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Abstract 
Statistical evidence shows the role of risky driving as a contributing factor in roadway 
collisions, highlighting the importance of identifying such driving behavior. With the advent 
of new technologies, vehicle kinematic data can be collected at high frequency to enable 
driver behavior monitoring. The current project aims at mining a huge amount of driving 
data to identify risky driving behavior. Relational and non-relational database 
management systems (DBMSs) were adopted to process this big data and compare 
query performances. Two relational DBMSs, PostgreSQL and PostGIS, performed better 
than a non-relational DBMS, MongoDB, on both nonspatial and spatial queries. 
Supervised and unsupervised learning methods were utilized to classify risky driving. 
Cluster analysis as an unsupervised learning approach was used to label risky driving 
during short monitoring periods. Labeled driving data, including kinematic information, 
were employed to develop random forest models for predicting risky driving. These 
models showed high prediction performance. Open source and enterprise visualization 
tools were also developed to illustrate risky driving moments in space and time. These 
tools can be used by researchers and practitioners to explore where and when risky 
driving events occur and prioritize countermeasures for locations in highest need of 
improvement. 
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Introduction 
The formal concept of risky or aggressive driving may date back to 1968 when Meyer Parry’s 
monograph, Aggression on the Road, was published. Parry declared that “the increasing stress 
involved in motoring nowadays makes the psychological efficiency of the driver a more important 
factor than the mechanical efficiency of the vehicle he drives” [1]. Examples of aggressive 
behaviors include tailgating, driving faster than other drivers, running stop lights and stop signs, 
and improper lane changes [2]. The term “risky driving” has been also used instead of  “aggressive 
driving.” Risky driving mainly involves drinking and driving or driving without wearing a seat 
belt and excludes some behaviors associated with aggressive driving, such as horn honking [2]. 

Understanding driving style helps with the evaluation of traffic safety, and the impact of aggressive 
driving on traffic safety has drawn researchers’ and practitioners’ attention. The National Highway 
Traffic Safety Administration found that aggressive driving is one of the most important factors 
affecting traffic safety, with aggressive driving behavior observed in two-thirds of fatal crashes 
[3]. In support of this, many studies have revealed the effects of aggressive driving behavior on 
crash rates [4-7]. Research by the AAA Foundation revealed that in 55.7% of the fatal crashes that 
occurred from 2003 to 2007, at least one driver had already committed one or more aggressive 
behavior [8]. Paleti et al. [9] also revealed a positive association between aggressive driving and 
injury severity. 

It is therefore important to identify when and where risky or aggressive driving moments occur so 
that appropriate actions can be taken. However, in most cases, there is no evidence that shows 
risky behaviors in time and space. The present work aims at identifying and visualizing risky 
driving moments in a large, real-world driving dataset, the Safety Pilot Model Deployment 
(SPMD), where there is no hard evidence to confirm such moments.  

Literature Review  
Driving styles can be explored and evaluated by monitoring instantaneous driving decisions as 
reflected in vehicle kinematic data [10-15]. Speed has been identified as the main factor in 
determining a driver’s performance when assessing driving style [16,17]. Acceleration has also 
been used as an intuitive measure to identify aggressive driving [16,18,19]. Certain values of 
motion-related variables have been determined to be representative of aggressive driving behavior 
as well. As the main focus of this project is on kinematic data corresponding to driving style, 
aggressive driving was mainly studied and discussed with respect to kinematic data.  

Definitions 
Driving style is the way a driver chooses to drive or the way the driver has become habituated to 
driving over time [20,21]. While aggressive driving can be considered a driving style, there is no 
consensus among researchers and experts as to a concrete definition of “aggressive driving.” 
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Mizell et al. defined aggressive driving incidents as those in which an angry or impatient driver 
kills or injures or attempts to kill or injure another driver or passenger or pedestrian in an 
unfavorable traffic condition [22]. According to the National Highway Traffic Safety 
Administration, Mizell’s definition is a definition of a “road rage” criminal offense, while 
aggressive driving behavior is associated with lesser traffic offenses [23]. Shinar defined 
aggressive behavior as one’s intention to inflict physical or psychological harm on a person. He 
also noted the difference between aggressive driving and aggressive drivers—the former is a kind 
of behavior displayed by many drivers less frequently, while the latter are individuals who drive 
aggressively most of the time [24]. Aggressive drivers can also be simply defined as careless 
drivers [25], and aggressive driving has been referred to as a driving behavior where a driver 
intentionally tends to increase the risk of accident with contempt toward other drivers [26]. Some 
factors increase the likelihood of aggressive driving behavior, such as being in an angry mood or 
in congested traffic [2]. One study suggested the following definition, which captures several 
definitions in one: “A driving behavior is aggressive if it is deliberate, likely to increase the risk 
of collision, and is motivated by impatience, annoyance, hostility and/or an attempt to save time” 
[2]. Since the focus of this study is on identifying aggressive driving from kinematic data only, 
things like deliberate actions or driver impatience are unknown, as there is no way to determine 
intentions or driving conditions. For that reason, we opted to use the term “risky driving” instead 
of aggressive driving, as additional variables would be required to determine that behavior. Also, 
since risky driving has been defined differently in different studies, in the present work risky 
driving is defined as any driving behavior that is not considered the norm and that is more likely 
to increase the probability of collisions. It is important to note that a driving behavior may not be 
aggressive but may still be risky. For example, a swerve to avoid a collision with a child running 
into the street is not an aggressive behavior, but since the driver makes an abnormal maneuver, it 
is still considered risky.  

Driving Style Categorization 
Studies have categorized driving style using different variables and methods. Appendix A 
summarizes the approaches found in the literature. The table includes columns for method name, 
type (supervised or unsupervised), and accuracy. The “variables” column indicates the variables 
applied to classify driving style. In the “boundary” column, a threshold was specified for variables 
to identify aggressive driving. Some researchers used binary categorization, such as aggressive 
versus non-aggressive, while others used multi-class categorization. The “driving style categories” 
column lists previous studies’ driving style categorizations.  

Previous studies have utilized different approaches to perform binary categorization, including 
supervised machine learning, unsupervised machine learning, and traditional methods. In a 
supervised method, a set of labeled driving behavior events were used to classify new unlabeled 
events. In one study, 120 labeled behaviors were used to perform a k-nearest neighbor analysis 
using dynamic time warping to categorize driving behavior [27]. Another study applied a naïve 
Bayes classifier to evaluate drivers’ aggressiveness according to questionnaire responses and 
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collected driving features such as maximum and average speed, acceleration, and throttle position 
[28]. Yu et al. used a smartphone sensor and applied support vector machine and neural networks 
as classifiers to identify abnormal—weaving, swerving, sideslipping, fast U-turn, turning with a 
wide radius, and sudden braking—and normal driving behavior [18]. The random forest model is 
another supervised approach to classify aggressive and normal driving at a horizontal curve [29]. 
In addition to supervised machine learning methods, some studies applied unsupervised machine 
learning techniques to categorize driving style into a binary categorization. For instance, Lee et al. 
applied a three-step procedure: abrupt change detection, feature extraction, and a two-level 
clustering algorithm, including a self-organizing map and k-means, to classify driving style. A 
framework was proposed to classify drivers’ behavior into aggressive and normal driving based 
on speed, yaw rate, and acceleration. [19]. Jahangiri et al. employed k-means as an unsupervised 
learning method to identify aggressive driving events using variables such as speed, acceleration, 
and yaw rate measured over some monitoring period [15]. 

In addition to machine learning techniques, several studies applied more traditional statistical 
methods for classification, such as linear regression models, nonlinear regression models, and t-
test analyses. Wang et al. characterized drivers styles’ as calm versus volatile by categorizing 
vehicular jerk. A driving style can be identified as a volatile behavior when the acceleration 
exceeds the mean plus or minus 1 standard deviation for a certain speed range. A similar approach 
was used on vehicular jerk to detect volatility [16].  

Kinematic Data and Aggressive Driving 
As explained earlier, kinematic data have a significant role in determining aggressive driving 
behavior. The investigation of the relationship between unsafe driving behavior and kinematic data 
is not limited to driving style studies. Several researchers have defined specific thresholds to 
stratify kinematic data ranges into various categories, such as safe, unsafe, and comfortable, 
investigating traffic-safety topics such as the impact of specific driver behavior on driving style, 
and comparing young and adult driver style [30-35]. Appendix B summarizes variables, 
thresholds, and recommended categories for some of these studies. For instance, the American 
Association of State Highway and Transportation Officials recommended a deceleration of 3.4 
m/s2 (considered comfortable for most drivers) to determine stopping sight distance [36]. Another 
study investigated driver behavior based on crash involvement data. Drivers were categorized into 
crash and non-crash groups based on self-reported survey data of past crash involvement. Speed 
and acceleration data were also collected for both groups based on GPS data. The impact of hard 
deceleration on crash involvement was then evaluated. A threshold of 6 mph/s was employed to 
define hard deceleration events. The frequency of hard deceleration events was statistically 
different between the two groups, which showed that more hard deceleration events are associated 
with crash involvement, implying that deceleration rates of more than 6 mph/s can be attributed to 
aggressive driving behavior that has a potential of leading to crashes [37]. In another study, Fazeen 
et al. proposed a driving assistance system that analyzes road and driving conditions and advises 
users about unsafe situations using a smartphone with GPS, headphones, and accelerometer. Safe 
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and unsafe accelerations and decelerations were separated based on accelerometer data recorded 
using a threshold of 3 m/s2. The differentiation between safe and unsafe events was based on 
whether the acceleration and deceleration were gradual. However, it is not clear exactly how the 
threshold of 3 m/s2 was determined [38]. Additionally, some studies identified maximum and 
minimum values for acceleration and deceleration data that can help identify outliers (i.e., risky 
driving behaviors). These thresholds are presented in Appendix C. 

