
2274	 www.crops.org	 crop science, vol. 58, november–december 2018

RESEARCH

Genomic selection (GS) is a marker-assisted selection tool 
first proposed for animal breeding by Meuwissen et al. 

(2001). In GS, individuals with existing phenotypic and geno-
typic data are used as a training population (TP) to build a 
prediction model. This model is used to calculate the genomic 
estimated breeding values (GEBVs) of individuals based solely on 
their genotypic data. Breeders can then select individuals with 
desirable GEBVs and intermate them to initiate the next breeding 
cycle. This can greatly reduce the duration of a breeding cycle 
(Meuwissen et al., 2001; Heffner et al., 2009; Jannink et al., 2010). 
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ABSTRACT
Genomic selection (GS) uses training popula-
tion (TP) data to estimate the value of lines in 
a selection population. In breeding, the TP and 
selection population are often grown in different 
environments, which can cause low prediction 
accuracy when the correlation of genetic effects 
between the environments is low. Subsets of 
TP data may be more predictive than using 
all TP data. Our objectives were (i) to evaluate 
the effect of using subsets of TP data on GS 
accuracy between environments, and (ii) to 
assess the accuracy of models incorporating 
marker ´ environment interaction (MEI). Two 
wheat (Triticum aestivum L.) populations were 
phenotyped for 11 traits in independent envi-
ronments and genotyped with single-nucleotide 
polymorphism markers. Within each population–
trait combination, environments were clustered. 
Data from one cluster were used as the TP to 
predict the value of the same lines in the other 
cluster(s) of environments. Models were built 
using all TP data or subsets of markers selected 
for their effect and stability. The GS accuracy 
using all TP data was >0.25 for 9 of 11 traits. The 
between-environment accuracy was generally 
greatest using a subset of stable and significant 
markers; accuracy increased up to 48% relative 
to using all TP data. We also assessed accuracy 
using each population as the TP and the other 
as the selection population. Using subsets of 
TP data or the MEI models did not improve 
accuracy between populations. Using opti-
mized subsets of markers within a population 
can improve GS accuracy by reducing noise in 
the prediction data set.
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As genotyping costs drastically decrease with the advent 
of new technology, GS can be cheaper than phenotypic 
selection (Meuwissen et al., 2001; Goddard and Hayes, 
2007; Heffner et al., 2010; Jannink et al., 2010; Elshire et 
al., 2011) and thus facilitate the use of larger populations 
of related lines in selections.

Many studies have assessed prediction accuracy of 
GS in crops (Denis and Bouvet, 2011; Heffner et al., 
2011a; Rutkoski et al., 2012; Battenfield et al., 2016). 
The accuracy of GS has been assessed in wheat (Triticum 
aestivum L.) for many traits including grain yield (YLD), 
test weight (TW), thousand-kernel weight, quality traits 
(flour yield [FY], flour protein [FP], grain hardness, grain 
length, grain width, sodium dodecyl sulfate sedimenta-
tion), resistance to Fusarium head blight and stem rust 
(caused by Fusarium acuminatum Ellis & Everh. and Puccinia 
graminis subsp. graminis Pers.:Pers, respectively), and trait 
stability for YLD, TW, plant height (HGT), heading date 
(HD), and quality traits (Heffner et al., 2011a, 2011b; 
Rutkoski et al., 2011, 2012, 2014; Poland et al., 2012; 
Crossa et al., 2016; Hoffstetter et al., 2016; Huang et al., 
2016; Michel et al., 2016a).

Most studies in wheat use subsets of TP lines as the 
validation population (VP) and evaluate GS accuracy 
through cross-validation (Crossa et al., 2010; Heffner et 
al., 2011b; Heslot et al., 2012; Poland et al., 2012; Zhao 
et al., 2014; Arruda et al., 2016; Hoffstetter et al., 2016; 
Huang et al., 2016; Jiang et al., 2016; Michel et al., 2016a; 
Rutkoski et al., 2016). Compared with making predic-
tions for different populations, the accuracy of GS will be 
high when using cross-validation within the same popula-
tion, as lines in the TP and VP are often tested in the same 
set of environments. When implementing GS in actual 
plant breeding, the TP and VP (or selection population) 
will always be phenotyped in different years or seasons, 
so the accuracy of GS between environments is a crucial 
issue. There are some studies that use a separate TP and 
VP phenotyped in different environments to assess the 
efficacy of GS. Sallam and Smith (2016) used a VP that 
consisted of progeny that were directly derived from the 
TP and reported that GS accuracy for barley (Hordeum 
vulgare L.) yield ranged from 0.36 to 0.66. Michel et al. 
(2016b) reported the GS accuracy for wheat YLD ranged 
from 0.14 to 0.75 when TP and VP consisted of different 
lines grown in different years.

The GS accuracy between environments or popula-
tions is affected by the relatedness of the TP to the VP 
(Asoro et al., 2011; Heslot et al., 2013; Rutkoski et al., 
2015; He et al., 2016; Zhang et al., 2016), the linkage 
disequilibrium (LD) patterns across the TP and VP, the 
size of the TP, marker density (Asoro et al., 2011; Habier 
et al., 2007, 2009), and the genotype ´ environment 
interaction (GEI) patterns in the TP and VP (Heslot et al., 
2013; Jarquín et al., 2014; Crossa et al., 2016). In general, 

many studies have reported that GS accuracy increases 
as the number of markers and the size of TP increase 
(Bernardo and Yu, 2007; Asoro et al., 2011; Heffner et 
al., 2011b; Lorenz et al., 2012; Spindel et al., 2015), yet 
some studies have shown that systematically sampling TP 
data can yield prediction accuracies nearly equivalent to 
or higher than when using all TP data (Moser et al., 2010; 
Schulz-Streeck et al., 2013; Akdemir et al., 2015; Ametz, 
2015; Hoffstetter et al., 2016). Similarly, GS accuracy can 
be improved when the TP consists of an optimized subset 
of lines instead of all lines (Akdemir et al., 2015; Ametz, 
2015; Isidro et al., 2015; Rutkoski et al., 2015; Hoffstetter 
et al., 2016).

Oakey et al. (2016) suggested that to reduce geno-
typing costs when implementing GS, one could possibly 
use a smaller set of markers that could give similar or better 
predictive ability than using a large set of markers. Studies 
report that systematically selecting a subset of markers to 
build GS models can produce accuracies that are either 
comparable with using all markers (Weigel et al., 2009; 
Moser et al., 2010; Vazquez et al., 2010; Schulz-Streeck 
et al., 2013) or are even superior to using all markers 
(Akdemir et al., 2015; Hoffstetter et al., 2016). Using only 
a subset of significant set of markers improved GS accuracy 
in predicting wheat traits including yield, Fusarium head 
blight resistance, and quality traits (Hoffstetter et al., 2016) 
and in predicting the sire breeding values in dairy cattle 
breeding (Weigel et al., 2009).

