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Detecting Hidden Wireless Cameras through Network Traffic Anal-
ysis

KC K. Cowan

(ABSTRACT)

Wireless cameras dominate the home surveillance market, providing an additional layer

of security for homeowners. Cameras are not limited to private residences; retail stores,

public bathrooms, and public beaches represent only some of the possible locations where

wireless cameras may be monitoring people’s movements. When cameras are deployed into

an environment, one would typically expect the user to disclose the presence of the camera as

well as its location, which should be outside of a private area. However, adversarial camera

users may withhold information and prevent others from discovering the camera, forcing

others to determine if they are being recorded on their own. To uncover hidden cameras, a

wireless camera detection system must be developed that will recognize the camera’s network

traffic characteristics. We monitor the network traffic within the immediate area using

a separately developed packet sniffer, a program that observes and collects information

about network packets. We analyze and classify these packets based on how well their

patterns and features match those expected of a wireless camera. We used a Support Vector

Machine classifier and a secondary-level of classification to reduce false positives to design

and implement a system that uncovers the presence of hidden wireless cameras within an

area.



Detecting Hidden Wireless Cameras through Network Traffic Anal-
ysis

KC K. Cowan

(GENERAL AUDIENCE ABSTRACT)

Wireless cameras may be found almost anywhere, whether they are used to monitor city

traffic and report on travel conditions or to act as home surveillance when residents are

away. Regardless of their purpose, wireless cameras may observe people wherever they are,

as long as a power source and Wi-Fi connection are available. While most wireless camera

users install such devices for peace of mind, there are some who take advantage of cameras

to record others without their permission, sometimes in compromising positions or places.

Because of this, systems are needed that may detect hidden wireless cameras. We develop a

system that monitors network traffic packets, specifically based on their packet lengths and

direction, and determines if the properties of the packets mimic those of a wireless camera

stream. A double-layered classification technique is used to uncover hidden wireless cameras

and filter out non-wireless camera devices.
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Chapter 1

Introduction

By 2021, wireless camera sales in the United States are projected to reach $32 billion, over

three times the sales in 2016 [4]. While cameras have primarily been used for surveillance

and anti-theft measures, their applications in public spaces expand beyond such duties.

Monitoring systems, especially for smart cities, have arisen due to the combination of multiple

wireless cameras with additional processing hardware capable of quickly analyzing video

imagery. Identifying ideal travel times based on traffic congestion and locating available

parking spots are only some of the benefits derived from using wireless cameras to analyze

everyday life in cities [24, 27].

However, the popularity and accessible cost of cameras has led to their integration into

the home, providing homeowners with additional security when they are away. In general,

cameras may be found indoors, monitoring residents as they move in and out of the home,

as well as guests who may have been left alone. With the rise of homestay websites such as

Airbnb and CouchSurfing, more homeowners have installed cameras within the guest area

to ensure that the home’s integrity is maintained. While wireless cameras should be used

as an additional layer of protection, adversaries may take advantage of the technology and

use cameras as tools for privacy invasion. Due to their small size, cameras may be well

concealed, leaving people unaware of the unwarranted surveillance.

1
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1.1 Motivation

Typically, homestay companies require hosts to disclose the presence of a camera, with the

stipulation that the device is only placed in public areas (i.e., living room, kitchen) [5].

However, hosts may easily withhold this information from the listing, leaving guests none-

the-wiser of the wireless camera’s presence, whether it is in a public or private area. In fact,

multiple instances have been reported where guests have found cameras hidden in vents,

smoke alarms, and even shampoo bottles, the latter resulting in imprisonment [15, 30, 36].

Using wireless cameras to invade privacy is not limited to homestays. Cameras may be

hidden in everyday items that are strategically installed in areas so that their placement

seems accidental. Remote-controlled drones may be outfitted with wireless cameras and

flown around homes to observe residents through open windows. From a broader viewpoint,

wireless cameras may be installed in parks, restaurants, public restrooms, beaches, changing

rooms, and many other public spaces [13, 35]. All of these locations are susceptible to

adversaries wishing to invade others’ privacy, and with the small size of cameras on the

market today, it is easy to discretely hide cameras and record unsuspecting people.

With the possible placement of multiple cameras throughout a home, across a beach, etc.,

one would want to prove that a device is possibly installed. To do this, a large collection

of data is needed to notice the camera’s unique features, meaning that there would need

to be multiple data collection points. One approach would be to deploy multiple wireless

camera detectors throughout the area, allowing them to collect as much diverse data as

possible, thereby increasing the chances of device identification. For such an approach to

work, these detectors would need to be small and cost-effective, making them portable and

easily accessible. Fortunately, such devices do exist and may be used as traffic monitors,

supplemented by additional machine learning techniques on a local machine.
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1.2 Problem Description

For this research, we consider a scenario where a guest is staying at an Airbnb location.

As stated, under Airbnb policy, hosts are allowed to install cameras in public, non-invasive

areas but must report their presence on the listing. However, hosts may easily withhold this

information or lie about the camera’s location, thus leaving guests uninformed. We operate

under the assumption that a host may have placed a wireless camera in the home without

notifying the guest. The camera may be found in a public or private area. In either case,

the camera is well-hidden so that it is not visible to the naked eye. Our goal is to determine

if a camera is present, and, if possible, the room in which the camera has been placed.

1.3 Research Objectives

Developing a wireless camera detector can be done in a three-fold process. To start, we wish

to create a wireless traffic sniffer, a program that observes and collects the packets traveling

over the surrounding network. Data from both camera and non-camera devices will be

gathered. We will preprocess this data to extract relevant features and form groupings

based on the packets’ timestamps. We aim to train a classifier that will use these features to

accurately differentiate between traffic patterns for camera and non-camera network streams.

Finally, we will determine the best application of the classification technique used, deciding

if a single-level or hierarchical method produces the best results.



Chapter 2

Background

2.1 Network Traffic Analysis

Network traffic analysis provides in-depth information about a network and its users, iden-

tifying patterns in usage as well as any possible flaws or exploits [10]. Using this knowledge,

network administrators can detect when and where a network is failing, including situations

where unknown traffic has entered into the network stream or unprecedented congestion

occurs. While network traffic analysis has obvious advantages, it may be exploited by ad-

versaries looking to infiltrate a network to collect personal data, or simply to render the

network useless for others. With the rise of mobile devices over the past two decades, using

network traffic analysis to monitor user behavior has left people susceptible to attacks from

those who recognize the patterns of specific applications and may extract credentials and

private information from the generated network traffic [14].

In general, network traffic analysis is conducted in a four-step process (Figure 2.1). Network

traffic may be collected using a self-developed packet sniffer or with popular monitoring tools

like Wireshark [7, 26]. The data will be run through a preprocessing unit that will extract

significant features that may be useful for the analysis, at which point behavioral patterns

and network performance are uncovered. Finally, the trained model is used to evaluate future

systems and identify characteristics of the network, as well as the people who use it.

4
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Figure 2.1: General process for conducting network traffic analysis.

Router-based monitoring techniques dominate the industry when collecting and analyzing

network data. The Simple Network Monitoring Protocol (SNMP) runs at the application

layer as a part of TCP/IP, passively calculating network statistics through administrator

requests. Remote Monitoring (RMON) is similar to SNMP, but instead of requiring spe-

cific requests on the administrator’s end, alarms can be set in the system that are tripped

when suspicious activity is detected. Finally, Netflow actively collects and analyzes network

traffic as it enters the interface, preemptively characterizing the network without explicit

administrator interference. Non-router based techniques offer less flexibility and may be ei-

ther active (probing the network to measure traffic behavior between two points) or passive

(sniffing existing network packets at only one point).

2.2 Networking

2.2.1 TCP/IP Model

The Internet protocol suite (Figure 2.2), also called the TCP/IP model, was implemented

by DARPA in the mid-1970s as a standard for Internet communication between networked
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devices [9]. The model utilizes the TCP and IP protocols as the foundations for reliable mes-

sage transmission across a network. The architecture itself serves as an abstraction of the

expected behaviors and relationships between communicating devices, allowing manufactur-

ers to follow a set of standards when designing such machines. As network communication

exists between various hosts with possibly different compositions, a standardized framework

model allows for seamless communication and provides a base framework of design for de-

velopers constructing such systems.

Figure 2.2: Architecture stack for the TCP/IP model.

There are four layers to the TCP/IP model (from top to bottom): Application, Transport,

Internet, and Link. Within the Application layer, data begins in its raw form and is re-

formatted in preparation for handling by the network. The Transport layer will handle

additional formatting before adding on a transport header, later establishing the connec-

tion for transmission of a segment (TCP) or datagram (UDP). The Internet layer provides

the actual capabilities for transmitting packets, though unreliably. Finally, the Link layer

encapsulates the information collected between the layers before physically moving packets

between different hosts’ Internet layers.

