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ABSTRACT

The spread of antibiotic resistance is a growing public health concern. While numerous studies have highlighted the
importance of environmental sources and pathways of the spread of antibiotic resistance, a systematic means of
comparing and prioritizing risks represented by various environmental compartments is lacking. Here, we introduce
MetaCompare, a publicly available tool for ranking ‘resistome risk’, which we define as the potential for antibiotic
resistance genes (ARGs) to be associated with mobile genetic elements (MGEs) and mobilize to pathogens based on
metagenomic data. A computational pipeline was developed in which each ARG is evaluated based on relative abundance,
mobility, and presence within a pathogen. This is determined through the assembly of shotgun sequencing data and
analysis of contigs containing ARGs to determine if they contain sequence similarity to MGEs or human pathogens. Based
on the assembled metagenomes, samples are projected into a 3-dimensionalhazard space and assigned resistome risk
scores. To validate, we tested previously published metagenomic data derived from distinct aquatic environments. Based
on unsupervised machine learning, the test samples clustered in the hazard space in a manner consistent with their origin.
The derived scores produced a well-resolved ascending resistome risk ranking of: wastewater treatment plant effluent,
dairy lagoon, and hospital sewage.

Keywords: antibiotics resistance gene; resistome; resistome risk; metagenomics; environmental samples

INTRODUCTION

The acquisition of antibiotic resistance by bacterial pathogens
is of global concern, as it undermines available therapeutics for
treating and preventing serious infections (World Health Orga-
nization 2014). Thus, there is a need to develop means to track

and control the spread of antibiotic resistance, with growing
interest in understanding the role of environmental sources and
pathways by which antibiotic resistance may spread. Recent
advances in next-generation DNA sequencing enable capture of
the full metagenomic complement of functional genes in com-
plex environments, including antibiotic resistance genes (ARGs)
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and mobile genetic elements (MGEs) (Wooley, Godzik and Fried-
berg 2010). ARGs encode various cellular functions that enable
bacteria to survive in the presence of antibiotics, while MGEs
enable ARGs to be transferred among different bacterial strains.
Importantly, ARGs relevant to clinically important bacteria have
largely been found to have evolved in and originated from nat-
ural environments (Poirel, Kampfer and Nordmann 2002; Poirel
et al. 2005; Teeling and Glockner 2012). It is now widely known
that the phenomenon of antibiotic resistance itself is as ancient
as the microbes themselves that produce antibiotics (D’Costa
et al. 2011). There is no environment to date; including frozen
tundra (Allen et al. 2010), isolated caves (Bhullar et al. 2012) or
isolated human populations (Clemente et al. 2015) that has been
found to be free of ARGs (Martı́nez 2008). This raises the ques-
tion of how to judge the extent to which an ARG detected in the
environment poses a risk to human health?

Human health risk assessment provides a quantitative
framework for estimating the likelihood of illness given a spe-
cific exposure route and dose (U.S. Environmental Protection
Agency (U.S. EPA) 2012; Ashbolt et al. 2013). For example, quanti-
tative microbial risk assessment has been applied to estimate
the concentration of Legionella pneumophila that is necessary
in bulk water during showering to cause the severe pneumo-
nia characteristic of Legionnaires’ Disease (Schoen and Ash-
bolt 2011). Developing such a risk assessment framework tai-
lored antibiotic resistance, however, is much more complex.
At the heart of the challenge is the question of exactly which
aspects of the hazard are to be modeled. Shotgun metage-
nomic DNA sequencing is becoming more accessible and widely
applied for broadly profiling the full complement of ARGs, or
the ‘resistome’, of a given environmental sample (Bengtsson-
Palme 2017; Wright 2007). Reads containing DNA sequences
with high similarity to known ARGs can be identified via exist-
ing publicly available databases, such as the Comprehensive
Antibiotic Resistance Database (CARD) (Jia et al. 2017). Such an
approach is advantageous, as it is more holistic, circumvent-
ing biases associated with culture-based techniques and can
be applied to compare various attributes of the resistome that
might represent a hazard, for example, the reduction in total
ARGs following a given mitigation event. This comparative haz-
ard identification and exposure assessment approach assumes
that the actual reduction in risk is proportional to the reduction
in total ARGs. However, in reality, each individual ARG varies
in its actual impact on risk based on several aspects, includ-
ing the type of antibiotic resistance it confers, whether it is
present in an actual pathogen, and whether it has the poten-
tial to be transferred to an actual pathogen (Martinez, Coque
and Baquero 2015). Furthermore, aggregate evaluation of puta-
tive impacts of individual ARGs provides a more realistic and
comprehensive characterization of potential hazards for subse-
quent risk assessment of a given environment. In this regard,
we define ‘resistome risk’ as the cumulative potential for ARGs
to occur on MGEs and in human pathogens, as inferred from
metagenomic data. In this manner, evaluating resistome risk
provides a means to prioritize mitigation efforts based on rel-
ative ranking of specific environments or critical control points
in terms of their corresponding likelihood of mobilizing ARGs to
pathogens and incurring a negative impact on human health.
Unfortunately, a quantitative model that enables comparison of
resistome risk is lacking and urgently needed to advance mon-
itoring and mitigation strategies and fight the spread of resis-
tance. To tap into the full potential of shotgun metagenomic
data sets and derive information ultimately important to human
health risk assessment, it is ideal to be able to identify not

