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Age-related variations in the methylome associated
with gene expression in human monocytes and
T cells
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Age-related variations in DNA methylation have been reported; however, the functional

relevance of these differentially methylated sites (age-dMS) are unclear. Here we report

potentially functional age-dMS, defined as age- and cis-gene expression-associated

methylation sites (age-eMS), identified by integrating genome-wide CpG methylation and

gene expression profiles collected ex vivo from circulating T cells (227 CD4þ samples) and

monocytes (1,264 CD14þ samples, age range: 55–94 years). None of the age-eMS detected

in 227 T-cell samples are detectable in 1,264 monocyte samples, in contrast to the majority

of age-dMS detected in T cells that replicated in monocytes. Age-eMS tend to be

hypomethylated with older age, located in predicted enhancers and preferentially linked

to expression of antigen processing and presentation genes. These results identify and

characterize potentially functional age-related methylation in human T cells and monocytes,

and provide novel insights into the role age-dMS may have in the aging process.
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A
dvancing age is associated with extensive changes in
human physiology, and is the most important risk factor
for many diseases. Age-related changes in gene expression

are thought to underlie many of these physiologic and pathologic
consequences of aging1. To better understand age-related changes
in gene expression, it is important to consider changes in
mechanisms that regulate gene expression, such as epigenetic
modifications including DNA methylation of cytosines in CpG
dinucleotides and histone modifications2,3. Previously, we
investigated differentially methylated CpG sites (dMS) in 1,264
CD14þ monocyte samples for potential functional relationships
with cis-gene (±1 Mb) expression4, and uncovered many
significant (false discovery rate (FDR) o0.001) gene
expression-associated methylation sites (eMS). Some of these
eMS were very strongly correlated with cis-gene expression, such
as CpG site cg17005068. Located in the glutathione S-transferase
theta 1 (GSTT1) promoter, methylation of cg17005068 was
highly correlated with GSTT1 expression (partial correlation
(prho)¼ � 0.86, Po2.2� 10� 308), and in combination with 15
other GSTT1-eMS, methylation accounted for 77% of the
variance of GSTT1 expression in monocytes4.

Other recent studies have identified dMS associated with age
(age-dMS), including regions with decreased (hypo age-dMS) and
increased (hyper age-dMS) methylation with older age5–10.
However, the results from previous studies investigating the
relationships between age-dMS and gene expression are
inconclusive11–15. One of the most comprehensive studies
measured methylation and gene expression in the whole blood
of 168 individuals, and reported significant negative correlations
between age-dMS and gene expression12, while another study
measuring methylation and gene expression in different samples
reported negligible relationships between age-dMS and gene
expression15. Small sample sizes, mixed cell samples, and gene
expression and methylation data measured in different samples

makes findings from previous studies difficult to interpret.
Overall, there is still a lack of clear understanding of the effects
of age-dMS on the transcriptome16.

To better understand the functional implications of age-dMS,
and to identify age-dMS that potentially mediate the relationship
between age and gene expression, here we utilized methylomic
and transcriptomic data from 1,264 CD14þ purified monocyte
samples, collected from a large population of community-
dwelling participants in the Multi-Ethnic Study of Atherosclerosis
(MESA), ranging in age from 55 to 94 years (Supplementary
Table 1), as well as methylomic and transcriptomic data from 227
CD4þ T cell samples from a subset of the population. We
identified, cross-sectionally, potentially functional age-associated
methylation signals that were correlated with cis-gene expression
and clinical measures of vascular aging (pulse pressure eMS), and
provide detailed functional annotation from publicly available
datasets (for example, ENCODE) characterizing the genomic
landscape surrounding these potentially functional methylation
sites.

