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Abstract 

The study evaluates the drought characteristics in India over projected climatic scenarios in 

different time frames i.e., near-future (2010-2039), mid-future (2040-2069), and far-future 

(2070-2099) in comparison with reference period (1976-2005). Standardized Precipitation 

Evapotranspiration Index (SPEI), a multiscalar drought index was used owing to its robustness in 

capturing drought conditions while accounting the temperature. Gridded rainfall and temperature 

data provided by India Meteorological Department (IMD) was used to perform bias correction of 

9 Global Climate Models (GCMs) from Coupled Model Intercomparison Project Phase 5 

(CMIP5) project. Quantile mapping was used to correct the daily rainfall data at seasonal scale 

whereas daily temperature data was corrected at monthly scale. Multi-Model Ensemble (MME) 

was prepared for different homogeneous monsoon regions of India, namely Hilly Regions (HR), 

Central Northeast (CNE), Northeast (NE), Northwest (NW), West Central (WC), and Peninsula 

(PS). Taylor diagram statistics were used for the preparation of MME. The regional climate cycle 

obtained from MME was found to be in good agreement with observed cycle derived from IMD 

data. The Mann-Kendal trend test was employed to detect the trend in drought severity and 

magnitude whereas L-moments based frequency analysis was used to assess the magnitude of 

extreme drought severity under different time frames. The study reveals an increasing trend in 

drought severity, duration, occurrences, and the average length of drought under warming 

climate scenarios. Furthermore, the area under ‘above moderate drought’ (i.e., severe and 

extreme drought combined) condition was also found to be increasing in projected climate. 
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1. Introduction 

Expecting abnormal weather conditions in the form of intense storm, prolonged heat wave spells, 

pluvial flooding, cloudburst, chilling weather, continuous drought situations have become a norm 

owing to the exacerbated climatic conditions across the globe. Though each of the afore-

mentioned problems has its implication on human lives and economy of a nation, drought is 

undeniably the most concerning problem that adversely affects the food security and livelihood 

of farmers by hampering crop production, and economic growth of a country. For instance, in 

India, farm revenues are likely to decrease by 20-25% in the medium term due to the unfavorable 

climatic condition causing a dent into country’s economy as agriculture sector accounts for 16% 

of Gross Domestic Product (Ministry of Finance- India, 2018). Prolonged drought causes poor 

crop production resulting in inflation which in turn leads to sociopolitical unrest and slower 

economic growth. Compared to any other natural hazard, drought affects number of people, 

therefore it’s essential to develop an understanding of drought characteristics (Kang and Sridhar, 

2018, 2017; Mishra and Singh, 2011).  

Droughts can be analyzed on short-term as well as on a long-term basis. Short-term drought 

forecasts can aid into crop management by releasing appropriate advisory regarding suitable 

crops, allocating drought relief funds to help farmers and reallocations of water resources among 

states. Future drought projections in long-term are of vital importance in terms of policy-making 

to combat water crisis in a longer time frame by the means of improved infrastructure to manage 

water resources, groundwater recharge projects, rainwater harvesting schemes etc. Numerous 

studies across the globe reported the possible increase in various drought characteristic i.e., 

severity, duration, and intensity. Trenberth et al. (2013) suggested the likelihood of more 

extensive natural droughts with a possibility of quick onset, higher intensity, and longer duration. 

In another study covering a time span of 1950-2008, Dai (2011) reported the increase in global 

percentage dry area with a rate of 1.74% per decade. In the context of future global drought, 

Burke and Brown (2008) reported a higher increase in the areal spread of more severe drought 

than less severe drought with an overall increase in the area affected under drought on a global 

scale. According to IPCC (2012) at a medium level of confidence, drought is likely to increase in 
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future where some region may experience more intense drought. Several regional studies 

performed on various parts of the world ( Lee et al., 2018; Spinoni et al., 2018; Thilakarathne 

and Sridhar, 2017; Chen and Sun, 2017; Nam et al., 2015; Yu et al., 2014; Wang et al., 2011) 

invariably reported the increase in the drought events in changing climatic conditions. During 

1950-2006, Wang et al. (2011) observed that soil moisture droughts became longer, more severe 

and more frequent for central and northeastern China. An analysis of drought using Standardized 

Precipitation Evapotranspiration Index (SPEI) by Yu et al. (2014) for period 1951-2010 over 

China revealed that above moderate droughts have become more serious. Furthermore, SPEI 

derived using Coupled Model Intercomparison Project Phase 5 (CMIP5) family of climate model 

infers aggravated drought conditions under projected scenarios (Chen and Sun, 2017) in China. 

Nam et al. (2015) analyzed the future drought characteristics over South Korea using SPEI, 

Standardized Precipitation Index (SPI), and Self-Calibrating Palmer Drought Severity Index 

(SC-PDSI); they reported an increasing drought severity and magnitude in the region. Majority 

of Korean Peninsula is also found to experience significant drought risk under various climatic 

scenarios (Lee et al., 2018). Spinoni et al. (2018) analyzed the drought over Europe under RCP 

4.5 and RCP 8.5 scenario using SPI, SPEI, and Reconnaissance Drought Indicator (RDI). Under 

both the scenarios, frequency of drought was found to be increasing in Europe during spring and 

summer. More severe and intense droughts were found to be prevalent in Lower Mekong Basin 

in projected climatic scenario (Thilakarathne and Sridhar, 2017). 

Increased risk of drought due to increased prolonged dry spells, total dry days, and decreased 

light precipitation days over India can be attributed to global warming (Mishra and Liu, 2014). 

Characterization of droughts in India have been the focus of many studies (Sharma and 

Mujumdar, 2017; Zhang et al., 2017; Thomas et al., 2015; Mallya et al., 2016; Mishra et al., 

2014; Ojha et al., 2013; Naresh Kumar et al., 2012; Mishra and Singh, 2009). Zhang et al. 