Methods and Approach 
The present work describes the development of database management systems and Web-based 
analytics tools to identify and visualize risky driving behavior across space and time. Risky driving 
behavior was investigated by monitoring the kinetic information of vehicles. A suite of methods 
was explored to efficiently store, process, and analyze the dataset. Four main steps are shown in 
Figure 1 and described below: data exploration, database development, risky driving classification, 
and data visualization and tool development. 

 
Figure 1. Flowchart. Overview of processes. 

Data Exploration 
As part of the SPMD program, large transportation datasets were collected in Ann Arbor, 
Michigan, and were made publically available via the Federal Highway Administration’s Research 
Data Exchange. The SPMD data collection made use of approximately 3,000 onboard vehicle units 
and 30 roadside equipment units that provided vehicle-to-vehicle and vehicle-to-infrastructure 
communications data. Basic Safety Messages containing vehicle operation information were 
communicated via dedicated short-range communications. The available SPMD data include text-
based files along with a handbook and metadata document.  

This study aims to detect and analyze risky driving events within the SPMD data. The BSMP1 
dataset, containing latitude, longitude, and kinematic data, such as speed, acceleration, and yaw 
rate (see Table 1), was used. Continuous data were collected from vehicles at a rate of 10 Hz, 
resulting in large amounts of data. The public-access BSMP1 dataset corresponds to 2 months of 
data (April and October 2013), which are 295.5 GB in size, uncompressed. The SPMD dataset 
comprises 38 data tables in a comma-separated value (csv) file format. For database development, 
we used the largest data table in the April 2013 dataset, which contained more than 1.5 billion GPS 
points (205 GB). In addition to the SPMD dataset, we used geographic information system (GIS) 
layers obtained from the City of Ann Arbor’s Data Catalog website 
(https://www.a2gov.org/services/data/Pages/default.aspx) to provide geospatial contextual 
information. Since analyzing large amounts of data was time-consuming, we opted to use one week 

Data exploration Database 
development

Risky driving 
classification

Data visualization 
and tool 

development

https://www.a2gov.org/services/data/Pages/default.aspx
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(the first week of April 2013) of data for the risky driving identification. In addition to the Research 
Data Exchange, there are other sources of data that frequently provide datasets in different 
domains. These sources were also explored (see Appendix D) to see if other kinematic data were 
available for analyzing risky driving. 

Table 1. Variables Used in BSMP1 Dataset 

Variable Name Data Type Units Description 
RxDevice Integer None Unique ID of vehicle 

Gentime Integer None 
A more secure form of Epoch time, influence by 1609.2 
of the IEEE 1609 family of standards-related network 
management and security 

Latitude Float Degrees Current latitude of vehicle 
Longitude Float Degrees Current longitude of vehicle 
Heading Real Degrees Vehicle direction 
Speed Real m/s Vehicle speed 
Ax Real m/s2 Vehicle longitudinal acceleration 

Ay Real m/s2 
Vehicle lateral acceleration (due to measurement error 
seen in many vehicles, this variable was excluded from 
analyses) 

Yaw rate Real Degrees/s Vehicle yaw rate 

Database Development 
Two types of open source database management systems (DBMSs) were utilized to store, query, 
and analyze the SPMD data with GIS layers: (1) an object-relational database (PostgreSQL and 
PostGIS), and (2) a NoSQL document-oriented database (MongoDB). 

Relational DBMS 
We implemented a relational DBMS using PostgreSQL and PostGIS. PostgreSQL is a relational 
database that stores data in a set of strictly defined tables, making it ideal for structured data. 
Structure Query Language (SQL) was used to build, manage, and query the stored data. PostGIS 
is a spatial database extender for PostgreSQL. It provides rich spatial operators, spatial functions, 
spatial data types (including vector, raster, and network types), and spatial indexing enhancements 
to PostgreSQL, allowing sophisticated GIS analyses. The project database consists of 57 tables, 
38 of which were created from SPMD data and 19 of which were created from GIS data. To speed 
up spatial queries, we created a GiST (Generalized Search Tree) spatial index on geometry 
columns. To further improve query performance on the large data table, we implemented vertical 
database partitioning on BSMP1 data tables using the timestamp field. 

Non-relational DBMS 
MongoDB, a NoSQL document-oriented database, makes the integration of very large datasets 
easier and faster by storing records in a JavaScript Object Notation (JSON) format. A NoSQL 
database does not have a strict table structure and does not support relationships between tables, 
allowing unstructured data to be stored [39]. MongoDB uses JavaScript for its query language. We 
implemented the MongoDB database by importing the SPMD csv files and generating collections, 
which are analogous to tables in relational databases. In each collection, SPMD data were stored 
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as unstructured documents, which were composed of field-value pairs. The value of a field can be 
any of the BSON (JSON documents in binary-encoded format) data types, including other 
documents, arrays, and arrays of documents. For example, a document of a GPS point record can 
be stored in a MongoDB collection as follows: 

{  _id: 1, type: “Feature”,  
    properties: {gid: 8, speed: 30},  
    geometry: {type: “Point”, coordinates: [-83.62, 42.24]} } 

We implemented a 2dsphere index on geometry fields to execute a spatial query efficiently in 
MongoDB. 

Database Comparison 
Database query performance tests were conducted between PostgreSQL/PostGIS and MongoDB, 
which stored identical data derived from the SPMD dataset. Our test was focused on nonspatial 
and spatial queries. A spatial query, supported by spatial databases, considers the spatial 
relationships among geometries of location data. PostgreSQL/PostGIS supports several spatial 
data types and over 300 functions for working with these spatial types, while MongoDB supports 
four spatial queries (geoIntersects, geoWithin, near, nearSphere). For an accurate comparison of 
the two databases, a simple intersection query was used, as both databases support this feature.  

Database Settings 
PostgreSQL/PostGIS and MongoDB were installed on the same machine. To conduct performance 
tests in similar database settings, each database was non-partitioned and had identical data tables 
generated from the same SPMD csv files. The computer used for testing was a Windows 10 
operating system with 16 GB of RAM, 2 TB of storage, and an Intel(R) Xeon(R) W-2123 (8.35M 
Cache, 3.60 GHz). We installed PostgreSQL 11 with PostGIS 2.5.1 and MongoDB 4.0.5.  

In MongoDB, we used the default RAM configuration, which takes advantage of approximately 
50% of the available RAM minus 1 GB when there is more than 1 GB available [40]. The default 
setting of PostgreSQL was limited for a small database server environment; therefore, the 
configuration for PostgreSQL was changed so that memory usage was on par with MongoDB 
(shared_buffers = 8 GB, effective_cache_size = 8 GB, work_mem = 1 GB). Nevertheless, 
configuring the same settings for memory usage in the two databases was not straightforward, as 
both databases use memory differently.  

For the performance test, we used the April BSMP1 data, which has 21 attribute columns with 
approximately 1.5 billion GPS points. To add the timestamp field on both databases, we converted 
the gentime field into the epoch timestamp. In addition, we created a point geometry column on 
the April BSMP1 table in each database using latitude and longitude. To test database performance 
in terms of scalability by different database sizes, we created nine subset tables from the April 
BSMP1 data for each database (see Appendix E). 
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Query Designs 
We designed two nonspatial and two spatial queries to test the two databases’ performances: 

Query 1: a nonspatial query to retrieve the number of records in a given range of time;  

Query 2: a nonspatial query to retrieve the number of records above a specific speed value; 

Query 3: a spatial query to retrieve the number of GPS points that intersect within a 
specified road buffer; and  

Query 4: a spatial query to retrieve the number of points that intersect within randomly 
distributed circles with two different radii.  

