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A B S T R A C T

Recreational activities can negatively affect protected area landscapes and resources and soil erosion is fre-
quently cited as the most significant long-term impact to recreational trails. This study applied extensive mul-
tiple regression modeling of trail soil loss to identify influential factors that managers can manipulate to improve
the sustainability of trail design and management. Field measurements assessed soil loss as the mean vertical
depth along 135 trail transects across the Appalachian Trail sampled along three 5 km trail segments in New
Hampshire’s White Mountains National Forest, chosen due to its exceptionally high use and impact. GIS and
LiDAR data were used to create many new variables reflecting terrain characteristics that were expected to
influence trail erosion and improve predictive models of trail system soil loss. A variety of terrain and hydrology
characteristics were applied to model trail soil loss at three spatial scales: transect, trail corridor, and watershed.
The model for each spatial scale and a combined model are presented. The adjusted R2 explaining variation in
soil loss is 0.57 using variables from all spatial scales, improving on predictive modeling from earlier studies.
Environmental and trail design factors such as slope and watershed flow length were found to be significantly
correlated to soil loss and have implications for improved sustainable trail design and management.

1. Introduction

The Appalachian Trail (A.T.) receives an estimated three million
hikers every year and the trail is closed to other types of use (ATC,
2020). The NPS Management Policies direct managers to ensure that
any adverse impacts are the minimum necessary, and do not constitute
impairment of park resources and values (NPS, 2006). Developing
sustainable recreation infrastructure, in this case a long-distance trail
that can accommodate high visitation and without adverse resource
impacts, is a core management priority. Identifying the factors that
substantially influence soil erosion along the trail will help trail man-
agers design, construct, and maintain a more sustainable trail able to
resist soil loss, minimize environmental degradation, and enhance
visitor experiences.

1.1. Soil loss on trails

Resource degradation on trails depends on an array of use-related,
environmental, and managerial factors (Marion & Wimpey, 2017;
Rangel, Jorge, Guerra, & Fullen, 2019; Wimpey & Marion, 2010).
Concentrated traffic pulverizes soil leaf litter and humus layers, which

are easily lost through erosional processes. Soils then become exposed
and vulnerable to wind or water erosion and compaction (Marion,
Leung, Eagleston, & Burroughs, 2016; Rodway-Dyer & Walling, 2010).
Soil compaction decreases soil pore space and water infiltration, which
in turn increases water runoff, soil erosion, and muddiness. Soil loss on
trails can also substantially expand the spatial extent of recreational
disturbance (Leung & Marion, 1996), alter natural patterns of water
runoff, and cause subsequent turbidity and deposition in streams and
other water bodies (Marion et al., 2016). While some degree of visitor
impact is unavoidable, excessive impacts threaten natural resources and
processes, visitor safety, and the quality of recreational experiences
(Leung, Marion, & Farrell, 2001; Marion, 2016; Peterson, Brownlee, &
Marion, 2018).

Initial trail creation or construction establishes a trail’s topographic
alignments, trail width, gradient, outslope, and drainage. Numerous
trail science studies have documented and described the relationship
between different design factors and amount of erosion (Leung &
Marion, 1996; Marion & Wimpey, 2017; Olive & Marion, 2009). Pre-
vious studies suggest that soil erosion along trails is principally influ-
enced by type and amount of use, trail design and alignment features,
soil type, rock content, and the density and efficacy of tread drainage
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features (Marion & Wimpey, 2017; Olive & Marion, 2009; Salesa &
Cerda, 2019). Trail grade (slope) and trail slope alignment angle (TSA)
are key trail design attributes that influence soil erosion (Leung &
Marion, 1996; Marion & Wimpey, 2017; Marion, Leung, & Nepal, 2006;
Meadema, Marion, Arredondo, & Wimpey, 2020). TSA is calculated as
the difference between the azimuth of the landform fall-line and the
azimuth of the trail as it crosses the fall-line. Both variables relate to
how a trail is aligned to the landform topography.

This exploratory research seeks to advance the state-of-knowledge
and capabilities offered by trail erosion modeling by applying a com-
prehensive array of field measurements conducted in June 2015 com-
bined with the exploration of geographic information system (GIS) and
airborne light detection and ranging (LiDAR) technologies to create an
additional suite of topography, watershed, and trail design variables at
multiple spatial scales and extents. Specific objectives include: 1)
quantify the severity of soil erosion along sections of the northern A.T.;
2) generate trail and watershed characteristics at multiple spatial scales
and extents in GIS using LiDAR-derived digital terrain models; 3) sta-
tistically analyze the influence of field and GIS-generated variables in
explaining trail soil erosion; and 4) develop a prediction function for
soil loss on trails.

