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Dynamic response of pavement provides service condition information and helps with damage prediction, while limited research
is available with the simulation of pavement vibration response for evaluating roadway service condition. This paper presents
a numerical model for the analysis of the pavement vibration due to the dynamic load created by a passing vehicle. A quarter
vehicle model was used for the determination of the vehicle moving load. Both random and spatial characteristics of the load were
considered. The random nonuniform moving load was then introduced in a 3D finite element model for the determination of the
traffic-induced pavement vibration. The validated numerical model was used to assess the effects of dynamic load, material
properties, and pavement structures on pavement vibration response. Numerical analyses showed that the vibration modes
changed considerably for the different roadway service conditions. The vibration signals reflect the level of road roughness, the
stiffness of the pavement materials, and the integrity of pavement structure. The acceleration extrema, the time-domain signal
waveform, the frequency distribution, and the sum of squares of Fourier amplitude can be potential indexes for evaluating
roadway service condition. This provides recommendations for the application of pavement vibration response in early-warning

and timely maintenance of road.

1. Introduction

Pavement, the important transportation infrastructure, pro-
vides a smooth riding surface and basic load-bearing capacity
for vehicles to travel on. Pavement structure will deteriorate
under cyclic traffic loading and environmental factors. Early
repair and maintenance scheduling increase the safe opera-
tion and in-service performance of pavement. This can be
achieved through an accurate and consistent monitoring of
dynamic response of pavement. Because the signal pattern can
be analyzed to distinguish between deteriorated or cracked
pavement section from the intact ones [1].

Stress-strain, displacement, and acceleration are the
important monitoring parameters for the dynamic response
of pavement. Due to the substantial improvement of ac-
celeration sensing technologies, the microelectromechanical
system (MEMS)-based acceleration sensors have been used

in the monitoring of pavement vibration. The acceleration
signals caused by the moving vehicle load were processed to
obtain traffic information including vehicle speed, axle,
weight, and traffic volume [2-5]. Moreover, by detecting the
acceleration of pavement under specific wheel loadings and
analyzing the vibration modes, it is possible to evaluate the
pavement service condition.

Over the past several years, experimental studies have
analyzed the pavement vibrations generated by vehicles
to evaluate pavement service condition. Arraigada et al.
[6] used accelerometers to measure pavement deflections
due to traffic loads. Levenberg [7] inferred the pavement
layer properties by using an integral electronic piezoelectric
accelerometer. Yu and Yu [8] developed a cost-effective
vibration-based system for preliminary evaluation of
pavement conditions. Zhang et al. [9] analyzed time and
frequency spectrums of vertical acceleration for the HMA


mailto:wangl@vt.edu
http://orcid.org/0000-0001-8115-1780
http://orcid.org/0000-0003-2330-4237
http://orcid.org/0000-0003-2670-376X

slabs under different loading scenarios. However, the
application of pavement vibration response in roadway
service condition is still in the experimental stage.

On the contrary, theoretical and numerical studies
have also been conducted. This can save large amount of
laboratory efforts and time. The analyses considering the
pavement vibration under dynamic vehicle load are widely
adopted by many studies for various research purposes. Ju
[10] developed a finite element (FE) model to investigate
the characteristics of the building vibrations induced by
adjacent moving trucks. Xu and Hong [11] investigated the
effects of both a single heavy truck flow and a two-way
traffic flow on building vibration. The results showed that
traffic-induced ground vibrations disrupted high-tech
facilities. Mhanna et al. [12] investigated the effect of
the vehicle speed, the road unevenness, and the vehicle
suspension system on the traffic-induced vibrations. Some
recommendations were suggested for the reduction of
these vibrations. Lak et al. [13] studied the relation be-
tween road unevenness, the dynamic vehicle response, and
ground-borne vibrations. The influence of road un-
evenness on the free field vibrations was investigated.
Wang et al. [14] tested four trackbed materials for their
relative vibration attenuation capacities and studied the
effect of different speed and weight of the passing train on
the performance of the paving materials. Their purpose is
to reduce the adverse effects of pavement vibration on the
surrounding structures and vehicles, rather than to analyze
the pavement vibration signals for evaluating the pave-
ment service condition.