Genotype ´ environment interaction (GEI) or 
marker ´ environment interaction (MEI) effects can 
have a profound effect on predicting line performance. 
A fundamental issue for plant breeding is to obtain esti-
mated genetic values for lines using past data that can 
accurately reflect genetic values that will occur in future 
environments; GEI diminishes the predictive value of past 
data. Assessing GEI patterns is critical for making selec-
tions in phenotypic selection, as well as in GS (Spindel and 
McCouch, 2016).

Including the GEI term in GS models improved 
accuracy when TP and VP data were collected in different 
environments (Burgueño et al., 2012; Heslot et al., 2013; 
Jarquín et al., 2014; Lopez-Cruz et al., 2015; Yao et al., 
2016; Cuevas et al., 2017; Tiezzi et al., 2017). Jarquín 
et al. (2014) proposed GS models that incorporate MEI 
effects with environment effects and/or with environ-
ment covariates that were based on climatic records or 
soil characteristics. They reported that GS accuracy 
using cross-validation within the same set of environ-
ments for wheat YLD improved up to 35% compared 
with models that only included main effects. Crossa et 
al. (2016) assessed models with the effects of accessions, 
markers, environments, and GEI or MEI in two popula-
tions of wheat landraces. They reported that GS models 
with interaction effects provided better predictions for 
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Data were collected for both populations for YLD (kg 
ha−1), TW (kg m−3), HGT (cm), HD ( Julian d), and seven 
quality traits: FP content (%) and solvent retention capacities 
for sucrose content (%), lactic acid (%), water content (%), and 
NaCO3 (%); softness equivalent (%), and FY (%), as described 
by Huang et al. (2016). Data for the EP were collected in 12, 
12, 12, 14, and 5 environments for YLD, TW, HGT, HD, and 
quality traits, respectively (Table 1). For the YP, data were 
collected in 12, 9, 11, 11, and 4 environments for YLD, TW, 
HGT, HD, and quality traits, respectively (Table 1).

Genotypic Data
The EP and YP were genotyped with the Illumina iSelect 
array for wheat having ?90,000 single-nucleotide polymor-
phism (SNP) markers (Wang et al., 2014) at the USDA-ARS 
Biosciences Research Laboratory, Fargo, ND. All marker data 
were first filtered based on minor allele frequency (<10%) and 
missing values (>5%; Huang et al., 2016). In the EP, the missing 
marker scores were first imputed using fastPHASE (Scheet and 
Stephens, 2006), which provided similar results as using the 
expectation maximization (EM) algorithm (Huang et al., 2016). 
The EM approach is less computationally intensive (Huang et 
al., 2016). It was designed for high-dimensional marker data 
sets with large amounts of missing values and was implemented 
in the R package “rrBLUP” (Endelman, 2011). Hence, missing 
values were imputed in the YP via EM algorithm. To avoid a 
specific chromosome region being overly represented, a SNP 
tagging approach was used to select markers that were relatively 
evenly distributed across the genome (Huang et al., 2016). 
A final set of 3919 markers was retained and used in the EP 
analysis. Of the 3919 EP markers, 3537 were also scored in the 
YP, and these were used in all YP analyses. These 3537 were 
also used within the EP when comparing the EP with the YP.

Structure and Linkage Disequilibrium  
of the Populations
A principal component analysis (PCA) of the genotypic data was 
performed within the EP (Huang et al., 2016), within the YP and 
with both the EP and YP. A matrix of the LD r2 values between 
markers were generated within each population using the “genetics” 
(Warnes and Leisch, 2005) and “LDheatmap” (Shin et al., 2006) 
packages in R. The correlation between the two LD matrices was 
assessed using the R package “ade4” (Dray and Dufour, 2007). 
The genetic similarity and diversity between and within EP and 
YP were estimated by calculating a simple matching coefficient, 
defined as the proportion of loci that had identical genotype scores 
between two lines, using a marker matrix implemented in SAS 
using Proc IML (SAS Institute, 2008).

Phenotypic Data and Trait Stability
A two-stage approach was used to generate the best linear 
unbiased predictions (BLUPs) for all traits in the EP (Huang et 
al., 2016) and YP. We used BLUPs of genotype effects because 
treating genotype effects as random (e.g., shrinkage applied) or 
fixed had no impact on GS accuracy despite it representing a 
double shrinkage in our study (Huang et al., 2016). Such results 
are not surprising, especially for high-heritability traits (Piepho 
et al., 2008). Data from an environment were first adjusted 

days to heading and days to maturity in wheat landraces 
than models without interaction terms. Other studies also 
reported that the GS accuracy was generally higher when 
using models with GEI effects vs. without it (Yao et al., 
2016; Cuevas et al., 2017; Tiezzi et al., 2017). Most of 
these studies only assessed GS accuracies through cross-
validation and did not predict breeding values between 
populations (Yao et al., 2016; Cuevas et al., 2017; Tiezzi 
et al., 2017). Heslot et al. (2013) used marker effects esti-
mated within environments to cluster the environments 
so that similar environments could be grouped together 
to minimize MEI effects within each cluster of environ-
ments. They proposed that the TP could be optimized 
by deleting data from the least predictive environments, 
although this study did not perform predictions between 
clusters of environments.

Our objectives were (i) to assess the effect of opti-
mizing marker sets on the accuracy of genomic prediction 
between environments within a population, (ii) to 
evaluate the accuracy of genomic predictions between 
populations, and (iii) to assess the accuracy of genomic 
prediction models that incorporate MEI effects.

MATERIALS AND METHODS
Populations
Two populations were used in this study. The first popula-
tion was termed the elite population (EP) and was described 
in Huang et al. (2016). Briefly, it consisted of 273 soft winter 
wheat lines grown in the 2011–2012 and 2012–2013 seasons 
in 12 to 14 environments per season (Huang et al., 2016). An 
augmented design was used within each environment, with 
‘Branson’ being the check cultivar. The EP was grown with 
high and low N treatments in Wooster, OH, and Warsaw, VA. 
Both N treatments received 20 kg N ha−1 in the fall. The low 
N treatment then received 45 kg N ha−1 and the high N treat-
ment received 101 kg N ha−1 in the spring (at approximately 
Feekes Stage 6). The second population was termed the yield 
population (YP), and it consisted of 294 lines (Supplemental 
Table S1). No lines were shared between the EP and YP except 
for the check cultivar Branson. In the YP, 95% of the lines came 
from breeding programs in five states (Kentucky, Maryland, 
Missouri, Ohio, and Virginia). In the EP, 66% of the lines came 
from the same five states, with an additional 27% coming from 
Illinois and Indiana. The YP was grown during the 2013–2014 
and the 2014–2015 seasons each at six locations: Wooster, 
Custar, and Fremont, OH; Warsaw, VA; Columbia, MO; and 
Lexington, KY. The YP was grown with high and low N in 
Wooster and Columbia. The N treatments were the same as 
described for the EP. At each location, the low N treatment was 
tested with two replications, and high N treatments had one 
replication except for Columbia, which had two replications 
for high N. Fungicide was applied in both populations during 
flag leaf stage (at approximately Feekes Stage 9) in all environ-
ments to minimize disease. Each replication in each location 
was conducted as an augmented design. We defined an envi-
ronment as a year–location–N treatment combination.
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for block effects within each replication based on means of a 
common check cultivar. This step was done in SAS 9.2 (SAS 
Institute, 2008). Then, we used the following model to obtain 
across-environment BLUPs:

