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ABSTRACT

Diffusive Molecular Dynamics (DMD) is a class of recently developed computational meth-

ods for the simulation of long-term mass transport with a full atomic fidelity. Its basic

idea is to couple a discrete kinetic model for the evolution of mass transport process with

a non-equilibrium thermodynamics model that governs lattice deformation and supplies the

requisite driving forces for kinetics. Compared to previous atomistic models, e.g., acceler-

ated Molecular Dynamics and on-the-fly kinetic Monte Carlo, DMD allows the use of larger

time-step sizes and hence has a larger simulation time window for mass transport problems.

This dissertation focuses on the development, assessment and application of a DMD com-

putational framework for the long-term, three-dimensional, deformation-diffusion coupled

analysis of solute mass transport in nanomaterials. First, a computational framework is pre-

sented, which consists mainly of: (1) a computational model for interstitial solute diffusion,

which couples a nonlinear optimization problem with a first-order nonlinear ordinary differen-

tial equation; (2) two numerical methods, i.e., mean field approximation and subcycling time



integration, for accelerating DMD simulations; and (3) a high-performance computational

solver, which is parallelized based on Message Passing Interface (MPI) and the PETSc/TAO

library for large-scale simulations. Next, the computational framework is validated and as-

sessed in two groups of numerical experiments that simulate hydrogen mass transport in

palladium. Specifically, the framework is validated against a classical lattice random walk

model. Its capability to capture the atomic details in nanomaterials over a long diffusive

time scale is also demonstrated. In these experiments, the effects of the proposed numerical

methods on solution accuracy and computation time are assessed quantitatively. Finally,

the computational framework is employed to investigate the long-term hydrogen absorption

into palladium nanoparticles with different sizes and shapes. Several significant findings are

shown, including the propagation of an atomistically sharp phase boundary, the dynamics of

solute-induced lattice deformation and stacking faults, and the effect of lattice crystallinity

on absorption rate. Specifically, the two-way interaction between phase boundary propaga-

tion and stacking fault dynamics is noteworthy. The effects of particle size and shape on

both hydrogen absorption and lattice deformation are also discussed in detail.
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GENERAL AUDIENCE ABSTRACT

Interstitial diffusion in crystalline solids describes a phenomenon in which the solute con-

stituents (e.g., atoms) move from an interstitial space of the host lattice to a neighboring

one that is empty. It is a dominating feature in many important engineering applications,

such as metal hydrides, lithium-ion batteries and hydrogen-induced material failures. These

applications involve some key problems that might take place over long time periods (e.g.,

longer than 1 s), while the nanoscale behaviors and mechanisms become significant. The

time scale of these problems is beyond the capability of established atomistic models, e.g.,

accelerated Molecular Dynamics and on-the-fly kinetic Monte Carlo. To this end, this disser-

tation presents the development and application of a new computational framework, referred

to as Diffusive Molecular Dynamics (DMD), for the simulation of long-term interstitial so-

lute diffusion in advanced nanomaterials. The framework includes three key components.

Firstly, a DMD computational model is proposed, which accounts for three-dimensional,

deformation-diffusion coupled analysis of interstitial solute mass transport. Secondly, nu-



merical methods are employed to accelerate the DMD simulations while maintaining a high

solution accuracy. Thirdly, a high-performance computational solver is developed to im-

plement the DMD model and the numerical methods. Moreover, regarding its application,

the DMD framework is first validated and assessed in the numerical experiments pertain-

ing to hydrogen mass transport in palladium crystals. Then, it is employed to investigate

the atomic behaviors and mechanisms involved in the long-term hydrogen absorption by

palladium nanoparticles with different sizes and shapes. The two-way interaction between

hydrogen absorption and lattice deformation is studied in detail.
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Chapter 1

Introduction

Diffusion is a phenomenon of the material transport through the motion of atoms or molecules.

In crystalline solids, the interstitial diffusion occurs when solute atoms are considerably

smaller than host atoms (e.g., hydrogen in palladium, lithium-ion in silicon). The solute

atoms migrate from an interstitial site of the host lattice to a neighboring one that is empty.

Meanwhile, the host lattice undergoes deformation due to the accommodation of the solute

atoms.

The interstitial diffusion of solute atoms in crystalline solids plays a key role in many

aerospace and ocean engineering applications. A lot of applications benefit from intersti-

tial diffusion, since the transport of interstitial atoms is able to store, release and convert

energy. One example is metal hydrides, a promising way to store hydrogen for some elec-

trically powered vehicles equipped with hydrogen fuel cells, e.g., Boeing Phantom Eye UAV

1
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(unmanned aerial vehicle) [1] and Ifremer IDEF AUV (autonomous underwater vehicle) [2].

The storage of hydrogen in metal hydrides (e.g., MgHx, NaAlHx) relies on the interstitial

diffusion of hydrogen atoms [3, 4, 5]. Similarly, the operation of rechargeable lithium-ion bat-

teries, employed by some planetary rovers such as Mars Curiosity [6], relies on a reversible

phase transformation in the anodic and cathodic materials (e.g., LixSi, LixFePO4). This

process is induced by the interstitial diffusion of lithium ions [7, 8]. For these applications

related to energy storage and conversion, there has been a continuous push towards nanos-

tructured systems, as they hold promise to accelerate the charging and discharging process,

and increase the energy and power density [7, 9, 10].

At the same time, the interstitial diffusion of solute atoms can also cause large local lattice

deformation and hence possibly material failure to the host crystals. Examples include hy-

drogen embrittlement in steels [11], sensitization effect in aluminium alloys [12], and capacity

fading of cathode in lithium-ion batteries [13]. Regarding these problems, understanding the

actual nanomechanisms of failure is crucial for material designers, since the answers to mit-

igating such failure and enhancing the properties of materials (e.g., mechanical, electrical)

may be rooted in how solute modifies material behaviors at the nanoscale.

This dissertation focuses on the development of a new computational framework, referred to

as Diffusive Molecular Dynamics (DMD), to simulate long-term, interstitial diffusion of solute

atoms in advanced nanomaterials, which involves solute-induced phase transformation, local

lattice expansion and distortion, and dynamics of stacking faults and dislocations. Due to the

long time scale, these problems have not been thoroughly analyzed by the existing atomistic
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models, which significantly impedes the advancement of related fields. The remainder of this

chapter is organized as follows. Several specific experimental studies, which motivated the

work in this dissertation, are described in Section 1.1. Literature reviews on the existing

atomistic models and DMD methods are then presented in Sections 1.2 and 1.3, respectively.

Finally, the contributions and outline of this dissertation are provided in Section 1.4.

1.1 Motivations

Recent experimental studies have revealed a lot of impressive phenomena that are related to

the interstitial diffusion of solute atoms in crystalline solids. In this section, several selected

experimental studies are described and their features are summarized.

1.1.1 Hydrogen absorption in palladium nanoparticles

The palladium-hydrogen (Pd-H) system is a prototypical model for studying solute-induced

phase transformation, because it allows for relatively fast reaction kinetics at easily accessible

temperatures and pressures [14]. The Pd-H system exhibits two distinct phases at room

temperature: the α phase at low H concentration (up to PdH0.015), and the β phase at high

H concentration (PdH0.6 and above). Attendant to the α-to-β phase transformation, there

is a lattice expansion with approximately 3.5% increase in lattice constant [15] and 10.4%

increase in volume, which may result in the formation of misfit dislocations and stacking

faults.
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Recent experiments have shown significant observations during the hydrogenation process

of individual, single-crystal Pd nanoparticles. For example, using scanning transmission

electron microscopy, Narayan et al. [16] observed the propagation of an atomistically sharp,

α/β phase boundary in Pd nanocubes with edge lengths between 20 nm and 43 nm. Notably,

the time window of the hydrogenation process is larger than 20 s. They also showed Pd lattice

misorientation of 1.5%, caused by the propagation of the phase boundary. In addition,

using coherent X-ray diffractive imaging, Ulvestad et al. [17] tested Pd nanocubes with edge

lengths between 60 nm and 100 nm. They revealed a sharp α-to-β phase transformation

and a strain inversion at the corners of the cubes from α to β phase. The time scale

of their observations is on the order of minutes. The same research group [18], in 2017,

tracked the nucleation and motion of dislocations during the hydriding and dehydriding

phase transformation in Pd nanoparticles with sizes of approximately 400 nm. They showed

the ability of Pd nanoparticles to “self-heal” crystallographic defects during H loading and

unloading processes.

Hydrogen absorption in palladium nanoparticles is a deformation-diffusion coupled problem.

It is characterized by the slow motion of a hydride α/β phase boundary and the local lattice

deformation due to the misfit of lattice constant between the two phases. The development of

a computational framework to simulate this problem is a formidable challenge. It is required

not only accounting for the long-term diffusive time scale (usually larger than 1 s) and but

also supplying the full atomic details (e.g., local lattice expansion and distortion, crystalline

defects).
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1.1.2 Lithiation of electrodes in lithium-ion batteries

The lithium-ion (Li-ion) battery is a type of rechargeable batteries in which Li-ions move

from the negative electrode (i.e., the anode) to the positive one (i.e., the cathode) and back

during discharging and charging processes, respectively. The increasing demand of improving

the performance of Li-ion batteries, such as energy density, durability and charging time, has

led scholars to focus on understanding the lithiation process of electrodes. Using transmission

electron microscopy and electron energy loss spectroscopy, Gu et al. [13] revealed the capacity

fading mechanism of lithium iron phosphate cathodes, i.e., LixFePO4. They found that,

the surface layer of FePO4 nanoparticles gradually lost crystalline structure and became

amorphous after 3300 cycles of charging and discharging of Li-ions. As a result, the capacity

of the cathodes was reduced by approximately 9%. Moreover, in the lithiation process of

crystalline silicon (Si), Chon et al. [19] showed the movement of a very sharp crystalline-

amorphous phase boundary, with a thickness of the order of 1 nm. The phase boundary

advanced into the center of Si specimens starting from their surface, transforming crystalline

Si into amorphous LixSi. The extension of nanocracks into the crystalline Si was also observed

during the lithiation-delithiation cycling.

The effect of Li-ions on the crystallinity of electrodes is quite impressive. Reconstruction

of host lattice may be caused by the large volume expansion induced by accommodating

Li-ions. For example, attendant to the lithiation of FePO4, the volume increase is approxi-

mately 6.6% [20], whereas it can reach 270% during the lithiation of Si [19]. Moreover, the

aforementioned Li-ion-induced electrode failure takes place over a long time scale and after a
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large number of operating cycles. Therefore, these experimental observations have motivated

the development of a computational approach that is capable of simulating long-term mass

transport phenomena, while simultaneously retaining fine resolution at the nanoscale.

1.1.3 Hydrogen-induced dislocation motion in iron

Hydrogen (H) always degrades the mechanical properties of metallic materials. Specifically,

the materials become brittle and have fracture due to the absorption of H atoms, a phe-

nomenon known as H embrittlement. Extensive research has been conducted in order to

understand its mechanisms. One of the mechanisms is H-enhanced localized plasticity [21].

In 1998, Ferreira et al. [22] provided a direct experimental evidence for this mechanism. In

their experimental study, dislocations were firstly produced by deforming an iron specimen

in vacuum. Then the applied load was kept constant. It was found that after H2 gas was in-

troduced, the motion of dislocations increased. The resolution of their experiments is about

100 nm. More recently, Wang et al. [23] tested iron samples under a tensile strain rate of

10−4 s−1. They found that the existence of H reduces the effective activation volume and the

thermal activation energy for dislocation motion. Also, their observations have a resolution

of roughly 100 nm.

The process of H embrittlement involves (i) the transport of H atoms within metallic mate-

rials, and (ii) the effect of H atoms on mechanical behaviors of the host materials, especially

in the presence of crystallographic defects. This deformation-diffusion coupled process may
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occur over a long time in nanosized materials due to a low strain rate of applied loads. There-

fore, to investigate the atomic mechanisms of H embrittlement, a computational method must

take into account the aforementioned features.

1.1.4 Summary

The experimental observations presented above represent a large class of challenging deformation-

diffusion coupled problems, which are characterized by:

• long-term transport of interstitial solute atoms;

• fine resolution at the nanoscale;

and one or more of the following features:

• solute-induced phase transformation;

• solute-induced lattice deformation and reconstruction;

• interaction between solute atoms and preexisting lattice defects.

To the author’s best knowledge, currently there is no computational model that simultane-

ously accounts for all these features.
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1.2 Computational methods in atomistic simulations

Due to the significance of describing full atomic details, various atomistic methods have been

developed to study the behaviors of materials on dissimilar time scales. In the following

subsections, several atomistic methods will be discussed, as well as their applications and

limitations in mass transport problems.

1.2.1 Molecular Dynamics

Molecular Dynamics (MD) is a method that tracks true thermal vibrations of a set of in-

teracting atoms. It simulates the time evolution of atoms through directly solving Newton’s

equations of motion. Given an accurate interatomic potential function, it can calculate the

time history of the positions and momenta of the atoms in a system, and the thermodynamic

properties of the system, e.g., temperature, can be calculated using the ergodic hypothesis.

MD method constitutes a powerful computational tool as it explicitly models atoms and

their interactions. It has a wide range of applications in investigating nanoscale behaviors

and mechanisms involved in mass transport problems. For example, Zhou et al. calculated

mass transport (e.g., diffusion coefficients) [24] and mechanical (e.g., elastic constants) [25]

properties in palladium hydrides, which are dependent of both temperature and hydrogen

concentration. Ostadhossein et al. [26] investigated the atomic mechanisms of lithium-ion

insertion into crystalline silicon, using the reactive-force-field-based MD simulations. They

revealed that the insertion of lithium-ion into interlayer spacing between two adjacent {111}
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layers leads to the peeling-off of the {111} faces and subsequent amorphization. In addition,

Song et al. [27] predicted an atomic mechanism of hydrogen embrittlement in iron, referred to

as hydrogen-induced ductile to brittle transition. They found that hydrogen atoms aggregate

at the tip of an existing nanocrack, resulting in the suppression of dislocation emission therein

and then permitting brittle-cleavage failure followed by slow growth of the nanocrack.

Although lots of significant phenomena and mechanisms at the nanoscale have been revealed

by MD simulations, the key limitation of MD method lies in its short simulation time. The

time-step size of MD is limited to the order of femtoseconds by the frequency of atomic

vibrations. Therefore, the time window attendant to MD simulations is on the order of

nanoseconds (e.g., 2.2 ns in Ref. [25]), which is far away from the diffusion time scale in

the experimental observations (usually longer than 1 s). Moreover, in the simulations re-

lated to mechanical deformations, MD studies are typically performed under extremely high

strain rates (e.g., 1010 s−1 in Ref. [28]), which ignores important mass transport process and

precludes experimental corroboration for simulation predictions.

1.2.2 Accelerated Molecular Dynamics

A variety of techniques have been developed to overcome the time scale limitation of MD

method while maintaining full atomic fidelity. For instance, in many physical processes in

materials science, the dynamical evolution of a system is characterized by “infrequent-event”

transitions. In other words, the residence time of the system in an activated event (i.e., a
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state) is much longer than the correlation time1. An efficient approach to simulate this type

of systems is transition state theory [30] based accelerated MD (AMD), such as parallel

replica dynamics (PRD) [31], hyperdynamics [32] and temperature accelerated dynamics

(TAD) [33]. AMD methods track the transitions between microscopic states. Their basic

idea is to design an MD-based algorithm that leads to more quick discovery of the escape

pathway from the current state to another new one. For example, MD simulations are

accelerated by simultaneously running many replicas of the system in PRD, adding the

potential energy surface by a non-negative bias potential in hyperdynamics, and raising the

temperature of the system in TAD.

Regarding the applications, Duan et al. [34] employed PRD to examine lithium-ion transport

through a polymer matrix. They estimated the free energy of the lithium-ion, which is

dependent of its position. The time scale of their simulations is up to around 100 ns. Using

hyperdynamics, Voter et al. [35] simulated the diffusive motion of a nickel adatom on a small

nickel {100} terrace at 500 K. They are able to reach a simulation time of 20 µs. Moreover,

Cogoni et al. [36] adopted TAD to simulate the diffusion of small self-interstitial clusters with

different structures in silicon. Their simulations span up to the time scale of microseconds.

Clearly, AMD methods have made great strides in extending the time scale of conventional

MD simulations. However, AMD simulations might slow down in the cases of large systems,

high temperature, or low energy barrier between states. Specifically, for mass transport

1The correlation time of a system is defined as the duration of the system memory [29]. If the system has
resided in a state for longer than the correlation time, the probability for escaping the state is independent
of how the system enters the state.
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problems, the total time window accessible to these methods is limited by the frequency of

individual atom/vacancy hops within the material sample and is typically less than 1 s for

large-scale simulations.

1.2.3 Kinetic Monte Carlo

Kinetic Monte Carlo (KMC) [37, 38, 39] is another powerful method that is capable of

extending the time scale of MD simulations. Traditional KMC employs a catalog of all

possible transition pathways and associated rate constants for any given state of the system.

A random number can be generated to choose one of the pathways and evolve the system

from the current state to a new one. This computational process is repeated, until the system

reaches the final state. Obviously, traditional KMC suffers from two major limitations: a

complete catalog of all possible transition pathways and a slow process of calculating the

rate list. For a complex system, it is difficult or even impossible to know all the transitions

in advance.

To overcome these limitations, on-the-fly KMC methods have been developed. Their basic

idea is to combine traditional KMC with a technique that is able to search saddle points on

the potential energy surface and hence minimum energy paths, in order to build a specific

catalog of transition rates on the fly. For example, Henkelman et al. [40] combined traditional

KMC with the dimer method [41]. They simulated ripening of aluminium adatoms on an

aluminium {100} surface at 300 K. The system consists of 20 adatoms and 50 atoms on the
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surface and their simulation time can reach 1 ms. In addition, Ramasubramaniam et al. [42]

presented an on-the-fly KMC method, by combining traditional KMC with the climbing

image nudged elastic band method [43]. They studied hydrogen diffusion in body-centered

cubic iron and calculated hydrogen diffusivities for temperatures ranging from 300 K to

600 K. Their simulation includes 50 hydrogen atoms and the time window is up to 0.5 ms.

On-the-fly KMC methods have some advantages over traditional dynamics. It is relatively

fast and accurate when the rate catalog is complete. However, searching for all possible

saddle points might be very slow, especially for a large-scale system. As a result, these

methods are limited to systems consisting of hundreds of atoms and the simulation time is

much less than 1 s.

1.2.4 Summary

As introduced in Section 1.1, the physical processes of solute transport in crystalline solids at

the nanoscale can pertain to the time scale on the order of seconds or even longer. The time

scale of these processes is beyond the capability of the aforementioned atomistic methods.

To this end, a new computational approach needs to be developed to investigate the atomic

behaviors and mechanisms involved in these long-term processes.
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1.3 Diffusive Molecular Dynamics

Diffusive Molecular Dynamics (DMD) is a relatively new class of methods that has demon-

strated potential for simulating diffusion processes in crystalline solids, with a time scale

beyond seconds while maintaining the atomic resolution. Its defining idea is to couple a

probabilistic description of the displacive atomic movements (i.e., an optimization problem),

with a calibrated empirical kinetic model for the evolution of lattice site occupancy. The ba-

sic assumption underlying DMD is that the time scale of diffusion is much larger than that of

microscopic state transitions. Therefore, at an intermediate time scale, the microscopic state

variables can be considered as random variables. In comparison to the established atomistic

models discussed in the previous section, DMD has a larger simulation time window as it

does not explicitly resolve thermal vibrations nor individual microscopic state transitions.

The general idea of DMD can be traced back to the variational Gaussian method proposed

by LeSar et al. [44], and the generalized TDDFT (time-dependent density functional theory)

method proposed by Perez and Lewis [45]. The term Diffusive Molecular Dynamics was

introduced by Li et al. in Ref. [46], who extended DMD to handle diffusive mass transport

by vacancy exchange and applied it to study nanoindentation and sintering processes [46]

and dislocation reaction mechanisms [47]. Following Li et al., Dontsova et al. investigated

solute-defect interactions [48] and solute segregation kinetics and dislocation depinning [49].

Moreover, Venturini et al. [50] developed a general DMD model for long-term mass transport

processes, including a validation of hydrogen desorption in palladium nanofilms, and Wang
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et al. [51] showed that the DMD model is capable of capturing the separation of α and β

phases in palladium hydrides. More recently, Simpson et al. provided a recent theoretical

review of DMD [52] and formulated a spin-diffusion stochastic process to interpret the DMD

model [53]. In addition, DMD methods have also been used to investigate the dynamic

behaviors of nanovoids under tensile stress in different metals [54, 55, 56, 57].

As introduced above, a lot of efforts have been made to complete the DMD theory and expand

its application scope. However, previous DMD methods have two major limitations. Firstly,

currently there is no DMD model for the three-dimensional, deformation-diffusion coupled

analysis of interstitial diffusion. Most of previous DMD work has focused on either pure

metals (e.g., copper [46, 47, 54, 55, 57], aluminium [57], magnesium [56]) or substitutional

binary alloys (e.g., aluminium-magnesium [48, 49], nickel-palladium [50]). For the problems

of interstitial mass transport which have a different diffusion mechanism, previous DMD

work only includes a one-dimensional analysis of hydrogen diffusion within thin palladium

films [50, 51], and the hydrogen-induced lattice deformation was neglected. Secondly, the

time-wise acceleration of DMD methods takes place at some computational expense, since

the computational cost of DMD methods, which is dominated by the nonlinear optimization

problem, can be significant. In order to reduce the computational cost, previous DMD

work [46, 47, 48, 49, 52] employs the point estimate to calculate the microscopic average

of many-body interatomic potential. However, this estimate may introduce relatively large

errors in the solution for the simulation of interstitial diffusion, e.g., in the problem that

involves the propagation of a sharp hydride phase boundary [58].
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1.4 Dissertation contributions and outline

1.4.1 Dissertation contributions

The major contributions of this dissertation are summarized as follows:

• Development of a DMD computational framework for solving long-term, three-dimensional,

deformation-diffusion coupled problems of interstitial solute mass transport in ad-

vanced nanomaterials. Key components of this framework include:

(a) a computational model for the interstitial diffusion of solute atoms, which couples

a nonlinear optimization problem for the deformation process, with a first-order

nonlinear ordinary differential equation for the diffusion process;

(b) two numerical methods, i.e., mean field approximation and subcycling time in-

tegration, for accelerating DMD simulations while maintaining a high computa-

tional accuracy;

(c) a high-performance computational solver, which has been parallelized based on

Message Passing Interface (MPI) and the PETSc/TAO library [59] for large-scale

simulations.

• Assessment of the developed computational framework in numerical experiments with

respect to palladium-hydrogen (Pd-H) systems. First, the framework is validated

against a classical lattice random walk model. Then, the capability of the frame-

work to capture the atomic details in nanomaterials (size ∼ 16 nm) over a diffusive
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time window (time > 30 s) is shown. Moreover, in the numerical experiments, the

effects of the proposed numerical methods on solution accuracy and computation time

are assessed quantitatively.