1.2. GIS and LiDAR applications to soil erosion modeling

LiDAR is an active remote sensing technology used to produce high-
resolution digital elevation models (DEM). Studies using LiDAR to map
soils and geomorphic processes have found that LiDAR metrics in ad-
dition to GIS environmental cover data (e.g., soil type, geology, land
use, and land cover) enhances prediction models (Greve, Kheir, Greve,
& Bocher, 2012; Jebur, Pradhan, & Tehrany, 2014, 2015; Sankey,
Glenn, Germino, Gironella, & Thackray, 2010). Topographic metrics
from airborne LiDAR have been used in a variety of geomorphic ap-
plications, including predicting landslides, erosion potential after a
wildfire, gully erosion and forest road-induced erosion (Jebur et al.,
2014; Perroy, Bookhagen, Asner, & Chadwick, 2010; Sankey et al.,
2010; Stambaugh & Guyette, 2008; Tarolli, Calligaro, Cazorzi, &
Fontana, 2013). Some typical variables used in describing geomorphic
phenomena relevant to soil erosion on trails include slope, curvature,
and topographic roughness and wetness (Rodway-Dyer & Ellis, 2018;
Römkens, Helming, & Prasad, 2002). Curvature identifies concave
versus convex landforms and can segregate based on planform curva-
ture or profile curvature. Planform curvature is perpendicular to the
slope and relates to the convergence and divergence of flow across the
surface. Profile curvature is parallel to the slope and relates to the ac-
celeration and deceleration of flow across the slope as it indicates the
direction of maximum slope. These variables can aid in calculating
where along the trail water is collecting or shedding. Topographic
roughness is a measure of land surface variability and can be used as a
surrogate to estimate the resistance of flows (Smith, 2014). Topo-
graphic Wetness Index (TWI) quantifies topographic influence on hy-
drological processes, specifically how topography alters the location
and magnitude of saturated regions of runoff generation (Jebur et al.,
2014). Two other metrics employed by hydrologists include watershed
head, the difference in elevation from the top of the watershed to the
outpour point, and flow length, the distance from the top of the wa-
tershed to the outpour point.

1.3. Using GIS to model trail erosion

Few studies have examined GIS applications to model trail erosion
(Bodoque et al., 2017; Tomczyk, Ewertowski, White, & Kasprzak,
2017). Previously, digital elevation data (10 m and 30 m) have been too
coarse to accurately describe erosion processes along trails, which are
often only 0.5–1.0 m in width. Cakir (2005) modeled trail erosion with
3 m, 5 m, 10 m, and 30 m elevation data. She found significant re-
lationships between TSA, landform curvature, interaction of grade and

TSA, and trail grade at various resolutions, with 5 m being the most
significant. Tomczyk and Ewertowski (2013) used regression tree ana-
lysis to create a predictive model for trail condition from a 5 m DEM,
applying GIS layers to the universal and power soil erosion models and
using trail width as their dependent variable. They used similar GIS-
derived indices to the ones presented in this study including curvature,
aspect, and landform slope, and found plant communities, elevation,
aspect and slope to be important variables. Hawes, Dixon, and Ling
(2013) calculated waterflow as the upslope catchment area above the
trail segment and predicted trail condition class with 50% accuracy
using GIS-derived trail and landform slope data.

Detection of landscape pattern is sensitive to spatial scale, both
spatial resolution and extent of a spatial dataset (Rodway-Dyer & Ellis,
2018; Turner, O’Neil, Gardner, & Milne, 1989). Erosion processes are
conditioned by soil type, porosity, slope, and substrate rock fragments
and these factors can have different relationships to stabilizing sedi-
ment at different spatial scales (Poesen, Torri, & Bunte, 1994). There is
an interaction between the hierarchies of spatial scales with small, low-
level systems being part of a sequence of large, high-level systems
(DeBoer, 1992). Cammeraat (2002) describes complex interrelation-
ships of processes with increasing scale while the connectivity of runoff-
generating and runoff-absorbing areas is important at all scales.
Variability in soil surface properties and infiltration and the spatial
distribution and patchiness of vegetation cover and structure can affect
runoff at small scales, while runoff in large watersheds is often a factor
of channel width, catchment slope length and morphology and in-
creased storage features (Cantón et al., 2011). When examining sedi-
ment yield from watersheds, researchers found watershed area to be an
important predictor (Lane, Hernandez, & Nichols, 1997). Thus, findings
are likely to vary by spatial scale so modeling of geomorphic processes
must account for spatial scale attributes.

2. Study area and methods

2.1. Study area

The study area is in the White Mountains National Forest, north-
eastern U.S. in west central New Hampshire (Fig. 1). The A.T. crosses
two ecoregions within the study area: an upland Red Spruce (Picea
rubens) and Balsam Fir (Abies balsamea) forest, and a lower elevation
Sugar Maple (Acer saccharum), Birch (Betula spp) and Beech (Fagus
grandifolia) forest. The terrain varies from steep mountains to gentle
valleys with elevations ranging from 440 m to 1200 m along the trail.
The bedrock is composed of deeply buried and uplifted marine sedi-
ments with igneous granite and metamorphic schists, gneisses, and
quartzites. Multiple glaciation events have left shallow soils and ex-
posed rock at higher elevations with thin to very deep glacial till de-
posits over rock. Precipitation varies with elevation, from 400 to
850 mm per year (PRISM Climate Group, 2004).