 ( ) GEijk i j k j ij ijkY G E R E= m+ + + + +e

where the effects of genotype (Gi), environment (Ej), replicate 
nested within environment [Rk(Ej)]), GEI (GEij), and residual (eijk) 
were treated as random effects. The analysis was conducted in R 
software (R Development Core Team, 2008) using the “lme4” 
package (Bates et al., 2015). Heritabilities of all traits were esti-
mated using entry means as described in Huang et al. (2016).

The BLUPs within each cluster of environments were 
obtained using the same model as the one being used above for 
across all environments. Some clusters consisted of environ-
ments that only had one replication, so the Rk(Ej) term was not 
used for those environments (Table 1).

We placed the environments into different clusters from 
each population using Ward’s minimum variance criteria 
(Betrán et al., 2003; Huang et al., 2016) such that GEI variance 
was minimized within a cluster and maximized between 
clusters. In the analyses over all environments, the GEI variance 
was partitioned into between- and within-cluster components.

Trait stability indices of the genotypes were estimated with 
Eberhart and Russell regression (ERR; Eberhart and Russell, 

1966) and additive main effects and multiplicative interaction 
(AMMI; Zobel et al., 1988) methods, as described by Huang 
et al. (2016). This was done in SAS and R. For predictions 
between populations, stability indices were only calculated over 
all environments. For AMMI stability, we used the first 10, 3, 
6, and 1 interaction principal component (IPC) for YLD, TW, 
HGT, and HD in the YP, respectively, based on their scree plots. 
Detailed methods and results can be found in Huang et al. (2016). 
We obtained data on quality traits from just three environments 
in the YP, so we did not estimate stability of these traits.

Genomic Selection
For all GS analysis, the ridge regression BLUP (rrBLUP) model 
(Endelman, 2011; Lopez-Cruz et al., 2015; Crossa et al., 2016) 
was used and computed in R (R Development Core Team, 2008):

y = 1m + Zv + e

where m is the overall mean, Z matrix represents the marker 
scores for each genotype, v is the vector of random marker 
effects, e is the residual matrix, and y is a vector of the observa-
tions. In the rrBLUP model, the fixed effect is the intercept and 
a penalization parameter l = s2

e/s
2
v was used, in which s2

e is 
the residual variance and s2

v is the variance for v. This penal-
ization parameter allows for shrinkage while equally estimating 
the marker effects (Endelman 2011).

Table 1. Cluster assignment of environments using Wards minimum variance method and the matrix of genotype ́  environment 
interaction values.

Population† Trait‡ Cluster Environments§
EP YLD 1 13VAL, 13VAM

2 12KYM, 12MDM, 12MOM, 13MOM, 13OWM
3 12OWL, 12OWM, 12VAM

Outlier 12VAL, 13OWL
TW 1 13OWL, 13OWM

2 12KYM, 13MOM, 12MDM, 12MOM, 12VAL, 12VAM, 13VAL, 13VAM
3 12OWL, 12OWM

Outlier None
HGT 1 13VAL, 13VAM

2 12KYM, 12MOM, 12OWL, 12OWM, 12VAM, 13MOM
3 13OWL, 13OWM

Outlier 12MDM, 12VAL
HD 1 12OWL, 12OWM, 13MOM, 13ONM, 13OVM, 13OWL, 13OWM

2 12KYM, 12MDM, 12MOM, 12VAL, 12VAM, 13VAL, 13VAM
Outlier None

YP YLD 1 15OWL, 15OWM
2 14OWL, 14OWM, 15OVM, 14VAM, 15VAM
3 14MOL, 14MOM, 15MOL, 15MOM

Outlier 15ONM
TW 1 14OWL, 14VAM, 15ONM, 15OVM, 15OWL, 15OWM, 15VAM

Outlier 14OWM, 14KYM
HGT 1 14OWM, 15OWL, 15OWM

2 14MOL, 14MOM, 14VAM, 15VAM
Outlier 14OWL, 14KYM, 15MOL, 15MOM

HD 1 15MOL, 15MOM
2 14KYM, 14OWL, 14OWM, 14VAM, 15OWL, 15OWM, 15VAM
3 14MOL, 14MOM

Outlier None

† EP, elite panel population; YP, yield panel population.

‡ YLD, yield (kg ha−1); TW, test weight (kg m−3); HGT, plant height (cm); HD, heading date (Julian d).

§ �The environment codes consist of the last two numbers of the year, followed by a two-letter abbreviation for the location (VA = Virginia, KY = Kentucky, MD = Maryland, MO 
= Missouri, OW = Ohio [Wooster], ON = Ohio [Custar], OV = Ohio [Fremont Station]), followed by “L” for low N and “M” for moderate N.
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phenotypic data used to select stable markers within one cluster 
of environments was independent of the phenotypic data from 
the other cluster.

For each trait and set of environments, we constructed one 
subset of markers based on both their significance and their 
stability (PVAR10 subset). For the PVAR10 subset, we first 
selected 15% of the markers with the largest effects (absolute 
value of allelic effect) from the association analysis. Then, we 
selected the markers with the lowest MEI variance, producing a 
subset with 10% of the total markers. The subsets P0.05, VAR10, 
PVAR10, and VAR40 contained either 5, 10, or 40% of the 
markers based on different selection criteria. We also gener-
ated marker subsets containing a random selection of 5 (RAN5 
subset) or 40% (RAN40) of the markers to serve as controls.

Evaluating the Optimization Methods
Within each population and for each trait, we first used all 
phenotypic and genotypic data as a TP and then set up TPs 
that used the different markers subsets (using RAN5, RAN40, 
VAR10, VAR40, AMMI10, P0.05, or PVAR10). Within a 
population, we conducted 10-fold cross-validation to assess the 
accuracy of GS, as described by Huang et al. (2016). The cross-
validations were run 500 times with the RAN5 and RAN40 
subsets. The difference in accuracy was minimal between these 
500 iterations, so we selected 10 runs for the other data subsets 
to be less computationally intensive.