Results
Identification of age-dMS. We first characterized DNA methy-
lation at B450,000 CpG sites across the genome in CD14þ
purified cells (predominately monocytes) and CD4þ purified
cells (T cells) collected from 227 MESA individuals. Using asso-
ciation analysis with a FDR threshold of 0.001, and adjusting for
biological and technical covariates (Methods), we identified 2,285
monocyte-specific age-dMS, 2,023 T-cell-specific age-dMS, and
572 overlapping age-dMS across the two cell types. We then
expanded our monocyte sample size to 1,264 MESA individuals,
and identified 37,911 CpG sites with age-associated methylation
(B8% of all CpG sites, FDRo0.001; Fig. 1). The majority of age-
dMS we detected in 227 T-cell samples shared a similar effect
direction between methylation and age as detected in the 1,264
monocyte samples (Supplementary Fig. 1a and Supplementary
Data 1). Many of the most significant age-dMS detected in both
monocytes and T cells were previously reported to have age-
associated methylation measured in whole blood17, including
CpG sites in ELOVL2 (ELOVL fatty acid elongase 2; cg16867657,
prho¼ 0.66, FDR¼ 3.65� 10� 140), FHL2 (four and a half LIM
domains 2; cg06639320, prho¼ 0.55, FDR¼ 4.45�
10� 88) and PENK (proenkephalin; cg16419235, prho¼ 0.52,
FDR¼ 2.85� 10� 75).

Characterization of hyper and hypo age-dMS. We next
examined the enrichment of 37,911 monocyte age-dMS from our
1,264 monocyte samples, within genomic regions with predicted
roles in regulating gene expression (for example, enhancers)
based on histone modifications, CCCTC-binding factor (CTCF)
binding and DNase hypersensitivity reported in a monocyte
sample by ENCODE18,19. Age-dMS exhibiting increased
methylation with age (hyper age-dMS) were located in
distinctly different functional domains than age-dMS exhibiting
decreased methylation with age (hypo age-dMS), consistent with
previous reports6,10,20. Compared to all CpG sites tested, hyper
age-dMS were significantly enriched for inactive/repressive
histone modifications18 (H3K27me3, bivalent H3K27me3/
H3K4me3), while being depleted for active chromatin
marks3,18,21 (H3K4me3, H3K27ac (Fig. 2a). However, there was
no clear preference for hypo age-dMS among inactive versus
active histone modifications (fold enrichments ranging: 0.9–1.1).
We also replicated previous findings10,14,22 that hyper age-dMS
are enriched among CpG islands (Fig. 2b) and 1st exons (Fig. 2c),
while hypo age-dMS are enriched among CpG island ‘shores’, and
the 30 untranslated regions of genes.
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Figure 1 | The aging methylome in 1,264 monocyte samples. The analysis

of age and methylation in 1,264 CD14þ monocyte samples included

448,523 CpG sites, of which 37,911 had methylation associated with age

(age-dMS; 26,159 negatively associated, 11,752 positively associated,

FDRo0.001). The most significant age-dMS (red circle, cg16867657,

prho¼0.66, FDR¼ 3.65� 10� 140) was detected on chromosome 6 in the

ELOVL fatty acid elongase 2 (ELOVL2) promoter. The partial correlation

between CpG methylation and age is shown on y-axis, compared with CpG

genomic location (by chromosome, x-axis). Linear regression analysis also

included the following covariates: race, sex, site of data collection,

microarray chip and residual sample contamination with non-targeted

cells (see Methods).
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Histone modifications (H3K4me1/3 and H3K27ac), CTCF
binding and DNase peaks previously reported in a monocyte
(CD14þ ) sample19 were also used to predict monocyte-specific
functional regions, including promoters, enhancers and
insulators. Both hyper and hypo age-dMS were depleted among
predicted promoter regions and DNase peaks, while being
enriched among enhancer regions (Fig. 2d). Hypo age-dMS

were also enriched for CTCF binding sites; however, hyper age-
dMS were not. We also report the enrichment of age-dMS among
transcription factor binding sites (TFBS) reported in any cell type
available from the UCSC Genome Browser23 (due to the lack
of monocyte-specific TFBS). Hyper age-dMS showed some
enrichment among these sites, while hypo age-dMS did not.

Identification of age-eMS. Potentially functional age-dMS were
defined as CpG sites whose % methylation was associated with
age (FDRo0.001) and with mRNA expression of any gene within
1 Mb of the CpG site in question (FDRo0.001). Among 227
T-cell samples, 44 age-dMS were also cis-gene expression-asso-
ciated methylation sites (age-eMS) (2% of the 2,595 T-cell age-
dMS), with methylation correlated with age (prho ranging:
� 0.54–0.70) and with cis-gene expression (prho ranging:
� 0.62–0.56). Half of these T cell age-eMS (22 CpG sites) had
methylation profiles associated with age in 1,264 monocyte
samples; however, there was no replication of the association
between methylation and gene expression for these 22 CpG sites
in monocyte samples (Supplementary Fig. 1b). Due to the lack of
age-eMS detected in both cell types, combined with our larger
monocyte sample size and the availability of monocyte-specific
histone modification data from ENCODE19, we focus the rest of
our age-eMS investigations on findings from 1,264 monocyte
samples.