Queries 1 and 2 utilize all nine subset tables (Appendix E). Queries 3 and 4 only use the Subset 9 
table with 500,000,000 GPS points. In Query 3, we examined the performance of the spatial 
intersection query between GPS points and a major road buffer and the effect of the intersected 
road buffer size. Road buffers were created along North/South Main Street in Ann Arbor with 
lengths of 29, 58, 116, 232, 464, 927, 1,855, 3,710, and 7,420 ft and a width of 50 ft (Appendix 
F). The largest buffer length of 7,420 ft was selected for its proximity to Ann Arbor’s town 
center. The smaller buffers were then created by reducing the buffer lengths by half. In Query 4, 
we used the spatial intersection query between GPS points and circle buffers at random locations 
to examine the effect of locations on query performance. To create random circle buffers, we 
randomly selected 100 GPS points from the Subset 9 table. For each of those randomly selected 
100 points, we created a 50-ft and a 1,400-ft circular diameter buffer. Query 4 used the exact 
same intersection query as Query 3. These two buffer sizes were selected based on the width of a 
road (50 ft) and the length of a neighborhood block in Ann Arbor (1,400 ft). We executed each 
query 10 times and obtained the average execution time. The query language examples used for 
the performance tests in each database are detailed in Appendix G. 

Results 
Figure 2, Figure 3, Figure 4, Figure 5, Table 2, and Table 3 present the results of the performance 
tests. Our experiments show that PostgreSQL and PostGIS perform better than MongoDB on both 
nonspatial queries (Query 1 and 2) and spatial queries (Query 3 and 4). In particular, PostgreSQL 
and PostGIS outperformed MongoDB when the data size was larger.  
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Figure 2. Graph. Query 1: Nonspatial query performance using a timestamp filter. 

 
Figure 3. Graph. Query 2: Nonspatial query performance using a speed filter. 

 
Figure 4. Graph. Query 3: Spatial query performance using road buffers. 
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Figure 5. Charts. Query 4: Spatial query performance using 100 random circles (left: 50-ft circles, right: 
1,400-ft circles). The box-whisker plot shows the minimum, first quartile, median, third quartile, and 

maximum of the query execution time. 

Table 2. Execution Time of Spatial Query Using 100 Random Circles (50-ft Circle) 

Database Avg. (s) Med. (s) Min. (s) Max (s) Std. (s) 
MongoDB 0.278 0.055 0.002 5.940 0.727 
PostgreSQL 0.054 0.012 0.001 0.943 0.127 

Number of records retrieved: Avg. = 43967.9; Med. = 7114.5; Min. = 36; Max = 832346; Std. = 114534.3 

Table 3. Execution Time of Spatial Query Using 100 Random Circles (1,400-ft Circles) 

Database Avg. (s) Med. (s) Min. (s) Max (s) Std. (s) 
MongoDB 11.142 4.645 0.012 87.029 17.521 
PostgreSQL 2.149 0.790 0.005 17.431 3.409 

Number of records retrieved: Avg. = 1744790.6; Med. = 663038.0; Min. = 2517; Max = 12655130; Std. = 2657178.5 

Risky Driving Classification 
Two approaches were adopted to detect risky driving behavior: (1) a simple approach that defines 
risky driving as driving events during which speeding is observed, and (2) a more advanced 
approach that identifies risky driving using unsupervised and supervised learning methods.  

Risky Driving Detection – Speeding  
The BSMP1 data include speed, location, direction, yaw rate, and heading collected at 
approximately 10 Hz. The major road line dataset contains major road conditions and speed limits 
from the Southeast Michigan Council of Government’s Annual Average Daily Traffic program.  

To find cases of speeding, we used sampled BSMP1 data (0.1%) with Esri ArcGIS Pro and 
buffered the roads by a width of 5 meters, since major roads should be at least 5 meters wide. We 
then used a spatial join to aggregate vehicle point data into the road buffers. We compared the 
speed recorded at each vehicle point with the speed limit and extracted four speeding clusters:  

Class 1: speeding 1–5 mph over speed limit;  
Class 2: speeding 5–10 mph over speed limit;  
Class 3: speeding 10–20 mph over speed limit; and  
Class 4: speeding more than 20 mph over speed limit (Figure 6).  
 

We visualized these data points on GIS maps to identify their spatial patterns and point density. 
Figure 6 illustrates the severity of speeding and associated cluster patterns. Speeds more than 10 
mph over the speed limit mostly occurred at the intersections of major highway segments and 
ramps. Speeding was also seen where the speed limit changes between two local road segments. 
Most speeding cases of less than 10 mph over the speed limit were in downtown Ann Arbor. The 
spatial pattern of speeding activity can be further evaluated in the future using advanced machine 
learning methods. 
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Figure 6. Map. Identifying over-speeding locations in major roads using BSM_p1 GPS trajectory datasets. 

Risky Driving Detection – Unsupervised and Supervised Learning  
The process of risky driving classification was divided into five primary stages: subsetting the 
BSMP1 data, restructuring the data for classification, labeling the data as either risky or not (i.e., 
unsupervised learning), training predictive models based on the labeled data (i.e., supervised 
learning), and utilizing the predictive models to then label the BSMP1 data. Analyses were 
conducted in R. The goal was to develop a framework in which unsupervised and supervised 
learning methods can be applied to identify risky driving in a large unlabeled dataset. It should be 
noted that within this framework, one can utilize other unsupervised and supervised learning 
methods instead of the ones used in this study. This could be a future direction of the work to 
explore new deep-learning algorithms within this framework. 

Subsetting BSMP1 Data 
First, the BSMP1 data for the month of April 2013, stored in a PostGreSQL database, were 
subsetted by day. For classification, we considered the first seven days (April 1–7, 2013). For each 
of the seven days, a subset of data corresponding to 100 unique vehicle IDs was extracted.  

Restructuring the Data 
The BSMP1 data represent single time points, measured every decisecond of subject vehicles as 
they traveled. These data points, individually, lack the temporal context to identify and classify 
instances of risky driving. As such, prior to classification, the data were reformatted from a time 
point format into a monitoring period format. Monitoring period data were generated by taking 
time point datapoints representing x seconds at y-second intervals and generating data such as the 
average, maximum, minimum, and standard deviation of speed, acceleration, and yaw rate over 
those x seconds. Converting from time point to monitoring period data made it possible to better 
identify distinct driving behaviors.  
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Restructuring each of the datasets for April 1–7 involved a series of preparatory steps. First, the 
time point data had to be ordered by vehicle and by time. Then, the data points corresponding to a 
single, continuous trip needed to be identified and grouped together, as it would be inappropriate 
to include data from the end of one trip with the data from the beginning of another into a single 
monitoring period. Next, the time point data were converted into monitoring period data. We opted 
to create monitoring periods corresponding to 3 seconds at 1-second intervals. Since time point 
data were measured every decisecond, each monitoring period was computed using 30 time point 
data points. Further, computing monitoring periods every second reduced the size of the datasets 
by approximately one order of magnitude. 

Labeling the Monitoring Period Data – Unsupervised Learning 
Once the monitoring period data for each day were created, risky driving data points could be 
labeled and classified. This was done by utilizing a k-means clustering algorithm, determining 
heading thresholds to subset the data, and then utilizing the density-based spatial clustering of 
applications with a noise algorithm in an iterative fashion to identify risky driving periods. 
Although many unsupervised methods could be adopted, we opted to use k-means since this 
method is easy to implement and computationally efficient. We also applied density-based spatial 
clustering of applications with noise (DBSCAN) due to previous experience using this method in 
identifying risky driving [41]. The general principle of the labeling approach was that there are a 
set of elementary driving behaviors (EDM) that occur (such as accelerating, making a U-turn, 
merging onto the highway, etc.) and that these EDMs will likely have similar statistical profiles. 
Potentially risky driving behaviors, then, are identified as the data points that are further outliers 
from their prescribed cluster. This is meant to capture abnormal EDM instances. The limitation of 
using unsupervised learning methods in the labeling step is the fact that there is no guarantee that 
a behavior is correctly classified as risky. That is basically the nature of unsupervised learning 
problems, where validation is challenging. In the case of risky driving classification, video data 
could help with class validation. Although video data were collected as part of the SPMD project, 
we did not have access to the video data as they have not been made available to the public. Video 
validation can be further explored if the data become available in the future.  

K-means and change-in-heading thresholds were first utilized to identify the EDMs. This was done 
by first running k-means on the full dataset, clustering on only the average speed variable, resulting 
in three distinct speed classes (low speed, medium speed, and high speed). Then, these subsets 
were further subsetted into five groups based on change in heading (left turns, left curves, straight 
driving, right curves, and right turns). After experimenting with different thresholds for change in 
heading, the following values were used: change in heading greater than 45 degrees for left and 
right turns; change in heading between 10 and 45 degrees for left and right curves; and change in 
heading under 10 degrees for straight. Subsequently, k-means was run on each of these 15 subsets, 
using the sum of squared distances “elbow” method to identify the optimal number of clusters 
(clustering variables were average, maximum, and standard deviation of speed; average, 
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maximum, minimum, standard deviation, and jerk of acceleration; and average, maximum, 
minimum, standard deviation, and jerk of yaw rate).  

