
Tang et al. Human Genomics            (2019) 13:9 
https://doi.org/10.1186/s40246-019-0194-6

PRIMARY RESEARCH Open Access

vi-HMM: a novel HMM-based method for
sequence variant identification in short-read
data
Man Tang1, Mohammad Shabbir Hasan2, Hongxiao Zhu1, Liqing Zhang2 and Xiaowei Wu1*

Abstract

Background: Accurate and reliable identification of sequence variants, including single nucleotide polymorphisms
(SNPs) and insertion-deletion polymorphisms (INDELs), plays a fundamental role in next-generation sequencing (NGS)
applications. Existingmethods for calling these variants oftenmake simplified assumptions of positional independence
and fail to leverage the dependence between genotypes at nearby loci that is caused by linkage disequilibrium (LD).

Results and conclusion: We propose vi-HMM, a hidden Markov model (HMM)-based method for calling SNPs and
INDELs in mapped short-read data. This method allows transitions between hidden states (defined as “SNP,” “Ins,”
“Del,” and “Match”) of adjacent genomic bases and determines an optimal hidden state path by using the Viterbi
algorithm. The inferred hidden state path provides a direct solution to the identification of SNPs and INDELs.
Simulation studies show that, under various sequencing depths, vi-HMM outperforms commonly used variant calling
methods in terms of sensitivity and F1 score. When applied to the real data, vi-HMM demonstrates higher accuracy in
calling SNPs and INDELs.
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Introduction
Rapid evolution of next-generation sequencing (NGS)
technologies in recent years enables various genetic appli-
cations in a fast, efficient, and cost-effective way [1, 2].
One fundamental procedure in NGS data analysis is vari-
ant calling, i.e., to identify the existence of genetic variants
from short-read data. Accurate and reliable identification
of single nucleotide polymorphisms (SNPs) and insertion-
deletion polymorphisms (INDELs) plays an important
role in all NGS applications as these common sequence
variants are highly abundant in the human genome and
have been found to likely influence human traits and
disease [3–5].
The process of variant calling starts with aligning a set

of short reads to the reference genome. After reads are
correctly mapped, statistical models or heuristics may be
used to predict the likelihood of variation at each locus
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based on available information such as quality scores and
allele counts of aligned reads at the locus [6]. Most statis-
tical models used for variant calling are built on the Bayes’
theorem, with an ultimate goal to predict genotypes from
aligned reads by using the maximum a posteriori (MAP)
estimate. Following this Bayesian approach, a number of
variant calling tools have been developed, including SAM-
tools [7], GATK [8], FreeBayes [9], and Platypus [10].
Heuristic-based tools, such as VarScan [11], call variants
based on a variety of heuristic factors, e.g., minimum allele
counts, read quality cut-offs, and bounds on read depth.
Though heuristic methods could be robust to outlier data
that do not follow probabilistic model assumptions, the
selection of cutoffs and bounds is highly empirical which
largely restricts their practical usage. Other alternatives
such as machine learning tools [12] are also applicable for
variant calling, but they appear to be relatively unpopular
in practice. Due to divergence of the model assumptions,
these variant calling tools perform quite differently on
NGS data [13, 14]. It should be noted that, although
Bayesian statistical models are highly prevalent in variant
calling, existing tools developed using this approach often
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make simplified assumptions of positional independence
and fail to leverage the dependence between genotypes at
nearby loci that is caused by linkage disequilibrium (LD).
A statistical model that appropriately incorporates such
dependence information has the potential to improve the
accuracy of variant detection, especially in regions of high
LD in the human genome.
Hidden Markov models (HMMs) can effectively model