However, there are few studies to evaluate the pavement
service condition through vibration simulation analysis.
The assessment of roadway service condition is mainly
reflected by the monitoring of stress, strain, and dis-
placement. Saad et al. [15] examined the dynamic response
of the fatigue strain at the bottom of the asphalt concrete
layer and rutting strain at the top of the subgrade material
by 3D FE analyses. Alavi et al. [16] compared the dynamic
strain data of intact and damaged FE model under moving
tire loading. Features extracted from the dynamic strain
data were used to detect the damage progression. Xue et al.
[17] simulated the loading process by using finite-element
analysis. The ratio between vertical stress and longitudi-
nal horizontal strain was demonstrated to be related to
the strength of pavements and can be used for the back-
calculation of pavement modulus. Wu et al. [18] in-
vestigated the dynamic responses of stress and deflection at
the critical load position by changing thickness, modulus of
isolating layer, and the combination between the isolating
layer and concrete slab. Patil et al. [19] studied the effects of
vehicle-pavement interaction, pavement thickness, and soil
parameters on the dynamic response of pavement to reveal
their influences on pavement dynamic performances, in-
cluding the effects of subbase module on maximum
deflection.

Due to the improved MEMS-accelerometer technology,
pavement vibration response can be used not only for traffic
information monitoring but also has the potential to be used
for evaluating the roadway service condition. This paper
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FiGure 1: The quarter vehicle model.

presents a numerical model for the analyses in the time-
frequency domain of the traffic-induced vibrations. The
numerical modeling includes two stages. In the first stage,
a quarter vehicle model is used for the determination in the
time domain of the load due to road roughness. Both
random and spatial characteristics of the load were con-
sidered. In the second stage, a 3D FE model of road is used to
determine the pavement vibrations due to the load, which is
calculated in the first stage. Then, the validated road model is
used to evaluate the effects of dynamic load, pavement
materials, and structure on pavement vibration response, so
as to determine the potential evaluation index of roadway
service condition.

2. Numerical Model

In the case of vehicle-road interaction, the prediction of the
dynamic axle loads can be uncoupled from the solution of
the road-pavement interaction problem due to the high
stiffness of the road compared to the vehicle’s suspension
system or tire [20-23]. Therefore, the numerical modeling
includes two stages: Firstly, the dynamic axle load resulting
from pavement roughness was calculated by establishing
a moving vehicle model composed of springs, dampers, and
lumped mass. Then, the resulting axle dynamic load is used
in a 3D numerical modeling for the determination of the
pavement vibrations.

2.1. Random Nonuniform Moving Load

2.1.1. Time History. The quarter vehicle model, the half
vehicle model, and the 3D vehicle model are the common
vehicle models. But the quarter vehicle model is a widely
used model because it can easily be used with personal
computers to predict ride quality and pavement loading
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TaBLE 1: The parameters of medium truck.

Vehicle parameters Value
m; (kg) 4450
m, (kg) 550
k, (N-m™) 1000000
¢ (N.ssm™) 15000
ky (N-m™) 1750000
¢ (N.sm™) 2000

[24]. Although the quarter vehicle model does not allow to
model pitch and roll effect on tire forces, the stochastic load
can be simulated efficiently by using the quarter vehicle
model when vehicle moves straight at a constant speed.
Figure 1 shows the quarter vehicle model [25].

In this model, the suspension and nonsuspension
masses corresponding to the one corner of the vehicle are
denoted by m; and m,, respectively. The suspension system
is represented by a linear spring of stiffness k; and a linear
damper of damping rate c;. The tire is modeled by a linear
spring of stiffness k, and a linear damper of damping rate
;. The vertical displacements of suspension mass and
nonsuspension mass are x; and x,, respectively. The pa-
rameter values chosen for this study are shown in Table 1
[26].