For each of the k-means clusters identified in each of the 15 subsets, DBSCAN was performed 
iteratively (using the Iterative-DBSCAN [I-DBSCAN] method) [41]. Since the data have been 
clustered into EDMs, the dataset will be dense, and each iteration of DBSCAN will cluster most 
of the data together. DBSCAN returns n clusters and one set of noise (i.e., unclustered data). One 
iteration of I-DBSCAN is as follows. First, DBSCAN is run on the dataset, utilizing the “elbow” 
method to determine the optimal epsilon parameter. Second, the “normal” cluster is identified as 
the cluster consisting of at least 90% of the dataset; if no such “normal” cluster exists, I-DBSCAN 
is terminated and run again from the beginning. Third, all data identified as noise are extracted and 
labeled as risky. Fourth, if any additional clusters are identified, they are extracted and labeled as 
risky. If no such additional cluster is identified, then researchers verify that this was the third time 
no additional cluster was found. If so, I-DBSCAN is terminated and the results are returned. If not 
terminated, another I-DBSCAN iteration is undertaken utilizing the “normal” cluster as the dataset. 
In a sense, this process is similar to peeling the layers off an onion, where the furthest outlying 
data points are “peeled away” and labeled as risky and the dense set of data in the middle is labeled 
as not risky. While utilizing I-DBSCAN, principle component analysis (PCA) was adopted to 
reduce the data dimensions (i.e., number of variables) and thus reduce the data size. This is a great 
technique for handling big data because PCA has the potential to extract important information 
from many variables and generate a few new variables to use instead of the original variables 
without significant loss of information [42]. After I-DBSCAN was run on all the generated subsets, 
the labeled datasets were merged back together. 

Training Predictive Models – Supervised Learning 
Each of the labeled datasets was then used to train a random forest classification model for that 
day. Random forest was chosen after comparing the performance of logistic regression, random 
forest, and neural network classification models utilizing 5-fold cross-validation. This process 
involves dividing the data into five groups, training models on four-fifths of the dataset, and then 
testing the model on the remaining one-fifth to gauge performance at predicting whether the events 
were risky or not. A random forest model was then fitted to April 1, 2, and 4–7. Due to data file 
corruption, April 3 data were not used in developing the random forest classification model. 

Using the Predictive Models to Label the Full Dataset 
The random forest models for April 1, 2, and 4–7 were trained on the subsets of BSMP1 data from 
each day. These models were then utilized to label all the data in each of these datasets. To do this, 
data were extracted from each dataset by vehicle ID, converted into monitoring period data format, 
and then labeled utilizing the random forest model. The labeled datasets were then saved in the 
database by day, such that a database table with risky labels was created for each day. In addition, 
a table consisting of all of the risky-labeled data points in all six of these data tables was created. 
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Results 
Subsetting BSMP1 Data 
BSMP1 data were subsetted in the PostGreSQL database by calendar day. For analysis, datasets 
corresponding to April 1–7, 2013 were utilized (see Table 4 for the number of data points in each 
table and the corresponding number of vehicles). Data corresponding to 100 randomly selected 
vehicles were extracted (see Table 4). As noted, the April 3 sample set was corrupted during the 
full analysis; the remaining results correspond to the other six days.   

Table 4. Subsetting BSMP1 Data 

Date Day Approximate Database Size 
(Number of Data Points) Number of Vehicles 100-vehicle Sample Size 

(Number of Data Points) 
April 1 Monday 44.5 Million 1,395 3.61 Million 
April 2 Tuesday 51.4 Million 1,418 3.03 Million 
April 3 Wednesday 51.7 Million 1,440 NA 
April 4 Thursday 50.0 Million 1,430 3.27 Million 
April 5 Friday 50.0 Million 1,405 2.97 Million 
April 6 Saturday 39.7 Million 1,133 3.37 Million 
April 7 Sunday 32.6 Million 1,072 3.14 Million 

Restructuring the Data 
At this stage, the six remaining datasets were converted from their initial time point data format 
into the monitoring period data format. Data conversion resulted in the datasets’ size being reduced 
by an order of magnitude. Table 5 shows the number of data points before and after data 
conversion, as well as the number of distinct continuous trips identified in each sample.  

Table 5. Restructuring the Data 

Date Day Dataset Size Prior to Conversion 
(Number of Data Points) 

Dataset Size Post Conversion 
(Number of Data Points) 

Distinct Vehicle 
Trips 

April 1 Monday 3.61 Million 291,155 1,383 
April 2 Tuesday 3.03 Million 257,752 1,350 
April 4 Thursday 3.27 Million 277,634 3,085 
April 5 Friday 2.97 Million 250,467 1,225 
April 6 Saturday 3.37 Million 203,073 1,773 
April 7 Sunday 3.14 Million 212,488 811 

Labeling the Monitoring Period Data – Unsupervised Learning 
The clustering protocol was utilized on each of the six datasets separately to label monitoring data 
as either risky or not risky. Table 6 displays the number of risky monitoring periods labeled in 
each set and the proportion of the total table labeled as risky. The proportion of each dataset labeled 
as risky ranged from 8.25% to 10.0%, indicating that the clustering algorithm behaved in a 
consistent manner. 

Table 6. Labeling the Monitoring Period Data 

Date Day Risky Monitoring Periods  Proportion of Dataset 
April 1 Monday 24,021 8.25% 
April 2 Tuesday 23,063 8.95% 
April 4 Thursday 26,296 9.5% 
April 5 Friday 25,227 10.0% 
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April 6 Saturday 19,672 9.69% 
April 7 Sunday 19,666 9.26% 

Training Predictive Models – Supervised Learning 
With the labeled data now procured, random forest models were tested and evaluated on each of 
the six datasets utilizing 5-fold cross validation. The area under the curve (AUC) scores for each 
of the six models are presented in Table 7. AUC scores ranged from 0.974–0.979, indicating that 
random forests models were highly accurate at identifying data labeled as risky. Random forest 
models were then trained on each of the six datasets.  

Table 7. Training Predictive Models 

Date Day AUC 
April 1 Monday 0.977 
April 2 Tuesday 0.976 
April 4 Thursday 0.975 
April 5 Friday 0.979 
April 6 Saturday 0.977 
April 7 Sunday 0.974 

Using the Predictive Models to Train the Full Data 
The six random forests models fitted in the prior step were then applied to label all the data in the 
PostGreSQL database corresponding to the same date. Data were extracted from the PostGreSQL 
by day and by vehicle, reformatted into the monitoring period structure, labeled utilizing the 
corresponding random forest model, and then inserted into a new table in the PostGreSQL 
database. Table 8 displays the size of the original database table, the size of the new labeled 
database table, and the percentage of the entries labeled as risky for each day. Final datasets ranged 
in size from 2.43 million to 4.47 million data points and, in each table, between 6.89% and 8.9% 
of all data points were labeled as risky. 

Table 8. Using the Predictive Models to Train the Full Data 

Date Day Approximate Database Size 
(Number of Data Points) 

Size of Labeled Database 
Table (Number of Data Points) 

Proportion 
Labeled Risky 

April 1 Monday 44.5 Million 3.92 Million 7.10% 
April 2 Tuesday 51.4 Million 4.32 Million 7.54% 
April 4 Thursday 50.0 Million 4.60 Million 7.93% 
April 5 Friday 50.0 Million 4.47 Million 8.90% 
April 6 Saturday 39.7 Million 2.92 Million 7.62% 
April 7 Sunday 32.6 Million 2.43 Million 6.89% 

Data Visualization and Tool Development 
Spatiotemporal analysis was used to visualize monitoring periods of risky driving behavior and 
investigate how these moments were distributed both spatially and temporally. This effort also 
demonstrates the feasibility of big data visualization and spatiotemporal modeling and analytics 
through Web-based GIS tools utilizing DBMSs. 

Two types of data visualization approaches were used. The first approach utilized open source 
software tools. R Shiny with the Leaflet package, OpenLayers, and D3 were adopted, along with 
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the open source databases developed earlier in this work, to map and visualize multilayered 
geographic information and statistics. The second approach utilized currently available data 
visualization software, including Tableau, Insights for ArcGIS, GeoAnalytics Server, and 
GeoEvent Server. Details of these approaches are presented below. 

Open Source Software 
In order to visualize the risky driving behaviors identified within the BSMP1 dataset, the project 
team implemented two Web-based applications, one using R Shiny, an open source R package, 
and the other using Node.js, a JavaScript runtime environment. 

R Shiny Application 
The R Shiny interactive app was developed in RStudio, using the Leaflet package to create the 
map visualizations. Two datasets were loaded into the application: the first, a subset (n = 10,000) 
of the risky-labeled BSMP1 data; the second, a dataset in which each observation represents a 
different intersection and the number of risky monitoring period moments identified at that 
intersection (this represents all of the risky-labeled BSMP1 data). 

