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The time gap is defined as the time difference between the rear of a vehicle and the front of its follower, which affects both safety and
the saturation flow rate of a roadway segment. In this study, naturalistic driving data were examined to measure time gaps from seven
different drivers in a car-following scenario within steady-state conditions. The measurements were taken from a 13-km section of
a Dulles Airport access road in Washington, DC. In total, 168,053 time gap samples were obtained covering seven speed intervals.
Analysis of the data revealed a large variation in time gaps within individual drivers’ driving data, with coefficients of variation
as high as 63.8% observed for some drivers. Results also showed that the variability within drivers was more significant at speeds
higher than 54 km/h. In addition, there was a large variability between drivers. At speeds above 108 km/h, minimum time gaps left
by some drivers could be 1.6 times longer than those left by others. Several statistical distributions were used to fit the data of the
seven drivers as well as the data for all drivers combined for each speed interval. The selected distributions passed the goodness-of-fit
(Kolmogorov-Smirnov, Chi-square, and Anderson-Darling) criteria only when the number of samples was reduced. Data reduction
was not performed randomly, but rather in a manner intended to maintain the same observed distribution when all the samples
were used. It is therefore recommended that empirical measures of distributions be used in traffic microsimulation software rather
than theoretically fit distributions obtained based on statistical tests. This will lead to better naturalistic traffic behavior simulations,

resulting in more precise predicted measures of performance (travel time, fuel consumption, and gas emissions).

1. Introduction

Time headway between vehicles is an important microscopic
traffic flow property. It is used in many areas of traffic
engineering, as it is directly related to traffic safety, the level of
service of a roadway segment, and the capacity of transporta-
tion facilities. In addition, distributions of time headways are
essential in many traffic microsimulation software packages
since the generation of vehicles using these tools is usually
based on these distributions. Two techniques, both of which
depend on where the measuring device is installed, are
used to take empirical measurements of time headways on
roadway infrastructure. In point measuring techniques, a
sensor, such as an induction loop, is installed at a certain
position on the roadway to record the time when a vehicle
crosses its path. The arrival times of successive vehicles are

used to calculate time headways. With this procedure, the
time headway used by several drivers is estimated at a certain
location of the roadway. In the second technique, a distance
sensor, such as radar, is installed in a vehicle to measure the
distance between the following vehicle and its leader. The
measured distance and the speed of the following vehicle are
used to compute time headways. With this technique, the
following vehicle’s time headway is calculated at any time
along the roadway. Even though both techniques measure the
time gap between vehicles, the results are rather different.
With the first technique, the behavior of several drivers is
identified at a certain location of the roadway, while the
second technique identifies the behavior of one driver all
along the roadway.

Using either of the measuring techniques described
above, two different concepts of time headway can be
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identified: normal time headway (i.e., time headway) and
time gap. Time headway is the time between the moment the
front (or rear) bumper of a vehicle passes a designated point
and the moment the front (or rear) bumper of its follower
reaches that same point, which means that the length of the
leading (or follower) vehicle is taken into account in comput-
ing the time headway. Time gap is measured from the rear
of a vehicle to the front of its follower. The point measuring
technique calculates time headway as the difference in arrival
times between successive vehicles, making its computation
much more accurate and precise than calculating the time
gap. Using these types of measurements makes calculation of
the time gap more complex and prone to accumulating more
error, however, as it involves the estimation of the vehicles
length and speed. A more accurate way to calculate time gap
is the floating vehicle technique, where the time headway is
accurately derived using a known test vehicle’s length and
speed, with the latter measured accurately using the vehicle’s
on-board diagnostic (OBD) system.

Traffic engineering researchers are usually more inter-
ested in time headway than time gap for the simple reason
that it represents a link between the micro- and macroscopic
scales. Indeed, the inverse of the average measured headway
at a certain location is nothing but the flow traversing that
location. As a result, since the start of traffic modeling in
the 1930s, several researchers have measured time headways
and fitted mathematical distributions to the collected data.
However, time gap is more meaningful to drivers, as time
gap is the driver-dependent component of time headway.
For instance, in a car-following state, when a driver is
constrained from overtaking a leading vehicle, the driver
adapts their driving behavior depending on their perceived
safety margins.