We detected 1,794 age-eMS among the 1,264 monocyte
samples (4.7% of 37,911 monocyte age-dMS; reported in
Supplementary Data 2), with methylation correlated with age
(prho range: � 0.46–0.44; Fig. 3a) and cis-gene expression (prho
range: � 0.69–0.62; Fig. 3b). The most significant age-dMS
identified as an age-eMS (Fig. 3a) in monocytes was detected
within a predicted enhancer region of the nuclear factor I-A
(NFIA) gene body (Fig. 4a). NFIA is a transcription factor whose
expression drives erythropoiesis, while its silencing drives
granulopoiesis24. Hypomethylation with age of cg10628205
(prho¼ � 0.46; FDR¼ 1.06� 10� 58; Fig. 4b) correlated with
increased NFIA expression (prho¼ � 0.16; FDR¼ 1.97� 10� 5;
Fig. 4b). Five nearby CpG sites were also identified as age-eMS
linked with NFIA expression. Using multiple regression analysis
including all six NFIA age-eMS in the same model, four age-eMS
were found to be independently associated with NFIA expression.
In total, methylation of these four CpG sites explained 7.5% of the
variance of NFIA gene expression. However, some age-dMS
identified as age-eMS had stronger correlations between
methylation and gene expression (Fig. 3b and Supplementary
Data 2). For instance, the strongest correlation detected
was between age-dMS cg10628205 (methylation and age
prho¼ � 0.15) and expression of vasohibin 1 (VASH1,
prho¼ � 0.69). This age-eMS is 42 kb upstream of the VASH1
transcription start site (TSS). VASH1 is an angiogenesis inhibitor
that has previously been reported to suppress monocyte and
macrophage infiltration of the kidney25.

Characterization of hyper and hypo age-eMS. The majority of
age-eMS were located in close proximity to the associated gene
TSS (Fig. 3b), with 71% of age-eMS in monocytes located within
100 kb of the TSS. In addition, the correlations between methy-
lation and gene expression of age-eMS located within 100 kb of
the TSS tended to be stronger (absolute prho: average¼ 0.22,
median 0.18) than age-eMS located further than 100 kb from the
TSS (prho: average¼ 0.17, median¼ 0.16).

Age-eMS enriched in open chromatin and enhancer regions.
In an effort to further explore the potential functionality of the
age-eMS identified, we examined the enrichment of age-eMS
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sample (ENCODE/UCSC browser), and transcription factor binding sites

(TFBS) reported in any cell type available from the UCSC Genome Browser.

Fold enrichments presented are from 1,264 monocyte samples, and are
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within genomic regions with predicted roles in regulating gene
expression based on histone modifications, CTCF binding and
DNase hotspots reported in a monocyte sample by ENCODE18,19.
The most prominent features of age-eMS were their enrichment
for histone modifications indicative of open/active chromatin
(H3K4me1 and H3K27ac, Fig. 2e) and predicted enhancer
regions (Fig. 2h), while being depleted among repressed
genomic regions (H3K27me3), for both hypo and hyper age-eMS.

Age-eMS linked to antigen processing and presentation genes.
The presence of predicted functional regions overlapping the
identified age-eMS provides additional support for these genomic
regions being important regulatory regions. Therefore, we con-
sider age-eMS overlapping enhancers, insulators or promoters

(669 age-eMS) as top candidates for potentially functional age-
dMS (Supplementary Data 2). These 669 CpG sites overlapping
potentially functional regulatory regions are associated with
the expression of 403 different genes, which are significantly
enriched26 with antigen processing and presentation genes
(Gene Ontology gene set: 0019882, FDR¼ 9.60� 10� 4).
Table 1 shows associations between age, methylation and
expression of 13 antigen processing and presentation genes
including major histocompatibility complex (MHC) class I and II
genes. Supporting previous findings27, we observe an
upregulation of all MHC class I and II genes with expression
associated with age (FDRo0.01) (Supplementary Table 2).