The Application layer allows a user and his computer to interface with the network, con-

taining protocols necessary for user applications on a network. As the top of the stack, this
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layer relies only on the assistance of the layer below it, the Transport layer, to accurately

provide support to users wishing to communicate through a network. There are two types

of protocols in the Application layer: user and support. The former group assists users

with network interfacing by providing direct services to the user (e.g., File Transfer Protocol

(FTP), Simple Mail Transfer Protocol (SMTP)), while the latter pertains to any common

functions within the system, including Domain Name System (DNS) protocols.

The Transport layer provides a connection between entities, handling the reliable transfer of

data between them. The flow control through the network, as well as basic error checking,

are conducted here. Two major protocols are available: TCP and UDP. TCP relies on a

connection between communicating devices and ensures the reliable transmission of segments.

Oppositely, UDP is connectionless and can be seen as less reliable when handling datagrams

across the network.

The Internet layer handles the actual transmission of packets, but there is no guarantee for

a reliable transfer through routing and IP addressing. The reliability of packet movement

depends on the behaviors and settings of the layers above. This layer also deals with any

fragmentation or security checks. Because IP is connectionless, it remains agnostic when

handling data for upper layer protocols. Examples include the Internet Control Message

Protocol (ICMP), used for error and congestion reporting, and Internet Group Management

Protcol (IGMP), applicable to the establishment and management of group hosts in IP

multicasting.

Within the Link layer, a link is directly established between two nodes to allow for immediate

data transmission. When reading data from the network, this layer takes the information and

compiles it into a frame, forming a consolidated package that will be communicated between

devices; the MAC address of a frame is attached here. The IEEE 802 standard maps to the

Link layer, providing additional behaviors and formatting guidelines when executing major
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Local Area Network (LAN) protocols. The 802.11 standard, which handles Wireless Local

Area Networks (WLANs), will be discussed in the next section.

The Open Systems Interconnection (OSI) model (Figure 2.3) was developed soon after by

the International Organization for Standardization (ISO) and introduces an additional three

layers: Presentation, Session, and Physical [20]. The Presentation and Session layers take

over some of the duties defined with the Application layer, formatting data and establishing

sessions for future connections. The Physical layer handles the actual transmission of bits

between devices. In addition, the Internet layer is renamed as the Network layer, but the

duties remain the same.

Figure 2.3: Architecture stack for the OSI model.

2.2.2 IEEE 802.11

The IEEE 802.11 standard handles communication between WLANs [19]. The data format

handled by the Link layer, once encapsulated with a MAC address and other pertinent infor-
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mation, is called a frame. 802.11 frames are sent between communicating devices, containing

all of the information necessary to understand the destination, source, and purpose of a mes-

sage. There are three types of 802.11 frames: control, management, and data. Management

frames handle the initial connection between access points and stations, while control frames

deal with channel access and frame acknowledgement. Data frames contain the actual infor-

mation that is being exchanged between hosts. For this research, we focus on data frames

as wireless camera video sequences are transmitted through this frame type. It is important

to note that 802.11 frames may be encrypted. However, encryption impacts the payload of

the frame, while this research only makes use of the information found in the frame header.

All 802.11 frames follow a standard format, with a data frame’s fields shown in Figure

2.4. The Frame Control field is a 16-bit stream that contains general setup and format

information, including the type and subtype of the frame, the transmission direction, and

the protocol version. Two important bits within this field indicate what type of hosts are

communicating and in which direction, labeled as To and From DS. Based on the setting of

these bits, one can know if a frame originated from a station and is being sent to an access

point, or vice versa. For the purpose of this research, we want to know if a station is sending

a frame to an access point, represented by setting To DS = 1 and From DS = 0.

Figure 2.4: General structure of an 802.11 data frame [19].

Four address fields may be found in all frames, but all of the addresses may or may not be

used. In general, frames are sent between access points and stations. Access points, which

contain a station, distribute a wireless connection to a variety of stations, managing them



10 Chapter 2. Background

as necessary. A station is a device that connects to an access point, utilizing the network

connection provided and executing behaviors directed by the user. Based on the setting of

the To and From DS flags, the usage and meaning of the address fields will vary. Table 2.1

summarizes the address assignments according to the flags’ settings.

The BSSID describes a section of a service set, a group of wireless network devices identified

by the same SSID, which commonly refers to the network’s name. BSSIDs are formatted

similarly to MAC addresses but specifically serve as the MAC address of the radio interface

to which a client is connected.

Table 2.1: Address field values for different To and From DS bit combinations [19].

To DS From DS Address 1 Address 2 Address 3 Address 4
0 0 Destination Source BSSID N/A
0 1 Destination BSSID Source N/A
1 0 BSSID Source Destination N/A
1 1 Receiver Transmitter Destination Source

2.3 Wireless Cameras

In general, wireless cameras are composed of the same hardware: a lens, an image sensor, a

dedicated System on a Chip (SoC) for encoding and transmission preparation, and a Wi-Fi

chip [3, 18]. Figure 2.5 depicts these components and how they interact. When recording

an image, the lens focuses the light reflected off the captured objects onto the image sensor.

The image sensor is separated into multiple units, called pixels. Each pixel records the

intensity of the light that reaches it, converting the light into electronic signals for the

camera’s image processing circuitry to then handle and prepare for transmission. There are

two main types of image sensors: a charge-coupled device (CCD) and a complementary metal

oxide semiconductor (CMOS). CCD sensors are geared towards more sophisticated cameras,
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specifically those used for high-quality broadcasting. In contrast to CCD, CMOS sensors

are cheaper and require less power, making them the perfect choice for network cameras,

smartphones, and other consumer-dedicated products. CMOS sensors process each pixel

individually, handling each charge before transmitting a single digital bit. Once the image

has been converted into bits readable by the SoC, it is then processed, compressed, and

fragmented before transmission over the network using the Wi-Fi chip. Once the video has

been transmitted, it can be reviewed in real-time or stored for future viewings.

Figure 2.5: Standard hardware components of wireless cameras [11].

2.3.1 System on a Chip (SoC)

Wireless cameras typically have dedicated hardware for transmitting video data over the

network. SoCs contain the same general components: a microcontroller unit (MCU), an

image sensor processing (ISP) module, a codec module, and a networking protocols module.

While the MCU runs the SoC, the three other modules are responsible for processing the

received data, compressing the images into smaller frames, and preparing these frames for

transmission to some remote storage.
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2.3.2 Image Sensor Processor (ISP)

Using the information provided by the image sensor, the ISP will interpolate the image,

building the frame and providing the colors based on the color of the surrounding pixels

through a process called demosaicing [22]. The ISP also handles clean-up duties, including

focusing, noise reduction and filtering, and sharpening. By refining the provided image, the

system has a clearer, more accurate depiction of the recorded scene that will provide a more

attractive representation of the video when reviewed on a remote machine.

2.3.3 Codec

Once an updated, improved frame has been built, it must be compressed to a smaller size,

simplifying transmission and utilizing less network bandwidth. The most popular standard

for video compression is the H.264 Video Coding Standard. H.264 was introduced in 2003

in response to the rising need for higher compression for large-scale applications such as

video conferencing, Internet streaming, and broadcast television [17, 33]. The standard was

designed with flexibility and customizability in mind, allowing users to integrate H.264 with

a variety of applications and networks while also modifying it to meet their needs.

H.264 covers two main layers: the Video Coding Layer (VCL) and the Network Abstrac-

tion Layer (NAL). The VCL handles the efficient representation of the data, while the NAL

takes the VCL representation and formats it so that it can be transmitted through different

mediums. The main goal of the NAL is to provide “network friendliness”, allowing for cus-

tomization of the VCL for various purposes, specifically for the video representation of both

conversational and non-conversational applications. The VCL handles the compression and

segmentation of the video images, producing the formatted results utilized in this research’s

approach.
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Video Coding Layer (VCL)

The H.264 VCL follows the block-based hybrid approach for video coding. Each coded pic-

ture is represented through block-shaped units of associated luma and chroma samples, called

macroblocks. Luma samples depict the brightness of the image, or the “black-and-white”

portion, while chroma samples handle the necessary color information for the image. The

algorithm makes use of both intra-compression and inter-compression of the video frames,

where the former handles statistical redundancy and the latter handles temporal redundancy.

Statistical redundancy monitors the similarities between neighboring pixels within a single

frame, while temporal redundancy marks the similarities between neighboring frames within

a video sequence.