(2017) reconstructed the drought during 1981-2013 in major wheat growing regions in India to 

demonstrate its implication on wheat production. They also reported the increased severity of 

vegetation and meteorological droughts in certain sub-regions. Droughts in India are further 

found to have an increasing trend in their severity and frequency during 1972-2004 (Mallya et 

al., 2016) with increasing areal extent concurrently affected by droughts and heatwaves across 

the country (Sharma and Mujumdar, 2017). Naresh Kumar et al. (2012) reported an increase in 

the spatial extent of area under moderate drought frequency in India during the recent decade. In 
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regional studies, increased frequency and severity of drought was reported for Bundelkhand 

region over last decade (Thomas et al., 2015) in the central India whereas in Kangsabati river 

basin of eastern India more severe drought with increased areal extent was projected in the first 

half of 21
st
 century (Mishra and Singh, 2009). Employing SPI, estimated using bias-corrected 

monthly time series of 17 Global Climate Models (GCMs) Ojha et al. (2013) found the 

likelihood of a rise in the number of drought events in west central, central northeast, and 

peninsular India. Utilizing soil moisture-based drought indices Mishra et al. (2014) predicted an 

increase in the areal extent and frequency of severe, extreme, and exceptional droughts in the 

majority of crop-growing seasons during 2010-2039 and 2040-2069, in India. Unlike SPI, SPEI, 

or RDI, drought characterization using soil moisture-based indices require many variables  such 

as rainfall, maximum and minimum temperature, wind speed, land use land cover, soil type 

information, topographic information, values of numerous parameters related to vegetation and 

soil class to setup hydrological models and soil-moisture measurement, streamflow observations 

for calibration and validation (Mishra et al., 2014). Such exercises are often computationally 

expensive, time consuming, and require model expertise.  

Afore-discussed studies in Indian context, except few, utilized the SPI for drought 

characterization under a projected climate that only account for the precipitation (Mckee et al., 

1993). One of the major critiques of SPI is that it doesn’t account for the effect of temperature 

which is imperative in the view of  the warming climate (Liu et al., 2016). Increased temperature 

leads to higher water demand, therefore for projected climate it is important to use drought 

indices which also account for the temperature in its formulation such as SC-PDSI or SPEI 

(Vicente-Serrano et al., 2010). However, owing to the simplicity of SPEI, multiscalar properties, 

and lower data requirement Vicente-Serrano et al. (2010) suggested to use SPEI. While 

analyzing projected climatic scenarios instead of utilizing a stand-alone GCM output using an 

ensemble of GCMs output gives many reliable estimates as it encompasses the range of model 

induced uncertainties (Weigel et al., 2010).  The present study aims to analyze the medium term 

drought (SPEI-3 or three monthly SPEI) characteristics (duration, severity, areal extent) during 

projected climate scenarios (RCP 4.5 and RCP 8.5) vis-à-vis historical period using multi-model 

ensemble (MME) of bias-corrected data from the CMIP5 family of GCMs. To peek into the 

future scenarios an unconventional approach was adopted to have region-wise MME of rainfall 
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and temperature by selecting a different set of models instead of employing the same set of 

models across the entire landmass. 

In the light of discussion made above, the objectives of this study were to (1) perform bias-

correction of GCM rainfall and temperature under projected climate scenarios (i.e., RCP 4.5 and 

RCP 8.5) and to develop a Multi-Model Ensemble (MME) dataset that best captures the regional 

climatic seasonality (2) estimate temperature based drought indices i.e., SPEI-3 across the spatial 

and temporal scale to analyze the pattern of drought severity and duration, and (3) study the 

possible trend in areal spread of drought under warming scenarios over mainland India. 

The paper is organized as follows. Section 2 describes the methodology, sections 3 deals with 

results and discussions. Conclusions borne out from the study are outlined in section 4. 

2. Methodology 

2.1 Data used 

Rainfall and temperature records are required to analyze drought characteristics using SPEI. In 

the present study, high resolution gridded observed rainfall data at 0.25
o
 spatial resolution (Pai et 

al., 2014) and gridded temperature data at 1
o
 spatial resolution were procured from India 

Meteorological Department (IMD), Pune. IMD rainfall has been widely used in a variety of 

studies (Bisht et al., 2018,2017; Smitha et al., 2018; Beria et al., 2017; Sharma and Mujumdar, 

2017; Meher et al., 2017; Deshpande et al., 2016; Mishra et al., 2014). IMD rainfall data was 

developed utilizing the daily rainfall observations with varying periods of records of 6955 

stations after quality control. Owing to an extensive number of rain gage stations used in the 

preparation of the dataset and high spatial resolution, it captures the rainfall climatology, spatial 

distribution, and orographic effects with reasonable accuracy; readers are encouraged to refer Pai 

et al. (2014) for further details. IMD gridded temperature data was developed using quality 

control records of 395 stations and has been used in a range of studies published in the recent 

past (Paul et al., 2018; Smitha et al., 2018; Beria et al., 2017; Chakraborty et al., 2017; Sharma 

and Mujumdar, 2017; Deshpande et al., 2016; Kumar et al., 2013). To ensure the consistency in 

spatial resolution of the dataset, gridded temperature record was remapped from 1
o
 to 0.25

o
 

spatial resolution using bilinear interpolation following Sharma and Mujumdar (2017). 

To analyze the future drought characteristics, projected climate data from the CMIP5 family of 

models were downloaded from Earth System Grid Federation web portal (https://esgf-

node.llnl.gov/projects/esgf-llnl/) as listed in Table 1. Owing to the computational limitation, in 
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the present study we have used historical, RCP 4.5, and RCP 8.5 scenarios from the first 

ensemble member (r1i1p1) of each model. To ensure the spatial scale consistency across the 

models we remapped the dataset available at various resolution to IMD rainfall resolution using 

Climate Data Operators (CDO) package (available at: http://www.mpimet.mpg.de/cdo) that uses 

bilinear interpolation technique following Das et al. (2012) and Akhter et al. (2017). 

2.2 Bias-correction of projected rainfall and temperature 

An imprecise assumption in model physics and incomplete knowledge of geophysical process 

result into differences in observed and simulated climatic conditions. This difference is termed as 

bias in the model output. Therefore, it is imperative to correct the model outputs using 

appropriate techniques to best utilize the GCM projection under different climatic scenarios 

(Dhage et al., 2016). Downscaled climatic scenario over the globe for an array of GCMs are 

available at finer resolution that can be obtained from NASA Earth Exchange Global Daily 

Downscaled Projections (NEX-GDDP). However, NEX-GDDP employed Global 

Meteorological Forcing Dataset (GMFD) as observational dataset instead of IMD records. 

Therefore, an attempt was made to utilize IMD dataset to bias-correct the climatic projections.    