• Application of the developed computational framework to investigate the long-term H

absorption into Pd nanoparticles with different sizes and shapes. These deformation-

diffusion coupled problems involve the propagation of an atomistically sharp phase

boundary, the dynamics of solute-induced lattice deformation and stacking faults, and

the effect of lattice crystallinity on absorption rate. Specifically, the two-way inter-

action between the phase boundary propagation and the stacking fault dynamics is

noteworthy. The effects of particle size and shape on both H absorption and lattice

deformation processes are also discussed in detail.

1.4.2 Outline

This document is organized in the “multi-paper” format. Each of the main chapters is in

the format of a peer-reviewed article. Chapter 2 presents the development of the DMD

framework. The ability of the framework is demonstrated and its performance is assessed.

In Chapter 3, the framework is employed to simulate H absorption into Pd nanocubes with

edge lengths ranging from 4 nm to 16 nm. The effects of particle size on equilibrium and

kinetic properties of the absorption process are studied. Chapter 4 presents the application

of the framework to characterize H absorption in Pd nanoparticles of spherical, octahedral
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and cubic shapes with the same volume of approximately 3, 800 nm3. The effects of particle

shape on H absorption and the induced lattice deformation are investigated in detail. Finally,

a summary of conclusions and future work is consigned to Chapter 5.
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Abstract

Diffusive Molecular Dynamics (DMD) is a class of recently developed computational models

for the simulation of long-term diffusive mass transport at atomistic length scales. Com-

pared to previous atomistic models, e.g., transition state theory based accelerated molecular

dynamics, DMD allows the use of larger time-step sizes, but has a higher computational

complexity at each time-step due to the need to solve a nonlinear optimization problem at

every time-step. This paper presents two numerical methods to accelerate DMD based sim-

ulations. First, we show that when a many-body potential function, e.g., embedded atom

method (EAM), is employed, the cost of DMD is dominated by the computation of the

mean of the potential function and its derivatives, which are high-dimensional random vari-

ables. To reduce the cost, we explore both first- and second-order mean field approximations.

Specifically, we show that the first-order approximation, which uses a point estimate to calcu-

late the mean, can reduce the cost by two to three orders of magnitude, but may introduce

relatively large error in the solution. We show that adding an approximate second-order

correction term can significantly reduce the error without much increase in computational

cost. Second, we show that DMD can be significantly accelerated through subcycling time

integration, as the cost of integrating the empirical diffusion equation is much lower than
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that of the optimization solver. To assess the DMD model and the numerical approximation

methods, we present two groups of numerical experiments that simulate the diffusion of hy-

drogen in palladium nanoparticles. In particular, we show that the computational framework

is capable of capturing the propagation of an atomically sharp phase boundary over a time

window of more than 30 seconds. The effects of the proposed numerical methods on solution

accuracy and computation time are also assessed quantitatively.

Keywords

Diffusive Molecular Dynamics, Mean Field Approximation, Subcycling Time Integration,

Long-Term Processes, Hydrogen Diffusion, Phase Transformation

2.1 Introduction

In a number of areas of application, the behavior of materials depends sensitively on pro-

cesses that pertain to dissimilar time scales, ranging from atomic vibrations on the order of

femtoseconds (fs), to diffusive transport of mass on the order of seconds or even longer time

scales [1, 2, 3, 4]. This disparity of scales poses a significant challenge to atomistic model-

ing and simulation and has motivated long-standing extensive research. Classical Molecular

Dynamics (MD) constitutes a powerful computational tool as it explicitly models the atoms

of the material and their interactions. However, its time-step size is limited to the order of



2.1. INTRODUCTION 29

femtosecond by the frequency of atomic vibrations, resulting in total simulation time that is

typically less than one microsecond [5]. Extensive research has been devoted to expanding the

simulation time window while maintaining an atomistic description of the material [6]. For

instance, transition state theory based (TST-based), accelerated MD (AMD) methods [7, 8]

and kinetic Monte Carlo (KMC) methods [9] track the transitions between microscopic states

without explicitly resolving atomic vibrations. However, for mass transport problems the

total time window accessible to these methods is limited by the frequency of individual

atom/vacancy hops within the material sample and is typically less than one second [10].

Diffusive Molecular Dynamics (DMD) is a relatively new class of methods that has demon-

strated potential for simulating diffusion processes in crystalline solids beyond seconds while

maintaining the atomistic resolution. The basic assumption underlying DMD is that the

time scale of diffusion is much larger than that of microscopic state transitions. Therefore,

at an intermediate time scale, the microscopic state variables — such as the instantaneous

position and occupancy of a lattice site — can be considered as random variables. The

general idea of DMD can be traced back to the variational Gaussian method proposed by

LeSar et al. [11], and the generalized TDDFT (time-dependent density functional theory)

method proposed by Perez and Lewis [12]. More recently, Li et al. [13] have extended DMD

to handle diffusive mass transport by vacancy exchange and have applied it to study nanoin-

dentation and sintering processes [13] and dislocation reaction mechanisms [14]. Venturini et

al. [15, 16, 17] have developed a general framework for diffusive molecular processes, includ-

ing heat and mass transport. Farmer et al. [18] have formulated a spin-diffusion stochastic
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process to interpret the DMD model. A recent theoretical review of DMD can be found

in [19].

Following [15], in the present work we couple an empirical diffusion model, or master

equation, driving the evolution of the mean value of atomic site occupancies, with a non-

equilibrium statistical thermodynamics model that determines the mean value of atomic

positions by minimizing a grand-canonical free entropy. In terms of numerical implemen-

tation, our approach involves the numerical integration of the master equation, and the

numerical solution of a highly nonlinear optimization problem at every time-step. By work-

ing with atomic fractions, the characteristic time-step size of our DMD simulations can be

much larger than those based on either AMD or KMC methods, since we do not explicitly

track the individual atom/vacancy hops. As a consequence, the time-step size in our calcu-

lations is not restricted by the frequency of those events. Instead, it is only limited by the

diffusive time scale, e.g., by the speed of the propagation of a phase boundary, which can be

as slow as 1 nm/s [20].

However, this time-wise acceleration takes place at some computational expense, since the

computational cost of a DMD step, which is dominated by the optimizer, can be signifi-

cant. Thus, we show that when a many-body embedded atom method (EAM) potential

is employed, the computational complexity of our DMD scheme is O(Q2N) per time-step,

where N and Q denote the number of atomic sites in the material sample and the average

number of neighbors of an atomic site within the cut-off distance of the EAM potential,

respectively. For many EAM potentials Q can be as large as 100, which makes the O(Q2)
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scaling problematic. By contrast, the one-step cost of classical MD, TST-based AMD, and

KMC is typically of the order of O(QN) [21], O(QN) [6] and O(N logN) [9], respectively.

It is therefore of interest to investigate ways of reducing the computational cost of DMD by

means of additional numerical approximations.

To this end, we begin by noting that the cost of numerical optimization in calculations em-

ploying EAM potentials is dominated by the computation of the mean value of the embedding

energy F (ω) with respect to a trial Gauss distribution, i.e.,
〈
F (ωi)

〉
0
, where ωi denotes the

electron density on site i. For many EAM potentials, e.g., [22, 23], F (ω) is convex over a

broad range of ω, which suggests the use of Jensen’s lower bound as an approximation [15],

i.e., 〈
F (ωi)

〉
0
≈ F

(
〈ωi〉0

)
. (2.1)

This approximation is the result of estimating the random variable ωi by its mean value. We

show that the direct implementation of this approximation suffers from low accuracy in cer-

tain cases. In order to overcome this limitation, we introduce a second-order approximation

of the form 〈
F (ωi)

〉
0
≈ F

(
〈ωi〉0

)
+

1

2
F ′′
(
〈ωi〉0

)〈(
ωi − 〈ωi〉0

)2
〉

0
. (2.2)

Finally, we show that, by a further appeal to mean field approximation, the computational

complexity of DMD reduces from O(Q2N) to O(QN) per time-step, which results in a con-

siderable acceleration of the calculations, especially where complex potentials are concerned.

The second idea explored in this study concerns the use of subcyling on the numerical inte-
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gration of the empirical diffusion model. Subcycling naturally suggests itself because the cost

of explicit integration of the diffusion equations is significantly lower than that of the opti-

mizer. Subcycling has been widely used in the simulation of multiphysics problems when the

time-step limit or computational cost of different physical fields differ significantly [24, 25, 26].

In order to verify the proposed numerical algorithms and assess their performance, we simu-

late the diffusion of hydrogen (H) in palladium (Pd) nanoparticles. This problem is relevant

to several energy-related areas of application such as electrical batteries [4] and hydrogen

storage systems [1]. In this system, the fundamental event is the hopping of H atoms among

the interstitial sites of the primary metal lattice. However, the overall diffusion process often

takes minutes to hours to reach equilibrium and occurs simultaneously with a number of phe-

nomena of interest such as lattice distortion [1], slow propagation of phase boundaries [20],

avalanching strain reversion [27], and hydrogen-induced structural disintegration [28], all of

which are elucidated at the atomistic level. The use of DMD therefore suggests naturally for

this type of systems.

The remainder of this paper is organized as follows. Section 2.2 summarizes the DMD model

equations. Section 2.3 presents the aforementioned numerical methods for accelerating DMD

simulations. Section 2.4 presents two groups of numerical experiments that simulate the long-

term dynamics of hydrogen in palladium nanomaterials, in which the proposed numerical

methods are assessed quantitatively. Finally, a summary and some concluding remarks are

provided in Section 2.5.



2.2. PHYSICAL MODEL 33

2.2 Physical model

As already mentioned in the previous section, the term Diffusive Molecular Dynamics (DMD)

was introduced by Li et al. [13] in 2011 to describe a novel atomistic computational model

capable of coupling an empirical diffusion law (an ordinary differential equation, ODE) with

a probabilistic description of the microscopic state variables. More recently, Venturini et

al. [15] formulated a more general theory based on the same fundamental assumption, and

applied it to both heat and mass transport problems. For the sake of completeness and

convenience, we summarize in this section its generalized version.

2.2.1 Non-equilibrium statistical thermodynamics model

We consider a crystal lattice consisting of N atomic sites, which at any time instance can be

occupied by one of R species of particles, e.g., atoms, ions, etc., or unoccupied. Therefore,

the instantaneous status of a site can be tracked using an occupancy function, defined as

ni =


ni1

...

niR

 , i = 1, · · · , N, (2.3)

where

nik =


1, if site i is occupied by species k

0, otherwise

, k = 1, 2, · · · , R. (2.4)
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The instantaneous position and momentum of site i are denoted by qi and pi, respectively.

Based on the assumption of scale separation and the ergodic hypothesis, these microscopic

state variables can be viewed as random variables that have a joint probability distribution

characterized by density function ρ
(
{q}, {p}, {n}

)
, where {q} = {qi}Ni=1, {p} = {pi}Ni=1 and

{n} = {ni}Ni=1. This function ρ can be directly specified as in [13]. More generally, it can

be determined by applying the Jaynes’ principles of maximum entropy [29, 30], that is, by

maximizing the information-theoretical entropy

S[ρ] = −kB〈log ρ〉, (2.5)

among all probability measures consistent with the constraints imposed on the system. Here,

kB is the Boltzmann’s constant, and 〈·〉 represents the expectation or phase average opera-

tor [15]. Moreover, it is assumed that the Hamiltonian of the system, denoted by H, can be

written as a site-wise summation, i.e.,

H =
N∑
i=1

hi =
N∑
i=1

(
Vi
(
{q}, {n}

)
+

1

2m(ni)
|pi|2

)
, (2.6)

where hi is the local Hamiltonian associated with site i, Vi represents the interatomic poten-

tial energy, and m(ni) denotes the mass of site i. In analogy to the general definition of the

average internal energy, E = 〈H〉, and the average particle number, X = 〈N〉, for the grand
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canonical ensemble, we introduce particle energies, ei, and atomic fractions, xi, defined as

ei = 〈hi〉, xi = 〈ni〉, i = 1, · · · , N. (2.7)

Maximization of S[ρ] subjected to the local constraints given by Eq. (2.7) yields

ρ =
1

Ξ
e−{β}

T{h}+{γ}T{n}, (2.8)

where Ξ is the partition function, and {β} = {βi}Ni=1 and {γ} = {γi}Ni=1 are Lagrange

multipliers. In comparison with equilibrium statistical thermodynamics, Eq. (2.8) can be

interpreted as the non-equilibrium generalization of the Gibbs grand-canonical probability

density function. Also, βi and γi can be interpreted as thermodynamic beta and nondimen-

sional chemical potential of site i, respectively [15].

For most material models, Vi is typically a nonlinear function, and therefore the calculation

of the particle energies, ei, is generally intractable. Venturini et al. [15] proposed an ap-

proximation theory, in which S[ρ] is maximized within a finite-dimensional trial space P0,

spanned by a pre-specified class of trial Hamiltonians {h0}. As a result, maximizing S[ρ]

within P0 is equivalent to minimizing the mean field free entropy, i.e.,

min
{α}
F
(
{β}, {γ}; {h0}

)
= kB{β}T

{
〈h− h0〉0

}
− kB logΞ0, (2.9)

where {α} is a finite set of parameters that characterize {h0}. 〈·〉0 denotes the expectation
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operator under the trial probability density function, and Ξ0 is the trial partition function.

Within this work, we assume that the diffusion of heat is much faster than the diffusion of

mass, therefore the particle temperature, Ti = 1/(kBβi), becomes uniform over all the sites,

and is equal to the temperature T defined in equilibrium thermodynamics1. In this case,

Eq. (2.9) reduces to

min
{α}
F
(
T, {γ}; {h0}

)
=

1

T

N∑
i=1

〈hi − h0i〉0 − kB logΞ0. (2.10)

Clearly, if {h0} is designed to have a simple structure, the above optimization problem can

be solved numerically or even analytically. Notably, the local equilibrium conditions derived

from Eq. (2.10) can be viewed as a series of atomistic-scale equations of state (EOS) that

holds at any time point on the scale of diffusion, provided that this scale is much larger than

that of the fundamental events (e.g., the hopping of individual atoms).

2.2.2 Discrete diffusion law

Within the DMD model, an empirical diffusion law is responsible for driving slow diffusion

processes at the atomistic length scale. At any time point, mass balance on site i requires

ẋi =
N∑

j=1, j 6=i

Jij, (2.11)

1Application of the DMD model to problems involving heat transport and non-uniform Ti can be found
in [15, 31]
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where Jij = −Jji denotes the discrete mass flux from site j to site i. For simplicity, Jij has

always been assumed to be of first-order with respect to the difference in chemical potential

between the two sites. Therefore, Eq. (2.11) becomes

ẋik =
N∑

j=1, j 6=i

Bij,k
xik + xjk

2
kB(γjk − γik), k = 1, ..., R, (2.12)

where Bij,k is a model parameter that represents the diffusivity of species k between sites i

and j.

The optimization problem in Eq. (2.10) together with Eq. (2.12) form a closed system of

equations that governs long-term diffusive transport of mass on an atomistic length scale,

which certainly characterizes the DMD model.

2.2.3 Example: Diffusion of hydrogen in metal nanomaterials

To illustrate the DMD model described above, here we consider the diffusion of hydrogen

in metals as an example problem. In this case, diffusion is dominated by the hopping of H

atoms among the interstitial sites of the lattice. This problem is relevant to several energy-

related application areas such as electrical batteries [4] and hydrogen storage [1], and will be

further investigated to assess the numerical approximation methods developed in the present

research.

Specifically, we consider a crystal lattice where the base lattice sites are always occupied by

metal atoms, while the interstitial sites are either occupied by an H atom, or unoccupied.
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For ease of reference, we denote the base lattice sites by IM, and the interstitial sites by IH.

The trial Hamiltonians introduced in Eq. (2.10) are chosen to be of the form

h0i(qi,pi, ni; q̄i, σi, p̄i, γ0i) =


kBT

2σ2
i

|qi − q̄i|2 +
1

2mM

|pi − p̄i|2, if i ∈ IM

kBT

2σ2
i

|qi − q̄i|2 +
1

2mH

|pi − p̄i|2 − kBTγ0ini, if i ∈ IH

,

(2.13)

where q̄i, σi, p̄i, and γ0i are parameters that characterize the trial space. Herein, mM and

mH denote the atomic mass of the metal and hydrogen, respectively. It can be shown that

q̄i and σi are the mean and standard deviation of qi, respectively, and p̄i is the mean value

of pi.

Moreover, γ0i indicates the dependence of chemical potential on the H atomic fraction xi.

Specifically, by calculating 〈ni〉0 and applying the relation 〈ni〉0 = xi, we obtain

γi = log
xi

1− xi
− γ0i. (2.14)

Details of the derivation are provided in 2.A. From Eqs. (2.40), (2.42) and (2.14), the trial

probability density function ρ0 can be derived, i.e.,

ρ0 =
1

Ξ0

exp

(
−

∑
i∈IM∪IH

1

2σ2
i

|qi − q̄i|2 −
∑
i∈IM

1

2kBTmM

|pi − p̄i|2

−
∑
i∈IH

(
1

2kBTmH

|pi − p̄i|2 − ni log
xi

1− xi

))
,

(2.15)
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with

Ξ0 =
∏
i∈IM

(
σi
√
kBTmM

~

)3 ∏
i∈IH

(
σi
√
kBTmH

~

)3
1

1− xi
, (2.16)

where ~ is the reduced Planck’s constant. After straightforward derivations, and using

Eq. (2.14), the optimization problem stated in Eq. (2.10) becomes

min
{q̄},{σ},{p̄},{x}

F
(
T, {γ}; {q̄}, {σ}, {p̄}, {x}

)
=

1

T
〈V 〉0 +

1

2TmM

∑
i∈IM

p̄2
i +

1

2TmH

∑
i∈IH

xip̄
2
i +

3

2
kB

∑
i∈IM

(
log

~2

kBTmMσ2
i

− 1

)

+
3

2
kB

∑
i∈IH

(
log

~2

kBTmHσ2
i

+ xi − 2

)
+ kB

∑
i∈IH

(
xi log xi + (1− xi) log (1− xi)− γixi

)
.

(2.17)

In analogy to the grand canonical ensemble, T and {γ} are regarded as constant on each site

and then we calculate optimal values of {q̄}, {σ}, {p̄} and {x}. Enforcing the first-order

necessary condition

∂F
∂p̄i

= 0, ∀i ∈ IM ∪ IH, (2.18)

yields

p̄i = 0, ∀i ∈ IM ∪ IH. (2.19)

Then, by applying the first-order necessary condition to xi

∂F
∂xi

= 0, ∀i ∈ IH, (2.20)
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we can compute γi as a function of the optimal values of {q̄}, {σ} and {x}, namely,

γi =
3

2
+ log

xi
1− xi

+
1

kBT

∂〈V 〉0
∂xi

, ∀i ∈ IH. (2.21)

Notably, γi can be interpreted as a nondimensional chemical potential of site i. Therefore,

Eq. (2.21) shows that when calculating the chemical potential, unlike the classical entropy-

of-mixing relation that only depends on the fraction of its own atomic site, the DMD model

also involves the interatomic potential and the present microscopic state variables. With

the expression of γi which satisfies the necessary condition for xi, and by substituting p̄i in

Eq. (2.17) using Eq. (2.19), the optimization problem simplifies to

min
{q̄},{σ}

F
(
T, {γ}; {q̄}, {σ}, {x}

)
=

1

T
〈V 〉0 +

3

2
kB

∑
i∈IM

(
log

~2

kBTmMσ2
i

− 1

)
+

3

2
kB

∑
i∈IH

(
log

~2

kBTmHσ2
i

+ xi − 2

)

+ kB

∑
i∈IH

(
xi log xi + (1− xi) log (1− xi)− γixi

)
.

(2.22)

Herein, the optimization variables are {q̄} and {σ}. The thermodynamics model formulated

in Eq. (2.22) is then coupled with a discrete diffusion law of the form of Eq. (2.12). For

simplicity, but without loss of generality, we restrict diffusive transport within one shell of

neighbors, and apply a constant bondwise diffusivity B0. As a result, Eq. (2.12) simplifies

to

ẋi = −kBB0

∑
j∈N (1)

H,i

xi + xj
2

(γi − γj), ∀i ∈ IH, (2.23)
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where N (1)
H,i denotes the first shell of interstitial neighbors of site i.

2.3 Numerical methods

The DMD model couples a nonlinear optimization problem (Eq. (2.10)) with a first-order,

nonlinear ordinary differential equation (ODE) (Eq. (2.12)). An efficient strategy to solve this

system comprises the discretization of the ODE using an explicit time integrator, and solving

the optimization problem once per time-step using a quasi-Newton method. Algorithm 1

provides a pseudocode that implements this approach, using the hydrogen diffusion problem

described in Section 2.2.3 as an example. The main steps involved are illustrated in Fig. 2.1.

ഥ𝒒 𝑛, 𝑥 𝑛 ഥ𝒒 𝑛, 𝑥 𝑛+1 ഥ𝒒 𝑛+1, 𝑥 𝑛+1

ഥ𝒒 𝑛+1, 𝑥 𝑛+2ഥ𝒒 𝑛+2, 𝑥 𝑛+2

Integrate 

diffusion

equation

Minimize

free entropy

Integrate 

diffusion equation

Minimize

free entropy

⋯

Base lattice site
(always occupied by 

metal atom)

Interstitial sites
(can be occupied by 

H atoms)

𝑥 – H fraction

1.0

0.0

0.5

Figure 2.1: Illustration of a DMD simulation that features the diffusive transport of H atoms
(from top to bottom) and the associated lattice expansion.
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Algorithm 1 Solution of the DMD model equations.

1: Input: {x}0 (initial condition), tmax (final time)
2: Begin
3: initialization:
4: t = 0, n = 0
5: minimize F

(
{q̄}, {σ}, {x}0

)
⇒ {q̄}0, {σ}0

6: γ0
i ←

3

2
+ log

x0
i

1− x0
i

+
1

kBT

∂〈V 〉0
∂xi

∣∣∣∣0 , ∀i ∈ IH

7: time loop:
8: while t < tmax do
9: solve Eq. (2.23) for one time-step, i.e.,

xn+1
i ← xni − kBB0∆t

∑
j∈N (1)

H,i

1

2
(xni + xnj )(γni − γnj ), ∀i ∈ IH

10: minimize F
(
{q̄}, {σ}, {x}n+1

)
⇒ {q̄}n+1, {σ}n+1:

11: Begin
12: X ≡

{
{q̄}, {σ}

}
13: F(X) ≡ F

(
{q̄}, {σ}, {x}n+1

)
14: for k ← 0,X0 ←

{
{q̄}n, {σ}n

}
; k < kmax do

15: compute approximate Hessian matrix Hk

16: ∆X ← −(Hk)−1∇F(Xk)
17: determine step size τ by line search
18: Xk+1 ←Xk + τ∆X

19: if
∣∣F(Xk+1)−F(Xk)

∣∣ < ε1 or

∣∣F(Xk+1)−F(Xk)
∣∣∣∣F(Xk)

∣∣ < ε2 then

20: break
21: end if
22: k ← k + 1
23: end for
24: End

25: γn+1
i ← 3

2
+ log

xn+1
i

1− xn+1
i

+
1

kBT

∂〈V 〉0
∂xi

∣∣∣∣n+1

, ∀i ∈ IH

26: t← t+ ∆t, n← n+ 1
27: end while
28: End
29: Output: {γ}n, {q̄}n, {σ}n, {x}n
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2.3.1 Mean field approximation

The optimization problem (Eq. 2.22) entails computing the mean value of the interatomic

potential (i.e., 〈V 〉0) at every quasi-Newton iteration. For many-body potentials, these

computations are expensive, as they involve high-dimensional integration. For instance, the

embedded atom method (EAM) is a class of many-body potentials widely used to describe

metallic systems [32]. For binary systems such as metal-hydrogen, it carries the form

V
(
{q}, {n}

)
=
∑
i∈IM

FM(ωi) +
∑
i∈IH

niFH(ωi) +
1

2

∑
i, j∈IM, i6=j

φMM(rij)

+
∑

i∈IH, j∈IM

niφMH(rij) +
1

2

∑
i, j∈IH, i6=j

ninjφHH(rij),

(2.24)

where rij = |qi − qj|, whereas φMM, φMH, and φHH denote the pair energy between metal-

metal, metal-hydrogen, and hydrogen-hydrogen atom pairs, respectively. Also, FM(ω) and

FH(ω) indicate the embedding energy function for metal and hydrogen atoms, respectively,

and are defined in terms of a pseudo-density function, ωi, which writes as

ωi =
∑

j∈IM, j 6=i

fM(rij) +
∑

j∈IH, j 6=i

njfH(rij), (2.25)

i.e., the summation of electron density functions fM(r) and fH(r), for metal and hydrogen

atoms, respectively. The pair functions φMM(rij), φMH(rij), φHH(rij), fM(rij) and fH(rij) are

usually defined in either analytical or tabular form.

