., a radial basis functions or RBFs)
and other advanced machine learning algorithms (e.g., Random
Forest and Support Vector Machines) showed strong generalization
performance for various remote sensing classification problems
(Mountrakis et al., 2011; H. Wang et al., 2014, Q. Wang et al,,
2014). For a future study, their spatial generalization effectiveness
needs to be examined and compared with the NN classifier used in
this study.

One important finding from our study is that threshold-moving,
when combined with the NASS statistics, can improve corn/soy-
bean mapping accuracy for certain study years (and states). The
NN fuzzy output signals can be treated as the probability of the
corn/soybean class, given the multi-temporal MODIS profiles.
Users can select any threshold/probability value to label the corn/-
soybean class. This procedure clearly affects overall accuracy and
involves a trade-off between commission error and omission error.
A high threshold value (e.g., 0.8) may lead to very low commission
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error and high omission error. Depending on different applications,
researchers may choose certain threshold values to maximize
overall accuracy, kappa value, user’s/producer’s accuracy, or find
optimal cut off points on the receiver operating characteristic
(ROC) curve (Freeman and Moisen, 2008). None of these automated
threshold selection methods can be directly applied to our spatial
generalization tasks. For example, a default 0.5 threshold value
generally led to the highest overall accuracy (kappa value) for
the training region (North Dakota, Nebraska, and lowa). However,
the optimal threshold value for the testing region could be very dif-
ferent (e.g., 0.3 for Missouri, 2012). In this study, the NASS crop
acreage statistics was used to determine the automated threshold
selection. This method is particularly useful for generating MODIS-
based cropland maps backward in time since the NASS acreage
statistics are readily available. The capability of near real-time
mapping is less important in our study because our main purpose
was to develop high quality long-term corn/soybean map products
to support cropland change analysis.

The performance of the NN classifier is also dependent on the
quality of training data. The CDLs were used as reference to extract
training data points. CDL accuracies are high (>85% for most states
in the study region) for corn and soybean classes. The accuracy for
a combined corn/soybean class could be higher; thus CDL-derived
training data points are sufficiently accurate for MODIS-based
corn/soybean mapping. We note that MODIS EVI (Enhanced Vege-
tation Index) was also considered due to its lower signal saturation
(Huete et al., 2002). However, we found some EVI data quality
problem for year 2012 for our study region. Previous studies also
suggested similar image classification performance using multi-
temporal NDVI or EVI (Shao and Lunetta, 2011; Wardlow and
Egbert, 2010). Therefore, we focused on MODIS NDVI for our corn/-
soybean mapping efforts. In a recent study, Wang et al. (2012) indi-
cated that sensor degradation of MODIS Terra led to slight but
observable decline of NDVI during 2002 to 2010. Such a declining
trend in NDVI may add uncertainty in multi-temporal image clas-
sification and subsequent change analysis. We expect that Terra
MODIS calibration and reprocessing (Collection 6) will address this
sensor degradation issue (Wang et al., 2012). To achieve high spa-
tial generalization capability, a variety of NN configurations (e.g.,
number of nodes in the hidden layer) and other training protocols
(learning rate, momentum) need to be examined. All of these set-
tings can be examined under a cross-validation framework to find
the optimal combination, thus they are not major concerns for our
study. With improved MODIS signal calibration and advanced
image classification algorithms, we think there is potential in tem-
poral generalization in addition to our current efforts in spatial
generalization. Specifically, further research should test whether
a trained classifier for one specific year can be directly applied to
another year to derived good classification performance. In a
recent study, Zhong et al. (2016) developed an automated corn
and soybean mapping method using crop phenology. Their
approach highlights the use of decision rules based on expert
inputs and differences in corn and soybean phenology. Such expert
system has potential to be generalized across time. However, over-
all we think that a temporal generalization is a more challenging
topic compared to a spatial generalization problem.

Our research indicates that the WCB region has experienced a
high level of cropland intensification from 2001 to 2015. Annual
increase of corn/soybean intensity reached as high as 6.8% for some
5 x 5 km windows, which is consistent with results from Wright
and Wimberly (2013). One contribution of our study is that we
examined all seven WCB states with complete corn/soybean map
products from 2001 to 2015. Future research should be imple-
mented to extend our annual corn/soybean mapping efforts to
the entire Midwestern region to examine cropland change trends
and assess their impacts on water yield/quality, biodiversity, and

ecosystem services in general. For the current study, we focused
on per-pixel image classification method to generate binary corn/-
soybean maps to support change trend analysis. An alternate
method is to estimate proportional corn/soybean cover using
sub-pixel mapping algorithms (e.g., Chang et al., 2007) to support
change trend analysis. The proportional cover estimation can
reduce the impacts of landscape heterogeneity and provide more
accurate corn/soybean proportions, which is particularly impor-
tant for study areas where agricultural fields are relatively small,
though large fields are most common in the WCB.

5. Conclusions

Using multi-temporal MODIS-NDVI as inputs, we developed
annual corn/soybean map products through NN training and gen-
eralization. The existing high quality CDLs from a sub-region of
the WCB were used as reference to extract training data points
for NN training. The trained networks were directly applied to
the other sub-regions to evaluate their spatial generalization effec-
tiveness. With a default threshold value of 0.5, we observed high
variation of classification performance, and overall accuracy ran-
ged from 0.65 (kappa = 0.33) to 0.86 (kappa = 0.69) for four states
in the testing region, during the period 2006-2015. A threshold-
moving method was developed to improve NN spatial generaliza-
tion performance. The adjustment of threshold values (e.g., 0.2-
0.8) on the NN output signals affects the total number of MODIS
pixels labeled as corn/soybean. When we integrated state-level
NASS acreage statistics to guide the threshold selection, over 70%
of testing state-years showed improved kappa coefficients. The lar-
gest improvement of kappa value was approximately 0.08. This
threshold-moving method was applied to all study years from
2001 to 2015 to support long-term cropland change analysis. A
total of 6110 5-km windows showed significant (p < 0.05) increase
of corn/soybean intensity, and the highest annual increase rate was
6.8%.
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