Use of Marker ´ Environment Interactions  
in Predictions
For the analyses between populations, we used BLUPs over all 
environments from each population. The ability of data from 
one population to predict the phenotypes in the other popula-
tion was assessed. Either all data or a subset of TP data from one 
population was used to build a GS model that was then used 
to calculate the GEBVs of lines from a different population. 
Cross-validation was not used in these analyses, as each popu-
lation was independent of the other. To predict between two 
populations, by using all data, we also assessed two additional 
models that incorporate either environment and/or MEI effects 
(Lopez-Cruz et al., 2015; Crossa et al., 2016). The first model 
incorporated genomic and environment main effects:

yij = m + gi + ej + eij

The accuracy of GS was estimated (i) overall environments 
within a population, (ii) between clusters of environments within 
a population, and (iii) between populations across environments. 
This was done using (i) data from all markers (the full set of 
3919 markers after filtering and tagging), (ii) subsets of markers 
selected for significance, or (iii) markers selected for stability.

Hence, for between-cluster predictions within each popu-
lation, traits were analyzed within each separate cluster. The 
GS models were built using data from one cluster of environ-
ments to predict performance of lines in a different cluster.

For prediction within each population, we analyzed data 
and performed GS both over all environments and within each 
cluster of environments. For predicting between the EP and 
YP, we used trait values over all environments.

Developing Marker Subsets within Each 
Cluster within a Population
To select markers based on significance, we conducted association 
analyses for each trait using the “GAPIT” package in R (Lipka 
et al., 2012). Both the PCA and kinship matrices were used. 
Subsets of markers were formed by selecting markers that were 
significant at p < 0.05 (P0.05 subsets). This was done using data 
only from environments within a cluster. The 0.05 probability 
level was chosen subjectively, although Hoffstetter et al. (2016) 
reported that a subset of markers significant at p < 0.05 increased 
GS accuracy by up to 76% compared with using all markers.

To select subsets of markers based on stability, we first did 
an association analysis within each environment. For example, 
there were 12 environments for YLD in the EP, and so we 
performed 12 independent association analyses for YLD. We 
used the marker effects to develop a MEI matrix within a 
cluster. The MEI was derived using the formula

MEIij i j ijy M E= + +

where yij is the value of the ith marker effect in the jth envi-
ronment, Mi is the main effect of the ith marker, Ej is the 
main effect of the jth environment, and MEIij is the marker ´ 
environment interaction effect. We assessed the percentage of 
markers to use in a subset by randomly selecting between 5 and 
100% of the markers in increments of 5%, running rrBLUP, 
and assessing accuracy using cross-validation. Accuracy did not 
increase with >40% of the markers. Thus, we chose to investi-
gate sets with 5 or 40% of the markers. Two methods were used 
to select subsets of stable markers. We calculated the variance 
of the MEI effects for each marker and selected the 10 (VAR10 
subsets) and 40% (VAR40 subsets) of markers with the lowest 
MEI variance (Table 2). In the second method, we conducted 
an AMMI analysis of the MEI matrix and selected the 10% 
of the markers that had low principal components scores 
(AMMI10 subsets). The AMMI analyses involved conducting 
a singular value decomposition of the MEI matrix to extract 
the IPC scores for each marker. The stability of each marker 
was obtained by summing the absolute value of the first n IPC 
scores for that marker. A low sum indicated high stability. The 
number of IPC scores used for calculating the marker stability 
for a trait was chosen based on the scree plot and ranged from 
two to eight. These VAR10, VAR40, and AMMI10 subsets 
(Table 2) were formed using the MEI matrices based on marker 
effects from environments only within one cluster; thus, the 

Table 2. Description of the subsets of training population data.

Data subsetting 
method Description
Ran5 Randomly select 5% of the markers

Ran40 Randomly select 40% of the markers

Var40 Select 40% of the markers with the lowest marker ´ 
environment interaction (MEI) variance

Var10 Select 10% of the markers with the lowest MEI variance

AMMI10 Select 10% of the markers with the lowest MEI 
variance as estimated using additive main effects and 

multiplicative interaction (AMMI)
P0.05 Select all markers that were significant in the 

association analysis at p < 0.05

PVar10 Select 15% markers that were most significant, and 
then choose the ones with the lowest MEI for a total of 

just 10% of all markers. based on AMMI
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where yij is the observation for the ith genotype at the jth envi-
ronment, ej is the effect of the jth environment, and eij is the 
residual effects associated with the ijth observation. In this 
model, 

1ki

m

ik kz ug
=

=å , in which zik is the score (−1, 0, or 1) 
for the kth marker for the ith genotype and uk is the effect for the 
kth marker (Lopez-Cruz et al., 2015). In this model, the uk values 
were assumed to be the main marker effects and were the same 
across environments. The intercept and ej were fixed effects in 
this model (Lopez-Cruz et al., 2015; Crossa et al., 2016).

The second model allows for borrowing information across 
environments to estimate marker effects across different envi-
ronments, and it includes MEI effects (Lopez-Cruz et al., 2015; 
Crossa et al., 2016):

yij = m + gi + ej + geij+ eij

The definitions of yij, gi, ej, and eij are the same as in the 
abovementioned main effects model. The interaction term geij is 
the interaction of genomic values of the ith individual and the jth 
environment. In this model, the marker effects consisted of two 
parts—the marker main effect, which is a constant across all envi-
ronments, and an environment-specific effect for each marker 
(Crossa et al., 2016). The fixed effects in this model included 
the intercept and environment main effects. The random effects 
included marker effects, GEI effects, and residual effects (Lopez-
Cruz et al., 2015). The g + e main effects model and the g + e + 
ge model were all computed in R using the package “BGLR” (de 
los Campos and Pérez-Rodríguez, 2013).

RESULTS
Phenotypic Analysis
Analysis of the EP phenotypic data was reported in Huang 
et al. (2016). In both the EP and YP, heritability was >0.73 
for all traits, and the effects of environment, genotype, 
and GEI were significant (p < 0.05) for all traits (Huang 
et al., 2016; Table 3).

Clustering of Environments within Each Population
We identified three clusters of environments for YLD and 
HD in the YP and for YLD, TW, and HGT in the EP. Two 
clusters of environments were identified for HGT in the 

YP and for HD in the EP (Table 1). In the YP, there was 
one cluster of environments and one outlier for TW. Some 
environments were outliers and were excluded from the 
analyses between clusters (Table 1). In the EP, the correla-
tion of the phenotypic BLUPs between the most divergent 
clusters of environments was low for YLD (r = 0.34) and 
TW (r = 0.33) but was high for HGT (r = 0.78) and HD (r = 
0.82); these correlations in YP were also low for YLD (r = 
0.27, Table 4). The percentage of GEI variance attributed 
to between clusters was >50% for all traits except YLD in 
both populations (Supplemental Table S2), suggesting that 
clustering was least effective for YLD. The GEI variance as 
a percentage of genotype + GEI variance was also greater 
for YLD than for the other traits (Supplemental Table S2).