The subject of time headway and/or gap distribution
continues to be of interest to traffic engineers, mainly because
car technologies and human behavior change over time. For
example, driving behavior in the 1960s or even in the 1990s
was different than it is today. In the present study, measured
time gaps, using the floating car technique, adopted by seven
different drivers in car-following conditions (spacing less
than 100m) and within steady-state conditions (absolute
speed difference between subject and leading vehicle does not
exceed 5% with acceleration/deceleration less than 0.2 m/s?)
are presented. This study is novel in that the data used were
naturalistic, as drivers used the test vehicles during their
normal day-to-day driving routine for an entire year; no
experimenter was present to dictate their driving behavior.
This paper is organized as follows. First, a brief summary
of available literature that deals with time headway/time gap
distribution is provided. The collected naturalistic data used
in the study is then described. Finally, the findings of the
study and their interpretations are presented, followed by the
conclusions reached at the end of the study.

2. Literature Review

Even though the present study deals with observed time
gap distributions in a steady-state car-following scenario, the
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literature review included both time headway and time gap
studies for all traffic conditions, with most existing literature
dealing with the former.

In his 1990 publication, May presented a chapter related
to time headways and their distributions [1], reporting that
the subject of time headways and related mathematical
distributions has been studied since the 1930s. He cited the
works of many researchers who dealt with this subject during
the period from 1930 to 1990 [2-22]. Based on his work and
those he cited, May proposed a classification scheme for time
headway distributions consisting of a random distribution
state for low flow levels, an intermediate distribution state
for moderate flow levels, and a constant distribution state
for high flow levels. May described the different statistical
distributions used for each classification scheme, including
negative exponential, shifted negative exponential, normal,
lognormal, Pearson type III, gamma, Erlang, and composite
(combination of two different statistical distributions), such
as the hyperlang.

During the 1990s, research continued in the area of
vehicle time headway and time gap statistical analyses.
Mei and Bullen collected time headway data on the two
southbound lanes of a four-lane freeway near downtown
Pittsburgh during morning rush hour [23]. During their
measurements, the traffic was smooth with an average trav-
eling speed of about 75km/h and an average flow rate of
about 2,400 vehicles per hour per lane. They concluded that
shifted lognormal distribution with 0.3 or 0.4 sec shifts fitted
well the measured data. Griffiths and Hunt proposed the
double-displaced negative exponential (DDNE) distribution
to model vehicle headways in urban areas [24]. Sullivan
and Troutbeck suggested the use of Cowan M3 headway
distribution for modeling urban traffic flow [25]. In 1996,
Luttinen proposed different scientific procedures to identify
and estimate statistical models for time headway data and
to test their goodness of fit [26]. He used his proposed
procedures for data collected from Finnish two-lane two-way
roads. Hoogerndoorn and Bovy developed a statistical pro-
cedure for estimating composite time headway distributions
such as the generalized queueing model (GQM) [27]. Their
proposed procedure was applied to traffic data collected on a
two-lane rural road in the Netherlands and they claimed that
headway distributions could be realistically replicated with
the Pearson-III-based mixed-vehicle-type GQM.