For the trial probability density function defined in Eq. (2.15), the atomic position qi, mo-
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mentum pi and occupancy ni are independent with each other. Therefore, the mean value

of the EAM potential can be written as

〈V 〉0 =
∑
i∈IM

〈
FM(ωi)

〉
0

+
∑
i∈IH

xi
〈
FH(ωi)

〉
0

+
1

2

∑
i, j∈IM, i6=j

〈
φMM(rij)

〉
0

+
∑

i∈IH, j∈IM

xi
〈
φMH(rij)

〉
0

+
1

2

∑
i, j∈IH, i6=j

xixj
〈
φHH(rij)

〉
0
.

(2.26)

For a three-dimensional (3D) material sample, 〈FM(ωi)〉0 and 〈FH(ωi)〉0 are 3(Q+1)-dimensional

integrals, where Q denotes the number of neighbor sites within the cut-off distance of the

EAM potential, which in practice is typically of the order of 100. Therefore, these integrals

cannot be evaluated analytically due to the complex form of the embedding energy function

and the pair energy function, and thus numerical integration methods are needed.

The Monte Carlo (MC) method has been widely used to evaluate high-dimensional inte-

grals [33]. However, its computational cost is high, thus evaluating Eq. (2.26) with Nm

random samples invokes O(QNNm) calls of the pair functions mentioned above. Nm is

usually greater than 104, and Eq. (2.26) (and its derivatives) needs to be evaluated within

every quasi-Newton iteration at every time-step. To facilitate long-term DMD simulations of

relatively large material samples, more efficient numerical integration methods are desirable.

An alternative approach is to use Gaussian quadratures [34]. Thus, evaluating Eq. (2.26)

using the classical Gaussian quadratures requires O(QNN
3(Q+1)
g ) calls of the pair functions,

where Ng denotes the number of Gaussian points for each variable of integration, which is

proven impractical even for Ng = 2. A feasible strategy to accelerate Gaussian quadratures



2.3. NUMERICAL METHODS 45

for high-dimensional integration is to introduce a sparse grid [35]. As we show in 2.B, this

approach can reduce the complexity of evaluating Eq. (2.26) to O(Q2N), which is still high

for long-term DMD simulations.

Next, we present two numerical schemes based on mean field approximation, which effectively

reduce the computational complexity of evaluating Eq. (2.26) to O(QN). It is noteworthy

that the optimization solver also requires computing the gradients of the objective function

F , and hence the gradients of 〈V 〉0. Evaluating the gradients of 〈V 〉0 has the same order of

complexity as 〈V 〉0 by the proposed mean field approximations.

First-order mean field approximation

Expanding the embedding energy F (ωi) about the mean value of ωi, we obtain

F (ωi) = F
(
〈ωi〉0

)
+ F ′

(
〈ωi〉0

)(
ωi − 〈ωi〉0

)
+

1

2
F ′′
(
〈ωi〉0

)(
ωi − 〈ωi〉0

)2
+ h.o.t., (2.27)

where F (ω) represents both FM(ω) and FH(ω) in Eq. (2.26), F ′ = dF/dω, F ′′ = d2F/dω2,

and “h.o.t.” represents, collectively, the higher-order terms of the Taylor series. Evaluating

the mean of Eq. (2.27) yields

〈
F (ωi)

〉
0

= F
(
〈ωi〉0

)
+

1

2
F ′′
(
〈ωi〉0

)(
〈ω2

i 〉0 − 〈ωi〉20
)

+ h.o.t. (2.28)

If only the first term on the right-hand-side of Eq. 2.28 is retained, we obtain a first-order
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approximation, i.e., 〈
F (ωi)

〉
0
≈ F

(
〈ωi〉0

)
. (2.29)

This approximation relies on a point estimate to calculate the mean. In particular, if the

embedding energy function F (ω) is convex, this first-order approximation represents a lower

bound of the true value (i.e. Jensen’s inequality). Substituting Eq. (2.29) into Eq. (2.26)

yields

〈V 〉0 ≈
∑
i∈IM

FM

(
〈ωi〉0

)
+
∑
i∈IH

xiFH

(
〈ωi〉0

)
+

1

2

∑
i, j∈IM, i6=j

〈
φMM(rij)

〉
0

+
∑

i∈IH, j∈IM

xi
〈
φMH(rij)

〉
0

+
1

2

∑
i, j∈IH, i6=j

xixj
〈
φHH(rij)

〉
0
,

(2.30)

where

〈ωi〉0 =
∑

j∈IM, j 6=i

〈
fM(rij)

〉
0

+
∑

j∈IH, j 6=i

xj
〈
fH(rij)

〉
0
. (2.31)

The evaluation of 〈ωi〉0 in Eq. (2.31) is straightforward and involves only two-body interac-

tions. As a result, the first-order mean field approximation introduced in Eq. (2.29) reduces

the computational cost of Eq. (2.26) to O(QN). Further details of the computational com-

plexity analysis are provided in 2.C.

Remark 1. The first-order approximation described above has been used to calculate the

mean values of EAM potentials in both equilibrium [36] and non-equilibrium systems [13, 37].

However, its accuracy requires further investigation. In Section 2.4.2, we will show that for

a series of hydrogen absorption simulations involving sharp phase boundaries, the first-order

approximation may introduce relatively large errors. This observation motivates us to extend
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the mean field approximation towards second-order while maintaining the same computational

complexity.

Second-order mean field approximation

From Eq. (2.28), a second-order approximation of
〈
F (ωi)

〉
0

can be obtained, i.e.,

〈
F (ωi)

〉
0
≈ F

(
〈ωi〉0

)
+

1

2
F ′′
(
〈ωi〉0

)(
〈ω2

i 〉0 − 〈ωi〉20
)
. (2.32)

In particular, the variance of ωi in the second-order term can be formulated as

〈ω2
i 〉0 − 〈ωi〉20 = CMM,i + 2CMH,i + CHH,i + C0,i + C1,i, (2.33)

where

CMM,i =
∑

j, l∈IM, j 6=l

Cov
[
fM(rij), fM(ril)

]
,

CMH,i =
∑

j∈IM, l∈IH

xlCov
[
fM(rij), fH(ril)

]
,

CHH,i =
∑

j, l∈IH, j 6=l

xjxlCov
[
fH(rij), fH(ril)

]
,

C0,i =
∑
j∈IM

(〈
f 2

M(rij)
〉

0
−
〈
fM(rij)

〉2

0

)
,

C1,i =
∑
j∈IH

(
xj
〈
f 2

H(rij)
〉

0
− x2

j

〈
fH(rij)

〉2

0

)
, j 6= i, l 6= i,

(2.34)

where Cov[·, ·] represents the covariance operator. Notably, the first three equations of (2.34)

involve three-body interactions. As a result, evaluating the mean value of the EAM potential
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(i.e., Eq. (2.26)) entails a computational complexity of O(Q2N). To reduce this complex-

ity, we estimate the covariances in Eq. (2.34) off-line, based on a reference configuration.

Specifically, we substitute the covariances through the following approximations

CMM,i ≈ C
(0)
MM,i =

∑
j, l∈IM, j 6=l

Cov
[
fM

(
r

(0)
ij

)
, fM

(
r

(0)
il

)]
,

CMH,i ≈ C
(0)
MH,i =

∑
j∈IM, l∈IH

xlCov
[
fM

(
r

(0)
ij

)
, fH

(
r

(0)
il

)]
,

CHH,i ≈ C
(0)
HH,i =

∑
j, l∈IH, j 6=l

xjxlCov
[
fH

(
r

(0)
ij

)
, fH

(
r

(0)
il

)]
, j 6= i, l 6= i,

(2.35)

where the superscript “(0)” on rij and ril refers to the reference configuration, which could be,

for example, an equilibrium state relevant to the DMD analysis. This approximation can be

justified, in the context of solid crystals, by the fact that the displacive atomic movements in

a diffusion-dominated process are often small compared to the lattice spacing at equilibrium.

Substituting Eqs. (2.32), (2.33), and (2.35) into Eq. (2.26) yields

〈V 〉0 ≈
∑
i∈IM

FM

(
〈ωi〉0

)
+
∑
i∈IH

xiFH

(
〈ωi〉0

)
+

1

2

∑
i, j∈IM, i6=j

〈
φMM(rij)

〉
0

+
∑

i∈IH, j∈IM

xi
〈
φMH(rij)

〉
0

+
1

2

∑
i, j∈IH, i6=j

xixj
〈
φHH(rij)

〉
0

+
1

2

∑
i∈IM

F ′′M
(
〈ωi〉0

)(
C

(0)
MM,i + 2C

(0)
MH,i + C

(0)
HH,i + C0,i + C1,i

)
+

1

2

∑
i∈IH

xiF
′′
H

(
〈ωi〉0

)(
C

(0)
MM,i + 2C

(0)
MH,i + C

(0)
HH,i + C0,i + C1,i

)
.

(2.36)

Equation (2.36) does not involve three-body interactions. It is straightforward to prove that

its computational complexity, in terms of the number of calls to pair functions, is O(QN).
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Details of the computational complexity analysis are provided in 2.C.

2.3.2 Subcycling time integration

When executing the DMD algorithm, the time-step size (denoted by ∆t) is limited by the

time-integration of the diffusion equation — an excessively large ∆t usually results in a

nonphysical xi, above 1 or below 0, which then fails Algorithm 1 at line 23. However, at

each time-step, the computational cost is dominated by the iterative optimization solver,

as the objective function is highly nonlinear, and involves nonlocal interactions. The same

situation also occurs in other multiphysics problems, where the rate-limiting subsystem is

not the most computationally intensive one. The idea of subcycling is to regularly skip

the solution of the computationally intensive subsystem at a certain frequency, thereby

accelerating the computation while retaining an acceptable accuracy. It has been shown to

be effective in a number of application domains [24, 25, 26]. Here, we explore the effectiveness

of subcycling for DMD simulations.

Algorithm 2 presents a revised DMD pseudocode that adopts subcycling time integration.

Evaluating the chemical potential γn+1
i requires {q̄}n+1 and {σ}n+1 (line 23 of Algorithm 1),

which are computed by the optimization solver. At a time-step that the optimization solver

is skipped, an ad hoc numerical scheme is needed to determine their values. We consider the

following two schemes.

1. Constant extrapolation: the values of {q̄}n+1 and {σ}n+1 are set to the latest solutions
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of the optimization solver (line 18 of Algorithm 2).

2. Linear extrapolation: {q̄}n+1 and {σ}n+1 are calculated by linearly extrapolating the

last two solutions of the optimization solver (line 20 of Algorithm 2).

Algorithm 2 Solution of the DMD model equations with subcycling time integration.

1: Input: {x}0 (initial condition), tmax (final time), ∆n (subcycling-step size)
2: Begin
3: initialization
4: same as Algorithm 1.
5: if linear extrapolation then
6: q̄∗i ← q̄0

i , σ
∗
i ← σ0

i , ∀i ∈ IM ∪ IH.
7: end if
8: time loop:
9: while t < tmax do

10: solve Eq. (2.23) for one time-step. (same as Algorithm 1.)
11: if (n+ 1 mod ∆n) = 0 then
12: minimize F

(
{q̄}, {σ}, {x}n+1

)
⇒ {q̄}n+1, {σ}n+1. (same as Algorithm 1.)

13: if linear extrapolation then

14: grad(q̄i)←
q̄n+1
i − q̄∗i
∆n∆t

,

15: grad(σi)←
σn+1
i − σ∗i
∆n∆t

,

16: q̄∗i ← q̄n+1
i , σ∗i ← σn+1

i , ∀i ∈ IM ∪ IH

17: end if
18: else
19: if constant extrapolation then
20: q̄n+1

i ← q̄ni , σn+1
i ← σni , ∀i ∈ IM ∪ IH

21: else if linear extrapolation then
22: q̄n+1

i ← q̄ni + grad(q̄i)∆t, σn+1
i ← σni + grad(σi)∆t, ∀i ∈ IM ∪ IH

23: end if
24: end if

25: γn+1
i ← 3

2
+ log

xn+1
i

1− xn+1
i

+
1

kBT

∂〈V 〉0
∂xi

∣∣∣∣n+1

, ∀i ∈ IH

26: t← t+ ∆t, n← n+ 1
27: end while
28: End
29: Output: {γ}n, {q̄}n, {σ}n, {x}n

Remark 2.
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1. We determine the initial guess for the optimization solver using the same extrapolation

method selected for calculating the chemical potential.

2. Subcycling does not always reduce the computational cost. For example, one issue

hidden behind Algorithm 2 is that as the time interval between successive calls to the

optimization solver increases, the number of quasi-Newton iterations required to achieve

convergence may increase accordingly. We will assess the performance of subcycling

time integration in Sections 2.4.1 and 2.4.2 through a series of numerical experiments.

2.3.3 Implementation details

In this work, we integrate the diffusion equation using the forward Euler method. We

solve the optimization problem using a limited memory BFGS quasi-Newton method [38].

Important details, including the derivation of the gradients ∂F/∂q̄i and ∂F/∂σi, and the

chemical potential γi, are provided in 2.D. Moreover, we parallelize Algorithm 2 with Message

Passing Interface (MPI), using the PETSc library [39].

2.4 Numerical experiments

To assess the proposed DMD model and numerical methods, we take the palladium-hydrogen

(Pd-H) system as an example, and simulate the diffusion of H atoms in Pd nanoparticles.

The Pd-H system has broad impacts in several application areas, including hydrogen storage,



2.4. NUMERICAL EXPERIMENTS 52

purification filters, isotope separation, and fuel cells [40, 41]. At room temperature, Pd-H

exhibits two distinct phases: the dilute α phase with low hydrogen concentration (up to

PdH0.015), and the β phase with high hydrogen concentration (PdH0.6 and above). In both

phases, the Pd sublattice maintains the face-centered cubic (FCC) structure, while the H

atoms occupy the octahedral interstitial sites. Attendant to the α/β phase transformation,

there is a lattice expansion with 10.4% increase in volume [42].

We adopt the EAM potential developed by Zhou and Zimmerman [43], which is capable

of capturing the above fundamental features. We examine the proposed DMD model and

numerical methods using two different problems: (1) the diffusive transport of a single H

atom; and (2) the absorption of H by Pd nanocubes. Problem (1) has a solution that varies

smoothly in space and time, while Problem (2) is dominated by the propagation of a sharp

phase boundary. The simulations presented in this section are performed on the BlueRidge

supercomputer at Virginia Tech [44], using 100 to 500 CPU cores.

2.4.1 Long-term dynamics of a single H atom on Pd lattice

We apply the DMD model to simulate the long-term dynamics of one H atom in a perfect Pd

crystal. Specifically, we create a Pd nanocube that contains 30× 30× 30 unit cells (108, 000

Pd sites and 108, 000 octahedral interstitial sites), with the surfaces oriented in [100], [010]

and [001] directions (Fig. 2.2). The width of the nanocube is approximately 12 nm. At

time t = 0, the interstitial site at the center of the cube is occupied by H (i.e., x = 1), while
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all the other interstitial sites are unoccupied (i.e., x = 0). A no-flux boundary condition is

applied to the diffusion equation, Eq. (2.23), over the surface of the nanocube. The atomic

diffusivity coefficient B0 is set to 500.0 K/(eV · s) to match the rate of diffusion observed in

nanocubes of similar size [20].

Figure 2.2: Simulation setup of one H atom on Pd lattice.

Model validation

We consider the classical random walk model as a reference. Following this model, the

probability of finding the H atom on a given interstitial site — that is, the H fraction x

on the site — is the solution of Fick’s second law with a Dirac delta initial condition [45].

Specifically, in 3D,

x(r, t) =
Ω

(4πDHt)3/2
exp

(
− r2

4DHt

)
, (2.37)

where r is the distance from the site in question to the initial position of the H atom. In

the expression above, Ω = a3
L/4 is the atomic volume, where aL denotes the lattice constant.

It is notable that Ω is kept as a constant, which reflects the fact that, unlike DMD, the
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random walk model neglects the lattice deformation induced by the solute particle. Here, we

set aL = 3.89 Å, i.e., the lattice constant of FCC Pd at room temperature and atmospheric

pressure [43]. In Eq. (2.37), DH denotes the diffusivity coefficient. Recent experiments have

revealed that the value ofDH is different in nanosized particles than in bulk Pd [40, 46, 27, 20].

We set DH = 0.66 Å2/s, again to match the diffusive time scale of the aforementioned

nanocube experiments [20].

Figure 2.3 compares the DMD result with the random walk model value for the H fraction

on the initially occupied site. The random walk result is obtained by substituting r = 0 in

Eq. (2.37), which reads as

log x(0, t) = −3

2
log t− log

Ω

(4πDH)3/2
. (2.38)

The DMD result shown in Fig. 2.3 is obtained using the second-order mean field approx-

imation presented in Section 2.3.1. Furthermore, the relaxed Pd nanocube is used as a

reference configuration to calculate the covariances in Eq. (2.35). The temperature is fixed

at T = 300 K, and the time-step size is set as ∆t = 2.0 × 10−3 s. Smaller time-step sizes

have also been tested, and the differences in the results are negligible. The total number of

time-steps is 5× 105.

Moreover, Fig. 2.3 shows that the DMD result closely matches the random walk solution

for t > 20.0 s. The discrepancy is larger early in the simulation, which is likely due to

the fact that the random walk model neglects the coupling between diffusion and lattice
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Figure 2.3: Time-history of H fraction on the initially occupied site.

deformation, while DMD accounts for this effect. Nonetheless, both models are probabilistic

by nature, and are designed to simulate long-term diffusive behaviors beyond the time scale

of microscopic state transitions. Therefore, the agreement shown in Fig. 2.3 is acceptable.

In addition, Fig. 2.4 shows the H fraction predicted by the two models as a function of

the distance r, and at four time instances. The profiles predicted by the two models are

similar, exhibiting that the H fraction varies smoothly in space. As expected, the discrepancy

decreases as time t increases.
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Figure 2.4: Comparison of H fractions on interstitial sites in space. Markers show the DMD
results and solid lines show the random walk solutions.

Assessment of numerical methods

In this section, we focus on assessing the accuracy of the first- and second-order mean field

approximation methods presented in Section 2.3.1, using the classical MC method as a

reference. As already mentioned in the introduction, employing the MC method to simulate

the entire process is impractical. Therefore, we limit ourselves to one time-step, specifically,

at time t = 218.67 s. Figure 2.5 compares the relative error in
〈
FPd(ωi)

〉
0

and
〈
FH(ωi)

〉
0

between the first- and second-order mean field approximation methods. Notably, the second-

order mean field approximation reduces the numerical error in both
〈
FPd(ωi)

〉
0

and
〈
FH(ωi)

〉
0

by a factor of 8. The total CPU time (i.e., the sum of computation time consumed by all

the CPU cores) consumed by each method has also been recorded, showing that the cost of
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the first- and second-order mean field approximations are nearly the same, and are 3 orders

of magnitude lower than the cost of the MC method (with 105 samples).
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Figure 2.5: Relative error in (a)
〈
FPd(ωi)

〉
0

and (b)
〈
FH(ωi)

〉
0
.

Figure 2.6 shows the effect of subcycling on computational cost, with ∆n varied between 1

(no subcycling) and 15. All simulations are terminated after 104 time-steps, and the total

CPU time is shown in the figure. Clearly, as ∆n increases, the total CPU time decreases

monotonically. Moreover, with the same ∆n, the constant and linear extrapolation methods

presented in Section 2.3.2 incur approximately the same cost. In particular, when ∆n = 15,

the speed-up is 440%. It is also notable that for this problem, the effect of subcycling

on solution accuracy is small. For example, the predicted maximum hydrogen fraction at

t = 2.0 s varies by less than 0.02% for ∆n between 1 and 15.
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Figure 2.6: Effect of subcycling on the total CPU time.

2.4.2 Absorption of hydrogen by Pd nanocubes

Pd is capable of absorbing a large atomic percentage of hydrogen at room temperature. The

process consists of three steps: (1) the dissociation of H2 molecules into atoms on the surface

of Pd; (2) the diffusion of H atoms into subsurface; and (3) the diffusion of H atoms into the

interior (octahedral) interstitial sites [47, 40, 48]. Here, we apply the proposed DMD model

and numerical methods to simulate Step (3). Recent experimental studies suggest that for

Pd nanoparticles, this step can take minutes or longer, and is dominated by the propagation

of a sharp α/β hydride phase boundary [49, 20, 27, 50, 51]. Both the large time scale and the

nonlinear dynamics make it an interesting example for testing and assessing the capabilities

and robustness of our DMD model.
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We create a Pd nanocube with 40 × 40 × 40 unit cells (Fig. 2.7), and the edge length

is approximately 16 nm. The sample contains 256, 000 Pd atoms and 256, 000 octahedral

interstitial sites that can be occupied by H atoms. The surfaces of the nanocube are aligned

with [100], [010], and [001] directions. We assume that at time t = 0, the surface and

subsurface layers are already saturated with H atoms. Therefore, following the theory of

Zalineeva et al. [48], we fix x = 1 within the first, second, and third outermost layers of

interstitial sites. The other interstitial sites are initialized with x = 0 (Fig. 2.7). As the

simulation starts, the atomic chemical potential γ is different on the subsurface and interior

interstitial sites, which drives the diffusion of H inwards. The atomic diffusivity coefficient

B0 is set to 500.0 K/(eV · s), same as in Section 2.4.1, whereas the temperature is fixed at

T = 300 K. The time-step size is ∆t = 5.0 × 10−3 s, and the total number of time-steps is

8× 103.

Figure 2.7: Simulation setup of H absorption by a Pd nanocube.