According to the D’Alembert’s principle, the motion
differential equations of this vibration system are written as

MX+CX+KX =P, (1)
where M, C, K, X, and P are mass matrix, damping

matrix, stiffness matrix, displacement matrix, and excite-
ment matrix, respectively. They are written as
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where g is the displacement excitated by road roughness,
which can be calculated as [27]

q(t) = 279G, (19)v - w(t) — woq (1), (7)

where w(t) is the time domain signal of Gaussian white
noise with mean zero; G, is the road roughness coefficient;
v is the vehicle speed (m/s); and n, is the reference space
frequency and n, =0.1 m™'. According to (1)-(7), the

vehicle random dynamic load forcing on the pavement can
be calculated as

Ft = Fd +G,
G= (ml + mz)g) (8)
Fy=ky(x;-q) + ¢ (%,-9),

where F, is the vehicle random dynamic load; G is the vehicle
static load; g is the acceleration of gravity; and Fy is the
dynamic load applied by tires on pavement.

The quarter vehicle model was established in
Matlab/Simulink. The speed was set to 10 m/s. According to
the ISO 8608, the classes A, B, and C of road were obtained
by adjusting the geometric mean of road roughness co-
efficient. The geometric mean of road roughness coefficient
was set as 16 (i.e., G, = 16) when the road was a class A road
[28]. Class A road represents high grade road, such as the
highway, indicating that the surface of road is smoothness.

The sampling frequency of stochastic load was set as
1000 Hz. Figure 2 shows the random dynamic load when the
vehicle speed is 10 m/s and road is class A road.

When the vehicle travels on the class A road, the value of
vehicle dynamic load is not constant due to the effect of road
roughness, vehicle suspension system, vehicle speed, weight,
and other factors. The value of vehicle dynamic load is
random and fluctuates around 48 kN.

2.1.2. Spatial Distribution. In order to obtain the more actual
pavement dynamic response, it is necessary to consider both
random and spatial characteristics of the load. The actual tire-
to-pavement contact is surface to surface contact. Once the
total tire force is known, the actual or more rational contact
pressure distribution can be used by considering the actual
configurations of the tires [29]. The actual tire-to-pavement
contact is simplified as a rectangular area [30]. The rectan-
gular area is affected by the tire pattern and the load value
which varies with the space. Figure 3 shows a common style of
tire pattern. The size of the rectangular area is 20 cm x 18 cm.
There are five rib areas caused by the tire pattern [31].

When the vehicle moves straight at a constant speed, the
ratio of load amplitude is about 1:0.9: 0.5 in center rib (R3),
intermediate rib (R2, R4), and edge rib (R1, R5). Moreover,
the spatial distribution of the vertical load can be simplified
as a half-sine function in each rib area along the traffic
direction [31, 32].

2.1.3. Moving Load. In order to simulate the movement of
vehicle load, the secondary development of DLOAD sub-
routine was carried out based on FE software, ABAQUS, to
simulate the random nonuniform moving load. A specified
coordinate function COORDS(%) and a time function
TIME (1) were used to define the loading area and imple-
ment the moving load. Equation (9) means the loading area
moves at a constant velocity along the X axis which is
defined as traffic direction.

X = COORDS(1) -V x TIME(1) - X,,, 9)
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FIGURE 2: The random dynamic load when the vehicle speed is 10 m/s and road is class A road.
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FIGURE 3: The actual tire-to-pavement contact.

where COORDS (1) is an array containing the X coordinates
of the load integration point; X, is initial coordinate X value
of load; V is the vehicle speed; and TIME(1) is the current
value of step time. Therefore, X is an array containing the X
coordinates of the load integration point corresponding to
the moving coordinate system.

Then the load in each rib by considering random and
spatial characteristics was defined. Equation (11) means the
spatial distribution of load at time ¢.