dependence between adjacent symbols or regions, thus
have been extensively used in various disciplines [15].
Since its first application in computational biology in
the late 1980s [16], HMMs become popular in biological
sequence analysis [17]. Generally speaking, the occur-
rences of genetic variants (SNPs and INDELs) on the
genome are not independent events because of the exis-
tence of LD between SNPs or between INDELs and SNPs
[4, 18]. For this reason, one may use Markov models to
better characterize the dependence between genotypes
at nearby loci in order to improve the analysis of NGS
data. Several HMM-based programs have been devel-
oped for read mapping and variant calling in sequenc-
ing data, including Dindel [19], PyroHMMsnp [20], and
PyroHMMvar [21]. All these programs call SNPs and/or
INDELs by estimating top candidate (most likely) haplo-
types/genotypes using the Bayesian approach. In partic-
ular, Dindel [19] constructs a two-layer HMM by treating
both the insertion status and its position index as hidden
variables, and PyroHMMsnp [20] and PyroHMMvar [21]
use HMMs to formulate homopolymer errors and employ
a weighted alignment graph to reconstruct the consen-
sus sequences. Though these programs show remark-
able flexibility in detecting genetic variants, they are
usually designed for specific applications: Dindel is for
INDEL calling only, and PyroHMMsnp and PyroHMM-
var emphasize the modeling of homopolymer. Moreover,
the Bayesian paradigm of these programs may slow down
the variant calling process when dealing with massive
datasets.
In this paper, we propose vi-HMM, a novel HMM-

based method for identifying small-scale sequence vari-
ants in short-read data. This method allows transitions
between hidden states (hereafter defined as “SNP,” “Ins,”
“Del,” and “Match”) of adjacent genomic loci and deter-
mines an optimal hidden state sequence by using the
Viterbi algorithm. The inferred hidden state sequence
provides a direct solution to the identification of SNPs
and INDELs. Through simulations, we show that vi-
HMM represents an improvement over five other vari-
ant callers—GATK HaplotypeCaller, FreeBayes, Platypus,
SAMtools, and VarScan in terms of sensitivity, precision,
and F1 score. When applied to a real short-read dataset
(NA12878) generated by the Genome in a Bottle (GIAB)
project [22], vi-HMM demonstrates its major advan-
tage in identifying INDEL variants as compared to four

other variant callers—FreeBayes, Platypus, SAMtools, and
VarScan, while still maintaining good performance in SNP
calling at different read coverage depths.

Methods
Along the genome, the states of genomic bases, i.e.,
whether or not and which type of sequence variants exist
on the bases, often exhibit dependence. Incorporating
such dependence information helps improve the accuracy
of variant calling but poses challenges in calculating the
joint likelihood of the entire sequence. In this study, we
assume Markov property for the dependence and accord-
ingly propose a new method for variant identification on
the basis of HMM, acronymized by vi-HMM.
The vi-HMMmethod performs variant calling for SNPs

and INDELs after short reads are mapped to a reference
genome (an example of the mapped reads is shown by
the IGV visualization tool in Additional file 1). Its input
includes a reference genome sequence and a file with
mapped reads (a SAM/BAM file). The core of this method
lies in the construction of an HMM that models state
transitions among the bases on the genome as well as
emissions from the hidden states to the observed pileup
read data. From the HMM, we can uncover the optimal
hidden state sequence (i.e., the Viterbi path), which is then
used to call variants or infer the underlying genotypes.
The workflow of the vi-HMMalgorithm is shown in Fig. 1,
including three major steps:

(1) Define the states (Match, SNP, Insertion, and
Deletion) and identify the transition probabilities
among the states to build the transition matrix.

(2) Compute the likelihood (emission probability) of
observing the pileup of reads under different states.

(3) Given a reference genome sequence, find the optimal
hidden state sequence by using the Viterbi algorithm
and based on which infer variants/genotypes.

Details of these steps are explained in the following
subsections.

