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Generalized Consensus for Practical Fault Tolerance

Mohit Garg

(ABSTRACT)

Despite extensive research on Byzantine Fault Tolerant (BFT) systems, overheads associ-
ated with such solutions preclude widespread adoption. Past efforts such as the Cross Fault
Tolerance (XFT) model address this problem by making a weaker assumption that a ma-
jority of replicates are correct and communicate synchronously. Although XPaxos of Liu
et al. (applying the XFT model) achieves similar performance as Paxos, it does not scale
with the number of faults. Also, its reliance on a single leader introduces considerable down-
time in case of failures. This thesis presents Elpis, the first multi-leader XFT consensus
protocol. By adopting the Generalized Consensus specification from the Crash Fault Toler-
ance model, we were able to devise a multi-leader protocol that exploits the commutativity
property inherent in the commands ordered by the system. Elpis maps accessed objects to
non-faulty processes during periods of synchrony. Subsequently, these processes order all
commands which access these objects. Experimental evaluation confirms the effectiveness of
this approach: Elpis achieves up to 2x speedup over XPaxos and up to 3.5x speedup over
state-of-the-art Byzantine Fault-Tolerant Consensus Protocols

This work is supported in part by Air Force Office of Scientific Research (AFOSR) un-
der grant FA9550-15-1-0098 and by National Science Foundation (NSF) under grant CNS-
1523558



Generalized Consensus for Practical Fault Tolerance

Mohit Garg

(GENERAL AUDIENCE ABSTRACT)

Online services like Facebook, Twitter, Netflix and Spotify to cloud services like Google and
Amazon serve millions of users which include individuals as well as organizations. They
use many distributed technologies to deliver a rich experience. The distributed nature of
these technologies has removed geographical barriers to accessing data, services, software,
and hardware. An essential aspect of these technologies is the concept of the shared state.
Distributed databases with multiple replicated data nodes are an example of this shared
state. Maintaining replicated data nodes provides several advantages such as (1) availability
so that in case one node goes down the data can still be accessed from other nodes, (2)
quick response times, by placing data nodes closer to the user, the data can be obtained
quickly, (3) scalability by enabling multiple users to access different nodes so that a single
node does not cause bottlenecks. To maintain this shared state some mechanism is required
to maintain consistency, that is the copies of these shared state must be identical on all
the data nodes. This mechanism is called Consensus, and several such mechanisms exist in
practice today which use the Crash Fault Tolerance (CFT). The CFT model implies that
these mechanisms provide consistency in the presence of nodes crashing. While the state-
of-the-art for security has moved from assuming a trusted environment inside a firewall to
a perimeter-less and semi-trusted environment with every service living on the internet,
only the application layer is required to be secured while the core is built just with an
idea of crashes in mind. While there exists comprehensive research on secure Consensus
mechanisms which utilize what is called the Byzantine Fault Tolerance (BFT) model, the
extra costs required to implement these mechanisms and comparatively lower performance
in a geographically distributed setting has impeded widespread adoption. A new model
recently proposed tries to find a cross between these models that is achieving security while
paying no extra costs called the Cross Fault Tolerance (XFT). This thesis presents Elpis, a
consensus mechanism which uses precisely this model that will secure the shared state from
its core without modifications to the existing setups while delivering high performance and
lower response times. We perform a comprehensive evaluation on AWS and demonstrate
that Elpis achieves 3.5x over the state-of-the-art while improving response times by as much
as 50%.
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Chapter 1

Introduction

Any significant online service today is supposed to be globally accessible. From social media
services like Facebook and Twitter to multimedia streaming services like Netflix and Spotify
to online marketplaces like Amazon, the ability to scale to serve hundreds of millions of
active users is vital for their continued growth. Consequently, these companies have spent
a lot of capital and effort in setting up their cloud infrastructures internally or have relied
on public cloud services like Amazon Web Services and Google Cloud. These cloud services
work by replicating data across tens of thousands of data servers across the globe which
interact with each other through internal networks. Replication aids scalability by not only
reducing response times by enabling users to access local servers but also helps distribute
processing and storage loads. Maintaining large clusters brings additional challenges as at
any given time a sizable number of servers and network components fail. Any downtime
for these online services is costly. For Fortune 1000, the average total cost of application
downtime is between $1.25 billion to $2.5 billion [1]. High availability by building services
that tolerate faults is hence no longer the exception but the norm.

Therefore, the developers are using stateless techniques like microservices [2], and stateful
replication techniques like distributed databases so that the overall system continues to work
transparently to the end user even in the presence of components failures. Stateful repli-
cation is especially challenging as it requires coordination amongst processes to maintain
a strongly consistent state. The costs become significant in the geographically replicated
(geo-replicated) services due to considerably high network latencies. As an alternative, the
geo-replicated systems available today provide weaker consistency guarantees which com-
plicate the application development due to the constant reconciliation between transaction
timestamps.

Additionally, while applications using these replicated services are expected to emphasize
security, the services only consider the failures that arise due to components crashing and
stop working altogether. Any arbitrary faults due to data corruptions, faulty hardware,
misconfigurations, software bugs or even malicious behavior are ignored entirely and left

1
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to checksum mechanisms at the application layer. The existing techniques categorized as
Byzantine Fault-Tolerance have seen low adoption in large-scale systems outside of cryp-
tocurrencies and safety-critical systems in particular due to their need for extra components
as well as relatively poor performance, particularly in the geo-replicated setting. This thesis
addresses the challenges of security, performance, and availability of geographical replica-
tion while demanding no extra resources by presenting a new Consensus algorithm which
provides stronger consistency and reliability.

1.1 Motivation

Consensus algorithms are designed using two prominent fault models the Crash Fault-
Tolerant (CFT) model and the Byzantine Fault-Tolerant (BFT) model. The BFT model
has gained traction recently with the proliferation of the Cryptocurrency technologies. How-
ever, the BFT algorithms are expensive as they require more resources and use complex
messaging patterns that require higher network bandwidths. Compared to CFT protocols,
BFT protocols need bigger quorums (Ref. Section 2.3.4), more communication steps and
use cryptographic signatures during message exchanges. Notably, in geo-scale deployments
where round-trip timings (RTT) are higher, the requirement of more nodes in the quorum,
as well as more communication steps, tremendously increases the user-perceived latencies,
discouraging wide-spread adoption. Various approaches [3, 4] have tried to improve the per-
formance of BFT protocols, but due to the lower bounds of the BFT model itself [5] none of
them were able to reduce both the number of communication steps as well as the quorum
size.

If we study the BFT model, the need of bigger quorums is a direct result of the assumption
that there exist slow processes due to an asynchronous network along with some Byzantine
processes. In practice, this scenario can take place when an adversary is able to affect the
network on a wide scale (affecting multiple processes) as well as attack multiple servers
in another location, all in a coordinated fashion. To address this limitation, in [6], the
authors propose the Cross Fault Tolerance (XFT) model, which is a trade-off between Crash
Fault Tolerance and Byzantine Fault Tolerance models. Mainly, the XFT model relaxes the
assumption that the adversary can launch coordinated attacks, which is unlikely in geo-scale
deployments. The XFT model provides the same quorum size of t+1 and uses the same
number of communication steps as the CFT model under normal conditions.

The proposed consensus solution under the XFT model, XPaxos, is a leader-based protocol
whose performance is similar to CFT-based Raft/Multi-Paxos [7]. While this algorithm is
built with an assumption that befits the geo-replicated setting, the accompanying algorithm
does not exactly solve the requirements of scalability and performance. The XPaxos leader
only changes when there is a fault and as such XPaxos inherits the shortcomings of the
leader-based approach in particular the imbalanced load distribution in which the leader
does more work than other nodes in the system, high latency for requests originating from
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non-leader processes due to the requirement of forwarding, and the inability to deliver any
commands whenever the current leader is slow or Byzantine until and unless a leader change
takes place.

Multi-leader consensus solutions [8, 9, 10] have been proposed for the CFT model in recent
years to address the aforementioned issues. Such solutions adopt the Generalized form of
Consensus [11], which exploits the underlying commutativity of commands entering the
system, such that the commutative commands can be ordered differently across different
nodes and only non-commutative commands need consistent ordering across all the nodes.
Our goal is to therefore provide a Generalized consensus algorithm in the XFT model which
achieves high performance in the geo-replicated setting by using XFT, an adversary model
which befits the Geo-replicated setting.

1.2 Summary of Thesis Contribution

This thesis presents Elpis, the first multi-leader Cross Fault Tolerant (XFT) consensus pro-
tocol, which exploits the underlying commutativity of commands to provide fast decisions in
two communication steps from any node, in the common case. We are able to achieve this
by exploiting workload locality that is very common in geo-scale deployments.

The core idea of Elpis is about having ownership at a finer granularity. Rather than having
a single leader that is responsible for ordering all commands regardless of their commutative
property, we assign ownership to individual nodes such that each node mostly proposes only
commutative commands with respect to other nodes. As a result, each node is responsi-
ble for deciding the order of all its commands that commute with other nodes. We define
commutativity by the object(s) that a command accesses during its execution. With this,
we assign ownership to nodes on a per object basis. Such ownership assignment guaran-
tees that no other node will propose conflicting commands, and thus, fast decisions in two
communication steps can be achieved from the owner nodes.

Elpis also allows for dynamic ownership changes. Individual nodes can gain ownership of
any object(s) using a special ownership acquisition phase. We recognize the conflicts due to
concurrent ownership acquisition of the same object(s) by multiple nodes. We address this
with a rectification mechanism that follows the ownership acquisition phase during conflicts
and minimizes the number of node retries to acquire ownership.

We implemented Elpis and the competitors - XPaxos, PBFT, M2Paxos, and Zyzzyva - in
Java, using the JGroups messaging toolkit. We extensively evaluated each of the existing
solutions and contrasted their performances to show the gains achieved by our solution.
To summarize, Elpis achieves up to 2x speedup over XPaxos and up to 3.5x speedup over
state-of-the-art Byzantine Fault-Tolerant Consensus Protocols.

In summary, the contributions of this thesis are:
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• The design and implementation of Elpis, the first Generalized Cross Fault Tolerant
(XFT) Consensus algorithm designed for geo-replicated systems.

• An ownership conflict resolution protocol that minimizes the ownership acquisition
retries using a more cohesive algorithm.

• An extensive evaluation and comparison to existing state-of-the-art in the BFT space
as well as XPaxos itself.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2, provides a background on Replication, Consensus, key abstractions, and
the existing state-of-the-art solution that are related to the contribution, Elpis.

• Chapter 3 presents the system model, the assumptions and the definition of the problem
tackled by Elpis.

• Chapter 4 introduces Elpis at a high level and then delves into the details and presents
the algorithm pseudo-code.

• Chapter 5 presents the correctness proof of Elpis.

• Chapter 6 provides a comprehensive evaluation of Elpis and competitors.