The color space of the samples follows a YCbCr distribution, where Y represents the luma

samples and Cb and Cr represent the chroma samples, specifically concerning the extent to

which the image’s color deviates from gray towards blue and red, respectively. The human

eye is more sensitive to the brightness of an image than to the color, so H.264 utilizes

a sampling structure where the number of chroma component samples is one-fourth the

number of luma component samples, halving the number of samples in both the horizontal

and vertical dimensions. This is called 4:2:0 sampling with 8 bits of precision per sample.

Macroblocks are the basic building blocks for the video coding process. Macroblocks are

formed when pictures are partitioned into fixed-size, rectangular picture areas that cover

16x16 luma samples and 8x8 chroma samples for each chroma component (i.e., Cb and Cr).

Slices, sometimes called frames, contain a sequence of macroblocks that are processed ac-

cording to the rectangular pattern of the image’s capture and reconstruction. Since pictures

can be split into one or more slices, a picture is a collection of one or more slices within the

H.264 standard.
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All slices can be coded using the following encoding types [2]:

• Intracoded (I) slices: all macroblocks within the slice are encoded using intra-prediction.

These are the largest slices of the encoding types.

• Forward Predictive (P) coded slice: macroblocks can be coded with intra- or inter-

prediction, making use of motion changes from preceding I and P slices.

• Bidirectional (B) Predictive coded slice: macroblocks can also be coded with intra- or

inter-prediction, but instead makes use of any motion changes from both preceding or

subsequent I and P slices. These are the smallest of the encoding types.

The combination of these slices forms a Group of Pictures (GOP) (Figure 2.6), which al-

ways starts with I frames [1]. GOPs can be described with the function G(m,n), where m

represents the distance between I and P slices and n represents the distance between I slices.

Figure 2.6: Example of a Group of Pictures (GOP) defined by the function G(3, 9) [1].

All luma and chroma samples are either spatially or temporally predicted. In general, I slices

are encoded using intra-compression, while P and B frames make use of inter-compression.
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When using intra-compression, algorithms are to individual blocks of a video frame, not

the entire macroblock. The video frame is divided into 16x16 pixel macroblocks, which are

composed of four 8x8 luma samples and some number of 8x8 chroma blocks. The Discrete

Cosine Transform (DCT) is applied to each block and breaks the image into separate parts

based on its contribution to image’s quality. Quantization then compresses the resulting

coefficients into a single quantum value and replaces the original coefficients with 0, providing

more room for further compression. The codec at the receiving end will then handle the

data in reverse. Inter-compression, on the other hand, applies to full macroblocks, using

predictive encoding on some frames to account for the minor changes between them. Errors

in a frame, depending on its type, can have very little or very great consequences that

propagate throughout the frame sequence. If an error is found while encoding an I frame,

all future P and B frames are impacted; a similar result occurs for encoding errors in P

frames. However, errors while encoding B frames only affect the relevant B frame, reducing

its impact on the entire sequence.

Network Abstraction Layer (NAL)

The NAL was designed with the intent to enable “network friendliness”, permitting cus-

tomization of the VCL usage in order to operate with a wide variety of transport layers and

protocols. For wireless video transmission, the NAL will map the H.264 VCL data to the

RTP protocol, or some variant of it.

NAL units, the data format at this level, are composed of coded video data structured

as a packet with some number of bytes. The header byte indicates what type of data is

encompassed within the NAL unit, with the remaining bytes containing the actual payload.

When necessary, the payload may be interleaved with emulation prevention bytes, which

helps break up the byte pattern to prevent the random appearance of the start code prefix.
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This format is generalized, allowing the NAL units to be used for both packet-oriented and

bitstream-oriented transport systems. Packet-oriented transmission is organized according

to the system’s transport protocol and allows for identification of the NAL unit boundaries

within the packet itself, removing the need for a start code prefix. This avoids unnecessary

data transmission, reducing strain on the network when packets are transmitted.

NAL units can be either VCL or non-VCL. The former handles data that represents the val-

ues of the samples in the video pictures, while the latter contains additional administrative

information, such as parameter sets and supplemental enhancement information. Parameter

sets contain important header information that is expected to rarely change and offers de-

coding guidelines for a large number of VCL NAL units. Sequence parameter sets apply to

a series of consecutive coded video pictures, also called coded video sequences, while picture

parameter sets apply to one or more pictures within the coded video sequence, each handled

individually. By using sequence and picture parameter sets, transmission for information

that rarely changes is separated from the transmission of actual coded data. Parameter sets

can be sent ahead of the VCL NAL units that they pertain to and can be retransmitted

for robustness against loss of data. Each VCL NAL unit contains an identifier referring to

the content of the relevant picture parameter set, with each parameter set then storing an

identifier referring to the content of the relevant sequence parameter set. This organizational

structure allows for a simple mapping between a small amount of data (the identifier) and

a large amount of data (the parameter set) without repeating information.

A specified combination of the NAL units forms an access unit, which, when decoded, pro-

duces a single decoded picture. The base structure of an access unit is a set of VCL NAL

units, constructing the primary coded picture. The VCL NAL units contain slices or slice

data partitions that represent the sample of the video picture. The access unit delimiter pre-

fixes the access unit, signaling the start of the unit. Supplemental enhancement information
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can also precede the primary coded picture. After the primary coded picture, additional

VCL NAL units containing redundant representations of the same areas of the same video

picture can be found. If the coded picture is the last of the coded video sequence, the end-

of-sequence NAL unit marks the terminus. An end of stream NAL unit can be found if the

coded picture serves as the conclusion of the entire NAL unit stream.

A coded video sequence contains a series of sequential access units in the NAL unit stream,

using only one sequence parameter set. Each coded video sequence can be independently

decoded, assuming the necessary parameter set information is provided. The sequence start

is marked with an instantaneous decoding refresh (IDR) access unit, which holds an intra-

picture, a coded picture that can be decoded without decoding any previous pictures in the

NAL unit stream. By having an IDR, one knows that the pictures following the intra-picture

will not need to refer to any pictures preceding the intra-picture when decoding. An NAL

unit stream contains at least one coded video sequence.

When the NAL unit stream is being transmitted, it is segmented into 188-byte packets,

forming a Packetized Elementary Stream (PES) [12]. These packets will then be grouped

together and encapsulated to form some application-layer protocol packet, usually RTP. The

UDP or TCP header, depending on which Internet protocol is used, will then be appended

to the beginning of the packet. 802.11 Ethernet frames have a Maximum Transmission Unit

(MTU) of 1,500 bytes, meaning that no more than 7 PES may be encapsulated into a single

frame. The varying characteristics of I, P, and B slices lead to a unique distribution of packet

lengths when observing a wireless camera stream. Since I slices are self-contained, they tend

to be very large. When segmented into PES, this could result in multiple, full-length 802.11

frames being needed for full transmission. This leads to a steady number of consecutive,

MTU-length packets, followed by a much smaller packet. A similar process exists for P

slices, but there would be a fewer number of MTU-length packets, but a greater occurrence
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of this phenomenon as more P slices can be found than I slices. Finally, since B slices rely

on both preceding and succeeding slices, they tend to be very small and typically fit into

one 802.11 frame.

2.3.4 Networking Protocol

With compressed frames prepared for transmission, it is up to the networking protocol

module to execute the necessary processes for packetizing and sending the data to an awaiting

destination. Implemented at the application layer, the Real-Time Transport Protocol (RTP)

handles the delivery of real-time media, namely audio and video [31]. RTP typically relies on

UDP to make use of multiplexing and checksum services, allowing for a multicast stream of

data. As stated above, part of the compression process involves the NAL encapsulating the

VCL-outputted slices, forming NAL units (NALUs), which are more suitable for transmission

over packet networks. An RTP header is appended to the beginning of the NALU, forming

an RTP packet that will then be transmitted between hosts. Parameter sets can be sent

ahead of these packets, whose headers may contain a list of sequence and picture parameter

sets, as well as a codeword specifying the exact parameter set(s) to use.

The RTP payloads may be structured three different ways: single NALU packet, aggrega-

tion packet, and fragmentation unit [38]. A single NALU packet contains only one NALU

inside the payload, while an aggregation packet combines multiple NALUs into a single RTP

payload. Fragmentation units are formed oppositely from aggregation packets, breaking a

single NALU into multiple chunks that will then be sent using multiple RTP packets.