In the present study, quantile mapping technique (Li et al., 2010) was used to perform bias-

correction on GCM simulated temperature and rainfall data. Daily time series of rainfall data 

were aggregated on seasonal scale i.e., JJAS – ONDJF – MAM which also corresponds to 

Monsoon, Post-monsoon and Pre-monsoon season in India, respectively. In terms of crop 

growing season, these can be aptly related with Rabi, Kharif, and Zaid, respectively. Bias-

correction was performed using seasonal time series of daily rainfall data from observed 

(henceforth IMD) and GCM data using gamma distribution. Bias-correction for daily 

temperature data was performed on a monthly scale using Gaussian distribution. In case of 

temperature, bias-correction was performed for maximum temperature (Tmax) and diurnal 

temperature range (DTR), thereafter minimum temperature (Tmin) was computed by deducting 

DTR from Tmax as recommended by Thrasher et al. (2012). Quantile mapping for rainfall and 

temperature data for historical and projected scenarios were performed as per the methodology 

discussed in Salvi et al. (2013) and Dhage et al. (2016). Historical time series of uncorrected 

GCM data during 1951-2005 was divided into 1951-1975 i.e., 25 years and 1976-2005 i.e., 30 

years for testing and training of bias-correction technique, respectively whereas climatic 

projection form RCP 4.5 and RCP 8.5 scenarios were divided into three timeframes i.e., 2010-
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2039 (near future), 2040-2069 (mid future), 2070-2099 (far future). It is worth noting that recent 

climatic window i.e., 1976-2005 was employed for training period as it closely represents the 

current climate compared to testing period i.e., 1951-1975. 

To prepare MME dataset, different homogenous monsoon regions of India as defined by Indian 

Institute of Tropical Meteorology (IITM), Pune were considered. These regions (Fig. 1) are 

classified as Hilly Regions (HR), Central Northeast (CNE), Northeast (NE), Northwest (NW), 

West Central (WC), and Peninsula (PS). Preparation and evaluation of MME dataset for rainfall 

and temperature are discussed in section 3.1.1 and 3.1.2.  

2.3 Drought characteristics 

SPEI is reported to capture effect of temperature in drought development with reasonable 

accuracy compared to SPI, a precipitation based index that does not account the role of 

temperature in drought development. Liu et al. (2016) and Vicente-Serrano et al. (2010) 

recommended to use SPEI under warming climate scenario. Of late SPEI has gained popularity 

in analyzing drought characteristics under projected scenarios, and numerous studies can be 

referred in Törnros and Menzel (2014), Wang et al. (2014), Rhee et al. (2016), Smirnov et al. 

(2016), Wu et al. (2016), Chen and Sun (2017), Feng et al. (2017), Dibike et al. (2017), Bonsal et 

al. (2017), Oguntunde et al. (2017), Khan et al. (2017), Gao et al. (2017), Huang et al. (2018),  

Zhang et al. (2018) and Spinoni et al. (2018). In the present study, drought characteristic was 

analyzed using SPEI-3. It represents the short and medium term moisture deficit/excess 

conditions computed over a 3-month period and primarily important to highlight the available 

moisture condition in the context of agriculture. SPEI estimation requires monthly water deficit 

(MWD) i.e., the difference of monthly precipitation (P) and monthly potential evapotranspiration 

(PET). Hargreaves (Dibike et al., 2017; Oguntunde et al., 2017; Rhee et al., 2016; Spinoni et al., 

2018), Thornthwaite (Bonsal et al., 2017; Chen and Sun, 2017; Feng et al., 2017; Khan et al., 

2017; Smirnov et al., 2016; Törnros and Menzel, 2014; Wu et al., 2016), and Penman-Monteith 

(Feng et al., 2017; Gao et al., 2017; Huang et al., 2018; Wang et al., 2014; Zhang et al., 2018) 

are the three most commonly used PET estimation methods employed in SPEI based drought 

studies under projected scenarios. Penman-Monteith method is the best reported method and data 

intensive, Hargreaves method utilizes daily maximum and minimum temperature whereas 

Thonthwaite requires monthly mean temperature. Due to data limitation Penman-Monteith 

method could not be employed and since, Hargreaves method is reported to have better 
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performance over Thornthwaite method (Bandyopadhyay et al., 2012) we chose Hargreaves 

method (Allen et al., 1998) for PET estimation. Here it is worth noting that PET inclusion in 

drought index serves to obtain a relative temporal estimation, therefore PET estimation methods 

itself are not crucial (Vicente-Serrano et al., 2010). In the present study, an R-package (available 

at: https://cran.r-project.org/web/packages/SPEI/) was used for SPEI computation. To understand 

the mathematical formulation of SPEI, readers are encouraged to refer Vicente-Serrano et al. 

(2010). 

To compare drought development across the time frames i.e., reference period (1976-2005), 

near-future (2010-2039), mid-future (2040-2069), and far-future (2070-2099), transformation 

obtained for SPEI computation in reference period was used for SPEI computation in the 

projected scenario as demonstrated by Stagge et al. (2015). Owing to the similar nature of 

computation criteria, drought classification for SPEI is same as used for the SPI hence, can be 

adopted from Hayes et al. (1999). Drought severity classification criteria are shown in Table 2.  

2.3.1 Drought severity, duration, and areal spread 

To analyze drought characteristics over India; severity, duration, and area under drought were 

studied. Drought severity and durations were estimated using ‘run theory’ given by Yevjevich 

(1967) and shown in Fig. 2. Thilakarathne and Sridhar (2017) and Mishra and Desai (2005) also 

used ‘run theory’ to analyze drought characteristics using SPI under projected and retrospective 

periods, respectively. Compared to moderate droughts, severe and extreme droughts are much 

detrimental to crop growth, therefore, severe and extreme droughts were combined as above 

moderate drought in the analysis. Besides the change in average length of droughts and number 

of drought occurrences in warming climate scenarios were studied vis-à-vis reference period. 

The average length of drought is the ratio of the total number of drought months experienced 

during a time frame and number of drought incidences, where drought incidences are the count 

of occurrences of consecutive drought months. To study the areal extent of drought, fraction of 

area under drought were computed by identified drought affected grids (for moderate and above 

moderate drought, separately) across all the months of a time frame. Thereafter, for each year 

highest drought spread area fraction was extracted to study the trend in the area under drought.  