• Chapter 7 provides the key insights, avenues of future work and concludes the thesis.



Chapter 2

Background and Related Work

Distributed computing is the coordination among components interconnected by network
links to achieve a common goal. This coordinated system is simply referred to as a distributed
system. For the discussion in this thesis, a process abstraction is used to refer to any
component which performs computation such as a computer, a process within a computer
or even a specific thread.

2.1 Fault-Tolerance

The processes which make up a distributed system can fail. A failure occurs whenever the
process deviates from the execution of the computation. This deviation takes place when the
process crashes and stops running subsequent steps, skips over steps, or acts arbitrarily either
accidentally or due to adversaries. Whenever a process fails, it is assumed to fail completely.
In other words, the unit of measurement of failures is a process. Fault-tolerance is the
property of the system to continue operating correctly despite any failures. The reliability
of the system indicates the probability of success of the computation in the system. The
availability of a system is proportional to the time the system stays operational. Availability
is directly related to the reliability of the system - the higher the reliability, the higher the
availability.

2.2 Replication

A fundamental aspect of computing, replication implies maintaining consistency among re-
dundant computing resources (hardware or software) to gain reliability, high availability, and
fault-tolerance. On access, the replicated entity behaves like a single, non-replicated entity
despite any failures. External clients can submit requests to this replicated entity. However,

5
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the process of replication is transparent to the clients. Replication is often confused with
Backup however the backup resources are accessed infrequently and maintain their state for
a longer duration of time.

Replication can be passive wherein a primary processes all the requests and copies the state
synchronously or asynchronously to other processes, or it can be active wherein multiple
primaries process every single request. Therefore, any process can be queried to attain the
state of the system. Passive replication is simple and available widely in several enterprise
database systems [12] [13]. However, it is ill-suited for fault-tolerance. In case the primary
process fails while transferring the state, the system could become inconsistent. When the
system chooses a new process as the primary, it could serve client queries from an older state.

Therefore, it is imperative for fault-tolerance that the replication is active. All processes
should execute the client requests and maintain their states so that in case of a failure any
non-faulty process (or a set of non-faulty processes) can be queried for the current state
of the system. This approach is termed as State Machine Replication(SMR) wherein every
process transfers states by executing requests in order. SMR is frequently employed to mask
failures by replicating servers (a state machine) and coordinating clients with these replicated
servers.

For replication, the state machine should be deterministic that is given an initial state,
and a set of congruently ordered inputs the state machines transition to the same state
and produce the same output. In case of divergence, however, different clients may receive
different outputs. In the presence of faults, this deviation is particularly likely because a failed
process could differ in its state and output from other machines. Consensus (or agreement)
algorithms are therefore used for SMR to assure that the servers maintain consistent state
even in the presence of faults. To maintain consistency, however, all processes should observe
an equivalent order of inputs that is an order which results in the transition to the same
state from a given initial state.

2.3 Consensus

How to reach consensus among a set of processes is a fundamental problem in Distributed
Systems. Consensus algorithms are used by processes to decide on a common value to
maintain a consistent state or decide the future course of action under a model in which the
processes can fail.

2.3.1 Fault Models

The fault models identify the relevant properties and interaction characteristics. Broadly
speaking two prominent models are utilized to design distributed systems,
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Crash Fault-Tolerant (CFT): A model which encapsulates crash faults where a process
stop execution. The process executes the computation correctly up to some time and subse-
quently stop any local computation as well as any message exchange.

Byzantine Fault-Tolerant(BFT) Model: The processes can deviate from the algorithm
in any conceivable manner either due to accidental faults or due to adversarial or malicious
behavior. The Byzantine Fault-Tolerant model specifies these faults as well as the ability of
the adversary to control the execution of processes or affect the messages exchanged.

The failure assumptions along with deployment scenarios, system parameters, and design
specifications play a huge role in system design[14]. Further assumptions can be made
depending on whether the process failure can be detected by other processes or if recovery
from failures is possible.

2.3.2 Communication

Generally, perfect links or reliable links are assumed for designing Consensus algorithms
which guarantee the following properties.

Reliable Delivery If a message is sent from one correct process to another then the message
is eventually delivered.

No duplication A message is delivered exactly once.

The reliability should be guaranteed by network protocols at lower communication layers.
Distributed systems differ from shared memory systems in the fact that the time for function
invocation is significant. The characteristics of how processes and network links interact with
the passing of time and the timing assumptions for communication delays are hence pivotal
for designing Consensus algorithms.

Synchronous Communication: Communication is termed to be synchronous if there is a
fixed upper bound on message transmission delays.

Asynchronous Communication: If there are, however, no bounds on message transmis-
sion delays then the communication is termed to be asynchronous. This does not imply that
the messages would take longer to get delivered but just that the delays can be arbitrary.

The timing assumptions are important as the FLP result [15] proves that no determin-
istic algorithm achieves consensus if the network is asynchronous even if a single process
crashes. Consequently, several algorithms assume alternate models of synchrony such as the
eventually synchronous model where the network can be asynchronous from time to time
but is eventually synchronous. These algorithms guarantee liveness only during the syn-
chronous periods. Alternatively, several randomized algorithms have been designed for the
asynchronous model which is beyond the discussion of this thesis but are exciting to learn
about.
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2.3.3 Safety and Liveness

Generally, the Consensus algorithms guarantee the following properties.

Validity: If a process decides some value v then this value should be proposed by some
process. In other words, the Consensus algorithm cannot invent values out of thin air.
Safety: Stated roughly, the safety property states that the algorithm should not do anything
wrong. Consensus algorithms are intended to achieve agreement. Hence, the safety property
states that no two processes decide on different values.
Liveness: The processes decide on some value eventually or in other words termination is
guaranteed.

2.3.4 Resilience

Consensus algorithms are designed with the assumption that only a limited number t of
processes fail, which could range from a minority of processes to a single process. [14]. The
number is an upper bound, that is t processes may fail, however, not that these t processes
exhibit failure under each and every execution. This relation between the number of total
processes N and the number of potentially faulty processes t in the system is termed as the
resilience.

The idea of quorums is repeatedly used to design Consensus algorithms. In the context
of Crash Fault-Tolerant algorithms, the quorum is any majority of processes. Every two
quorum of processes have a non-empty intersection, and for this reason, the quorum is the
majority of processes. The core idea is the realization that if a majority of processes Q pick
a value v in the instance i then no other majority can exist which chooses a value v’ different
from v in instance i. If we consider any other majority Q′ different from Q there would be
at least be one non-faulty process which is common to both Q and Q′. Since this common
process either chooses v in i before v′ or v′ in i before v consistency is guaranteed. If there
are N processes and t of them are faulty then the set of N−t processes must form a majority.
In other words,

N − t >
N

2
⇐⇒ N > 2t

However, in the case of Byzantine faults, two majority quorums might not intersect in a
non-faulty process. A Byzantine quorum is a set of more than N+t

2
processes such that the

quorums intersect at one correct process. For t processes, every Byzantine quorum consists
of

N + t

2
− t =

N − t

2
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Two Byzantine quorums together would have more than

N − t

2
+

N − t

2
= N − t

correct processes. Hence, one correct process would exist in both quorums. Up to t correct
processes can be slow: hence there must exist a Byzantine quorum of correct processes in
the system, to guarantee progress. Hence,

N − t >
N + t

2
⇐⇒ N > 3t

2.3.5 Cryptography

Consensus algorithms which execute in untrusted and open environments where messages
can be modified or corrupted rely on cryptographic methods. The most commonly used
methods include,

Hash Function: A function H takes a string x of arbitrary length and returns a value h
which is a short string of fixed length. A Hash function is collision free that is no process
including one subject to arbitrary faults can find two strings x and x’ such that H(x) = H(x′).

Message Authentication Codes (MACs): A shared symmetric key between two par-
ticipants is used to authenticate messages transferred between the participants. MACs are
used to prevent forgery by any adversary which does not possess the shared key. MACs are
a combination of key-generation, signing and verifying functions. A key-generator function
G outputs a key k which is dependent on the security parameters. A signing function S
generates a tag l for the key k. A verifying function V outputs a value of accept or reject
depending on the inputs k, x and l.

Digital Signatures: A digital signature is created with a private key, and verified with
the corresponding public key of an asymmetric key-pair. Only the holder of the private key
can generate this signature, and typically anyone knowing the public key can verify it. A
key-generator function G outputs a private key sk and a public key pk. A signing function
S takes pk and x and returns a tag l. A verifying function V outputs accept or reject by
considering the inputs pk, x and l.

2.4 Consensus Algorithms

Paxos is the most famous and widely studied Consensus algorithm. It was introduced by
Leslie Lamport in an allegorical form using the voting process in the parliament of a fictional
Greek island of the same name[16]. Paxos was developed independently along with Oki
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and Liskov’s View-Stamped Replication [17]. Both of these algorithms employ the two-
phase commit algorithm [18] whereby first the processes express their intention (by voting)
to process a transaction and when enough votes are collected these processes commit the
transaction. In case of a crash , however, the two-phase commit algorithm can block and
some form of crash recovery mechanism is required. View-Stamped replication and Paxos
introduce the idea of views and view ids where each event taking place in a particular view
has the same unique id. This approach helps transfer state from one view to the next in case
of failures.

Subsequently, several algorithms have been proposed based on the Crash Fault Tolerance
(CFT) model. For instance, Raft [7], Fast Paxos[19], EPaxos[20], M2Paxos [10] help achieve
consensus in the presence of crash faults albeit under varying assumptions on the number
of processes required to tolerate F faults. For the faults that are beyond the purview of the
CFT model, Lamport’s Byzantine Fault-Tolerance (BFT) model [5] is employed which ad-
dresses arbitrary faults. This model has motivated several BFT algorithms such as Practical
Byzantine Fault-Tolerance [21] and Zyzzyva [3] amongst others.

Recently, the Cross Fault-Tolerance (XFT) model has been proposed by Liu et al. [6] along
with the XPaxos consensus algorithm which strives to achieve the guarantees of the BFT
algorithms by incurring the cheaper costs of the CFT algorithms.

2.4.1 Crash Fault-Tolerance

2.4.1.1 Paxos

To achieve Consensus amongst a set of totally connected 1 processes each process runs the
Paxos algorithm. Each process assumes one or more roles: Proposer, Acceptor or a Learner.
A Proposer acts as a coordinator for client requests. All client requests are sent to the
Proposer. The Acceptors respond to messages from the Proposer and the Learners discover
the value chosen by the Acceptors.

Paxos achieves this by having Proposers send a Proposal to all Acceptors with a unique
number and the client request they received and have Acceptors only accept proposals with
the highest proposal number amongst all the Proposals they receive. If the Proposal received
has a higher proposal number than what an Acceptor has seen before the Acceptors send an
acknowledgment otherwise the Acceptors respond with a not-acknowledged message.

For each client request received a new Consensus Instance is initiated. A single Consensus
Instance proceeds as follows (Figure 2.1).