2.2. Sampling

The Generalized Random Tesselation Stratified (GRTS) sampling
method (Stevens & Olsen, 2004) was employed to select three 5 k
segments from the 53 km of the A.T. within the White Mountains Na-
tional Forest with LiDAR data. GRTS sampling was also used to select
45 sample points within each segment, with field measurements taken
at trail transects located at the 135 sample points. This method provides
a spatially balanced random sample of segments and points that mini-
mizes spatial autocorrelation problems, an improvement on earlier
fixed interval sampling methods (Leung & Marion, 1999). The three
5 km segments provided a diversity of elevations, topography, sub-
strates, and vegetation to support soil erosion modeling at a variety of
spatial scales.
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2.3. Field data collection

In the field, a Trimble XH, 6000 global positioning system (GPS) and
global navigation satellite system (GLONASS) receiver was used to lo-
cate and record sample points, taking an average of 50 points at each
transect location with post-processing corrections of final x,y co-
ordinates. The trail centerline was also recorded with the Trimble by
walking the center of each trail segment. Since the averaged transect
location points had greater accuracies than the A.T. centerline, the
latter was adjusted when necessary to intersect the transect points. For
post-processed point data, 48% of had a horizontal accuracy within 1 m
and 86% were within 2 m; data points with horizontal accuracy greater
than 2 m were omitted from the study.

Trail soil erosion was measured with the cross-sectional area (CSA)
method described by Marion and Wimpey (2017). At each sample
point, a CSA profile was established by placing temporary stakes on
either side of the trail and stretching a taut line between their bases
(Fig. 2). Many studies have focused on measuring tread erosion re-
flecting current or recent use levels and placed the transect stakes to

capture an estimated 95% of foot traffic based on observed disturbance
of vegetation and organic litter (Marion et al., 2006; Marion, Wimpey,
& Park, 2011; Olive & Marion, 2009). In this study the transect stakes
and lines were configured to approximate what field staff judged to be
the “post-construction” or “pre-use” tread surface based on an ex-
amination of smaller scale-topography to capture both recent and older
“historic” erosion (Fig. 2). While this is straightforward in flat terrain
and for trails aligned with the fall line, judgement based on an under-
standing of cut-and-fill sidehill trail construction is necessary when
positioning stakes for side-hill trails (Figs. 2 and 3). These methods
were used because some of the trail soil loss dated from many decades
ago and vegetative recovery had occurred along the trail sides, with the
current tread centered below. Inclusion of this “historic” trail soil loss
with this method provided a greater range of soil loss that was likely to
correlate better with terrain characteristics at different spatial scales.
Vertical measurements from the transect line to the tread surface were
recorded every 10 cm to the nearest 1 mm. The dependent variable in
this study was the mean of CSA vertical measurements from the transect
line to the tread surface (Cole, 1983; Leung & Marion, 1999). This
variable, mean trail depth, was chosen because it is not influenced by
differences in tread width, which can otherwise inflate or deflate ag-
gregate CSA soil loss values. Other soil loss assessment methods (e.g.,
drones, total stations) could not be applied due to the remoteness, steep
topography, and dense forest cover over the trail segments (Cwiakala
et al., 2017; Vinson, Barrett, Aust, & Bolding, 2017).

The data employed in modeling analyses were collected during field
measurements and combined with GIS-derived measures and indices
across a variety of spatial scales and extents. At each transect, three
spatial scales and associated variables were measured. Previous studies
have emphasized characteristics assessed at trail transect locations. This
study explored a watershed-driven approach to investigate trail erosion
as affected by influential factors at multiple spatial scales. Specifically,
we examined three spatial scales (Fig. 4): 1) the transect location, 2) the
trail corridor watershed - the trail corridor extending uphill from the
sample point to a point where the trail grade reverts downhill (the
artificial local watershed), and 3) upslope landform watershed – the
larger GIS-delineated watershed that contributes water to the “trail
corridor watershed.”

At the trail transect, several biophysical measurements were

Fig. 1. Study area map of the northeastern
U.S. showing states and the study area in
west-central New Hampshire (north is up).
The inset hill-shade map is the footprint of
LiDAR showing a portion of the White
Mountains National Forest with the A.T.
shown in red and the 5 km study segments
in green. (For interpretation of the refer-
ences to colour in this figure legend, the
reader is referred to the web version of this
article.)

Fig. 2. An illustration of the cross-sectional area method for assessing soil
erosion. Both recent and “historic” trail erosion was assessed by configuring the
transect stakes and line to reflect post-construction pre-use soil loss. Soil ero-
sion, the dependent variable, was calculated as the mean of vertical measure-
ments taken every 10 cm along the dashed transect line to the ground surface.
Other studies have focused on more recent soil loss reflecting current use levels
by assessing soil loss between trail borders that capture approximately 95% of
visually obvious trampling impact, shown by lower transect line within the
current tread boundaries.
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recorded as possible independent variables, including soil texture, tread
composition, grade, and TSA angle. Tread composition is the relative
percentages of vegetation, organic litter cover, exposed soil, exposed
roots, rock, gravel and water that occur across the transect line (Marion
& Hockett, 2008; Marion & Wimpey, 2017; Olive & Marion, 2009). Trail
grade (slope) was measured with a clinometer from the transect to a
point on the trail 3 m distant in an uphill direction. TSA is the smallest
difference between the bearing of the trail and the bearing (aspect) of
the landform. We note that use data is unavailable within the study area
and could not be accurately assessed in our study. However, the three
study segments are all within the heavily visited White Mountains and
have comparable levels of use.