The Real-Time Streaming Protocol (RTSP) may augment RTP by handling setup and control

duties when delivering data with real-time properties, including pausing, positioning, and

rewinding playback [32]. It is meant to be used as a “network remote control” for multimedia
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servers. Using a connected-oriented (TCP) or connectionless (UDP) session, clients first

request information about streaming media from servers using media descriptions. RTSP

assists with establishing the sessions through which the server may respond with the correct

media, allowing clients to control the media’s playback. Depending on the type of session

connection used, clients and servers can communicate through a series of messages. A

persistent connection, where the connection between the client and server remains open

once established, is recommended for all transactions between clients and servers. In the

case of transient connections, where each transaction has its own connection, servers will

have no way to send a request to the client because the session context will have become

obsolete.
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Threat Model and Requirements

3.1 Attack Model

We consider a scenario where a guest is residing in an Airbnb with wireless cameras present.

Figure 3.1 presents an overview of the device configurations. Within the home, the home-

owner (the adversary) has installed multiple security cameras in both public (green) and

private spaces (red), only alerting the guest of the cameras in the public spaces. The router

in the living room is available for guests to utilize. All devices with a red border are unknown

to the guest. We make the following assumptions:

• In this case, the cameras are connected to an unknown router. However, the guest

has no prior knowledge of which access point the cameras are connected to and should

assume that the cameras may be communicating with a network separate from the one

provided to the guest.

• Each camera is uploading a continuous video stream to the adversary’s machine.

• The adversary is the only individual who has access to the camera feed.

• The adversary alone has the credentials to access the camera and the network upon

which it is connected.

• The cameras are well-concealed and invisible to the naked eye.

20
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Figure 3.1: Attack scenario where an Airbnb host has installed multiple cameras and routers
throughout the home. Host only reported cameras in public spaces on listing.

3.2 Design Requirements and Limitations

When the wireless camera detection system is deployed within a possibly hostile environment,

its functionality must fit within a specific set of limitations:

• There is no guaranteed access to any portion of the network packet aside from the

PHY/MAC headers. In addition, the network packet, and therefore the payload, may

be encrypted. All of the necessary data needed to identify a wireless camera should be

extracted from the headers.

• The adversary who implemented the camera has full control over the configuration of

cameras within the home. This limitation also implies that more than one camera may

be installed. The system must be able to observe multiple wireless camera flows.

• The adversary retains sole access and maintenance of the Wi-Fi network(s) installed in

the home. Cameras may or may not be connected to a network different from the one
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provided to the guest. The system must perform independent of a network connection.



Chapter 4

Methodology

The major components of the project include the wireless traffic sniffer, data processing

unit, and classifiers. The sniffer collects the necessary information from each network traffic

packet, storing the data in a text file that will then be passed to the data processing unit.

This section of the system pipeline handles the grouping and organization of the packets.

Finally, the processed data is used to build and train the classifier that will detect a wireless

camera in later collections. The Amcrest ProHD 1080P Wi-Fi Camera is used for all training

and testing. Figure 4.1 (based on Figure 2.1) presents the network traffic analysis pipeline

through which the wireless camera network data is processed and analyzed to assist with

wireless camera detection.

Figure 4.1: Framework for this research’s approach to network traffic analysis on wireless
camera network traffic.

23
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4.1 Wireless Traffic Sniffer

To gather network information from communicating devices within the area, a wireless traffic

sniffer was developed to observe the packets and their flows. When gathering the packets, the

sniffer can either survey the entire collection of network traffic or lock onto a MAC address

of interest. The former would be more applicable in the case where multiple cameras could

be found in the home. The amount of time spent on each channel is malleable to the user’s

desires, but 5 to 10 seconds would allow for enough time to collect large amounts of data

for the current channel while enabling quick channel rotations. When the sniffer locks onto

a specific communication stream, it does so based on the number of consecutive maximum

length packets, as this would be indicative of a possible I or P frame. The sniffer would then

cease any channel rotation and solely focus on the given network stream.

For each packet, the following fields and flags were extracted: destination address, source

address, channel, packet length, and direction. The direction was determined based on the

To and From DS bit settings in the Frame Control field of the packet. In addition, the local

UNIX timestamp, which was relative to when the ESP32 was powered on, was calculated

for each packet, as well. All of this information was written out as a single line to a text file

for data processing later in the system pipeline.

4.2 Data Collection and Processing

Two sets of data were collected and analyzed for this research. The training data for the

classifier was gathered through the reconfigured wireless traffic sniffer, which only handled

uplink and downlink packets from the wireless camera and a YouTube video streams. An

hour’s worth of data was collected for both devices. The packets were compiled into groups
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based on their local timestamp values, forming bins with timestamp ranges of 500, 1,000,

5,000, and 10,000 ms. The streams for the two devices were collected separately, with the

wireless camera data being monitored first. To collect the testing data, the sniffer was then

set to its locked-on mode and analyzed the entirety of a network stream for 10 minutes,

stopping on the relevant channel when the camera was detected and only collecting the

camera’s network packets. The camera was marked as a device of interest during the first

round of packet sniffing. Each channel was monitored for 10 seconds before the sniffer moved

on. Using less time for data collection more accurately simulates a scenario where one is

trying to detect a hidden camera.

Each bin maintains a list of packet lengths specific to the direction of the packets. A variety

of uplink and downlink packets may reside within the same bin, so the average value of their

lengths was maintained to monitor stability, as well as assist with choosing the optimal bin

size. A master list of all packet lengths within the bins was maintained as well. In addition,

a list containing values representing the number of consecutive maximum length packets was

also present for each bin. The current packet’s length was specifically checked to see if it

is greater than or equal to the MTU (1500 bytes), contributing to both the respective bin’s

and the overall consecutive maximum length packets lists. Anytime a non-maximum length

packet was read, the counter variable used to represent such a value was added to the lists

and reset to 0.

Once this data was collected and calculated, the consecutive maximum length packets lists

for each bin were checked, counting the number of possible I and P frames within each bin.

Based on previous data collections with the camera, we observed that 6 or less consecutive

maximum length packets indicated a P frame, while anything greater would most likely be

an I frame. Because of this, the threshold value used was 6 maximum length packets in a

row, where more than 6 would indicate an I frame and anything less than or equal to 6 would
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indicate a P frame. Since a Group of Pictures (GOP) contains more P frames than I frames,

when looking at a typical wireless camera stream, we expected to see a greater proportion

of P frames than I frames, especially when the content of the video contained no movement.

The I and P frames were counted for the overall data collection, as well.

When writing out data for the classifier, the device address, access point address, average

total packet length, average uplink (UL) and downlink (DL) packet lengths, proportion of

UL packets, proportion of DL packets, proportion of I frames, and proportion of P frames

were all calculated and exported. The wireless camera was marked as being part of class

1 (camera) and the YouTube stream was marked as class 0 (non-camera). The combined

results of the wireless camera and YouTube stream were then used to train the classifier. For

the testing dataset, the devices were marked as being part of class 0 or class 1 depending on

the MAC address of interest that was recorded during the packet sniffing process. Because

of this, all streams not belonging to the wireless camera were marked under the non-camera

class. These class settings were used for testing the classifiers’ performance later.

4.3 Machine Learning Models

4.3.1 Classification Techniques Used by Previous Work

Previous research done in detecting hidden wireless cameras have utilized a variety of classi-

fication techniques for their systems, both inside and outside the realm of machine learning.

Cheng et al. [11] ran their data through 5 different supervised learning algorithms: SVM,

AdaBoost, GradientBoosting, Random Forest, and ExtraTrees, randomly allocating 30% of

their data towards training. Results were shown to be strong across all 5 methods, support-

ing the authors’ decisions for feature selection. ExtraTrees was the method used throughout
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the duration of their experimentation due to its higher accuracy value and robustness for a

single classification algorithm. In [39], a threshold-based classification technique was tested

against a neural network, with the former producing errors 24% of the time. However, the

optimal versions of each classifier were used to test their system, with the neural network

boasting significantly greater accuracy, precision, and recall scores. The human presence

detection system in [21] used a Long Short-Term Memory (LSTM) network, a model geared

towards time sequences of data points. Their classifier read in the packet length sequence for

the flows to determine if its pattern matched that of a wireless camera. Accuracy, precision,

and recall values were all at or above 98%.

4.3.2 Support Vector Machines

For this research, the main attributes observed from the network stream were the presence

of the correct To and From DS bit settings, the distribution of packet lengths over a given

number of packets, and the proportion of I and P frames. Based on the few variables used

for consideration, it was determined that a Support Vector Machine (SVM) classifier was

the most reasonable training algorithm for this project.