1All pairs of processes can exchange messages with each other
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Phase 1:

(a) The Proposer selects a unique proposal number n and sends a prepare request to all
the Acceptors.

(b) If the Acceptors haven’t received any prepare greater than n then the Acceptors respond
with an acknowledgment thus promising that they won’t accept any other proposal
with number less than or equal to n.

Phase 2:

(a) If the Proposer receives prepare acknowledgments from a majority of acceptors then
the Proposer sends an accept for value v with the proposal number n.

(b) If an acceptor receives an accept with a proposal number equal to n then the Acceptors
accept the proposal unless they have received some proposal greater than n. If that’s
the case then the Acceptors will reject the accept.

Phase 3:

(a) In this phase after receiving acknowledgment from a majority of Acceptors, the Pro-
poser sends a learn message to all the Learners with the proposal number n and the
value v. If the Learners reject then the Proposer retries from Phase 1.
The algorithm can be optimized by having Acceptors send the learn message to Learn-
ers after they accept which saves one communication delay.

Phase 1 Phase 2 Phase 3

prepare(n) accept(n, v) learn(n, v) 

Learner 

Proposer 

Acceptor 

Acceptor 

Learner 

Figure 2.1: Three phases of Paxos - Prepare, Accept and Learn
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2.4.1.2 Multi-Paxos and Raft

Paxos describes how to reach an agreement on a single value, self-described as a single-
decree consensus algorithm. For reaching consensus on a multiple values several instances
of the protocol are run. This Multi-Paxos approach brings several challenges. For instance,
consider the following scenario.

Dueling Proposers Two Proposers pi and pj (Figure 2.2) send a prepare with proposal
numbers ni and nj respectively such that nj > ni. Let’s assume a majority of Acceptors
complete Phase 1b for proposal number nj. As a result pi prepares for Phase 3a. Meanwhile,
pj completes it’s Phase 1. At this point the highest proposal number that a majority of
Acceptors has seen is nj. Now Acceptors will reject Phase 2 for pi because it’s proposal
number ni < nj. The pi would retry Phase 1 with a higher proposal number nk > nj.
Hence, pj would not be able to complete it’s Phase 2. it is straightforward to see that this
can go on forever. Hence, the Liveness property cannot be guaranteed. To solve this problem,
Multi-Paxos assumes a single Proposer which acts as the Leader. In case this Leader fails a
new Leader is chosen by using timeouts or by randomization.

Proposer

  A
ck

  Ack

  Nack

  N
ac

k

  A
ck

Acceptor

Proposer

Figure 2.2: Three phases of Paxos - Prepare, Accept and Learn

Raft[7] is one of the most widely employed Multi-Paxos protocol [22, 23, 24, 25, 26]. The
protocol works by replicating an indexed log across processes which can assume the role of
a Leader, Follower, and/or a Candidate. The algorithm proceeds in a sequence of terms
with a single elected Leader for every term. Under normal operation, the client requests are
forwarded to the Leader.

Upon receiving the request the Leader enters the command to it’s log and sends an Append-
Entries request which includes the leader’s term, the term and index of the log entry
immediately preceding the new entry it just added and it’s commit index. The Followers
append the entry if they receive a request with a term higher than their current term and
an index that immediately follows the previous index it appended the entry to. If this is the
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case then the Followers send an acknowledgment to the Leader. Once the Leader receives an
acknowledgment from a majority of processes it commits the entry it just added and all the
previous entries and increments its commit index. The Followers send heartbeat requests
to the Leader at predetermined intervals. If the Followers don’t receive a heartbeat, then
they assume the role of a Candidate, increment the term and send a RequestVote request
to all the processes. If a Candidate receives a vote from a majority of processes, it becomes
a Leader and sends an empty AppendEntries request to all the processes. Subsequently, it
can start serving client requests.

2.4.1.3 Fast Paxos

The basic Paxos algorithm requires three message delays to learn a value. Fast-Paxos [19]
aims to reduce the message delays to two (which is optimum [11]) given the condition that
the number of Acceptors N > 3F , where N is the number of Acceptors and t is the number
of faulty processes as opposed to N > 2t required for basic Paxos.

The Quorum size in the basic Paxos is the majority of processes wherein any two quorums
intersect at not less than a single process. However, Fast Paxos specifies Fast Quorums. The
size of the Fast Quorums should be such that any two FastQuorums Q1 and Q2 should
intersect at the classical quorum. Hence, Q1 ∩Q2 ∩Q is an empty set.

The Client sends an Accept directly to all the processes if the Leader has no value to propose.
In this case, the Acceptors send the acknowledgment to the leader similar to Phase 2b and
the leader follows basic Paxos from there on. Hence, the processes achieve consensus in two
communication delays which is optimal.

However, if a conflict is detected, then the Leader can coordinate the recovery by sending
an Accept message with a new round. In this case, four communication delays are required.
Alternatively, the Leader can specify coordination rules for Acceptors in advance. In the
case of a conflict, the Acceptors can follow the rule resulting in three communication delays.

2.4.1.4 Generalized Paxos

Generalized Paxos abstracts the idea of agreeing on a single value in each instance of the
algorithm as is the case in Basic Paxos to agreeing on a set of values. In the context of State
Machine Replication if a Learner learns a set of commands, a C-Struct then non-commutative
commands can be ordered arbitrarily. The resulting C-Structs would be equivalent.

Commutative Commands: If the ordering of the command execution set is determinant
to the output of the state machine, then the commands are non-commutative. However if
the ordering between commands produces the same final state and output, the commands
are commutative. For example, let’s assume a distributed key-value store which implements
State Machine Replication and implements Put(K, V) and Remove(K) requests. A Put(K,
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V) sets a value V for a key K and Remove(K) removes the key K and the value associated
with K. Let’s consider commands C1 = Put(2, 3), C2 = Remove(7), and C3 = Remove(2).
While C1 and C2 can be ordered and learned arbitrarily (they are non-commutative), C1 and
C3 have ordered in the same manner for all learners. Hence, while the C-Struct C1 •C2 •C3

and C2 • C1 • C3 are equivalent C2 • C1 • C3 and C2 • C3 • C1 would not result in the same
state and are not equivalent.

As illustrated in the case of Dueling Proposers, a single Leader is only required to guarantee
Liveness. Safety is guaranteed regardless of the presence of the number of Leaders. Hence,
Generalized Consensus allows faster operation as multiple Leaders can directly send non-
commutative commands to Learners and only the ordering amongst commutative commands
have to be learned. Once, the learners learn a contiguous C-Struct the C-Struct can be
applied to the State Machine. EPaxos and M2Paxos discussed below utilize this intuition
and are designed to be employed for State Machine Replication in Wide Area Networks
(WAN).

2.4.1.5 EPaxos

Egalitarian Paxos or EPaxos is a multi-leader or leaderless Paxos algorithm. Clients can
choose to forward the request to any process which in turn acts as the request’s leader.
While, Paxos and Fast-Paxos try to order commands before committing, EPaxos enables
Proposers to commit commands as they are proposed but collects dependencies which are
used to determine the order while executing and applying commands to the State Machine.

Initially, the command leader tries to commit the command in one communication delay
using a Fast Quorum, Q = t+ ⌊ t+1

2
⌋ however, if this fails due to conflicts then the command

leader takes two additional communication delays by following committing commands with
the classic ⌊N

2
⌋ + 1 quorum. After committing, for each command, the dependencies are

collected recursively in the form of a directed graph. The commands are then executed in
a reverse topological order using their sequence numbers. After that, the processes execute
the commands. Processes then execute all the remaining commands in the order of their
sequence numbers.

Multi-Leader approaches are especially attractive for Wide Area Networks because (1) single
leader approaches cause bottlenecks at the leader (2) a leader failure in a particular region
can cause problems with availability while a new leader is chosen.

2.4.1.6 M2Paxos

M2Paxos is also a multi-leader CFT Consensus algorithm. However, it takes a different
approach as compared to EPaxos. Rather than calculating dependencies, M2Paxos tries
to map objects accessed by commands to processes. For instance, in the example given in



Mohit Garg Chapter 2. Background and Related Work 15

Section 2.4.1.4 the value of the key K of Put(K, V) and Remove(K) is the object accessed
by the corresponding command. Hence, a process acquires exclusive ownership of each key
K and subsequently orders any commands that access K. M2Paxos uses classical quorums of
size ⌊N

2
⌋ + 1 which translates to better scalability as compared to using fast quorums as in

the case of EPaxos since the Proposer has to wait for a lesser number of acknowledgments.

The performance is further enhanced by workload locality that is that in real application
workloads, objects access local processes with higher frequency. For example, let’s assume
a Banking System which implements a deposit operation Deposit(a, ⟨amount⟩) and a
transfer operation Transfer(a, b, ⟨amount⟩) where a and b are account ids. In this case,
it is far more likely that all operations on objects a and b would be localized to a particular
region.

Hence, if a local process pl receives a request with operation Deposit(a, ⟨amount⟩) it as-
sumes the ownership of a by running a Prepare phase for the object a similar to the Phase 1
of Paxos and subsequently orders all commands that access these objects providing replica-
tion in two communication delays. If a different process receives a Deposit(a, ⟨amount⟩)
operation that accesses a then, in this case, the process forwards the request to pl which
already has the ownership of a. However, if another process pr receives a Transfer(a, b)
request which accesses both a and b then it can steal the ownership from pl by running it is
own Prepare phase with objects a and b. Subsequently, all operations which access a and b
will be ordered by pr.

While M2Paxos provides the highest performance for a sufficiently localized workload, it can
livelock due to DuelingProposers as discussed earlier where more than one processes try to
acquire ownership of the same objects.

2.4.2 Byzantine Fault-Tolerance

While the protocols discussed above guarantee safety despite any crashes, they don’t tolerate
Byzantine Faults [5]. Malfunctioning components or active adversaries can cause processes
to equivocate and send conflicting messages to their peers. The presence of active adver-
saries may affect the network by denial-of-service attacks or by actively coordinating with
other adversaries. Additionally, these faults can be purely accidental like software errors,
disk corruption, network misconfiguration to name a few. These faults are more relevant
today than ever due to the growing number of Cryptocurrencies and associated Blockchain
protocols [27] where the presence of an adversary is taken into consideration.

2.4.2.1 PBFT

PBFT [21] introduced by Castro and Liskov is the first efficient Byzantine Fault-Tolerant
(BFT) algorithm. It is also the most widely studied and formally verified BFT algorithm.
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It requires N = 3t + 1 processes, and it is hardened by using digital signatures or Message
Authentication Codes (MAC) and message broadcasts to verify messages sent by all pro-
cesses. PBFT operates in a sequence of views with a single Primary for each view. All
clients requests are forwarded to the Primary. To ensure liveness, the Backup processes
set a timer as soon as they receive a valid request. If the request is not executed by the timer
expiration a view − change is executed which on completion results in a new view with a
new Leader.