The trail corridor watershed was defined as the artificial catchment
area from the transect uphill along the trail to a point where water is
diverted into two directions via a grade reversal or a 100% effective
tread drainage feature such as a water bar (Fig. 4). Its width was the
maximum width of the trail for that section. Within each trail corridor
watershed, the following attributes were assessed and averaged for each
variable: trail slope, TSA, tread width, ground cover, substrate type,
and tree canopy cover. Ground cover categories assessed for the trail
corridor watershed included vegetation and organic litter, organic and
mineral soil, rock<5 cm, rock 6–30 cm, rock> 30 cm, bedrock, ex-
posed roots, and human-placed wood. Similar tread substrate types
were assessed by examining the exposed backslope cut of the trail and
tread surfaces.

The upslope landform watershed was defined as the traditional GIS-
delineated watershed created from the terrain in an uphill direction
from the trail transect, including all surface area that could contribute
water to the trail transect location. Within this area field assessments
were made and averaged for each variable, including groundcover and
substrate types, shrub cover, and canopy cover. All measurements taken
in the field were recorded on an iPad using Qualtrics© offline forms.

2.4. GIS analyses

Unprocessed point cloud LiDAR data were available through the
U.S. Geological Society (USGS) for a 484 square km swath of the White
Mountains in New Hampshire. This LiDAR was flown at 1 m nominal
point spacing with vertical accuracy of 13 cm root mean square error by
Photo Science, a USGS contractor, during leaf-off season with no snow
in November 2011. Given the substantial age of the study trails and
preponderance of rock substrates we expect small and inconsequential
levels of soil loss between the 2011 LiDAR data collection and field
measurements in June 2015. Point cloud data were used to create a 1 m
bare earth DEM model using Optech, GeoCue, Terra Scan and Terra
Modeler software for automated classification and manual inspection.
The LiDAR footprint covers 53 km of the A.T. near Lincoln, New
Hampshire, 15 km of which were used in this study (Fig. 1).

Due to their strong influence on trail soil erosion, trail grade and
TSA were also computed in ArcMap 10.3 GIS software using the 1 m
Bare Earth DEM derived from the LiDAR data for the three spatial
scales. Analytical calculations for surrogate measures of field-collected
variables mimicked the field protocols when possible. For GIS-derived
variables at the transect spatial scale, raster values were extracted from
the cells containing the transect point locations. To calculate TSA for
the trail corridor watershed, the trail was segmented into 5 m sections
for TSA calculations and averaged, and by calculating a single TSA
value from the start of the trail corridor to the end.

Additional variables derived using GIS techniques included slope,
aspect, curvature, flow accumulation, topographic wetness index, to-
pographic roughness, and watershed length and head. Slope, aspect,
curvature and flow accumulation were measured using the Spatial
Analyst extension in ArcMap 10.3. Slope was measured with the slope
tool in ArcMap (calculated for each pixel by looking at a 3 × 3 window
and determining the change in elevation from left to right and from top
to bottom around the center pixel (Horn, 1981), and by using the

Fig. 3. Field staff measuring an eroded transect with no historic erosion. Due to
interfering roots the stake on right side is slightly beyond the trail border.

Fig. 4. Three spatial scales of measurement for variables related to trail soil
loss. The cyan (lower) point marks the transect location and spatial scale, the
purple polygon delineates the trail corridor spatial scale, with the upper
boundary marked in yellow (upper point). The larger blue polygon outlined
depicts the upslope landform watershed scale, delineating the contributing area
to the trail corridor. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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ArcMap output drop raster in the Flow Direction tool (calculated by
taking the maximum slope from a center pixel to each of its 8 neighbors
in a 3 × 3 window (Travis, Elsner, Iverson, & Johnson, 1975). The
ArcGIS Curvature tool calculates the second derivative of a surface
within the 3 × 3 moving cell window; profile and planform curvature
were calculated.

Topographic wetness index (TWI) is calculated by the equation
below, where As is the specific catchment area (m2m−1) and (radian)
is the slope gradient in degrees.

=TWI Aln( /tan )s

Topographic roughness was calculated using the ArcMap Focal
Statistics tool and varying window sizes (3 × 3, 5 × 5 & 7 × 7) to
calculate the standard deviation of elevation within a cell window. The
larger the window, the more generalized the product. All kernel sizes
were input to the model to evaluate their influence on varying spatial
scale.

For the trail corridor watershed spatial scale, the zonal statistics
tools (mean and mode) were used to extract raster data. Trail slope at
this spatial scale was calculated by: 1) taking the rise/run from the
elevations of the transect and the upper trail corridor boundary, and 2)
segmenting the trail corridor into 5 m sections and computing an
average.