In order to describe the local lattice deformation resulting from the relaxation of the Pd

lattice and the movements of H atoms within it, we introduce a local lattice constant ai on
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each Pd site, defined as

ai =

(√
2

2

∣∣N (1)
Pd,i

∣∣+ ∣∣N (2)
Pd,i

∣∣+√6

2

∣∣N (3)
Pd,i

∣∣)−1∑
j

∣∣q̄i− q̄j∣∣, ∀i ∈ IPd, j ∈ N (1)
Pd,i∪N

(2)
Pd,i∪N

(3)
Pd,i,

(2.39)

where N (k)
Pd,i, with k = 1, 2, 3, labels the k-th shell of Pd neighbors of site i, and

∣∣N (k)
Pd,i

∣∣
denotes the cardinality of N (k)

Pd,i. The coefficients multiplying them, i.e.,
√

2/2, 1, and
√

6/2,

stand to recover the uniform lattice constant for an undeformed configuration.

Simulation result

Figure 2.8 visualizes the hydrogen diffusion process predicted by our DMD model. This

analysis is performed using the second-order mean field approximation presented in Sec-

tion 2.3.1 without subcycling. The relaxed Pd nanocube, which is fully saturated with H

(i.e., xi = 1, ∀i ∈ IH), is used as a reference configuration to calculate the covariances in

Eq. (2.35). Specifically, at time t = 8.5 s, the distribution of H fraction clearly indicates a

phase boundary separating an α phase core and a β phase shell. At this point, the phase

boundary has taken the shape of a rounded cube. Its thickness varies between 2 and 3 layers

of lattice sites from the rounded edges to the faces. From the distribution of lattice constant,

it can be seen that in the α phase the lattice constant is about 3.90 Å, and the lattice unit

cell, located along one of the cross-section diagonals (shown by the black square on the first

row of Fig. 2.8b), maintains the shape of a cube. However, an incipient lattice expansion

can be observed near the phase boundary. Notably, the corners of the nanocube stretch
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outwards along the body diagonals, forming a star-like shape. This phenomenon has also

been observed in experimental studies [27].

Conversely, at time t = 23.5 s, H diffuses towards the center of the Pd nanocube, and

the phase boundary has already acquired a spherical shape. The thickness of the phase

boundary appears to be uniform. The distribution of lattice constant shows that the lattice

deformation is most significant near the phase boundary, with a local maximum lattice

constant of 4.35 Å. From the zoom-in view, on the second row of Fig. 2.8b, the pre-selected

unit cell, which is near the phase boundary at this time instance, undergoes a large shear

deformation, characterized by the shape of a rhombohedron.

Finally, at time t = 31.0 s, the spherical phase boundary dwindles until H atoms saturate the

entire Pd nanocube. At this stage, the unit cell, located far away from the phase boundary,

restores its shape to a cube. Overall, the capability of the proposed DMD in capturing the

propagation of a sharp phase boundary over a time window of more than 30 s is remarkable.

Assessment of mean field approximation

In this section, we examine the computational accuracy and cost of the first- and second-

order mean field approximation methods at time t = 23.5 s, when the instantaneous solution

exhibits a spherical α/β phase boundary (Fig. 2.8). Figures 2.9 and 2.10 compare the

accuracy of the first- and second-order mean field approximation methods for evaluating

the mean of embedding energy, i.e.,
〈
FPd(ωi)

〉
0

and
〈
FH(ωi)

〉
0
, using the converged MC
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Figure 2.8: Distribution of (a) xi and (b) ai on the middle [100] cross-section. The zoom-in
views show the deformation of the same unit cell.

solution (with 105 samples) as a reference. Specifically, Fig. 2.9 shows the relative error

in
〈
FH(ωi)

〉
0
. Through the first-order approximation method, the numerical error is larger
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in the β phase outer shell than in the α phase core. This is likely due to the fact that the

higher H fraction in the β phase results in stronger interactions between H-Pd and H-H atom

pairs. This leads to a high variance of electron density ωi in the β phase and hence a large

numerical error caused by omitting the second- and higher-order terms on the right-hand-

side of Eq. (2.28). Figure 2.9 also shows that, as we expect, the second-order mean field

approximation significantly reduces the numerical error. Specifically, the maximum error

decreases from 9.46% to 4.35%, and the average error decreases from 4.93% to 0.53%, that

is, by nearly a factor of 10.

Figure 2.9: Relative error in
〈
FH(ωi)

〉
0

through (a) first- and (b) second-order approximation
methods.

Next, Fig. 2.10 shows the relative error in
〈
FPd(ωi)

〉
0
. Again, the second-order mean field

approximation is more accurate than the first-order counterpart. Specifically, the maximum

error decreases from 0.94% to 0.84%, while the average error decreases from 0.22% to 0.06%.

In addition, it is noteworthy that in both cases, the maximum error occurs near the α/β
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phase boundary.

Figure 2.10: Relative error in
〈
FPd(ωi)

〉
0

through (a) first- and (b) second-order approxima-
tion methods.

Figure 2.11 compares the total CPU time consumed by the mean field approximation meth-

ods and the MC method. Evidently, the computational cost of the first- and second-order

mean field approximations are about the same, which is 3 orders of magnitude lower than

that of MC integration (when considering 105 samples). Combining Figs. 2.9, 2.10 and2.11

together, it offers evidence of the ability of the second-order mean field approximation to

significantly reduce the numerical error while maintaining its low computational cost.

Figure 2.12 compares the average H fraction and lattice constant predicted by the first- and

second-order approximation methods. In particular, the first-order method overestimates

the speed of H diffusion. The maximum discrepancy between the two methods is 7.27% and

1.34% in the average H faction and the average lattice constant, respectively.
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Figure 2.11: Effect of mean field approximation on the total CPU time.
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Figure 2.12: Effect of mean field approximation on the average (a) H fraction and (b) lattice
constant of the nanocube.

Assessment of subcycling time integration

The total CPU time consumed by the simulations with different subcycling-step sizes is

compared in Fig. 2.13. With either constant or linear extrapolation, the results exhibit a
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U-shaped profile. Specifically, as ∆n increases, the total CPU time firstly decreases, because

Algorithm 2 skips more successive calls of the computationally intensive optimization solver.

However, when ∆n is greater than 6, the total CPU time increases, because the optimization

solver requires more quasi-Newton iterations to achieve convergence. Moreover, with the

same ∆n, the linear extrapolation shows a lower computational cost than the constant

extrapolation, and the difference of the cost between them becomes more obvious when ∆n

is larger. This is due to the fact that through the linear extrapolation, the initial guess

for the optimization solver is closer to the final solution, resulting in fewer quasi-Newton

iterations to achieve convergence. In particular, when ∆n = 5, the speed-up is about 254%

through the constant extrapolation, while the linear extrapolation with ∆n = 8 provides a

speed-up of 647%.
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Figure 2.13: Effect of subcycling on the total CPU time.

Figures 2.14 and 2.15 show the effect of subcycling on the solution accuracy, using the
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average H fraction and lattice constant as metrics. Specifically, three different values of

∆n are tested, namely, 1 (no subcycling), 5 and 8. Overall, the accuracy of the solutions

obtained with subcycling is acceptable. The maximum error is 2.67% and 0.24% in the

average H fraction and lattice constant, respectively. From the zoom-in views, it can be

seen that at one specific time instance (e.g., t = 22.0 s), for both schemes of extrapolation

the solution accuracy decreases as ∆n increases. More specifically, the solutions obtained

with subcycling are all lower than the solution with ∆n = 1 (i.e., no subcycling). This can

be explained by considering Eq. (2.23) and the boundary conditions specified to the three

outermost layers of the material sample. In addition, from the zoom-in views it can also be

found that, with the same ∆n (e.g., ∆n = 5), the solution through the linear extrapolation

is more accurate than that through the constant extrapolation. This is due to the fact

that the values of {q̄} and {σ} obtained through the linear extrapolation are closer to their

true values. Combining Figs. 2.13, 2.14, 2.15, the ability of subcycling time integration to

accelerate the DMD simulation by more than 6 times without significant loss of accuracy is

noteworthy.

2.5 Summary and concluding remarks

Diffusive molecular dynamics (DMD) is a novel computational framework that holds promise

for predicting long-term diffusive mass transport in crystalline solids at atomistic resolution.

It exploits the separation of diffusive and displacive time scales using a probabilistic approach,
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Figure 2.14: Effect of subcycling on the average H fraction of the nanocube.
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Figure 2.15: Effect of subcycling on the average lattice constant of the nanocube.

thereby alleviating the need to explicitly track individual atom/vacancy hops. As shown in

Section 2.4, the time-step size of a DMD simulation can reach 1 ms, making it possible

to explore larger time windows beyond the capability of previously established atomistic

computational models. However, the computational cost of DMD at each time-step is high,
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due to the need to solve a high-dimensional nonlinear optimization problem.

In this paper, we have presented two numerical methods to accelerate DMD simulations

without significant loss of accuracy. The first method endeavors to compute the mean of

a many-body interatomic potential and its derivatives, which are high-dimensional random

variables, using first- or second-order mean field approximations. The first-order version of

the method has been applied to DMD in [36, 13, 37], although the term mean field approxi-

mation was not used therein. In the present work, the second-order extension is introduced

in order to improve solution accuracy, without significant increase in computational expense.

It utilizes a reference configuration to calculate, off-line, the computationally expensive high-

order terms, exploiting the fact that for solid crystals, the displacive atomic movements in

a diffusion-dominated process are often small compared to the lattice spacing at equilib-

rium. The second method, subcycling time integration, consists of regularly skipping the

computationally expensive optimization solver while integrating the diffusion equation more

frequently in time. At intermediate steps, the optimization solution is estimated simply

through constant or linear extrapolation. This idea has been exploited in various multi-

physics problems in the past, but applications to DMD had not previously pursued.

We have parallelized the proposed numerical methods using the PETSc library, and applied

them to the solution of two problems pertaining to diffusion of hydrogen in palladium. The

two problems differ markedly in that the first has a solution that varies smoothly in space

and time (Section 2.4.1), whereas the second features an atomically sharp phase boundary

(Section 2.4.2). Several findings afforded by the present study are noteworthy. Firstly, for
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both problems, the first- and second-order mean field approximation methods reduce the

computational cost by three orders of magnitude relative to the cost of direct integration of

the interatomic potential using a Monte Carlo method. Secondly, again for both problems,

subcycling accelerates time integration by a factor of four or more. Thirdly, the one-step

error of the first-order mean field approximation is small for the first problem, specifically,

less than 0.05%, but it can exceed 9% for the second problem. In this case, the second-order

extension reduces the maximum error by a factor of two, and the average error by a factor

of ten.

Beyond these computational developments, we note that the study of hydrogen diffusion in

metallic crystals would appear to constitute a novel application of DMD. The ability of DMD

to predict the propagation of atomically-sharp phase boundaries over a time window of more

than 30 s with full atomistic realism is particularly noteworthy. In closing, we also note

that the scope of DMD is not limited to metal hydrides and a broad range of multi-species

systems of practical interest suggest themselves as worthwhile foci for future studies.
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Appendix

2.A Derivation of Equation (2.14)

Substituting Eq. (2.13) into Eq. (2.8), we obtain

ρ0 =
1

Ξ0

exp

(
−

∑
i∈IM∪IH

1

2σ2
i

|qi − q̄i|2 −
∑
i∈IM

1

2kBTmM

|pi − p̄i|2

−
∑
i∈IH

(
1

2kBTmH

|pi − p̄i|2 − ni(γi + γ0i)

))
.

(2.40)

Enforcing 〈1〉0 = 1, i.e.,

∑
{n}∈O|IH|

(
1

2π~

)3(|IM|+|IH|) ∫
Γ

ρ0dqdp = 1, (2.41)

we obtain

Ξ0 =
∑

{n}∈O|IH|

(
1

2π~

)3(|IM|+|IH|) ∫
Γ

e−{β}
T{h0}+{γ}T{n}dqdp

=
∏
i∈IM

(
σi
√
kBTmM

~

)3 ∏
i∈IH

(
σi
√
kBTmH

~

)3(
eγi+γ0i + 1

)
,

(2.42)

where |IH| and |IM| denote the cardinality of IH and IM, respectively. O|IH| = {0, 1}|IH|.
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Γ = (R3 × R3)|IM+IH|. ~ is the reduced Planck’s constant. Also,

dqdp =
∏

i∈IM∪IH

3∏
k=1

dqikdpik. (2.43)

Calculating the expected atomic fraction yields

xi ≡ 〈ni〉0 =
∑

{n}∈O|IH|

(
1

2π~

)3(|IM|+|IH|) ∫
Γ

niρ0dqdp

=

(
1

2π~

)3(|IM|+|IH|) ∑
{n}∈O|IH|

ni

∫
Γ

e−{β}
T{h0}+{γ}T{n}dqdp

∏
j∈IM

(
σj
√
kBTmM

~

)3 ∏
j∈IH

(
σj
√
kBTmH

~

)3(
eγj+γ0j + 1

)

=

(
1

2π

)3(|IM|+|IH|)

eγi+γ0i
∏

j∈IH, j 6=i

(
eγj+γ0j + 1

) ∏
j∈IM

(
2πσj

√
kBTmM

)3
∏
j∈IH

(
2πσj

√
kBTmH

)3

∏
j∈IM

(
σj
√
kBTmM

)3
∏
j∈IH

(
σj
√
kBTmH

)3(
eγj+γ0j + 1

)
=

eγi+γ0i

eγi+γ0i + 1
.

(2.44)

A straightforward manipulation gives

γi = log
xi

1− xi
− γ0i, (2.45)

which is Eq. (2.14).
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2.B Complexity of computing phase averages using Gaus-

sian quadratures on a sparse grid

In this section, the complexity of computing Eq. (2.26) is discussed. Clearly, the first two

terms on the right-hand-side of Eq. (2.26) dominate the computational cost, as they involve

high-dimensional integration. By means of Gaussian quadratures, the first term is computed

as follows

∑
i∈IM

〈
FM(ωi)

〉
0
≈
∑
i∈IM

kmax∑
k=1

FM(ωi,k)Wk

=
∑
i∈IM

kmax∑
k=1

FM

( ∑
j∈IM∩Bi(rc),

j 6=i

fM(rij,k) +
∑

j∈IH∩Bi(rc),
j 6=i

xjfH(rij,k)
)
Wk,

(2.46)

where Bi(r) denotes the set of atomic sites within a distance r of site i, and rc is the cut-off

distance of the EAM potential. The subscript “k” on ω and r refers to the k-th Gaussian

point, whereas Wk is the weight of the k-th point. kmax denotes the total number of Gaussian

points on a pre-defined sparse grid, which is at least 2n for n-dimensional integration. For

Eq. (2.46), we have

∣∣∣(IM ∩ Bi(rc)
)
∪
(
IH ∩ Bi(rc)

)∣∣∣ =
∣∣∣(IM ∪ IH

)
∩ Bi(rc)

∣∣∣ = Q+ 1, (2.47)

and

kmax ≥ 6(Q+ 1). (2.48)
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The above derivation also applies to the second term on the right-hand-side of Eq. (2.26), i.e.,∑
i∈IH

xi
〈
FH(ωi)

〉
0
. Therefore, computing Eq. (2.26) using Gaussian quadratures on a sparse

grid requires at least O(Q2N) calls of pair functions, where N is the total number of base

and interstitial sites in the material sample.

2.C Complexity of computing phase averages using Gaus-

sian quadratures with mean field approximation

By the first-order mean field approximation, the first term on the right-hand-side of Eq. (2.26)

is given by

∑
i∈IM

〈
FM(ωi)

〉
0
≈
∑
i∈IM

FM

(
〈ωi〉0

)
≈
∑
i∈IM

FM

( ∑
j∈IM∩Bi(rc),

j 6=i

kmax∑
k=1

fM(rij,k)Wk +
∑

j∈IH∩Bi(rc),
j 6=i

xj

kmax∑
k=1

fH(rij,k)Wk

)
,

(2.49)

where Eq. (2.47) is also satisfied. Here, kmax is independent of Q and N , since the Gaussian

quadratures are performed with respect to 6-dimensional integration. The above derivation

also applies to the term
∑
i∈IH

xi
〈
FH(ωi)

〉
0
. Therefore, computing Eq. (2.26) with the first-order

mean field approximation involves O(QN) calls of pair functions.

When using the second-order mean field approximation, the first term on the right-hand-side
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of Eq. (2.26) is given by

∑
i∈IM

〈
FM(ωi)

〉
0
≈
∑
i∈IM

FM

(
〈ωi〉0

)
+

1

2

∑
i∈IM

F ′′M
(
〈ωi〉0

)(
C

(0)
MM,i + 2C

(0)
MH,i + C

(0)
HH,i + C0,i + C1,i

)
.

(2.50)

The complexity of computing the first-order term
∑
i∈IM

FM

(
〈ωi〉0

)
has been discussed above.

The second-order term of Eq. (2.50) is

1

2

∑
i∈IM

F ′′M
(
〈ωi〉0

)(
C

(0)
MM,i + 2C

(0)
MH,i + C

(0)
HH,i + C0,i + C1,i

)
≈1

2

∑
i∈IM

F ′′M

( ∑
j∈IM∩Bi(rc),

j 6=i

kmax∑
k=1

fM(rij,k)Wk +
∑

j∈IH∩Bi(rc),
j 6=i

xj

kmax∑
k=1

fH(rij,k)Wk

)
(
C

(0)
MM,i + 2C

(0)
MH,i + C

(0)
HH,i +

∑
j∈IM∩Bi(rc),

j 6=i

( kmax∑
k=1

f 2
M(rij,k)Wk −

( kmax∑
k=1

fM(rij,k)Wk

)2
)

+
∑

j∈IH∩Bi(rc),
j 6=i

(
xj

kmax∑
k=1

f 2
H(rij,k)Wk − x2

j

( kmax∑
k=1

fH(rij,k)Wk

)2
))

,

(2.51)

where C
(0)
MM,i, C

(0)
MH,i, and C

(0)
HH,i are defined in Eq. (2.35). The on-the-fly computational cost

of C
(0)
MM,i, C

(0)
MH,i and C

(0)
HH,i is low because the covariances in them are calculated off-line for a

reference equilibrium state — exploiting the fact that for solid crystals, the displacive atomic

movements in a diffusion-dominated process are often small compared to the lattice spacing

at equilibrium. For Eq. (2.51), Eq. (2.47) is satisfied, and similarly, kmax is independent

of Q and N . The above derivation also works for
∑
i∈IH

xi
〈
FH(ωi)

〉
0
. Therefore, computing

Eq. (2.26) with the second-order mean field approximation requires O(QN) calls of pair

functions.
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2.D Some implementation details

Solving the optimization problem formulated in Eq. (2.22) requires calculating the gradients

of the objective function with respect to the state variables {q̄} and {σ}. Solving the

integration problem formulated in Eq. (2.23) requires calculating the chemical potential

{γ}. In this section, we derive ∂F/∂q̄i, ∂F/∂σi and γi as functions of {q̄} and {σ}, using

the second-order mean field approximation formulated in Eq. (2.36).

1. ∂F/∂q̄i is given by

∂F
∂q̄i

=
1

T

(
∂FM

(
〈ωi〉0

)
∂q̄i

+
1

2

∂F ′′M
(
〈ωi〉0

)
∂q̄i

Ci +
1

2
F ′′M
(
〈ωi〉0

)∂Ci
∂q̄i

+
∑

j∈IM, j 6=i

(∂FM

(
〈ωj〉0

)
∂q̄i

+
∂
〈
φMM(rij)

〉
0

∂q̄i
+

1

2

∂F ′′M
(
〈ωj〉0

)
∂q̄i

Cj +
1

2
F ′′M
(
〈ωj〉0

)∂Cj
∂q̄i

)
+
∑
j∈IH

xj

(∂FH

(
〈ωj〉0

)
∂q̄i

+
∂
〈
φMH(rij)

〉
0

∂q̄i
+

1

2

∂F ′′H
(
〈ωj〉0

)
∂q̄i

Cj +
1

2
F ′′H
(
〈ωj〉0

)∂Cj
∂q̄i

))
, ∀i ∈ IM,

(2.52)

and

∂F
∂q̄i

=
xi
T

(
∂FH

(
〈ωi〉0

)
∂q̄i

+
1

2

∂F ′′H
(
〈ωi〉0

)
∂q̄i

Ci +
1

2
F ′′H
(
〈ωi〉0

)∂Ci
∂q̄i

+
∑
j∈IM

(∂FM

(
〈ωj〉0

)
∂q̄i

+
∂
〈
φMH(rij)

〉
0

∂q̄i
+

1

2

∂F ′′M
(
〈ωj〉0

)
∂q̄i

Cj +
1

2
F ′′M
(
〈ωj〉0

)∂Cj
∂q̄i

)
+

∑
j∈IH, j 6=i

xj

(∂FH

(
〈ωj〉0

)
∂q̄i

+
∂
〈
φHH(rij)

〉
0

∂q̄i
+

1

2

∂F ′′H
(
〈ωj〉0

)
∂q̄i

Cj +
1

2
F ′′H
(
〈ωj〉0

)∂Cj
∂q̄i

))
, ∀i ∈ IH,

(2.53)
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where the gradients of F and F ′′ — collectively represented by G — are given by

∂G
(
〈ωi〉0

)
∂q̄i

= G′
(
〈ωi〉0

)( ∑
j∈IM, j 6=i

∂
〈
fM(rij)

〉
0

∂q̄i
+

∑
j∈IH, j 6=i

xj
∂
〈
fH(rij)

〉
0

∂q̄i

)
, ∀i ∈ IM ∪ IH,
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and
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(2.55)

〈ωi〉0 is calculated using Eq. (2.31). From Eqs. (2.31), (2.54) and (2.55), it can be seen

that evaluating ∂F/∂q̄i requires calculating the mean of pair functions f , φ, and f 2

and their gradients. Through a change of variables with respect to atomic positions

qi = q̄i +
√

2σisi, (2.56)

where {s} is a set of normally distributed variables, the integration involved in the



2.D. SOME IMPLEMENTATION DETAILS 78

calculation of mean is performed with respect to {s}. Then, by Gaussian quadratures,

〈f〉0, 〈φ〉0, 〈f 2〉0 — collectively represented by 〈g〉0 — and ∂〈g〉0/∂q̄i are given by

〈
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where

rij,k =
√

2σisi,k −
√

2σjsj,k + q̄i − q̄j, (2.58)

with rij,k = |rij,k|. Here, si,k is the value of si at the k-th Gaussian point. Notably,

〈g〉0 and ∂〈g〉0/∂q̄i in Eq. (2.57), and hence ∂F/∂q̄i, are functions of {q̄} and {σ}.
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(2.60)

where ∂F/∂σ, ∂F ′′/∂σ and ∂C/∂σ can be calculated based on Eqs. (2.54) and (2.55)

by replacing ∂q̄i with ∂σi. The gradients ∂〈f〉0/∂σi, ∂〈φ〉0/∂σi and ∂〈f 2〉0/∂σi —

collectively represented by ∂〈g〉0/∂σi — are given by

∂
〈
g(rij)

〉
0

∂σi
=

kmax∑
k=1

g′(rij,k)
rij,k · si,k
rij,k

Wk, (2.61)

which is a function of state variables. Therefore, ∂F/∂σi is a function of {q̄} and {σ}.