On receiving signed clients request, the Primary sends a Pre-Prepare message with the
view number and the proposal number to the Backup processes. The Backup processes
verify the digital signature, the message digest, match the view with the current view and if
it is valid, send a signed Prepare message.

If a Backup receives 2t Prepare messages from different processes that match the view
number and proposal number in the Pre-Prepare message, then the Commit message is
broadcasted to all the processes. If a backup receives Commit message from 2t + 1 different
processes, then the command is committed, executed, and the result is returned to the client.
If the client receives t+1 such responses, it can accept the response and consider the request
to be successfully replicated.

Broadcast and Quorum Size A set of 2t+1 messages justifies the validity of the broadcast
mechanism. At most t messages could be from faulty processes, the rest of the t+1 messages
are from non-faulty processes and would contain the same value which would indeed be the
correct value.

2.4.2.2 Zyzzyva

Zyzzyva [3] is a BFT consensus protocol that achieves consensus in three communication
delays including the client request and reply. PBFT, in contrast, requires five communication
steps. The client forwards the request to the primary which then appends the sequence
number and broadcasts the message to all the backup processes. The backup processes
speculatively execute the request and forward the response to the client. In the absence
of any Byzantine Faults or link failures or the common − case, the client receives 3t + 1
responses and commits the request. If however, the client does not receive responses from all
the processes the second phase is executed depending on the number of responses received.
This second phase behaves similar to PBFT albeit with certain modifications to manage
the speculative execution logs produced in the common− case.

2.4.3 Cross Fault Tolerance (XFT)

XPaxos [6] was the first protocol to use the Cross Fault Tolerance (XFT) model. The XFT
model provides stronger consistency and availability guarantees than both the CFT and
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BFT.

Following our discussion on PBFT in Section 2.4.2.1, BFT protocols require a Quorum of
size 2t+1. The 2t+1 Quorums intersect at a minimum of t+1 acceptors hence at least one
correct acceptor would be present which ensures the validity of the protocols. This follows
from the fact that if t processes are slow to respond in case the network is asynchronous or
due to the presence of crashes, we require t+1 messages that contain the same value to offset
t messages received from faulty processes so that a process can discern correct messages.

However, if we assume that a majority of processes are correct that is they are not crash
faulty nor byzantine and can communicate with each other synchronously then the protocol
can deliver commands in three communication delays to the client. XPaxos works precisely
on finding such t+1 groups and if the current group misbehaves a view− change is initiated
to discover a new group. Hence, XPaxos works if,

tnc + tc + tp ≤
⌊N − 1

2

⌋
where tnc are the number of non crash-faulty or byzantine processes, tc is the number of
crash-faulty processes and tp is the number of partitioned processes. In any other case the
system is considered to be in anarchy and a fault−detection mechanism is used to find and
possibly correct these faults.

F  +  1
(correct)

F 
(slow)

S 
F-S 

F 
(Byzantine)

t

t t
S-t

Figure 2.3: BFT vs XFT: The box (in green) represents BFT which requires 3t+1 acceptors
because t acceptors could be slow and cannot be differentiated from t Byzantine acceptors.
In contrast, XFT assumptions result in t+1 correct processes with a total of t faulty and/or
slow processes represented by ovals from which t+ 1 correct messages can be differentiated
from.



Chapter 3

System Model and Problem
Formulation

This chapter specifies the system assumptions used for designing Elpis, the contribution of
this thesis. There exists a set Π = {p1, p2, ..., pN} of processes that communicate by message
passing and do not have access to shared memory. Additionally, there exist clients c which
can communicate with any process in the system.

3.1 Cross Fault-Tolerance (XFT) Model

The processes may be faulty, they may fail by crashing (tc) or be Byzantine (tnc). However,
the faulty processes do not break cryptographic hashes, digital signatures, and MACs. A
process that is not faulty is correct. The network is complete and each pair of processes is con-
nected using a reliable point-to-point bidirectional link. The network can be asynchronous
that is the processes might not be able to receive messages in a timely manner. In this case
that the network is partitioned and the system model abstracts these partitions as network
faults (tp).

Following the XFT model [6], the total number of faults are bounded by,

tnc + tc + tp ≤
⌊N − 1

2

⌋
(3.1)

where tnc are the number of non crash-faulty or byzantine processes, tc is the number of
crash-faulty processes and tp is the number of partitioned processes. In any other case
the system is considered to be in anarchy. For the discussion in this thesis, the system is
assumed to be never in anarchy, that is, there always exists at least a majority of correct
and synchronous processes.

18
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The Generalized Consensus [11] specification is used where the processes aim to reach con-
sensus on a collection of commands, the C-Struct. The Consensus algorithm orders non-
commutative commands before deciding and decides commutative commands directly. (Ref.
2.4.1.4). Every process can propose commands using the C-Propose interface and the
processes decide command structures C-struct using the C-Decide(C-struct cs) interface.

Finally, the identifiers for the objects accessed by the commands are known apriori and
is represented with the LS attribute in every command. That is, for a command c, the
identifiers for its set of objects is given by c.LS.

3.2 Thesis Problem Statement

The thesis problem is formulated as follows:

How to implement State Machine Replication (SMR) using Generalized Consen-
sus in the Cross Fault-Tolerance (XFT) model?

The SMR clients invoke commands by sending a request to a process which then uses the C-
Propose interface to propose, decides and then applies the C−Structs to the State Machine
and generate a reply which is returned to the client. Given that the majority of processes
are correct and communicate synchronously (Equation 3.1), the following properties should
be guaranteed.

Non-triviality - Commands that are included in the decided C-structs must have
been proposed;

Stability - if a node decided a C-struct cs at any time, then it can only decide cs •σ,
where σ is a sequence of commands, at all later times;

Consistency: Two C-structs decided by two different nodes are prefixes of the same
C-struct.

Liveness: The command c will eventually be decided in some C-struct.

In Chapter 4 we illustrate how Elpis achieves State Machine Replication and in Chapter 5
we prove the properties listed above.



Chapter 4

Protocol Description

4.1 Overview

Interestingly, Elpis derives the inspiration of implementing Generalized Consensus from
M2Paxos [10] which does not tolerate Byzantine faults. To avoid contention among mul-
tiple processes that propose non-commutative (Ref. 2.4.1.4) commands C, a unique owner
is chosen. This owner orders all commands which interfere with the each other. Once an
owner is chosen, other processes forward any command in C to the owner. The interference
of commands is interpreted dynamically by the objects on which the command operates (Sec-
tion 2.4.1.6). If a process does not have the ownership of the objects accessed by a command,
it first tries to acquire the ownership by running the ownership acquisition phase (Section
4.3.4). If the process acquires the ownership, it tries to decide the command. The first
challenge in designing Elpis is to avoid Byzantine processes from acquiring ownership.

For Byzantine Fault-Tolerant algorithms a quorum of size 2t + 1 out of 3t + 1 processes is
required. The two Byzantine quorums intersect at t+1 processes, one of which is guaranteed
to be correct. Elpis on the other hand uses 2t+ 1 processes. A set of 2t+ 1 processes would
include t faulty processes which is determinant to the liveness since these processes may not
respond. Hence, a quorum of the same size 2t+ 1 seems implausible. Elpis takes a different
approach wherein if a faulty process is detected, clients switch to another proposer after
receiving t + 1 Aborts in the commit phase (Section 4.3.3). Since, a majority of processes
are correct and communicate synchronously (Section 3.1), when an honest proposer is found
this t + 1 synchronous set of correct processes form a quorum of size 2t + 1 with the t + 1
processes in the iteration which last aborted. It is easy to see that the client can send
requests to a maximum of t faulty proposers and eventually on the t + 1 try the request
would be committed.

The ownership acquisition can also fail if multiple nodes try to acquire ownership concur-
rently. In this case the acceptors reply with a Defer message which includes the tag of the

20
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process it last sent an acknowledgment for in reply to an ownership acquisition message.
Upon receiving t+1 Defer messages the node starts a coordinated collision-recovery phase
by using a tag picked in a predetermined fashion (Section 4.3.2). At the end of the collision-
recovery phase processes forward the command to the process picked in the collision-recovery
phase and continue to process other commands.

Initially a client sends a digitally signed request to it is home process which is the process
that is geographically closest to the client and starts a timer.1 The client waits responses
from the processes. Each correct process responds with either a signed Reply message or a
signed Abort message. If the client receives t+1 messages containing the same reply then the
client is sure that the request has been replicated. Alternatively, if the client receives t+1
Abort messages that implies that the process to which the client sent the request is Byzantine
and the client retries with a different process. In the worst case the client tries t+1 processes.
However, if the timer expires before receiving t+1 messages the client initiates a phase switch
protocol.

During the phase switch protocol processes stop processing any commands that access the
object for which the phase switch protocol is initiated and switch to a synchronous group
along with a fixed Primary and the nodes run the XPaxos protocol to Decide the commands.

This section presented a birds-eye view of Elpis and an insight into its core components. In
summary, Elpis consists of three major components

1. A common-case protocol which allows processes to acquire ownership of the objects,
decide the commands and return responses to the clients.

2. A collision recovery protocol which resolves the ownership if multiple processes try to
acquire the ownership concurrently.

3. A phase switch protocol which includes the clients to transition the processes to a
synchronous group with a predetermined primary during period of asynchrony.

4.2 State maintained by a process pi

Each process pi maintains the following data structures.

Decided and LastDecided. The former is a multidimensional arrays that maps a pair of
⟨l, in⟩ to a request where l is the object and in is the consensus instance. Decided[l][in]
= r if r has been decided in the consensus instance in (i.e., in position in) of the object
l. The latter is a unidimensional array which maps the consensus instance in this

1The client is allowed to send the request to any process, however the home process would result in lower
latency.
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process last observed for an object l. The initial value for Decided is NULL while the
initial value for LastDecided is 0.

Epoch. It is an array that maps an object to an epoch number (a non-negative integer).
Epoch[l] = e means that e is the current epoch number that has been observed by pi
for the the object l. The initial values are 0.

Owners. It is an array that maps an object to a node. Owners[l] = pj means that pj
is the current owner of the object l. The initial values are NULL.

Rnd, CommitLog, StatusLog These are three multidimensional arrays. The first one
maps a pair of ⟨l, in⟩ to an epoch number; In particular, Rnd[l][in] = e if e is the highest
epoch number in which pi has participated in the consensus instance in of object l.
Therefore, CommitLog[l][in] = ⟨r, e⟩ implies that the process received a Quorum of
Commits for request r and epoch e. The StatusLog maintains the valid ⟨r, e⟩ that the
process is willing to commit on. Hence, StatusLog[l][in] = ⟨r, e⟩ implies that pi would
accept a replicate message for r in epoch e and reject others.