The upslope landform watershed was delineated using the
Watershed tool in ArcMap with the associated trail corridor as the
“pour point” (Fig. 4, blue & purple polygons). The upslope landform
watershed GIS variables were calculated using zonal statistics (mean
and mode) of slope, topographic roughness, TWI and aspect rasters.
Watershed metrics such as flow length and head were also calculated.
Precipitation estimates were obtained through application of the
parameter-elevation regressions on independent slopes model (PRISM)
algorithms that use data from nearby weather stations integrated with
DEM data, aspect, and other attributes to interpolate precipitation data

for each pixel (PRISM Climate Group, 2004).
Table 1 shows all the variables used for each spatial scale with su-

perscripts denoting variables measured in the field, GIS-derived surro-
gate measures for field variables, and GIS-derived new variables.

2.5. Modeling

Soil loss measured at transects is predominantly from water-born
soil erosion, but some loss may be from wind erosion, soil displacement
by traffic, and soil compaction (Marion & Wimpey, 2017). Regression
modeling to predict mean tread depth, the dependent variable, em-
ployed the independent (predictor) variables (Table 1) measured in the
field and derived from GIS analyses. Regression modeling proceeded in
two phases. Phase 1 modeling sought to determine the best variable
measures from field collected data, GIS-calculated surrogate measures,
alternative calculation methods and statistical measures, and spatial
scales, as described in Section 2.4. For example, slope was measured in
the field and calculated using GIS procedures with two algorithms at
three spatial scales. Forward and backward stepwise regression on
variables of the same category were modeled with the dependent
variable and the Akaike information criterion (AIC) was applied for
model selection. This method estimates the quality of the model in
relation to other models. The most significant variable was selected
from each category and these variables were input into the phase 2
modeling to develop the best predictive model.

For phase 2 modeling a randomized portion (70%) of the data was
used to develop four final predictive models relating to the three spatial
scales (Fig. 4) and an integrated model combining variables from all
spatial scales. Ordinary Least Squares multiple linear regression was
used, and variables were selected through forward and backward
stepwise techniques using R software. Five outliers were removed using
Cook’s Distance threshold and the variance inflation factor and a cor-
relations matrix were examined for each variable to detect

Table 1
List of variables used to predict soil loss at trail transect. Variable categories in bold were reduced to one significant variable for each spatial scale prior to modeling
analyses.

Spatial Scale
Variables Transect Trail Corridor Watershed Upslope Landform Watershed

Slope Grade (slope)* Slope ratio (trail slope/
landform slope)* Slope (Horn & Travis)†
Slope ratio (Horn & Travis)†

Mean Grade * Trail watershed grade (entire corridor)† Trail
watershed grade (mean, 5 m segments)† Trail watershed grade
(mode, 5 m segments)† Slope ratio (mean trail watershed slope/
landform slope (Horn & Travis)† Slope ratio (mean trail
watershed slope segmented/landform slope (Horn & Travis)†
Slope ratio (mode trail watershed slope segmented/landform
slope (Horn & Travis)†

Grade* Mean & mode Slope (Horn
& Travis)†

Trail Slope Alignment
Angle (TSA)

TSA*
TSA (trail bearing-landform aspect)†

Mean TSA *
TSA (entire corridor)†
TSA (mean, 5 m segments)†
TSA (mode, 5 m segments)†

Size Length trail watershed*
Trail watershed size (m2)†

Length*

Precipitation Precipitation (PRISM)† Precipitation (PRISM)† Precipitation (PRISM)†
Soil Texture Soil Texture *
Ground Cover Trail Tread Characteristics* Mean Ground Cover* Mean Ground Cover*
Substrate Type Mean Substrate Type* Mean Substrate Type*
Curvature Profile & Planform Curvatures at 1, 10 &

30 m‡
Mean & mode Profile & Planform Curvatures at 1, 10 & 30 m‡ Mean & mode Profile & Planform

Curvatures at 1, 10 & 30 m‡
Aspect Landform Aspect * Mean & Mode Aspect† Mean & mode Aspect†
Topographic Roughness St. dev. of elevation for 3 × 3, 5 × 5 & 7 × 7

window‡
Mean & mode st. dev. of elevation for 3 × 3, 5 × 5 & 7 × 7
window‡

Mean & mode st. dev. of elevation
for 3 × 3, 5 × 5 & 7 × 7 window‡

Watershed metrics Flow Accumulation‡
Topographic Wetness
Index‡

Sum Flow Accumulation‡
Mean & mode Topographic Wetness Index‡

Sum Flow Accumulation‡
Watershed head
Watershed flow length
Mean & mode Topographic
Wetness Index‡

* Field-collected variables.
† GIS-derived surrogate for field variables.
‡ GIS-derived new variables.
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unacceptable levels of multicollinearity. The model was then validated
with the 30% of the field data withheld from the training set using
simple linear regression. The validation dataset had a balanced dis-
tribution of data points from each of the three A.T. segments.