only ARGs, but also gene fragments corresponding to MGEs and
human pathogens. MGEs, such as transposons, integrons, plas-
mids and prophages, play a key role in mediating horizontal
transfer of resistance determinants from their original bacterial
hosts to human pathogens (Forsberg et al. 2012). Through bioin-
formatics techniques, such as local sequence alignment tools
and sequence assembly (Boratyn et al. 2013; Breitwieser, Lu and
Salzberg 2017), it is possible to estimate which ARGs occur on
MGEs and whether they are present in pathogens. Such informa-
tion can aid in judging the potential for resistance to spread, as
well as in ranking potential human health hazards represented
by individual ARGs and resistomes.

Recently, a conceptual framework for prioritizing the risk
of dissemination associated with individual ARGs by a rank-
ing system was proposed (Martinez, Coque and Baquero 2015).
This framework suggests criteria for ranking ARGs depending
on the likelihood that they present a public health concern.
While this is a useful framework, there are challenges to actual
implementation. Specific challenges and limitations include: (i)
focus on gene-level assessment, which ignores the full power
of a shotgun metagenomic data set; (ii) requirement of func-
tional assays to confirm annotations and gene assignments,
which is unrealistic from a practical standpoint and (iii) neces-
sity to discriminate between known and unknown mechanisms
of resistance based on functional evaluation, which is difficult
to accurately differentiate through a computational approach.
Although we judge that some of these barriers cannot presently
be surmounted, here we develop and demonstrate a system
incorporating key criteria for deriving and prioritizing resis-
tome risks from metagenomic data, considering factors such
as abundance, mobility and potential association of ARGs with
pathogens. Specifically, we introduce MetaCompare, a computa-
tional pipeline for prioritizing resistome risk by estimating the
potential for ARGs to be disseminated into human pathogens in
a given environment based on metagenomic sequencing data.
This pipeline is publicly available at https://github.com/minoh
0201/MetaCompare.

METHODS

MetaCompare overview

For a given metagenomic data set derived from a sample of
interest, MetaCompare estimates resistome risk by identifying
and quantifying assembled sequence fragments that are asso-
ciated with abundance, mobility and presence of ARGs within
a pathogen (Fig. 1). To estimate the co-occurrence of key resis-
tome risk ‘components’, specifically ARGs, MGEs and gene frag-
ments corresponding to human pathogen, the pipeline includes
the assembly of metagenomic sequencing reads. After qual-
ity control of raw reads with Trimmomatic, high-quality reads
are assembled using IDBA-UD with default parameters (Peng
et al. 2012; Bolger, Lohse and Usadel 2014). Assembled con-
tigs meeting specific conditions are classified into three cate-
gories: (i) contigs in which ARG-like sequences are found, (ii)
contigs where ARG-like sequences and MGE-like sequences are
detected concurrently and (iii) contigs in which ARG-like, MGE-
like and human pathogen-like sequences are observed together.
The number of assembled contigs corresponding to each cate-
gory is normalized by the total number of assembled contigs.
Based on the normalized values, each sample is projected into
3-dimensional space, which is termed ‘hazard space’, represent-
ing a geometric position of the given sample in that space. Lastly,
how closely related each sample is to the theoretical sample
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Figure 1. Overview of MetaCompare pipeline for ranking resistome risk based
on shotgun metagenomic sequencing data obtained from a given environmental
sample.

representing the highest potential resistome risk is calculated
by measuring the distance between the point of the given sam-
ple and the theoretical boundary in a given hazard space. Lastly,
the resistome risk score is derived from the distance measure-
ment, enabling comparison of resistome risk across all samples
of interest.