Tags An array which maps a process pi to it is tag. The tag of a process pi is equal to
Tag[pi] ∈ S where S is a totally ordered set. The tag is used during Collision Recovery.
This mapping has to be predefined by the application layer during setup and is not
modified during the protocol execution.

Estimated. It is a multidimensional array which maps the ⟨l, in⟩ to the address of the
process which this process estimates to be the owner of the object l for an epoch e.
Hence, Estimated[l][in] = ⟨e, tpe , pe⟩ implies that for the epoch e this process estimates
pe to be the owner where tpe is the tag of the process.

statusList, commitList, decideList, trustList. These are four multidimensional arrays
which are use to store Commit, Status, Decide and Trust messages respectively.
The initial value is NULL.

Leader This is a multidimensional array which maps the ⟨l, in⟩ pairs to the ⟨e, pt⟩ pairs
for which the Collision recovery (Section 4.3.6) decided ownership. The value of this
array is updated only during the Collision recovery. The initial value is NULL.

4.3 Detailed Protocol

It is assumed that all processes including the clients possess public keys Pk of all the processes.
Each message m includes the digest of the message D(m) and a signed message sent by p
along with it is digest is represented as ⟨m⟩σp . Unless otherwise stated, each process validates
the messages received by first verifying the signatures using the corresponding public key
in Pk and then by verifying the message by using a checksum mechanism by comparing it
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against the message digest. Any message parameter which includes object l as the key can
be verified to be for the correct l by matching the objects in req.LS. In other words, an
object l′ cannot exist in the message which does not exist in req.LS, otherwise the message
is deemed to be invalid.

A client c sends a signed request req = ⟨Request, o, t, ls, c⟩σc where o represents the com-
mand to be executed, t is the client’s timestamp and ls contains the objects accessed by the
operation o and sets a timer. The timer is useful if the client sends a request to a process
which has already crashed or is partitioned from other processes.

4.3.1 Coordination Phase

When a request req is proposed by process pi using the C-Propose interface, Elpis coordinates
the decision for req. In Coordination phase (Algorithm 1), pi reads the ownership of objects
in the system. Depending on the current ownership configuration the process either chooses
invoke the replication phase (Section4.3.2), forwards the request to the owner process or tries
to acquire the ownership for all the objects accessed by the req by executing the ownership
acquisition (Section 4.3.4).

Algorithm 1 Elpis: Coordination phase (node pi).
1: upon C-Propose(Request r)
2: Set ins← {⟨l, LastDecided[l] + 1⟩ : l ∈ r.ls ∧ ∄in : Decided[l][in] = c}
3: if ins = ∅ then
4: return
5: if IsOwner(pi, ins) = ⊤ then
6: Array eps
7: ∀⟨l, in⟩ ∈ ins, eps[l][in]← Epoch[l]
8: ∀⟨l, in⟩ ∈ ins Estimated[l][in] ← ⟨eps[l][in], Tag[pi], pi⟩
9: Replicate(req, ins, eps)

10: else if |GetOwners(ins)| = 1 then
11: send Propose(c) to pk ∈ GetOwners(ins)
12: wait(timeout) until ∀l ∈ c.LS, ∃in : Decided[l][in] = c
13: if ∃l ∈ c.LS, ∄in : Decided[l][in] = c then
14: trigger C-Propose(r) to pi

15: else
16: AcquisitionPhase(c)
17:
18: function Bool IsOwner(Replica pi, Set ins)
19: for all ⟨l, in⟩ ∈ ins do
20: if Owners[l] ̸= pi then
21: return ⊥
22: return ⊤
23:
24: function Set GetOwners(Set ins)
25: Set res← ∅
26: for all ⟨l, in⟩ ∈ ins do
27: res← res ∪ {Owners[l]}
28: return res

The process pi finds the consensus instance it last decided for each object in LS and which is
not decided for req. For every such object, pi sets in equal to LastDecided[l]+1 and adds it to
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the ins set (line 2). If the process has the ownership of all objects in req.LS then the process
tries to achieve a fast decision by executing the replication phase without changing the
epoch. If the replication phase succeeds, pi is able to execute the req in two communication
delays and returns the response to the client.

Alternatively, If pi detects that pk has the ownership of all objects in ins then it forwards the
req to the pk. To avoid blocking in case pk crashes or is partitioned, pi also sets a time. Upon
expiration of the configurable timer, if the pi detects that the req has not been decided, it
takes charge of the req and tries to C − Propose the req (lines 10-14).

In the last case, if pi detects no owners for all objects in ins, it tries to acquire the owner-
ship by executing the acquisition phase (4.3.4) (line 14). A different process, pk can have
the ownership of some subset of objects in req.LS, however this process proceeds to steal
ownership as complete ownership is necessary for setting the correct instance number ins
for proper linearization of commands during execution.

4.3.2 Replication Phase

In the replication phase(Algorithm 2), the pi requests the replication of request req for
instance ins and epochs eps. It sends a signed Replicate message to all processes in Π.
Upon receiving a Replicate message the processes check if the received message contains
a epoch higher than or equal to the last observed Rnd[l][in] for all the objects in the request
and checks if pi is in fact the owner of all the objects. However, if this is not the case then the
receiving process sends a Nack message along with the information about the last process it
sent an Ack for the same epoch for one or more ⟨l, in⟩ pairs (lines 8-10). This information
returned with the Nack message is relevant for the collisionrecovery and it is discussed in
detail in Section 4.3.6. Otherwise, the process starts the commit phase (Section 4.3.3) for
the request with the received ins and eps values. The empty parameters represented by {, }
are used if some request r’ has to be prioritized over the current request. This scenario is
further explained in the acquisition phase (Section 4.3.4).

Algorithm 2 Elpis: Replication phase (node pi).
1: function Bool Replicate(Request r, Set ins, Array eps)
2: send ⟨Replicate, r, ins, eps⟩σpi

to all pk ∈ Π

3:
4: upon Replicate(⟨r, Set ins, Array eps⟩) from pj
5: if ∀⟨l, in⟩ ∈ ins, Rnd[l][in] ≤ eps[l][in] ∧ IsOwner(pj , ins) = ⊤ then
6: CommitPhase(pj , {}{}, r, ins, eps)
7: else
8: for all ⟨l, in⟩ ∈ ins ∧(Rnd[l][in] > eps[l][in]) do
9: Set deferTo ← Estimated[l][in]

10: send ⟨Commit,−,−, ins, eps, deferTo,NACK⟩σpi
to pj
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4.3.3 Commit Phase

In the Commit phase (Algorithm 3) pi tries to pick the req for instances in ins and for
the epochs in eps. Commit phase can be invoked as part of the the Acquisition phase (as
discussed later in Section 4.3.4) or as part of the Replicate phase (as discussed earlier in
Section 4.3.2). In both of these cases it is possible that the process sending this request is
Byzantine and hence possibly equivocate by sending different requests to different processes
(which affects safety) or send invalid requests req′ (which violates integrity).

Algorithm 3 Elpis: Commit phase (node pi).
1: function Void CommitPhase(Replica po, Array toForce, Request req, Set ins, Array eps)
2: Array toDecide
3: for all ⟨l, in⟩ ∈ ins : toForce[l][in] = ⟨req′,−⟩ : req′ ̸= NULL do
4: toDecide[l][in]← req′

5: if ∀⟨l, in⟩ ∈ ins, toDecide[l][in] = NULL then
6: for all ⟨l, in⟩ ∈ ins do
7: toDecide[l][in]← req

8: send ⟨Commit, po, toDecide, ins, eps,−,−⟩σpi
to all pk ∈ Π

9:
10: upon Commit(⟨ Replica po, Array toDecide, Set ins, Array eps, Array deferTo,

Value ack⟩) from pj
11: if ∀⟨l, in⟩ ∈ ins, Rnd[l][in] ≤ eps[l][in] then
12: for all ⟨l, in⟩ ∈ ins do
13: Set commitList[l][in][eps[l][in]]← commitList[l][in][eps[l][in]]

∪ {⟨toDecide[l][in], po, deferTo, ack, j⟩}
14: if ∀⟨l, in⟩ ∈ ins,|commitList[l][in][eps[l][in]]| ≥ sizeof(Quorum) then
15: if ∃⟨−,−, deferTo,NACK,−⟩ : commitList[l][in][eps[l][in]] then
16: ∀⟨l, in⟩ ∈ ins, Set defers[l][in] ← deferTo :

⟨−,−, ins, eps, deferTo,NACK,−⟩
17: trigger Defer(ins, eps, defers)
18: else if ∀⟨l, in⟩ ∈ ins,

∃⟨r, po⟩∋⟨r, po⟩= ⟨r′, p′o⟩ : Valid(ins, commitList) then
19: ∀⟨l, in⟩ ∈ ins, Owners[l]← po
20: ∀⟨l, in⟩ ∈ ins, CommitLog[l][in]← ⟨r, eps[l][in]⟩
21: ∀⟨l, in⟩ ∈ ins, Rnd[l][in]← eps[l][in]
22: send ⟨Decide, po, r, ins, eps⟩σpi

to all pk ∈ Π

23: else
24: send ⟨Abort, ins, eps, req⟩σpi

to all pk ∈ Π, req.c
25: else
26: for all ⟨l, in⟩ ∈ ins ∧(Rnd[l][in] > eps[l][in]) do
27: Set deferTo ← Estimated[l][in]

28: send ⟨Commit,−,−, ins, eps, deferTo,NACK⟩σpi
to po

29: function Array Valid(Set ins,Set eps, Set Commits)
30: Array toCommit
31: for all ⟨l, in⟩ ∈ ins do
32: Set requests ← ⟨r′, p′o⟩ : ⟨p′o, r′,−,−,−⟩∈ Commits[l][in][eps[l][in]]
33: if ∃⟨r, po⟩∋|⟨r, po⟩= ⟨r′, p′o⟩ : requests| ≥sizeof(Quorum) then
34: toCommit[l][in] ← ⟨r, po⟩
35: return toCommit

To avoid this scenario, a req is matched with the value in the StatusLog. The StatusLog
is populated by Status messages in the Acquisition phase or by the Replicate messages
in the Replicate Phase. This req for StatusLog[l][in] is considered to be a valid request.
Furthermore, any t committing processes could also be Byzantine and hence, equivocate and
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send pick different requests, this phase is executed by all processes. All processes wait for
t+1 messages and if the processes find a request which is common to t+1 messages and
matches the valid request this req is picked to be committed.

After receiving a Commit from pj, for all ⟨l, in⟩ pairs the process adds the req in toDecide
to the Commits set for all. Since, a Byzantine node can equivocate and send an invalid req
this process has to find a valid req. If more than a Quorum of Commits received contain a
req then we can be sure that the req is infact valid (line 18). If there exists a valid req for all
⟨l, in⟩ pairs then this phase successfully concludes by sending a Decide (line 22). Otherwise
if this process has received a Commit from a Quorum of processes then this process Aborts
by sending an Abort message to every process including the Client (line 24).