Population Structure and Relationship between 
the Elite Panel and Yield Panel Populations
The population structure in the YP was visually similar to 
that in the EP, as each was characterized by one large group 
of lines and one smaller group that was mainly composed 
of lines from the University of Missouri (Fig. 1a). Results 
from PCA for both populations together showed that lines 
from both populations were interspersed in all regions of 
the graph (Fig. 1b). The genetic similarities via simple 
matching coefficient between the two populations (0.60) 
and within the EP (0.60) or within the YP (0.60) were 
nearly identical, suggesting that these two populations 
were very similar. The LD matrices of the two populations 
were tested via mental test, and they were significantly 
correlated (r = 0.87, p < 0.01), indicating that they have a 
similar LD pattern among the common markers.

Genomic Selection Accuracy between 
Clusters of Environments within a Population 
Using Subsets of Markers
There was a variable degree of commonality between the 
marker subsets developed for any trait. For all traits, the 
scheme used to create the AMMI10 and VAR10 marker 

Table 3. Variance components, their significance, and entry mean broad-sense heritability (H) from the ANOVA of the yield 
panel (YP).

Trait† Genotype (G) Environment (E) Replication(E) G´ E Residual H
YLD 64,220.0** 682,555.0* 10,435.0 64,745.0** 179,122.0 0.83

TW 175.8** 812.1 150.2 526.9** 103.0 0.73

HGT 31.9** 29.9* 0.8 4.7** 19.2 0.96

HD 2.5** 40.9* 0.0 0.9** 2.0 0.94

FP 0.1** 1.0 – 0.2** – 0.75

SU 9.7** 0.2 – 5.9** – 0.89

LA 92.6** 68.5 – 36.2** – 0.93

WA 2.9** 1.1 – 1.3 – 0.91

SO 7.9** 2.0 – 2.6** – 0.94

SE 6.9** 0.3 – 3.5** – 0.91

FY 1.4** 0.5 – 1.0** – 0.88

*,** Significant at the 0.05 and 0.01 probability levels, respectively.

† YLD, yield (kg ha−1); TW, test weight (kg m−3); HGT, plant height (cm); HD, heading date (Julian d); Solvent retention capacity (%) for flour protein (FP), sucrose content (SU), 
lactic acid (LA), water content (WA), NaCO3 (SO), softness equivalent (SE), and flour yield (FY).
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Table 4. Accuracy of genomic selection between cluster of environments (data from one cluster was used to predict performance 
in the other cluster) within the elite panel (EP) and yield panel (YP). The phenotypic correlation (r) between clusters (labeled 
C1–C3) is shown, as is accuracy using all training population data (all data) and subsets of data as described in Table 2.

Population Trait† Data set‡ C1–C2 C2–C1 C1–C3 C3–C1 C2–C3 C3–C2 Avg.
EP YLD r 0.51 0.51 0.34 0.34 0.41 0.41 0.42

All data 0.45 0.49 0.25 0.27 0.31 0.25 0.34
Ran5 0.37 0.42 0.18 0.22 0.18 0.17 0.26

Ran40 0.44 0.48 0.24 0.26 0.29 0.23 0.32
Var40 0.44 0.46 0.24 0.28 0.23 0.24 0.32
Var10 0.38 0.42 0.19 0.24 0.15 0.18 0.26

AMMI10 0.38 0.41 0.19 0.24 0.15 0.20 0.26
P0.05 0.49 0.48 0.32 0.33 0.36 0.37 0.39
PVar10 0.49 0.51 0.32 0.33 0.38 0.38 0.40
Var40-L 0.50 0.47 0.30 0.32 0.33 0.37 0.38
Var10-L 0.48 0.49 0.31 0.32 0.38 0.39 0.40
P0.05-L 0.50 0.50 0.35 0.34 0.46 0.43 0.43

PVAR10-L 0.51 0.52 0.34 0.33 0.41 0.41 0.42
YP YLD r 0.50 0.50 0.27 0.27 0.48 0.48 0.42

All data 0.47 0.44 0.24 0.21 0.46 0.43 0.37
P0.05 0.48 0.46 0.29 0.24 0.47 0.46 0.40

P0.05-L 0.48 0.52 0.26 0.25 0.47 0.47 0.41
EP HGT r 0.84 0.84 0.78 0.78 0.86 0.86 0.83

All data 0.77 0.72 0.67 0.66 0.75 0.80 0.73
Ran5 0.68 0.61 0.57 0.56 0.64 0.69 0.62

Ran40 0.76 0.71 0.66 0.65 0.74 0.79 0.72
Var40 0.75 0.62 0.65 0.63 0.66 0.77 0.68
Var10 0.72 0.57 0.62 0.59 0.60 0.73 0.64

AMMI10 0.72 0.58 0.62 0.59 0.61 0.73 0.64
P0.05 0.78 0.74 0.70 0.66 0.79 0.78 0.74
PVar10 0.79 0.77 0.71 0.70 0.80 0.82 0.76
Var40-L 0.81 0.77 0.73 0.72 0.81 0.85 0.78
Var10-L 0.82 0.79 0.74 0.74 0.84 0.87 0.80
P0.05-L 0.84 0.81 0.79 0.79 0.84 0.87 0.82
PVar10-L 0.89 0.88 0.83 0.85 0.88 0.89 0.87

YP HGT r 0.85 0.85 – – – – 0.85
All data 0.82 0.83 – – – – 0.83
P0.05 0.82 0.83 – – – – 0.83

P0.05-L 0.85 0.84 – – – – 0.85
EP HD r 0.82 0.82 – – – – 0.82

All data 0.75 0.75 – – – – 0.75
Ran5 0.60 0.57 – – – – 0.59

Ran40 0.73 0.72 – – – – 0.73
Var40 0.58 0.64 – – – – 0.61
Var10 0.54 0.55 – – – – 0.55

AMMI10 0.55 0.57 – – – – 0.56
P0.05 0.78 0.77 – – – – 0.78
PVar10 0.76 0.80 – – – – 0.78
Var40-L 0.76 0.78 – – – – 0.77
Var10-L 0.78 0.80 – – – – 0.79
P0.05-L 0.80 0.81 – – – – 0.81
PVar10-L 0.82 0.82 – – – – 0.82

YP HD r 0.70 0.70 0.52 0.52 0.53 0.53 0.58
All data 0.71 0.66 0.57 0.51 0.51 0.50 0.58
P0.05 0.70 0.67 0.51 0.52 0.50 0.54 0.57

P0.05-L 0.67 0.69 0.49 0.55 0.52 0.59 0.58
EP TW r 0.68 0.68 0.33 0.33 0.47 0.47 0.49

All data 0.71 0.67 0.31 0.32 0.46 0.52 0.50
Ran5 0.64 0.61 0.26 0.28 0.41 0.47 0.45

Ran40 0.70 0.67 0.30 0.32 0.45 0.52 0.49
Var40 0.69 0.66 0.30 0.33 0.44 0.51 0.49
Var10 0.66 0.61 0.29 0.32 0.41 0.49 0.46

AMMI10 0.66 0.61 0.29 0.32 0.41 0.49 0.46
P0.05 0.68 0.66 0.31 0.34 0.45 0.51 0.49
PVar10 0.68 0.67 0.34 0.36 0.47 0.52 0.51
Var40-L 0.72 0.65 0.36 0.32 0.49 0.47 0.50
Var10-L 0.70 0.66 0.37 0.31 0.48 0.48 0.50
P0.05-L 0.70 0.71 0.29 0.34 0.48 0.47 0.50
PVar10-L 0.73 0.68 0.37 0.34 0.48 0.47 0.51

† YLD, yield (kg ha−1); TW, test weight (kg m−3); HGT, plant height (cm); HD, heading date (Julian d).

