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Abstract: Oils and fats are important raw materials in food products, animal feed, cosmetics, and
pharmaceuticals among others. The market today is dominated by oils derive, d from African palm,
soybean, oilseed and animal fats. Colombia’s Amazon region has endemic palms such as Euterpe
precatoria (agai), Oenocarpus bataua (patawa), and Mauritia flexuosa (buriti) which grow in abundance
and produce a large amount of ethereal extract. However, as these oils have never been used for
any economic purpose, little is known about their chemical composition or their potential as natural
ingredients for the cosmetics or food industries. In order to fill this gap, we decided to characterize
the lipids present in the fruits of these palms. We began by extracting the oils using mechanical
and solvent-based approaches. The oils were evaluated by quantifying the quality indices and
their lipidomic profiles. The main components of these profiles were triglycerides, followed by
diglycerides, fatty acids, acylcarnitine, ceramides, ergosterol, lysophosphatidylcholine, phosphatidyl
ethanolamine, and sphingolipids. The results suggest that solvent extraction helped increase the
diglyceride concentration in the three analyzed fruits. Unsaturated lipids were predominant in all
three fruits and triolein was the most abundant compound. Characterization of the oils provides
important insights into the way they might behave as potential ingredients of a range of products.
The sustainable use of these oils may have considerable economic potential.

Keywords: oil extraction; lipidomic profile; Amazonian palms.

1. Introduction

There is a growing tendency to include natural, often new, ingredients in mass consumer products.
This is particularly true in the cosmetics and food industries, where these ingredients are used to
continually improve and enhance their products in order to compete in a highly competitive market [1].
However, the inclusion of these natural ingredients in product formulations is far from easy because they
are complex mixtures and more research is required for a full understanding of their compositions [2—4].
This could enable substantial improvements in the design of successful products containing these
ingredients [2].

There are around 2600 species of palms in the world as a whole, while in South America there
are 50 genres and approximately 476 species, of which 85% are endemic to the subcontinent [5,6].
Palms play a dominant role in tropical American forests in comparison to other botanical families [7,8].
This large number of species combined with the ethnic and cultural wealth of the area has given rise
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to an extensive range of uses of palm products and associated management practices [5]. The most
important products derived from South American palms are edible fruits, palm hearts, oils, as well as
stems and leaves for construction purposes [5]. Conservation of the forests is currently being defended
through the enforcement of sustainable harvesting practices [5,9].

Just like the African palm fruit, some fruits of palm species endemic to the tropical forest of the
Amazon could be potential sources of oil [10]. The Instituto Amazénico de Investigaciones Cientificas
Sinchi in Colombia has identified the following palm species as promising: Euterpe precatoria (one of
the two commercial species of acai together with, although less studied than, Euterpe oleraceae [11]),
Mauritia flexuosa (buriti), and Oenocarpus bataua (patawa) [12]. All of these palms grow abundantly in
certain areas of Amazonia and are considered a possible source of 0il [10,13]. In fact, the extracts of
some of those fruits are already being used in some cosmetics and food products [14,15], and their
extracts have been widely studied due to their antioxidant capacity [15-27]. However, before seriously
considering the potential of these oils as lipid sources in a wider range of cosmetics, toiletries, or food
products, it is necessary to characterize their lipid composition as accurately as possible and assess
how this composition could be affected by the oil extraction procedure.

The extraction of oils from plants at a commercial scale is normally based on mechanical procedures
(for example pressing [28]), which are generally less efficient than those using non-polar solvents
such as petroleum benzine, hexane, or pentane [28,29]. There is a global tendency to switch to
environmentally sustainable techniques [30] such as cold pressing [31,32], green solvents [33,34],
enzymes [35], ultrasound [34], supercritical fluids [20,28,36,37], and microwaving [31,38]. All of these
extraction techniques have advantages and disadvantages in terms of efficiency, effectiveness, and
sustainability, with the result that a lot of research in this field has focused on comparing these different
techniques, looking above at all at their respective yields [39-41]. However little research has been done
on how the extraction technique can affect the composition or the physicochemical characteristics of
the extracted oil [31,36]. These oils are normally characterized by assessing certain parameters, such as
the oil quality indices and the fatty acid methyl esters (FAMEs) profile [33,35]. However, methods like
these involve the derivatization of the sample, making it impossible to clarify whether the extraction
method affects the composition of the main components of the oil: triglycerides (TAGs), diglycerides
(DAGs), and free fatty acids (FAs). State-of-the-art chromatographic and spectrometric techniques can
perhaps offer better ways of identifying the composition of these natural ingredients [42,43].