In the 2000s, more researchers worked on measuring
time headways and time gaps and tried to fit distributions
to the collected data. Al-Ghamdi collected time headway
data from 20 urban sites (13 freeways and 7 arterials) in
Saudi Arabia [28]. He found that negative exponential, shifted
exponential, and gamma distributions reasonably fitted the
low (less than 400 vehicles/h) and medium (between 400
and 1200 vehicles/h) states of flow on freeways and the
Erlang distribution properly fitted the high traffic flow state
(more than 1200 vehicles/h). He also found that the gamma
distribution gave a decent fit for a large range of flows on
arterials (around 60-1,200 vehicles/h). Chandra and Kumar
used five different sections of uninterrupted flow in six-lane
divided urban highways in New Delhi, India, to measure
headways [29]. They found the hyperlang distribution to
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be the best fit for the collected measurements under mixed
traffic conditions and within a traffic flow ranging from 900
to 1,600 vehicles/h. Bham and Ancha used four data sets
collected using aerial photography over a ramp weave, ramp
merge, lane drop, and basic freeway sections to measure time
headway and time gaps [30]. They found that the shifted
lognormal distribution gave a better fit to measured data
for both properties at all observed sites as compared to the
shifted Gamma distribution. Zhang et al. evaluated existing
distribution models on headway observations obtained from
regular lanes and high-occupancy-vehicle (HOV) lanes from
different periods of the day on interstate I-5 in Seattle,
Washington [31]. They found that the DDNE model provided
the best fit to their headway data, especially for HOV lanes
for different traffic flow levels. Yin et al. used digital cameras
to collect time headway data from the busiest expressway
in Beijing, China [32]. They concluded that the lognormal
distribution was adequate for free-flowing traffic condi-
tions, while the loglogistic distribution was more suitable
in congested traffic conditions. Ha sampled time headway
measurements from Road RN118 and freeway A6 databases
in France [33], finding that the double gamma and gamma-
GQM models were best in terms of fitting the collected
measurements. Jang et al. collected time headway data from a
suburban arterial in South Korea [34]. The modeling revealed
that the Johnson Sy model was the best fit for headway data
for a flow of 600-840 vehicles/h, while the Johnson Si; model
provided the best fit for traffic flows of 900-1,740 vehicles/h.
Habtemichael et al. used the gamma-GQM model to fit time
headway data collected from the fast lane of freeway Al
in Switzerland under dry weather, light rain, medium rain,
and heavy rain intensities [35]. They found that the four
parameters of the used model changed depending on the
weather condition and concluded that traffic characteristics
and driver behavior were more inconsistent under medium
rain than with all other intensities. Dubey et al. measured
time gap data on the entire width of a major arterial in
the city of Chennai, India [36]. They found the composite
Weibull/Extreme Value distribution to be the best fit for
their data. Pascucci analyzed data recorded by both inductive
loops and radar sensors on two-lane two-way rural roads
in Northern Italy to study the effects of traffic parameters
(flow rate and percentage of heavy vehicles) on headway
distributions [37]. He found that the gamma-GQM model
was the best fitting model for time headway data, but he
concluded that its parameters lacked physical interpretations,
as they do not allow a direct comparison of traffic parameters.
Moridpour studied trajectory data provided for a section of
highway I-80 in Berkeley, California, to evaluate headway
distribution models for passenger cars and heavy vehicles
[38]. She found that lognormal distribution models with
shifts ranging from 0.26 to 0.40 s were suited to heavy vehicle
time headways, while lognormal distribution models with
shifts ranging from 0.08 to 0.16 s were suited to passenger car
time headways.

One of the objectives of the study described in this paper
was to evaluate time gap distribution as a function of vehicle
speed. Few researchers have evaluated such a relationship.
Taieb-Maimon and Shinar performed a field study to evaluate

drivers’ actual headways in car-following situations [39]. In
their experiment, participants were asked to maintain what
they referred to as “minimum safe distance” and “comfort-
able, normal distance with no intention to pass” behind a lead
car, in which speed was varied from 50 to 100 km/h. Their
results showed that participating drivers adjusted their dis-
tance headways in relation to speed with an average of 9.5m
at 50 km/h to an average 19 m at 100 km/h, which resulted
in an average minimum time headway nearly constant with
speed and ranging from 0.64s to 0.69s. Dey and Chandra
analyzed headway data obtained from simulation runs to
develop relationships between desired time gap and speed for
five categories of vehicles (car, heavy vehicle, motorized two-
wheeler, three-wheeler, and tractor) [40]. They found that the
gamma distribution was the best model for the desired space
gap during the steady-state car-following situation under
mixed traffic conditions. They also reported that desired time
gap decreased as the steady-state vehicle speed increased
with a higher rate of decrease at lower speeds. In addition,
they stated that the desired time gap was more in the case
of heavy vehicles than for cars. Brackstone et al. collected
data using an instrumented testing vehicle for two groups
of drivers: 6 active participants and 123 passive subjects who
were observed following the instrumented vehicle during
data collection runs [41]. They revealed a large degree of
variation in time headway between or within subjects. When
they averaged the results across participants, they found that
average headway decreased with an increase in speed up
to a speed of 15m/s, after which it remained constant. Zou
collected a dataset from loop detector data on interstate I-35
at Austin, Texas, in order to construct bivariate distributions
describing the characteristics of speed and headway [42]. He
showed that there was a weak dependence between speed
and headway and the correlation could vary depending on
the traffic condition, with the strongest dependence achieved
under congested traffic states.