3. Results

3.1. Regression results

Results from the regression modeling analyses are shown in Table 2
where the adjusted coefficients of multiple determination (R2) re-
present the proportion of explained variation in mean trail depth. The
combined spatial scale model performed the best (R2 = 57%), and its
inclusion of variables from each of the spatial scales indicates that the
interaction of topography, substrate, and trail design attributes from the
transect to the watershed scale all aid in explaining trail soil loss
(Table 2). The upslope landform watershed model explained the least
variation in soil loss, at 39%. An additional 4% of the variance was
explained with the transect scale model, with another 5% of variance
explained by the trail corridor model (Table 2).

3.2. Analysis of spatial scales

The analysis of trail soil loss was analyzed at different spatial scales
to identify mechanisms that influence where water is traveling downhill
across the landform and along the trail. At the transect scale, pre-
cipitation, trail grade and TWI were included in the model, with pre-
cipitation (p < .001) and trail grade (p = .044) as significant pre-
dictors (Table 2). At the trail corridor scale, precipitation (p < .001)
remained in the model, with three new predictors: trail corridor mean
grade (p < .001), trail corridor mean substrate type (% soil)
(p = .130), and mean landform slope along the trail corridor
(p = .015). At the upslope landform watershed scale, precipitation
remained in the model (p < .001), with two new predictors: upslope
watershed head (p = .079) and mean landform slope for upslope wa-
tershed (p = .091).

All but two of these variables were included in the combined spatial
scale model (Table 2), with seven significant predictors, including:
precipitation (p < .001), mean landform slope for upslope watershed
(p = .001), trail corridor mean grade (p = .003), landform slope at
transect (p = .004), upslope watershed flow length (p = .005), mean
landform slope along trail corridor (p = .018), and trail corridor mean
substrate type (% soil) (p = .048).

These modeling analyses point to the strong influence of

precipitation, which was highly significant in all models. Trail corridor
mean grade was also highly significant in the trail corridor and com-
bined spatial scale models (Table 2), and mean landform slope along
the trail corridor was also significant in both these modes. Soil loss
increases as the grade of the trail corridor increases but for side-hill
trails soil loss diminishes as landform grades increase.

In the variable importance plot for the combined spatial scales
model (Fig. 5), precipitation accounted for 42% of the variation in R2.
Precipitation determines how much water falls onto the trail and sur-
rounding areas that may generate runoff onto the trail, so the more
precipitation received, the more soil loss occurs as is expected. The next
most influential variables included trail corridor mean grade (15%),
trail corridor substrate (12%), and landform slope at the transect
(10%). Slope has different effects on soil loss at different spatial scales
and was a significant factor when measured at each spatial scale in the
combined model (e.g., landform slope at transect (p = .004), trail
corridor mean grade (p = .003), mean landform slope along trail cor-
ridor (p = .018), and mean landform slope for upslope watershed
(p = .001) (Table 2).

3.3. Model validation

A spatially balanced sample of 30% of the transects from the three

Table 2
Regression results of modeling trail soil loss (mean trail depth) at three spatial scales. Sample size of each model is 79.

Independent Variables Regression Models/Scale

Transect Trail Corridor Upslope Landform Watershed Combined Spatial

Precipitation 2.6a (< 0.001)b 2.9 (< 0.001) 3.4 (< 0.001) 2.8 (< 0.001)
Trail grade at Transect (field) 2.0 (0.044)
Landform Slope at Transect (Travis) 0.8 (0.129) 1.6 (0.004)
TWI at Transect point 1.1 (0.137)
Trail Corridor Mean Grade (field) 3.9 (< 0.001) 3.6 (0.003)
Trail Corridor Slope ratio (split/GIS Landform Slope (Horn)) 17.9 (0.146)
Trail Corridor Mean Substrate Type: Percent Soil −0.3 (0.13) −0.4 (0.048)
Mean Landform Slope along Trail Corridor (Horn) −1.2 (0.015) −1.2 (0.018)
Upslope Watershed Head 0.9 (0.079)
Upslope Watershed Flow Length 0.3 (0.005)
Mean Landform Slope for Upslope Watershed (Travis) −0.53 (0.091) −0.8 (0.001)
Constant −73.5 −43.9 −50.1 −34.6
Adjusted R2 0.43 0.48 0.39 0.57
F-stat 16.51 20.02 18.88 14.96
Residual Standard error 64.13 61.25 66.08 55.36

a Coefficients of mean vertical depth of soil loss (cm).
b Two-tailed t-test significance.

Fig. 5. The variable importance plot for the final combined spatial scale model
(Adjusted R2 = 0.57). Metrics are standardized with a sum of 100%.
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A.T. segments was used to validate the regression modeling results.
Given the small sample size for the validation results, higher variance in
model accuracy is expected. All four of the models performed with R2

above 0.43. Comparisons of model estimates for mean tread depth to
field measured values found that the transect scale model performed
the best, with an R2 of 0.61. While the combined spatial scale model
had explained the highest percent of soil loss variance, the validation
yielded a predicted vs. observed value correlation of 43%.