2.3.2 Frequency analysis  

In the present study, frequency analysis using L-moments approach was employed to estimate 

the drought severity and duration of various return periods. L-moments approach to estimate 
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parameters for distribution is reported to be superior to other methods (Kumar and Chatterjee, 

2011; Hosking and Wallis, 1997). Five 3-parameter distributions, namely, generalized extreme 

value (GEV), generalized logistic (GLO), generalized normal (GNO), Pearson type-III (PE3), 

generalized pareto (GPA), and one 5-parameter distribution Wakeby (WAK) were employed. L-

moments ratio diagrams were often used in conjunction with Z-dist statistics to identify the best 

fit distribution for a given sample (Bisht et al., 2016; Samantaray et al., 2015; Jena et al., 2014; 

Kumar and Chatterjee, 2005, 2011). However, a sample can be fitted into more than one 

distribution in many cases, and in such cases Z-dist statistics is used to identify the best-fit 

distribution. The best fit for a sample is identified if |Z-dist| statistic is sufficiently close to 0 and 

less than 1.64 (Kumar and Chatterjee, 2011). For cases, where none of the 3-parameters 

distribution show |Z-dist| < 1.64, a 5-parameter distribution, Wakeby, is employed for the 

robustness of analysis (Samantaray et al., 2015; Hosking and Wallis, 1997). Owing to a large 

number of grids in the present study, only Z-dist statistics were used. To have a better 

understanding of mathematical expression and advantages of L-moments based frequency 

analysis, readers may refer to Kumar and Chatterjee (2011).  

2.3.3 Trend analysis 

To identify the trend in the area under drought (AUD) under different time frames, two non-

parametric tests, namely, Mann-Kendal (MK)/ modified Mann-Kendal (MMK) test (Rao et al., 

2003; Hamed and Rao, 1998) and Theil-Sen’s slope (TSS) (Sen, 1968; Theil, 1950) were used. 

The accuracy of MK test deteriorates due to the presence of autocorrelation in the time series, 

therefore, for the auto-correlated data MMK test was used. MK/MMK and TSS were widely 

applied in numerous studies due to their robustness in identifying trend in the time series (Bisht 

et al., 2017; Dhage et al., 2016; Liu et al., 2016; Osuch et al., 2016; Jena et al., 2014; Mishra et 

al., 2014; Naresh Kumar et al., 2012; Bandyopadhyay et al., 2009). Gao et al. (2017), Khan et 

al. (2017), Wu et al. (2016), and Zhang et al. (2018) used Mann-Kendall test to analyze the trend 

in drought characteristics under projected climatic scenarios. Descriptions of  these statistical 

tests can be found in Bisht et al. (2017) and therefore, not elaborated in this article. 

3. Results and Discussion 

3.1 Development of MME of bias-corrected rainfall and temperature 

3.1.1 Development of MME of bias-corrected rainfall 
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Quantile mapping based bias-correction technique as illustrated in Dhage et al. (2016) and Salvi 

et al. (2013) was used for bias-correction of daily rainfall data. Bias-correction was performed on 

seasonal scale instead of monthly scale as during the exercise few of the IMD grids were 

identified with zero rainfall records throughout the length of training period primarily during 

non-monsoon months in arid regions. Such grids cannot be utilized in distribution mapping for 

climate data, however, on a seasonal scale where daily rainfall records were pooled from 

multiple months such problems do not arise. However, frequency correction of rainfall days for 

GCMs was performed on monthly scale using the IMD data of training period (1976-2005). 

Suitability of bias-corrected dataset of each of the participating GCMs was evaluated comparing 

its pattern with IMD data in terms of variation i.e., standard deviation (SD), correlation 

coefficient (CC), and root-mean-square difference (RMSD) utilizing Taylor diagram (Taylor, 

2001).  

To ensure bias-corrected dataset captures the seasonality, instead of assessing the seasonality on 

all India scale, mean monthly bias-corrected rainfall data from different GCMs were compared 

against IMD data for individual homogeneous monsoon regions of India classified by IITM. It is 

worth noting that hilly regions were not considered in the preparation of aforementioned 

classification, however, are taken as a single unit owing to the similar physiographic 

characteristics. Variability in rainfall regime across the homogeneous regions including hilly 

regions as compared to all India scale variability is evident from Fig. 3 for annual as well as 

seasonal (i.e., JJAS, MAM, ONDJF) scales. Northeast region shows the highest amount of 

rainfall compared to all India scale and all other regions for annual, and seasonal cases except for 

the ONDJF in which peninsular India shows highest rainfall and variability. Such variability in 

rainfall across the country makes it imperative to evaluate the bias-corrected rainfall against 

region-specific seasonality for better representation. Therefore, in the present study, accuracy of 

bias-corrected rainfall were assessed for different homogeneous regions (Fig. 1) to better capture 

the seasonality instead of all India scale using Taylor diagram (Fig. 4). Models with higher 

accuracy vis-à-vis IMD data during both training (1976-2005) and testing (1951-1975) period 

were deemed fit for preparation of MME. Taylor diagram statistics obtained for bias-corrected 

data of GCMs considered in the study are tabulated in Table 3. While selecting the models for 

MME preparation, attempt was made to ensure selection of maximum number of models without 

compromising the MME accuracy and performance in capturing the regional seasonality. Taylor 
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diagrams in Fig. 4 and Fig. 5 show the statistical comparison of individual models with IMD. A 

model performance was taken as satisfactory if following 3 conditions met; (1) the difference in 

standard deviation of model and IMD is minimal i.e., it lies closer to the solid line passing 

through IMD inferring that pattern variation of the model matches with IMD, (2) higher 

correlation coefficient, and (3) minimal root-mean-square difference. Following this model 

combinations for MME were carefully identified for respective homogeneous region shown in 

Table 4.  

In present study, equal weights were assigned for ensemble mean. MME derived regional 

seasonal cycle of precipitation was found to be in good agreement with IMD. Ability to resolve 

rainfall seasonality of MME across different regions were verified using color matrix and error 

plots of mean monthly rainfall of individual GCMs and MME for training and testing period as 

shown in Fig. 6 and Fig. 7, respectively. It is evident from the visual inspection that MME 

performs better than individual models and in good agreement with IMD during training as well 

as testing period. This can be ascertained from the color gradient for the error plots and color 

matrix of mean monthly rainfall. Besides, MME mimics the seasonal cycle of regional monthly 

rainfall with reasonable accuracy for both training and testing periods; except for peninsular 

India that showed marginal deviation from the IMD. Interestingly, IPSL-CM5A-LR and IPSL-

CM5A-MR showed the highest departure from IMD across all the regions compared to other 

models as shown in error plots (darker shades show higher deviation from the IMD) as well as in 

Taylor diagrams for training and testing period therefore are not considered for including in 

MME development.   