3. Materials and Methods: Collected
Naturalistic Data

Recent technological developments in terms of data acqui-
sition and storage have made the collection of naturalistic
driving data feasible. In 2002, the Virginia Tech Transporta-
tion Institute (VTTI) initiated a study where 100 cars were
instrumented and driven by designated drivers around the
Washington, DC area. The conclusion of the study resulted in
a database containing 207,000 trips completed by 108 drivers.
This translates into 337,000 hours of data and approximately
12 billion database observations (the sampling period was
equal to one-tenth of a second).

For the purpose of this study, only the data set related
to 1,180 car-following events spanning around 10 hours was
used. The car-following data were collected on an approxi-
mately 13-km long segment of a Dulles Airport access road.
The choice of only one section for this study was established
to maintain facility homogeneity in terms of free-flow speed,
speed-at-capacity, saturation flow rate, and jam density. The
evaluated data was collected from seven different drivers.
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TABLE 1: Number of time gap samples per driver and per speed interval.

Driver ID Speed interval (km/h)

[4-18[ [18-36] [36-54[ [54-72( [72-90[ [90-108[ >108
124 57 403 739 684 2450 9042 5226
304 4 1 642 2539 3318 8416 1166
316 122 2934 3380 2193 3798 7566 51
350 16 238 388 760 1867 4310 811
358 176 5041 6565 4791 6090 7225 1701
363 12 445 778 1388 7798 45719 8855
462 6 119 209 468 393 6414 739
Total 393 9181 12701 12823 25714 88692 18549
For each event, the naturalistic data used in this study 110 2
included the instantaneous speed of the following vehicle, 105 )
the instantaneous speed of the leading vehicle, and the gap - F15
distance between the two vehicles. The instantaneous speed 'E 100 ' z
of and gap distance from the leading vehicle were measured < 95 L1 S
using a radar system installed in the instrumented following 3 % E
vehicle. The instantaneous speed of the following vehicle was & L o5 T
measured using its OBD system. 85

The data were then filtered to ensure that only steady- gL 0

state car-following events were analyzed. This was done by 0051 152253354455 55665
extracting from the raw data only the events meeting the four Time (s)
criteria presented below. Note that the thresholds used with & Follower
these criteria were based on the authors’ experience with car- o Leader
following/steady-state conditions. x Time gap

(1) Absolute value of the speed difference between the
leader and follower vehicle < 5%

(2) Acceleration and/or deceleration during the consid-
ered event < 0.2 m/s’

(3) Headway (calculated as the sum of the measured
distance gap and the instrumented car length, the
whole divided by the follower speed) < 4 s

(4) Distance spacing < 100 m

Events were then filtered according to the follower speed.
Seven speed intervals were chosen in steps of 5 m/s (18 km/h).
The considered speed intervals in km/h were [4, 18], [18, 36],
[36,54[, [54,72[, [72,90[, [90,108[, and higher than 108.
The 5m/s step was chosen for convenience rather than any
physical reason. Figure 1 shows a filtered event for one of
the drivers. In this event, where the follower car is travelling
at a speed (98-102km/h) a little higher than the leader
(95-98 km/h), the time gap decreased from 0.82 to 0.67s.
All the time gap data points for this event and driver would
therefore be saved as individual time gap measurements for
the speed interval [90, 108].

Once all the events were filtered, time gap data per driver
and per speed interval were obtained.

Table 1 shows the number of collected samples. In total
168,053-time gap samples were obtained and most of the
data belongs to the speed interval [90-108[. A commercially
available software program was then used for each dataset
(per driver and per class of speed) to find the descriptive

FIGURE 1: Typical analyzed events. (a) Speed interval [90, 108].

statistics as well as the best statistical distributions fitting the
dataset for each driver. The data were then analyzed per speed
interval grouping all the drivers. This was done in spite of the
fact that the number of samples per speed interval differed
from one driver to another. For example, in the speed interval
[90, 108[ more than 50% of the total data belongs to Driver
363 and therefore their behavior would have had the greatest
effect on the results for this speed interval.

4. Results and Discussion

The collected time gap data were analyzed using descriptive
statistics per driver and for all drivers combined. In addition,
statistical distributions were used to fit the data.