SVM is a supervised machine learning algorithm that makes use of kernel tricks to produce

a model that best predicts target values according to the testing data that was used to

train the model [8]. In general, the goal is to determine the most accurate hyperplane, or

boundary, between classes of data so that the data can be best classified through kernel

function manipulation into some higher dimensional space. A kernel function computes the

dot-product between the input vector and each support vector. When the model is first gen-

erated, data points are plotted around a linear boundary line, whose equation is determined

by whatever kernel function is used (i.e., linear, polynomial, gamma, etc.). Support vectors
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are then identified as the vectors on either side of the boundary that are the closest to the

line, and these support vectors drive the orientation of the boundary line. Therefore, ma-

nipulation of the support vectors directly modifies the boundary line. The goal when using

as SVM classifier is to maximize the distance between support vectors and the boundary

line through minimization of the weight vector. By maximizing this distance, the model is

further reinforced to ensure classification with more confidence.

There are a few kernel functions that are widely used for SVM classifiers. In each case,

xi indicates a training vector, data upon which the model has already been adjusted, and

xj indicates the target vector, incoming data from new sources. The most popular kernel

functions k(xi, xj) are as follows:

• Linear: xT
i ∗ xj

• Polynomial: (γxT
i xj + r)d

• Gaussian: exp(γ||xT
i − xj||2)

γ, r, and d are kernel parameters, which can be adjusted to better manipulate the kernel to

the shape of the data.

The dataset was split into the different bin sizes mentioned in Section 4.2. An SVM classifier

using a linear kernel was built for each bin size, using all of the columns except for the

MAC addresses as training features; the “Class” column was used as the benchmark for

the classifier’s performance metrics. The dataset was then split so that 90% was used for

training, with the remaining 10% serving as the test points. When the flag random_state is

not specified within the splitting function, a random seed is used for splitting. For consistency

between the different bin sizes, the random_state flag was set to 0, 21, and 42 each time

the data is separated.
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When the model was run against the test dataset, the accuracy, precision, and recall of the

model were calculated. The precision (P ) of the model was based on the following equation:

P =
TP

TP + FP
(4.1)

where TP represents the number of true positives and FP represents the number of false

positives.

The model’s recall was calculated using the number of correct classifications, defined as:

R =
TP

TP + FN
(4.2)

with FN being the number of false negatives.

Finally, the accuracy of the model was determined using the given equation:

A =
TP + TN

TP + TN + FP + FN
(4.3)

where TN is the number of true negatives. By using all three metrics, we observed the

classifier’s strengths and weaknesses, mainly focusing on the number of false positives. False

positives were given priority over false negatives with the classifier because of the trade-off

between them. False negatives can be filtered out using additional classification techniques

so that the true positive is eventually uncovered, thus increasing the latency of the classifier.

However, a longer detection rate introduces lesser consequences than an incorrectly classified

device, as false positives could lead to accusations that may have detrimental effects on both

parties.
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4.4 Implementation

To collect a large amount of data over a widespread area, utilizing multiple packet capture

units is optimal. In order for such a system to be realistically used by everyday consumers,

the units must be cost-effective as well as manageable in size, making them easy to transport.

An example of such a device, used in this research, is the ESP32. The ESP32 is a dual-core

MCU integrated with Wi-Fi and Bluetooth capabilities, part of Espressif Systems’ series of

chips with similar capabilities [16]. The chip and its variations have been integrated with

other modules to form development boards from various companies, including HiLetgo and

Heltec. The ESP32 can be programmed using the ESP Internet of Things (IoT) Development

Framework (esp-idf) or through its Arduino variant. C, C++, and Arduino are the languages

mainly used for coding. For this project, the ESP32 was programmed using C and the esp-idf

libraries. The HiLetgo ESP32 OLED and HiLetgo ESP-WROOM-32 development boards

were used for programming and testing. The wireless sniffer used in this project is modeled

after the sniffer developed in [28].

To enable wireless traffic sniffing on the ESP32, the chip must be set to promiscuous mode

during the Wi-Fi settings initialization process, allowing it to monitor the network traffic

and register the packets. The chip will repeatedly cycle through channels 1 to 11. As each

packet is recorded, it is read in as a void* type, so it must be cast to the promiscuous packet

type defined by the esp-idf. Only 802.11 data frames are monitored. From there, each packet

can be separated into its payload and 802.11 header. The radio header information of the

promiscuous packet may be accessed using an esp-idf structure. The packet payload and

802.11 header structures are user-defined, allocating bits for the necessary fields. Major

fields include the Frame Control and address fields.

One major limitation of the ESP32 is its inability to handle languages outside of the C family.
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Because the SVM classifier is developed using Python, two separate machines must be used

for data collection and processing. This prevents consolidation of the entire system onto

one device, requiring explicit user participation in collecting deployed ESP32 development

boards to analyze the network traffic data that was observed. A local machine was used to

run the data preprocessing and SVM training programs, both of which were developed in

Python.

As mentioned, only the Amcrest ProHD 1080P Wi-Fi Camera was used for this research. The

restriction on cameras used was due to financial limitations. Amazon’s top-rated cameras

all provide free access to the camera feed as long as the recording is viewed through a mobile

application on a smartphone connected to the same network as the camera. Because of this,

the network traffic patterns differed from what was expected, presenting video data as a

constant stream of DL packets when the application was open; video transmission did not

occur if the application was inactive.
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Results

5.1 Training Dataset

The wireless camera and YouTube video stream traffic were collected separately, each over

the span of one hour. 166,142 wireless camera and 44,192 YouTube video network packets

were captured by the sniffer, encompassing all UL and DL communications within the time

frame.

5.1.1 Data Parsing

The information collected by the sniffer was passed through a parser that grouped packets

into 500, 1,000, 5,000, and 10,000 ms bins. Table 5.1 and Table 5.2 summarize the major

findings of the parser, with Table 5.1 focusing on the metrics of the entire dataset and Table

5.2 specifically highlighting the average proportion of UL packets, DL packets, I frames, and

P frames for each bin size. It should be noted that Table 5.2 averages the grouped results,

meaning that the dataset for these metrics is smaller and varied greatly with a change in bin

size. As the bin size grew larger, we see very few surprising changes in the average values for

the YouTube stream. The DL packets sent to the laptop were generally sized at 1432 bytes,

with a few instances of smaller packets appearing. By increasing the bin size and grouping

more of these maximum-sized packets together, we understandably saw a steady increase in

32



5.1. Training Dataset 33

the average overall and DL packet lengths.

Table 5.1: Summary of bidirectional packet features collected from a wireless camera and
YouTube video stream. All packet lengths are given in bytes.

Video Stream Type
Feature Wireless Camera YouTube Video

Total Number of Packets 166,142 44,192
Avg. Total Length 353.108 1339.443
Avg. UL Length 523.366 426.221

UL Ratio 0.587 0.058
Avg. DL Length 111.095 1398.127

DL Ratio 0.413 0.942
No. of I Frames 294 0
I Frames Ratio 0.165 0.0

No. of P Frames 1,488 114
P Frames Ratio 0.835 1.0

However, the size of the bin had a prominent effect on the wireless camera values, specifically

with the proportion of I and P frames. Between all four bin sizes, the average packet lengths

and average proportions of UL and DL packets remained relatively stable. For the 500 and

1,000 ms bins, the proportion of I and P frames appeared to be 0.5, each. The proportion

slightly increased in favor of P frames for the 5,000 ms bin and we saw a more expected

distribution when using the 10,000 ms bin. Since we expected to see a greater number of P

frames than I frames due to the characteristics of a Group of Pictures (GOP), the 10,000 ms

bin provided the best representation of wireless camera packets within a network.

5.1.2 SVM Classifier

Using the combined data points from the wireless camera and YouTube video stream, a

dataset was built to train the SVM classifier. As stated, the wireless camera was marked

as part of class 1, with the YouTube stream falling under class 0. To monitor stability in
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Table 5.2: Summary of packet feature values for both a Wireless Camera (WC) and YouTube
(YT) video stream when packets are grouped into 500, 1,000, 5,000, and 10,000 ms bins. All
packet lengths are given in bytes.

Bin Sizes (ms)
500 1000 5000 10000

Avg. Features WC YT WC YT WC YT WC YT
Total Length 343.278 1091.163 348.971 1029.887 350.580 1282.171 350.486 1302.336
UL Length 500.067 451.966 511.578 459.017 512.645 409.233 510.687 410.388
UL Ratio 0.588 0.112 0.587 0.155 0.584 0.062 0.582 0.069

DL Length 111.384 1158.735 112.529 1110.099 116.226 1338.216 117.521 1367.912
DL Ratio 0.412 0.888 0.413 0.845 0.416 0.938 0.418 0.931

No. of I Frames 255 0 270 0 292 0 287 0
I Frames Ratio 0.037 0.0 0.077 0.0 0.161 0.0 0.154 0.0

No. of P Frames 1,660 114 1,594 114 1,498 114 1,520 114
P Frames Ratio 0.238 0.061 0.446 0.093 0.806 0.169 0.810 0.284

precision, accuracy, and recall, the SVM classifier for each bin size was run three times. The

dataset was split so that 90% of the values were dedicated towards training the model, with

the remaining 10% serving as the testing set to calculate the relevant diagnostic values. To

maintain consistency for each bin, we used three different seed values – 0, 21, and 42 – for

the data splitting and compared the accuracy, precision, and recall between each seed value

for all four bin sizes. Table 5.3 presents these values.