Three specific visualizations were generated for the first dataset, the sample of risky-labeled 
BSMP1 data. The first is a cluster display, in which risky driving observations are clustered on the 
map in dynamic points which can be selected in order to dive deeper into that cluster. For each 
level zoomed in, the clusters separate and represent smaller regions. This provides a way to 
visualize where risky observations are concentrated. The second is a heat map (see Figure 7) of 
the risky monitoring periods across the map, where an intensification of color (blue being least 
intense, red being most intense) indicates a higher concentration of risky observations. The third 
is a map with each observation labeled as an individual point. For all three options, data can be 
subsetted by time of day (as a range), day of week (as a range), road type, and turning behavior 
(right turn, left turn). In addition, a table of all data is presented below the maps in the app 
environment; clicking on an observation in this table highlights that observation on the map. 

For the second dataset, the intersection data with risky observation counts, a visualization was 
generated in which each intersection is labeled with a point. The color of the point is darker based 
on the increasing number of risky driving monitoring periods observed there. Similar to the prior 
visualizations, data can be subsetted by time of day, day of week, and turning behavior. The data 
table below the map can be used to explore the dataset and to identify specific intersections on the 
map. More details about the R Shiny tool are provided in Appendix H. 
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Figure 7. Map. R Shiny heat map of risky driving. 

 

Figure 8. Screen capture. A Web-GIS application using Node.js. 

Node.js Web Application 
A Web-based GIS application using Node.js was developed to visualize the spatiotemporal 
distribution of risky driving behavior (Figure 8). Node.js is a JavaScript runtime built on Chrome’s 
V8 JavaScript engine and uses an event-driven, non-blocking I/O model for developing a 
lightweight and efficient Web application. Node.js uses JavaScript on the server scripts. Key open 
source JavaScript libraries for visualization include jquery.js, bootstrap.js, leaflet.js, and chart.js.  

In the developed Web application, risky driving incidents were summarized in hexagonal grids at 
five spatial resolutions, where the heights of a hexagon correspond to 250 m, 500 m, 1 km, 2 km, 



17 
 

and 4 km. In the app environment, as a user zooms in on and out of the map, hexagonal grids at an 
appropriate spatial resolution will be displayed. The color on the hexagonal grids represents the 
level of risky driving frequency, with red indicating a higher frequency. A bar chart on the top 
shows the hourly frequency of risky driving on a selected day. The radar chart summarizes risky 
driving in terms of speed, acceleration, and yaw rate. Both charts are responsive to user interaction 
and update as a user moves or zooms in/out on the map.  

Risky driving data were stored in PostgreSQL and data are dynamically retrieved in response to 
users’ interaction with the application. Secure data transfer between clients and the application 
server was achieved using a socket protocol. This Web-based application is also capable of 
displaying additional GIS layers, including a base map, city/county GIS layers, and real-time Waze 
traffic alerts and jams using Waze APIs. 

Enterprise Software 
We compared four different commercial GIS data visualization software applications (ArcGIS Pro, 
ArcGIS Desktop, ArcGIS Insights, and Tableau) and evaluated their performance in handling 
different dataset sizes. Appendix I illustrates the comparison results. Data visualization examples 
using each of these tools are provided in Appendix J. According to the testing results for ArcMap, 
ArcGIS Pro, Tableau, and ArcGIS Insights, in general ArcGIS Pro performed faster than ArcMap 
in displaying a map on the fly and performing spatial analysis, but neither displays a map 
completely when the database size is larger than 0.02 GB. In Tableau, a database size smaller than 
1 GB allows the map to render completely, but as the dataset gets larger, the operation time 
increases. ArcGIS Insights does not allow users to upload files over 0.1 GB, and the operation 
times outs when attempting to handle data sizes close to 0.1 GB. However, the map does display 
completely with an appropriate file size (0.05 GB and below). Overall, data sizes around 0.05 GB 
to 0.1 GB were a good fit to perform spatial analysis, as the operation time was less than 1 minute. 
If 30 minutes is used as a threshold, regardless of displaying problems on the fly, data sizes of 1 
GB data or less would be suitable for GIS analysis using traditional GIS software.  

Conclusions and Recommendations 
This work presents an array of methods and tools that can be applied to store, process, analyze, 
and visualize large amounts of data for the purpose of identifying risky driving events. Two open 
source DBMSs, PostgreSQL and PostGIS, were used to develop a relational DBMS. MongoDB 
was utilized to build a non-relational DBMS. The efficiency of MongoDB and PostgreSQL in 
handling the data, query attributes, and spatial data analysis was investigated. PostgreSQL and 
PostGIS performed better than MongoDB on both nonspatial and spatial queries. PostgreSQL and 
PostGIS outperformed MongoDB as the data size increased. Vertical database partitioning was 
implemented to improve query performance; however, performance was still limited by the 
capacity of the database server. Supervised and unsupervised learning algorithms were employed 
to develop and implement the techniques for creating classification models to identify risky driving 
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events. This involved the creation of the I-DBSCAN algorithm to identify and label risky driving 
events, the implementation of this algorithm on a subset of the BSMP1 data, the subsequent 
training of random forest models, and the application of these random forest models to label larger 
sets of the BSMP1 data. Two open source data visualization tools (one using R Shiny and the other 
using Node.js) were developed to identity risky driving events in space and time. The following 
recommendations are provided for dealing with large datasets. 

• As part of I-DBSCAN, PCA was used to reduce the data dimensions. PCA can thus 
contribute to data size reduction, an effective technique when dealing with big data. 

• The BSMP1 data points were converted into short monitoring period data, and risky 
driving was assessed in these monitoring periods. This not only provided additional 
information in terms of better identifying distinct driving behaviors (e.g., turning), it also 
significantly reduced data size. We created monitoring periods corresponding to 3 
seconds at 1-second intervals. Since time point data were measured every decisecond, 
each monitoring period was computed using 30 time point data points. Further, this 
reduced the data size by approximately one order of magnitude. 

• Several software packages for data analysis and visualization were evaluated. Current 
desktop and Web GIS software were not able to handle very large data effectively (>1 
GB). Most GIS software was found to have a capacity of 20–50 MB (150–270 K 
records), which is considerably small. Tableau was determined to be one of the best data 
visualization tools for BSMP1 data. 

It should be noted that the original project included a small study to be performed by a student at 
the Virginia Tech Transportation Institute designed to determine if there were correlations between 
the locations where risky driving moments occurred and environmental GIS data. Unfortunately, 
this portion of the study ended after the student’s unexpected departure from the project and no 
suitable replacement could be found to continue the work. However, the research team would like 
to acknowledge the student’s efforts in completing an in-depth literature review to identify 
priorities and appropriate spatial resolutions and perspectives for the data (see Appendix L). It is 
recommended that future work be developed around the student’s investigation and findings. 

Additional Products 
The Education and Workforce Development and Technology Transfer products created as part of 
this project are located on the project page of the Safe-D website. The final project dataset is 
located in the Safe-D Collection on the VTTI Dataverse. 

Education and Workforce Development Products 
The following Education and Workforce Development items resulted from project activities: 

https://www.vtti.vt.edu/utc/safe-d/index.php/projects/big-data-visualization-and-spatiotemporal-modeling-of-aggressive-driving/
https://dataverse.vtti.vt.edu/dataverse/safed
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1. Two Ph.D. (Charles Marks and Yulu Chen) and two Master’s (Eduardo Cordova and 
Haihong Huang) students were involved in this project. The students learned several 
methods and skills, such as literature review, cluster analysis, supervised/unsupervised 
learning, database development, and data visualization tool development. The students also 
contributed to the publications resulting from this project. Eduardo Cordova’s thesis is 
based on this project. 

2. The project contributed to Big Data Science and Analytics Platforms (GEOG-594), taught 
by Dr. Dr. Ming-Hsiang Tsou during Fall 2018 and again in Fall 2019. The Safe-D project 
was introduced in the week 2 lecture (What is Big Data?). A dataset from this project is 
listed as one potential group project topic. One student used the GPS dataset and ArcGIS 
Insights for a technical demo. 

3. The project contributed to Data Management for GIS (GEOG-580), taught by Dr. Atsushi 
Nara during Fall 2018 and again in Spring 2020. The Safe-D project and its database design 
using the E-R (Entity-Relationship) diagram were introduced. 

4. The project team had a booth display and technology demonstration of Safe-D projects, 
including the current one, on March 17, 2018, for SDSU Explore Day event at San Diego 
State University (https://admissions.sdsu.edu/tours_events/explore). 

Technology Transfer Products 
The following T2 products resulted from project activities: 

1. The following journal and conference papers were produced or are underway: 
• A journal paper is currently underway. 
• Chen, Y., M.-H. Tsou, and A. Nara. Analyzing Transportation Big Data with GIS: 

Detecting Over-speeding Vehicles from Traffic GPS Data. CSU Geospatial 
Review, Vol. 16, 2019, pp. 10-11,  
https://csugis.sfsu.edu/sites/default/files/19CSU_GeospatialReview_Web.pdf  

• Marks, C., A. Jahangiri, and S. G. Machiani. Iterative DBSCAN (I-DBSCAN) to 
Identify Aggressive Driving Behaviors within Unlabeled Real-World Driving Data. 
22nd Intelligent Transportation Systems Conference, Auckland, New Zealand, 27-
30 October 2019. 