4.1. Descriptive Statistics per Driver. Driver behavior is the
most influential and the most difficult factor to model in
traffic engineering because driving decisions mainly depend
on the driver’s temperament and attitude toward risk. Even
the same driver’s temperament can change from day-to-day
or even hour-to-hour. This is illustrated by the large amount
of variation both within and between drivers in the time gap
data. For instance, Table 2 presents the mean and coefficient
of variation (COV) calculated for all drivers and all speed
intervals. The COV is defined as the mean divided by the
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TABLE 2: Mean and COV for all drivers for all speed intervals.
Driver No. Speed Interval (km/h)
[4-18( [18-36[ [36-54[ [54-72] [72-90[ [90-108[ >108
124 Mean (s) 2.50 222 2.31 2.83 1.05 1.29 1.04
COV (%) 11.9 30.0 29.1 43.4 53.7 50.4 62.9
304 Mean (s) NA NA 1.82 1.36 1.21 1.28 1.65
COV (%) NA NA 25.8 35.2 32.5 35.6 355
316 Mean (s) 2.53 2.67 2.38 2.01 1.55 1.48 1.48
COV (%) 9.9 14.0 18.9 28.9 28.9 30.9 26.1
350 Mean (s) 2.60 2.59 2.46 2.28 2.08 1.50 1.55
COV (%) 9.0 15.0 275 22.3 32.0 31.8 21.9
358 Mean (s) 2.54 2.43 2.07 1.95 1.74 1.68 1.86
COV (%) 9.9 19.7 21.3 21.1 23.2 23.9 23.7
363 Mean (s) 2.09 1.77 1.33 1.22 1.10 1.24 1.42
COV (%) 10.2 214 39.4 271 33.8 38.1 29.0
462 Mean (s) NA 1.53 1.28 0.93 0.81 0.98 0.97
COV (%) NA 20.8 12.7 19.5 16.7 43.9 63.8
4 4
3.5 e 35
2 e z 3
% 1.5 : : . “g’ 1.5 . . + . . . .
Sl S|
" " " " " ) 0 : : . : : :
(4-18) (18-36) (36-54) (54-72) (72-90) (90-108) =108 (4-18) (18-36) (36-54) (54-72) (72-90) (90-108) =108
Speed interval (km/h) Speed interval (km/h)
(@ (®)

FIGURE 2: Box and whisker plots for time gap data for (a) Driver 358 and (b) Driver 462.

standard deviation and is expressed as a percentage. COVs as
high as 63.8% were calculated for Driver 462, demonstrating
their inconsistency while driving. This driver, while driving at
speeds >108 km/h, left, at some instances, a time gap as low as
0.48 s, while at other instances they left a time gap as high as
2.99s. Table 2 also shows that the variability of most drivers
was more significant at speeds higher than 54 km/h. At these
high speeds, most drivers had a mean time gap greater than
the median, indicating a larger concentration of shorter time
gaps.

The between-drivers’ variability is also significantly
noticeable in Table 2 (looking at the mean values for different
drivers) and Figure 2. In this figure, the time gap box and
whisker plots for Driver 358 (Figure 2(a)) and Driver 462
(Figure 2(b)) are shown. For all speed intervals, the median
for Driver 358 is above 1.5s, whereas Driver 462’s median
is below 1.5s. This indicates that the latter driver drove
more aggressively compared to the former. At speeds above
108 km/h, the minimum time gap left by Driver 358 was 0.76 s,
which is 1.6 times that left by Driver 462.

Time gap (s)
[\S]

35 SRR REEEEE EREE
3
2.5 *
15
1

(4-18) (18-36) (36-54) (54-72) (72-90) (90-108) =108
Speed interval (km/h)

FIGURE 3: Box and whisker plots for all drivers combined.

4.2. Descriptive Statistics for Combined Drivers. The data for
all seven drivers was combined for each speed interval in
order to accommodate for the general behavior of different
drivers. Figure 3 shows the box and whisker plot for all
drivers. From this figure, it appears that, in general, drivers
leave longer time gaps at lower speeds than at higher speeds.
This is observed by looking at the variation in the median
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FIGURE 4: Statistical distributions for different drivers and all drivers combined for the speed interval [90, 108[ km/h.

across the speed intervals. For instance, at a speed interval of
[18, 36], the median is about 2.5 s but drops to 1.2 s at a speed
interval of [90, 108][. This indicates that, in general, the driver
leaves a longer distance gap at higher speeds; however, since
the speed is higher, the time gap is reduced.