3. γi is given by
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(2.62)

where the gradients of F , F ′′ — collectively represented by G — and C with respect
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to xi are given by
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(2.63)

The covariances are calculated off-line. Similarly, γi is a function of {q̄} and {σ}.
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Abstract

Understanding the transport of hydrogen within metallic nanomaterials is crucial for the ad-

vancement of energy storage and the mitigation of hydrogen embrittlement. Using nanosized

palladium particles as a model, recent experimental studies have revealed several interesting

phenomena that occur over long time periods. The time scale of these phenomena is beyond

the capability of established atomistic models such as molecular dynamics. In this work,

we present the application of a new approach, referred to as diffusive molecular dynamics

(DMD), to the simulation of long-term diffusive mass transport at the atomic scale. Specif-

ically, we simulate the absorption of hydrogen by palladium nanocubes with edge lengths

in the range of 4 nm and 16 nm. We find that the absorption process is dominated by the

initiation and propagation of an atomistically sharp α/β Pd-H phase boundary, with thick-

ness in the range of 0.2 to 1.0 nm, which separates an α phase core from a β phase shell.

The evolution of phase boundary and the resulting local lattice deformation are described in

this paper in detail. The effects of size on both equilibrium and kinetic properties are also

assessed.
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3.1 Introduction

Solute-induced phase transformation is a fundamental process in various energy conversion

and storage applications. For example, the storage of hydrogen in metals relies on the phase

transformation of the hydride (e.g., MgHx, NaAlHx), induced by the diffusion of hydrogen

atoms [1, 2, 3, 4]. Similarly, the operation of lithium-ion batteries relies on a reversible

phase transformation in the cathodic material (e.g., LixCoO2, LixFePO4), induced by the

diffusion of lithium ions [5]. For these applications, there has been a continuous push towards

nanostructured systems, as they hold promise to accelerate the charging and discharging

process, increase the energy and power density, and extend the life cycle [5, 6, 7].

The palladium-hydrogen (Pd-H) system is a prototypical model for studying solute-induced

phase transformation, because it allows for relatively fast reaction kinetics at easily accessible

temperatures and pressures [8]. The Pd-H system exhibits two distinct phases at room

temperature: the dilute α phase at low H concentration (up to PdH0.015), and the β phase at

high H concentration (PdH0.6 and above). In both phases, the Pd lattice maintains the face-

centered cubic (FCC) structure, while the H atoms occupy the interstitial octahedral sites.
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Attendant to the α/β phase transformation, there is a lattice expansion with approximately

3.5% increase in lattice constant [9] and 10.4% increase in volume, which, in bulk materials,

results in the formation of misfit dislocations.

While the behavior of Pd-H is well-understood in the bulk, the phase transformation dy-

namics within nanostructured Pd-H systems is an active area of ongoing research [10, 11,

12, 13, 14, 15, 16, 17]. Specifically, the sloped isotherms of nanoparticle ensembles seem to

suggest that the phase transformation is continuous, and hence the two phases may coexist

in equilibrium [10]. However, this hypothesis is challenged by several recent experiments

at the scale of individual nanoparticles. For example, using scanning transmission electron

microscopy, Narayan et al. observed the propagation of a sharp α/β phase boundary in in-

dividual Pd nanocubes with edge lengths between 10 and 35 nm [15]. Using coherent X-ray

diffractive imaging, Ulvestad et al. measured the evolution of strain within individual Pd

nanocubes between 120 and 340 nm, which also indicates a sharp α/β phase transforma-

tion [13, 16]. Beyond the overall transformation mechanism, i.e., continuous transformation

versus phase boundary propagation, other unresolved issues include the morphology of the

phase boundary, e.g., spherical shell versus spherical cap [11, 15, 16], the effect of particle

shape and lattice orientation [12], and the interaction of phase boundary with preexisting

defects [14].

Moreover, these experimental studies suggest that in nanosized particles, the α/β phase

boundary may be atomistically sharp, and it may propagate very slowly at around 1 nm/s.

This confluence of atomistic length scale and a long time scale (i.e., minutes or longer) chal-
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lenges theory and simulation. Phase-field models have been applied to interpret some of the

experimental results from nanosized Pd particles [11, 13]. However, continuum models fail to

account for the fine atomistic structure (e.g., local lattice distortion and dislocations) across

the phase boundary. By way of contrast, classical Molecular Dynamics (MD) does supply full

atomistic detail [18], but the need to resolve the thermal vibrations of the atoms places slow

diffusive processes such as phase boundary propagation outside its scope. Transition state

theory based accelerated MD methods [19] and kinetic Monte Carlo (kMC) methods [20]

have been developed to expand the simulation time window of MD while maintaining full

atomistic fidelity. However, for mass transport problems, such as hydride phase boundary

propagation, the total time window accessible to these methods is limited by the frequency

of individual atom hops within the material sample and is typically less than one second [21].

Besides the aforementioned kinetic models, the equilibrium MC method has also been applied

to investigate H absorption by Pd nanoparticles and nanofilms, which predicted isotherms

at different equilibrium states [22, 23, 24].

In this work, we apply a novel computational model, referred to as diffusive molecular dy-

namics (DMD), to the investigation of the detailed dynamics of H absorption and hydride

phase propagation within Pd nanocubes with edge lengths in the range of 4 nm to 16 nm.

DMD is a new paradigm for simulating long-term diffusive mass and heat transport while

maintaining full atomic resolution [17, 25, 26, 27, 28, 29, 30]. Its defining idea is to cou-

ple a calibrated empirical kinetic model for the evolution of lattice site occupancy with a

non-equilibrium statistical thermodynamics model that supplies the requisite driving forces
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for kinetics. The basic assumption underlying DMD is that the time scale of diffusion is

much larger than that of microscopic state transitions. Therefore at an intermediate time

scale, the microscopic state variables can be considered as random variables. In comparison

to the established atomistic models mentioned above, DMD has a larger simulation time

window as it does not explicitly resolve thermal vibrations nor individual microscopic state

transitions. It has been applied to nanoindentation and sintering [25], dislocation exten-

sion [26], nanovoid growth [31], solute-defect interactions [32] and silicon lithiation [33]. In

particular, a recent study by Wang et al. [17] shows that the DMD model, when equipped

with an embedded atom method (EAM) potential function [34], is capable of capturing the

separation of the α and β phases of Pd-H. In Reference [17], the DMD model is also validated

against experimental data for the desorption of hydrogen in Pd nanofilms. Nonetheless, the

study was limited to a one-dimensional analysis of hydrogen diffusion within thin Pd films.

Also, the lattice deformation induced by hydrogen diffusion was neglected. The application

of the DMD theory to investigate three-dimensional Pd-H systems — accounting for the

deformation-diffusion coupling — is therefore the main novelty of the present paper.

The large time window and atomic resolution of DMD renders it an excellent tool for studying

hydride phase transformations within Pd nanoparticles, which operates on time scales of

seconds to minutes. In this work, we begin by presenting a succinct summary of DMD in

the interest of completeness, in Section 3.2. The assumptions and computational setup are

subsequently described in Section 3.3. Simulation results concerned with the final equilibrium

state, the morphology of the α/β Pd-H phase boundary, the attendant local lattice distortion,
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the absorption transient, as well as the effect of nanoparticle size are presented in Section 3.4.

A summary and concluding remarks are consigned to Section 3.5 by way of closing.

3.2 Methodology

We consider an FCC Pd sample, which includes host sites occupied by Pd atoms and inter-

stitial octahedral sites that can be either occupied by H atoms or unoccupied. For ease of

reference, we denote the host sites by IPd, and the interstitial sites by IH. At each interstitial

site i ∈ IH, we introduce an occupancy function defined as

ni =


1 if the site i is occupied by H atom

0 if the site i is unoccupied

. (3.1)

The instantaneous position and momentum of each site i are denoted by qi and pi, re-

spectively. Based on the assumption of scale separation and the ergodic hypothesis, these

microscopic state variables can be viewed as random variables that have a joint probability

distribution characterized by density function ρ
(
{q}, {p}, {n}

)
, where {q} = (qi)i∈IPd∪IH ,

{p} = (pi)i∈IPd∪IH and {n} = (ni)i∈IH . We determine ρ by applying Jaynes’ principles of

maximum entropy [35, 36], i.e., by maximizing the information-theoretical entropy

S[ρ] = −kB〈log ρ〉, (3.2)
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with the local constraints 
〈hi〉 = ei, i ∈ IPd ∪ IH

〈ni〉 = xi, i ∈ IH

, (3.3)

where kB is the Boltzmann constant, and 〈·〉 represents the expectation operator. Here,

hi, ei and xi denote the local Hamiltonian, particle energy and H atomic fraction of site i,

respectively. As a result, we have

ρ =
1

Ξ
e−{β}

T{h}+{γ}T{n}, (3.4)

where Ξ is the partition function, and {β} and {γ} are Lagrange multipliers. In comparison

with equilibrium statistical thermodynamics, Eq. (3.4) can be interpreted as non-equilibrium

generalization of the Gibbs grand-canonical probability density function. Also, Ti = 1/(kBβi)

and µi = kBTiγi can be defined as the particle absolute temperature and the chemical

potential of site i, respectively.

Because the Hamiltonian hi is typically a nonlinear function, the calculation of the thermo-

dynamic potentials (e.g., ei and Ξ) is generally intractable. Venturini et al. [27] proposed

an approximation theory, in which the optimization problem is performed within a finite-

dimensional trial space. We consider uniform temperature and apply the approximation
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theory with a carefully designed trial Hamiltonian

h0i(qi,pi, ni; q̄i, σi, p̄i, γ0i)

=


kBT

2σ2
i

|qi − q̄i|2 +
1

2mPd

|pi − p̄i|2, if i ∈ IPd

kBT

2σ2
i

|qi − q̄i|2 +
1

2mH

|pi − p̄i|2 − kBTγ0ini, if i ∈ IH

,

(3.5)

where T is the constant temperature, q̄i, σi, p̄i, and γ0i are parameters that characterize

the trial space, and mPd and mH denote the atomic mass of Pd and H, respectively. It can

be shown that q̄i and σi are the mean and standard deviation of qi, respectively, whereas

p̄i is the mean of pi. In Eq. (3.5), γ0i indicates the dependence of chemical potential on H

fraction xi. Specifically, by calculating 〈ni〉0, where 〈·〉0 denotes the expectation operator

under the trial probability density function, and applying the relation 〈ni〉0 = xi, we obtain

γ0i = log
xi

1− xi
− γi. (3.6)

After straightforward derivations according to Reference [27], and using Eq. (3.6), the opti-



3.2. METHODOLOGY 97

mization problem of Eq. (3.2) becomes

min
{q̄},{σ},{p̄}

F
(
T, {γ}; {q̄}, {σ}, {p̄}, {x}

)
=

1

T
〈V 〉0 +

1

2TmPd

∑
i∈IPd

p̄2
i +

1

2TmH

∑
i∈IH

xip̄
2
i

+
3

2
kB

∑
i∈IPd

(
log

~2

kBTmPdσ2
i

− 1

)

+
3

2
kB

∑
i∈IH

(
log

~2

kBTmHσ2
i

+ xi − 2

)

+ kB

∑
i∈IH

(
xi log xi + (1− xi) log (1− xi)− γixi

)
,

(3.7)

where ~ is the reduced Planck constant. V
(
{q}, {n}

)
denotes the interatomic potential

energy and its average is calculated by third-order Gaussian quadratures on a sparse grid [37].

The nondimensional chemical potential γi is obtained by enforcing the first-order necessary

condition to atomic fraction xi, which yields

γi =
3

2
+ log

xi
1− xi

+
1

kBT

∂〈V 〉0
∂xi

, i ∈ IH. (3.8)

The thermodynamics model formulated in Eq. (3.7) is then coupled with a discrete diffusion

law, which enforces the balance of mass at each interstitial site, i.e.,

ẋi =
∑
j 6=i

Jij, (3.9)

where Jij denotes the bondwise mass flux from site j to site i, and satisfies Jij = −Jji. For
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simplicity, but without loss of generality, we restrict diffusive transport within one shell of

neighbors, and enforce a linear dependence of the bondwise mass flux on both the H atomic

fraction and the difference in chemical potential. As a result, we have

ẋi = −kBB0

∑
j∈N (1)

i

xi + xj
2

(γi − γj), i ∈ IH, (3.10)

where N (1)
i denotes the first shell of neighbors of site i. B0 denotes the bondwise diffusion co-

efficient, which can be calibrated to reproduce the speed of diffusion observed in experiments.

It is noteworthy that B0 should not be directly compared with the diffusion coefficient (in

Fick’s second law) measured in bulk Pd-H. Also, the classical Fick’s second law would not

be able to capture the initiation and propagation of sharp phase boundaries.

The above discrete diffusion law has been validated against the classical lattice random walk

model for the long-term dynamics of a single H atom in Pd [30]. It has also been applied

to study surface segregation in AuAg alloys [38]. Moreover, similar bondwise flux functions

have been employed to simulate spin-diffusion in a one-dimensional binary alloy [39].

Our DMD model couples a nonlinear optimization problem with a first-order, nonlinear or-

dinary differential equation (ODE), i.e., Eqs. (3.7) and (3.10), respectively. We solve this

coupled system by discretizing the ODE using an explicit time integrator, and solving the

optimization problem once per time step using a quasi-Newton method BFGS (Broyden-

Fletcher-Goldfarb-Shanno) algorithm [40]. We have parallelized the solver with Message

Passing Interface (MPI), using the PETSc library [41] for large-scale simulations on com-
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puter clusters with distributed memory. Details of the solutions of the equations and the

computation procedure of DMD can be found in Reference [30]. The simulations reported

in this work consume up to 7, 000 CPU hours (e.g., 24 hours on 300 CPU cores), using the

BlueRidge supercomputer at Virginia Tech [42].

3.3 Simulation setup

Pd nanoparticles are capable of absorbing a large percentage of H atoms at room tempera-

ture. The process consists of three stages: (1) the dissociation of H2 molecules into atoms

on the surface of Pd nanoparticles; (2) the diffusion of H atoms into subsurface; and (3) the

diffusion of H atoms into the interior (octahedral) interstitial sites [43, 44]. Here, we apply

the proposed DMD model to simulate stage (3). Recent experimental studies suggest that

for Pd nanoparticles, this step can take minutes or longer, and may be dominated by the

propagation of a sharp α/β hydride phase boundary [16, 15, 13, 11, 45]. Given the large

time scale and the nonlinear dynamics, we anticipate that the novel DMD model would be a

useful analysis tool that can lead to improved understanding. In this work, we consider cubic

nanoparticles with edge lengths (denoted by L) in the range of 4 nm and 16 nm (Fig. 3.1).

All the samples are single crystals, and the surfaces are aligned with the [100], [010], and

[001] directions.

Previous studies have shown that during stages (1) and (2), H atoms occupy the surface

and subsurface interstitial sites of Pd nanoparticles in equilibrium with external H2 partial
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Figure 3.1: Simulation setup of H absorption by a Pd nanocube (L = 16 nm).

pressures below the α/β phase transformation pressure [46, 47]. Moreover, the time scale

associated with surface and subsurface saturation is much smaller than that of H diffusion

inside the nanoparticle [11, 44] . Therefore, we assume that at any time instance in the

simulation, the surface and subsurface layers are partially or fully saturated with H atoms,

with a constant atomic fraction x = xsurf. We also assume that the remaining octahedral

sites in the interior of the particle, are unoccupied at the beginning of the simulation, and

thus we set x = 0 at these sites at time t = 0. Then, the inward hydrogen diffusion starts

owing to the initial gradient between the chemical potential γ on the subsurface and interior

interstitial sites.

Moreover, we employ the embedded atom method (EAM) potential developed by Zhou et

al. [34] to model the interatomic potential energy, and the temperature is fixed at T = 300 K.
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The atomic diffusivity coefficient B0 is set to 500.0 K/(eV · s), basing on recent experimental

data for nanocubes of similar sizes [15]. The simulation results are visualized and post-

processed using OVITO [48].

3.4 Results and discussion

Since the occupancy of octahedral sites by H atoms during the first two stages enforces

the initial boundary conditions of the studies carried out in this work, our starting point

consists on finding the threshold on the H atomic fraction that drives the inward diffusion

of hydrogen in Pd nanocubes.

Thus, we have conducted a series of simulations, in which we proceed by varying the boundary

condition xsurf between 0 to 1, and analyze the H atomic ratio at the end of the absorption

process. Figure 3.2 shows, for three Pd nanocubes with edge lengths L = 4 nm, 8 nm, and

16 nm, the H atomic ratio in the interior of the cube, i.e., excluding the surface and subsurface

layers (denoted by xint), and that in the entire cube (denoted by xent). In Fig. 3.2(a), it can

be seen that all the data points have xsurf ≥ xint. This indicates that at equilibrium, H

atoms prefer to stay on and near the surface, than in the interior, of the nanocube. It is also

notable that when xsurf ≤ 0.3, xint ≈ 0. In other words, there is a threshold in boundary

H concentration for the initiation of absorption. These findings are consistent with several

experimental studies [46, 47] and recent simulation results using an equilibrium Monte Carlo

method [49] and a phase-field model [44]. The simulation also predicts that when xsurf = 1,
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the interior interstitial sites are fully occupied (i.e. xint = 1), although this is difficult to

achieve in practice, at temperature T = 300 K. Further, comparison of the two subfigures

in Fig. 3.2 suggests that the effect of nanocube size (specifically, for 4 nm < L < 16 nm) is

dominated by the resulting variation in surface-to-volume ratio. Its effect on the interior H

concentration (i.e., xint), however, is not clearly captured. This may be due to the limited

capability of the EAM potential in capturing the complete atomistic picture of hyrided Pd

nanoparticles, which may exhibit different electronic states in the core and shell regions.
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Figure 3.2: H concentration at equilibrium. In each subfigure, the dotted line without
markers represent the result from the classical model γ = log(x).

3.4.1 Evolution of phase boundary

We examine the evolution of the α/β phase boundary for the case of xsurf = 1, i.e., the

surface and subsurface layers are fully saturated. Figure 3.3 visualizes the evolution of the

phase boundary for the three Pd nanocubes. We examine the distribution and variation
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of H atomic ratio at four time instances, corresponding to xint = 0.1, 0.5, 0.85, and 0.98,

respectively. Specifically, from the two-dimensional images, it can be observed that at the

beginning of the absorption process (e.g., when xint = 0.1), all the three nanocubes form a

shell with high H atomic ratio (close to 1.0), which indicates the β phase of Pd-H. The interior

of the nanocubes, on the other hand, is in α phase, with low H atomic ratio (close to 0). The

α and β phases are separated by a sharp boundary that consists of only a few layers of lattice

sites. This phase boundary is extracted and visualized in three-dimension in Fig.3.3. As time

increases, the phase boundary moves inwards, and its corners and edges become rounded.

Near the end of the absorption process (e.g., when xint = 0.85), the phase boundary evolves

into a spherical shape. Finally, the phase boundary disappears after reaching the center of

the nanocube, which also completes the absorption process. The observed phase boundary

morphology likely suggests that, for the simulated nanocubes, the phase boundary moves

faster in 〈111〉 or 〈110〉 directions than along 〈100〉 directions, which is consistent with the

indication of a recent experiment by Narayan et al. [15].

It is notable that the thickness of the α/β phase boundary varies in the range of 0.2 to 1.0 nm,

dependent upon time, location, and the size of the nanocube. Specifically, comparing the

zoom-in view on the second row of Fig. 3.3 shows that as the size of the nanocube increases,

so does the thickness of the phase boundary. Also, comparing each column of Fig. 3.3

shows that as time increases, the thickness of phase boundary first increases, then decreases.

Furthermore, when the phase boundary has the shape of a rounded cube (e.g., at xint = 0.50),

its thickness is smaller in 〈111〉 and 〈110〉 directions than in 〈100〉 directions.
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It can also be observed that the distribution of H atomic fraction is nonuniform on the phase

boundary. In particular, early in the simulation, when the phase boundary has relatively

sharp edges and corners, large gradient in H atomic fraction is observed near these geometric

singularities.

Figure 3.4 compares statistically the H absorption process for the three nanocubes with

different sizes. For all the nanocubes, the H atomic ratio increases monotonically in time,

while the speed of H absorption — characterized by the time derivative of the H atomic ratio

(Fig. 3.4 (b)) — decreases. As expected, the absorption process completes sooner in smaller

nanocubes. Notably, the maximum speed of H absorption, obtained at t = 0 in all the three

cases, increases as the size of the nanocube decreases.

Figure 3.5 visualizes the evolution of chemical potential (µi = kBTγi) for the nanocube

with L = 16 nm. Clearly, the α phase Pd-H has a lower chemical potential (approximately

−2.57 eV) than the β phase (approximately −2.01 eV). This difference drives the diffusion

of H from the subsurface to the interior. Moreover, the transition between these two values

occurs within a relatively narrow band of interstitial sites, which supports the sharp α/β

phase boundary observed in Fig. 3.3.

3.4.2 Evolution of local lattice distortion

Next, we examine the local Pd lattice distortion induced by the initiation and propagation

of the α/β phase boundary. To characterize lattice distortion, we adopt the elastic Green-
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Figure 3.3: Evolution of the α/β Pd-H phase boundary: (a) L = 4 nm, (b) L = 8 nm, and
(c) L = 16 nm. The three-dimensional snapshots visualize the phase boundary by displaying
the subset of interstitial sites with H fraction 0.1 < x < 0.9. The two-dimensional snapshots
display the H fraction on the middle [100] cross-section.



3.4. RESULTS AND DISCUSSION 106

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

 t − time (s)

 x
in

t

 

 

 L = 4 nm

 L = 8 nm

 L = 16 nm

(a)

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

 t − time (s)

∂
 x

in
t /

 ∂
 t

 (
s−

1
)

 

 
 L = 4 nm

 L = 8 nm

 L = 16 nm

(b)

Figure 3.4: Time-history of H absorption: (a) H atomic ratio, and (b) the speed of H
absorption.

Figure 3.5: Evolution of chemical potential (µi = kBTγi) on the middle [100] cross-section
(L = 16 nm).

Lagrangian strain tensor in the current atomistic setting (e.g., References [48, 50]). Figure 3.6

compares the distribution of the shear strain that is parallel to the y- and z-planes (denoted

by εyz), between the initial state (i.e., xint = 0.00 in Fig. 3.6(d)) and the final, equilibrium

state (i.e., xint = 1.00 in Fig. 3.6(d)). For all the three nanocubes, there is a clear inversion

in strain direction at the corners. In particular, at the initial state, the corners are stretching
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outwards along the body diagonals, forming a star-like shape. This shape is due to the H-

rich surface and subsurface layers, and is likely to increase the surface area of the H-poor

core. Conversely, at the final state, the nanocubes contract their corners inwards, evolving

towards a spherical geometry, in order to reduce the surface energy. This behavior of strain

inversion is consistent with the recent experimental result from Ulvestad et al. [13], despite

that the nanocube studied therein is larger (edge length: 100 nm).

Figure 3.6: Inversion of shear strain on the middle [100] cross-section: (a) L = 4 nm, (b)
L = 8 nm, and (c) L = 16 nm. Subfigure (d) shows the H atomic fraction for the nanocube
with L = 16 nm.