Besides assessing the MME skill in resolving the rainfall climatology for homogeneous regions, 

a qualitative evaluation by means of Hovmoller diagram (Fig. 8) was also employed to assess the 

ability of MME to resolve seasonality across the latitudes. MME captures the temporal evolution 

of monthly rainfall with reasonable accuracy during training and testing period across the 

latitudes and found to be in good agreement with IMD rainfall pattern except for some of the 

northernmost latitudes that mostly represent the mountain range of the Himalayas and are very 

few in numbers. Across all the latitudes, the majority of the rainfall concentrated in monsoon 

season i.e., JJAS (southwest monsoon) are captured well by the MME. Southernmost latitudes 

approximately up to 14
o 
N from  peninsular India receive high rainfall during October and 

November months due to northeast monsoon are also captured with reasonable accuracy by 
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MME for training and testing period. As per the afore-discussed exercise, the ability of MME in 

resolving the monthly rainfall pattern across the latitudes and different homogeneous regions is 

found to be satisfactory for further analysis. 

3.1.2 Development of MME of bias-corrected temperature 

Temperature data was bias-corrected using the same technique as employed in the bias-

correction of rainfall. However, instead of seasonal time series, monthly time series of daily 

temperature data was used i.e., uncorrected GCM temperatures of all January months were 

corrected using IMD temperature of January months. Separate correction of Tmax and Tmin 

often results in unrealistic DTR where Tmin exceeds Tmax in corrected data. Therefore,  firstly 

Tmax and DTR were corrected and subsequently corrected Tmin was computed from Tmax and 

DTR as recommended in Thrasher et al. (2012). Identified GCMs used in MME of rainfall 

(Table 4) were selected for MME of temperature for respective homogeneous regions. Here, it is 

worth mentioning that bias-corrected temperature resolves the seasonality better than the bias-

corrected rainfall data in general. Hence, selecting an identified set of GCMs for MME of 

rainfall can be recommended for preparation of MME of temperature as well. This further 

ensures the rainfall and temperature comes from the same GCM for respective MME. Corrected 

Tmax and Tmin for training period along with the projected scenarios are shown in Fig. 9 and 

Fig. 10. The higher increase in temperature can be clearly seen in RCP 8.5 compared to RCP 4.5 

scenario. Hovmoller diagrams for MME Tmax and MME Tmin during training and testing 

period are included in the supplementary material (Fig. S1, Fig. S2). 

3.2 Drought characterization  

The 3-month SPEI that provides a comparison of the water deficit/excess over a specific 3-month 

period for the study duration, is used for analyzing the drought characteristics. Owing to the fact 

that majority of the crops have a growing period of 3-4 months, SPEI-3 is more relatable in 

investigating effects of drought on vegetation. The focus of this study is to analyze drought 

patterns in projected scenario using bias-corrected MME dataset rather than retrospective 

investigation. Retrospective drought characteristics over India have been addressed by Sharma 

and Mujumdar (2017),  Mallya et al. (2016) and  Naresh Kumar et al. (2012) in detail, hence not 

taken up in the present study. To study drought behaviors in warming scenario drought severity, 

duration, and occurrences were estimated during 1976-2005 i.e., reference period and compared 

with the respective indices for near-future (2010-2039), mid-future (2040-2069), and far-future 
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(2070-2099) under projected RCP 4.5 and RCP 8.5 scenarios. Besides, frequency analysis was 

performed to demonstrate the change in 25 year return period of severity and duration using L-

moments based frequency analysis approach. To study the areal spread of drought, total area 

affected by drought was estimated for each year. For this purpose ‘moderate droughts’ and 

‘above moderate droughts’ (i.e., drought either characterized as severe drought or extreme 

drought) indicated by −0.1<=SPEI >−1.5 and SPEI<=−1.5 were considered. Drought 

characteristics in terms of severity, areal spread, duration, and occurrences are discussed in 

following section. 

3.2.1 Drought severity and areal spread 

Trend analysis using MMK test was performed to investigate the pattern of drought severity and 

areal spread. While analyzing the 30-year time frames majority of the grids showed a non-

significant trend in drought severity magnitude computed using ‘run theory’ as shown in Fig. 2 

on annual basis. However, on long-term basis i.e., for entire projected time period (2010-2099) 

increase in the magnitude of drought severity was found to be significant at 5% level of 

significance across the country under both the RCP 4.5 and RCP 8.5 scenarios (Fig. 11). The 

reason can be attributed to the substantial increase in the drought severity magnitude in far future 

in comparison to near future. This also infers that far-future and mid-future may show increased 

drought severity compared to mid-future and near-future, respectively. To validate this, 

frequency analysis of drought severity was performed for historical as well as near-future, mid-

future, and far-future time frames using L-moments based approach.  

As discussed earlier best fit distributions were identified (Fig. 12) from the five 3-parameter 

distributions, namely generalized extreme value (GEV), generalized logistic (GLO), generalized 

normal (GNO), Pearson type-III (PE3), generalized Pareto (GPA), and one 5-parameter 

distribution Wakeby (WAK) for each grid. Frequency analysis of drought severity was 

performed for each grid computing the growth factors using the parameters of corresponding 

best fit distributions shown in Fig. 12. A 25-year return period of drought severity was computed 

over each 30 year timeframe. The magnitude of drought severity was found to be increasing for 

25 year return period in comparison to reference period for all the time frames under RCP 4.5 

and RCP 8.5 scenario. This increase was found to be maximum for mid-future and far-future 

(Fig. 13) in the northwest, west-central, and central northeast India. Higher magnitude of 25 year 

return period drought severity in different time frames under projected scenarios infers the 
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increased severity that may not have a significant increasing trend (Fig. 11) but nevertheless has 

a higher magnitude than preceding time frames.  

To analyze the drought spread MMK test was performed on each time frame i.e., near-future, 

mid-future, and far-future; as well as on long-term basis i.e., entire projected time length of 

2010-2099. The area subjected to moderate droughts was found to be decreasing for both the 

scenarios i.e., RCP 4.5 and RCP 8.5 except for far-future which shows a non-significant 

increasing trend (Table 5; Fig. 14). In the long-term, area under moderate drought is found to be 

decreasing significantly at 5% significance level under RCP 4.5 and RCP 8.5 scenarios (Fig. 14). 