Age-eMS linked with vascular aging. To further explore the
biological relevance of age-eMS, we identified a subset of 186
age-eMS that were associated with vascular age (FDRo0.001),
measured by pulse pressure (Supplementary Data 2). After
adjusting for chronological age, 42 age-eMS remained nominally
associated with pulse pressure (pulse pressure eMS), some of
which were associated with expression of genes that have
biologically plausible roles in vascular aging, such as AT rich
interactive domain 5B (ARID5B (MRF1 like)) and gelsolin (GSN).
ARID5B is a transcription factor that has been implicated in the
pathogenesis of coronary artery disease28. Gelsolin is an actin
binding protein which has been linked to vascular permeability29,
cell motility and the development of many pathological processes,
including cardiovascular diseases30.

Discussion
Here we report, for the first time, the relationship between aging,
DNA methylation and cis-gene expression at the global level,
using two purified cell types from the same individuals in a large
cohort study. We find that only a small fraction of dMS (B2%)
associated with aging were also associated with differential
expression of nearby genes in 227 T-cell samples. In parallel,
we saw a slightly larger proportion of age-dMS (B5%) associated
with cis-gene expression in a larger sample of monocytes (1,264).
However, in contrast to age-dMS, no age-eMS were detected in
both cell types. The lack of replication of any T-cell age-eMS
within monocytes could reflect a cell-specific nature of age-eMS,
demonstrating the importance of using purified cells for
methylomic and transcriptomic studies.

In addition to their association with cis-gene expression, we
also found that age-eMS were enriched in enhancers and active
chromatin, and are more likely to be hypo than hypermethylated
with older age. Notably, age-associated hypomethylation of an
enhancer region of NFIA was the most significant age-dMS
with cis-gene expression-associated methylation. Supporting the
potential functional nature of these sites, decreased NFIA
expression has been linked with increasing methylation of these
CpG sites in response to all-trans retinoic acid treatment in a
myeloid leukaemia cell line24.

Our age-dMS results are in agreement with many previous
findings. Hyper age-dMS are more likely to occur in CpG
islands5,10,12–14 and inactive chromatin6,10,12,13,15,31. Conversely,
we found hypo age-dMS are more likely to occur in CpG shores
and insulator regions10,14,15,31.

Why are so few age-dMS associated with gene expression? The
occurrence of dMS has been proposed to be a highly polymorphic
and stochastic process occurring during cell division32, yet one
that still results in consistent dMS across the genome due to
chromatin state and sequence-specific factors (for example, CpG
density and TFBS) which may influence the likelihood of
differential methylation33. Thus, it is plausible that age-dMS
may form stochastically as function of cell division (mitotic age),
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Figure 3 | Correlations between age-methylation and methylation-gene

expression for Age-eMS in 1,264 monocyte samples. CpG sites with

methylation associated with age (FDRo0.001) and cis-gene expression

(1,794 age-eMS; FDRo0.001; Supplementary Data 2). (a) The partial

correlation of age-eMS methylation with age (y-axis), compared with age-

eMS genomic location (by chromosome, x-axis); the strongest correlations

(prho¼ �0.46) were between age and methylation of cg10628205 and

cg12079303 (red circle), which were also correlated with the expression

of NFIA. (b) The partial correlation between age-eMS methylation and

cis-gene expression (y-axis), compared with age-eMS distance to the

associated gene transcription start site (TSS, x-axis); the strongest

correlation (prho¼ �0.69) was between methylation of cg11805027 and

expression of VASH1. Linear regression analysis also included the following

covariates: race, sex, site of data collection, microarray chip and residual

sample contamination with non-targeted cells (see Methods).
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and are allowed to accumulate at specific, permissive locations.
However, age-dMS have been reported in post-mitotic
tissues5,10,15, and across cells showing a wide range of pro-
liferative capabilities15, suggesting mitotic age alone does not
explain the occurrence of age-dMS. Indeed, we found substantial
overlap between age-dMS identified in two cell types with highly
distinct replicative profiles (monocytes and T cells). Whether they
occur as a function of mitotic age, or some other age-associated
factors, the robust occurrence of age-dMS could be linked to
their preference for inactive chromatin states and subsequent
unimportance for nearby gene expression, thus allowing them
to accumulate without harming cellular function. Further,
cumulative effects of multiple age-dMS on cis-gene expression11

may have also been missed by investigating the relationship
between individual CpGs with nearby gene expression. Age-eMS,
on the other hand, may have more heterogeneous origins,

representing both stochastic events that are allowed to occur and
persist after loss of cellular homoeostasis with age (for example, cell-
specific changes in histone modification patterns and transcription
factor expression and activity), and also compensatory mechanisms
by the cell in response to other age-related changes.