• Jahangiri, A., S. G. Machiani, M.-H. Tsou, and A. Nara. Big Data Visualization 
and Spatiotemporal Modeling of Aggressive Driving using Connected Vehicle 
Data. 2018 Summer Specialist Meeting (Workshop), Analyzing Social Perception 
and Amplification using Social Media and Big Data in Human Dynamics, San 
Diego, CA, August 7-8, 2018. 

• Tsou, M.-H., A. Nara, A. Jahangiri, and S. G. Machiani. Developing Web-based 
Spatiotemporal Analytics Software Tools for Analyzing Connected Vehicle Data 
and Aggressive Driving Behaviors. The First Workshop: Geospatial Software: 

https://admissions.sdsu.edu/tours_events/explore
https://csugis.sfsu.edu/sites/default/files/19CSU_GeospatialReview_Web.pdf


20 
 

Connecting Big Data with Geospatial Discovery and Innovation, Los Angeles, CA, 
January 28-30, 2018. 

2. Web-based tools were developed to visualize where and when risky driving occurred as 
follows: 

• https://charles-marks.shinyapps.io/AggressiveMapper/ 
• https://130.191.118.107:3005 (not publicly available due to security issues with 

large database management systems) 
3. A webinar will be held to present the project outcomes. 

Data Products  
• Link to Dataset – https://doi.org/10.15787/VTT1/KOT55T 

• Project Description – The study goal was to identify risky driving behavior using data 
mining methods within a large dataset. The data used in this study were obtained from the 
SPMD study conducted in Ann Arbor, Michigan.  

• Data Scope – One week of SPMD data was processed to create a data table (each row 
representing a monitoring period) in csv format, resulting in a table of 320 million 
observations with 32 variables (i.e., columns). 

• Data Specification – A detailed description of each variable in the dataset can be found in 
Appendix K. 

• Citation Metadata: 

o Title of datasets: “SafeD-03-087-Data_x.csv”, x={Apr1,Apr2,Apr4, Apr5, Apr6, 
Apr7} 

o Author list with researcher ORCIDs 
 Charles Markes, 0000-0002-3893-1914 
 Arash Jahangiri, 0000-0002-8825-961X 
 Ming-Hsiang Tsou, 0000-0003-3421-486X 
 Atsushi Nara, 0000-0003-4173-7773 
 Sahar Ghanipoor Machiani, 0000-0002-7314-2689 

o Contact information (email) for corresponding author: AJahangiri@sdsu.edu 
Keywords: risky driving behavior, big data analytics, cluster analysis, data visualization, data 
mining 

 

  

https://charles-marks.shinyapps.io/AggressiveMapper/
https://130.191.118.107:3005/
https://doi.org/10.15787/VTT1/KOT55T
mailto:AJahangiri@sdsu.edu
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Appendix A. Summary of Studies on Driving Style Categorization 
Reference Driving Style 

Categories Variables Boundary Method Supervised or 
Unsupervised 

Accuracy of 
model 

Number of 
observation 

Data 
Source 

Johnson and 
Trivedi (27) 

Typical (Non-
aggressive), 
Aggressive 

NA NA 

Dynamic Time Warping 
(DTW) system and 
smartphone-based sensor-
fusion, KNN 

Supervised 97% correctly 
identified 

200 driver 
events (about 
50 aggressive 
events) 

Real Field 
Data 

Hong, Margines, 
and Dey (28) 

Violator, Non-
violator, 
Aggressive, and 
Calm 

NA NA  Naïve Bayes classifier Supervised 

90% with 
violation-class 
and 81% with 
questionnaire-
class 

22 drivers Real Field 
Data 

González et al. 
(13) 

Smooth and 
Aggressive 

Lateral and 
Longitudinal  
Accelerations, 
Speed 

NA 
Gaussian mixture model 
(GMM) and maximum 
likelihood classifier 

Unsupervised 92.3% 10 drivers Real Field 
Data 

Jahangiri, 
Berardi, and 
Machiani (29) 

Aggressive and 
Normal TLC Less than 0.5 seconds 

as aggressive Random Forest Supervised NA 
About 2700 
vehicle in 
SPMD 

Open 
source 
data- 
SPMD 

Constantinescu, 
Marinoiu, and 
Vladoiu (43) 

Aggressivity 
Level: 
moderately low, 
very low, 
moderately high, 
high, and neutral 

Speed, 
Acceleration,  
Braking, 
Mechanical 
work 

Based on ranges for 
Principle 
Components 

Hierarchical cluster 
analysis with Ward’s 
method and Euclidian 
distance 

Unsupervised NA 

23 drivers and 2 
additional 
controlled test 
drivers 

Real Field 
Data 

Wang et al. (16) Volatile and 
Typical Driving 

Jerk, 
Acceleration 

mean plus/minus  
one standard 
deviation 

Mixed-effect regression 
model Supervised NA 1653 drivers, 

51370 trips 

 
Open 
source 
data-
Atlanta 
Regional  
Commissi
on in 2011 
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Murphey, 
Milton, and 
Kiliaris (11) 

Calm, Normal, 
Aggressive  
driving, No 
speed 

Jerk 

Jerk ratio < 1.0 
(a division of jerk 
standard deviation by 
jerk mean) 

Self-developed 
classification method by 
using Jerk 

Supervised NA  11 drivers 

Open 
source 
data-
PSTA 
(Powertrai
n System  
Analysis 
Toolkit) 

MacADAM et 
al. (44) 

Aggressivity 
level based on a 
proposed index 

Distance from 
the lead vehicle 
to the host 
vehicle 

Distance between 
leading vehicle 
and host vehicle 

Neural Network Supervised NA 
36 drivers 
(drivers graph 
on page 155) 

Real Field 
Data 

Simons-Morton 
et al. (45) 

Low-risk, High-
risk 

Acceleration, 
deceleration, 
yaw rate 

NA latent class model Unsupervised NA 42 drivers 

Naturalisti
c Teenage 
Driving 
Study 
(NTDS) 

Lee and Jang 
(19) 

Aggressive and 
normal driving 

Speed, yaw 
rate, 
acceleration 

Based on clusters self-organizing map 
(SOM) and k-means Unsupervised NA 43 taxi drivers Real Field 

Data 

Feng et al. (10) Aggressive and 
normal driving 

Two jerk-based 
metrics NA Receiver Operating 

Characteristic (ROC) Supervised NA  108 drivers Real Field 
Data  

Li et al. (12) 
Aggressiveness 
level based on a 
score  

Velocity, 
acceleration, 
deceleration 

Aggressiveness Score 
1 to 5 

multiple linear regression 

Principle Component 
Regression (PCR) 

Supervised and 
Unsupervised NA 78 drivers Real Field 

Data 

Yu et al. (18) 

Normal driving 
and abnormal 
driving such as 
Weaving, 
Swerving, 
Sideslipping, 
Fast U-turn, 
Turning with a 
wide radius, and 
Sudden Braking 

Acceleration 
and Orientation NA SVM and NN Supervised 95% 20 drivers Real Field 

Data 
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Abou-Zeid, 
Kaysi, and Al-
Naghi (46) 

aggressive and 
timid driver 

Based on 
Questionnaire Score> 3: aggressive 

t-test analysis for 
calculating drivers’ 
variable (speed, 
acceleration) after 
classification 

NA NA 
27 timid and 17 
aggressive 
drivers 

Real Field 
Data 
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Appendix B. Kinematic Data Thresholds 
Suggested by Different Studies 

Reference Variable Threshold Categories 
Merrikhpour and Donmez 
(30) acceleration 0.6 g Unsafe braking and safe braking 

Metz, Landau, and Hargutt 
(31) acceleration -4 m/s2 to -6 m/s2 (-0.4 g to -0.6 g) Sharp braking 

Romoser et al. (32) acceleration 3.5 m/s2 and -6 m/s2 (0.35 g and -0.6 g) Hard start, hard stop 

Fazeen et al. (38) acceleration 3 m/s2 (0.3 g) Safe and unsafe acceleration and 
deceleration 

Jun, Ogle, and Guensler 
(37) acceleration 6 mph/s (0.3 g) Hard acceleration 

van der horst and Hogema 
(33) acceleration -5 m/s2 (-0.5 g) Hard braking 

Martins et al. (35) acceleration 4 m/s2 (0.4 g) Hard braking 

American Association of 
State Highway and 
Transportation Officials 
(36) 

acceleration 3.4 m/s2 (0.34 g) Comfortable deceleration 

Hankey, Perez, and 
McClafferty (34) 

Longitudinal 
acceleration, lateral 
acceleration, swerve, 
yaw rate, longitudinal 
jerk 

Longitudinal deceleration: -0.65g 
Longitudinal acceleration: 0.5g 
Freeway deceleration: -0.3g 
Lateral acceleration: -0.75g 
Swerve: ±15 deg/s/s 
Yaw rate: ±8deg/s 
Jerk: -0.1g/s 

NA 

Feng et al. (10) Longitudinal 
acceleration 0.6 g High-crash risk, low-crash risk 

Verizon (47) acceleration Hard braking: 3.92 m/s2 (0.4 g) 
Hard acceleration: 3.53 m/s2 (0.36 g) 

Hard braking and hard 
acceleration 
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Appendix C. Lateral and Longitudinal 
Acceleration Extremes 
To detect outliers of lateral and longitudinal acceleration variables, finding the common range of 
the variables for normal drivers is crucial. In this regard, several studies were reviewed. 