The main goal of this paper is to discuss the scientific aspects of the comparative analysis of the
characteristics and composition of the oils (in terms of TAGs, DAGs, and FAs) extracted from agai,
buriti, and patawa fruits using either a screw press or a non-polar solvent. Our results will help pave
the way to understanding the effect of the extraction strategy on the behavior of these oils during the
product formulation process. This characterization could therefore become the basis for the rational
design of bioproducts containing these ingredients.

2. Materials and Methods

2.1. Plant Material Collection and Suitability

Fruits samples of E. precatoria Mart (agai), M. flexuosa (buriti), and O. bataua (patawa) were picked
by staff from the “El Trueno” experimental station (Instituto Amazoénico de Investigaciones Cientificas
Sinchi), which is located between San José del Guaviare and El Retorno (N 2°24’, W 72°43’). The fruits
were picked when ripe in two different harvesting periods (one per year, in April 2017 and 2018 for acai,
and October 2017 and 2018 for buriti and patawa). They were then washed and disinfected, after which
the pulp was removed using a vertical stainless-steel machine (Metvisa) and dried in a convection
oven at 40 °C for 24 h. The dried material was then powdered in a knife mill (Fritsch) to an average
particle size of 1 mm. Finally, the powder was stored in a cool, dry place until the oil was extracted.
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2.2. Extraction of Oil from Selected Palms Species

Mechanical extraction of 500 g of dry material was performed using an expeller press at laboratory
scale with a rotational speed of 60 rpm, a temperature of 25-30 °C, and a diameter of 8 mm at the
extruded exit. The second extraction method involved the exhaustive extraction of oil from the material
at room temperature using petroleum benzine with a 40-60 °C boiling range as a solvent (500 g of
plant material/500 mL of petroleum benzine). The solvent was recovered using a rotary evaporator
(Heidolph) at 40 °C. All the oils were then centrifuged at 4500 rpm (25 °C/30 min, Thermo Fisher
Scientific, Waltham, MA, USA), pulling apart all suspended particulate matter. Samples were extracted
in triplicate.

2.3. Physicochemical Characterization

Oil quality indices were determined according to the official methods of the American Oil Chemists’
Society (AOCS), calculating saponification value by AOCS Cd 3-25, iodine value by AOCS Cd 1.25,
and acid value by AOCS Cd 3d-63 [44]. Density was measured by a gravimetric method.

The fatty acid methyl esters (FAMEs) were analyzed by preparing samples according to ISO-5509.
An amount of 0.5 g of each oil was saponified with 6 mL of a 0.5 M methanolic solution of NaOH
with reflux at 90 °C until the oil droplets disappeared. Then, 7 mL of a methanolic solution of 14%
BF3; was added and the mixture was boiled for 3 minutes. After that, FAMEs were extracted from the
reaction mixture with isooctane. The phases were separated by adding 20 mL of a saturated solution
of NaCl. The hydrophobic phase was then separated and excess water was removed by the addition of
0.2 g of anhydrous Na;SOy. The sample obtained was analyzed by gas chromatography with a flame
ionization detector (GC-FID); separation was achieved using an RTX-Wax column (30m x 0.25 mm
0.5 um) of RESTEK® (Belfort, PA, USA). Helium was used as the carrier gas at 40 cm® min~!. The
injector temperature was 200 °C and the detector temperature was 240 °C. The analysis was carried
out, first in isothermal mode at 50 °C (5 min), then in program temperature mode from 50 °C to 240 °C
at5 °C min~! and finally, in isothermal mode at 240 °C (15 min). FAMEs were identified by comparing
their retention times with those identified with a FAMEs Supelco standard. Results were reported as
relative concentrations [25].