Supporting the link between age-eMS and biological aging, we
found that genes with expression linked to potentially functional
age-related methylation sites are enriched with antigen processing
and presentation genes (MHC class I and II). Upregulation
of MHC class II signalling has been implicated in ‘para-
inflammation’ and the development of age-related chronic
inflammatory diseases and autoimmune diseases27,34. Our
present work supports previous findings that the MHC class II
antigen presentation pathway is upregulated with age27, and
suggests that methylation-based regulatory mechanisms may
contribute to the upregulation of this pathway.
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In summary, we identified and characterized an important
subset of age-related methylation patterns that were associated
with cis-gene expression in purified cells. These potentially
functional methylation sites, particularly those associated with
vascular aging or linked with expression of previously implicated
‘aging genes’, may facilitate the prioritization of biologically
relevant age-associated methylation loci for future interrogation.

Methods
Study population. The MESA was designed to investigate the prevalence, corre-
lates and progression of subclinical cardiovascular disease in a population cohort of
6,814 participants. Since its inception in 2000, five clinic visits collected extensive
clinical, socio-demographic, lifestyle and behaviour, laboratory, nutrition and
medication data35. The present analysis is primarily based on analyses of purified
monocyte samples from the April 2010 to February 2012 examination of 1,264
randomly selected MESA participants (55–94-year-old, Caucasian (47%), African
American (21%) and Hispanic (32%), female (51%)) from four MESA field centres
(Baltimore, MD, USA; Forsyth County, NC, USA; New York, NY, USA; and
St Paul, MN, USA). T cells were also purified from 225 randomly selected samples
which already had purified monocytes. The study protocol was approved by the
Institutional Review Boards at Johns Hopkins Medical Institutions, University of
Minnesota, Columbia University Medical Center and Wake Forest University
Health Sciences. All participants signed informed consent.

Power calculation. We estimate 480% power to detect age explaining as little as
3.0% of the variance of CpG methylation in monocytes, based on a simple linear
regression (alpha¼ 0.05, two-sided test) with a Bonferroni correction to adjust for
448,523 CpG sites tested with age, estimated using QUANTO v1.2 (N¼ 1,264,
average age±s.d.¼ 60.2±9.5; ref. 36). In T cells we estimate 480% power to
detect age explaining as little as 16% of the variance of CpG methylation in age
(N¼ 227).

Purification of monocytes and T cells. Centralized training of technicians,
standardized protocols and extensive quality control (QC) measures were
implemented for collection, on-site processing, and shipment of MESA specimens
and routine calibration of equipment. Blood was initially collected in sodium
heparin-containing Vacutainer CPT cell separation tubes (Becton Dickinson,
Rutherford, NJ, USA) to separate peripheral blood mononuclear cells from other
elements within 2 h from blood draw. Subsequently, monocytes and T cells were
isolated with anti-CD14 and anti-CD4 monoclonal antibody-coated magnetic
beads, respectively, using AutoMACs automated magnetic separation unit
(Miltenyi Biotec, Bergisch Gladbach, Germany). Based on flow cytometry analysis
of 18 specimens, monocyte samples were consistently 490% pure. T cells were
isolated from a subset of our population (N¼ 227) with anti-CD4 monoclonal
antibody-coated magnetic beads, respectively, using AutoMACs automated mag-
netic separation unit (Miltenyi Biotec). Based on flow cytometry analysis of
18 specimens, T-cell samples were consistently 490% pure.