The states and transition matrix
We assume that all reads have been mapped to the refer-
ence genome by a standard mapping tool, such as Bowtie2
[23] or BWA-MEM [24], resulting in a SAM file. Using
the CIGAR strings from the SAM file, detailed alignment
information for each base can be obtained, which indi-
cates the relation between the reference genome and the
genotype sequence that underlies the mapped reads. We
consider a genomic region with length L, that is, a total of
L adjacent bases including the ones in the reference but
not in the genotype and vice versa. We define an alpha-
betic set � = {A,C,G,T ,−} to include the symbolic
elements in this genomic region with A,C,G,T denoting
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Fig. 1Workflow of vi-HMM

the nucleotides and “−” denoting a missing nucleotide
caused by deletions or insertions. Let Ri and Gi, 1 ≤ i ≤ L
denote the symbol on base i for the reference sequence
and for the genotype sequence, respectively. Then, Ri ∈ �,
and Gi can take 15 possible diploid genotypes, enumer-
ated asAA,AC,AG,AT,A–,CC,CG,CT,C–,GG,GT,G–,
TT, T–, and −−. In general, the relation between Ri and
Gi, i.e., the state of base i, can be defined by “Match,” “SNP,”
“Ins,” and “Del” and we use a latent variable Zi to describe
this hidden state on base i. Depending on the value that Ri
takes, two cases should be considered for Zi:

(1) If Ri �= −, the state can be a “Match,” “SNP,” or “Del”
and correspondingly the hidden state variable Zi can
take 15 possible values in accordance with the 15
diploid genotypes, denoted by sj, j = 1, . . . , 15. For
example, suppose the reference base Ri = A, then
s1 = AA representing the state “Match,” s15 = −−
representing the state “Del,” and other states may be
considered as “SNP”s.

(2) If Ri = −, the state can be either an “Ins” or a not
valid state and the hidden state variable Zi can also
take 15 values, denoted by sj, j = 16, . . . , 30. For
example, suppose the reference base Ri = −, then
s30 = −− is a not valid state, and all other states are
considered as “Ins”.

It is worth noting that the inference of the most likely
genotype Gi is equivalent to finding the most likely Zi,
which directly indicates the occurrence of the variant—
SNP or INDEL, on base i.
After defining the hidden states, we characterize transi-

tions among the states by a transition matrix T = {tmn} ,

1 ≤ m ≤ 30, 1 ≤ n ≤ 30. Each component of the matrix
is defined by tmn = P(Zi+1 = n|Zi = m), 1 ≤ i < L, rep-
resenting the probability of being in state n at the current
base given the observed state m at the previous base. In
our simulation studies, these transition probabilities are
set by empirical values. In the analysis of real data, the
transition matrix can be obtained by calculating the con-
ditional frequencies of the variants from the NCBI dbSNP
database (version 136) [25].

The emission probabilities
Emission probabilities govern the distribution of the
observed data (a pileup of reads) at each base given the
hidden state at that base. In vi-HMM, we first identify the
bases on which the pileup of reads have size ≥ 5. Denot-
ing these read data on base i by Di, 1 ≤ i ≤ L, we write the
probability (likelihood) of observing Di given the hidden
state Zi as

Pi = L (Zi|Di) =
ni∏

k=1
p (dik|Zi) , Zi ∈ {s1, . . . , s30}

(1)

where dik represents the nucleotide on the kth read cov-
ering base i and ni represents the size of the pileup on
that base. Since each value taken by the hidden state Zi
corresponds to a specific underlying genotype Gi which
contains two alleles A1 and A2, we further write the prob-
ability of observing each dik , 1 ≤ i ≤ L, 1 ≤ k ≤ ni given
Zi as

p (dik|Zi) = p (dik| {A1,A2})
= 1

2
p (dik|A1) + 1

2
p (dik|A2)

(2)
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where the probability of observing dik given one allele A ∈
{A1,A2} is

p (dik|A) =
{
eik if dik �= A
1 − eik

4 if dik = A . (3)