4.3. Statistical Distributions. Commercially available soft-
ware was used to find the best distributions that fit the data
per driver and for all combined drivers. The software uses the
maximum likelihood method [43] to estimate the parameters
of the statistical models. Three goodness-of-fit methods are
also used by the software, namely, the Kolmogorov-Smirnov

(K-S), the Chi-square (Xz), and the Anderson-Darling (A-
D) [43]. There is no reliable method amongst these methods,
but they are based on different approaches. For more details
about these methods and their test statistics, refer to [43].
Several known distributions (about 50) were tested using
the software and a ranking was established according to the
used goodness-of-fit method. Figure 4 shows the results of
the best fitting, as obtained using the K-S method, for five
different drivers and for all drivers combined for the speed
interval [90,108[. As mentioned earlier, since each driver’s
behavior was different, different types of distributions were
found more suitable for different drivers. For example, as
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TABLE 3: Distribution ranking according to the three goodness-of-fit
methods for all drivers at the speed interval [90, 108 km/h.

K-S A-D X
Pearson 5 1 1 1
Wakeby 2 45 Not Ranked
Log-Pearson 3 3 8 8
Dagum (4P) 4 2 2
Pearson 6 5 6 6
Pearson 6 (4P) 6 7 7
Pearson 5 (3P) 7 5 5
Lognormal (3P) 8 10 9
Gen. Extreme Value 9 3 3
Frechet (3P) 10 4 4

Figure 4 shows, Johnson SB, Dagum, log-Pearson 3, Burr,
General Extreme Value, and Pearson 5 were found to be
the best statistical distributions to fit the time gap data for
speed interval [90, 108 for Driver 304, Driver 316, Driver
350, Driver 358, Driver 363, and for all drivers, respectively.
The term “best” describing a distribution fitting was based
on the goodness-of-fit method. In fact, in most cases, what
is described as a “best” fit using one method could be a
badly ranked fit using other methods. This can be seen in
Table 3 where the 10 best ranked distributions, using the
K-S test, fitting the data for “all drivers” and the [90, 108[
speed interval were found to be differently ranked by other
methods. For instance, the “Wakeby” distribution is ranked
second using the K-S test, while it is not even ranked using
the y* test and is ranked 45 using the A-D test.

Other types of distributions were found for other speed
intervals.

For instance, Table 4 shows the best distributions for
all speed intervals for all drivers when using the K-S test.
Equations for the probability density functions (pdf) as well
as the values of the different parameters used with these
distributions are also presented in Table 4.

When working with the data, it was observed that the
number of samples might affect the decisions as to whether
or not to reject a defined distribution. Other research efforts
presented in the Literature section of this paper had a
very small number of samples compared to this study. The
theoretical distributions found in this study did not pass any
goodness-of-fit criteria when all the samples were used. For
that reason, a Matlab reduction algorithm was developed to
reduce the number of samples, while keeping the initially
observed distribution. This means that if x% of the data was
found in bin y, the reduction algorithm would keep the same
proportion x for the same bin y but using only a percentage
of the actual data. As an example, the results of the rejection
decision for the specific data (all drivers—speed interval
[90, 108[) are shown in Table 5. The number of samples was
reduced to keep only 50%, 25%, 10%, 5%, and 1% of the
data while maintaining the actual distribution using 100%
of the data points. Starting at 10% of the actual data (8,861
points), the decision to reject at the 0.01 significance level
changed to “No” using the K-S method. Results for the other

methods are also presented in this table. Results show that it
is better to use empirically observed time gap distributions in
traffic simulation software rather than theoretically deduced
distributions selected based on a statistical test. This may be
infeasible if storing all the measurements but may be more
accurate than assuming a specific distribution.