While the accuracy, precision, and recall values scored close to 100%, a significant number of

false positives were produced when the trained model was run against the testing set. When

using the model to identify possible cameras, this resulted in a non-zero number of devices

that were not wireless cameras to be classified as such. If this were a real-life scenario, this

misclassification could lead to issues of distrust. To see how the model would classify the

entire dataset, all of the data points were passed as input to the model with each seed for

all bin sizes. The results (Table 5.4) show a proportionally similar number of false positives

and false negatives, both of which were still significant.
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Table 5.3: Summary of metrics for SVM training using seed values 0, 21, and 42 with 500,
1,000, 5,000, and 10,000 ms bin sizes.

Bin Sizes
Model Metrics 500 ms 1000 ms 5000 ms 10000 ms

Seed = 0

Accuracy (%) 98.955 98.287 100.0 98.529
Precision (%) 99.703 99.706 100.0 97.222

Recall (%) 98.968 97.977 100.0 100.0
No. of False Positives 2 1 0 1

Seed = 21

Accuracy (%) 99.071 99.572 99.2 100.0
Precision (%) 99.552 100.0 98.684 100.0

Recall (%) 99.256 99.438 100.0 100.0
No. of False Positives 3 0 1 0

Seed = 42

Accuracy (%) 99.652 98.929 100.0 98.529
Precision (%) 99.854 99.706 100.0 97.5

Recall (%) 99.708 98.834 100.0 100.0
No. of False Positives 1 1 0 1

Average

Accuracy (%) 99.226 98.929 99.733 99.019
Precision (%) 99.703 99.804 99.561 98.241

Recall (%) 99.311 99.416 100.0 100.0
No. of False Positives 2 1 0.333 1

5.1.3 Rolling Window Classification

Because the number of false positives was still not 0 or a number close to 0, it was important

to try additional reclassification methods in conjunction with the current SVM classifier

to reduce this number. The classification values provided when the SVM classifier read

the entire dataset as input was written as an “Evaluated Class” column into the dataset.

Using these values, a “Rolling Class” was added and built. Initially, the first 5 values in

the “Evaluated Class” were grouped and the class value majority was determined, requiring

3 or more instances of class 1 (wireless camera) to be identified as a camera. Whatever
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Table 5.4: Summary of metrics for SVM tested against initial dataset using seed values 0,
21, and 42 with 500, 1,000, 5,000, and 10,000 ms bin sizes.

Bin Sizes
Model Metrics 500 ms 1000 ms 5000 ms 10000 ms

Seed = 0

Accuracy (%) 99.082 98.544 99.116 99.110
Precision (%) 99.645 99.333 99.718 98.365

Recall (%) 99.190 98.704 98.745 100.0
No. of False Positives 24 23 2 6

Seed = 21

Accuracy (%) 99.036 98.501 99.116 99.110
Precision (%) 99.557 99.304 99.718 99.169

Recall (%) 99.220 98.675 98.745 99.169
No. of False Positives 30 24 2 3

Seed = 42

Accuracy (%) 99.047 98.629 99.116 99.110
Precision (%) 99.601 99.420 99.718 98.365

Recall (%) 99.190 98.732 98.745 100.0
No. of False Positives 27 20 2 6

Average

Accuracy (%) 99.055 98.588 99.116 99.110
Precision (%) 99.601 99.352 99.718 99.300

Recall (%) 99.200 98.704 98.745 99.723
No. of False Positives 27 22.333 2 5

the class was, this value was assigned as the rolling class value for the fifth data point.

The window was then shifted down 1 and re-evaluated the majority for the second through

sixth data points, writing the newly determined value in the “Rolling Class” column of the

sixth instance. This was repeated through the entirety of the wireless camera portion of the

dataset, then restarted for the YouTube video stream section. In almost all combinations

of seed value and bin size, the number of false positives dropped to 0, with two instances

of 1 false positive being identified, raising the precision to 100% or near 100%. Table 5.5

showcases the results for this round of classification.
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Table 5.5: Summary of metrics for rolling window reclassification with window size of 5.

Bin Sizes
Model Metrics 500 ms 1000 ms 5000 ms 10000 ms

Seed = 0

Accuracy (%) 99.406 98.990 99.593 99.848
Precision (%) 100.0 100.0 100.0 99.718

Recall (%) 99.248 98.643 99.295 100.0
No. of False Positives 0 0 0 1

Seed = 21

Accuracy (%) 99.418 98.990 99.593 100.0
Precision (%) 100.0 100.0 100.0 100.0

Recall (%) 99.263 98.643 99.295 100.0
No. of False Positives 0 0 0 0

Seed = 42

Accuracy (%) 99.406 99.033 99.593 99.848
Precision (%) 100.0 100.0 100.0 99.716

Recall (%) 99.248 98.701 99.295 100.0
No. of False Positives 0 0 0 1

Average

Accuracy (%) 99.410 99.004 99.593 99.899
Precision (%) 100.0 100.0 100.0 99.811

Recall (%) 99.253 98.662 99.295 100.0
No. of False Positives 0 0 0 0.667

To observe how varying window sizes impacted the reduction of false positives, additional

classification was done using window sizes of 7, 9, and 11. We chose the 10,000 ms bin with

a seed value of 0 as it was one of only two combinations that produced a non-zero number

of false positives. Table 5.6 presents the accuracy, precision, recall, and number of false

positives for each window size.

The rolling window classification test for the bin size-seed combination also included window

sizes 13, 15, 17, and 19. However, as shown by Table 5.6, accuracy, precision, and recall

reach 100% when the window size was 11, bringing the number of false positives to 0. It

is worth noting that the precision and accuracy values remained relatively stable for three
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Table 5.6: Summary of accuracy, precision, recall, and number of false positive values when
using the rolling window classification on the training dataset classified with a 10,000 ms
bin size and seed value of 0. Window sizes used: 7, 9, and 11.

Window Sizes
Model Metrics 7 9 11

Accuracy 99.849 99.848 100.0
Precision 99.719 99.718 100.0

Recall 100.0 100.0 100.0
No. of False Positives 1 1 0

different window sizes, highlighting the importance of using large-sized windows in order to

account for any misclassified data that may have passed through undetected.

5.2 Testing Dataset

The testing data was collected over a 10 minute period, recording 30,684 packets, 30,241 of

which were delivered between the wireless camera and its access point. The packet sniffer

only had to monitor the camera’s channel once to determine that it was a possible recording

device before locking onto its network stream. We wanted to test the strength of the SVM

classifier built in Section 5.1.2 for each bin size-combination pair against the test dataset as

it was split into 500, 1,000, 5,000, and 10,000 ms bins.

5.2.1 SVM Classifier

Table 5.7 summarizes the average accuracy, precision, recall, and number of false positives

for each bin size-seed value pair used to train the SVM classifier, which was then tested on

the dataset for all bin sizes. One obvious finding was the dramatic reduction in accuracy

and precision as the testing dataset was split using the larger bin sizes and even across each



5.2. Testing Dataset 39

bin as the SVM classifier’s bin size increased. A possible explanation for such a result is the

different expectations concerning the values for certain fields. When the data was separated

into 500 ms bins, we expected the 500 ms classifier to perform well because with the way

the packets were grouped, the characteristics of the testing data would be more similar to

the characteristics of the training data. This trend, however, was not consistent as the data

was split into larger bin sizes. A decrease in data points may have possibly affected the

classifier’s ability to recognize the features of the data points, especially in the 10,000 ms

testing data bins, where network streams preceding the wireless camera had no more than

2 data points. These groupings of all collected packets into these data points may have

reflected patterns similar to that of a wireless camera, especially concerning the UL and DL

proportions, thereby causing confusion with the classifier.