In the above expression (3), eik represents the sequenc-
ing error rate on base i for read k, which can be calculated
from the reversed Phred-scaled quality score in the SAM
file. For simplicity, here, we assume that the sequencing
error on base i is caused by four possible point mutations
(from alleleA ofGi to the nucleotide of dik whichmay take
four other symbols in set�) with equal probability. In par-
ticular, when “−” appears in a read (meaning a deletion in
the CIGAR string of the SAM file) so the corresponding
Phred quality score on that read base is missing, we take
the average of all other reads’ Phred quality scores on that
base to impute the missing value.
We note that the emission distribution can vary for dif-

ferent bases. Given ni pileup reads on base i, for each
possible combination of Ri and Gi, i.e., for Zi = sj, 1 ≤
sj ≤ 30, the emission distribution at this base will be a dis-
crete distribution which categorizes the pileup read data
Di into 15 groups corresponding to the possible diploid
genotypes. Nevertheless, the probability of observing Di
given Zi can be easily calculated through a multinomial
probability mass function (PMF) by incorporating the
sequencing error rates eik , 1 ≤ k ≤ ni.

The optimal state sequence
With the HMM parameters identified, we use the Viterbi
algorithm to find the optimal hidden state path Z =
Z1Z2 . . .ZL, which not only indicates themost likely geno-
types but also can be used to call SNPs and INDELs
directly.

Datasets
Simulated data
To evaluate the performance of vi-HMM, we simulate
two datasets of short reads using different processes:
one introducing positional dependence by HMM and the
other assuming random occurrence of the genetic vari-
ants by the wgsim tool [26]. In the first process, the
simulation starts with generating a 50,000 base pairs (bp)
genomic segment as the reference sequence. In order to
take into account the spatial dependence in the geno-
type, we first generate a haplotype sequence based on an
HMM with four states: “Match,” “SNP,” “Del,” and “Ins.”
The transition matrix of this HMM is pre-specified (for
details, please refer to https://github.com/tangmanhd/vi-
HMM). The observed haplotype sequence (which takes
value from the alphabetic set �) is determined by the
emission distribution, which, for simplicity, is set to be dis-
crete uniform conditioning on the hidden states. That is,
for each base of the haplotype, the probability vector of

observing a nucleotide symbol other than the correspond-
ing nucleotide shown in the reference is [1/3, 1/3, 1/3]
if the hidden state is “SNP” and is [1/4, 1/4, 1/4, 1/4]
if the hidden state is “Ins” (note that the emissions for
the other two hidden states are deterministic). Based on
the generated haplotype sequence, the second haplotype
can be generated by incorporating a pre-specified het-
erozygous rate. Once the haplotype pair is generated, we
then generate the short-read data, half from each hap-
lotype, by specifying the length, number of reads, and
base quality. In the second process, we randomly select
a 50,000-bp segment of chromosome 21 on the human
genome as the reference sequence and then use wgsim to
simulate paired end reads (https://github.com/lh3/wgsim)
(Additional file 2). In both processes, the base-calling
errors are considered to be stochastic and are gener-
ated from a uniform distribution. These base-calling error
probabilities are then transformed into Phred quality
scores for sequence alignment and variant calling.
In each simulation process, four datasets were gener-

ated at the 15×, 20×, 25×, and 30× sequencing depths,
respectively. The simulated short reads are, on average,
100 bp long. All simulated reads are mapped to the refer-
ence sequence by using sequence alignment tools Bowtie2
(version 2.2.5) and BWA-MEM (version 0.7.12). After read
alignment, we apply vi-HMM, GATK HaplotypeCaller
(version 4.0), FreeBayes (version 1.1.0), Platypus (version
0.8.1), SAMtools (version 1.3), and VarScan (version 2.3.9)
to these datasets forvariant calling (commands and settings
for extant variant callers are listed in Additional file 2).
Evaluation of the calling accuracy is based on the follow-
ing criteria. For SNP calling, if the locus of a called SNP
is exactly the same as the truth, this SNP is recorded as
a true positive (TP); otherwise, it is a false positive (FP).
On the other hand, if a true SNP is not identified by the
caller, it is a false negative (FN). For INDEL calling, if the
called locus is the same as the the simulated truth, this
INDEL is regarded as a TP, and the definitions of FP and
FN are the same as those for calling SNPs. With these
concepts, we calculate the sensitivity, precision, and F1
score by:

sensitivity = TP
TP + FN

precision = TP
TP + FP

F1 = 2TP
2TP + FP + FN

(4)

