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Three-dimensional lattices have applications across a range of fields including structural lightweighting,
impact absorption and biomedicine. In this work, lattices based on triply periodic minimal surfaces were
produced by polymer additive manufacturing and examined with a combination of experimental and
computational methods. This investigation elucidates their deformation mechanisms and provides nu-
merical parameters crucial in establishing relationships between their geometries and mechanical per-
formance. Three types of lattice were examined, with one, known as the primitive lattice, being found to
have a relative elastic modulus over twice as large as those of the other two. The deformation process of
the primitive lattice was also considerably different from those of the other two, exhibiting strut
stretching and buckling, while the gyroid and diamond lattices deformed in a bending dominated
manner. Finite element predictions of the stress distributions in the lattices under compressive loading
agreed with experimental observations. These results can be used to create better informed lattice de-
signs for a range of mechanical and biomedical applications.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cellular solids, which include foams, honeycombs and regularly
repeating lattice structures, have for some time been investigated
due to their various useful properties [1,2]. Chief among these is
their inherently lightweight nature, but also of interest is their
ability to absorb compressive energy effectively [3e7], act as heat
exchangers [8e10] and provide acoustic [11] and vibrational
damping [12]. These properties, combined with the emerging ca-
pabilities of additive manufacturing (AM) to fabricate complex
lattice structures, make cellular solids attractive for advanced me-
chanical applications; in the transport sector for example, where
the performance of lightweight components may be enhanced by
exploiting several of these features in highly optimised designs.

A notable recent application has seen biocompatible AM cellular
Maskery).
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solids used in orthopaedic implants, where their controllable
porosity and stiffness enable them to act as scaffolds for bone and
tissue integration, helping to reduce the problem of stress shielding
associated with solid implants [13e17]. The range of available AM
processes means these cellular structures can be made in a broad
spectrum of materials, from gels and polymers to high strength
metal alloys.

A key challenge facing the designer of a lattice structure for a
specific application is that of choosing appropriate lattice design
variables. The lattice material, cell type and volume fraction play
crucial roles in determining the structural stiffness and strength,
but the exact relationships between these properties are generally
poorly understood for all but the simplest type of lattice. The same
is true of thermal, electrical and acoustic properties. This is espe-
cially problematic for any attempt at combining lattice structures
with topology optimisation (TO), a common tool for the design of
materially-efficient AM components [18e20]. Thus, it is crucial that
robust relationships between cell geometry and performance are
established.

In this paper we investigate three lattice structures based on
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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triply periodic minimal surfaces (TPMS). The lattice types are the
gyroid, diamond and primitive, and they are examined with a
combination of mechanical testing and finite element analysis
(FEA). We examine the behaviour of these lattice types under
compressive loading, and compare their respective stress-strain
curves, elastic moduli, collapse strengths, deformation processes
and numerically determined stress distributions. We also provide a
set of numerical parameters which can be used in models linking
geometry and mechanical performance for these lattice types.

TPMS lattices were chosen for this study because they offer
several potential advantages over the strut-based lattices (body-
centred-cubic, for example) more commonly manufactured and
investigated using AM. The properties of TPMS lattice structures
include a good combination of specific stiffness and axisymmetric
stiffness [21], high surface-to-volume ratio [22] and pore connec-
tivity, reduced need for surface skinning [23], ease of functional
grading [24e27], choice of network and matrix phases with non-
connected voids [22] and variable conductivity through choice of
cell type [28]. Owing to these properties TPMS lattices have found
applications in biomedicine [15e17], as well as photovoltaic [29]
and electrochromic devices [30]. A range of TPMS lattice types,
including those examined here, were recently fabricated in a
biocompatible rubber-like material and characterised by Blanquer
et al. [31], who determined their respective surface curvatures, pore
sizes and water permeabilities.