DNA and RNA extraction. DNA and RNA were isolated from samples simulta-
neously using the AllPrep DNA/RNA Mini Kit (Qiagen, Inc., Hilden, Germany).
DNA and RNA QC metrics included optical density (OD) measurements, using a
NanoDrop spectrophotometer and evaluation of the integrity of 18S and 28S
ribosomal RNA using the Agilent 2100 Bioanalyzer with RNA 6000 Nano chips
(Agilent Technology, Inc., Santa Clara, CA, USA) following manufacturer’s
instructions. RNA with RNA integrity scores 49.0 was used for global expression
microarrays. The median of RNA integrity for all the analyzed samples was 9.9.

Epigenome-wide methylation quantification. The Illumina HumanMethyla-
tion450 BeadChip and HiScan reader were used to perform the epigenome-wide
methylation analysis. The EZ-96 DNA Methylation Kit (Zymo Research, Orange,
CA, USA) was used for bisulphate conversation with 1 mg of input DNA (at 45ml).
Bisulfite-converted DNA (4ml) was used for DNA methylation assays, following
the Illumina Infinium HD Methylation protocol. This consisted of a whole genome
amplification step followed by enzymatic end-point fragmentation, precipitation
and resuspension. The resuspended samples were hybridized on HumanMethyla-
tion 450 BeadChips at 48 �C for 16 h. The individual samples were assigned to the
BeadChips and to chip position using the same sampling scheme as that for the
expression BeadChips.

Global expression quantification. The Illumina HumanHT-12 v4 Expression
BeadChip and Illumina Bead Array Reader were used to perform the genome-wide
expression analysis, following the Illumina expression protocol. The Illumina
TotalPrep-96 RNA Amplification Kit (Ambion/Applied Biosystems, Darmstadt,
Germany) was used for reverse transcription and amplification with 500 ng of
input total RNA (at 11ml). Biotinylated complementary RNA (700 ng) was
hybridized to a BeadChip at 58 �C for 16–17 h. To avoid potential biases due to
batch, chip and position effects, a stratified random sampling technique was used
to assign individual samples (including five common control sample for the first
480 samples) to specific BeadChips (12 samples/chip) and chip position.

QC and pre-processing of microarray data. Data pre-processing and QC
analyses were performed in R (http://www.r-project.org/) using Bioconductor
(http://www.bioconductor.org/) packages. For expression data, data corrected
for local background were obtained from Illumina’s proprietary software
GenomeStudio. QC analyses and bead-type summarization (average bead signal for
each type after outlier removal) were performed using the beadarray package37.
Detection P-values were computed using the negative controls on the array. The
neqc function of the limma38 package was used to perform a normal-exponential
convolution model analysis to estimate non-negative signal, quantile normalization
using all probes (gene and control, detected and not detected) and samples,
addition of a recommended (small) offset, log2 transformation and elimination of
control probe data from the normalized expression matrix. Multidimensional
scaling plots showed the five common control samples were highly clustered
together and identified three outlier samples, which were excluded subsequently.

Bead-level methylation data were summarized in GenomeStudio. Because the
Illumina HumanMethylation450 BeadChip technology employs a two-channel
system and uses both Infinium I and II assays; normalization was performed in

Table 1 | Antigen processing and presentation genes enriched among genes with expression linked to potentially functional
age-eMS.

Age-CpG methylation CpG methylation-gene expression

CpG ID: CpG location prho rho FDR Gene prho rho FDR

cg26350754 1st Exon (HLA-DPB1) �0.38 �0.39 1.2E� 38 HLA-DPB1 �0.17 �0.13 3.6E�06
cg04856022 Body (PPT2) �0.37 �0.39 1.3E� 36 HLA-DRB1 �0.15 �0.13 1.2E�04
cg08998192 Body (TAP2) �0.33 �0.34 1.9E� 27 TAP2 �0.14 �0.15 3.3E�04
cg08998192 Body (TAP2) �0.33 �0.34 1.9E� 27 PSMB9 0.21 0.16 2.4E� 10
cg13007871 Body (HLA-E) �0.30 �0.30 5.0E� 23 HLA-E �0.22 �0.19 3.3E� 11
cg13007871 Body (HLA-E) �0.30 �0.30 5.0E� 23 HLA-F �0.18 �0.16 6.5E�07
cg08818207 Body (TAP1) �0.28 �0.27 1.3E� 20 PSMB8 �0.17 �0.13 2.3E�06
cg08009669 TSS1500 (MICB) �0.23 �0.24 1.1E� 13 MICB �0.19 �0.15 5.4E�08
cg25843003 30 UTR (HCP5) �0.23 �0.21 2.3E� 13 HLA-B �0.17 �0.13 3.9E�06
cg25925210 50 UTR (TTLL4) �0.20 �0.21 1.7E� 10 SLC11A1 �0.19 �0.12 9.4E�08
cg01309328 Body (PSMB8) �0.19 �0.19 1.9E�09 HLA-DPA1 �0.14 �0.15 7.8E�04
cg26083458 Body (TAPBP) �0.17 �0.18 8.4E�08 TAPBP 0.14 0.09 6.2E�04
cg21470947 TSS1500 (HLA-DMB) 0.12 0.15 2.7E�04 HLA-DMB �0.14 �0.11 2.3E�04