Y = COORDS(2) - Y,, (10)
. b c
if abs(X) < 3 and abs(Y) SE’

F(t) . (m s
X s1n<f x X + 7>,
S b 2

(11)
then P(t) = a =

where COORDS (2) is an array containing the Y coordinates
of the load integration point; the direction of Y axis is
perpendicular to the traffic direction; Y, is initial coordinate
Y value of load; abs(X) < (b/2) defines the length of the
loading area; abs (Y) < (¢/2) defines the width of the loading
area; a is the ratio of load amplitude, which is set as 1 for R3,
0.9 for R2 and R4, and 0.5 for R1 and R5; b is the length of the
load distribution along the traffic direction, which is set as
18 cm for R3, 16 cm for R1, R2, R4, and R5; ¢ is the width of
the load distribution perpendicular to the traffic direction,
which is set as 3 cm for each rib; S is the actual contact area
that is the sum of the areas from R1 to R5; P (t) is the set of
the surface pressure on the load integration point at
TIME(1); and F(t) is the random load produced by the
quarter vehicle model at TIME (1).

The random nonuniform moving load is achieved by (9)
and (11). The vehicle speed was set as 10 m/s, and the length
of loading area was set as 3 m. Therefore, the total time
period was 0.3 s. The increment time was set as 0.001 s, which
was consistent with the sampling frequency (1000 Hz) of
stochastic load. Thus, the applied load can be assumed
a continuous moving load if loading time is short enough.

2.2. Finite Element Model of Road. With the increased
computational capabilities, the dynamic FE analysis of
a pavement structure is a technique of considerable re-
duction in computation cost than before. A 3D FE model
was developed to analyze the dynamic response of pavement
under a moving truck tire loading.

2.2.1. Calculation Parameters. A model geometry of
9.0m x 6.5 m x4 m block was created to represent a typical
four-layer roadway structure that referred to the structure of
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FiGure 4: The 3D FE model of road.

TaBLE 2: The material parameters of asphalt concrete pavement.

. . Thickness Elastic Poisson’s Density Damping
Material (cm) modulus ratio (kg/m®) ratio
(MPa) &
SMA16 4 1400 0.35 2400 0.05
AC25 5 1200 0.35 2400 0.05
AC30 7 1000 0.35 2400 0.05
Gravel 38 1300 0.25 2100 0.05
Lime soil 36 600 0.3 1900 0.05
Soil 200 50 0.4 1800 0.05

Beijing 6th ring road. The information of this structure came
from Dong’s research [31]. Figure 4 shows the road model.
The surface layer includes SMA, AC25, and AC30. The axes
of X, Y, and Z were set align with the longitudinal, trans-
verse, and vertical direction, respectively. The driving di-
rection was along the positive direction of X axis.

Material parameters of each structure layer were de-
termined by reference to the Specifications for Design of
Highway Asphalt Pavement (Appendix E) [33], as shown in
Table 2. The material parameters of AC30 were estimated by
referring to the lower limit value of material parameters of
AC25. The material viscosity was considered using Rayleigh
damping for the energy dissipation through the medium.
The damping ratio of pavement structure is generally be-
tween 0.02 and 0.2 and is set as 0.05 [34].

2.2.2. Constrain Condition and Mesh Generation. The three
direction movements and rotations were restrained at the
bottom of the subgrade on the model. The normal directions
were restrained corresponding to the four sides of the model.
In order to decrease the number of elements and reduce the
cost of computation, the interface between subbase and
subgrade was set as Tie constraint because of the small
deformation on the subgrade. A Tie constraint ties two
separate surfaces together so that there is no relative motion
between them. The central area of the model surface was set
as the loading area, so as to reduce the effect of boundary
constraint on the simulation results.

FiGURE 5: Mesh of the 3D FE model.

» _TSAY

FIGURE 6: The field test on G320 road at Kunming.

Finer meshes were used in the loading area. The coarser
meshes were used for the area far away from the loading area
not only to ensure accuracy but also to improve calculation
efficiency, as shown in Figure 5.