5. Conclusions and Recommendations for
Future Research

Time gap is an important property in traffic engineering
since it is directly related to safety. For that reason, time
gaps were measured, using naturalistic driving data, for seven
different drivers in a car-following scenario within steady-
state conditions. Because the data were naturalistic, they
provided a direct measure of real driver behavior on a typical
US divided urban highway. Research findings led to the
following conclusions:

(1) Time gap variability within drivers was found for each
speed interval

(2) Time gap variability between drivers was found for
each speed interval

(3) Time gap seems to decrease with an increase in
vehicle speed

(4) Several statistical distributions could be used to fit
time gap data

(5) The number of samples was found to affect the
decision on whether or not to reject a statistical
distribution at a certain level of significance

(6) Mathematically defined statistical distributions work
well as theoretical tools, though empirically observed
distributions could be used in traffic microsimulation
software

The analysis described in this paper is based on the results
of seven different drivers in the Washington, DC area. It is
therefore recommended that more studies, similar to the one
described in this paper, be performed to include more drivers
and roadway facilities (freeway, arterials, collectors, etc.).
The results of such studies could be aggregated by drivers’
age, climatic conditions, and other variables. Since human
behavior differs from region to region, it is also recommended
that the study described in this paper be performed on a
regional basis. Although the data were gathered in 2002, we
believe the results presented are still reflective of current day
drivers given that the saturation flow rates of roadways have
remained fairly constant over the past 30 years. Furthermore,
the settings of adaptive cruise control (ACC) systems that
were introduced and tested in the mid to late 1990s had a
setting of 1s [44], which is consistent with current day ACCs.

Data Availability

The data used to support the findings of this study are
avaijlable from the corresponding author upon request.
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TABLE 4: Best statistical distributions for all drivers and all speed intervals according to the K-S goodness-of-fit method.

Isrlljtee er(\ifal Distribution Parameters pdf
Shape parameters: y = -0.574/ § = 0.756 f(x) = S exp {_l ()/ shn (L))Z]
[4-18] Johnson Sg Scale parameter: A = 1.137 AMV2mz (1 - 2) 2 1-z
Location parameter: £ = 1.799 where z = (x - {)/A
Shape parameters: y = -0.655/ § = 1.095 Fx) = § exp {_l ()/ +51n (L))z]
(18-36] Johnson Sy Scale parameter: A = 2.723 AM2rz (1 -2) 2 -z
Location parameter: & = 0.757 where z = (x - {)/A
Shape parameters: «; = 899.2/«, = 478.4 (x =Py
(36-54] Pearson 6 Scale parameter: 3 = 5.119 flx) = BB(ar o) (1 + (x - y)/p))otlﬂxz
Location parameter: y = -7.574
where B is the Beta function
Mode parameter: m = 1.47 Flx) = 1 (x—a)1 7 (b-x)2"!
[54-72[ Pert Lower boundary parameter: a = 0.57 Blay, o)  (b—a)nte!
Upper boundary parameter: b =3.867  where«, = (4dm+b—-5a)/(b-a) a, = (5Sb—a—4m)/(b-a)
Shape parameters: «; = 1.739/a, = 249 o, ()07 (1 - 2™
[72-90[ Kumaraswamy Lower boundary parameter: a = 0.46 flx) = b-a)
Upper boundary parameter: b = 25.5 wherez = (x —a)/(b—a)
Shape parameter: o = 7.75 flx) = exp [-B/(x —y)]
[90-108[ Pearson 5 Scale parameter: f3 = 8.78 B (a) ((x - y)/ﬁ)M1
Location parameter: y = 0 where T is the gamma function
Shape parameters: o, = 1.728/ax, = 5.604 aye, ()7 (1 - z9)7!
>108 Kumaraswamy Lower boundary parameter: a = 0.31 flx) = b-a)
Upper boundary parameter: b = 3.76 where z = (x —a)/(b — a)
TaBLE 5: Effect of number of samples in the goodness-of-fit test decision—all drivers—speed interval [90, 108]).
Number of Samples K=s X A-D
Statistics Reject at 0.01 Statistics Reject at 0.01 Statistics Reject at 0.01
88692 0.01208 Yes 483.75 Yes 28.948 Yes
44342 0.01315 Yes 253.39 Yes 15.009 Yes
22167 0.01286 Yes 93.728 Yes 7.626 Yes
8861 0.013 No 42.492 Yes 2.755 No
4426 0.01246 No 23.187 No 1.3736 No
878 0.0205 No 5.846 No 0.2628 No
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