Following this introduction we outline our methodology for
TPMS lattice structure design, manufacture and investigation. This
includes the provision of lattice design relationships allowing the
volume fraction of several TPMS cell types to be specified via their
governing spatial equations. In section 4we present and discuss the
results of our experimental and numerical investigations. This is
the first instance of gyroid, diamond and primitive AM lattice
structures having been experimentally examined together in a
single investigation. Our conclusions are provided in section 5.
2. Theoretical background

For mechanical applications, the most straightforward method
of choosing the appropriate lattice volume fraction, or relative
density, for a given loading scenario is to use the semi-empirical
formulae of Gibson, Ashby et al. [1]. For cellular solids made from
materials that have a plastic yield point, Gibson and Ashby intro-
duced the equations

Elatt:
Esol:

¼ C1

�
rlatt:
rsol:

�n

; (1a)

spl: latt:
sy sol:

¼ C5

�
rlatt:
rsol:

�m

; (1b)

where the relevant physical properties are given in Table 1.
For the prefactors C1 and C5, which ‘include all of the geometric

constants of proportionality’ [1], Gibson, Ashby et al. provide a
range of values from 0.1e4.0 and 0.1e1.0, respectively, while n and
m are � 2 and � 3

2, respectively, when deformation occurs by
bending of the cellular struts or walls [1,2]. These values come from
a survey of existing metal foam data, with each parameter
depending on the geometry and, in particular, the deformation
mechanisms of the cells in question. The elastic modulus and
plateau stress of equivalently dense lattice structuresmay therefore
vary greatly if they comprise cells of different geometries, with
Deshpande et al. [32] and Zheng et al. [33] having shown that n and
mmay bemuch closer to unity for cellular structures which deform
through stretching rather than bending.
To use equations (1a) and (1b) for effective lattice structure
design, either bymanually selecting an appropriate volume fraction
or through implementation of a combined lattice-TO approach, one
must know the Gibson-Ashby prefactors, C1 and C5, and exponents,
n andm, for the chosen lattice cell type. There currently exists only
limited data regarding these variables for lattice structures made by
AM. They may be determined experimentally, by manufacturing
and testing lattice specimens of varying volume fraction, then
applying appropriate fitting to the mechanical data. Such an
approach was taken by Yan et al. [34,35] and Dalaq et al. [36], who
examined AM metal and polymer lattices, respectively. Other
methods include finite element calculations, as were also used by
Dalaq et al. [36,37], and the construction of analytical models based
on structural failure mechanisms, as was done by Usijima et al. [38]
and Khaderi et al. [39].

The theoretical study by Kapfer et al. [40] is especially inter-
esting, as they assessed the potential for a numerical quantifier
arising from the cell geometry to differentiate the mechanical
performance of different lattice types. Using results from finite
element calculations, they found a correlation between values of
Xperc:, a parameter computed from the cell geometry, and the
relative bulk moduli of the cells. The findings of Kapfer et al. [40]
indicate a complementary and potentially useful method for pre-
dicting the mechanical performance of lattice structures; a method
that is not reliant upon mechanical testing or extensive finite
element calculations, but does capture the influence of cell
geometry.

3. Methodology

3.1. Design and fabrication of the TPMS lattice structures

Gyroid (G), diamond (D) and primitive (P) lattice structures with
arbitrary numbers of cells and volume fractions can be generated
by finding the U ¼ 0 isosurface of the TPMS equations [41,42],

UG ¼ cosðkxxÞsin
�
kyy

�þ
cos

�
kyy

�
sinðkzzÞþ

cosðkzzÞsinðkxxÞ � t;
(2a)
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UP ¼ cosðkxxÞ þ cos
�
kyy

�þ cosðkzzÞ � t; (2c)

and treating this surface as the boundary between solid and void
material phases. For each of the above, ki are the TPMS function
periodicities, defined by

ki ¼ 2p
ni
Li

ðwith i ¼ x; y; zÞ; (3)

where ni are the numbers of cell repetitions in the directions x, y
and z, and Li are the absolute sizes of the structure in those
directions.

In equations (2a)e(2c), t can be used as a variable to control the
volume fraction, r�, of the resulting lattice structure. The relation-
ship between t and r� is unique for each TPMS cell type; relation-
ships for the gyroid, diamond and primitive cell types were
determined for this work and are provided in Fig. 1, where inset
images show the effect of varying t on the thickness of the cell
members in a gyroid lattice structure.