This simulation procedure is repeated 1000 times to
summarize the averages on sensitivity, precision, and F1
score.

https://github.com/tangmanhd/vi-HMM
https://github.com/tangmanhd/vi-HMM
https://github.com/lh3/wgsim
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Real data
We further run vi-HMM to call SNPs and INDELs
on a dataset from the GIAB project (NA12878; chr21,
1–48129895 and chr22, 1–51304566; genome version
hs37d5). This dataset consists of 19,020,457 (chr21) and
17,598,950 (chr22) mapped reads. The average lengths of
reads on chr21 and chr22 are 100.9 bp and 101 bp and
the average coverages on chr21 and chr22 are 54× and
50×, respectively. In order to evaluate the performance
of variant calling at lower coverage, we downsample this
real dataset to 15× and 30× sequencing depths and
then apply several variant callers to the datasets accordingly.
These three datasets are denoted as low (15×), medium
(30×), andhigh (54× or 50×) coveragedepths, respectively.
A validation dataset by Zook et al. [22] is treated as the
“ground truth” to evaluate the calling accuracy [22]. It
should be noted that Zook et al. [22] has applied GATK in
the process of obtaining these high-confidence variants.
Therefore, to avoid biased comparison, we choose to
not include GATK but only compare the vi-HMM call-
ing results to those generated by the other four popu-
lar variant callers—FreeBayes, Platypus, SAMtools, and
VarScan (version numbers of these callers are the same
as those in simulations). The transition matrix of vi-
HMM is pre-specified according to the conditional fre-
quencies estimated from the NCBI dbSNP database
(version 136) [25].

Results
Performance evaluation based on data simulated by HMM
The SNP calling results by the six variant callers
(vi-HMM, GATK HaplotypeCaller, FreeBayes, Platypus,
SAMtools, and VarScan) for the simulated data are shown
in Fig. 2. We observe that, when Bowtie2 is used for
read mapping, vi-HMM achieves the highest sensitivity
and F1 score at every read coverage depth, indicating
its good accuracy in detecting SNPs as compared to the
other variant callers, especially at the low-coverage (15×
depth) setting (Fig. 2a, e). The sensitivity of SNP calling by
vi-HMM reaches 93.83%, whereas the second highest sen-
sitivity by SAMtools is only 81.45% at the 15× depth; the
F1 score by vi-HMM (95.29%) is also much higher than
that by SAMtools (89.27%). All six variant callers show
high precision (above 95%) on this simulated data (Fig. 2c).
When BWA-MEM is used for read mapping, the sensitiv-
ities and F1 scores by vi-HMM are also the highest across
all read coverage depths (Fig. 2b, f ). The sensitivity and F1
score by SAMtools are comparable to those by vi-HMM.
Again, high precision is observed for all six variant callers
(Fig. 2d).
For INDEL calling, with Bowtie2 mapping, the sensitiv-

ity and F1 score by vi-HMM are the highest at every read
coverage depth (Fig. 3a, e) and the precision by vi-HMM
is the second highest (Fig. 3c), indicating the superiority

of vi-HMM in detecting INDELs than the other vari-
ant callers. As the coverage depth increases, the INDEL
calling accuracy of vi-HMM becomes higher. With BWA-
MEMmapping, the sensitivity by vi-HMM is only slightly
lower than those by Platypus and GATK HaplotypeCaller
(Fig. 3b). The precisions by vi-HMMaremuch higher than
those by GATK HaplotypeCaller, FreeBayes, and Platy-
pus and slightly lower than those by the other methods
(Fig. 3d). Overall, the F1 score by vi-HMM reaches the
highest at every read coverage depth (Fig. 3f ).