Detecting and quantifying critical contigs

Martinez, Coque and Baquero (2015) postulate a conceptual
framework in which an ARG residing on an MGE that is hosted by
a human pathogen represents the highest ‘risk level,’ as defined
by the authors. To identify such cases from metagenomic reads,
it is necessary to search for clues for coexistence of genetic ele-
ments indicative of ARGs, MGEs and pathogens, which herein
we define as ‘hazards’. MetaCompare utilizes assembled contigs
as the basic search unit, because the length of a typical Illumina
sequencing read does not sufficiently support detection of co-
occurrence of multiple gene sequences. For each contig, protein-
coding genes were predicted using Prodigal, a prokaryotic gene
recognition tool, to support accurate annotation of functional

components (Hyatt et al. 2010). The predicted genes were ana-
lyzed with BLASTX (E-value < 1E-10, Identity >60%, and Min-
imum alignment length > 25 amino acids) against the CARD
database, which is presently considered to be the most com-
prehensive repository for ARGs (Jia et al. 2017). To identify MGE-
like sequences, the ACLAME database, which is comprised of
known bacteriophage genomes, plasmids and transposons, was
searched using BLASTN (E-value < 1E-10, Identity >60%) (Leplae,
Lima-Mendez and Toussaint 2010). To ensure high-quality anno-
tation, we filtered out mapping results yielding less than 90%
coverage of the MGE reference. To identify human pathogen-
like sequences, BLASTN searches were conducted against the
human bacterial pathogen genomes that populate the PATRIC
database (E-value <1e−10, Identity >60%, Minimum alignment
length >150 bps) (Wattam et al. 2017). Note that these parame-
ters can be adjusted depending on depth of coverage and quality
of the metagenomic sequencing samples.

We categorized assembled contigs into categories according
to their identified critical components (Fig. 2). Let ARG, MG E
and P AT H be those sets of contigs in which ARG-like sequences,
MGE-like sequences, and pathogen-like sequences are detected,
respectively. For a given contig c and the entire set of contigs C ,
the indicator function is as follows.

IARG (c) =
{

1, if c ∈ ARG
0, if c ∈ C − ARG

Given the total number of assembled contigs Ncontigs, we
estimated the relative quantity of contigs where ARG-like
sequences were detected as follows.

Q (ARG) = 1
Ncontigs

∑
c

IARG (c)

Likewise, contigs annotated with ARGs and MGE-like
sequences were quantified as follows.

Q (ARG, MG E ) = 1
Ncontigs

∑
c

IARG∩MG E (c)

Contigs annotated with pathogen genomes as well as ARGs
and MGEs were quantified in a similar manner.

Q (ARG, MG E , P AT H) = 1
Ncontigs

∑
c

IARG∩MG E∩P AT H (c)

Projecting samples into a hazard space and computing
resistome risk scores

We define the hazard space to be a 3-dimensional space, where
each dimension indicates a resistome risk factor that can be
quantified as a real number. Here, three quantities were com-
puted for each metagenomic data set: Q(ARG), Q(ARG, MG E )
and Q(ARG, MG E , P AT H). By mapping these values to the
coordinates, we projected metagenomic data sets into a 3-
dimensional hazard space (Fig. 3). Metagenomic data derived
from each sample is represented by a single point in hazard
space. Euclidean distance between two points in hazard space
yields the proximity of each sample pair. To compare resistome
risk among multiple samples, we define a theoretical point h that
represents the highest resistome risk in the hazard space. The
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Figure 2. Proposed categorization of an assembled contig according to annotation of its individual critical components.