4.3.4 Acquisition Phase

In the Acquisition phase (Algorithm 4) the process pi tries to acquire the ownership of the
objects in req.ls and also assure that a faulty process is not able to acquire the ownership.

Similar to the Coordination phase, for each object in ls of the request req the process pi
finds the consensus instance LastDecided[l] it last decided for the object and which is not
decided for c and finds the next position by setting in equal to LastDecided[l]+1 and adds
it to the ins set. Additionally for each pair (l, in) ∈ ins, it increments the current epoch
number for l and sets the Estimated[l][in] to it is own tag and epoch. After that the pi sends
the PREPARE message to all nodes in Π(lines 1-6).

Upon receiving a ⟨PREPARE, ins, eps, req⟩σpi
message with a higher epoch for all objects

than the last observed then the process sends it is state in the Status message to all the
processes (lines 8-12). If the epoch of the received message is lower then it sends the Nack
message with the information about process it send an Ack for (lines 14-16). The Status
message includes the CommitLog for the object, instance pairs. Upon receiving Status
messages from a majority, the process decides if there is a request left to be committed from
a concurrently executed or an aborted Commit Phase from an earlier epoch. For this, for all
⟨request, epoch⟩ entries present in the CommitLog the process first calculates the highest
epoch present in the entries and returns the ⟨request, epoch⟩ pair present in the entries and
stores it in the epochhighest set (lines 20-27).

However, the request in this log could be from a Byzantine process. To eliminate such
requests the process also calculates a valid ⟨request, epoch⟩ pair by checking across the
CommitLogs of all processes it received a Status message from. If a pair is present in more
than the number of faulty processes (since the correct processes are in the majority) then
this ⟨request, epoch⟩ pair is validated. If a ⟨request, epoch⟩ is present in the epochhighest
set and is also present in the validated set then process starts a commit phase with a toForce
array which contains this ⟨request, epoch⟩ pair.

However, if it is not present in either of those sets then the process starts the Commit Phase
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with an empty array. If however, a pair exists in the quorumhighest set and is not present
in the validated set or vice versa the leader has equivocated and the phase Aborts by sending
an Abort message to all processes including the client. Upon receiving t + 1 such Abort
messages the client tries to C − Propose a request to some other process.

4.3.5 Decision Phase

In the Decision phase (Algorithm 5) a process pi tries to learn a request. Upon receiving a
Decide message the process stores the message in the decides array indexed by the ⟨l, in⟩
pair and the epoch e. If there exists a request in a Quorum of messages then the process pi
assumes this request to be decided for the object l and instance in (lines 2-6). When a request
is decided for all the objects accessed by the request, pi appends it to its Cstruct, executes
the request and returns the response to the client as a Reply message and increments the
LastDecided for all objects and at this point the protocol is ready for the next instance
(lines 7-13).

Algorithm 5 Elpis: Decision phase (node pi).
1: upon Decide(⟨Set toDecide, Set ins, Array eps⟩) from pj
2: Set decideList[l][in][eps[l][in]]← decideList[l][in][eps[l][in]] ∪

{⟨toDecide[l][in], j⟩}
3: if ∀⟨l, in⟩ ∈ ins,∃r ∋|r = r′ : ⟨r′,−⟩ : Decides[l][in][eps[l][in]]|

≥sizeof(Quorum) then
4: for all ⟨l, in⟩ ∈ ins do
5: if Decided[l][in] = NULL then
6: Decided[l][in]← r

7:
8: upon (∃r : ∀l ∈ r.LS,∃in : Decided[l][in] = r ∧

in = LastDecided[l] + 1)
9: Cstructs← Cstructs • r

10: Reply rep = C-Decide(Cstructs)
11: send Reply(reply) to r.c
12: for all l ∈ r.LS do
13: pi.lastDecided[l] + +

4.3.6 Collision Recovery

Collision recovery (Algorithm 6) is an uncoordinated recovery protocol which is used to
reduce the number of conflicting processes. It follows from how deferTo is returned that the
pk : ⟨−, tag, pk⟩ in deferTo is a process which is running a phase for the an epoch equal to
or higher than the eps[l][in] for some ⟨l, in⟩ pair this process sent a message for or has the
highest tag amongst the conflicting. This phase is used to find such a process.

If pi receives Defer messages, the collision recovery is used to conform to the current own-
ership reconfiguration taking place in the system. Adopting a similar mechanism as in [19]
the process tries to Pick a process to defer to which either occurs in a Quorum or otherwise
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Algorithm 4 Elpis: Acquisition Phase (node pi).
1: function Void AcquisitionPhase(Request req)
2: Set ins← {⟨l, LastDecided[l] + 1⟩ : l ∈ c.LS ∧ ∄in : Decided[l][in] = c}
3: Array eps
4: ∀⟨l, in⟩ ∈ ins, eps[l][in]← ++ Epoch[l]
5: ∀⟨l, in⟩ ∈ ins, Estimated[l][in] ← ⟨eps[l][in], Tag[pi], pi⟩
6: send Prepare(⟨ins, eps⟩) to all pk ∈ Π

7:
8: upon Prepare(⟨Set ins, Array eps⟩) from pj
9: if ∀⟨l, in⟩ ∈ ins,Rnd[l][in] < eps[l][in] then

10: ∀⟨l, in⟩ ∈ ins, Rnd[l][in]← eps[l][in]
11: Set decs← {⟨l, in, CommitLog[l][in]⟩ : ⟨l, in⟩ ∈ ins}
12: send Status(⟨ins, eps, decs,−,−⟩) to all pk ∈ Π
13: else
14: for all ⟨l, in⟩ ∈ ins, Rnd[l][in] ≥ eps[l][in] do
15: Set deferTo ← ⟨Rnd[l][in], Tag[pi]⟩
16: send Status(⟨ins, eps, decs, deferTo,NACK⟩) to pj

17:
18: upon Status(⟨Set ins, Array eps, Array decs, Array deferTo, Value ack⟩) from pj
19: for all ⟨l, in⟩ ∈ ins do
20: Set statusList[l][in][eps[l][in]]← statusList[l][in][eps[l][in]] ∪

{⟨decs[l][in], deferTo, ack, j⟩}
21: if ∀⟨l, in⟩ ∈ ins,|statusList[l][in][eps[l][in]]| ≥ sizeof(Quorum) then
22: if ∃⟨−, deferTo,NACK,−⟩ : statusList[l][in][eps[l][in]] then
23: ∀⟨l, in⟩ ∈ ins, Set defers[l][in] ← deferTo :

⟨−, deferTo,NACK,−⟩
24: trigger Defer(ins, eps, defers)
25: return
26: Set epochighest← Select(ins, statuses)
27: Set valids← Valid(ins, statuses)
28: if epochighest = ∅ ∧ valids = ∅ then
29: ∀⟨l, in⟩ ∈ ins, StatusLog[l][in]← ⟨req, eps[l][in]⟩
30: if pi = Proposer then
31: Replicate(req, ins, eps)
32: else if ∃ ⟨r, e, l, in⟩ ∋ ⟨r, e, l, in⟩ ∈ epochhighest

∧⟨r, e, l, in⟩ ∈ valids then
33: StatusLog[l][in]← ⟨r, e⟩ : ⟨r, e, l, in⟩
34: if pi = Proposer then
35: Array toForce[l][in]← ⟨r, e⟩ : ⟨r, e, l, in⟩
36: Replicate(toForce[l][in], ins, eps)

37: else
38: send Abort(ins, eps, req) to all pk ∈ Π, req.c
39: function Set Select(Set ins, Set statuses)
40: Array toForce
41: for all ⟨l, in⟩ ∈ ins do
42: Epoch k ← max({k : ⟨−, k⟩ ∈ decs ∧ ⟨decs,−,−,−⟩ ∈ statuses})
43: Request r ← r : ⟨r, k⟩ ∈ decs ∧ ⟨decs,−,−,−⟩ ∈ statuses
44: toForce← ⟨r, k, l, in⟩
45: return toForce
46:
47: function Array Valid(Set ins, Set statuses)
48: Array valid
49: for all ⟨l, in⟩ ∈ ins, statuses[l][in] = ⟨decs,−,−, j⟩ : ⟨decs, j⟩ do
50: Set requests[j] ← ⟨v, k⟩ ∈ decs : ⟨decs, j⟩
51: if ∃⟨r, k⟩∋|⟨r, k⟩ : requests|≥ t then
52: valid ← ⟨r, k, l, in⟩
53: return valid
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Algorithm 6 Elpis: Collision Recovery (node pi).
1: function Defer(⟨Set ins, Array eps, Set defers ⟩)
2: Array deferTo ← Pick(ins, defers)
3: Recovery(ins, deferTo)
4: ∀⟨l, in⟩ ∈ ins, Owners[l]← Leader[l][in]
5: trigger C-Propose(r) to pi

6:
7: functionVoid Recovery(⟨Set ins ,Array eps, Array deferTo⟩)
8: if ∀⟨l, in⟩ ∈ ins, ∃⟨e, pl⟩ ∋ Leader[l][in] : ⟨e, pl⟩ : e ≥ eps[l][in] then
9: return

10: else
11: send ⟨Trust, ins, deferTo⟩σpi

to all pk ∈ Π

12:
13: function Array Pick(Set ins, Set defers)
14: Array deferTo
15: for all ⟨l, in⟩ ∈ ins do
16: Count(⟨e, tpl , pl⟩) = |⟨e, tpl , pl⟩ = ⟨e′, t′pl , p

′
l⟩ : defer[l][in]|

17: if (∃⟨e, tpl , pl⟩ ∋ Count(⟨e, tpl , pl⟩) ≥ sizeof(Quorum)) ∨
(∃⟨e, tpl , pl⟩ ∋ Count(⟨e, tpl , pl⟩) =

max({Count(⟨e′, t′pl , p
′
l⟩) : defer[l][in]}))∨

(⟨e, tpl , pl⟩ : tpl = max (t′pl : ⟨−, t′pl ,−⟩ : defers[l][in]) then
18: deferTo[l][in] ← ⟨e, tpl , pl⟩
19: return deferTo

20:
21: upon Trust(⟨Set ins, Array deferTo⟩) from pj
22: if isHigher(ins, deferTo) then
23: for all ⟨l, in⟩ ∈ ins, do
24: Estimated[l][in]← deferTo[l][in]
25: trustList[l][in]← trustList[l][in] ∪

{⟨e, pr⟩ : ⟨e,−, pr⟩ : deferTo[l][in], j}
26: if ∃⟨e, po⟩∋ |⟨e, po,−⟩: trustList[l][in]|

≥sizeof(Quorum) then
27: Leader[l][in] ← ⟨e, po⟩
28: send ⟨Trust, ins, deferTo⟩σpi

to all pk ∈ Π

29: else
30: ∀⟨l, in⟩ ∈ ins, Set estimate ← Estimated[l][in]
31: send ⟨Doubt, ins, estimate⟩σpi

to pi

32: if ∀⟨l, in⟩ ∈ ins, Leader[l][in] ̸= NULL then
33: return
34:
35: upon Doubt(⟨Set ins, Array estimate⟩) from pj
36: ∀⟨l, in⟩ ∈ ins, Estimated[l][in]← deferTo[l][in]