Contrary to moderate droughts an increasing trend is found to be prevalent in the areal spread of 

above moderate drought under both the scenarios, however, the trends were significant for long-

term scale i.e., 2010-2099. For all the time frames studied, moderate drought is found to be 

replaced by above moderate drought conditions that may pose an alarming state for Indian 

agriculture and water resource managers. Though the increasing trends lack the statistical 

significance in a shorter time frame for above moderate droughts except for the mid-future under 

RCP 4.5 scenario; increase in the areal spread in mid-future, and far-future compared to near-

future, and mid-future, respectively is evident from Fig. 14 for both the scenarios. Long-term 

decreasing and increasing significant trends in the areal spread of moderate and above moderate 

droughts can be attributed to the change in the areal spread of droughts, though non-significant, 

in smaller timeframes.  

3.2.2 Drought duration and occurrences 

Trend analysis was performed on the durations of SPEI-3 drought months. For this, the time 

series were prepared considering the maximum duration of droughts length in a single run over 

each year using ‘run theory’ as shown in Fig. 2. As shown for severity trends in Fig. 11, in long 

run, duration of drought length was found to increase significantly at 5% significance level over 

the majority of the country (Fig. 15). However, very few number of grids showed statistically 

significant trends on smaller time frames. On a long-term basis Indo-Gangetic plains, part of 

central India, north-western India and Upper Peninsular India are found to be more severely 

affected under projected climatic scenarios. As discussed for the drought severity case in 

preceding section, a strong trend in drought durations (in months) over the long run can be 

attributed to increase in individual time frames. This can be further validated from Fig. 16 which 

shows an increase in the average length of drought in far-future and mid-future compared to mid-
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future and near-future, respectively. The long-term increasing trend in drought duration (Fig. 15) 

and increased average length of drought (Fig. 16) infers the likelihood of long runs of SPEI-3 

drought months under warming scenarios. The situation can be further aggravated by increasing 

drought severity as discussed in section 3.2.1. Besides drought severity, duration, and length; 

frequency of drought events were analyzed by the means of drought occurrences across the time 

frames. Drought occurrences were computed in each time frame by analyzing the counts of 

consecutive drought months. Interestingly, in comparison to the reference period, future time 

frames under projected scenarios showed increased occurrences of drought months (Fig. 17). 

Under RCP 4.5 and RCP 8.5, increase in the number of drought occurrences found to be more 

prevalent in mid-future and far-future for the majority of the country except for north-eastern 

India, southern-peninsula, and Mountainous region of northern India. An increased number of 

drought occurrences unfolding in projected scenarios and coupled with increased severity (Fig. 

11, Fig. 13), increased areal spread (Fig. 14), and increased duration of drought months (Fig. 15) 

and increased average drought length (Fig. 16) outlines the future challenges in the water 

resource management. Worsening drought situations can be attributed to the increasing water 

deficit conditions under warming scenarios that can be linked to higher potential 

evapotranspiration demand. Though the SPEI-3 gives an insight into water stress conditions in 

the context of agriculture, a more detailed consideration of crop phenology is required to study 

the implication of drought on crop production (Zhang et al., 2017). The present study focuses on 

characterization of meteorological drought under warming future scenario by taking rainfall and 

temperature both into account. Drawing inferences on regional crop yield under altering 

dynamics of short-term droughts are beyond the scope of present work and can be taken up in 

further studies.  

4 Conclusion 

Drought characterization under projected climatic scenarios under RCP 4.5 and RCP 8.5 using a 

multiscalar drought index SPEI was performed over India. SPEI-3 is selected to study the 

drought as it corresponds to the majority of crop growing duration, hence, inferences made using 

SPEI could be used in agricultural decision making. However, a comprehensive approach 

involving information regarding crop phenology, crop yield data, cropped area, irrigation 

approach (i.e., rainfed or irrigated) are required to have in-depth insight on implication of 

drought induced water stress on crop production. It is also worth mentioning that present study 
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utilizes the most commonly Hargreaves method to estimate PET for SPEI estimation in warming 

scenarios as data limitation discard the use of more robust Penman-Monteith method. Though 

these methods have been widely applied in warming climate scenario, evaluating the efficacy of 

different PET estimation methods to analyze future droughts using SPEI can be the focus of 

future studies, given the data is readily available. 

 A total of 9 GCMs were used to prepare an MME of rainfall and temperature for studying the 

drought conditions. MME was prepared based on the ability of GCMs in resolving the climatic 

cycle for different homogeneous regions of India, namely, Hilly Regions (HR), Central 

Northeast (CNE), Northeast (NE), Northwest (NW), West Central (WC), and Peninsula (PS) as 

defined by IITM, Pune. Out of used 9 GCMs, 5 GCMs were employed for CNE region, 2 GCMs 

for HR region, 4 GCMs for NE region, 3 GCMs for NW region, and 4 GCMs for WC region for 

the preparation of MME rainfall and temperature using Taylor diagram statistics. Prepared MME 

was found to capture the seasonal cycle of the regions with reasonable accuracy while comparing 

with IMD data. The present study revealed a high likelihood of above moderate drought 

conditions in warming climate under RCP 4.5 and RCP 8.5 scenarios. Area affected with above 

moderate drought conditions shows rising trend contrary to area affected from moderate drought 

under projected scenarios; these trends were further found to be significant at 5% significance 

level in long-term (2010-2099). Average drought length is also found to be increasing in near-

future (2010-2039), mid-future (2040-2069), and far-future (2070-2099) compared to reference 

period (1976-2005). Similarly, increased occurrences of drought months were also found to be 

persistent. Mann-Kendal trend test revealed a significant increasing trend in the drought severity 

and duration over the majority of India in long-run (i.e., 2010-2099), however, in smaller time 

frames, trend were predominantly found to be non-significant. A frequency analysis of drought 

severity and analysis of average length of drought months in small time frames indicate the 

noticeable increase in severity and the average length of drought in each succeeding time-frame 

i.e., near-future, mid-future, and far-future under both the scenarios. This can be attributed to the 

long-term significant increases in drought severity and duration. To summarize, there is a high 

likelihood of increased drought situation under warming climate scenario. More area would be 

affected with above moderate drought conditions i.e., severe and extreme droughts that may have 

serious implication in regional water availability.  
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Figure Captions 

Fig. 1 Homogeneous monsoon regions of India 

 

Fig. 2 Drought events and characteristics using ‘run theory’ 
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Fig. 3 Box and Whisker plots showing rainfall variability across the regions in comparison to all 

India scale (AI = all India scale, CNE = Central Northeast, HR = Hilly Regions, NE = Northeast, 

NW = Northwest, WS = West Central, and PS = Peninsular India)   