Figure 3. Illustration of the three-dimensional hazard space.

theoretical maximum values are assigned for h as follows:

Qh (ARG) = 0.01

Qh (ARG, MG E ) = 0.01

Qh (ARG, MG E , P AT H) = 0.01

We conducted a simulation utilizing the prevalence data
in CARD database to obtain an empirical maximum bound-
ary for point h (Jia et al. 2017). The prevalence data consist
of 10318 pathogen genomes, each of which is complete chro-
mosome and complete plasmid sequences or whole genome
sequencing assemblies, annotated with ARGs using Resis-
tance Gene Identifier (Jia et al. 2017). Those genomes are
one of 27 resistant pathogens, including World Health Orga-
nization’s antibiotic-resistant priority pathogens, multidrug-
resistant ESKAPE pathogens (Enterococcus faecium, Staphylococ-
cus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseu-
domonas aeruginosa and Enterobacter species). For each genome,
23 contigs were arbitrarily cut from the genomes by randomly
picking up the length of the contigs from the length distri-
bution of assembled contigs derived from real data used in
this study. In total, 237314 contigs were gathered, which is
approximately equivalent to the average number of assem-
bled contigs per sample in the real data. The fraction of the
contigs annotated with ARGs out of the total number of con-
tigs was calculated. We repeated this process 1000 times and
secured a distribution of the fractions, resulting in obtain-
ing the value 0.0105 that cuts off a right tail to be 1% of
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whole area in the fraction distribution. We used the rounded
value 0.01 as a maximum boundary for Qh(ARG) and the fol-
lowing Qh(ARG, MG E ) and Qh(ARG, MG E , P AT H) as Qh(ARG) ≥
Qh(ARG, MG E ) ≥ Qh(ARG, MG E , P AT H).

By calculating the distance from the point h to each sample,
we can obtain a distance from the point h to each sample for
comparison. Suppose s denotes a point in hazard space corre-
sponding to a given sample and dist(s, h) indicates the Euclidean
distance between s and h. For convenience, the resistome risk
score is computed by inverting the distance value and incorpo-
rating logarithmic scaling as follows.

score (s) = 1

(2 + log10dist (s, h))2

Clustering methods and evaluation

We conducted unsupervised machine learning analysis to
assess how accurately the proposed hazard space classified the
different metagenomic data sets. Three clustering algorithms, k-
means, fuzzy c-means and k-medoid, were applied to the sam-
ples within the proposed hazard space and the alternative haz-
ard space derived from basic abundances of reads annotated
as ARGs. Information about sample type was excluded in the
learning step and used to evaluate how consistent the cluster-
ing results were with the origin of the samples.

Given disjoint clusters of data points, silhouette analysis was
conducted to validate consistency within clusters (Rousseeuw
1987). For each data point i , suppose a(i ) is the average dissim-
ilarity of i with other points within the same cluster and b(i ) is
the lowest average dissimilarity of i to all points in any other
cluster, of which i is not a member. The silhouette of the data
point i is as follows:

S (i ) = b (i ) − a (i )
max

{
a (i ) , b (i )

}

The agreement between the clustering result and the actual
sample type, i.e. ‘dairy lagoon’, ‘hospital sewage’, and ‘WWTP
effluent’, is evaluated by accuracy metrics. Suppose we have N
samples s1, . . . , sN and M classes c1, . . . , cM. Each sample has
an actual class ci and belongs to an answer set Ci such that all
elements in the set have the same class ci . Based on similar-
ity between samples, clustering method generates M clusters
K1, . . . , K M where K j contains samples supposed to have the
same class. For answer sets C and clusters K , the purity is com-
puted by

Purity (C, K ) =
∑

j

∣∣K j
∣∣

N
max

i

∣∣K j ∩ Ci
∣∣∣∣K j

∣∣

where |K j | denotes cardinality of K j . F-measure is computed by

F (C, K ) =
∑

i

|Ci |
N

max
j

(
2Pr (Ci , K j ) · Re (Ci , K j )
Pr (Ci , K j ) + Re (Ci , K j )

)

where precision and recall are calculated respectively as follows:

Pr (Ci , K j ) =
∣∣K j ∩ Ci

∣∣∣∣K j
∣∣

Re (Ci , K j ) =
∣∣K j ∩ Ci

∣∣
|Ci |

We utilized various R packages for cluster analysis. For cluster-
ing, the ‘stats’, ‘e1071’ and ‘cluster’ packages were used. For clus-
tering evaluation and visualization, the ‘FlowSOM’, ‘factoextra’,
‘ggplot2’ and ‘plotly’ packages were utilized.