The lipidomic profile of each oil was obtained by ultra-high-performance liquid chromatography
(UHPLC) at the NIH West Coast Metabolomics Center. Each oil was diluted properly with CHCl;3. The
separation was achieved with a Waters Acquity UHPLC CHS C18 (100 mm X 2.1mm X 1.7 pm), and
lipids were detected with an Agilent 6530 QTOF mass spectrometer with resolution R = 10,000 for
positively charged lipids, and an Agilent 6550 QTOF mass spectrometer with resolution R = 20,000
for negatively charged lipids. The system was heated to 65 °C. The flow rate was set to 0.6 mL/min
and the injection volume was 3 pL. The mobile phase A was a 60:40 mixture of acetonitrile and water
with 10 mM of ammonium formate and 0.1% of formic acid. The mobile phase B was a 90:10 mixture
of isopropyl alcohol and acetonitrile with 10 mM ammonium formate and 0.1% of formic acid. The
elution gradient was 0 min 15%(B), 0-2 min 30% (B), 2-2.5 min 48% (B), 2.5-11 min 82% (B), 11-11.5
min 99% (B), 11.5-12 min 99% (B), 12-12.1 min 15% (B), 12.1-15 min 15% (B). Raw data was processed
qualitatively using Agilent’s MassHunter software (CA, USA). Peak alignment was performed using
Mass Profiler Professional. MS/MS information and the Lipid Blast library were used to identify the
lipid compounds. Finally, the heights of the peaks were quantified using Mass Hunter Quant [45].
Based on the fact that the main functional group is common for all analyzed lipids (fatty acid chain), the
peak intensities and areas obtained in each chromatographic analysis were assumed to be proportional
to the lipid concentration. For this reason, results were reported as the ion peak area or as relative
concentration. The latter was calculated as the relation between the area of each identified peak and
the sum of areas of all identified peaks for each chromatogram [46].
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2.4. Experimental Design and Data Analysis

A 3 x 2 factorial experimental design (three palm species and two extraction methods) was
performed to test the null hypothesis that there were no differences in the composition of the oils
when extracted by solvent or by screw-pressing, or between species. Statistical analysis of the data
was performed in SPSS (IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version 23.0.
Armonk, IBM Corp., Armonk NY, USA). A Tukey’s test was used to find significant differences between
treatments at the 95% confidence level. A Shapiro-Wilk test was used to verify the normality of
the data.

3. Results and Discussion

Table 1 shows the extraction yield of oil from the three analyzed species. In general, patawa had
the highest oil content and solvent extraction seems to be the most efficient process. If we assume
for comparison purposes that 100% of the oil was recovered by the solvent extraction method, the
mechanical extraction process had a 45-68% efficiency range depending on the particular species. The
oil content of patawa was higher than the expected 51% content reported by Monttfar et al. [25], while
the oil contents of buriti and acai were lower than reported (49.1% and 28.9% respectively [16]); some of
the dissimilarity in the yields may be due to variations in solvent extraction procedures [47], inherent
differences between regions and seasonal variations [48].

Table 1. Extraction yield for agai, buriti and patawa oils obtained by mechanical and solvent extraction.
(oil weight/dry material weight).

Fruit Mechanical Extract Solvent Extract

Acai 10% 18%

Buriti 22% 33%
Patawa 28% 62%

In general (Table 2), the acidity indices of the oils extracted by screw pressing were higher than
those obtained by solvent extraction. It is possible that mechanical extraction is not sufficiently
selective to the polarity of the metabolites with the result that plant extracts may include other types
of compound that are not considered as lipids, such as organic acids. For their part, the iodine and
saponification indices showed similar values for all three samples. This could be viewed as an indicator
that the content of unsaturated lipid molecules is unaffected by the extraction procedures; however,
this claim can be only verified by lipidomic profiling. The iodine index was lower than reported by
Aquin et al. for buriti oil (90.00 mg I,/100g oil), suggesting that our buriti oil samples had a lower
unsaturated lipids content.

Table 2. Quality indexes for acai, buriti, and patawa oils obtained by mechanical and solvent extraction.