Fig. 4 Taylor diagram for statistical comparison of IMD mean monthly precipitation with 9 bias 

corrected model estimates during training period (1976-2005) for homogeneous monsoon 

regions of India 

Fig. 5 Taylor diagram for statistical comparison of IMD mean monthly precipitation with 9 bias 

corrected model estimates during testing period (1951-1975) for homogeneous monsoon regions 

of India 

Fig. 6 Pattern comparison for training period (1976-2005) for homogeneous regions. Mean 

monthly bias-corrected rainfall for selected GCMs and IMD [left panel], Error plots of mean 

monthly rainfall [center panel], and seasonal cycle of IMD and MME rainfall [right panel], all 

values are in mm    

Fig. 7 Same as Fig. 4 except for testing period (1951-1975)    

Fig. 8 Hovmoller diagram depicting annual cycle of rainfall climatology (mm/month) during 

training and testing period for IMD and MME data 

Fig. 9 Comparison of seasonal cycle of Tmax and Tmin of IMD temperature with bias-corrected 

(BC) MME for training period and projected RCP 4.5 scenario 

Fig. 10 Comparison of seasonal cycle of Tmax and Tmin of IMD temperature with bias-

corrected (BC) MME for training period and projected RCP 8.5 scenario  

Fig. 11 Trend in the magnitude of SPEI-3drought severity. NS denotes ‘Non-Significant’ trend; 

Increasing and decreasing trends are shown in red and blue color, respectively 

Fig. 12 Identified best fit distribution using l-moments for frequency analysis (GLO = 

Generalized Logistic, GEV = Generalized Extreme Value, GNO = Generalized Normal, PE3 = 

Pearson type-III, GPA = Generalized Pareto, WAK = Wakeby) of drought severity 
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Fig. 13 Comparison of spatial distribution of 25-year return period SPEI-3 drought severity in 

reference period and projected scenarios 

Fig. 14 Trend in area under ‘moderate droughts’ and ‘above moderate droughts’ in historical, 

RCP 4.5, and RCP 8.5 scenarios. In left panels fitted solid black lines show the Theil-Sen’s slope 

for historical (1976-2005) period. In right panel Thiel-Sen’s slope is shown in solid red, solid 

blue, solid green, and dotted black for % area under ‘moderate drought’ during near-future 

(2010-2039), mid-future (2040-2069), far-future (2070-2099), and entire projected time period 

(2010-2099), respectively.  

Fig. 15 Trend in the SPEI-3 drought duration. NS denotes ‘Non-Significant’ trend; Increasing 

and decreasing trends are shown in red and blue color, respectively. 

Fig. 16 Comparison of average length of SPEI-3 drought months in reference period and 

projected scenarios 

Fig. 17 Comparison of occurrences of SPEI-3 drought months in reference period and projected 

scenarios 

 

Fig. S1 Hovmoller diagram depicting annual cycle of maximum temperature climatology (
o
C) 

during training and testing period for IMD and MME data 

Fig. S2 Hovmoller diagram depicting annual cycle of minimum temperature climatology (
o
C) 

during training and testing period for IMD and MME data. 

 

Table 1 List of GCMs used in this study from CMIP5 project with their developing organization 

and spatial resolution 

 

 

S.No. Model Organization Spatial 
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Resolution 

(latitude × 

longitude) 

1 BCC-

CSM1.1(m) 

Beijing Climate Center, China Meteorological 

Administration 

1.125˚ × 1.125˚ 

2 HadGEM2-

AO 

Met Office Hadley Centre, UK (additional 

HadGEM2-ES realizations contributed by Instituto 

Nacional de Pesquisas Espaciais) 

1.25˚ × 1.875˚ 

3 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2˚ × 2.5˚ 

4 GFDL-

ESM2G 

Geophysical Fluid Dynamics Laboratory, USA 2˚ × 2.5˚ 

5 IPSL-CM5A-

LR 

Institut Pierre-Simon Laplace, France 1.875˚ × 3.75˚ 

6 IPSL-CM5A-

MR 

Institut Pierre-Simon Laplace, France 1.25˚ × 2.5˚ 

7 MIROC5 Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

1.4˚ × 1.4˚ 

8 MIROC-

ESM-CHEM 

Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 

Institute (The University of Tokyo), and National 

Institute for Environmental Studies 

2.8˚ × 2.8˚ 

9 NorESM1-M Norwegian Climate Centre 1.875˚ × 2.5˚ 

 

Table 2 Drought classification criteria for different SPEI values 

 

 

SPEI values Category 

>2.0 Extremely wet 

1.5 to 1.99 Severely wet 

1.0  to 1.49 Moderately wet 

−0.99 to 0.99 Near normal 

−1.0  to −1.49 Moderately dry 

−1.5 to −1.99 Severely dry 

< −2.0 Extremely dry 
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Table 3 Taylor diagram statistics for identification of suitable set of GCMs for MME 

development (Statistics of selected models for respective homogeneous regions are shown in 

shaded background in bold font) 

 

 

  Correlation Coefficient (CC)   

 Training (1976-2005) Testing (1951-1975) 

 CNE HR NE NW PS WC CNE HR NE NW PS WC 

IMD 1 1 1 1 1 1 1 1 1 1 1 1 

BCC-

CSM1.1(m

) 

0.99 0.9

4 

0.97 0.9

7 

0.9

8 

0.99 0.99 0.9

2 

0.98 0.9

7 

0.9

7 

1 

HadGEM2-

AO 
0.94 0.9

4 
0.99 0.9

7 

0.8

8 

0.93 0.93 0.9

3 
0.99 0.9

2 

0.9

3 

0.94 

GFDL-

CM3 
0.98 0.8

9 
0.98 0.9 0.9

5 

0.98 0.98 0.8

4 
0.98 0.9

1 
0.9

5 

0.99 

GFDL-

ESM2G 
1 0.9

3 
0.97 0.8

2 
0.9

6 

0.97 0.98 0.9

4 
0.98 0.8

8 
0.9

7 

0.99 

IPSL-

CM5A-LR 
0.83 0.7

7 

0.86 0.5

9 

0.8

4 

0.79 0.86 0.7

8 

0.82 0.6

9 

0.8

6 

0.79 

IPSL-

CM5A-MR 
0.9 0.8

6 

0.94 0.5

7 

0.8

8 

0.81 0.89 0.8

5 

0.91 0.7

1 

0.9

1 

0.8 

MIROC5 0.97 0.9

8 

0.94 0.9

8 

0.9

5 

0.99 0.96 0.9

6 

0.95 0.9 0.9

3 

0.99 

MIROC-

ESM-

CHEM 

0.93 0.9 0.95 0.9

7 

0.9

6 

0.95 0.91 0.9

3 

0.95 0.9

5 

0.9

7 

0.94 

NorESM1-

M 
0.97 0.9

7 

0.99 0.8

7 

0.9

3 

0.95 0.98 0.9

7 

0.99 0.9

7 

0.9

5 

0.97 

  Standard Deviation (SD) 

 Training (1976-2005) Testing (1951-1975) 

 CNE HR NE NW PS WC CNE HR NE NW PS WC 

IMD 113.