Significance test for the resistome risk score

To assess the statistical significance of the resistome risk score
distribution, permutation tests were performed to determine if
the calculated distances from the theoretical point were signifi-
cantly different from the null hypothesis of random distribution
of resistome risk scores. For a given sample, random samples
having the same number of contigs and the same number of
annotations for critical components, but having randomly var-
ied co-occurrences of critical components, were generated and a
P-value for a distance of the observed sample was obtained from
the sampling distribution.

Validation

Publicly available environmentally derived shotgun metage-
nomic data sets were selected for validation and downloaded
from the European Nucleotide Archive (Rowe et al. 2016; Rowe
et al. 2017). Three data sets were selected, representing three
distinct environments expected to represent distinct resis-
tome risks within the same geographical area (Cambridge, UK):
Lagoon water from the University of Cambridge dairy farm (dairy
lagoon), combined wastewater effluent from the main wards of
the Cambridge University Hospital (hospital sewage), and efflu-
ent from a municipal wastewater treatment plant discharging to
the River Cam (WWTP effluent). Cambridge University Hospital
has a bed capacity of 1000 and reported 1070.48 Defined Daily
Doses per 1000 bed days in October 2014. The WWTP effluent
is from a conventional secondary wastewater treatment plant
serving mainly domestic wastewater generated by a popula-
tion of ∼200000. According to personal communication with the
authors of the study from which the data were derived, the dairy
lagoon was fed by the runoff from scraped and flushed manure,
which was sampled after approximately 2 months of operation
and immediately prior to withdrawal for application to agricul-
tural land. Specifically, the dairy lagoon samples were collected
from a sampling valve on the feed pipe of the lagoon.

Comparison with common abundance measurement

We constructed an alternative hazard space using common
abundance measurements for critical components. Abundances
of ARGs and MGEs were calculated using MetaStorm, which
computes the normalized ARG/MGE abundance as the copy of
a functional gene per copy of 16S rRNA genes as described in Li
et al. (2015) (Arango-Argoty et al. 2016). For putative pathogens,
relative abundances of individual species were derived from
MetaPhlan2 and cross-referenced to bacterial pathogens housed
in the PATRIC database (Truong et al. 2015). Silhouette analysis
was applied to evaluate tightness of clusters in hazard space and
the alternative hazard space.
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Figure 4. Projection of the test metagenomic data sets into hazard space followed by silhouette analysis to evaluate cohesiveness of members assigned to each cluster.

(a) Hazard space derived from abundances of reads annotated directly as ARGs, MGEs or pathogens. (b) Proposed hazard space derived from estimation of co-occurrence
of critical components on assembled contigs. (c) Clustering coefficient (silhouette width) for each sample presented in (a) displayed in hazard space. The red dotted line
with the red value indicates the average value of all silhouette widths. (d) Result of clustering coefficient analysis for the proposed hazard space based on estimation

of co-occurrence of critical components on assembled contigs. WWTP- waste water treatment plant.

RESULTS

Characterization and validation of the hazard space

Here, we demonstrated that the proposed hazard space is capa-
ble of clearly distinguishing the different environmental sam-
ple types (Fig. 4). As expected, samples originating from the
same location clustered together with a similar resistome risk
ranking, with some minor differences amongst individual sam-
ples. To explore how tightly clustered samples of the same type
were plotted in risk space, silhouette analysis was conducted
(Fig. 4d) (Rousseeuw 1987). As shown in Fig. 4c and d, the aver-
age silhouette width of our hazard space surpassed that of the
hazard space derived from commonly used abundance mea-
surements, indicating that the proposed hazard space approach
yielded higher sensitivity towards characterizing resistome risk
for the tested data sets.

The clusters generated from the hazard space demonstrated
improved performance in correctly categorizing sample types
than the clusters derived from the commonly used normalized
read abundance approach (Fig. 5). This suggests that the pro-
posed hazard space can provide higher resolution for distin-
guishing samples from a range of environments and represent-
ing varying levels of resistome risk.