‡ All data, predictions using all training population data; the other abbreviations represent the subsets of training population data define in Table 2.
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subsets provided almost identical subsets of markers (results 
not shown). This indicates that using total MEI variance 
or the AMMI approach produced similar sets of markers.

The GS accuracy between clusters of environments 
varied by population, trait, the subset of data being used, 
and the particular comparison (Table 4). The accuracy of 
GS predictions between clusters using all TP data (e.g., all 
markers and all lines) was, on average, 7.2% lower than the 
phenotypic correlation, ranging from 39.0% lower to 10.9% 
greater (Fig. 2, Table 4, Supplemental Fig. S1). For YLD, 
HGT, and HD, the average GS accuracy between clusters of 
environments was 16.2, 9.0, and 3.1% lower than the average 
phenotypic correlation between clusters (Table 4). The 
average phenotypic correlation and GS accuracy between 
clusters were nearly equal for TW (Table 4). We assessed the 
relationship of the correlation of phenotypic means between 

environment clusters with the ability of a GS model built 
using data from one cluster of environments to predict the 
phenotypes of a different cluster. The accuracy of GS predic-
tions between clusters was highly associated (r = 0.97) with 
the correlation of phenotypes between clusters.

For most traits and between-cluster comparisons, the 
Ran5 subsets gave the lowest GS accuracy (Table 4). The 
accuracy with the Ran40 subsets was 16.9% better than 
with the Ran5 subsets when averaged over all compari-
sons, and its accuracy was similar to the GS accuracy using 
all markers (Table 4).

The markers in the VAR10, VAR40, and AMMI10 
subsets were selected based on the stability of their effects 
across environments within a particular cluster. For all 
comparisons, GS accuracy for VAR10 and AMMI10 
were nearly identical—when averaged over all compari-
sons, both were 9% less accurate than the VAR40 subsets 
(Table 4). The accuracy of the VAR40 subsets was similar 
to the accuracy obtained with the RAN40 subsets, both of 
which produced accuracies that were only 7% less accurate 
than using all data when averaged over all comparisons.

The P0.05 and PVAR10 subsets of markers were 
selected considering the magnitude of marker effects 
(P0.05), as well as their stability (PVAR10). Averaged over 
all comparisons, the accuracy of the P0.05 subsets was 
5.1% greater than using data from all markers, whereas the 
accuracy of the PVAR10 subsets was 7.7% more accurate 
than using all data (Table 4). The increase in accuracy 
for these two subsets was most notable for YLD, where 
P0.05 and PVAR10 were, on average, 14.8 and 17.6% 
more accurate than using all marker data. These marker 
subsets had minimal impact on increasing between-cluster 
accuracy compared with using all data for TW, HGT, and 
HD (Table 4). The P0.05 and PVAR10 marker subsets 
had a similar number of markers as the RAN5 subset but 
produced greater GS accuracy than the RAN5 subsets or 
when using all markers (Table 4).

Between Populations: Genomic Selection 
Accuracy Using All Training Population Data 
or Subsets of Data
From the results within the EP, we determined that the 
P0.05 (significant markers) subset of markers was the best, 
and thus we only used all data and this subset of data in 
the between-population analyses. For 13 out of the 19 
traits and trait stability indices, using all data from one 
population to predict the phenotypes of lines in the other 
population gave higher accuracy than using the best P0.05 
subsets of marker data (Supplemental Table S3). Thus, 
only results from using all TP data will be discussed.

When using either all data or subsets of marker data, 
GS accuracy between populations was considerably lower 
than the accuracy between clusters of environments 
within a population (Fig. 2, Tables 4 and 5), being 95, 11, 

Fig. 1. Plot of the first two principal component scores for (a) 
the lines within the yield panel population (YP) and (b) within 
the elite panel (EP) and YP populations using data from 3537 
single-nucleotide polymorphism markers. The plot of principal 
component analysis (PCA) for within the EP was reported by 
Huang et al. (2016).
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Fig. 2. Plot of the genomic selection accuracy between clusters of environment within a population for grain yield, using subset of data 
(P0.05 = set of only significant markers; PVAR10 = set of significant and stable markers) compared with using all marker data within the 
elite panel (EP) and yield panel (YP) populations. *** An estimate of accuracy that is significantly (p < 0.001) different from the accuracy 
obtained using all marker data. The p values were adjusted to account for multiple comparisons within each population.

Table 5. Accuracy of genomic selection within the elite population (EP), within the yield population (YP), and between populations 
where all data from one population was used as the training population (TP) and the other served as the validation population 
(VP). All accuracies were estimated using data from all TP markers and lines. The last column shows the correlation of marker 
effects estimated within the EP or the YP for all markers that were significant (p < 0.05) in at least one of the populations.

Accuracy via cross-validation within the TP = EP TP = YP Avg. between- 
population
accuracy