Performance evaluation based on data simulated bywgsim
In general, vi-HMM performs well in calling SNPs and
INDELs on the data simulated by wgsim. For SNP calling,
when Bowtie2 is used for read mapping, the sensitivity by
vi-HMM is slightly lower than that by FreeBayes at the
low-coverage (15× depth) setting but becomes the high-
est when the read coverage depth increases (Fig. 4a). F1
scores by vi-HMM and GATK HaplotypeCaller are the
highest across all read coverage depths, with only subtle
differences between the two (Fig. 4e). When BWA-MEM
is used for read mapping, the sensitivity by vi-HMM is
the highest at the medium to high-coverage (20×, 25×,
30× depths) settings (Fig. 4b). The F1 scores by vi-HMM
and SAMtools are the highest at every read coverage
depth (Fig. 4f ). For INDEL calling, the sensitivity by vi-
HMM reaches the highest at 15× and 20× depths on
readsmappedwith Bowtie2 (Fig. 5a). Under bothmapping
methods, the F1 scores by vi-HMMandGATKHaplotype-
Caller remain the highest when the read coverage depth
increases (Fig. 5e, f ).

Application to the real data for NA12878
The results of comparing the sensitivity, precision, and
F1 score between the five variant callers are shown in
Table 1, by using real data on chr21 at the 15×, 30×, and
54× sequencing depths. For SNP calling, we observe that
all five callers except FreeBayes achieve very high preci-
sion (> 99%) at the three depths. Thus, the differences
in F1 score are mainly driven by sensitivity, for which vi-
HMM and SAMtools outperform the others especially at
low (15×: both > 95%) to medium (30×: both > 99%)
depths. For INDEL calling, it is obvious that vi-HMMpro-
duces the highest F1 score over all other callers, and the
superiority in F1 score becomes more apparent at low
(15×: vi-HMM > 91% whereas others < 90%) to medium
depths (30×: vi-HMM > 95% whereas other callers’ F1
scores range from 80.54 to 93.67%). We also note that
among all five variant callers, vi-HMM is able to control
the false positives and false negatives in a balanced way
(i.e., achieve > 90% sensitivity and precision simultane-
ously) for both SNP and INDEL calling at all three depths,
whereas others cannot (for example, FreeBayes and Platy-
pus have low precision in INDEL calling, the sensitivity of
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Fig. 2 Comparison of SNP calling by different variant callers using data simulated by HMM at various sequencing depths. a Sensitivity with Bowtie2
mapping. b Sensitivity with BWA-MEMmapping. c Precision with Bowtie2 mapping. d Precision with BWA-MEMmapping. e F1 score with Bowtie2
mapping. f F1 score with BWA-MEMmapping

SAMtools for calling INDELs is less competitive, and the
sensitivity of VarScan for calling both SNPs and INDELs
drops too fast at lower depths). To check the consistency
of the comparison results on different chromosomes, we
also apply the same variant calling process to chromosome
22. Similarly, for SNP calling, vi-HMM and SAMtools
achieve very high F1 score at low (15×: both > 96%)
to medium (30×: both > 99%) depths, and for INDEL

calling, vi-HMM also outperforms the others at low to
medium depths (at low depth, the F1 scores of vi-HMM
and SAMtools are comparable, see details in Additional
file 3). These comparisons provide us evidence that on the
real datasets, vi-HMM represents an improvement over
the other four variant callers in terms of calling SNPs and
INDELs, as its performance gets closer to the recognized
“ground truth”—which was obtained by GATK in practice.
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Fig. 3 Comparison of INDEL calling by different variant callers using data simulated by HMM at various sequencing depths. a Sensitivity with
Bowtie2 mapping. b Sensitivity with BWA-MEMmapping. c Precision with Bowtie2 mapping. d Precision with BWA-MEMmapping. e F1 score with
Bowtie2 mapping. f F1 score with BWA-MEMmapping

Discussion
In this article, we describe a new HMM-based method,
vi-HMM, for accurate calling of SNP and INDEL vari-
ants in mapped reads. By taking advantage of the HMM
features, vi-HMM allows us to detect variants directly
through inferring an optimal hidden state path from the
observed pileup read data and the reference genome.