Resistome risk scores obtained from experimental
metagenomic data sets

Based on typical concentrations of antibiotics in the types of
waters corresponding to the test data sets (up to 45000 ng/L
for hospital sewage, medium concentrations ranging from 700
to 6600 ng/L for dairy effluent, and about 600 ng/L for waste

water treatment plant effluent) (Brown et al. 2006), we expected a
high resistome risk for hospital sewage samples, medium resis-
tome risk for dairy lagoon samples and low resistome risk for
WWTP effluent (Table 1). We computed resistome risk scores
for the selected samples based on distances from the theoret-
ical point representing the highest possible theoretical score in
hazard space. All resistome risk scores indicated significant dif-
ferences from a random distribution of the critical components
(Permutation test P-value < 0.0001). We subsequently ranked all
samples in descending order of resistome risk score in Table 2.
These results were consistent with our expectation a high resis-
tome risk for hospital sewage samples, medium resistome risk
for dairy lagoon samples, and low resistome risk for WWTP efflu-
ent. One dairy lagoon sample was an exception, ranking lower
than one of the WWTP effluent samples.

DISCUSSION

To the authors’ knowledge, MetaCompare is the first computa-
tional pipeline for ranking resistome risks from metagenomic
data sets derived from environmental samples. Here, we build
on conceptual framework proposed by Martinez, Coque and
Baquero (2015), extending the concept to the resistome level,
with some simplifications in the ranking scheme. MetaCompare
provides a publically available computational pipeline for rank-
ing resistome risk of a given metagenomic data set derived from
a sample of interest based on the development of a metric for co-
occurrence of three key critical components annotated on indi-
vidual assembled contigs, specifically: ARGs, MGEs and human
pathogens.
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Figure 5. Evaluation of clustering quality. Based on different means of measuring clustering quality: Purity, F-measure, Precision and Recall, as applied to k-means,
c-means and k-medoids obtained using ‘Alternative’ (i.e. sequence read normalized) versus MetaCompare (i.e. co-occurrence of critical components on assembled

contigs) approaches to project the samples into 3-D hazard space.

Table 1. Information about the samples from which metagenomics data were obtained.

Water type Latitude Longitude # of samples
Antibiotics detected and average
concentrations (μg/L) Reference

Hospital Sewage 52.174343 0.139346 6 Flucloxacillin (4.9), Vancomycin
(671.12), Azithromycin (11.48),
Clarithromycin (18.56),
Ciprofloxacin (33.76), Moxifloxacin
(0.4), Rifampicin (0.26),
Sulfamethoxazole (333.08)

Rowe et al. ( 2017)

Dairy Lagoon 52.22259 0.02603 5 Sulfadiazine (0.88) Rowe et al. (2017)
WWTP Effluent 52.234469 0.154614 3 N/A Rowe et al. (2016)

Total 14

Table 2. Ranking of risk scores obtained using MetaCompare.

ENA accessiona Sample type Risk score

ERS1019924 Hospital Sewage 43.00
ERS1019927 Hospital Sewage 39.47
ERS1019928 Hospital Sewage 39.24
ERS1019923 Hospital Sewage 36.23
ERS1019925 Hospital Sewage 34.62
ERS1019926 Hospital Sewage 34.47
ERS1019959 Dairy Lagoon 29.02
ERS1019958 Dairy Lagoon 26.84
ERS1020022 Dairy Lagoon 24.82
ERS1019955 Dairy Lagoon 24.20
ERS1020020 WWTP Effluent 22.77
ERS1019956 Dairy Lagoon 22.71
ERS1019947 WWTP Effluent 21.59
ERS1019948 WWTP Effluent 18.42

aEuropean Nucleotide Archive sample accession (accessible at https://www.ebi.ac.uk/ena).
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MetaCompare enables visual and quantitative comparison of
collective resistome risk by projecting the samples into a hazard
space and calculating resistome risk scores. We validated our
approach using metagenomic data obtained from three distinct
aquatic environments that were expected to represent distinct
categories of resistome risk. Strikingly, MetaCompare generated
a clear and highly resolved clusters according to sample type
along with resistome risk rankings in alignment with expecta-
tions based on typical antibiotic occurrence and level of water
treatment. This kind of robust characterization of resistome risk
could be a useful tool for identifying potential hot spots for
dissemination of antibiotic resistance and prioritizing mitiga-
tion interventions. In particular, the ability to rank risk of dis-
semination of antimicrobial resistance and potential to spread
to human pathogens for various environmental compartments
would be highly valuable towards guiding investment in mitiga-
tion strategies.