Figure 3.7 visualizes the evolution of shear strain, with snapshots taken at the same time

instances as in Fig. 3.3. In particular, it can be seen that when xint = 0.10, the corners

of the nanocube are distorted. Later, when xint = 0.50, the distorted region expands and
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moves inwards, along with the propagation of the α/β phase boundary. It is notable that

the distorted region is primarily within the β phase shell, near the rounded regions of the

phase boundary. On the other hand, the α phase core is largely intact. Also, the maximum

value of |εyz| increases as the size of the nanocube increases, specifically, 0.06 for L = 4 nm,

0.12 for L = 8 nm and 0.15 for L = 16 nm. Finally, when xint = 0.85 (and afterwards), the

distorted region moves towards the center and dwindles, until H atoms saturate the entire Pd

nanocube. It is also noteworthy that for the three simulated nanocubes, the phase boundary

remains coherent, and no crystalline defect appears in the phase transformation process.

Figure 3.8 presents the volume fraction of the distorted region, using |εyz| > 0.01 as a

criterion. Before reaching equilibrium, for both L = 8 nm and 16 nm, the result exhibits an

inverted U-shaped profile, while the result for L = 4 nm increases almost monotonically in

time. In particular, the maximum value of the volume fraction increases as the size of the

nanocube increases, specifically, 22.8 % for L = 4 nm, 24.5 % for L = 8 nm and 26.8 % for

L = 16 nm. At the initial and the final states, the volume fraction is nonzero, due to the

distortion at the corners of the nanocubes (Fig. 3.6).

3.5 Conclusions

The palladium-hydrogen (Pd-H) system serves as an excellent model for understanding

solute-induced phase transformation. In particular, whereas hydride-phase transformations

in bulk Pd have been long well-known, the corresponding behavior of nanosized Pd particles
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Figure 3.7: Evolution of shear strain on the middle [100] cross-section: (a) L = 4 nm, (b)
L = 8 nm, and (c) L = 16 nm. In each subfigure, the dashed lines indicate the location of
the phase boundary.
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Figure 3.8: Volume fraction of the distorted region, using |εyz| > 0.01 as the criterion.

is comparatively less well-understood and has come under investigation only recently. In

this regard, recent experimental studies have revealed several coupled deformation-diffusion

phenomena that occur at atomic spatial resolution, yet evolve over time scales of the order

of seconds to minutes. This time scale is beyond present capability of established molecular-

dynamics models.

In this paper, we have presented the application of a novel atomistic model, referred to

as diffusive molecular dynamics (DMD), to the simulation of the long-term (up to 40 s)

hydrogen absorption into Pd nanocubes with edge length ranging from 4 nm to 16 nm. Our

DMD solver is parallelized using the PETSc library, and the DMD simulations reported

in this study consume up to 7, 000 CPU hours (e.g., 24 hours on 300 CPU cores) on the

BlueRidge supercomputer at Virginia Tech. The following findings are noteworthy:

• The process of H absorption into Pd nanocubes is controlled by the propagation of
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an atomistically sharp α/β Pd-H phase boundary. During the process, the phase

boundary propagates towards the center of the cube, and its shape evolves from a

cube to a rounded cube, then gradually morphs into a sphere. At the end of the

process, the phase boundary annihilates at the center of the nanocube. The thickness

of the phase boundary is found to vary between 0.2 and 1.0 nm, depending on both

sample size and the specific time during the absorption process. It is also found that

at the final equilibrium state H atoms have an affinity for the boundary and stay

preferentially on and near the surface of the nanocube at the expense of the interior.

• A concave-convex inversion of form and shear strain is observed between the initial

and final states of the nanocube. Moreover, the initiation and propagation of α/β

phase boundary induces local transient lattice distortions, especially in the β phase.

The corners of the nanocube become distorted first. Then, the distorted region moves

inwards tracking the phase boundary.

The calculations reported in this paper generally portray a picture of deformation-diffusion

coupled processes and of complex transients occurring on the second to minute time scale.

DMD is instrumental for enabling the characterization of those long and complex transients

while ensuring the atomistic fidelity necessary to account for phase transformations, sharp-

interface motion, surface/edge/corner effects, and other effects.

A number of questions not addressed in this paper immediately suggest themselves. Given

the role played by sharp corners, edges and facets as rate-controlling features, it is of interest
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to ascertain generally the effect of nanoparticle shape on H absorption. In addition, the

present calculations reveal the development of large lattice distortions during the absorption

transient, especially across the moving phase boundary. Those distortions in turn stress the

lattice, which begs the question of whether relaxation mechanisms such as point defects or

dislocations can be activated and the effect of such relaxation mechanisms on the process of

absorption itself. These phenomena are currently under investigation and will be addressed

in upcoming publications.

Acknowledgments

The authors gratefully acknowledge the support of the Institute for Critical Technologies

and Applied Sciences (ICTAS) at Virginia Tech through a Junior Faculty Collaboration

(JFC) project, the Ministerio de Economı́a y Competitividad of Spain under grant number

DPI2015-66534-R, and the U. S. Army Research Laboratory (ARL) through the Materials

in Extreme Dynamic Environments (MEDE) Collaborative Research Alliance (CRA) under

Award Number W911NF-11-R-0001.



113

Bibliography

[1] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydro-

gen storage: a review, International Journal of Hydrogen Energy 32 (9) (2007) 1121–

1140.

[2] D. Mori, K. Hirose, Recent challenges of hydrogen storage technologies for fuel cell

vehicles, International Journal of Hydrogen Energy 34 (10) (2009) 4569–4574.

[3] D. Chartouni, N. Kuriyama, T. Kiyobayashi, J. Chen, Metal hydride fuel cell with

intrinsic capacity, International Journal of Hydrogen Energy 27 (9) (2002) 945–952.

[4] M.  Lukaszewski, K. Hubkowska, A. Czerwiński, Comparative study on the influence of
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Abstract

Palladium-hydrogen (Pd-H) is a prototypical system for studying solute-induced phase trans-

formation in various energy conversion and storage applications. While the behaviors of bulk

Pd-H have been studied extensively, the detailed atomic picture of hydride phase transfor-

mation within individual Pd nanoparticles is still unclear. In this work, we employ a novel

atomistic computational model, referred to as Diffusive Molecular Dynamics (DMD), to char-

acterize the H absorption dynamics in Pd nanoparticles of spherical, octahedral and cubic

shapes. The DMD model couples a non-equilibrium thermodynamic model with a discrete

diffusion law, which allows it to reach diffusive time scales with atomic resolution. The model

is capable of capturing the propagation of an atomistically sharp hydride phase boundary. A

remarkable feature of the phase boundary structure that is predicted by the calculations is

the emergence of misfit dislocations distributed over the interface. These dislocations relieve

the elastic residual stresses induced by the change of volume that accompanies the phase

transformation. Shape effects are also investigated in this work. More specifically, in both

spherical and octahedral nanoparticles, we observe stacking faults during the H absorption

process while the phase boundary in the cubic nanoparticle remains coherent. The spatial

distribution of the stacking faults in the spherical sample is investigated in detail using an

elastic core-shell model. We also identify the mechanisms that enable the movement of the

stacking faults as they track the propagation of the phase boundary. Finally, we find that

the rate of H absorption is reduced by the formation and movement of the stacking faults.
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4.1 Introduction

Solute-induced phase transformation is a fundamental process in various energy conversion

and storage applications. For example, the operation of lithium-ion batteries relies on a

reversible phase transformation in the cathodic material (e. g., LixCoO2, LixFePO4), induced

by the diffusion of lithium ions [1, 2]. Similarly, the storage of hydrogen in metals relies on

the phase transformation of the hydride (e. g., MgHx, NaAlHx), induced by the diffusion of

hydrogen atoms [3, 4, 5]. For these applications, there has been a continuous push towards

nanostructured systems, as they hold promise for accelerating the charging and discharging

process, increasing the energy and power density, and extending the life cycle [1, 6, 7, 8].

The palladium-hydrogen (Pd-H) system is a prototypical model for studying solute-induced

phase transformation, as it allows for relatively fast reaction kinetics at easily accessible

temperatures and pressures [9]. The Pd-H system exhibits two distinct phases at room

temperature: the dilute α phase at low H concentration (up to PdH0.015), and the β phase

at high H concentration (PdH0.6 and above). In both phases, the Pd lattice maintains the

face-centered cubic (FCC) structure, while the H atoms occupy the octahedral interstitial
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sites. Attendant to the α/β phase transformation, there is a lattice expansion with 10.4%

increase in volume which may lead to the formation of misfit dislocations.

While the behavior of Pd-H is well-understood in the bulk, the phase transformation dynam-

ics within nanostructured Pd-H systems remains an active area of research [7, 10, 11, 12, 13,

14, 15, 16, 17, 18]. In this regard, a few recent experiments suggest that in nanosized parti-

cles, the phase transformation is driven by the propagation of an atomistically sharp phase

boundary at a speed as low as 1 nm/s. For example, by scanning transmission electron mi-

croscopy (STEM), Narayan et al. observed the propagation of a sharp α/β phase boundary

in individual Pd nanocubes with edge lengths between 20 nm and 40 nm [16]. Using coherent

X-ray diffractive imaging, Ulvestad et al. measured the evolution of strain within individual

Pd nanocubes between 60 nm and 100 nm, which also indicates a sharp α/β phase trans-

formation [14, 17]. Beyond the overall transformation mechanism, other unresolved issues

include the morphology of the phase boundary [11, 16, 17], the effect of particle shape and

lattice orientation [12], and the interaction of phase boundary with preexisting defects [15].

In this work, we apply a novel computational method, referred to as Diffusive Molecular

Dynamics (DMD), to investigate the detailed dynamics of hydride phase transformation

in Pd nanoparticles, focusing on the two-way interaction between the motion of the phase

boundary and the formation and evolution of misfit dislocations. DMD is a new paradigm

for simulating long-term diffusive mass and heat transport while maintaining full atomic

resolution [19, 20, 21, 22, 18, 23, 24, 25, 26, 27, 28]. The basic idea is to couple a calibrated

empirical kinetic model for the evolution of lattice site occupancy with a non-equilibrium



4.1. INTRODUCTION 125

statistical thermodynamics model that supplies the requisite driving forces for kinetics. The

basic assumption underlying DMD is that the time scale of diffusion is much larger than that

of microscopic state transitions. Therefore at an intermediate time scale, the microscopic

state variables can be considered as random variables. In comparison to the established

atomistic methods (e. g., Molecular Dynamics (MD), transition state theory based acceler-

ated MD [29], and kinetic Monte Carlo [30]), DMD has a larger simulation time window as it

does not explicitly resolve thermal vibrations or the individual microscopic state transitions.

DMD has been applied to nanoindentation and sintering [19, 23], dislocation extension [24],

nanovoid growth [20, 22, 27], heat conduction in nanowires [31] and solute-defect interac-

tions [21, 32]. Recently, DMD has been employed to study the effect of particle size on

the hydrogenation process of cubic Pd nanoparticles [33]. A one-dimensional version has

also been applied to simulate H diffusion in Pd nanofilms, in which the Pd subsystem was

assumed to be rigid [18].

The large time window and atomic resolution of DMD makes it an excellent tool for studying

hydride phase transformation within Pd nanoparticles, which unfolds on a time scale of

minutes to hours. In this paper, we start with a brief summary of assumptions and model

equations underlying DMD, in Section 4.2. Then, we describe the setup of the numerical H

absorption experiments under consideration in Section 4.3. Specifically, we consider three

nanoparticles of approximately the same volume (3, 800 ± 90 nm3), yet of different shapes,

including a spherical particle exemplifying smooth geometries, and an octahedral and a cubic

particles that have flat faces and sharp edges and corners. The octahedral particle is designed
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such that all of its 8 faces are on {111} planes, which are the most common slip planes in

FCC crystals. By contrast, the cubic particle is designed with their faces on {100} planes.

Next, we discuss the results of the numerical experiments, including the propagation of the

α/β phase boundary (Section 4.4), the attendant dynamics of interfacial misfit dislocations

and stacking faults (Section 4.5), and the rate of H absorption (Section 4.6). In order to

explain the observed stacking fault distribution, we formulate a simple elastic core-shell

model amenable to analytical solution. Finally, we provide a summary and concluding

remarks in Section 4.7.

4.2 Methodology

4.2.1 Non-equilibrium thermodynamics model

We consider a binary Pd-H system consisting of host sites that are occupied by Pd atoms

and interstitial sites that can be either occupied by H atoms or unoccupied. For ease of

reference, the sets of host and interstitial sites are denoted by IPd and IH, respectively. On

each interstitial site i ∈ IH, we introduce an occupancy function ni, defined as

ni =


1 if the site i is occupied by a H atom,

0 if the site i is unoccupied.

(4.1)
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The instantaneous position and momentum of site i are denoted by qi and pi, respectively.

Based on the assumption of scale separation and the ergodic hypothesis, these microscopic

state variables can be viewed as random variables that have a joint probability distribution

characterized by density function ρ
(
{q}, {p}, {n}

)
, where {q} = {qi : i ∈ IPd ∪ IH}, {p} =

{pi : i ∈ IPd ∪ IH} and {n} = {ni : i ∈ IH}. We assume that the statistics of the system

follows Jaynes’ principles of maximum entropy [34, 35]. Therefore, the probability density

function ρ is calculated by maximizing the information-theoretical entropy

S[ρ] = −kB〈log ρ〉, (4.2)

with local constraints on each site


〈hi〉 = ei, i ∈ IPd ∪ IH,

〈ni〉 = xi, i ∈ IH,

(4.3)

where kB is the Boltzmann constant, and 〈·〉 denotes the expectation operator. Here, hi,

ei and xi denote the local Hamiltonian, particle energy and H atomic fraction of site i,

respectively. Using the method of Lagrange multipliers, we have

ρ =
1

Ξ
e−{β}

T{h}+{γ}T{n}, (4.4)

where Ξ is the partition function, and {β} and {γ} are Lagrange multipliers. In compar-

ison with equilibrium statistical thermodynamics, Eq. (4.4) can be interpreted as a non-
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equilibrium generalization of the Gibbs grand-canonical probability density function. Also,

Ti = 1/(kBβi) and µi = kBTiγi can be defined as the absolute temperature and the chemical

potential of atomic site i, respectively.

Since the Hamiltonian hi is typically a nonlinear function, the exact calculation of the ther-

modynamic properties (e. g., ei and Ξ) is generally impossible. Venturini et al. [21] proposed

an approximation theory, in which the optimization problem is performed within a finite-

dimensional trial space P0, spanned by a pre-specified class of trial Hamiltonians {h0}. As

a result, maximizing S[ρ] within P0 is equivalent to minimizing the mean field free entropy,

i. e.,

min
{α}
F
(
{β}, {γ}; {h0}

)
= kB{β}T

{
〈h− h0〉0

}
− kB logΞ0, (4.5)

where {α} is a finite set of parameters that characterize {h0}. 〈·〉0 denotes the expectation

operator under the trial probability density function, and Ξ0 is the trial partition function.

We consider a uniform and constant temperature and apply the approximation theory with

a trial Hamiltonian

h0i(qi,pi, ni; q̄i, σi, p̄i, γ0i) =


kBT

2σ2
i

|qi − q̄i|2 +
1

2mPd

|pi − p̄i|2, if i ∈ IPd,

kBT

2σ2
i

|qi − q̄i|2 +
1

2mH

|pi − p̄i|2 − kBTγ0ini, if i ∈ IH,

(4.6)

where T is the constant temperature. q̄i, σi, p̄i, and γ0i are parameters that characterize the

trial space. mPd and mH denote the atomic mass of Pd and H, respectively. It can be shown

that q̄i and σi are the mean and standard deviation of qi, respectively, whereas p̄i is the
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mean of pi. In Eq. (4.6), γ0i indicates the dependence of chemical potential on H fraction

xi. Specifically, applying 〈ni〉0 = xi yields

γ0i = log
xi

1− xi
− γi. (4.7)

Substituting Eqs. (4.6) and (4.7) into Eq. (4.5) gives

min
{q̄},{σ},{p̄},{x}

F
(
T, {γ}; {q̄}, {σ}, {p̄}, {x}

)
=

1

T
〈V 〉0 +

1

2TmPd

∑
i∈IPd

p̄2
i +

1

2TmH

∑
i∈IH

xip̄
2
i +

3

2
kB

∑
i∈IPd

(
log

~2

kBTmPdσ2
i

− 1

)

+
3

2
kB

∑
i∈IH

(
log

~2

kBTmHσ2
i

+ xi − 2

)
+ kB

∑
i∈IH

(
xi log xi + (1− xi) log (1− xi)− γixi

)
,

(4.8)

where ~ is the reduced Planck constant. V
(
{q}, {n}

)
denotes the interatomic potential

energy and its average is calculated by third-order Gaussian quadratures on a sparse grid [19].

Enforcing the first-order necessary condition with respect to p̄i yields p̄i = 0. Enforcing the

first-order necessary condition with respect to xi yields

γi =
3

2
+ log

xi
1− xi

+
1

kBT

∂〈V 〉0
∂xi

, i ∈ IH, (4.9)

which shows that the atomic chemical potential depends on both the atomic H fraction and
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the interatomic potential energy. As a result, the optimization problem simplifies to

min
{q̄},{σ}

F
(
T, {γ}; {q̄}, {σ}, {x}

)
=

1

T
〈V 〉0 +

3

2
kB

∑
i∈IPd

(
log

~2

kBTmPdσ2
i

− 1

)
+

3

2
kB

∑
i∈IH

(
log

~2

kBTmHσ2
i

+ xi − 2

)

+ kB

∑
i∈IH

(
xi log xi + (1− xi) log (1− xi)− γixi

)
.

(4.10)

4.2.2 Discrete diffusion model

The thermodynamics model formulated in Eq. (4.10) is then coupled with a discrete kinetic

law, which enforces the balance of mass at each interstitial site, i. e.,

ẋi =
∑
j 6=i

Jij, i, j ∈ IH, (4.11)

where Jij denotes the bondwise mass flux from site j to site i, and satisfies Jij = −Jji. After

a straightforward calculation, the internal entropy production rate from a pair of sites 〈i, j〉

is

Σij = KijJij, (4.12)

where

Kij = − 1

T
(µi − µj) = −kB(γi − γj) (4.13)

defines the discrete thermodynamic force corresponding to the discrete mass transport Jij.

Following Onsager’s theory of kinetic relations [36], we employ a kinetic law of the general
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form

Jij = − ∂ψ

∂Kij

(
{K}

)
, (4.14)

where ψ
(
{K}

)
is a discrete kinetic potential, which needs to be modeled. Venturini et al. [21]

proposed a simple kinetic potential, by assuming linear relation between mass flux Jij and

driving force Kij. The resulting discrete mass transport Jij is

Jij = B0
xi + xj

2
Kij, (4.15)

where B0 denotes the bondwise diffusion coefficient, which can be calibrated to reproduce

the speed of diffusion observed in experiments. As a result, we have

ẋi = −kBB0

∑
j 6=i

xi + xj
2

(γi − γj), i, j ∈ IH. (4.16)

For simplicity, but without loss of generality, in our DMD simulations we restrict diffusive

transport within one shell of neighbors. The above discrete kinetic law has been validated

against the classical lattice random walk model for the long-term dynamics of a single H

atom in Pd [37]. It has also been applied to study surface segregation in AuAg alloys [38].

Moreover, similar bondwise flux functions have been employed to simulate spin-diffusion in

a one-dimensional binary alloy [39].
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4.2.3 Implementation details

Our DMD model couples a nonlinear optimization problem, i. e., Eq. (4.10), with a first-

order, nonlinear ordinary differential equation (ODE), i. e., Eq. (4.16). We solve this coupled

system by discretizing the ODE using an explicit time integrator (e. g., forward-Euler),

and solving the optimization problem once per time step using a quasi-Newton Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method [40]. We have developed a DMD solver, which

is parallelized with Message Passing Interface (MPI), using the PETSc/TAO library [41]

for large-scale simulations on computer clusters with distributed memory. Details of the

solutions of the equations and the computation procedure of DMD can be found in Ref. [37].

4.3 Setup of numerical experiments

We build three nanoparticles of different shapes, including a sphere, an octahedron with faces

on {111} planes, and a cube with faces on {100} planes. The three particles are designed to

have approximately the same volume, that is, 3, 800± 90 nm3 and 516, 000± 8, 000 atomic

sites (including the octahedral interstitial sites that can be occupied by H atoms). The

sphere has a diameter of 19.5 nm. The octahedron and the cube have an edge length of

19.9 nm and 15.6 nm, respectively. As an example, Fig. 4.1 shows the computational model

of the spherical particle. All the three particles are single crystals.

Under a gas-phase condition, the absorption of H2 by Pd begins with the dissociation of
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A unit cell

Figure 4.1: Computational model of the spherical particle with a diameter of 19.5 nm.

H2 into H atoms on the surface of the Pd specimen (i. e., adsorption). The H atoms pen-

etrate into a subsurface layer, then move into the interior of the Pd specimen, occupying

the octahedral interstitial sites of the FCC lattice [42, 13, 43]. Palladium hydride (Pd-H)

exists in two phases, namely a low H concentration α phase and a high H concentration β

phase. Both phases have an FCC lattice, with different lattice constants (3.895 Å versus

4.025 Å [44]). Previous studies suggest that the H2 partial pressure required to achieve sub-

surface saturation is lower than that required to initiate the α/β phase transformation in the

interior [45, 46, 47]. Also, the saturation of H in the subsurface layer is achieved much faster

than the diffusion of H into the interior of a Pd specimen. Therefore, in our DMD analysis,

we simulate these two processes separately in two steps, as described in Algorithm 3.

Specifically, we assume that the Pd particle is subjected to a constant H2 partial pressure,
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Algorithm 3 Solution of the DMD equations in the two-step calculation.

1: Input: {x0
i : i ∈ IINT} (initial H fractions in the interior), µenv = kBTγenv (environmental

chemical potential)
2: Begin
3: First step: with {x0

i : i ∈ IINT} fixed
4: Fixed-Point Iteration: set {x0

i : i ∈ ISURF} (initial guess of H fractions in the subsur-
face layer)

5: for l← 0; l < lmax do
6: {x}l ← {xli : i ∈ ISURF} ∪ {x0

i ∈ IINT}
7: minimize F

(
{q̄}, {σ}, {x}l

)
⇒ {q̄}l, {σ}l

8: xl+1
i ←

exp

(
γenv −

3

2
− 1

kBT

∂〈V 〉0
∂xi

∣∣∣∣l)
1 + exp

(
γenv −

3

2
− 1

kBT

∂〈V 〉0
∂xi

∣∣∣∣l)
, ∀i ∈ ISURF

9: if
∑

i∈ISURF

(
xl+1
i − xli

)2
< ε1 then

10: break
11: end if
12: l← l + 1
13: end for
14: Output: the final results, i. e., {x∗i : i ∈ ISURF}, {q̄}∗, {σ}∗
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15: Second step: with {x∗i : i ∈ ISURF} and {γi ← γenv : i ∈ ISURF} fixed
16: t = 0, n = 0
17: {q̄}0 ← {q̄}∗, {σ}0 ← {σ}∗
18: while t < tmax do
19: Temporal Integration: with {q̄}n and {σ}n fixed, solve Eq. (4.16) by forward-Euler
⇒ {x}n+1

20: Begin

21: γni ←
3

2
+ log

xni
1− xni

+
1

kBT

∂〈V 〉0
∂xi

∣∣∣∣n, ∀i ∈ IINT

22: {γ}n ← {γni : i ∈ IINT} ∪ {γi ← γenv : i ∈ ISURF}
23: solve Eq. (4.16) for one time-step, i. e.,

24: xn+1
i ← xni − kBB0∆t

∑
j∈IH,j 6=i

1

2
(xni + xnj )(γni − γnj ), ∀i ∈ IINT

25: {x}n+1 ← {xn+1
i : i ∈ IINT} ∪ {x∗i : i ∈ ISURF}

26: End
27: Optimization: with {x}n+1 fixed, solve Eq. (4.10) by BFGS ⇒ {q̄}n+1, {σ}n+1

28: Begin
29: X ≡

{
{q̄}, {σ}

}
30: F(X) ≡ F

(
{q̄}, {σ}, {x}n+1

)
31: for k ← 0,X0 ←

{
{q̄}n, {σ}n

}
; k < kmax do

32: compute approximate Hessian matrix Hk

33: ∆X ← −(Hk)−1∇F(Xk)
34: determine step size τ by line search
35: Xk+1 ←Xk + τ∆X

36: if
∣∣F(Xk+1)−F(Xk)

∣∣ < ε2 or

∣∣F(Xk+1)−F(Xk)
∣∣∣∣F(Xk)

∣∣ < ε3 then

37: break
38: end if
39: k ← k + 1
40: end for
41: End
42: t← t+ ∆t, n← n+ 1
43: end while
44: Output: the results at each time step, i. e., {q̄}n, {σ}n, {x}n, {γ}n
45: End
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and hence a constant external chemical potential µenv. In the first step of the analysis, we

determine the distribution of H in the subsurface layer and the resulting lattice deformation

of the particle, when this layer has just reached equilibrium with the external H environment.