5 

84.

1 

164.

2 

64.

9 

69.

6 

114.

6 

117.

4 

91.

8 

156.

3 

68.

2 

75.

3 

118.

5 
BCC-

CSM1.1(m

) 

126 79.

4 

188 62.

2 

74.

1 

122.

8 

126.

1 

78.

8 

191.

1 
61.

9 

75.

5 

122.

2 

HadGEM2-

AO 
136.

4 

97.

1 
166 80.

5 

78.

9 

139.

3 

137.

4 

98.

1 
165.

7 

83.

3 

78.

4 

137.

3 
GFDL-

CM3 
122.

3 

79.

3 
167 73.

3 
78.

1 

125.

1 

119.

1 

79.

6 
167.

8 

76 77.

5 

125.

2 
GFDL-

ESM2G 
116 81.

6 
176.

7 

66.

3 
78.

2 

113.

9 

114.

3 

82.

4 
171.

2 

70.

8 
76.

7 

117 
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IPSL-

CM5A-LR 
154.

8 

85.

6 

187.

9 

78.

4 

96.

8 

153.

2 

154 82.

7 

188.

7 

75.

7 

88.

5 

154.

2 
IPSL-

CM5A-MR 
140.

2 

83.

3 

178.

3 

77.

3 

89.

7 

147.

5 

144.

1 

81.

9 

173.

4 

73.

4 

91.

8 

152 

MIROC5 116.

5 

86.

8 

186.

2 
60.

9 

73.

3 

111.

7 

118.

5 

88.

5 

183 62.

8 

67.

4 

113.

3 
MIROC-

ESM-

CHEM 

120.

4 

87 180.

4 
66.

2 

82.

8 

126.

1 

118.

9 

86.

5 

182.

2 
65.

4 

83.

9 

124.

1 

NorESM1-

M 
127.

2 

81.

5 

161 77.

5 

79.

6 

133 125.

8 

81.

4 

163.

3 

72.

9 

77 131.

1 
  Root-Mean-Square Difference (RMSD) 

 Training (1976-2005) Testing (1951-1975) 

 CNE HR NE NW PS WC CNE HR NE NW PS WC 

IMD 0 0 0 0 0 0 0 0 0 0 0 0 

BCC-

CSM1.1(m

) 

19.4 27.

4 

45.3 15.

8 

14 16.8 20.8 34.

1 

49.7 16.

9 

17.

9 

7.7 

HadGEM2-

AO 
46.7 31.

7 
21 23.

2 

35.

8 

51 48 35.

5 
27.6 32.

4 

27.

5 

44.5 

GFDL-

CM3 
22.9 36.

4 
27.7 30.

6 
23.

1 

25.1 23.5 48.

1 
32.9 30.

8 
22.

9 

19.5 

GFDL-

ESM2G 
9.8 29.

2 
38.8 37.

4 
21.

3 

25.2 22.4 31 31.5 32.

2 
18.

8 

16.8 

IPSL-

CM5A-LR 
83.8 54.

6 

90.4 63.

1 

51.

8 

89.8 75.9 56.

5 

103.

4 

54.

6 

43.

2 

89.7 

IPSL-

CM5A-MR 
60.7 41.

8 

59.8 63.

9 

41.

5 

82.9 64.4 46.

4 

67.6 51.

9 

37.

9 

86.5 

MIROC5 25.6 18.

1 

63.4 12.

3 

21.

7 

16.6 33.8 24.

7 

55.1 29.

2 

25.

8 

19.7 

MIROC-

ESM-

CHEM 

41.2 36.

6 

53.4 14.

6 

23.

1 

36.8 48.4 31.

2 

55.6 21.

3 

20.

6 

41.3 

NorESM1-

M 
29.7 20.

9 

24.5 37.

2 

28.

3 

42.5 22.7 23.

5 

22.8 16.

4 

22.

7 

30.2 

 

 

Table 4 Identified set of models for MME preparation for different homogeneous region 

 

 

Region Identified models 
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Central Northeast 1. BCC-CSM1.1(m)  

2. GFDL-CM3 

3. GFDL-ESM2G, 

4. MIROC5 

5. NorESM1-M 

 

Hilly Regions 1. MIROC5 

2. NorESM1-M 

 

Northeast 1. HadGEM2-AO 

2. GFDL-CM3 

3. GFDL-ESM2G 

4. NorESM1-M 

 

Northwest 1. BCC-CSM1.1(m) 

2. MIROC5 

3. MIROC-ESM-CHEM  

 

Peninsula India 1. BCC-CSM1.1(m) 

2. GFDL-CM3  

3. GFDL-ESM2G  

4. MIROC5 

 

West Central 1. BCC-CSM1.1(m) 

2. GFDL-CM3 

3. GFDL-ESM2G 

4. MIROC5 

 

 

 

 

Table 5 Trend analysis statistics for areal spread of drought 

 

 

  Moderate droughts Above moderate droughts 

  Z-score 
Theil-Sen’s 

 Slope Z-score 
Theil-Sen’s 

 Slope 

MME historical (1976-2005) -0.64 -0.13 -1.00 -0.40 

R C P
 

4
. 5
 

Near-future (2010-2039) -0.75 -0.11 1.32 0.30 
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Mid-future (2040-2069) -2.27* -0.26 1.91** 0.34 

Far-future (2070-2099) 1.14 0.13 0.36 0.08 

Long term (2010-2099) -2.85* -0.09 4.24* 0.30 

R
C

P
 8

.5
 

Near-future (2010-2039) -0.23 -0.02 1.00 0.30 

Mid-future (2040-2069) -1.03 -0.08 1.03 0.25 

Far-future (2070-2099) -1.73** -0.10 0.75 0.15 

Long term (2010-2099) -8.41* -0.14 5.70* 0.41 

(**10% level of significance, *5% level of significance, Negative ‘Z’ denotes decreasing trend, 

positive ‘Z’ denotes increasing trend.) 
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