4. Discussion

4.1. Improvement of regression equations

This study was designed to include substantial exploratory work in
developing, collecting, and analyzing many new, to recreation ecology,
field-measured and GIS-calculated variables. These included GIS sur-
rogates for field-measured variables and new variables employing dif-
ferent analytical methods and spatial scales enabled by GIS software
and LiDAR data (Table 2). The best CSA soil loss model presented in
Olive and Marion (2009) included soil texture variables, use level and
type, TSA, trail grade, and topographic position (adjusted R2 = 0.32).
Trails with fall-line alignments and steeper slopes were most sig-
nificantly correlated to soil loss. While this study used a different de-
pendent variable to avoid the confounding influence of trail width, the
prediction of soil loss achieved higher adjusted R2 values. This was
possibly due to the application of GIS and LiDAR terrain data employed
in this study, which broadened the spatial extent of analysis and pro-
vided many new variables relating to soil erosion at different spatial
scales.

The extensive regression modeling performed in this research
yielded some interesting new variables that influence trail soil loss.
Despite the very large number of potential explanatory variables and
alternative measures, three of the models contained four or fewer
predictors, an unexpected finding. However, the combined spatial scale
model contained eight predictors, seven significant at the 0.05
threshold, and explained 57% of the variation in mean trail depth.
Precipitation was the most influential variable, included in all four
models (p < .001). While the amount of precipitation is expected to be
an influential variable for trail soil loss, we also suspect that this vari-
able, which was different for each A.T. segment but the same for each
transect within segments, could possibly be accounting for variation
due to differences in other factors which were not measured and
evaluated. For example, amount of use and history of tread main-
tenance likely vary between segments but could not be accurately
measured or assessed for inclusion in regression modeling. This is a
potential study limitation that requires additional investigation.

As revealed in the regression modeling (Table 2) and the variable
importance plot (Fig. 5), slope has different effects on soil loss at dif-
ferent spatial scales and was a significant factor when measured at each
spatial scale in the combined model. Steeper slopes have more potential
energy and water travels down them at faster rates, scouring and
transporting soil along the way. Steeper trail grades correlate to higher
levels of soil loss. However, greater slopes at the small scale-topography
level, where landform slope was measured at the transects, also equate
to higher soil loss. However, the landform slope of the trail corridor and
the upslope watershed both have a negative relationship with soil loss
at the transect. Within larger spatial watershed scales there can be
substantial terrain variability and rugosity that shift or pool water flows
and promote infiltration.

Upslope watershed flow length was included in the combined spa-
tial scale model. Depending on landform slope and infiltration rates,
longer flow lengths can allow more water to accumulate and run
downhill, delivering more water to a trail.

The substrate of the trail corridor was recorded as either soil, rock at
four size classes including bedrock, roots or human-placed wood. Soil
was the only substrate type that was included as a significant variable in

the regression models, with greater percent soil correlating to areas that
are not very erosive and with lower soil loss. In steeper, generally rocky
terrain, soils were shallow originally due to removal by glaciation.

4.2. GIS surrogate data

The resolution of DEM’s has important implications on the accuracy
of GIS data compared to field measurements. With 1 m data, slopes over
an area larger than 3 m are relatively accurate, but with smaller areas
DEM resolution becomes limiting. While some trail corridors were less
than a few meters in length, most were longer. Regression modeling
revealed that the slopes measured in the field at the transect and trail
corridor scales were more strongly correlated than GIS-derived slope
values, while landform and watershed slopes had higher correlations
when using the GIS-derived layer. This is largely a function of scale. At
the transect scale, 1 m resolution data appears to be insufficiently ac-
curate to mirror field measurements. Dense vegetation and large rocks
in some areas likely also hinder the accuracy of LiDAR-derived DEMs.
GIS products were of greater utility at larger spatial scales and when not
directly derived from the trail centerline. GIS measurement error occurs
from relating point and line features to the grid design of the raster
layer. Trail grades, alignments, and tread conditions and grades can
change rapidly over short distances. GPS error in the accuracy of the
trail centerline versus transect point data adds to uncertainty in GIS
layers. These findings point to the need for more accurate LiDAR data,
either from airborne or ground-based sensors, and to improved GPS
accuracy in the collection of trail centerlines and transect points.

4.3. Effect of spatial scale

Spatial scale, both the grain and the extent can strongly influence
the factors that are being modeled (Turner et al., 1989). To explore the
resolutions that would best suit the ecological problem being modeled,
we explored several different resolutions for topography variables (1 m,
10 m, & 30 m). When considering the variables that might influence
trail soil erosion the spatial extent in which to frame the problem was
considered. Previous field studies have limited their focus to the trail
transect scale (Marion & Wimpey, 2017; Olive & Marion, 2009). Slope
and TSA were measured at the trail transect, omitting watershed
measures. This study sought to explore the effects of spatial scale by
also framing trail erosion within the larger trail corridor and landform
watershed perspectives. Variables that were significant to trail erosion
entered and departed the model at differing spatial scales. For example,
trail grade and TWI were included in the transect scale model but were
omitted from the combined spatial scale model. This indicates that
variables that were influential at a fine-scale are often less influential at
larger scales, findings that are consistent with other soil erosion studies
(Cammeraat, 2002; Cantón et al., 2011).