To this end, we set γi = µenv/(kBT ) (i. e., µi = µenv) for all the interstitial sites within the

subsurface layer and xi = 0 for all the interstitial sites in the interior of the particle. Then,

we solve Eq. (4.9) using fixed-point iteration, to obtain the equilibrium distribution of xi

within the subsurface layer, and minimize the free entropy in Eq. (4.10) to obtain the values

of {q̄} and {σ} in the particle.

Next, we assume that throughout the H absorption process, the subsurface layer remains

in equilibrium with the external H environment. Therefore, in the second step, we fix

γi = µenv/(kBT ) and xi (obtained in the first step) in the subsurface layer, and apply the

dynamic, deformation-diffusion coupled DMD model to predict the diffusion of H from the

subsurface to the interior of the Pd particles.

We employ the embedded atom method (EAM) potential developed by Zhou et al. [48], which

is capable of capturing the separation of α and β phases [18]. We set temperature T = 300 K.

The thickness of the subsurface layer, denoted by τ , has been estimated to be of the order

of 0.1 nm to 1 nm — for example, 0.3 nm using an equilibrium Monte Carlo method [49]

and 1.03 nm using a phase-field model [50]. In this work, we set τ = 0.3 nm. Moreover,

the functional relationship between the H2 partial pressure and the corresponding chemical

potential µenv is unclear. We have conducted a parameter study, and found that the α/β

phase transformation is achieved when µenv > −2.25 eV. The results presented in this paper
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are obtained with µenv = −2.0 eV, and in this case we get full coverage, i. e., xi = 1, over the

subsurface layer in all the three particles after the first step calculation. Further, we have

calibrated the atomic diffusivity coefficient B0 to reproduce the experimental measurement of

the speed of H absorption obtained in a similar setting [16], which yieldsB0 = 500.0 K/(eV·s).

The simulation results in the absorption process, i. e., the second step of DMD analysis, will

be discussed in detail in the following sections.

The DMD analyses presented in this paper are performed using the BlueRidge supercomputer

(Cray CS-300, with Intel Sandy Bridge CPUs) at Virginia Tech [51]. Each analysis consumes

approximately 80, 000 CPU hours. The simulation results are visualized using OVITO [52].

4.4 Propagation of phase boundary

We begin by examining the diffusion of H during the absorption process. Figure 4.2 presents

the result for the spherical particle. At 4.5 s, a spherical shell with high H concentration

— corresponding to the β phase of Pd-H — has formed under the surface of the particle.

By contrast, the interior of the particle still has low H concentration (close to 0), which

can be interpreted as the α phase. The α and β phases are separated by a sharp boundary

consisting of only a few layers of atomic sites, with a thickness of approximately 0.5 nm.

This phase boundary is extracted and visualized at three different time instances. At the

beginning (e. g., 4.5 s), it has a spherical shape. As time increases, the phase boundary

propagates towards the center of the particle, and gradually deforms into a polyhedron with
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8 triangular faces and 6 square faces (i. e., a cuboctahedron). The triangular and square

faces have normals in 〈111〉- and 〈100〉-directions, respectively.

4.5 s 28.0 s 41.5 s

2 nm[001]

[100] [010]

(a)

H atomic fraction

0.0 1.00.5

(b)

[001]

[110]
[110]

β phase

α phaseα phase α phase

β phase

β phase

Semi-coherent

Figure 4.2: Hydride phase boundary in the spherical particle at three different time instances:
(a) H fraction on the middle [11̄0] cross-section, and (b) a perspective view of the extracted
phase boundary.

The morphological evolution of the phase boundary indicates that H atoms “move” slower

along the radial lines that pass through the corners and edges of the polyhedron. Notably,

misfit dislocations are also observed near these geometric singularities (the result will be

discussed in the next section). Therefore, it is likely that the misfit dislocations have slowed

down the propagation of the phase boundary. This can be explained by the fact that a

semi-coherent phase boundary leads to less space in the α phase Pd lattice compared to a
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coherent one. This mechanism is schematically illustrated in Fig. 4.3.

α phaseβ phase Interface

Pd atom

α phaseβ phase Interface

(a) (b)

H atom Misfit dislocation

Figure 4.3: Schematic illustration of (a) a coherent and (b) a semi-coherent hydride phase
boundary.

Figures 4.4 and 4.5 present the results for the octahedral and cubic particles, respectively.

In these two particles, we also observe the formation of an atomistically sharp α/β phase

boundary, which advances towards the center of the particle. The shape of the phase bound-

ary changes in time. In the octahedral particle, the phase boundary evolves from a sharp

octahedron into a truncated one. The locations of sharp edges retained in the truncated

octahedron coincide with the locations of misfit dislocations, which again indicates that mis-

fit dislocations may slow down H diffusion. On the other hand, misfit dislocation is not

observed in the cubic particle. In this case, the phase boundary changes gradually from a

cube to a sphere. In other words, the sharp corners and edges of the initial phase boundary

are gradually smeared. This can be explained as a mechanism to minimize the interfacial

energy of the phase boundary.

For all the three different shapes, the DMD analysis indicates that the H absorption process is
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Figure 4.4: Hydride phase boundary in the octahedral particle at three different time in-
stances: (a) H fraction on the middle [11̄0] cross-section, and (b) a perspective view of the
extracted phase boundary.

dominated by the formation and propagation of an atomistically sharp α/β phase boundary.

This prediction agrees with the findings of a few recent experimental studies on individual Pd

particles [16, 14]. Specifically, Narayan et al. [16] tested nanocubes with edge length between

20 nm and 40 nm, and observed sharp diffraction contrast in STEM (scanning transmission
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Figure 4.5: Hydride phase boundary in the cubic particle at three different time instances:
(a) H fraction on the middle [11̄0] cross-section, and (b) a perspective view of the extracted
phase boundary.

electron microscopy) images. Ulvestad et al. [14] also tested nanocubs with edge lengths

between 60 nm and 100 nm, and observed the disappearance of Bragg electron density in a

region from the density field of the Pd nanoparticles.

The separation of α and β phases by a sharp interface can be explained using the equilibrium

relation between the chemical potential and the H atomic fraction. Figure 4.6 plots this

equilibrium relation, using the EAM potential of Zhou et al. [48] and Eq. (4.9). The chemical

potential function has two local extrema: one at a low H fraction of 0.25, the other at a high

H fraction of 0.81. These two extreme values can be interpreted as the critical concentrations

for the α and β phases of Pd-H, predicted by the specific interatomic potential. Since the
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H absorption is driven by the difference of chemical potential between different phases, this

feature of double extrema likely leads to the formation and propagation of the sharp phase

boundary. Further, the chemical potential can also be related to the pressure of H2 gas.

In this regard, the profile of the chemical potential function is consistent with the pressure-

composition isotherms obtained for individual single-crystalline Pd nanoparticles [53, 54, 11],

which show an abrupt phase transformation from α to β phase.
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Figure 4.6: Equilibrium relation between chemical potential and H atomic fraction, calcu-
lated using the EAM potential of Zhou et al. [48] and the DMD model for bulk Pd-H with
a uniform H atomic fraction.

4.5 Solute-induced stacking faults

We proceed to examine the Pd lattice deformation induced by the sharp α/β phase boundary.

Specifically, we first explain the formation and dynamics of stacking faults in the spherical



4.5. SOLUTE-INDUCED STACKING FAULTS 143

particle. Then, we compare with the octahedral and cubic particles to explain the effect of

particle shape.

4.5.1 Stacking faults in the spherical nanoparticle

Formation and spatial distribution

Stacking faults start to form on the surface of the particle at approximately 0.5 s, when the

thickness of the β phase shell is approximately 0.5 nm. Figure 4.7(a) shows the structure of

stacking faults at 4.5 s, obtained using the method of common neighbor analysis [55]. Most of

the stacking faults appear in two sets of crystallographically equivalent regions. The first set,

referred to as the 〈100〉-centered regions, are spherical sectors with axes in 〈100〉 directions

and an apex angle of about 40◦. The second group, referred to as the 〈110〉-centered regions,

are spherical sectors with axes in 〈110〉 directions and an apex angle of about 50◦. In each

〈100〉-centered region, four stacking faults are emitted along four different {111} slip planes

at 109.5◦ angle. In each 〈110〉-centered region, around twelve stacking faults are emitted

along two sets of parallel {111} planes.

To explain the observed distribution pattern, we consider an elastic core-shell model, con-

sisting of a spherical core with radius r0, elastically matched to a concentric spherical shell

whose inner surface has a radius R0 that is greater than r0. We set R0/r0 = 1.059, basing

on the lattice expansion of Pd-H from α to β phase. Therefore, the core and the shell are

comparable, respectively, with the α phase core and the β phase shell observed in the DMD
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simulation. The model equations and the solution process are presented in 4.A. In particular,

after obtaining the equilibrium state, we calculate the resolved shear stress (RSS) on the 12

slip systems of FCC crystals.

Figure 4.7(b) shows the maximum RSS among all the 12 slip systems, calculated on the core-

shell interface using Eq. (4.36). The distribution of maximum RSS is clearly nonuniform.

The global maximum value is 3.92 GPa, higher than the critical resolved shear stress (CRSS)

of Pd-H1. Comparing with the result of the DMD simulation (Fig. 4.7(a)), we find that the

regions where large values of maximum RSS appear coincide with the regions where stacking

faults are observed. Moreover, within these regions, the slip system with highest RSS also

matches the fault plane of the stacking faults observed in the DMD simulation.

For a clearer comparison, Fig. 4.8 shows the results of both DMD and the core-shell model

on the middle [11̄0] cross-section, i. e., the highlighted plane in Fig. 4.7(a). From the result

of DMD, we find that the stacking faults are emitted on the (111) and (1̄1̄1) slip planes,

referred to as slip planes B and C, respectively. All the stacking faults cut through the β

phase shell, but do not penetrate the α/β phase boundary. In comparison, Fig. 4.8(b) shows

the maximum RSS among the 3 slip systems associated with these two planes (shown in

Table 4.1), predicted by the core-shell model. It is clear that the locations of (111) stacking

faults coincide with the locations of high RSS associated with (111) plane; and the same

agreement holds for the (1̄1̄1) plane. Also, along any radial direction, the maximum RSS

associated with both (111) and (1̄1̄1) reaches the highest value at the core-shell interface,

1The CRSS of Pd-H is estimated to be between 0.41 GPa and 3.27 GPa, using the embedded atom
method (EAM) potential of Zhou et al. [48].
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Figure 4.7: (a) Distribution of stacking faults predicted by the DMD simulation at 4.5 s. (b)
Maximum resolved shear stress (RSS) obtained from the core-shell model. In Subfigure (a),
the green plane denotes the middle [11̄0] cross-section. In Subfigure (b), the locations of the
global maximum values are marked with asterisks.

then drops immediately to zero inside the α phase.

In summary, the formation of stacking faults in the spherical nanoparticle and the distri-

bution pattern they adopt can be explained as a mechanism for relaxing the residual stress

induced by the atomistically sharp α/β phase boundary. The elastic core-shell model is

found to be a convenient tool to explain the DMD result. In the next section, we will con-

tinue using it, to explain the dynamics (e. g., growth, branching, and disappearance) of the

stacking faults caused by the propagation of the α/β phase boundary.
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Figure 4.8: Results of (a) the DMD simulation at 4.5 s and (b) the elastic core-shell model
on the middle [11̄0] plane.

Dynamics of stacking faults

We examine the evolution of the stacking faults identified in the previous section. Figure 4.9

visualizes the evolution of stacking faults in a 〈100〉-centered region. Specifically, the images
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taken at 4.5 s show that as a thin layer of β phase Pd-H develops, four extrinsic stacking

faults are emitted from the surface of the particle. Each of them is created by two Shockley

partial dislocations on adjacent {111} planes, within the α/β phase boundary. The formation

of stacking faults through double Shockley partials has been observed previously in MD

simulations of other materials during mechanical deformations (e. g., copper, with relatively

low stacking fault energy [56], and aluminum, with relatively high stacking fault energy [57]).

Nonetheless, in the present study, the deformation is driven by the transport of solute atoms.

Moreover, Fig. 4.9 shows that the four stacking faults on different {111} planes form a

tunnel-like structure with a 109.5◦ angle between neighboring walls. A Lomer-Cottrell lock

along 〈110〉 direction forms at the intersection of each pair of stacking faults. The reaction

is

1/6[211] + 1/6[2̄11̄]→ 1/3[010]. (4.17)

As the α/β phase boundary propagates inwards, the double Shockley partials glide on their

{111} slip planes. Because of the sessile Lomer-Cottrell locks, the tunnel-like structure

retains its shape, while the four stacking faults extend inwards. At approximately 7.5 s, a

new Shockley partial is emitted from the surface of the particle, near each stacking fault.

This Shockley partial transforms the extrinsic stacking fault into a three-layer twin.

It is notable that after approximately 17.5 s, the stacking faults stop growing. This can be

explained by the fact that the angle between the fault plane of each stacking fault and the

propagation direction of the phase boundary — measured at the tip of the stacking fault and
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indicated with red and yellow arrows in Fig. 4.9(b) — gradually increases. At approximately

17.5 s, this angle reaches 90◦. After this point, any further extension of the stacking faults

would not “catch” the phase boundary and resolve the associated high stress. As a result,

the stacking faults stop growing. Later, as the phase boundary moves away from the stacking

faults, the tunnel-like stacking fault structure gradually dissolves in the FCC lattice, starting

at the surface of the particle.

Shockley partialDouble-Shockley partial Twin boundary

Lomer-Cottrell lock

4.5 s 41.5 s7.5 s 17.5 s

HCP OtherFCC
Structure type

(a)

(b)

α phase

β phase

β phase

α/β phase boundary

Figure 4.9: Evolution of stacking faults in a 〈100〉-centered region. Subfigure (a) shows a
perspective view of the stacking faults. Subfigure (b) shows a middle 〈110〉 cross-section
of one stacking fault in the tunnel-like structure. The red and yellow arrows indicate the
gliding direction of the stacking fault and the propagation direction of the phase boundary,
respectively.

Figure 4.10 visualizes the evolution of stacking faults within a 〈110〉-centered region. At

around 7.5 s, a stacking fault is emitted from the surface of the particle, gliding on a {111}
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plane (specifically, slip plane C). This stacking fault is denoted by SF-A for the ease of

reference. SF-A is generated by the successive emission of three Shockley partial dislocations

from the surface of the particle. The stacking sequences around SF-A are

(1) · · · ABCABCABCABC · · · ,

(2) · · · CABCACABCABC · · · ,

(3) · · · BCABCBABCABC · · · ,

(4) · · · ABCABACBCABC · · · ,

in which the locations of the four stacking sequences are marked in Fig. 4.10(a). The A-B-C

nomenclature denotes the three possible positions of {111} layers in the projection onto a

{110} plane. The underlined letters indicate the planes in a local hexagonal close-packed

(HCP) stacking sequence. Therefore, the four regions have the features of: (1) a perfect FCC

lattice, (2) an intrinsic stacking fault, (3) an extrinsic stacking fault, and (4) a three-layer

twin, respectively. This type of stacking fault structure has been observed previously in MD

simulations of mechanical twinning (e. g., in aluminum [57] and steel [58]). Nonetheless, our

results reveal that, this twinning process can also be driven by the high residual stress due

to phase transformation in chemical reactions (specifically, hydrogenation of Pd).

As the α/β phase boundary propagates towards the center of the particle, the Shockley

partials glide along their slip planes, which drives SF-A to extend. SF-A keeps in connection

with both the surface of the particle and the phase boundary, until approximately 17.5 s,

when the fault plane becomes tangent to the phase boundary. Similar to the 〈100〉-centered
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Figure 4.10: Time evolution of stacking faults in a 〈110〉-centered region. (a) Solution
snapshots at six time instances. (The middle [11̄0] cross-section is shown.) (b) Superposition
of the stacking faults at the six time instances.
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region, after this point of time, SF-A stops growing. However, it is notable that a new

intrinsic stacking fault is emitted from SF-A on slip plane B. This new stacking fault is

denoted by SF-B in Fig. 4.10(a). The tip of SF-B is within the phase boundary. Also, a

Lomer-Cottrell lock forms at the intersection of SF-A and SF-B.

We employ the core-shell model to understand the emission of SF-B from SF-A. Figure 4.11

shows that at 17.5 s, the tip of SF-A has just passed a region of high RSS associated with

slip plane B. It is likely that this region of high RSS caused the emission of SF-B. Figure 4.11

also shows that the RSS associated with slip plane B near the stacking fault on a different

slip plane is smaller in the 〈100〉-centered regions than in the 〈110〉-centered regions. This

explains why the same phenomenon does not occur in the 〈100〉-centered regions.

Maximum RSS (GPa)

0.00 3.901.95

β phase
[001]

[110]
[110]

100 -centered region110 -centered region

SF-B

SF-A

α phase

Figure 4.11: Superposition of the field of maximum RSS associated with slip plane B, pre-
dicted by the core-shell model, with stacking faults observed at 17.5 s. Stacking faults on
slip plane B are colored in red.
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As the phase boundary propagates inwards, the Shockley partial associated with SF-B glides

on its slip plane (see Fig. 4.10(a)). At approximately 28.0 s, it is disconnected from SF-A. At

the same time, a detwinning process takes place in SF-A, by the gliding of Shockley partials

away from the phase boundary. Also, a new stacking fault, denoted by SF-C, has been

emitted from SF-B with a Lomer-Cottrell lock at their intersection. The same phenomenon

occurs repeatedly until approximately 53.0 s, when the surface area of the phase boundary is

considerably small and the elastic lattice deformation alone is enough to release the residual

stress on the interface. Overall, the dynamics of stacking faults in the 〈110〉-centered regions

is dominated by the emission of new stacking faults from existing ones, the gliding of stacking

faults towards the phase boundary, and the annihilation of stacking faults as the phase

boundary moves away. This mechanism is schematically illustrated in Fig. 4.10(b).

In summary, the stacking faults observed during the H absorption process are on {111}

planes, which is typical for FCC crystals. After a thin layer of β phase Pd-H has formed

under the surface of the particle, stacking faults start to appear within the β phase, mostly

in 〈100〉- and 〈110〉-centered regions, where the RSS on {111} planes is high. The {111}

fault planes of these stacking faults do not pass through the center of the particle. As a

result, after some time, they become tangent to the phase boundary. When this happens,

the stacking faults stop growing, as the RSS at the tips significantly decreases. In the

〈110〉-centered regions, we observe the emission of new stacking faults from old ones, as a

mechanism to “catch” the movement of the phase boundary. This phenomenon does not

appear in the 〈100〉-centered regions. The reason is that in the 〈100〉-centered regions, the
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maximum RSS near existing stacking faults associated with different slip planes is relatively

small and cannot drive the emission of new stacking faults.

4.5.2 Effect of particle shape

Next, we examine the octahedral particle which, in contrast to the sphere, has planar faces

and sharp edges and corners. Figure 4.12 shows the initial distribution of stacking faults at

4.5 s. The distribution pattern is different from that in the spherical particle. Specifically,

stacking faults are formed near the edges of the particle, forming 12 separate, fusiform

branches. In each branch, two stacking faults are emitted along two different {111} slip

planes. This distribution pattern is due to the fact that after the formation of a thin β phase

layer, the edges of the particle have relatively large displacements parallel to {111} planes.

Figure 4.13 visualizes the evolution of the stacking faults by showing the structure type on the

middle [11̄0] cross-section (i. e., the highlighted plane in Fig. 4.12). At 4.5 s, the zoom-in view

shows that the three outermost {111} layers in the β phase undergo a shear displacement, due

to the lattice expansion from α to β phase. The stacking faults keep in connection with the

surface of the particle. They separate a small region from the FCC matrix, in which the Pd

lattice is largely distorted. Moreover, the edges of the octahedron stretch outwards, forming

a star-like shape. The stretching is caused by the interaction of expanded neighboring faces.

This star-shaped deformation has also been observed experimentally in Pd nanocubes with

edge length of approximately 60 nm [14]. As the phase boundary propagates, the stacking
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Figure 4.12: Distribution of stacking faults predicted by the DMD simulation at 4.5 s. The
green plane denotes the middle [11̄0] cross-section.

faults move towards the center of the particle. At 23.0 s, an intersection of twins takes place

outside the octahedral edges of the phase boundary, separating a rhomboid FCC block from

the FCC matrix. As the phase boundary approaches the center of the particle, the size of

the stacking faults reduces, and they become disconnected from the surface of the particle.

Next, we examine in detail the dynamics of the observed stacking faults. We focus on the

stacking faults near one edge of the particle, and the result is shown in Fig. 4.14. At 4.5 s, two

Shockley partials are emitted from the distorted region, leaving behind two intrinsic stacking

faults. We focus on one of the two stacking faults, and the associated partial dislocation is

denoted by PD-A for the ease of reference. At 7.0 s, a new Shockley partial, denoted by PD-

B, has been emitted within the phase boundary, adjacent to the previously formed stacking
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Figure 4.13: Evolution of stacking faults in the octahedral particle.

fault. PD-B glides away from the distorted region, transforming the intrinsic stacking fault

to an extrinsic one. By contrast, PD-A glides in the opposite direction, because it is away

from the phase boundary. As the phase boundary propagates inwards, PD-B keeps growing,

and PD-A gradually disappears. As a result, the stacking fault moves over one atomic layer

in the direction perpendicular to its fault plane. The same layer-by-layer process is repeated

until approximately 56.5 s, when the surface area of the phase boundary is considerably

small.