eMS, expression-associated methylation sites; FDR, false discovery rate; HLA, human leucocyte antigen; UTR, untranslated region.
Thirteen antigen processing and presentation genes (from Gene Ontology gene set GO:0019882) harboured age- and cis-gene expression-associated methylation sites (age-eMS), which overlapped
predicted functional regions (enhancer, promoter or insulator based on histone modifications and CTCF binding reported by ENCODE in a monocyte sample). Shown above are the unique CpG IDs, CpG
locations relative to associated gene (within gene body (gene containing CpG in parentheses), UTR of genes or within 1,500 bp of a transcription start site (TSS1500)), and the correlations (prho and rho)
and significance (FDRo0.001) between CpG methylation and age/gene expression (sorted by association between age and methylation). Total effects of age on gene expression were significant
(FDRr0.05) for six genes (HLA-DPB1, TAP2, HLA-E, HLA-B, HLA-DPA1 and TAPBP), which increased with age (see Supplementary Table 2). Covariates included: race, sex, site of data collection, microarray
chip and residual sample contamination with non-targeted cells (Methods).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6366

6 NATURE COMMUNICATIONS | 5:5366 | DOI: 10.1038/ncomms6366 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.r-project.org/
http://www.bioconductor.org/
http://www.nature.com/naturecommunications


several steps using the lumi package39. We first adjusted for colour bias using
‘smooth quantile normalization’. Next, the data were background adjusted by
subtracting the median intensity value of the negative control probes. Last, data
were normalized across all samples by standard quantile normalization applied to
the bead-type intensities and combined across Infinium I and II assays and both
colours. QC measures included checks for sex and race/ethnicity mismatches, and
outlier identification by multidimensional scaling plots. The final methylation value
for each methylation probe was computed as the M-value, essentially the log ratio
of the methylated to the unmethylated intensity40. The M-value is well-suited for
high-level analyses and can be transformed into the beta-value, an estimate of the
per cent methylation of an individual CpG site that ranges from 0 to 1 (thus M is
logit(beta-value)).

The Illumina HumanMethylation450 BeadChip included probes for 485 K CpG
sites. Of these 485 K CpG sites, 448,523 passed the following filters: ‘detected’
methylation levels o90% of MESA samples using a detection P-value cut-off of
0.05, 65 control probes which assay highly polymorphic single nucleotide
polymorphisms rather than DNA methylation41, or overlap with a repetitive
element or region.

Pre-processing with global normalization removed large position and chip
effects across all probes; however, probe-specific chip effects were found for some
CpG sites and gene transcripts, while probe-specific position effects existed for
some CpG sites but were ignorable for all gene transcripts. These probe-specific
effects were included as covariates in all subsequent analyses.

The Illumina HumanHT-12 v4 Expression BeadChip included 48k
transcripts. Statistical analyses were limited to probes retained after applying the
following filters: non-detectable expression in Z90% of MESA samples using a
detection P-value cut-off of 0.0001, overlap with a repetitive element or region,
low variance across the samples (o10th percentile) or putative and/or not
well-characterized genes, that is, gene names starting with KIAA, FLJ, HS, Cxorf,
MGC or LOC.