The general methodology for using TPMS equations to produce



Table 1
Physical and mechanical properties for the description of lattices under
compression.

Notation Physical or mechanical property

rlatt: Density of the lattice structure
rsol: Density of the material constituting the lattice struts or walls
r� Relative density, or volume fraction, of the lattice; equal to rlatt:/rsol:

εlatt: Effective strain of the lattice structure

Elatt: Elastic modulus of the lattice structure
Esol: Elastic modulus of the material constituting the lattice struts or walls
E� Relative elastic modulus of the lattice; equal to Elatt:/Esol:

slatt: Effective stress of the lattice structure
spl: latt: Compressive strength of the lattice structure
sy sol: Yield strength of the material constituting the lattice struts or walls
s� Relative collapse strength of the lattice; equal to spl: latt:/sy sol:
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Fig. 1. Relationships between the TPMS equation parameter t and relative density, r� ,
of corresponding lattice cells.
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files for manufacture and FE analysis is presented in Fig. 2. The 3D
field representing U is created first, being based on the designer's
choice of volume fraction and cell repetitions in each direction. A
triangular mesh may then be determined at the U ¼ 0 boundary
and exported as an STL file or similar boundary representation. For
FE analysis, regions of space where U � 0 are defined to be solid
and regions whereU >0 are defined to be void. From this definition,
a hexahedral FE mesh describing the lattice structure can trivially
be obtained.

Prior to choosing a lattice configuration for fabrication and
experimental testing, a preliminary FE investigationwas performed
inwhich diamond lattice configurations from 1� 1� 1 to 5� 5� 5
tessellating cells were examined. Each structure had a volume
fraction of 0.3 and a cell size of 10 mm. They were designed using
software developed at the University of Nottingham (which is
available upon request from the corresponding author). The elastic
modulus of the diamond lattice structure increased with the
number of unit cells, asymptotically approaching an upper bound;
for the case of the diamond structure presented in Fig. 3, this was
determined using an exponential fit to be 102 MPa.

The incrementally increasing elastic modulus can be attributed
to the diminishing effect of cells with free surfaces on the overall
stiffness of the lattice structure. As boundary conditions were
imposed only on the top and bottom surfaces of the structures, the
four vertical planes defining the edges of the cubic structures were
free to deform. With increasing cell repetitions in the lattice, a level
of homogeneity in the deformation is introduced as the previously
free planes at the cell edges are constrained by the adjoining cells,
giving a more accurate description of the cell deformation as if it
were part of a homogeneous porous solid. The asymptote modulus
of 102 MPa could therefore be used in a continuum model to
represent this lattice type and loading direction. This would be
especially beneficial if it was situated inside a large, complex
component, for example, where simulating the whole lattice would
incur prohibitively high computational demands. It is interesting to
note that using themodulus obtained from FE of a single unit cell in
such a continuummodel would result in an underestimation of the
stiffness by around 20%.

In Fig. 3 the 4� 4� 4 lattice arrangement provided an elastic
modulus just 0.2% below the upper bound, thus providing a good
estimate of the lattice structure's elastic modulus, with significantly
reduced computational expense thanks to the smaller number of
elements than would be required to model a lattice with 5� 5� 5
cells or more.

With these results in mind, for the main part of this investiga-
tion, a series of gyroid, diamond and primitive lattice structures
with dimensions 40� 40� 40 mm and volume fraction 0.3 were
designed. The cell size was 10� 10� 10 mm, meaning each
structure contained a 4� 4� 4 arrangement of TPMS cells. CAD
representations of the unit cells and lattice structures are shown in
Fig. 4.

Three specimens of each lattice type were manufactured by
selective laser sintering (SLS) from EOS polyamide PA2200, which is
based on nylon 12. The manufacturing platform was an EOS P100
machine, and the SLS processing parameters are given in Table 2.
The d10, d50 and d90 sizes of the powder particles based on the
particle size distribution were 35 mm, 54 mm and 82 mm, respec-
tively. Photographs of themanufactured lattices samples are shown
in Fig. 5. The masses and dimensions of all the lattice samples were
recorded after manufacture; their volume fractions were very
consistent, providing a mean of r� ¼ 0:294±0:007, which agrees
within experimental uncertainty with the designed volume frac-
tion of 0.3.