Both simulation studies and real data analysis have con-
firmed that vi-HMM is able to improve the accuracy of
SNP/INDEL identification as compared to other variant
callers, especially at low and medium depths.
As an important step in NGS data analysis, variant

calling has received much attention in bioinformatics
research. Although a number of variant calling methods
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Fig. 4 Comparison of SNP calling by different variant callers using data simulated by wgsim at various sequencing depths. a Sensitivity with Bowtie2
mapping. b Sensitivity with BWA-MEMmapping. c Precision with Bowtie2 mapping. d Precision with BWA-MEMmapping. e F1 score with Bowtie2
mapping. f F1 score with BWA-MEMmapping

have been developed, it remains unclear how different
model assumptions used in these methods affect their
practical performance. In general, the performance of a
variant caller can be evaluated through either real data
analysis or simulations. Real data analysis is able to reveal
features of the variant caller under different settings
(sequencing platforms, coverage depths, etc), however,
due to lack of “ground truth” on experimentally validated
variant sets in real data, the results of false positives and

false negatives in variant identification are often arguable.
Simulation studies, on the other hand, provide strong evi-
dences for evaluation of a variant caller or comparison
among variant callers. However, the simulated data need
to be justified to have similar characteristics as real data
in order to guarantee that the conclusions still remain
meaningful in real data scenarios.
In the present work, we have performed both simu-

lations and real data analysis to evaluate the proposed
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variant caller vi-HMM and compare it with other com-
monly used callers. Interestingly, we found something in
common in the two sets of calling results (at 15× and
30× depths using both simulated and real data): (1) Over-
all, vi-HMM and SAMtools have higher F1 score than
FreeBayes, Platypus, and VarScan, in both SNP calling and
INDEL calling. (2) The precision for most variant callers
are very high in SNP calling. (3) When sequencing depth
increases from low (15×) to medium (30×), most variant
callers have better calling performance. (4) The sensitivity

and precision for vi-HMM are balanced and remain high
across different depths, whereas for the other variant
callers they could be very unbalanced (e.g., Platypus and
FreeBayes in INDEL calling) or easily influenced by low
depth of the data (e.g., the fast dropping of VarScan sensi-
tivity in INDEL calling from 30× to 15×). These findings
in variant calling performance indicate that our simulated
data share some similarities with the real data, and both
demonstrate that our proposed method, vi-HMM, has a
good performance overall and is applicable not only to
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Table 1 Comparison of different variant callers using real data on chromosome 21

SNP INDEL

Caller Sensitivity (%) Precision (%) F1 score (%) Sensitivity (%) Precision (%) F1 score (%)

15×
vi-HMM 95.11 99.62 97.31 91.95 90.18 91.06

FreeBayes 94.82 91.61 93.18 88.93 74.79 81.25

Platypus 90.97 99.84 95.20 93.74 70.03 80.17

SAMtools 98.66 99.56 99.11 83.79 95.45 89.24

VarScan 76.31 99.87 86.51 74.00 99.44 84.85

30×
vi-HMM 99.81 99.44 99.63 95.22 95.62 95.42

FreeBayes 95.80 95.48 95.64 90.36 76.41 82.80

Platypus 92.92 99.73 96.21 95.67 69.54 80.54

SAMtools 99.64 99.62 99.62 87.84 93.23 90.46

VarScan 97.93 99.82 98.86 88.59 99.37 93.67

54×
vi-HMM 99.95 99.18 99.56 95.61 96.09 95.85

FreeBayes 95.88 96.90 96.39 90.77 77.27 83.48

Platypus 92.97 99.63 96.18 96.06 69.11 80.38

SAMtools 99.70 99.61 99.65 88.99 90.53 89.75

VarScan 99.53 99.77 99.65 91.67 99.24 95.31

med-to-high read coverage depth but also to low read
coverage, with robust performance.
Particularly, for the two “better performers” vi-HMM