The road model was idealized with linear hexahedral
element of type (C3D8R). The length and width of elements
were 2 cm X 2 cm in the loading area. The heights of elements
were 2cm, 2.5cm, and 3.5cm for SMA, AC25, and AC30
layers, respectively.

2.3. Model Validation. In order to verify the road model, the
simulation results were compared with the experimental data.
The measured strain data came from Dong’s research [31].
Dong et al. embedded the fiber Bragg grating (FBG) sensors
on the Beijing Liuhuan Expressway. The FBG sensors were
used to measure the vertical, transversal, and longitudinal
strains of the pavement under the vehicle moving load. The
measured vibration data came from our field test. The self-
developed acceleration sensing nodes were embedded on
G320 road at Kunming to acquire the pavement vibration
signal generated by vehicle moving load. The medium truck
with a total weight of 25t passed the monitoring area at
a speed of 35km/h. The depth of the accelerometer from the
surface of road is 8 cm. The pavement vibration signal excited
by the front axle of this truck was chosen to compare with the
simulated data, as shown in Figure 6.

Figure 7 shows the monitoring points. The point #A was
selected for strain and vibration response analysis. The point
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FIGURE 7: The monitoring points on the transverse section of the
model center.

#B was selected for strain response analysis. Figure 8 shows
the comparison between simulated data and measured data.

In Figures 8(a)-8(c), the strain curves of simulation
rebounded rapidly and did not have hysteresis after loading
because the viscoelasticity of the asphalt pavement was not
considered. However, the difference of maximum values
between the simulated and measured data is just around
15%. And the trend of strain curves matches well. The
reasons for the deviations of strain curves were attributed to
difference in the material parameters and random vehicle
load adopted in real situation. However, the comparison still
exhibits consistency between simulated and measured data
and verifies that the numerical model used for FE simulation
is coherent.

Figure 8(d) shows only one peak for the vibration be-
cause of one-wheel loading. The waveform initially falls and
rises rapidly to form a significant peak and then falls again.
Finally, it levels off. These characteristics are consistent with
the measured data trend. However, the magnitude of sim-
ulated data is 10 times larger than the experimental data.
This is because the simulated acceleration data can only be
extracted from nodes of element by using ABAQUS pro-
gram, and the nodes have a mass close to zero. However, the
sensor node for pavement vibration monitoring has real
mass. According to Newton’s second law, the magnitude of
the acceleration of an object is inversely proportional to the
mass of the object. Therefore, the measured data were used
as a reference, and the mass scaling factor was set to 10. The
mass-scaled simulation data match well with measured data.
This model can be used to analyze road vibration response
qualitatively under multiple conditions.

3. Results and Discussions

The validated FE model was adopted for various simulations
to provide additional information on dynamic pavement
performance, which might prove costly via laboratory tests
only. The factors that would influence the dynamic
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responses of pavement under moving vehicle load are
typically related with the external excitation from vehicle
load, material properties, and geometric properties of
pavement.

3.1. Influence of Dynamic Load. Vehicle parameters, speed,
weight, and road roughness have influence on dynamic load
of tire to pavement [25, 29, 35]. Therefore, the dynamic load
coefficient (DLC) was used to represent the variation of the
dynamic load, which can be calculated as

Zz I(F

DLC = F.)’ % 100%, (12)
N _

F,

S

where F, is the vehicle random dynamic load at the ith time
step; F, is the static load produced by vehicles; and N is the
total time step. The time step is 0.001 s and the total time is
0.3s.

The random dynamic load corresponding to different
DLC was obtained by the quarter vehicle model, as shown in
Figure 9. A larger value of DLC indicates the load fluctuates
more dramatically.

By considering the actual tire-to-pavement contact, the
random nonuniform load was applied to the road model to
acquire pavement vibration response. The monitoring area
was the surface of SMA layer below the tire center line, as
shown in Figure 10.

Figure 11 shows the acceleration extrema of each node in
the monitoring area. The acceleration extrema are the dif-
ference value between the maximum and the minimum
acceleration in a loading time period.