John and Kobette found that maximum acceleration (presumable longitudinal acceleration) for 
passenger car and heavy vehicles are 3.36 m/s2 and 5.19 m/s2 respectively (48). Another study 
stated that 2.5 m/s2 is the maximum longitudinal acceleration for passenger cars and heavy 
vehicles (49). 

Reymond et al. investigated the lateral acceleration of drivers at curves by modeling the lateral 
acceleration based on experimental data. The model can categorize drivers into normal or fast 
based on the variation of model parameters. For normal driving, the range of lateral acceleration 
experiments reached by one of the experiments was about 7 m/s2 and 8.5 m/s2 for normal and fast 
drivers, as shown in the figure below (50).  

 Kenda et al found that maximum lateral acceleration is 9.7 m/s2, longitudinal acceleration equals 
4.8 m/s2 and braking deceleration is -2 m/s2 (51). While they prescribe that the maximum lateral 
and longitudinal accelerations for a comfortable driver are 2.65 m/s2 and 2.5 m/s2.  

Hamersma et al. stated that the maximum lateral and longitudinal accelerations measured during 
a double lane change were 4 m/s2 and 3.2 m/s2 (52). Another study observed a maximum lateral 
acceleration of 7 m/s2 in a simulation study (53).  

Yamakado declared that a vehicle acceleration never reaches 10 m/s2 . The maximum range of 
lateral acceleration they observed was -6 m/s2 to +8 m/s2 and the maximum range of longitudinal 
acceleration was -3 m/s2 to +8 m/s2 (54). Alternatively, maximum normal lateral and longitudinal 
accelerations of passenger vehicles measured about 5 m/s2, as shown below (55).  

Maximum acceleration rate documented in the ITE Traffic Engineering Handbook is 9.3 ft/s2 (~3 
m/s2) (56). 

According to the aforementioned studies, maximum threshold for lateral acceleration can be 
assumed as 9.7 m/s2 (-9.7 m/s2 to 9.7 m/s2), and longitudinal acceleration range as -3 m/s2 to +8 
m/s2. The shorter range can also be assumed for both variables. However, in this study we took a 
more conservative approach to avoid removing aggressive drivers as outliers. 
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Appendix D. Other Data Sources 
Kaggle is one of the platforms in which companies and users share datasets. Data scientists and 
researchers compete to propose solutions to solve different problems using Kaggle datasets. 
Different keywords related to the study were searched on Kaggle, including car, vehicle, vehicle 
kinematic data, vehicle speed, connected vehicle, etc. Among all suggested datasets, “Levin 
vehicle telematics” included some kinematic data, such as speed and acceleration for around 30 
vehicles in 4 months; however, none of this data contained longitude and latitude information 
(57). Data.gov and data.sfgov.org are other data sources that were checked. Several keywords 
were used, but no dataset was found related to our project (58, 59). 

The Atlanta Regional Commission (ARC) is a regional coordination agency conducting 
management and planning projects (e.g., planning new transportation options, wisely managing 
such things as water resources, etc.). In 2011, ARC conducted a Household Travel Survey that 
was used in (16). It appears that the data collected contained the vehicle’s kinematic data. 
However, the data was not available on their website.  

Transportation.gov is another website that has many datasets in different categories. The 
Automobile category contains many transportation-related studies and their datasets. Among 
those studies, several datasets with kinematic vehicle data that could potentially be used for risky 
driving identification are as follows: 

• Multi-Modal Intelligent Traffic Signal Systems (MMITSS): in the metadata, there are 11 
datasets, 8 of which are available online and three of which are missing. Among 8 
datasets, 2 had vehicle location and vehicle kinematic data (60). 

• Advanced Messaging Concept Development (AMCD): in the metadata, there are five 
datasets, all of which are available online. Three out of five datasets included vehicle 
location and kinematic data (61). 

• Wyoming Connected Vehicle (CV) Pilot: the metadata was not found online. However, 
two datasets are available, and one has vehicle locations and kinematic data (62). 
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Appendix E. Database Subsets 
 

Subset Number Number of GPS Points Size in a csv format 

1 10 2 KB 

2 100 19 KB 

3 1,000 182 KB 

4 10,000 1,765 KB 

5 100,000 17 MB 

6 1,000,000 176 MB 

7 10,000,000 1.756 GB 

8 100,000,000 17.696 GB 

9 500,000,000 88.871 GB 
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Appendix F. Road Buffers for an Intersection 
Query 
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Appendix G. Query Language Examples  
 PostgreSQL (SQL) MongoDB (Javascript) 
Query 1 SELECT COUNT(*)  

FROM subset1 
WHERE  
EXTRACT(HOUR FROM 
timestamp) = 1; 

db.subset1.aggregate( 
   [ 
      { 
         $project:{ 
            hour: {$hour:"$timestamp"} 
          } 
       }, 
      {$match: {hour:1}},  
      {$count: "timestamp"} 
   ] 
) 

Query 2 SELECT COUNT(*)  
FROM subset1  
WHERE speed > 30; 

db.subset1.find( 
   {"speed": {$gt: 30}} 
).count() 

Query 3 SELECT COUNT(*)  
FROM road_buff t1, subset t2  
WHERE  
t1.road_id=1  
AND 
ST_Intersects(t1.geom, 
t2.geom); 

var road = db.road_buff.findOne({“_id” : 1}) 
 
db.subset1.find{ 
   { 
      geometry: { 
         $geoWithin: { 
            $geometry: road.geometry 
         } 
     } 
   }  
}.count() 

Query 4 SELECT COUNT(*)  
FROM circle t1, subset t2  
WHERE  
t1.gid=1  
AND  
ST_Intersects(t1.geom, 
t2.geom); 

var circle = 
db.circles.findOne({"properties.gid" : 1}) 
 
db.subset1.find{ 
   { 
      geometry: { 
         $geoWithin: { 
            $geometry: circle.geometry 
         } 
     } 
   }  
}.count() 
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Appendix H. R Shiny Visualization App 
The R-Shiny application has four modules, as described: three for the first dataset of all risky 
driving observations and one for the second dataset of intersection-specific counts of risky driving. 
The first is the cluster marker setting, in which clusters in a similar region on the map are clustered 
into clickable group. When clicked on, the map zooms in on the cluster and splits the cluster into 
sub-clusters, as depicted in the following images. This clustering method allows for the 
identification of regions (whether larger regions of the county or specific localities in the area) in 
which concentrations of risky driving have been observed and identified.  

  
 

For the second dataset, the intersection specific data, each intersection was labeled as a point and 
the darker (closer to purple) and more opaque color corresponded to a greater number of risky 
driving points. Hovering over individual intersection points displays a label with the number of 
observed risky driving observations at specific intersection. In order to aid in identifying 
intersections with the highest concentrations of risky driving, an interactive data table was included 
as depicted in the images below. The table can be sorted by number of risky incidents and then 
observations can be clicked, resulting in the highlighting of the corresponding intersection on the 
map. This allows users to identify the specific intersections at which the highest concentrations of 
risky driving have been identified. 
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Appendix I. Commercial GIS Software  
Software 
name 

Size of BSM_p1 (csv_ files  

11GB 
57,764,257 
records 

1GB 
around 
5,000,000 
records 

0.5GB 
around 
2,500,000 
records 

0.1GB 
around 500,000 
records 

0.05GB 
270,000 records 

0.02GB 
156,411 
records 

ArcGIS 
Pro 

• 1 hrs + 
• layer didn’t  

show up 
• program 

slowed down 
greatly and 
other 
function 
cannot 
execute 
properly  

• processing 
time : 7 mins 
34 seconds 

•  layer didn’t  
show up 
completely 

• program 
slowed down 

• processing 
time : 3 
mins 57 
seconds 

• layer didn’t 
show up 
completely 

• software 
slow down 

• processing 
time : 43.55 
seconds 

• layer didn’t 
show up 
completely 

• other functions 
like spatial join 
still can be 
execute 
properly 

• processing 
time : 21.81 
seconds 

• layer didn’t 
show up 
completely 

• other 
functions 
execute 
properly 

executed 
very fast 
and data 
display fine 

ArcGIS 
Desktop 

More than 30 
mins 

• processing 
time : 
around 15 
mins 

• layer didn’t 
show up 
completely 

• other 
functions 
like spatial 
join still can 
be execute 
properly 

• processing 
time : 
around 8 
mins 

• layer didn’t 
show up 
completely 

• other 
functions 
like spatial 
join still 
can be 
execute 
properly 

• processing 
time : around 1 
mins 

• layer didn’t 
show up 
completely 

• other functions 
like spatial join 
still can be 
execute 
properly 

• processing 
time : around 
38 seconds 

• layer didn’t 
show up 
completely 

• other 
functions like 
spatial join 
still can be 
execute 
properly  

executed 
very fast 
and data 
display fine 

ArcGIS 
Insight 

do not accept csv files over 100MB • takes around 1 
min to load csv 
file  

• time out for 
location 
enabling 
function   

• takes around 
35 second to 
load csv file  

• take around 
1.5 minutes to 
enable 
location 
function 

• could not 
display all 
features   

works fine, 
every 
execution 
takes 
around 6 
seconds  

Tableau execution of 
query very 
slow, more 
than 30 mins 

• Executions 
take around 
47 seconds 

• Map layers 
show up 

• operation 
slow down 
(6 seconds 
each) 