and SAMtools, we also see the differences between their
SNP calling and INDEL calling. While they both have
high sensitivity, precision, and F1 score in simulations and
real data analysis, vi-HMM does not display remarkable
superiority in calling SNPs. This may be because the state
“SNP” is more likely to move to “Match” (94.99% from
dbSNP) rather than to another variant across the genome.
Thus the dependence between “SNP” and the adjacent
variants becomes negligible and plays a less important
role in SNP calling. However, in terms of INDEL calling,
vi-HMM certainly outperforms SAMtools. This could be
possibly explained by the fact that the transition prob-
ability from the state “Ins” to “Match” is only 28.80%
(data from dbSNP), indicating that there exists strong
dependence between “Ins” and the adjacent variants and
therefore vi-HMM should have a better performance in
calling INDELs by considering such state dependence
between adjacent genomic bases.
Another observation in real data analysis is that, the

F1 scores of these tools vary at different INDEL lengths.
Figure 6 shows the F1 scores by vi-HMM, FreeBayes,
Platypus, SAMtools, and VarScan at INDEL lengths 1, 2,
..., 6, and > 6 on real data with 15× depth on chromo-
some 21. We see that the F1 score by vi-HMM remains

above 80% for all INDEL lengths whereas other variant
callers, such as FreeBayes, Platypus, and VarScan cannot
maintain their F1 scores consistently high. In particular,
all these tools have comparable F1 scores at INDEL length
1, and vi-HMM achieves the highest F1 score at INDEL
length from 2 to 6, indicating that this HMM-based
method appears to be more accurate in detecting short
INDELs.
Noteworthy, the accuracy of variant calling also depends

on the quality of read alignment. In general, the occur-
rence of INDELs in reads may shift the alignments and
result in mismatch [27], whichmay impact the subsequent
variant calling procedure remarkably. This is especially
true for large INDELs. As seen from our simulation study 1,
vi-HMM produces higher sensitivity and F1 score on
reads mapped with Bowtie2 than it does on reads mapped
with BWA-MEM at every read coverage depth. One
plausible explanation is that Bowtie2 performs better
than BWA-MEM in the read alignment (further exami-
nation of the two aligners on correct mapping, multiple
alignment, second alignment, soft/hard clipped reads is
included in Additional file 4). Such a phenomenon of
variant calling being influenced by read alignment can
also be observed in a simulated dataset with homopoly-
mers (Additional file 5). It is thus important to choose an
alignment tool that produces high-quality mapping prior
to variant calling.
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Fig. 6 F1 scores by vi-HMM, FreeBayes, Platypus, SAMtools, and VarScan at different INDEL lengths on real data with 15× depth on chromosome 21

Conclusion
In conclusion, we have developed a novel HMM-based
method for sequence variant identification in short-read
data. This variant caller provides an effective solution to
modeling the dependence of adjacent genomic loci, which
is expected to be useful for accurate calling of variants
but is often overlooked in existing tools. To evaluate the
performance of calling SNPs and INDELs in synthetic
and real sequencing data, we compared the new vari-
ant calling method, vi-HMM, with five prevalent methods
(GATK HaplotypeCaller, FreeBayes, Platypus, SAMtools,
and VarScan) in simulation studies and with four (Free-
Bayes, Platypus, SAMtools, and VarScan) in real data anal-
ysis. Both comparison results demonstrate that vi-HMM
is able to identify SNP and INDEL variants in amore accu-
rate (overall high F1 score), reliable (smaller fluctuations
across different read coverage depths), and balanced (both
good sensitivity and good precision) way, as compared to
the other variant callers.
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