Association analyses. The overall goal of the association analysis was to identify
associations, at the genome-wide level, between age and CpG site methylation and
transcript expression and CpG site methylation. Association analyses were per-
formed using the linear model function of the Stats package and the stepAIC
function of the MASS package in R. To identify gene transcripts or methylation
sites associated with age, we fit separate linear regression models with age as a
predictor of transcript expression or the M-value for each gene transcript or CpG
site, respectively. Covariates were sex, race/ethnicity, study site, expression/
methylation chip, methylation position (for age-CpG methylation analyses only)
and residual sample contamination with non-targeted cells (for example,
non-monocytes, see below). To identify methylation sites associated with gene
expression in cis, we fit separate linear regression models with the M-value for each
CpG site (adjusted for methylation chip and position effects) as a predictor of
transcript expression for any autosomal gene within 1 Mb of the CpG site in
question. Covariates were age, sex and race/ethnicity, study site, expression chip
and residual sample contamination with non-targeted cells. Sex- and ethnicity-
stratified analyses were performed as an internal validation and check of
generalizability. To look for potential population stratification, we used EIGEN-
STRAT42 to compute principal components (PCs) for each race, based on
Affymetrix 6.0 array genotype data43, and examined the association between the
first five PCs and gene expression, as well as CpG methylation, in race-stratified
analyses. Less than 1% of expression transcripts and CpG methylation sites were
associated with PCs in the Caucasian and African American populations
(FDRo0.05). However, 14.7% of gene expression transcripts and 3.1% of
methylation sites in the Hispanic population were associated with the first two PCs
(FDRo0.05); therefore, analyses in the Hispanic population were adjusted for the
first two PCs. Normality-based P-values were obtained for all tests (they were
highly similar to permutation-based P-values and produced essentially the same
ranking in a subset of 360 samples). P-values were adjusted for multiple testing
using the q-value FDR method44, separately for each of the three association
analyses. To minimize false-positive results, we used the stringent FDR threshold of
0.001. All the reported FDR was calculated at the epigenome-wide level for the
entire gene transcripts or methylation probes that were tested.

Although other phenotypic traits are available in MESA, only pulse pressure
was tested as an age-associated outcome. Association analyses for individual gene
transcripts and pulse pressure were performed using the linear model function in
R. We fit separate linear regression models with transcript expression as a predictor
of pulse pressure. Covariates included sex, race/ethnicity, study site, expression/
methylation chip, methylation position (for age-CpG methylation analyses only)
and residual sample contamination. One set of analyses was performed with this set
of covariates, and another set of analyses also included age as a covariate.

To estimate residual sample contamination for monocyte data analysis, we
generated separate enrichment scores for neutrophils, B cells, T cells and natural
killer cells. We implemented a Gene Set Enrichment Analysis45 to calculate the
enrichment scores using the gene signature of each blood cell type in the ranked list
of expression values for each MESA sample. The cell-type-specific signature genes
were selected from previously defined lists46 and passed the following additional
filters: at least fourfold more highly expressed in the targeted cell type than in other
cell populations and low expression levels in the targeted cells (here monocytes).

To minimize spurious associations due to a few highly influential data points,
we calculated Cook’s distance47 for each data point and repeated the analysis after
removing the top four samples with the highest Cook’s distance. We then removed
associations whose P-values no longer fell below the FDR-based significance
threshold.

Functional annotation analysis. Histone modifications and CTCF binding
reported in a CD14þ sample by ENCODE48 and TFBS in all available cell types
were downloaded from the UCSC Genome Browser19. Fold enrichment of CD14þ
histone markers (H3K27me3, bivalent (H3K27me3/H3K4me3), H3K4me3,
H3K4me1, H3K27ac and H2A.Z) among monocyte age-dMS and age-eMS were
reported relative to all 448,523 CpG sites tested. Other predicted functional loci
such as promoters, enhancers and insulators were predicted based on proximity to
a TSS, as well as the presence of overlapping histone modifications18 (H3K4me1/3
and H3K27ac) or CTCF binding data available from ENCODE in a CD14þ
sample. DAVID Bioinformatics Resources 6.7 (refs 49,50) was used to examine the
enrichment (FDRo0.05) of gene ontology pathways for genes with expression
associated (FDRo0.001) with methylation of monocyte age-eMS detected among
predicted CD14þ promoter, enhancer and insulator regions, against a background
of all monocyte expressed genes (14,619 mRNA transcripts).

References
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