3.2. Mechanical testing

Following the methodology used in a previous examination of
SLS lattice structures [4], the lattice specimens were mechanically
compressed using an Instron 5966 universal testing machine
equipped with a 50 kN load cell. The deformation rate was
0.25 mm/s, and a video camera was used to record the lattices
during the tests. Individual frames were extracted from the videos
and are presented in section 4 to illustrate the mechanisms of
progressive collapse in the structures.

The elastic modulus and yield strength of SLS PA 2200 were
determined from stress-strain curves of solid coupons tested under
tension and compression - see Fig. 6. Like the lattice specimens,
they were tested using an Instron 5966 universal testing machine
with a 50 kN load cell. In each case three specimens were examined
and the yield strength was determined at 0.2% offset strain.

For the tensile behaviour we tested standard dog bone coupons
(ISO 527) manufactured with their long axes parallel to the SLS
build plane; the results were Esol: ¼ 1:80±0:05 GPa and
sy sol: ¼ 29:1±0:8 MPa. For the compressive behaviour we tested
cubes of size (20 mm)3; the results were Esol: ¼ 1:59±0:02 GPa and
sy sol: ¼ 44:5±0:3 MPa. The material's modulus under compression
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Fig. 2. General method for creating boundary representations (e.g. the STL file format commonly used in additive manufacturing) and hexahedral meshes for FE analysis based on
TPMS equations. This particular example shows the creation of a primitive lattice with a 2� 2� 2 array of cells and volume fraction of 0.3.
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Fig. 3. Evolution of elastic modulus with increasing number of unit cells in the dia-
mond lattice structure.
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is lower than it is under tension, a finding previously reported for
SLS nylon 12 by Ngim et al. [43]. Our data indicates that the
compressive modulus is 88% of the tensile modulus, whereas Ngim
et al. [43] put the value at 46%.

3.3. Finite element analysis

Gyroid, diamond and primitive lattice structures were explicitly
modelled with hexahedral finite elementmeshes using the Abaqus/
Standard 2016 FEA solver (Dassault Systemes - V�elizy-Villacoublay,
France). All elements were linear, reduced-integration solid ele-
ments; type C3D8R, following the Abaqus labelling scheme. The
lattice models were subjected to compressive displacements of
0.4 mm (equivalent to 1% strain) at all of the nodes of their top
planes, as illustrated in Fig. 7. Rotation of the bottom plane nodes
was allowed only around the z axis, while translation was allowed
only in the xy plane (the ZSYMM boundary condition as imple-
mented in Abaqus). The same boundary condition applied to the
nodes of the top plane. The elements were assigned elastic moduli
corresponding to those determined by testing solid SLS PA 2200
coupons - more details are provided in section 4.2.

As illustrated in Fig. 2, finite element models were constructed
by mapping binary voxel representations of the lattices directly
into hexahedral meshes. This approach allowed the aspect ratio
each element to be fixed at 1, thus avoiding FEA errors associated
with distorted elements that can arise during meshing operations.
Discretisation errors were minimised by increasing the number of
elements in the FEA calculations and observing the resulting
change in elastic modulus. The mesh size for each structure was
progressively increased until elastic modulus convergence was
reached, with the elastic modulus being simply found from

Elatt: ðFEAÞ ¼
FL
Au

; (4)

where F is the total reaction force at the top surface of the structure,
L is original height of the lattice (40 mm), A is the cross-sectional
area of the lattice domain (1600 mm2) and u is the displacement
of the top surface in the loading direction (0.4 mm).

Fig. 8 shows the effect of mesh size on the elastic moduli of the
examined lattices. FE convergence was defined as occurring when
the change in elastic modulus between subsequent calculations
with different mesh sizes fell below 1% - see the inset to Fig. 8. For
the gyroid and diamond structures this was achieved with around
three million elements in the model, which is equivalent to an
element size of (186 mm)3. For the primitive structure only two
million elements were required, equivalent to an element size of
(213 mm)3. These element sizes were used to obtain the main FE
results provided in section 4.2.
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Fig. 4. Individual gyroid, diamond and primitive cells with r� ¼ 0:3 are shown in (a), (b) and (c), respectively, while lattice structures comprising 4� 4� 4 cells are shown in (d), (e)
and (f).