Although this initial version of MetaCompare is promising,
it still has several limitations. Many of these stem from limi-
tations of confidence in assembly and in the curation of avail-
able databases. First, assembly of metagenomic data may con-
tain some level of error or chimeras (Olson et al. 2017). This
problem stems from intragenomic repeats of DNA segments
within the same genome as well as intergenomic repeats shared
among distinct genomes. The Iterative De Bruijn graph de novo
Assembler for short reads with highly Uneven Depth (IDBA-UD)
generates assembled contigs based on de Bruijn graphs and
performs analysis of coverages between paths in the graph to
improve assembly and avoid chimeras. However, it is not pos-
sible to completely eliminate chimeric contigs, which confound
annotation of critical components. Secondly, annotation of crit-
ical components depends on the principle that genes display-
ing high sequence similarity generally exert similar functions
(Teeling and Glockner 2012). Even when assembled contigs are
reliably aligned to reference genes, the contigs may only con-
tain a portion of the reference sequence and thus there is the
potential that in reality the portion of the gene identified on
the contig originated from a non-functional truncated gene.
Thirdly, identification of critical components from assembled
contigs relies heavily on the reference databases for ARGs, MGEs
and pathogens. Therefore, the MetaCompare annotation pro-
files depend on the curation quality of the databases. Annota-
tion errors and biases in the databases and/or incompleteness
of the curated entries could all adversely affect resistome risk
calculations. A closely related issue is that there might be many
different databases for the same critical components, such as
CARD (Jia et al. 2017), DeepARG (Arango-Argoty et al. 2017), ARDB
(Liu and Pop 2009) and SARG (Yang et al. 2016) that can be used
to identify ARGs. Applying different combinations of databases
for annotating ARGs, MGEs and human pathogens might result
in different resistome risk scores. Nonetheless, it is expected
that the general trend of resistome risk scores among a given
set of samples will be consistent, but this will need to be tested
in the future with a larger dataset. Lastly, sequencing depth is
a key underlying factor that may limit the ability of MetaCom-
pare to accurately assess the true resistome risks. For complex
environments, it is expected that comprehensive identification
of critical components and accurate estimation by MetaCom-
pare will benefit from deeper sequencing. With these caveats
in mind, we emphasize that MetaCompare is the first compu-
tational pipeline to attempt to quantify and prioritize resistome
risks among environmental samples. While it is not meant to be
comprehensive or to take into account all possible risk factors,
it aims to build a framework taking an important step towards

beginning to prioritize the resistome risk represented by vari-
ous environmental compartments. With continued reduction in
sequencing cost and availability of new sequencing technolo-
gies, deeper sequencing with improved length and accuracy will
become more widely available, which will improve the accuracy
of the identification of individual critical components and the
overall resistome risk rankings determined using the MetaCom-
pare framework.

There are several aspects of MetaCompare that could be fur-
ther improved in the future. As discussed above, some aspects of
risk are either difficult to determine computationally or lacking
experimental validation. First, the number of contigs containing
critical components are normalized to the total number of con-
tigs. Future improvement can include length normalization to
reduce bias in annotation of long genes. Second, the reference
database used to identify ARGs was CARD, which may contain:
(i) core genomes of some species (e.g. E. coli, P. aeruginosa, E. fae-
cium and K. oxytoca) that are associated with intrinsic resistance
phenotypes; (ii) mutated transporter genes that hinder antibi-
otic intak or (iii) mutated target genes of antibiotics that make
antibiotics nonfunctioning. These genes could be excluded from
resistome risk consideration because they are not likely trans-
ferred and dominantly expressed over the wild-type allele in
most cases (Martinez, Coque and Baquero 2015). Likewise, chro-
mosomally encoded ubiquitous genes, such as multidrug efflux
pumps that encode proteins detoxifying antibiotics should not
be considered as critical components, since they do not directly
confer resistance to antibiotics that are used in human therapy
(Martinez 2009). Furthermore, resistances to certain categories
of antibiotics, such as those designated by the World Health
Organization as ‘critically important,’ could be taken into con-
sideration. Such aspects could be incorporated into the resis-
tome risk score, and further improve the precision of the Meta-
Compare resistome risk ranking. Lastly, in the future, there is
need to consider more complex factors influencing resistome
risk, including mutation leading to evolution of new resistance
determinants, natural selection amplifying concentrations of
resistant strains, and context of horizontal gene transfer shut-
tling ARGs to a pathogen (Ashbolt et al. 2013).
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