5.2.2 Rolling Window Classification

As seen by the results of Section 5.2.1, an additional level of classification was necessary to

reduce the number of false positives and increase the precision. For this method, we chose

the best combination of SVM classifier and testing dataset bin size separation, using the

classifier trained by training data grouped into 500 ms bins and split according to the seed

value of 0. Choosing 0 out of the three seed values used had no effect on the SVM classifier’s

performance as all three seed values produced the same results for this combination. We ran

the rolling window classification method using window sizes of 3, 5, 7, 9, and 11. If there

are too few data points for a given network stream, the majority value served as the class

assignment; an even number of camera and non-camera classifications were assigned as a

non-camera to reduce the chance of false positives. Table 5.8 shows the results.

As the window size increased, the number of false positives decreased until it fell to almost 0.
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Table 5.7: Summary of average SVM classifier metrics across the three different seed values
for all bin size designations of the testing dataset.

Bin Sizes
Average Model Metrics 500 ms 1000 ms 5000 ms 10000 ms

500 ms

Accuracy (%) 98.358 97.942 95.953 94.409
Precision (%) 96.293 92.892 73.239 60.227

Recall (%) 99.607 99.806 100.0 100.0
No. of False Positives 39 39.333 38 35

1000 ms

Accuracy (%) 98.472 98.061 99.593 94.728
Precision (%) 96.568 96.166 74.286 61.628

Recall (%) 99.607 99.806 100.0 100.0
No. of False Positives 36 37 36 33

5000 ms

Accuracy (%) 81.092 80.102 79.766 76.997
Precision (%) 67.354 56.921 35.374 26.904

Recall (%) 99.607 99.806 100.0 100.0
No. of False Positives 491 389 190 144

10000 ms

Accuracy (%) 40.349 27.976 12.993 9.531
Precision (%) 39.440 26.731 11.293 8.559

Recall (%) 100.0 100.0 100.0 100.0
No. of False Positives 1561.667 1411.667 817 566.333

Even with a window size of 5, we noticed an improvement in the precision when compared

to the SVM classifier, indicating a significant drop in false positives. With a locked-on

dataset, the larger window sizes had a greater impact when handling network traffic from

an actual camera as there are a greater number of data points. The rolling window method

does plateau at 1 false positive. However, secondary checks for the supposed false positive’s

proportion within the entirety of the dataset can easily remedy this issue, as it will be much

less than that of the wireless camera due to the sniffer’s locked-on configuration. Another

important result of increasing the window size was the decrease in false negatives. As stated

previously, false negatives were not as large a concern for this research as false positives, but
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Table 5.8: Summary of accuracy, precision, recall, and number of false positive values for
rolling window classification using window sizes of 5, 7, 9, 11, 13, 15, 17, and 19.

Window Sizes
Model Metrics 5 7 9 11 13 15 17 19

Accuracy 98.975 99.119 99.400 99.563 99.733 99.819 99.908 99.953
Precision 97.961 98.340 98.631 99.017 99.407 99.603 99.801 99.900

Recall 99.605 99.604 100.0 100.0 100.0 100.0 100.0 100.0
No. of False Positives 21 17 14 10 6 4 2 1

reductions in both better fortified the classifier against misclassified data and highlighted

proper labels for network streams sooner.

Based on the data in Section 5.2.1, it is unlikely that the rolling window classification would

produce as favorable results with the larger bin size combinations due to the much greater

number of false positives. Since these values would cluster together for network streams, the

rolling window would immediately group and find their majority value to indicate a wireless

camera. However, conducting additional tests to gather these results highlighted the best

bin size-seed value combination for training the SVM classifier.
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Discussion

While the 10,000 ms bins for the data collections provided the most accurate representation of

a wireless camera stream, the reliability of this group size would vary based on the surveying

technique used during the sniffing portion of the system. If the sniffer was set so that it

would routinely cycle between each channel without noting a stream of interest, it is more

likely that one would see a fewer number of maximum length packets. Because of this, one

would need to set the channel rotation rate so that the the amount of time spent on a given

channel is equal to or greater than the size of the bin that is being used to parse the data

and train the model. Otherwise, the bins will contain too few data points and most likely

not contain enough packets to capture the maximum length packets. This issue is negligible

when the sniffer is set to lock onto a specific stream as an infinite number of packets for the

desired stream would be collected, thus increasing the amount of available data. However,

we do note the failures of the 10,000 ms bin, both as a grouping for test data and a training

size for the SVM classifier. By having so few data points that may vary widely in the I and

P frame proportions, the classifier relied heavily on features other than the I and P frame

proportions, thus directing the classifier towards the incorrect labels.

When searching for a typical wireless camera stream, the main characteristic the classifier

looks for is the presence of possible I and P frames. The additional attributes taken in by

the SVM classifier simply support and strengthen the model’s parameters when analyzing

network packets. A major finding of the project showed that, with proper filtering and post-
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processing, a model could be created that would successfully classify a collection of network

traffic packets as being from a camera or some other device that is not a camera. While

testing against the training set would seemingly be enough to showcase a high resiliency of

the SVM classifier against false positives and negatives, the second round of classification

mentioned in Section 5.1.2 highlights that the model itself is not perfect, yet still propor-

tionally strong when compared to the initial training. The utilization of the rolling window

method for classification further fortifies the model against such errors.

Depending on how the sniffer is set to observe data, the system may suffer when the camera’s

frame rate reduces. If the frame rate drops to as low as 1 frame per second (FPS), spending

10 seconds on a single channel while completing an overall network traffic survey could easily

result in the defining features of wireless camera traffic, namely the consecutive maximum

length packets, being overlooked. For such situations, it is imperative that a locked-on

sniffer setting is used. One can extend the amount of time spent on a given channel so

that the chances of recording multiple maximum length packets in a row increases. While

it is possible for the overall survey method to detect these, it is likely that the next time

the channel is monitored, the sniffer will miss the necessary packets, therefore reducing the

amount of usable data. Because of this, the locked-on method is the superior choice, as it

only takes one instance of maximum length packet detection for the sniffer to focus only on

the specific stream, thereby guaranteeing further recordings of the possible I and P frames.

The amount of time spent on a channel would need to increase to at least 20 seconds in to

provide an ample amount of time for detection.

Motion cameras, when recording movement by either an object within the frame or even the

camera itself (meaning actual jostling of the camera), should present the same network traffic

patterns as wireless cameras that are continuously streaming. When testing with available

cameras, a major disadvantage was that the cameras could only be accessed through a mobile
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device that was connected to the same network, with cloud services requiring additional fees.

The network traffic generated through this basic use of the cameras did not reflect the true

behavior of a wireless camera. For example, instead of being uploaded to a separate location,

shown in the network traffic as an UL from a station to some access point address, the traffic

would appear as a DL from an access point to a station, which would be the mobile device.

These inconsistencies made it difficult to replicate the typical behavior of a wireless camera

set to observe individuals based on their movement. Despite this issue, the system itself

could be adapted to recognize such a burst in network traffic, but it would take some time

using the sniffer, as well as consistent movement on the user’s end, to accurately detect this

data.

To detect hidden SSIDs, the ESP32 can be configured as an access point scanner that,

when a specific setting is toggled, may uncover a hidden SSID. However, the settings for the

access point scanner functionality of an ESP32 differ from the initialization settings that are

required to enable wireless traffic sniffing. There is not enough information describing how

these two configurations relate to one another. However, it is possible to collect the two

types of data (wireless traffic and available access points) separately and compare the MAC

addresses to determine if a hidden SSID can be found within the area.

As of now, the current ESP32 model only supports the 2.4 GHZ band for 802.11n, meaning

cameras found on channels within the 5 GHz band will not be observed by the wireless

traffic sniffer. In addition, while introduced with 802.11n, beamforming Wi-Fi has become a

standard process for 802.11ac, although it is not a requirement. Beamforming Wi-Fi focuses

signals from a router to specific devices, aiming to strengthen the connections and reduce

the wasted, weaker signals that propagate out in all directions. The ESP32 standard does

not specifically address beamforming. It is noted that only 802.11b/g/n are supported by

the ESP32, so as of now, it can be assumed that beamforming cannot be observed by the
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Limitations

A major characteristic of wireless camera traffic that makes this research possible is its unique

network patterns. In general, only wireless cameras will exhibit a patterned distribution of

consecutive maximum length packets, simplifying the process of actually identifying the

network traffic. However, because of these particular patterns, it is possible to confuse the

wireless camera detector by injecting network packets that mimic a camera’s behavior. A

situation like this could be used by guests who wish to exploit a host and falsely accuse them

of installing a network camera within the home. One possible countermeasure for such an

act would be to move within the room in which the camera is supposedly placed and monitor

for surges in I frames, as standardized, motion-less wireless camera traffic would not reflect

the change in the traffic pattern.