Table 2
SLS parameters used in the production of the TPMS lattice structures for mechanical
testing.

SLS parameter

Laser power 21 W
Laser scan speed 2500 mm/s
Laser hatch spacing 250 mm
Powder bed temperature 173 �C
Powder deposition thickness 100 mm

Diamond

Gyroid

Primitive

Fig. 5. Gyroid, diamond and primitive lattice structures, as manufactured by SLS.
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Fig. 6. Tensile and compressive stress-strain curves for solid SLS PA 2200.
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4. Results and discussion

4.1. Compressive deformation behaviour

Before the lattice stress-strain data are presented, some addi-
tional nomenclature must be established. Fig. 9 includes εlatt: as an
axis label. This is the effective total strain experienced by the lattice
structure, as if it were a uniform 40� 40� 40 mm specimen of
arbitrary homogeneous material. This should not be confused with
the localised strains in the cellular struts. Similarly, slatt: is the
effective stress of the whole structure, found by dividing the
applied load by the specimen area of 1600 mm2, and does not refer
to local stresses in the struts. Cellular solids have been analysed in
this manner since the work of Gibson, Ashby et al. [1], allowing
straightforward identification of the key features of cellular solid
deformation.

Representative stress-strain curves from compressive testing of
the gyroid, diamond and primitive lattices are presented in Fig. 9.
The gyroid and diamond structures showed stress-strain behaviour
quite similar to one another, and also characteristic of compressive
deformation in plastically yielding open cellular solids; that is, they
exhibited initial regions of linear elasticity followed by long plastic
plateaux. The elastic moduli extracted from the linear elastic re-
gions for all three lattice types are given in Table 3, from which it
can be seen that those of the gyroid and diamond lattices agreed
within experimental uncertainty.

The stress-strain curve of the primitive lattice structure is sub-
stantially different from those of the other two. It has a gradient
change at around 3% strain, marking the termination of linear
elastic behaviour. The elastic modulus extracted from this region is
192±1MPa, which is over 100% greater than those of the gyroid and
diamond lattices.
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Fig. 7. A representative hexahedral mesh used for TPMS lattice structure FEA
calculations.
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The principal differentiating feature in the stress-strain curves
of the three TPMS lattice types is the post-yield behaviour. The
plastic plateaux of the gyroid and diamond lattices are typical of
cellular solids, in particular those whose deformation is bending
dominated, but the primitive lattice, unusually, shows increasing
strength up to a peak at 14% strain, closely followed by structural
weakening and collapse. This behaviour indicates that the defor-
mation of the primitive lattice, loaded in the z direction as here,
may be stretching dominated; a result which is congruent with it
having a much higher elastic modulus than the other two lattice
types [32,33,44].

The inset plots of Fig. 9, which are the gradients ds=dε for the
gyroid and primitive lattices, suggest that in the post-yield 3� 14%
strain region the primitive lattice undergoes a combination of
elastic and plastic deformation. This hypothesis is supported in part
by a geometric evaluation of the lattice, particularly the variation of
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Fig. 8. Evolution of elastic modulus with increasing numbers of elements. Inset: per-
centage changes in elastic modulus between calculations with increasing mesh sizes.
its load-bearing cross-section, as presented in Fig. 10. The relative
cross-sectional area of the primitive cell varies from a minimum of
0.05 at the cell edges to a maximum of 0.63 toward the centre,
naturally leading to the formation of thin ‘neck’ regions of the
lattice. These will generally have higher stresses under axial
loading, and are therefore likely to enter plasticity prior to other
regions.

The relative load-bearing cross-sections of the gyroid and dia-
mond cells vary by around ±0:03 and±0:04, respectively, from their
mean values of 0.3, and this variation occurs more frequently over
the cell height, leading to a more uniform distribution of material
throughout the structure. The deformation of the primitive lattice
in the region 3� 14% strain can therefore be seen as being due to
local plastic deformation in the thin neck regions accompanied by
persisting elasticity in the thicker central nodes.