PD-A PD-BPD-A PD-BPD-A

α/β phase boundary

HCP OtherFCC
Structure type

α phase
β phase

4.5 s 8.5 s7.0 s

Figure 4.14: Details of the dynamics of the stacking faults in the octahedral particle.
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Notably, in the octahedral particle, the dynamics of the stacking faults is dominated by

the movement of partial dislocations on consecutive fault planes. This mechanism, clearly

different from that in the spherical particle, is dominated by the morphology of the phase

boundary. In the octahedral particle, the phase boundary retains planar {111} faces during

the H absorption process, and stacking faults start to appear near the edges of the phase

boundary. Therefore, as the phase boundary moves, the stacking faults quickly become tan-

gent to it. When this happens, the stacking faults stop gliding, and new partial dislocations

have been emitted from the edges of the phase boundary. These dislocations are adjacent to

the existing stacking faults, driving them to “catch” the phase boundary.

Moreover, our DMD results show that in both the spherical and octahedral Pd particles, the

propagation of the atomistically sharp phase boundary results in the formation, and then

the removal of crystallographic imperfections (specifically, stacking faults). The ability of

nanostructured Pd to “self-heal” defects during H loading and unloading processes has been

discovered in a few recent experimental studies [16, 59]. To this end, our simulations have

provided additional, atomic-level details on the dynamics of stacking faults during the H

absorption process.

By contrast, in the cubic particle, no stacking faults appear during the H absorption process.

In order to explain this difference, we examine the area on one {111} plane that is mismatched

with another parallel {111} plane. In this regard, Fig. 4.15 schematically compares the three

particles in different shape. Two parallel {111} atomic layers are sketched: one in the β phase

and the other cutting the phase boundary. The misfit area is colored in blue. Compared to



4.6. RATE OF HYDROGEN ABSORPTION 157

the sphere and the octahedron, the cubic particle has a much smaller misfit area. Since the

{111} family of planes is the major operative slip plane in the FCC crystal, the large misfit

area in the spherical and octahedral particles leads to large lateral movement between two

{111} layers and hence the emergence of stacking faults. On the other hand, the smaller

misfit area in the cubic particle explains the absence of stacking fault.

(a) (c)

[001]

[110]
[110]

(b)

β phaseα phase β phaseα phase β phaseα phase

{111} atomic layer in α phase {111} atomic layer in β phase

Center Center Center

α/β phase boundary

Figure 4.15: Schematic illustration of the effect of particle shape on the lattice deformation:
(a) spherical, (b) octahedral, and (c) cubic particles.

4.6 Rate of hydrogen absorption

We proceed to examine the effect of particle shape on the overall H absorption process.

Figure 4.16 shows the time-history of H concentration in each particle and its time derivative.

Notably, the cubic particle absorbs H faster than the other two. This can be explained by two

factors. First, the three particles are designed to have approximately the same volume. Under

this condition, the cubic particle has the highest surface-area-to-volume ratio. Therefore,

during the early stage when a thin layer of β phase is formed, the phase boundary in the
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cubic particle provides largest surface area for H diffusion into the α phase core. Second, the

phase boundary in the cubic particle remains coherent, which may facilitate the absorption

of H as explained in Section 4.4.

Moreover, Fig. 4.16(b) shows that from approximately 4.5 s to 16.5 s, the rate of H absorption

in the octahedral particle is clearly lower than that in the spherical one. This difference

cannot be explained through the comparison of surface-area-to-volume ratio. In fact, for

the same volume, the surface-area-to-volume ratio of an octahedron is higher than that of

a sphere. Instead, the difference may be related to the volume fraction of solute-induced

stacking faults. Figure 4.17 shows that during the aforementioned time period, the octahedral

particle has a higher volume fraction of stacking faults than the spherical one. In other words,

the phase boundary in the octahedral particle has a larger semi-coherent area. Therefore,

in this stage, misfit dislocations become an important factor that controls the rate of H

absorption, overriding the effect of surface-area-to-volume ratio.

4.7 Conclusions

We have analyzed the absorption of hydrogen (H) by three palladium (Pd) nanoparticles

of different morphologies (i. e., spherical, octahedral and cubic) using Diffusive Molecular

Dynamics (DMD). The chief advantage of DMD which renders it ideally suited for this

application is its ability to simulate long-term behavior of atomic systems without the time

constraints inherent to Molecular Dynamics (MD). Indeed, atomic resolution is required
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Figure 4.16: Time-history of H absorption: (a) H concentration and (b) rate of H absorption.
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Figure 4.17: Time-history of volume fraction of stacking faults.

in order to ascertain the complex mechanisms set in motion by H absorption into the Pd

nanoparticles. These mechanisms, as identified in calculations, include phase transformation,

phase boundary motion, misfit dislocations, stacking faults and their evolution. The motion

of the α/β phase boundary is the net result of a complex interplay between these mechanisms.
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Several main findings afforded by the calculations are noteworthy. Firstly, the hydride phase

transformation in Pd nanoparticles is dominated by the propagation of an atomistically sharp

α/β phase boundary. The phase boundary in the cubic particle remains coherent during the

H absorption process, whereas stacking faults are observed in the spherical and octahedral

particles. These stacking faults move together with the propagating sharp phase boundary

in order to release the elastic stress induced at the phase boundary by the misfit between

the α and β lattices. Specifically, in the spherical particle, the movement of stacking faults

is dominated by the emission of a new stacking fault from an existing one, the gliding of

stacking faults together with the phase boundary and the annihilation of stacking faults

behind from the phase boundary. In the octahedral particle, the dynamics of stacking faults

is dominated by the movement of partial dislocations on consecutive fault planes. Moreover,

the particle shape has an effect on the diffusion of H. Specifically, the cubic particle exhibits

the ability to absorb H atoms faster than the other two shapes. Our DMD model also predicts

that the formation and movement of stacking faults may slow down the propagation of the

hydride phase boundary, and hence reduce the speed of H absorption. In this regard, the

two-way interaction between H absorption and lattice deformation is remarkable.

These predictions also indicate that for the particle size and shapes under consideration,

the cubic particle aligned with {100} planes may be optimal for H storage applications.

The suppression of stacking fault formation in the cubic nanoparticles and the persistent

coherence of the phase boundary may also be expected to enhance the repeatability of the

storage cycle and, therefore, the useful life of the nanoparticles. However, the mechanisms of
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phase boundary motion and the H storage characteristics identified in this study are likely to

be size dependent. In particular, the coherence of the phase boundary may be lost for cubic

nanoparticles exceeding a critical size. Larger nanoparticle sizes also promote decomposition

into grains separated by grain boundaries. Under those conditions, grain boundaries are

known to mediate hydrogenation and to influence the storage characteristics of individual

nanoparticles [60]. These and other trade-offs suggest themselves as worthwhile directions

for further study.
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4.A An elastic core-shell model

The elastic field of a spherical core in an elastically matched, concentric spherical shell can

be obtained by elementary methods of linear elasticity. For completeness, here we present a

short derivation for the case of isotropic elasticity with Lamé constants λ(s) and µ(s) for the

shell and λ(c) and µ(c) for the core. The shell undergoes a volumetric expansion κ = ∆V/V ,

i. e., its volume V would increase by ∆V = κV if the core were released from the shell. We

employ spherically symmetric displacements in the spherical coordinate system (r, θ, φ)

ur = ur(r), (4.18)

where r refers to the radial distance. The corresponding strains are

εrr =
dur
dr

, εtt =
ur
r
, (4.19)

where t refers to any coordinate (i. e., polar angle θ or azimuthal angle φ) that has transverse

direction perpendicular to the radial direction. From Hooke’s law, the stresses follow as

σrr = λ(εrr + 2εtt) + 2µεrr, (4.20a)

σtt = λ(εrr + 2εtt) + 2µεtt. (4.20b)
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The radial equilibrium equation is

dσrr
dr

+ 2
σrr − σtt

r
= 0, (4.21)

or, in terms of displacements,

d2ur
dr2

+
2

r

dur
dr
− 2ur

r2
= 0. (4.22)

The corresponding general solution is

ur = Ar +
B

r2
, (4.23)

with stresses

σrr = 3λA+ 2µ

(
A− 2B

r3

)
, (4.24a)

σtt = 3λA+ 2µ

(
A+

B

r3

)
. (4.24b)

If the core were released from the shell, the change of volume in the shell would induce a

displacement at its inner boundary such that

4πR(c)2
u0 = κ

4πR(c)3

3
, (4.25)
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or

u0 =
κ

3
R(c), (4.26)

where R(c) is the radius of the core. The core-shell system then undergoes displacements

u(c)
r = A(c)r +

B(c)

r2
, r < R(c), (4.27a)

u(s)
r = A(s)r +

B(s)

r2
, r > R(c), (4.27b)

in order to restore compatibility. The corresponding boundary conditions are

u(c)
r (0) < +∞, (4.28a)

u(c)
r (R(c)) = u0 + u(s)

r (R(c)), (4.28b)

σ(c)
rr (R(c)) = σ(s)

rr (R(c)), (4.28c)

σ(s)
rr (R(s)) = 0, (4.28d)

where R(s) is the radius of the outer surface of the shell. Solving for the constants, we find

B(c) = 0 and

A(c) =
4µ(s)κ(3λ(s) + 2µ(s))

(
R(c)3 −R(s)3

)
D

, (4.29a)

A(s) =
4µ(s)R(c)3

κ(3λ(c) + 2µ(c))

D
, (4.29b)

B(s) =
R(c)3

R(s)3
κ(3λ(c) + 2µ(c))(3λ(s) + 2µ(s))

D
, (4.29c)
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with

D = −12µ(s)R(c)3
(3λ(c) − 3λ(s) + 2µ(c) − 2µ(s))

− 3R(s)3
(3λ(s) + 2µ(s))(3λ(c) + 2µ(c) + 4µ(s)).

(4.30)

By spherical symmetry, the stress tensor has the representation

σ = σrrer ⊗ er + σtt(I − er ⊗ er), (4.31)

where er is radial unit vector, ⊗ is the dyadic product and I is the identity matrix. In an

FCC crystal, the slip systems based on Schmid and Boas’ nomenclature are summarized in

Table 4.1. The corresponding resolved shear stress (RSS) in a slip system n of slip plane m

and slip direction s is

τ(r, θ, φ;n) = sTσm = (er · s)(er ·m)(σrr − σtt) ≡ srmrT (r), (4.32)

where srmr is the Schmidt factor. On the interface r = R(c) in the shell, from the elastic

stress field we compute

T (R(c)) ≡ σrr − σtt = −6µ(s)R(s)3
κ(3λ(c) + 2µ(c))(3λ(s) + 2µ(s))

D
. (4.33)

A straightforward calculation shows that the corresponding global maximum value of τ on
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the interface r = R(c) is

τmax = max
θ,φ
|τ(R(c), θ, φ;n)| = 1

2
|T (R(c))|, (4.34)

which is the same for all the slip systems. The maximum RSS is attained at the interfacial

points corresponding to

er =

√
2

2
(m± s), (4.35a)

er = −
√

2

2
(m± s). (4.35b)

The maximum value of RSS at the position (r, θ, φ) among a group of selected slip systems

is

τ̄(r, θ, φ) = max
n
|τ(r, θ, φ;n)|. (4.36)

Slip system n A2 A3 A6 B2 B4 B5√
2s [011̄] [101] [1̄1̄0] [01̄1] [101̄] [1̄10]√
3m (1̄11) (1̄11) (1̄11) (111) (111) (111)

Slip system n C1 C3 C5 D1 D4 D6√
2s [011] [1̄01̄] [11̄0] [01̄1̄] [1̄01] [110]√
3m (1̄1̄1) (1̄1̄1) (1̄1̄1) (11̄1) (11̄1) (11̄1)

Table 4.1: Slip-system sets in Schmid and Boas’ nomenclature for the FCC crystal class.
The vector m is the unit normal to the slip plane, and s is the unit vector in the direction
of the Burgers vector. All vectors are expressed in the cartesian coordinate system.

In comparison with the DMD simulations for the Pd-H system, we consider the volumetric

expansion of the shell induced by the α/β hydride phase transformation. Therefore, the
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volumetric expansion ratio is

κ = 3
aβ − aα
aα

(4.37)

where aα and aβ denote the lattice constants of α and β phase, respectively. The structural

and elastic properties used in the core-shell model are summarized in Table 4.2.

Core (α phase) Shell (β phase) Source

Lattice constant a (Å) 3.885 4.115 From the DMD simulations
Elastic constant C11 (GPa) 245.8 241.7 From Pd and PdH1 in

Ref. [48], respectivelyElastic constant C12 (GPa) 199.8 190.3

Table 4.2: Compilation of material constants for α and β phase Pd-H.
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[15] B. Amin-Ahmadi, D. Connétable, M. Fivel, D. Tanguy, R. Delmelle, S. Turner, L. Malet,

S. Godet, T. Pardoen, J. Proost, et al., Dislocation/hydrogen interaction mechanisms

in hydrided nanocrystalline palladium films, Acta Materialia 111 (2016) 253–261.

[16] T. C. Narayan, F. Hayee, A. Baldi, A. L. Koh, R. Sinclair, J. A. Dionne, Direct visual-

ization of hydrogen absorption dynamics in individual palladium nanoparticles, Nature

Communications 8 (2017) 14020.

[17] A. Ulvestad, M. Welland, W. Cha, Y. Liu, J. Kim, R. Harder, E. Maxey, J. Clark,

M. Highland, H. You, et al., Three-dimensional imaging of dislocation dynamics during

the hydriding phase transformation, Nature materials 16 (5) (2017) 565–571.



170

[18] K. Wang, M. Ortiz, M. P. Ariza, Long-term atomistic simulation of hydrogen diffusion

in metals, International Journal of Hydrogen Energy 40 (15) (2015) 5353–5358.

[19] Y. Kulkarni, J. Knap, M. Ortiz, A variational approach to coarse graining of equilib-

rium and non-equilibrium atomistic description at finite temperature, Journal of the

Mechanics and Physics of Solids 56 (4) (2008) 1417–1449.

[20] M. P. Ariza, I. Romero, M. Ponga, M. Ortiz, Hotqc simulation of nanovoid growth under

tension in copper, International Journal of Fracture 174 (1) (2012) 75–85.

[21] G. Venturini, K. Wang, I. Romero, M. P. Ariza, M. Ortiz, Atomistic long-term simu-

lation of heat and mass transport, Journal of the Mechanics and Physics of Solids 73

(2014) 242–268.

[22] M. Ponga, M. Ortiz, M. P. Ariza, Finite-temperature non-equilibrium quasi-continuum

analysis of nanovoid growth in copper at low and high strain rates, Mechanics of Mate-

rials 90 (2015) 253–267.

[23] J. Li, S. Sarkar, W. T. Cox, T. J. Lenosky, E. Bitzek, Y. Wang, Diffusive molecular

dynamics and its application to nanoindentation and sintering, Physical Review B 84 (5)

(2011) 054103.

[24] S. Sarkar, J. Li, W. T. Cox, E. Bitzek, T. J. Lenosky, Y. Wang, Finding activation

pathway of coupled displacive-diffusional defect processes in atomistics: Dislocation

climb in fcc copper, Physical Review B 86 (1) (2012) 014115.



171

[25] G. Simpson, M. Luskin, D. J. Srolovitz, A theoretical examination of diffusive molecular

dynamics, SIAM Journal on Applied Mathematics 76 (6) (2016) 2175–2195.

[26] X. Sun, M. P. Ariza, K. Wang, Deformation-diffusion coupled analysis of long-term

hydrogen diffusion in nanofilms, in: Proceedings of VII European Congress on Compu-

tational Methods in Applied Sciences and Engineering, Vol. 1, ECCOMAS, 2016, pp.

197–208.

[27] M. Ponga, M. Ortiz, M. P. Ariza, A comparative study of nanovoid growth in FCC

metals, Philosophical Magazine 97 (32, A) (2017) 2985–3007.

[28] J. P. Mendez, M. Ponga, M. Ortiz, Diffusive molecular dynamics simulations of lithiation

of silicon nanopillars, Journal of the Mechanics and Physics of Solids 15 (2018) 123–141.

[29] R. A. Miron, K. A. Fichthorn, Accelerated molecular dynamics with the bond-boost

method, The Journal of Chemical Physics 119 (12) (2003) 6210–6216.

[30] A. F. Voter, Introduction to the kinetic monte carlo method, in: Radiation Effects in

Solids, Springer, 2007, pp. 1–23.

[31] C. S. Martin, M. P. Ariza, M. Ortiz, Modeling thermal conductivity in silicon nanowires,

GAMMMitteilungen 38 (2015) 201–212.

[32] E. Dontsova, J. Rottler, C. Sinclair, Solute-defect interactions in al-mg alloys from

diffusive variational gaussian calculations, Physical Review B 90 (17) (2014) 174102.



172

[33] X. Sun, M. P. Ariza, M. Ortiz, K. G. Wang, Long-term atomistic simulation of hydro-

gen absorption in palladium nanocubes using a diffusive molecular dynamics method,

International Journal of Hydrogen Energy 43 (11) (2018) 5657–5667.

[34] E. T. Jaynes, Information theory and statistical mechanics i, Physical Review 106 (4)

(1957) 620–630.

[35] E. T. Jaynes, Information theory and statistical mechanics ii, Physical Review 108 (2)

(1957) 171–190.

[36] S. R. De Groot, P. Mazur, Non-equilibrium thermodynamics, Courier Corporation,

2013.

[37] X. Sun, M. P. Ariza, M. Ortiz, K. Wang, Acceleration of diffusive molecular dynamics

simulations through mean field approximation and subcycling time integration, Journal

of Computational Physics 350 (2017) 470–492.

[38] B. Gonzalez-Ferreiro, I. Romero, M. Ortiz, A numerical method for the time coarsening

of transport processes at the atomistic scale, Modelling and Simulation in Materials

Science and Engineering 24 (4) (2016) 045011.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This dissertation presents the development, assessment and application of a computational

framework, referred to as Diffusive Molecular Dynamics (DMD). This framework aims at

solving long-term, three-dimensional, deformation-diffusion coupled problems of interstitial

solute mass transport in crystalline solids. The main conclusions can be summarized as

follows:

• A DMD computational framework has been developed. This work consists mainly of

three parts.

(1) A DMD model has been developed for the interstitial diffusion of solute atoms,

which accounts for three-dimensional, deformation-diffusion coupled analysis. In
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this model, a nonlinear optimization problem has been derived to capture three-

dimensional deformation of the system, based on a new trial Hamiltonian that

considers interstitial solutes. Meanwhile, a first-order, nonlinear ordinary differ-

ential equation has been developed to drive the long-term evolution of the system.

(2) Two numerical methods have been employed for accelerating DMD simulations

while maintaining a high solution accuracy. In the first method, both first-order

(i.e., the point estimate) and second-order mean field approximations have been

explored to reduce the computational cost of evaluating the mean of the potential

function. The second method, i.e., subcycling time integration, has been designed

to regularly skip the computationally expensive optimization problem. Both con-

stant and linear extrapolations have been studied to estimate the solution of the

optimization problem when it is skipped.

(3) A high-performance computational solver has been developed. This solver in-

cludes a robust nonlinear optimizer that is equipped with a quasi-Newton Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method, and an efficient explicit time integra-

tor. The solver has been parallelized with Message Passing Interface (MPI), using

the PETSc/TAO library for large-scale simulations on computer clusters with dis-

tributed memory.

• The capability of the computational framework has been demonstrated, and its per-

formance has been assessed. The framework has been applied to the solution of two

problems pertaining to hydrogen (H) mass transport in palladium (Pd): (1) the dy-
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namics of a single H atom on Pd lattice; and (2) the absorption of H by a Pd nanocube.

In the first problem, the DMD framework has been validated against a classical lat-

tice random walk model. In the second one, the DMD simulation confirms that the

H absorption in Pd nanoparticles is dominated by the propagation of an atomically

sharp, α/β phase boundary. Specifically, in the Pd nanocube with an edge length of

16 nm, the absorption time is longer than 30 s. In addition, several computational

developments afforded by the framework are noteworthy. Firstly, in both problems,

the first- and second-order mean field approximations reduce the computational cost

by three orders of magnitude compared to the Monte Carlo method. Secondly, again

in both problems, subcycling accelerates DMD simulations by a factor of four or more.

Thirdly, the one-step error of the first-order approximation is small in the first prob-

lem, specifically, less than 0.05%, but it can exceed 9% in the second problem. In this

case, the second-order extension reduces the maximum error by a factor of two, and

the average error by a factor of ten.

• The computational framework has been applied to investigate the atomic behaviors

and mechanisms of H absorption into Pd nanoparticles. This work consists mainly of

two parts.

(1) The framework has been employed to simulate H absorption into Pd nanocubes

with edge lengths ranging from 4 nm to 16 nm. The following findings are note-

worthy. During the absorption process of all the samples, the phase boundary

propagates towards the center of the cube, and its shape evolves from a sharp
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cube to a rounded one, then gradually morphs into a sphere. The propagation of

the phase boundary induces local transient lattice expansion and distortion, espe-

cially in the β phase. It is also found that at the final equilibrium state H atoms

have an affinity for the boundary and stay preferentially on and near the surface

of the samples at the expense of the interior. A concave-convex inversion of form

and shear strain is observed between the initial and final states of the samples.

Moreover, the examination of size effect shows that as the size of the sample in-

creases, the maximum absorption speed decreases, whereas the maximum volume

fraction of distorted lattices increases.

(2) The framework has been employed to characterize H absorption into Pd nanopar-

ticles of spherical, octahedral and cubic shapes with the same volume of ap-

proximately 3, 800 nm3. Several main findings afforded by the calculations are

noteworthy. The propagation of an atomistically sharp α/β phase boundary is

observed during the hydride phase transformation in the three Pd nanoparticles.

The phase boundary in the cubic particle remains coherent during the H absorp-

tion process, whereas stacking faults are observed in the spherical and octahedral

particles. These stacking faults move together with the propagating sharp phase

boundary in order to release the elastic stress induced at the phase boundary by

the misfit between the α and β lattices. Specifically, in the spherical particle,

the movement of stacking faults is dominated by the emission of a new stacking

fault from an existing one, the gliding of stacking faults together with the phase
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boundary and the annihilation of stacking faults behind from the phase bound-

ary. In the octahedral particle, the dynamics of stacking faults is dominated by

the movement of partial dislocations on consecutive fault planes. Moreover, the

particle shape has an effect on the diffusion of H. The cubic particle exhibits the

ability to absorb H atoms faster than the other two shapes. More specifically,

our DMD model predicts that the formation and movement of stacking faults

may slow down the propagation of the hydride phase boundary, and hence reduce

the speed of H absorption. In this regard, the two-way interaction between H

absorption and lattice deformation is remarkable.

5.2 Future work

In this dissertation, the developed DMD computational framework is only applied to simulate

H mass transport in single-crystal Pd nanoparticles. Therefore, many new applications can

be explored by the framework. For example, the arrangement of atoms in most crystalline

solids is not perfect. It is highly desirable to extend the framework to investigation of the

interaction between interstitial solute atoms and preexisting crystallographic defects, e.g.,

nanovoids, stacking faults and grain boundaries, during the long-term diffusion process.

The length scale of the simulation domain in DMD methods is typically on the order of

nanometers. However, some phenomena of interest take place at macroscopic scale, such as

solute-induced cracks, while the atomic resolution of some specific regions becomes signif-
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icant, such as the tip of a crack. In other words, relatively small parts of the simulation

domain require full atomic description, while the rest can be modeled using continuum me-

chanics. In this regard, one of the future work is to combine the DMD framework with

a continuum model to form a quasicontinuum method for large-scale deformation-diffusion

coupled problems.
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