r of significant 
marker effectsTrait† EP YP VP = YP VP = EP

YLD 0.33 0.49 −0.03 0.06 0.02 0.12

TW 0.66 0.41 0.39 0.50 0.44 0.34

HGT 0.54 0.74 0.62 0.48 0.55 0.41

HD 0.56 0.68 0.41 0.32 0.37 0.21

AYLD 0.44 0.18 0.13 0.12 0.12 –

ATW 0.17 0.22 0.00 −0.03 −0.02 –

AHGT 0.28 0.13 −0.01 −0.02 −0.02 –

AHD 0.35 0.48 0.29 0.15 0.22 –

BYLD 0.36 0.53 0.32 0.13 0.23 –

BTW 0.42 0.34 0.23 0.23 0.23 –

BHGT 0.27 0.43 0.37 0.25 0.31 –

BHD 0.65 0.37 0.23 0.33 0.28 –

FP 0.41 0.46 0.19 0.22 0.20 0.09

SU 0.6 0.58 0.39 0.42 0.41 0.35

LA 0.64 0.67 0.58 0.53 0.56 0.47

WA 0.65 0.60 0.46 0.47 0.47 0.37

SO 0.57 0.63 0.45 0.42 0.43 0.31

SE 0.37 0.59 0.31 0.26 0.28 0.34

FY 0.49 0.61 0.31 0.37 0.34 0.32

† YLD, yield (kg ha−1); TW, test weight (kg m−3); HGT, plant height (cm); HD, heading date (Julian d); Solvent retention capacity (%) for flour protein (FP), sucrose content (SU), 
lactic acid (LA), water content (WA), NaCO3 (SO), softness equivalent (SE), and flour yield (FY). A and B before trait abbreviations indicate the additive main effects and 
multiplicative interaction index stability and the Eberhart and Russell regression index stability, respectively, for each trait.
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28, and 41% lower for YLD, TW, HGT, and HD, respec-
tively. The between-population GS accuracy for a trait 
was similar (correlation r = 0.89, calculated using values 
in Columns 4 and 5 in Table 5) whether the EP or the YP 
was used as the TP. The average accuracy of GS between 
populations was negligible for YLD and AMMI stability 
indices for TW and HGT and was <0.25 for AMMI 
stability indices for YLD, TW, and HD; ERR indices 
for YLD, TW, and HD; and FP (Table 5). On average, 
the stability estimated using the regression method gave 
higher between-population GS accuracy than using the 
AMMI method (Table 5).

The GS accuracy between populations was associated 
with GS accuracy within each population obtained using 
cross-validation (Table 5, using values in Column 2 or 3 
correlating to values in Column 6). The correlation of the 
average accuracy for within-population prediction and 
the average accuracy for between-population prediction 
was 0.91 (Fig. 3). If accuracy for a trait was low within 
a population, then the data from that population had a 
low ability to predict phenotypes in the other population 
(Fig. 3). The accuracy between populations was also asso-
ciated with the correlation of genetic effects of significant 
markers between the two populations (Table 5). Predic-
tion accuracy was low when the correlation of marker 
effects was low.

Accuracy of Genomic Selection Using the 
g + e and g + e + ge Models for Between-
population Prediction
The model including both marker and environment main 
effects and a model containing those effects plus the MEI 
effects were assessed for between-population accuracy for 
each trait. These two models generally produced lower 
between-environment accuracy for TW, HGT, and HD 
(Table 6) than the standard GS model rrBLUP (Table 5). 
Compared with using the rrBLUP model, the g + e and 
g + e + ge models gave the largest improvement of GS 
accuracy for YLD when using YP to predict EP, but these 
accuracies remained low (r < 0.15, Table 6).

DISCUSSION
One of the most fundamental issues in plant breeding is 
obtaining estimates of genetic values from one data set 
that can predict phenotypic performance in future envi-
ronments. This issue remains whether using phenotypic 
data or GEBVs (Spindel and McCouch, 2016). We investi-
gated whether using subsets of marker data could improve 
the ability of GS to predict performance in different envi-
ronments. Markers were selected based on their effects, 
the stability of their effects, or both criteria.

Our results show that when the correlation of pheno-
types between two environments was low, the ability of 
data from one environment to predict the other using 

GS was also low, as has been reported before (Dekkers, 
2007). On average, for all traits across all between-cluster 
comparisons within a population, randomly selecting 
markers (Ran5, Ran40) or subsetting markers based on 
their stability alone (AMMI10, Var10, and Var40) did not 
improve the GS accuracy compared with using all the TP 
data (Table 4). These results suggest that selecting markers 
based solely on stability of marker effects will not improve 
GS accuracy of between-environment predictions. This 
may be because uninformative markers with no effect on 
the trait can be stable if they may have little to no effect in 
any environment, and thus the markers were included in 
these subsets along with predictive markers that do have an 
effect. We later confirmed that using significant markers 
could increase GS accuracy (Fig. 2, Supplemental Fig. S1).

Fig. 3. Plot of genomic selection (GS) accuracy between 
populations using data from all traits regressed onto the average 
accuracy of the trait within the elite and yield populations.

Table 6. Accuracy of genomic selection between the elite 
population (EP) and the yield population (YP) using two mod-
els, g + e and g + e + ge. For each trait the EP and the YP were 
each used as either the training population (TP) and as the 
validation population (VP).

Model
g + e g + e + ge

TP = EP TP = YP TP = EP TP = YP
Trait† VP = YP VP = EP VP = YP VP = EP
YLD −0.03 0.10 −0.02 0.14
TW 0.37 0.45 0.38 0.40
HGT 0.59 0.45 0.55 0.42
HD 0.39 0.32 0.40 0.31
FP 0.17 0.19 0.16 0.18
SU 0.29 0.42 0.27 0.34
LA 0.58 0.50 0.56 0.45
WA 0.44 0.45 0.42 0.37
SO 0.37 0.40 0.35 0.35
SE 0.31 0.25 0.32 0.22
FY 0.27 0.37 0.24 0.34

† �YLD, yield (kg ha−1); TW, test weight (kg m−3); HGT, plant height (cm); HD, heading 
date (Julian d); Solvent retention capacity (%) for flour protein (FP), sucrose content 
(SU), lactic acid (LA), water content (WA), NaCO3 (SO), softness equivalent (SE), 
and flour yield (FY).
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The results indicate that, within a population, a GS 
model built using data from one set of environments can 
predict the performance of lines in an independent set 
of environments. The accuracy of GS for YLD between 
environments within a population for all traits was signifi-
cantly improved, relative to using all TP data, when using 
subsets of markers. The GS accuracy increased 8.1% in the 
YP and 14.7% in EP on average by using the P0.05 subset, 
and by 17.6% in the EP by using the PVAR10 subset (Fig. 2, 
Supplemental Fig. S1). Minimal increase in GS accuracy 
was observed for the other traits (Table 4). Grain yield was 
the trait that had the greatest GEI, suggesting that greater 
gains in GS accuracy from using subsets of significant 
and stable markers may be realized for traits with exten-
sive GEI than for traits with low GEI. Our results were 
similar to those of a previous wheat study (Hoffstetter et 
al., 2016) where using subsets of significant markers for 
YLD, Fusarium head blight resistance, and quality traits 
increased GS accuracy by 41 to 76% compared with using 
all markers. Hoffstetter et al. (2016) also reported that GS 
accuracy within and between environments was greatest 
with a TP composed of a subset of lines with low GEI 
variance and significant markers. In animal breeding, it 
was also reported that when using the subset of markers 
with the largest effects, GS accuracy was either similar to 
or was somewhat improved compared  using all markers 
in the TP (Abdollahi-Arpanahi et al., 2014; Weigel et al., 
2009; Moser et al., 2010; Vazquez et al., 2010; Yao et al., 
2016). It is likely that by using only markers with stable 
significant effects across environments, we are excluding 
markers from the least predictive portion of the genome.