The nature of the primitive lattice's weakening and collapse at
14% strain, and the reason for its large elastic modulus compared to
those of the other structures, is elucidated by the video recordings
of their respective compression tests. Fig. 11 shows video frames
from the compression tests of the three lattice types. Tracking the
relative positions of points on the camera-facing surfaces of the
samples reveals that deformation in the primitive lattice occurs
almost exclusively in the direction of loading at strains less than
14%. The deformation is therefore stretching dominated. Over 14%
strain, structural buckling is observed, followed by fracture of the
thin neck regions.

In contrast, video frame analysis indicates that the gyroid and
diamond lattices undergo bending dominated deformation, which
is in keeping with their stress-strain curves. The conclusion that
primitive lattices are stretching dominated, while gyroid and dia-
mond lattices are bending dominated is in agreement with the
previous classifications of Afshar et al. [27], and Khaderi et al. [39].

After removal of the applied load at 50% deformation, the gyroid
and diamond lattice structures, shown in Fig. 12(a) and (b),
exhibited some residual elasticity as they expanded in height to
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Fig. 9. Compressive stress-strain curves of the gyroid, diamond and primitive lattices.
Inset: the gradients ds=dε for gyroid and primitive lattices. Note that the increasing
gradient of the inset plots below 0.5% strain is due full contact being made with the
specimens during compressive testing; it is not a pertinent feature of structural
deformation.



Table 3
Elastic moduli and plastic collapse strengths of gyroid, diamond and primitive lattice
structures with volume fraction 0.3. Both are given in absolute terms and values
relative to the properties of solid SLS PA 2200 material. C1 and C5 are determined
from equations (1a) and (1b). Gyroid and diamond lattices are treated as being
bending dominated, so n andm in equations (1a) and (1b) are given the values 2 and
3
2, respectively, while for the primitive lattice, which observations suggest is
stretching dominated, n and m take the value 1.

Gyroid Diamond Primitive

Elatt: (MPa) 95±1 93±1 192±1
E� ð�10�3Þ 60±1 59±1 121±1
C1 0:69±0:01 0:68±0:01 0:411±0:005

spl: latt: (MPa) 3:33±0:08 3:85±0:08 4:11±0:04

s� ð�10�3Þ 75±2 86±1 92±1
C5 0:47±0:01 0:54±0:01 0:313±0:004
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30 mm and 31.5 mm, respectively; corresponding to 75% and �79%
of their original heights. The primitive lattices had buckled and
fractured in the region 15e20% strain, so were reduced to frag-
ments, as shown in Fig.12(c). The inset magnified views in Fig.12(c)
show fractures of the vertically and horizontally oriented neck re-
gions. During the failure of the primitive structures, fractures
occurred first in the vertically oriented necks, with planes of lattice
cells then slipping horizontally (in the xy plane) prior to total
structural collapse.

4.2. Finite element analysis

Based on our observations of the deformation processes in the
experimentally tested lattice specimens, we chose to assign their
elements different elastic moduli during FE simulations. For the
gyroid and diamond lattices, which showed evidence of bending
during compressive deformation, we used an element modulus of
1.695 GPa, which is the average of the tensile and compressive
moduli of solid SLS EOS PA2200. This was done to better reflect the
combination of tensile and compressive stresses generated by
bending. For the primitive lattice, which appears to deform prin-
cipally by axial stretching when loaded in the z direction, we used
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
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1

Fig. 10. Relative cross-sectional area of gyroid, diamond and primitive cells along a
principal direction x, y, or z.
1.59 GPa, which is purely the compressive modulus of solid SLS EOS
PA2200. The predicted elastic moduli of the gyroid, diamond and
primitive lattice structures loaded in the z direction are given in
Table 4. These were obtained following the FE method laid out in
section 3.3.