37:
38: function Bool IsHigher(Set ins, Set Received)
39: for all ⟨l, in⟩ ∈ ins,Estimated[l][in] = ⟨e, tpe ,−⟩ : ⟨e, tpe ⟩,

Received[l][in] = ⟨e′, tpr ,−⟩ : ⟨e′, tpr ⟩ do
40: if e > e′ ∨ (e = e′ ∧ tpe > tpr ) then
41: return ⊥
42: return ⊤

a majority of Nack messages. After the completion of the Collision recovery the process
proposes the request using C − propose with the new learned configuration (lines 13-16). If
the pi has the ownership of all objects in ins then the pi can start the replicate phase (4.3.2)
for the request. If the phase succeeds then the request has been successfully decided and the
client will receive the reply. If however this phase fails then pi starts the Collision Recovery
(4.3.6) and retries the request req from Step 1 (lines 5-9).
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Before starting this phase we check if an instance of Collision Recovery has already been
completed by the system. In this case, no additional run is required and we conclude the
recovery (line 2-3). However, if no such instance has been completed then we start this
recovery by sending a ⟨Trust, ins, eps, leader⟩σpi

message to all the nodes (line 5). Upon
receiving a Trust message the process compares the current estimated leader value to the
received value. The values are ordered by using their epochs first and then by their tags.
That is, a value is Higher if it has a higher epoch. If the epochs are equal then the node tags
are used to break the symmetry (lines 8, 24-28). Therefore, if the received value is Higher,
then the process sets this as the new estimated value, stores the value in itstrustList and
forwards the Trust message to all the processes with the received value. If the value is
lower however, the process sends a Doubt message with the higher value (line 9-14).

Upon receiving a Doubt message the process sets its Estimated to the value received in the
defer message (line 22). Henceforth, for this instance of the recovery this process will act in
response to Trust messages from other processes. When the cardinality of statusList[l][in]
equals the Quorum for some ⟨l, in⟩ pair then the process pl : trustList[l][in] is trusted to be
the owner of this ⟨l, in⟩ pair and when there is a trusted owner for all ⟨l, in⟩ ∈ ins then the
recovery concludes.

4.4 Elpis vs. XPaxos and M2Paxos

This section gives a comparison of Elpis with XPaxos and M2Paxos . Following the discussion
of Generalized Consensus in 2.4.1.4, the processes have to learn the ordering between non-
commutative commands before the c-struct is applied to the state machine. Algorithms
like EPaxos decide this ordering at the time of execution. Therefore, processes exchange
dependencies and create a directed graph and resolve any cycles in a predetermined fashion.
However, this dependency exchange loads the network due to the increase in the size of
messages exchanged and loads the CPUs at processes for resolving the cycles contributing
to reduced performance.

Elpis takes an alternate approach by deriving inspiration from the Generalized Consensus
of M2Paxos. M2Paxos manages dependencies by mapping an object o to a process po.
Consequently, po orders all the commands which touch o and once a complete order is found
the processes execute all the commands. Agreeing on po ownership of o is a consensus problem
in itself and M2Paxos leverages Paxos. We treat M2Paxos like an extended specification of
Generalized Consensus and inherit a portion of data structures and interfaces. However,
M2Paxos is designed in the Crash Fault Tolerant (CFT) model and does not tolerate any
non-crash faults.

Let us illustrate with an example. As discussed in Section 2.4.1.2 Paxos does not guarantee
liveness when multiple processes try to commit commands concurrently. Since M2Paxos uses
Paxos for the ownership acquisition, we illustrate the example discussed in Section 2.4.1.2
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in the context of M2Paxos . Let us consider, two Proposers pi and pj which are trying to
acquire the ownership of an object l. Consequently, they send a prepare for ⟨l, ei⟩ and ⟨l, ej⟩
respectively where l is object id and e is the epoch such that ej > ei. Lets assume a majority
of Acceptors send acknowledgments for ej. As a result, pi is now ready to send an Accept
for ⟨l, ei⟩. Meanwhile, pj completes its Prepare phase as well. At this point, the highest
proposal number that a majority of Acceptors has seen is ei. Now Acceptors will reject the
Accept phase for pi because its proposal number ei < ej. The pi would retry Prepare with a
higher proposal number ek > ej. Hence, pj would not be able to complete the Accept phase.
It is straightforward to see that this can go on forever. Hence, the ownership acquisition
can live-lock. A Byzantine process can contribute to this problem by continuously sending
conflicting requests preventing any progress. Additionally, the Byzantine faulty process can
acquire ownership acquisition by proposing a very high epoch and violate safety by sending
incorrect Accept requests. Elpis deals with this problem by curbing the conflicts in Section
4.3.6 and by preventing a Byzantine process from acquiring the ownership in Section 4.3.4.

Elpis uses the Cross Fault Tolerance (XFT), the same system model as XPaxos but the
leaderless protocol of Elpis with all 2t + 1 active processes differs from XPaxos which uses
fixed synchronous groups (sg) of size t+1 with a fixed leader. XPaxos works by determining(

n
t+1

)
sg groups with active groups switching via a view-change mechanism in case of faults

until a sg with correct processes is not found. For higher n and t, the number of such groups
is exponential. However, in the worst case of Elpis, a client has to contact a maximum of
t+ 1 processes.



Chapter 5

Correctness

In this chapter, we present the correctness arguments for Elpis.

Only the owner of an object l in epoch e successfully commits the requests, and thus incre-
ments in. We prove in this section that a Byzantine process does not acquire the ownership.
Since, the correct processes initially start with the same value of LastDecided[l] and only in-
crement it when a command is decided for ⟨l, in⟩ we can see that the valid requests proposed
by a correct owner of l in e will follow a complete order for in throughout the execution of the
protocol and would not diverge for any correct process. Thus, in the rest of the section we
refer to StatusLog[l][in] and CommitLog[l][in] as StatusLog and CommitLog for brevity
which denote the value of the logs for some ⟨l, in⟩. The proofs can be generalized for any
instance in of the object for which the process acquires ownership of the object l.

Validity: Only a proposed command c is decided.

A process only appends a command c to the C−Struct if it receives Commit messages from
a majority of processes for c and no other command can exist. Correct processes only send
Commit messages for the value c if they receive c in the Replicate message.

Agreement: Every correct process agree on the same c.

Lets assume some process pi decides a command c for some ⟨l, in⟩ and epoch e. This must
imply that this process received Decide messages from ≥ N

2
processes with the command

c and ⟨l, in⟩ and epoch e. Hence, there must be a set X of size N
2

> t which received
≥ N

2
Commit messages for the command c for ⟨l, in⟩ and epoch e. All processes in X set

CommitLog = ⟨c, e⟩. The state of at least one correct process is contained in the quorum
and because all processes in X include ⟨c, e⟩, the StatusLog = ⟨c, e⟩ in the next epoch.

We argue that if a correct process in X commits request c′ in the epoch e′, and StatusLog =
⟨c, e⟩ then for e′ : ⟨c, e′⟩ = StatusLog ∧ e′ ≥ e, c′ = c.

We prove this by induction on the epoch e′. For the base case, lets suppose StatusLog =
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⟨c, e′⟩ at some correct process pi. If pi commits c in e′ then it must receive a Replicate
request for c. Otherwise if it receives a request for c′ ̸= c it would detect that the process
contending for ownership has equivocated and Abort. Hence, c′ = c. For e′, pi commits on
c′, sets CommitLog[l][in] = ⟨c′, e′⟩ sets the process which sends c′ as the owner (which is in
fact correct).

Lets suppose that for any epochs in between e′ and e, StatusLog = ⟨c′,−⟩. We have to
prove that if StatusLog = ⟨c, e + 1⟩ then c = c′. The StatusLog = ⟨c, e + 1⟩ consists of
valid CommitLogs for c in e. Since, the StatusLog[l][in] = ⟨c′, e⟩ any correct process that
commits c and sets its CommitLog to ⟨c, e⟩ can only do that if c and c′ are equal. Hence, c
= c′. By induction we can say that this is true for all e′ ≥ e.

We use this argument to prove agreement: If two correct processes commit c and c′ then
c = c′.

If a correct process initially commits c in e, then StatusLog = ⟨c, e⟩. If another correct
process commit c′ in e′, then we know that for any e > e′, c = c′. Hence, the correct
processes must agree.

Liveness: Every correct process eventually decides some value.

Under the assumptions of the XFT model, there always exists at least a majority of processes
that are correct and synchronous, and thus can decide on the order of commands. We see
that in the case of a malicious leader, every correct process detects equivocation and sends
Abort messages to the client. After receiving t + 1 messages the client switches to a new
process. If the process is Byzantine it would again receive the Abort messages or timeout.
This can only happen a maximum of t times. Finally, when a correct owner exists for l
in epoch e, it sends a Replicate message with c where StatusLog = ⟨c, e⟩. Consequently,
all processes start the Commit phase with c and send Commit messages to each other with
this value c. Since, a majority of processes are correct, every process will receive ≥ N

2
such

messages, Decide and terminate.

Once the leader election is triggered, nodes use the generic Prepare phase to acquire
ownership. If a command c has been proposed by a correct node pi, eventually, if there is no
other concurrent and conflicting command with c in the system, pi succeeds the execution
of all the phases of the protocol for c, since no other node attempts to become the owner
of any of the objects in c.LS, and there always exists a quorum of nodes that acknowledge
for messages. However, when there exists conflicts and consequently collision recovery is
triggered, convergence happens eventually but the chances increases at each step.

To show the eventual convergence, notice that every correct process sends a Trust message
whenever it trusts a leader; it sends a Doubt message otherwise to transfer its view with
higher epoch. Thus, eventually all the nodes will only trust the node with the highest epoch,
and hence send Trust message for that epoch. Hence, there exists a time when the collision
recovery has caused every correct process to trust the same process p̄i forever. Consequently,
no correct process sends any further Trust or Doubt messages (lines 18–19 in Algorithm 6).



Chapter 6

Evaluation

We evaluate Elpis by comparing it against four other consensus algorithms: XFT, PBFT,
Zyzzyva and M2Paxos . We evaluate the latencies in a Geo-Replicated setup by setting
up five processes on the Amazon EC2 setup and throughput by placing the processes in a
single placement group (us-east-1) so as to not skew the data due to a greater variance in
latencies in case of a Geo-Replicated setup.