IODINE SAPONIFICATION ACIDITY
EXTRACTION OIL INDEX INDEX INDEX % DENSITY
Acai 68.3 £2.11 186.0 £3.1 4.83 +0.05 0.925 £ 0.02
MECHANICAL Buriti 76.4 +4.02 189.2 + 0.4 6.13 + 0.02 0.911 = 0.04
Patawa 76.4 +£1.52 1649 £5.1 3.92 +0.05 0.870 + 0.04
Acai 69.2 +1.89 184.0 +2.0 1.87 + 0.05 0.912 £ 0.04
SOLVENT Buriti 753 +2.32 187.5+ 0.2 2.71 £0.02 0.910 + 0.04
Patawa 742 +£3.40 160.7 £ 3.2 1.96 £+ 0.05 0.871 +0.03

The statistical analysis showed that the FAMEs profiles did not vary significantly when using
mechanical or solvent extraction for each fruit (p > 0.05). We found FA chains made up of 14, 16, and
18 carbon atoms, whose structure contains 0, 1, or 2 double bonds. These results are consistent with
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the iodine indexes obtained by experiment. Oleic acid (C18:1) and palmitic acid (C16:0) seem to be
the predominant fatty acid chains in all cases. Meanwhile, buriti and agai oils have around 75% of
unsaturated FAs, while patawa oil has over 83% (Table 3). If we compare these results with the FAMEs
profile reported by Mba et al. for African palm [49], there are notable differences between Amazonian
palm oils and African palm oil in their palmitic (C16:0) and oleic (C18:1n9c) acid content. While the
C16:0 concentration of Amazonian palms oils is lower than that of African palm oil, the C18:1n9c
concentration is higher in all three Amazonian palms. In general, the total saturated FA content for
Amazonian palm oils does not exceed 26%, while in African palm oil it is around 52% [49], the first big
difference between these oils as potential raw materials. The most abundant FA was oleic acid, with
values of between 62% to 80% for Amazonian palm oils and only 40% for African palm oil [49]. The
second most abundant FA was palmitic acid, with values of 12% to 25% for the Amazonian palm oils
compared with 44% in the African palm oil [49]. The content of miristoleic (C14:1), stearic (C18:0),
and linolenic acids (C18:2n6c) in Amazonian palm oils did not exceed 15%. The FA compositions of
acai and patawa oils seem to be similar, while buriti oil has a large amount of miristoleic acid (C14:1),
which only appears in very small amounts (less than 0.5%) in agai, patawa, and African palm oils. This
chemical characteristic could be a differentiating factor in the behavior of buriti oil if it were used as
raw material, in that as miristoleic acid is a smaller chain FA, its presence could affect the crystallization
temperature, and hence the structure, stability, and texture of the oil.

Table 3. Fatty acid methyl ester (FAME) profiles for acai, buriti and patawa oils obtained by mechanical
and solvent extraction.

Acai Buriti Patawa

FAME Mechanical Solvent Mechanical Solvent Mechanical Solvent
C12:0 0.00% 0.80% 0.00% 0.00% 0.00% 0.16%
C14:0 0.00% 0.00% 0.00% 0.00% 0.10% 0.92%
C14:1 0.10% 1.40% 12.20% 13.61% 0.00% 0.00%
C16:0 20.50% 17.30% 25.60% 22.87% 13.00% 13.31%
Cl6:1 0.00% 0.00% 0.00% 0.00% 0.40% 0.00%
C18:0 4.40% 6.60% 0.00% 0.00% 3.80% 0.00%
C18:1n9¢ 64.70% 68.20% 62.20% 63.52% 80.00% 85.62%
C20:0 0.00% 0.00% 0.00% 0.00% 0.10% 0.00%
C18:2n6¢ 9.40% 4.40% 0.00% 0.00% 1.80% 0.00%
C18:3n6 0.00% 0.00% 0.00% 0.00% 0.60% 0.00%
C20:1 0.00% 0.00% 0.00% 0.00% 0.10% 0.00%
C20:2 0.30% 0.50% 0.00% 0.00% 0.00% 0.00%
C22:0 0.10% 0.10% 0.00% 0.00% 0.00% 0.00%
C20:3n6 0.00% 0.10% 0.00% 0.00% 0.00% 0.00%
SAT 25.00% 24.80% 25.60% 22.87% 17.00% 13.39%
UNS 75.00% 75.20% 74.40% 77.13% 83.00% 86.61%