Von Mises element stresses are shown for the gyroid, diamond
and primitive lattices in Fig. 13. The most relevant feature, with
respect to the deformation processes discussed above, is that for
the primitive lattice the stress is largely localised at the thin neck
regions which connect the cell nodes. This supports the idea that
these neck regions enter plasticity first under loading along the
primitive lattice's columnar directions. The gyroid and diamond
lattices exhibit more uniform stress distributions, leading to their
deformation behaviour, as evidenced by their stress-strain curves,
more closely resembling those of conventional cellular solids such
as stochastic foams.

From comparison with Table 3 it can be seen that the order of
stiffness, with primitive being the stiffest and diamond the most
compliant, is correctly predicted by the FEmodels, although there is
some difference in the actual values. The FE elastic moduli of the
gyroid, diamond and primitive lattices differ by 18%, 10% and �4%,
respectively, from those obtained from the fabricated specimens.
We attribute the overestimation of the gyroid and diamond stiff-
ness to two main factors. First, the lattice moduli resulting from FE
simulations are heavily influenced by the choice of modulus
assigned to the solid elements. For the gyroid and diamond lattice
types, we used an average of tensile and compressive moduli
determined from solid SLS EOS PA2200 specimens. Choosing solely
the compressive modulus, or an average weighted more towards
the compressive modulus, would improve the agreement of the FE
moduli with experimental results. For example, assigning the ele-
ments of the gyroid and diamond FE models the compressive
modulus of solid SLS EOS PA2200 yields lattice moduli which are
only 10% and 4% greater than the experimental values from the
fabricated specimens.

A second factor we believe to be important is surface roughness.
Roughness can lead to reduced stiffness, especially in structures
comprising relatively thin members, because it contributes surplus,
non load-bearing material at the surface. Profilometry carried out
on the solid tensile test coupons revealed an Rz parameter of
around 50 mm. The gyroid and diamond lattice structures examined
in this work contain members of continuously varying cross-
sectional dimensions, with the range 2e3 mm providing a
reasonable approximation for both structures. Approximating the
worst case, surface roughness could contribute an average of 50 mm
of surplus material to these lattice members, reducing their effec-
tive load-bearing areas by between 3% and 5%. Under compressive
testing, this would result in the fabricated specimens potentially
having between 3% and 5% lower stiffness than predicted by FE
simulations.

With these factors in mind, it is clear that our FE models do not
at present completely capture the deformation mechanics of the
experimentally assessed lattices. Whilst incorporation of these
factors could increase agreement with experimental values, it is
proposed that the current FE models provide sufficient accuracy to
enable valid comparison of the different deformation modes and
stress distributions in the various lattice types.

4.3. Comparison with previous results

The investigations of Afshar et al. [27], Yan et al. [34] and Kha-
deri et al. [39] provide themain sources of comparison for the TPMS
lattice properties determined here. Table 5 presents the mechanical
properties from those authors' works and those from mechanical
testing in this study.
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Fig. 11. Video frames showing the deformation of gyroid ((a) and (b)), diamond ((c) and (d)) and primitive ((e), (f) and (g)) lattice structures at a series of compressive strains.
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Afshar et al. [27] examined diamond and primitive lattice
structures made by polymer jetting. Their specimens had volume
fractions of 0.3, the same as those studied here. They observed
significant differences in the elastic moduli and yield strengths of
the diamond and primitive lattices, ascribing these to their differing
deformation mechanisms; the primitive structure being stretching
dominated and the diamond structure being bending dominated.
This interpretation is supported by the video frame analysis pre-
sented here. Afshar et al. [27] also reported the primitive lattice to
have an elastic modulus 1.94 times that of the diamond lattice,
which is close to the ratio of 2:06±0:01 seen here. Our relative
elastic moduli for the diamond and primitive lattices fall inside the
range provided by Afshar et al., while the relative collapse strengths
we recorded were significantly greater than theirs.

Yan et al. [34] observed that metal gyroid and diamond lattice
structures had relative elastic moduli very similar to one another.
This is consistent with the evidence presented here; the elastic
moduli of the gyroid and diamond lattice structures agree within
experimental error. However, our results exceed the predicted
values from Yan et al.'s fitting by more than 100%.