In Figure 11, the variation of the acceleration extrema is
random. The distribution range of acceleration extrema is
larger when DLC is higher. The median values significantly
increase with an increase in DLC, which is from 0.8 gto 1.33 g,
indicating that the number of larger acceleration extrema will
grow if the dynamic load fluctuates more dramatically.

DLC increases when the surface condition of pavement
declines. DLC increases with the increase of vehicle speed
and the decrease of vehicle weight [29, 35]. When the ex-
perimental vehicle passes the test road at the same speed, the
vehicle weight and speed can remain the same. The dis-
tribution range of acceleration extrema is larger when DLC
is higher. Therefore, the wider distribution range of ac-
celeration extrema indicates the worst condition of road
surface.

3.2. Influence of Surface Materials. Asphalt and cement
concrete are the common materials of the pavement surface
layer, and their material properties are different. Asphalt
concrete is a flexible material while cement concrete is a rigid
one. Therefore, the influence of material properties on the
pavement vibration was analyzed by comparing asphalt and
cement concrete. Table 3 shows the material parameters of
the cement concrete [18]:

The vibration response was compared between asphalt
and cement concrete pavements. The monitoring points #1,
#2, and #3 of asphalt concrete pavement were placed below
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FIGURE 9: The random dynamic load corresponding to different DLC.

the tire, at the top of the SMA layer, the AC25 layer, and the
AC30 layer, respectively. The coordinate of monitoring
points in the model of cement concrete pavement was kept
the same, as shown in Figure 12.

The dynamic load was applied to the road model when
the road was class A road and the vehicle speed was 10 m/s.
The vertical acceleration signals of different materials were
compared at each monitoring point, as shown in Figure 13.

In Figures 13(a) and 13(b), the time-domain signal
waveform can reflect information about the properties of the

pavement materials, such as the degrees of flexibility and
rigidness. For the asphalt concrete pavement, the vertical
acceleration amplitude decreases significantly with an in-
crease in the depth. The waveform tends to vibrate upward,
which is due to the flexibility and integrality of the asphalt
concrete pavement. The energy of downward vibration is
absorbed by the flexible structures. On the contrary, for the
cement concrete pavement, the waveform is almost sym-
metric, and the vertical acceleration amplitude has no ob-
vious change at each point. This is due to a high strength of
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the monitoring area. (b) The distribution box of acceleration
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TaBLE 3: The material parameters of cement concrete pavement.

. Thickness Elastic Poisson’s Density Damping
Material (cm) modulus ratio (kg/m°) ratio
(MPa) &
Cement
16 31000 0.15 2400 0.05
concrete
Gravel 38 1300 0.25 2100 0.05
Lime 36 600 0.3 1900 0.05
soil
Soil 200 50 0.4 1800 0.05
o |
— Surface
3:3:3:3:1:3:1?0.111:'[1#9*.41:1:1:1:1:5140:301:5
Qravel — Base
— Subbase
— Subgrade

)
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(b)

FIGURE 12: The monitoring points on the transverse section of the
model center between asphalt and cement concrete pavements. (a)
Asphalt concrete pavement. (b) Cement concrete pavement.

the cement concrete pavement. When the vehicle load acts
on the surface layer of cement concrete pavement, it acts like
a rigid plate body.

In Figures 13(c) and 13(d), the vibration frequency
of asphalt concrete pavement is mainly within 50 Hz.
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(c) Crack zone and loading area.

According to the Parseval’s theorem, the energy of vi-
bration can be identified as the sum of squares of Fourier
amplitude. The energy of vibration becomes smaller with
an increase in the depth. The energy is 15.83 mW at point
#1, while it is only 1.58 mW at point #3. On the contrary,
the vibration frequency of the cement concrete pavement
distributes normally. The energy of vibration is 0.42 mW
at point #1’ and 0.20 mW at point #2, which is far less than
that of asphalt concrete pavement. The energy becomes
smaller with an increase in the depth, but the decrease of
energy is small. This is due to the good integer property of
the surface layer of the cement concrete pavement.
According to the law of conservation of energy, when the
vehicle drives on the cement concrete pavement, the
vehicle suspension system absorbs more energy, which
results in the bumpiness of vehicle. But, the driving ex-
perience is good when the vehicle drives on the asphalt
concrete pavement. However, the asphalt concrete
pavement is susceptible to damage as it absorbs more
energy.