Using data from one population to predict the perfor-
mance of lines in a different, yet highly related, population 
that was phenotyped in different environments has proven 
to be more difficult than predicting the performance of 
the same lines in different environments (Schulz-Streeck 
et al., 2013; Beaulieu et al., 2014; Jarquín et al., 2014; 
Lorenz and Smith, 2015; Lado et al., 2016). In our study, 
GS accuracy between the EP and YP populations was 
lower than GS accuracy between a cluster of environ-
ments within the same population (Fig. 2, Tables 5). In 
addition, using data subsets did not improve GS accuracy 
between populations compared with using all TP data. 
Data from one population was poor at predicting YLD, 
FP, and AMMI-based trait stability in the other popula-
tion (Table 5).

The EP and YP were closely related to each other, as 
shown by the PCA graph (Fig. 1b) and the simple matching 
coefficients. The LD matrices of the two populations were 
highly correlated, suggesting that there could also be a 
similar LD pattern between markers and quantitative trait 
loci (QTLs) in each population. This is one requirement 
in order for GS to work, and this consistency between 
populations of LD between markers and QTLs appeared to 

occur for TW, HGT, HD, and solvent retention capacities 
for sucrose, lactic acid, water, and NaCO3. This suggests 
that the LD patterns between markers and QTLs for YLD 
and FP would also likely be consistent between the two 
populations. A second requirement for GS to work is for 
QTLs to have similar effects in each population or set of 
environments. In our study, the ability to use data from 
one population to predict performance in the other was 
related to the correlation of the marker effects estimated in 
the two populations (Table 5). The correlation of markers 
effects between the EP and YP for YLD and FP was low. A 
low correlation of marker effects would lead to high GEI, 
which would lead to a low phenotypic correlation between 
environments. Unsurprisingly, as shown here and by others 
(Dekkers, 2007), when the correlation of phenotypes 
between environments is low, GS will not be very predic-
tive. We also report that GS accuracy within a population 
was strongly associated with GS accuracy between popula-
tions (Fig. 2, Table 4, Supplemental Fig. S1). If GS accuracy 
was low within a population, then GS accuracy between 
populations was also low.

In our study, low GS accuracy between populations 
for YLD stability and several other stability parameters 
indicate that stability estimated in one set of environments 
is not very predictive of stability in another set of lines and 
environments. The ERR stability indices were predicted 
with a higher accuracy than the AMMI-based stability 
indices. This could be because the ERR measures are 
based on environmental indices (i.e., average trait value 
within an environment) whose values and impact may 
be more repeatable across sets of environments, whereas 
the AMMI IPC scores may be very specific to the set of 
environments from which they were calculated (Eberhart 
and Russell, 1966; Zobel et al., 1988). Hickey et al. (2014) 
suggested that for closely related populations, effective 
GS accuracy could be obtained with a small number of 
markers (200–500) and perhaps 1000 lines. Our popula-
tions are considerably smaller, so maybe greater accuracy 
could have been attained if the size of each population was 
increased by adding lines that are closely related.

For between-population predictions, our results are 
well aligned with those of others who have used a TP 
and VP that were composed of different lines and/or were 
tested in different environments. Jarquín et al. (2014) 
reported that GS accuracy for wheat YLD was greater 
within a population than between populations that consist 
of different lines tested in different environments. It was 
reported that the GS accuracy through cross-validation 
was higher than those obtained from predicting between 
populations, as is also shown in this study. Jarquín et al. 
(2016) also compared GS accuracies for YLD by predicting 
through cross-validation vs. by predicting between loca-
tions, years, and location–year combination schemes, and 
they confirmed that GS accuracy via cross-validation is 
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higher than that using the other schemes. Michel et al. 
(2016b) assessed GS accuracy with data from lines from 
five breeding cycles of winter wheat. They reported the 
average GS accuracy via cross-validation within a popula-
tion was 0.43 for YLD and 0.57 for FP but was just 0.29 
and 0.41 for YLD and FP, when the TP and VP consisted 
of different lines tested in different environments. Batten-
field et al. (2016) reported that GS accuracy for wheat 
TW between populations tested in different years ranged 
from 0.12 to 0.35, whereas GS accuracy was 31.8% greater 
within a population. Dawson et al. (2013) assessed the 
accuracy of GS for wheat YLD using a TP of lines from a 
previous year to predict performance of VP lines in future 
years using data on 622 lines from CIMMYT that were 
phenotyped over 17 yr. When the TP and VP were tested 
under different environments, the adjusted GS accuracy 
for YLD ranged from −0.10 to 0.80 across 17 yr of testing 
environments (Dawson et al., 2013). Battenfield et al. 
(2016) reported that when the TP and VP consisted of 
lines grown in different environments and had a few lines 
in common, GS accuracy ranged from 0.33 to 0.44 for FY 
and FP but ranged from 0.82 to 0.90 within populations.

When the performance of new lines needs to be 
predicted, Jarquín et al. (2014) recommend using GS 
models with GEI terms. They assessed two scenarios: the 
first one was to predict the value of lines that were tested 
in some but not all environments, and the second one 
was to predict the value of new lines that were not tested 
in any environments ( Jarquín et al., 2014). Their model 
worked better under the first scenario, which allowed 
borrowing information from one set of environments for 
the same line to predict its performance in a different set 
of environments, whereas the latter uses data from one 
set of lines to predict performance of a different line in 
different environments (Crossa et al., 2014; Jarquín et 
al., 2014, 2016; Saint-Pierre et al., 2016). Cuevas et al. 
(2017) reported that using models incorporating the ge 
term always produced higher GS accuracy than models 
without ge for one maize (Zea mays L.) and four wheat 
CIMMYT data sets. In our study, however, using the g + 
e and g + e + ge models did not significantly improve GS 
accuracy for most traits (Table 6). Similar to our results, 
Dawson et al. (2013) reported that modeling MEI effects 
did not improve GS accuracy for YLD across a wide range 
of environments compared with the model without GEI. 
They suggested that there were inconsistent marker effects 
among the mega environments.

The same trait being evaluated in two environments 
could be viewed as two traits, and thus selection based 
on data from one environment to improve that trait in 
another environment could be viewed as indirect selec-
tion (Falconer and Mackay, 1996). Our results show that 
indirect selection using GS should be effective where direct 
selection using phenotypes is effective. The advantage of 

GS then is that a cycle of GS can be completed in much 
less time than a cycle of phenotypic selection (Meuwissen 
et al., 2001; Goddard and Hayes, 2007; Heffner et al., 
2010; Jannink et al., 2010). Gain per unit of time is a key 
measure of plant breeding efficiency. One of the major 
limitations to plant breeding efficiency is the amount of 
time required to complete a cycle of phenotypic selection. 
This problem could be addressed and improved by using 
GS, as GS could rapidly improve selection efficiency per 
unit time and cost (Meuwissen et al., 2001; Heffner et al., 
2009; Jannink et al., 2010; Sallam and Smith 2016). The 
results of this study suggest that GEI may now be one of 
the major factors limiting genetic gain per unit of time.
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