Finally, Khaderi et al. [39] examined the gyroid lattice with a
combination of FEA and analytical modelling, the latter based on
possible collapse modes under uniaxial loading. They showed the
gyroid cell to be a bending dominated structure; its elastic modulus
and yield strength being dependent on r�2 and r�3=2, respectively.
The relative elastic modulus obtained here for the gyroid lattice is�
57% larger than that predicted by Khaderi et al.'s density-modulus
relationship.

In each of these cases, comparisons aremadewith reports based
on lattices of different materials or lower volume fractions than
those examined here. It is therefore not surprising that large vari-
ations in mechanical properties should arise from these in-
vestigations, since the deformation mechanisms of the structures
in question will be heavily influenced by the properties of the
materials comprising their struts.
5. Conclusions

We have examined three TPMS lattice structures with me-
chanical compression testing and FE modelling. The cell geometry
was seen to play a large role in determining the lattice deformation
process and failure mode, as well as the associated stress-strain
curve and mechanical properties.

We found that the elastic moduli of TPMS lattices of equivalent
volume fraction varied by over 100% depending on the cell geom-
etry, with the primitive lattice type outperforming both the gyroid
and diamond. The relatively large elastic modulus of the primitive
lattice was obtained at the expense of highly localised plastic
deformation, structural buckling and low failure strain. This type of
failure is a consequence of the primitive structure's large variation
in load-bearing area and associated regions of high stress. Thus, on



Fig. 12. Photographs showing the gyroid (a), diamond (b) and primitive (c) lattices
after compressive testing. The inset in (c) shows fracture close to the thin ‘neck’ region
in the primitive lattice.

Table 4
Elastic moduli of gyroid and primitive lattice structures with volume fraction 0.3
obtained from FEA.

Gyroid Diamond Primitive

Elatt: ðFEAÞ (MPa) 112 102 185

Gyroid

Diamond

Primitive

Lattice
type

Von Mises stress

x
z

Von Mises stress
×10  Pa 7 

5.48
4.87
4.26
3.65
3.04
2.43
1.83
1.22
0.61
0.00 
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Fig. 13. Von Mises stress distributions in FE compression simulations of gyroid, dia-
mond and primitive lattices.

Table 5
Relative elastic moduli, E� , and collapse strengths, s� , of the gyroid (G), diamond (D)
and primitive (P) lattices with a volume fraction of 0.3 according to this work and
other references. Notes:m - examined metal lattices, p - examined polymer lattices,
a - analytical model, f - finite element model, � - volume fraction 0.3, y - extrapolated
from volume fractions lower than 0.3.

E� ð�10�3Þ s� ð�10�3Þ
G D P G D P

This work 60±1 59±1 121±1 75±2 86±1 92±1
Ref. [27]p,* $ 42:5 � 94:6 82:6 � 184 $ 52.6 46.6
Ref. [34]m,y 24.2 23.6 $ 145 133 $

Ref. [39]a,f,y 38.3 $ $ 72.0 $ $
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the basis of this work, we can recommend that a primitive lattice be
used in applications requiring high stiffness and strength in one
well-defined loading direction. If, on the other hand, the applica-
tion requires that the latticed part undergoes high strain before
failure, a gyroid or diamond lattice would be preferable.

In the context of a previous result which found similar direction-
averaged Young's moduli for the TPMS lattice types examined here
[40], our findings, which are based on uniaxial loading, suggest a
high degree of anisotropy to their mechanical properties. Further
investigations in this area will provide more information regarding
the direction-specific mechanical performance of these lattices,
adding to the currently small set of design rules for optimal lattice
structure design.

Another important outcome of this investigation is the deter-
mination of relative elastic moduli, relative collapse strengths, and
Gibson-Ashby prefactors for three TPMS lattice types. These can
now be used in the design of TPMS structures to meet the loading
requirements of mechanical and biomedical applications. They will
also play a role in establishing the general relationships between
lattice properties - material, volume fraction and cell type - and
performance that are required for effective AM component design
in the future.

In conclusion, our results indicate that informed cell geometry
selection can be useful in designing lattice structures to avoid un-
desirable failure modes, or to provide long plastic plateaux for
energy absorption under deformation, therefore reducing the need
for extensive FE simulation and mechanical testing.
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