The lipidomic profile reveals that the main components are TAGs, DAGs, and FAs (Figure 1).
The statistical analysis showed that the lipidomic profiles varied significantly when using mechanical
or solvent extraction (p = 0.00). Additionally, we found there was no significant effect of interaction
between the extraction method and the species analyzed, or when comparing the lipidomic
profile between species (p < 0.05). We also identified the presence of acylcarnitine, ceramides,
ergosterol, lysophosphatidyl choline, phosphatidyl ethanolamine, and sphingolipids, all of which
had concentrations of less than 0.05%. The complete lipidomic profile includes approximately 458
compounds. Due to the length of the compound list, details are provided in the Supplementary
Materials. These lipids are important in the formulation of toiletries and cosmetics because they are
also present in the stratum corneum, the outermost layer of the epidermis, in which they act as a
barrier to water loss. In aging skin, however, the production of these lipids is depleted [4]. For this
reason, cosmetics and toiletries commonly include plant oils as emollients [50]. We therefore believe
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that acai, patawa, and buriti oils could be used as natural ingredients in products such as creams and
body lotions that have great potential for moisturizing and softening skin.
2,500,000

2,000,000

1,500,000

lon Peak Area

1,000,000

500,000

DG TG

FA DG

Mechanic Solvent

Figure 1. Comparison of the relative concentration of fatty acids (FA), diglycerides (DG), and
triglycerides (TG) by method of extraction for agai (dotted bars), buriti (grey bars) and patawa (bars
with horizontal lines) oils.

As expected, the lipids with the highest concentrations in the oils were TAGs, regardless of the
extraction technique (Figure 1). This is not surprising because triacylglycerols have been widely
reported as the main components of plant oils and animal fats [51-55]. By contrast, the concentration
of DAGs was affected by the type of extraction, with solvent-based extraction producing much higher
concentrations. As a result, the relative concentration of TAGs was lower when solvents were used for
extraction. The total FA concentration did not exceed 5%, which is consistent with the acidity index
results. There was no evidence of detectable monoacylglycerol content, although this is to be expected
given the metabolic pathway of plant lipids [56], in which phosphatidic acid, which has a palmitic acid
chain at the sn-2 position, is the precursor for the synthesis of DAGs. These DAGs then help form
TAGs through the diacylglycerol acyltransferase action [56].

As regards FAs, as shown in Figure 2, mechanical extraction leads to higher FA content and, as
expected, palmitic and oleic acids are the most abundant in all cases. This confirms previous reports
that 16:0-CoA and 18:1-CoA are the most abundant products of plastid FA synthesis in most angiosperm
species [56]. Polyunsaturated FAs were also found, albeit in lower concentrations. We noted that
mechanically extracted buriti oil has FAs with longer chains. Previous reports found lignoceric acid
(C24:0) to be a minor component of buriti oil [23], although, to our knowledge, this is the first time that
montanic acid (C28:0) has been reported for this palm species.
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Figure 2. Comparison of fatty acid (FA) content according to extraction method (mechanical
extraction—grey bars; solven—white bars) for agai, buriti, and patawa oils.