We implemented Elpis, XFT and M2Paxos using the reliable messages toolkit Jgroups [28],
in Java 8. We implemented Zyzzyva using the BFT-SMaRt library (also in Java) [28] and
used the default BFT-SMaRt protocol as an approximation of the PBFT protocol as it is
an implementation of the PBFT protocol while providing comparable performance. Unless
otherwise stated, each node is a c3.4xlarge instance (Intel Xeon 2.8GHz, 16 cores, 30GB
RAM) running Ubuntu 16.04 LTS - Xenial (HVM).

6.1 Experimental Setup

For the Geo-replicated processes are placed in regions as shown in Table 6.1. The inter-region
latencies are shown in Table 6.2. For PBFT, Zyzzyva and XFT the primary is place at Frank-
furt. Additionally, the initial synchronous group for XFT consists of {Frankfurt, Ireland,
Ohio} and {Frankfurt, Ireland, Ohio, Virginia} in line with the latencies recorded in Table
6.2. For processes in the single placement group of Virginia the latency for communicating
with other processes in the group was observed to be close to 2 ms.

To properly load the system, we injected commands into an open-loop using client threads
placed at each node. Commands are accompanied by a 16-byte payload. However, to not
overload the system we limit the number of in flight messages by introducing a sleep time
where every client sleeps for a predetermined duration after proposing a request. This is
tuned so as to get the best possible performance for the setup. We do not show performance
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AWS Region Name
us-east-1 Virginia
us-east-2 Ohio

eu-central-1 Frankfurt
eu-west-1 Ireland
ap-south-1 Mumbai
us-west-1 California
sa-east-1 Sao Paulo

Table 6.1: AWS regions mapped to region names.

in case of faults for Elpis as since there are multiple processes proposing the requests the
performance will be similar to that of a different process taking command of ordering the
requests for a client which was initially proposing to a failed process.

6.2 Latency

Figure 6.1 shows the comparison of latencies in a Geo-Replicated setup with five processes
for clients proposing requests where the requests have 100% locality which implies that the
requests in different regions access different objects. We notice that the CFT M2Paxos
achieves the lowest latencies for all regions which is expected due to a lower quorum size.
Elpis achieves latencies close albeit slightly higher than M2Paxos which is expected due to the
additional overhead of sending signed messages which include the digest of the message. This
overhead is inherent to all other protocols including XFT. However, except for Frankfurt we
notice that the latencies are higher for clients placed in other regions. This is due to the fact
that every client present in the other regions has requests forwarded to Frankfurt resulting
in higher response time.

Region Virginia Ohio Frankfurt Ireland Mumbai California Sao Paulo
Virginia - 10.792 88.331 74.572 182.368 59.5 140
Ohio 10.8 - 97.321 84.645 191.224 49 149
FrankFurt 88 97.407 - 21 109 145 226
Ireland 74.6 84.6 39 - 122 129 183
Mumbai 182.369 191 109 120 - 241 320
California 59.5 49 145 129 241 - 197
Sao Paulo 140 149 226 183 320 197 -

Table 6.2: Inter region average latency (ms)

In contrast the primary/owner for every client in case of Elpis is present in the same region as
the client which provides lower response time. PBFT and Zyzzyva incur similar problems in
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Figure 6.1: Latency comparison for 5 processes in Geo-replication
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Figure 6.2: Latency comparison for 7 processes in Geo-replication. t=3 for Elpis and
M2Paxos and t=2 for rest.
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addition to the fact that the quorum size is bigger. Hence, at for each communication delay
the primary has to wait for a greater number of messages thus incurring longer response
times which is reflected in the chart.

6.3 Throughput

Figure 6.3: Latency vs Throughput in a cluster

Figure 6.3 shows the throughput comparison in a single placement group as the system
is pushed closer to saturation to achieve the maximum throughput possible. PBFT and
Zyzzyva peak at under 1x105 operations/sec due to complicated message patterns resulting in
higher bandwidth usage. XFT and Elpis perform significantly better as they try to replicate
requests to lower number of followers. However, since Elpis relies on multiple owners the
inherent load-balancing in the protocol results in higher throughput as compared to XFT
where leader becomes a bottleneck.

6.4 Conflicts

Figure 6.4 shows the throughput vs latency comparison as the number of conflicts are in-
creased. The throughputs are reduced when the percentage of conflicts arise. In case of a
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conflict, the collision recovery is initiated which results in more messages exchanged hence
burdening the network until a single leader exists for each object for the conflicting com-
mands. Progressively, lesser requests are concurrently completed which is reflective of the
workload as the commands which touch the same objects cannot be parallelized. How-
ever, even in the case of 100% conflicts the throughput is not reduced below about 1.6x105
operations/sec which is still higher than the protocols in comparison as shown in 6.3 by
Elpis-100%.

Figure 6.4: Latency vs Throughput as the percentage of conflicting commands is varied.
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Figure 6.5: Latency vs Throughput as the percentage of conflicting commands is varied.

6.5 Faults

Figure 6.5 shows the throughput vs latency comparison in the presence of faults (t). A
Byzantine faulty process is simulated by adding a Byzantine layer beneath the protocol
implementation which changes the messages arbitrarily. As shows in the figure, the latency
is increased and the throughput decreases considerably when the faults are increased. When
a Byzantine process is detected, the clients forward their requests to other processes. This
mechanism increases the latency. The throughputs are decreased because the faulty processes
can no longer successfully commit any commands.



Chapter 7

Conclusion and Future Work

This thesis presented the first leaderless XFT protocol that overcomes the drawbacks of
XPaxos single-leader based protocol. We showed with evaluation the significant performance
gains that can be achieved over XPaxos and also other BFT protocols.

7.1 Conclusion

State Machine Replication (SMR) is a technique widely employed to support hundreds of
millions of users while providing high availability. SMR is achieved by using Consensus algo-
rithms provide consistency and total order following a set of fault assumptions specified by
a fault model. In Chapter 2, we provide a background on several Crash Fault-Tolerant algo-
rithms such as Paxos and Raft which are one of the most popularly implemented Consensus
algorithms, and Generalized Paxos, Fast Paxos, EPaxos and M2Paxos which strive to im-
prove performance in practice. We also introduce the Byzantine Fault-Tolerant model which
covers any non-crash faults due to which node behave arbitrarily. This could be accidental
or the result of adversarial behavior. To this end, we briefly discuss PBFT and Zyzzyva.
However, these algorithms require extra resources (namely 3t+1 processes) to tolerate the
same number of faults (t) as the Crash Fault-Tolerant model. To this end, we review the
Cross Fault Tolerance (XFT) model and XPaxos which allows Byzantine node behavior but
assumes that there exists a correct majority of nodes that observe synchronous behavior.
This assumption is especially suitable for geo-replicated systems where coordinated attacks
on multiple servers and network are highly unlikely.

In the rest of the thesis, we present Elpis which unlike XPaxos implements generalized
consensus. Elpis assigns different and independent objects to different nodes, such that the
need for ordering is limited to local scope, each governed by one of the nodes, and transfers
ownership when needed. This way operations on disjoint collections of objects trivially
commute, and Elpis can decide on such commands in just two message delays while ownership
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transfer adds one additional message delay. In Chapter 6, we evaluate the implementation
in the wide area setting and demonstrate the throughput and latency improvements over
existing BFT algorithms. For the geo-replicated setting, Elpis achieves low latency for
clients due to the ownership of objects accessed by the clients at the local process and high
throughput due to the leaderless approach providing inherent load balancing.

Elpis is an attractive option for building geo-replicated fault-tolerant systems as not only
does it provides better performance than BFT algorithms but, it also offers higher reliability
than CFT algorithms while requiring no extra resources.

7.2 Key Insights

The leader based approach to designing consensus protocols is relatively easy to develop,
understand and implement. All processes forward client requests to a single leader process
which commits in one communication delay and sends the responses to the client. These
protocols orchestrate operation in increasing order of views with a view-change mechanism
required when the current leader fails. In the non-faulty execution, the extra processing
load on the leader thwarts the performance. When the processes are faulty, and even in the
presence of perfect failure detectors, the view-change mechanism is not transparent. The
throughput is reduced to zero as no commands can be committed until the view-change
finishes. On the other hand, the leaderless approach of generalized consensus is harder to
design and implement and is only limited by the technique used to handle dependencies
to order the non-commutative commands. But, the performance benefits are tremendous
in both faulty and non-faulty cases due to better load distribution and reduced latencies,
particularly visible in the geo-replicated setting. Dependencies are tracked using graphs
[20, 29] where any cycles are broken using a pre-proposed mechanism. However, this results
in increased message size requiring higher network bandwidth and increased CPU loads to
break these cycles. On the other hand, algorithms like M2Paxos [10] and Elpis prevent this
scenario by binding dependent commands to processes and hence, provide straightforward
ordering.

Byzantine Fault-Tolerance (BFT) is too expensive for the geo-replicated setting due to its
complex message patterns which burden the network bandwidth. Additionally, BFT con-
siders the kind of coordinated attacks on data centers which are unlikely as they require
considerable adversarial resources. This realization has prompted research on alternate
Byzantine models. While the Byzantine processes affect safety, the network faults jeop-
ardize the liveness. Hybrid Fault Models use precisely this observation and place thresholds
on these individual faults to guarantee the corresponding properties. A prominent member
of the Hybrid Fault Model is Visigoth Fault Tolerance (VFT) [30]. However, the VFT model
requires one to place guarantees on the network faults irrespective of the Byzantine faults.
On the other hand, the XFT model needs that the total number of failures to be less than
the majority.
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7.3 Future Work

The immense popularity of Blockchains has reinvigorated the interest in researching protocols
that use the Byzantine Fault-Tolerant model. Permissionless protocols like Bitcoin have
made evident the performance limitations of their approach. The traditional BFT models
which form the basis for most Permissioned Blockchains have a chance to be looked at
through a new prism and to be tested in real-world deployments. To that end, this thesis
holds immense potential for future work as it pertains to achieving higher performance by
using alternate assumptions about the BFT adversarial model.

The Crash Fault Tolerant (CFT) is well studied and battle-tested. Distributed coordina-
tion services like Yahoo! Zookeeper use Zab [31] (a Paxos variant) for atomic broadcast. A
plethora of services implements the Raft consensus algorithm [22]. While Byzantine Fault
Tolerant (BFT) models have classically seen low adoption except for absolutely safety-critical
systems like Aircraft information systems they are still well prototyped and studied in practi-
cal scenarios. The BFT-Smart library is immensely popular amongst researchers, and several
studies report promising performance with throughputs up to 80,000 ops/sec. It remains to
be seen how the systems can be parameterized to make the XFT assumptions tenable in
different environments. For instance, the XFT assumptions of a weaker adversary are open
to being explored in existing environments which have external security measures, such as
firewalls and reverse proxies where coordinated attacks by adversaries are unlikely.

We present the Generalized Consensus which offers the highest performance when the work-
loads have 100% locality. While locality in database workloads has been quite well explored,
analyzing the locality in Blockchain workloads could be an interesting avenue of research.
Tools like Blocksci [32] which provide a means to analyze Blockchain data can be a good
starting point.
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