As mentioned, the detector is currently designed to detect continuous, live-streamed video

traffic. When a wireless camera is consistently recording and uploading video data to a local

machine, the network traffic patterns are easier to record and identify. Cameras that record

when motion is detected exhibit similar behaviors, just inconsistently. The burst of I and

P frames will only be seen when the camera registers movement, and depending on which

channel the detector is on at the time of action, the wireless camera traffic may be missed.

One way to address this issue would be to have the user spend some amount of time moving

around the room in which they believe a camera to be, allowing the detector enough time

to cycle through all of the possible channels, increasing the chances of detection.
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As mentioned in Section 4.3, we focus primarily on reducing the number of false positives

over the number of the false negatives. In general, both values would optimally approach

zero to warrant the most accurate system possible. However, reducing the number of false

positives takes precedence because of the issues that may be caused by a false accusation.

The number of false negatives increases the time taken to detect a camera, but it has a

lesser impact on the system’s overall reputation. We do observe a drastic reduction in false

positives when the bin sized is increased, but using this configuration will have to take the

channel rotation times into consideration.
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Literature Review

8.1 Applications of Network Traffic Analysis

Network traffic analysis provides access to network information that vastly improves perfor-

mance and knowledge of user behaviors. The results of network traffic analysis may be used

to recognize network patterns and information about users, raising awareness for abnormal

situations. Taylor et al. [37] developed a smartphone application identification system based

on side-channel data from application network packets, such as packet size and direction.

Using these features, their system could determine what type of application was being ac-

cessed, correctly classifying the applications with a 96% accuracy. They also monitored the

changes in these features over time across devices and versions, producing favorable results

as well. Identifying application features not only enables determining user behavior, but

also uncovering possible malware on mobile devices. In [6], the authors compared examples

of regular and malware network traffic on Android devices and extracted multiple relevant

features, including the average bytes per second and the incoming and outgoing packet ra-

tios. Using a rule-based approach to identify the malware, the authors’ system boasted a

90% detection rate.

Recognizing specific devices on a network also assists with diagnosing a network’s perfor-

mance and security. In their work, Shahid et al. [34] addressed the advantages and disad-

vantages of identifying vulnerable Internet of Thing (IoT) devices on a network. On one
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hand, by marking which devices open the network up for exposure, network administra-

tors may proactively block network access and reduce the chance of an exploit. However,

if an adversary were to have first-hand knowledge of these vulnerable devices, they may

utilize their flaws and gain unauthorized access to a network. A survey of network traffic

analysis conducted by Conti et al. specifically addresses the dangers of mobile devices as

they generate an abundance of data that may expose private information via side-channel

analysis [14]. They found that most network traffic analysis works focus on identifying

user behavior through applications used, leakage of Personal Identifiable Information (PII),

and other privacy-invading purposes. In addition, Android devices presented the greatest

vulnerabilities to attacks due to the openness of Android’s software.

Previous network traffic analysis has monitored the behaviors of wireless camera traffic

and users, relating these patterns to their subscription type. Li et al. conducted an in-

depth analysis of the per-user network characteristics for owners of a specific camera brand,

identifying patterns indicative of specific usage behaviors [23]. The authors explored a variety

of user combinations, monitoring both premium and non-premium camera owners, who may

watch any footage through a continuous live-stream, motion detection alerts, or through

replay of temporarily stored footage for future observation (only available to premium users).

While premium users tended to be very active when accessing and watching videos, 60% of

the uploaded replay videos were left unseen, wasting resources and unnecessarily accessing

the network. In addition, the cameras were only accessed only from 1 or 2 remote sites, some

of which indicated a possible surveillance usage. The authors also found that using changes

in the traffic patterns, specifically with any surges in packets or changes in data rate, an

adversary could possibly identify the presence and movements of someone being observed

by the camera. They continued on to say that routine behaviors, past, present, and future,

may even be detectable by an adversary.
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8.2 Wireless Camera Detection

A variety of techniques have been applied to detect wireless cameras within an environment.

Utilizing network traffic and comparing packet features to the expected behaviors of wireless

camera traffic has shown to be a reliable form of detection. In [11], the authors made use of

the packet length distribution (PLD), recording both its pattern and stability, as well as the

stability of the bandwidth to help identify wireless cameras, marking changes in packet length

to classify I, P, and B frames. Camera localization was possible and required user-assistance

through movement in a room, monitoring the spike in the number of packets being sent to

accommodate the changing imagery. All detection was done through a mobile application

with an accuracy of 99% within 2.7 seconds. Instead of explicitly extracting streaming

characteristics, Wu et al. compared the streams of network-enabled recording devices with

the streams of a smartphone [39]. Using the collected data, the authors compared timing

patterns, as well as the general similarities in data packets. Without a neural network

model to assist with classification and instead relying on thresholds, an accuracy of 87% was

achieved. However, the introduction of the neural network increased the accuracy to 97%

and boasted promising results for both indoor and outdoor scenarios.

Monitoring features outside of a network stream have been shown to produce favorable

results. In [25], two heavily user-driven approaches were introduced: Blink and Flicker.

Blink, a mobile application, requires the individual to turn the lights off and on in a room

containing a camera, during which the application will make use of the mobile phone’s light

sensor and wireless radio to observe the response of the wireless camera. Flicker developed

Blink one step further by using a portable circuit to stimulate a camera with human-invisible

flickering LEDs. Flicker worked in scenarios whether cameras were live streaming or not.

Blink typically performed well in daytime-scenarios over multiple data collections, while
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Flicker reached detection rates of 99% over various network settings, but did initially suffer

when the network was congested. Radio Frequency (RF) waves given off by a wireless camera

may also be observed for identification. Karthikeyan and Sasirekha designed a system that

utilized an RF antenna to observe the RF waves given off by the hidden camera, alerting

to the presence through a mobile notification [29]. A separate bug detector identified the

location of the camera, which was a major contribution the authors offered as an improvement

upon previous localization methods.

In [21], wireless camera detection was not the sole purpose of the experiment; detection was

only a stepping stone towards identifying human presence within a home. The first part

of their system detected the presence of the camera by monitoring I, P, and B frames and

variations in bit rate, similar to [11]. Then, they used the fluctuation in bit rate as an

indication of some human presence within the environment. Not only were the authors able

to determine if an individual was present, but based on the collection of previous data, they

built Activity of Daily Living (ADL) profiles for the residents. They achieved a recall of

98.3% when detecting the camera and successfully observed a human presence 97.2% of the

time.
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Conclusions and Future Work

We designed and implemented a wireless camera detector that can determine the presence

or absence of a hidden wireless camera within a given area. Because of the wireless camera’s

unique network traffic characteristics, the detector can easily and quickly identify a camera’s

network packets patterns within a network traffic stream. However, the variability of these

patterns may result in false positives when engineered traffic is injected into a network.

These issues are limited to those wishing to exploit individuals for an invasion of privacy

and may be countered through further testing.

We see that an SVM classifier used as the first level of identification produced strong accu-

racy, precision, and recall values, all calculated at or above 97%. However, with intentions

to reduce the number of false positives and raise the precision to 100%, a secondary level of

classification, the rolling window classification, was necessary. The rolling window method

greatly reduced the false positive value as the window size was increased, which also resulted

in a decreased number of false negatives.

While the system itself effectively detects a continuously streaming wireless camera, improve-

ments may be made to the system to expand its scope. While multiple ESP32 development

boards may be distributed to collect network traffic data, a separate machine is needed to

process the data. In the future, we would like to consolidate the system so that data collec-

tion, preprocessing, and analysis can be done on a single development board. In addition,

we would like to enable camera localization, preferably without user-assistance. However,
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having the user move throughout the home to trigger surges in camera network traffic and

detecting these surges is currently possible. With regards to motion, adapting the system to

recognize motion-detection cameras that make use of mobile devices when accessing the live

feed would develop the system’s detection range. When a mobile device is used, the network

traffic characteristics vary slightly because of its inconsistency and the modified direction

of the packets. Training the system to recognize such features would allow for detection of

both live and non-live wireless camera streams.

Additional improvements could be made that make the system more than just a wireless

camera detector. Using the features indicating a wireless camera, we would like to monitor

surges in I and P frames to determine if someone is present in a room with a wireless camera.

While this system is intended for detecting hidden cameras, it can be used by those who

installed the cameras to determine if unexpected individuals are within the vicinity without

having to access the camera stream. Another possible development would be to assist those

whose privacy is being invaded by implementing camera jamming, either by flooding the

camera or access point to which it is connected with an excess of packets, performing a

Denial of Service (DoS) attack. Because the system accesses the MAC addresses for the

camera and its network, packets may be formed using the correct address settings.
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