3.3. Influence of the Structure Integrity. The pavement vi-
bration response was compared between two cases: one with
a road model that has no crack and the other with 3 m-long
and 10 cm-wide by 15.2 cm-deep crack located in the base
layer, as shown in Figure 14. The crack area of the base layer
was hollowed out according to the set size. The crack area
was no need to mesh and define material parameter.

The vertical acceleration signals of different structure
integrity were compared at each monitoring point, as shown
in Figure 15.

In Figures 15(a) and 15(b), the vertical acceleration am-
plitude decreases as the depth increases for the noncracked
model. However, for the cracked model, the vertical acceleration
amplitude first decreases and then increases as the depth in-
creases. The vertical acceleration amplitude of cracked model is
maximum at point #3’. Moreover, the vertical acceleration
signals of cracked model have more prominent fluctuation
characteristics under moving load, which is especially evident at
point #3' near the crack zone. This is because the crack de-
creases the bearing capacity and stability of pavement structure.
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FiGure 15: Comparison of the vertical acceleration signals of different structure integrity. (a) Time-domain vertical acceleration signals of
asphalt concrete pavement with no crack. (b) Time-domain vertical acceleration signals of asphalt concrete pavement with crack.
(c) Frequency-domain vertical acceleration signals of asphalt concrete pavement with no crack. (d) Frequency-domain vertical acceleration

signals of asphalt concrete pavement with crack.

In Figures 15(c) and 15(d), the frequency distribution
can reflect the information about the structure integrity of
pavement. For the noncracked model, the vibration fre-
quency of asphalt concrete pavement is mainly within 50 Hz.
However, when the cracking is present, the vibration fre-
quency is not only below 50 Hz but also at 250 Hz. This is due

to the cracks that change the natural frequency of pavement
structure. In addition, the energy of vibration becomes
smaller with an increase in the depth for the noncrack
model. However, for the cracked model, the damage areas
have larger vibration energy compared with the intact areas.
The energy of vibration is maximum at point #3’ which
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reaches 30.32mW. This leads to further expansion of the
crack and material failure. Under the same moving vehicle
load, the total energy absorbed by damaged pavement, that
is, 46.98 mW, is higher than the total energy absorbed by
intact pavement, that is, 22.80 mW. This leads to a shorter
service life of the damaged pavement.

4. Conclusions

This paper presented a numerical model for the analysis of
the pavement vibrations resulting from vehicle moving load.
The quarter vehicle model was used to determine the ran-
dom load due to the road roughness. The random and spatial
characteristics of the load were considered. Then the random
nonuniform moving load was applied to the 3D FE model of
the road, so as to acquire pavement vibration response. The
vertical acceleration signals of various simulations were
analyzed to find out the potential evaluation index of
roadway service condition.

Numerical analyses showed that the vibration modes
changed considerably for the different roadway service
conditions. The vibration signals reflect the level of road
roughness, the stiffness of the pavement materials, and the
integrity of pavement structure. The acceleration extrema,
the time-domain signal waveform, the frequency distribu-
tion, and the sum of squares of Fourier amplitude can be the
potential index for roadway service condition evaluation.
This provides recommendations for the application of
pavement vibration response in early-warning and efficient
maintenance of the road.

The numerical model can be used for analysis of the
traffic-induced pavement vibration under different condi-
tions, which is helpful for the evaluation of pavement service
condition. However, there are still some improvements in
a future study. The road model can be improved by con-
sidering the effect of ambient temperature and viscoelasticity
of asphalt. And a further analysis could be done by doing the
field test.
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