At first glance, only the solvent-extracted oils have a significant DAG content (Figure 3). The
DAG content of mechanically-extracted oils was less than 1%. A higher DAG concentration in
solvent-extracted oils could affect the behavior of the o0il as a raw material in cosmetic and toiletry
formulations as there are reports that DAGs can act as emulsifiers, which can alter the physical
properties of colloid mixtures such as emulsions [57]. It is possible that the observed surface activity of
DAGs makes it easier for them to be extracted by non-polar solvents than by mechanical procedures.
Another possibility is that this could be a result of the chemical or enzymatic hydrolysis of TAGs,
although there are few reports in the literature about this taking place in the extraction of plant oils [40].
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Figure 3. Comparison of the diglycerides (DG) content according to extraction method (mechanical
extraction—grey bars; solvent—white bars) for agai, buriti, and patawa oils.
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With regard to TAGs, the most abundant triacylglycerols were TG (52:2) and TG (54:3), with
52 and 54 carbon atoms, and 2 or 3 unsaturations, respectively. Both TAGs are made up of chains
of palmitic or oleic acids and are consistent with the results for FAs and DAGs. Since these TAGs
are the main components of the analyzed oils, we believe that these two compounds (i.e. TG (52:2)
and TG (54:3)) are good models for understanding the behavior of oil as a natural ingredient in more
complex systems, such as cosmetics or food products. Figure 4 shows the TAGs with a concentration
of over 5%. The complete TAG profile includes 33 types of TAGs and more details can be found in the
Supplementary Materials. Although buriti [21,23,58] and patawa oils [24,25] have been analyzed in
previous research, this is the first time that the TAG profile for oils from these three palm species has
been presented in such detail. It is also important to stress that this is the first report for oil from E.
precatoria, one of the species of the acai plant [59].

300,000
250,000
200,000

150,000

lon Peak Area

100,000

50,000

Patawa

Figure 4. Comparison of the triglycerides (TG) content according to extraction method (mechanical
extraction—grey bars; solvent—white bars) for agai, buriti, and patawa oils.

We noted that, while TAGs with two or three unsaturations are the most abundant in Amazonian
palm oils, saturated TAGs represent less than 3% of the total weight of lipidic molecules (Figure 5).
This is an important finding when it comes to understanding the behavior of Amazonian palm oil
as a natural ingredient compared with that of African palm oil whose composition reveals 0, 1, or 2
unsaturation levels [49]. The concentration of TAGs with two unsaturations in Amazonian palm oils
seems to be similar to that reported by Mba et al. [49] for African palm oil. However, African palm oil
reached a 48% relative concentration of TAGs with only one unsaturation, while the Amazonian palm
oils have up to 13% of these types of molecules. By contrast, the TAGs with three unsaturations ranged
between 30% (for patawa oil) and 42% (for agai oil), but only 5% for African palm. The main difference
between the Amazonian palm oils we analyzed was in the fraction of TAGs with three, four, and five
unsaturations. Although acai oil had the lowest concentration of TAGs with three unsaturations, it
had a larger number of TAGs with four and five unsaturations. These results appear to be consistent
with the FAMEs profile described above. In this sense, Amazonian palm oils show enormous potential
for use in the formulation of nutraceutical products [60]. The statistical analysis did not reveal any
significant differences for the interaction between extraction methods and the specie analyzed in the
TAGs profile. The samples had the same distribution in terms of the number of unsaturations on the
TAGs regardless of the extraction process used. This behavior was also reported for mechanically and
solvent extracted chia oils [61].
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Figure 5. Comparison of the number of unsaturations on TAGs according to extraction method
(mechanical extraction—grey bars; solvent—white bars) for agai, buriti, and patawa oils.

4. Conclusions

We performed a lipidomic profile of E. precatoria (agai), O. bataua (patawa), and M. flexuosa (buriti).
In general, we found that the most abundant FAs, DAGs, and TAGs are shaped by acyl chains with 16
or 18 carbons. We found significant differences between the extraction techniques, probably because
the solvent extraction procedure induced a notable increase in the concentration of DAGs, leading to a
significant difference in the composition of the oils extracted by solvent or by mechanical pressing.
Since DAGs have surfactant activity, the oils extracted by solvent could behave in different ways from
mechanically-extracted oils if they were used as natural ingredients in cosmetics, food, and toiletries
formulations. We therefore believe that the extraction process is a factor worth considering before using
these oils in formulations of this kind. For instance, emulsions formulated with solvent extracted oils
may be more stable due to the higher DAGs content, while eco-friendly products must be formulated
using mechanically extracted oils. Considering that Amazonian palms are mainly composed of
unsaturated TAGs, using them as natural ingredients (regardless of the extraction procedure) could
enable the production, for example, of softer cosmetic products that are more easily absorbed by
the skin.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/8/329/s1.
A spreadsheet with the detailed lipidomic profile of the oils extracted from the three palm species by mechanical
and solvent-based methods.
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