4.4. Limitations

The higher spatial resolution DEM used in this research improved R2

values for explaining soil loss compared to other studies (Cakir, 2005;
Tomczyk, 2011), but the resolution may yet be insufficient, resolu-
tions< 0.5 m are likely to improve correlations and insights. Trails can
turn rapidly and undulate up and down slopes over short distances. The
spatial information calculated at 1 m resolution may be too coarse for
rapidly changing alignments or to account for small drainage features
or out-sloped treads. Tread drainage features are very important for
moving water off the trail but 1 m data does not accurately reflect these
features.

Because the soil loss measure was used to train the model, the as-
sumption is that trail characteristics associated with transects that have
very high soil loss will predict other spots that could erode greatly.
However, soil loss may be recorded as slight even when trail char-
acteristics such as slope and fall-line alignment predict substantial soil
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loss due to shallow depth to bedrock. In the study area’s mountainous
terrain, the soils are frequently very thin, often because of past gla-
ciation, and 2–5 cm of soil over bedrock are common. In these situa-
tions, if the trail was steep and aligned with the fall-line, trail erosion
measures would be expected to be substantial, yet measured soil loss
was sometimes small because the majority of soil had been removed
during glaciation events. This common situation substantially reduced
variation in the dependent variable and confounded the model’s ability
to accurately predict locations where highly eroded treads should
occur, reducing correlations between predicted versus actual soil loss.
Future studies should include a measurement of soil depth to bedrock
near transects. Modeling in areas with less rock in tread substrates and
with a substantial range in soil depth is even more desirable. In this
study, modeling was limiting in its ability to accurately predict ag-
gregate erosion, though it can more accurately predict areas that will
erode quickly. Whether those areas will become eroded treads is a se-
parate issue dependent on soil depth, since once bedrock is exposed the
tread becomes stable.

4.5. Trail management implications

It is possible for trails to be sustainably designed and constructed
and used for decades with very little environmental impacts to vege-
tation, soil, and water (Marion & Wimpey, 2017; Marion, 2016). Trail
design elements such as grade, alignment of the trail with the prevailing
landform, rockiness of tread substrates, and soil type influence how a
trail will resist degradation over time. This research indicates side-hill
trail alignments are most sustainable and that less soil loss occurs with
diminishing trail grades and increasing landform grades. Trail main-
tenance features such as grade reversals, out-sloped treads, drainage
dips, and water bars divert water off trails. The density, efficacy, and
maintenance of these features should be greater when precipitation
increases, or when trail watersheds increase in size and landform
steepness, as indicated by increasing trail watershed flow lengths and
landform slopes.

Those involved in trail planning, design, construction, and main-
tenance manage how frequently these features are introduced to the
trail depending on the topography and substrates the trail traverses.
Consideration of where water is entering the trail corridor and of small
scale- and macro-watershed attributes influence how sustainable the
trail will be over time. Adapting design standards to differing geologic/
soil, vegetation, topographic, and watershed attributes should be con-
sidered in the design of sustainable trails or during relocations to avoid
non-sustainable segments. Fixed, universally-applied trail design spe-
cifications may be both desirable yet unachievable. The combined
spatial scale model presented in this paper offers some new insights for
trail managers for environmental and trail design factors to consider
when constructing and managing sustainable trails. Trail professionals
are beginning to initiate trail design work using GIS capabilities, which
increasingly allow the direct application of knowledge developed by
studies like this one.

Finally, we note that in rocky terrain with thin soils over bedrock
the traditional sustainable trail design guidance is less applicable since
extensive soil loss cannot generally occur, though steep rocky trails can
be unsafe or promote trail widening behaviors. Trail design that pro-
motes visitors remaining on the designed tread remains an important
objective to deter off-trail traffic that would damage trailside vegetation
and soils. This suggests avoidance of tall “Paul Bunyan” steps or uneven
treads with excessive rockiness or exposed roots. Soil depths ought to be
considered when making decisions about the need for relocations and
their design. A trail already eroded to bedrock is sustainable as long as
it is safe and retains/concentrates visitor traffic, while an eroding trail
in deeper soils is a better candidate for closure and rerouting.

5. Conclusion

The regression modeling developed in this study provided more
accurate and significant predictions of soil loss on unsurfaced trails in
comparison to earlier studies. In exploring three spatial scales and a
final combined model using variables from all three spatial scales, we
have identified several new soil loss relationships. GIS analyses with
LiDAR data enabled the creation and use of many new trail corridor and
upslope watershed variables that have not been considered in other
trail studies but which are significantly correlated to soil loss.

Future studies can continue to develop and refine these types of trail
soil loss models to develop an improved understanding of the variables
that influence trail sustainability. Work in areas with deeper soils and
less rockiness should improve the accuracy of predictive models.
Continued work with improved GIS capabilities and finer resolution
LiDAR data at different spatial scales are also likely to prove beneficial.
In particular, the collection of ground-based LiDAR along trail-corridors
appears to offer great promise in both evaluating trail impacts and
sustainability and in monitoring trail degradation over time.
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