• Executions 
take around 
38 seconds 

• Map layers 
show up 

• operation 
(drag and 
drop) slow 
down  

• Map Layer 
show up in a 
few seconds 

• operation slow 
down a little 

• Map Layer 
show up 

• operation 
works fine  

• Map 
Layer 
show up 

• operation 
works fine 
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Appendix J. Data Visualization Examples with 
Commercial Software 
Tableau:  

Tableau is one of the most popular data visualization software packages. As shown in  

Figure 9 The BSM data visualization using Tableau software,  we used this software with 
database connection to create a set of small tables by initial query (test for 11 GB, 1 GB, 0.5 GB, 
0.05 GB, and 0.02 GB). The loading speed of database connection is fine with 11 GB of data, but 
for operations such as drag and drop for visualization, the execution of the query was very slow 
(more than 30 minutes). When we used the 1 GB csv file, the execution took around 47 seconds; 
Map layers showed up but operations slowed down (6 seconds for each operation). When we 
used 0.05 and 0.02 GB sample csv data, the software worked smoothly. 

 
Figure 9. The BSM data visualization using Tableau software. 
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We also used the Tableau to perform other data visualization tasks as follows: 

 
Figure 10. Frequency of speed. 

 

Figure 10 is a histogram of speed using Tableau. The continuous numeric speed data has been 
converted into several bins. This chart shows the highest frequency speed is 70 mph, which 
indicates the highway speed. 

 
Figure 11. Log of count of yaw rate. 

 

Figure 11 is a histogram of yawrate. The continuous numeric yawrate data has been converted into 
several bins. Log transformation has been used to show the frequency of yawrate. The frequency 
of a value of 0 is much higher than the frequency of other values, which indicates driving straight 
without any turning. 
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ArcGIS Desktop:  

ArcGIS is one of the most popular Geographic Information Systems (GIS) software packages for 
mapping and spatial analysis. ArcGIS cannot handle csv files larger than 0.1 GB effectively. 
When we used a 0.05 GB csv file, it took 21.81 seconds for the map to finish displaying. Figure 
12 shows that only certain points are displayed properly, while other points are hidden in the 
dark lines. However, operations such as spatial join still work fine. When we used a 0.02 GB file, 
the program worked smoothly. ArcGIS has better spatial analysis functionality compared to 
Tableau. 

 
Figure 12. Partial display problem in ArcGIS when using 0.05GB file size. 

ArcGIS Pro: 

ArcGIS Pro is the latest professional GIS software from Esri (replacement of ArcGIS desktop). 
The performance of ArcGIS Pro performed slightly better than ArcGIS desktop in our testing. 
All major functions and data visualization tools are very similar to ArcGIS Desktop. Figure 13 is 
shows a screenshot of the ArcGIS Pro with the BSM data.  
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Figure 13. Using ArcGIS Pro to display the 0.05GB file. 

 

ArcGIS Insights 

ArcGIS Insights is a web-based data analytics tool for exploring spatial and nonspatial data. 
However, it does not allow upload size over 100 MB (0.1 GB) with a regular user account. 
Figure 14 and Figure 15 are the visualization of 0.02 GB and 0.05 GB files. 

 
Figure 14. ArcGIS insights with 0.02GB csv file. 
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Figure 15. Visualization of speed info using ArcGIS insights. 
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Appendix K. Monitoring Period Data 
Specification 
The monitoring period data generated from the BSMP1 data was used to identify risky driving 
(using a monitoring period length of 3 seconds, taken at 1-second intervals). Monitoring period 
data for the first week of April 2013 have been made available and the data is specified as 
follows: 

Variable Name Type Unit Description 
Vehicle_id Integer None SPMD vehicle identifier 

Trip_id Integer None 
Trip identifier, used to identify points 
representing a continuous trip  

Starttime Datetime None 
Datetime object representing the beginning 
of the monitoring period (MP) 

Start_latitude Float Degrees Latitude at beginning of MP 
Start_longitude Float Degrees Longitude at beginning of MP 

End_latitude Float Degrees Latitude at end of MP 
End_longitude Float Degrees Longitude at end of MP 

Avg_speed Real m/s Average (mean) speed across entire MP 
Max_speed Real m/s Max recorded speed across MP 
Min_speed Real m/s Min recorded speed across MP 
Sd_speed Real None Standard deviation (SD) of speed across MP 
Avg_ax Real m/s2 Average acceleration across MP 
Max_ax Real m/s2 Max recorded accel across MP 
Min_ax Real m/s2 Min record accel across MP 
Sd_ax Real None  SD of accel across MP 

Jerk_ax Real m/s3 Jerk of accel (comparing end of MP against 
start) 

Avg_ay Real m/s2 
Average lateral accel across MP (subject to 
high levels of measurement error) 

Max_ay Real m/s2 Max recorded lateral accel across MP 
Min_ay Real m/s2 Min recorded lateral accel across MP 
Sd_ay Real None SD of lateral accel across MP 

Avg_yaw Real Deg/sec Average yaw rate across MP 
Max_yaw Real Deg/sec Max yaw rate across MP 
Min_yaw Real Deg/sec Min yaw rate across MP 
Sd_yaw Real None SD of yaw rate across MP 

Jerk_yaw Real Deg/sec2 Jerk of yaw rate (comparing end of MP 
against start) 
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Road_type Text None 
Categorical variable indicating roadclass 
(such as highway, local, etc) 

Initial_heading Float Degrees Heading of vehicle at beginning of MP (0 = 
360 = North) 

End_heading Float Degrees Heading of vehicle at end of MP 
Sd_heading Real None SD of heading across monitoring period 

Change_heading Float Degrees 
Change in heading from beginning of MP to 
end 

Pid Text None 
A list of the identifiers that can be used to 
match the MP data up with the original 
BSMP1 data 

Risky Boolean None If True, identified as risky in our analysis 
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Appendix L. Literature Review: Identifying 
Aggressive Driving Locations and Environmental 
Attributes 
This following literature review was conducted by Joshua Starner, a master’s student at Virginia 
Tech, during the initial stages of this project. This work informed the project and is thus included 
here for the reader, but  was not incorporated into the analytic basis of the project. This in-depth 
literature review will be useful in developing future work in correlating environmental factors 
and locations where risky or aggressive driving behaviors occur. 

Review of Relevant Literature 

The objectives of this project include quantifying environmental factors to correlate aggressive 
driving with the physical environment surrounding a roadway. A literature review of 
psychological, sociological, transportation engineering, and other related research was conducted 
to identify priorities and appropriate spatial resolutions and perspectives for the data. 

Correlating the Physical Environment and Aggressive Driving  

Across fields, a large portion of the research treats aggressive driving as a form of violence, 
where a driver has the intent to injure or kill another individual (63), which has allowed the near 
interchangeable use of the terms “road rage” and “aggressive driving.” In many cases, this 
overlap of terms is intentional, where the term “road rage” is used to describe an extreme form of 
aggressive driving. Within transportation, however, most definitions do not require violent intent 
and allow for “road rage” and “aggressive driving” to occur entirely independently of each other 
(64). The definition most frequently used within transportation and law enforcement identifies 
aggressive driving as any driver behavior that has the potential to endanger persons or property 
(65). This definition of aggressive driving does not require, or exclude, the presence of anger, an 
intentional action, or aggression in the literal sense. It also allows aggressive driving to be 
identified by a combination of observable actions, often in the form of recognizable traffic 
violations that can be readily associated with the situational variables of the physical driving 
environment. 

 Improvements in the collection of spatially referenced data and geographic information analysis 
have created opportunities to explore possible correlations between aggressive driving, the 
physical environment, and transportation infrastructure. Transportation research has applied 
these technologies to explore and advance the understanding of how automobiles respond to the 
physical environment. This has led to the development of intelligent safety features and warning 
systems found in commercial production cars. 
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Even though the significance of environmental factors is not generally disputed, the discussion of 
how the human operator responds and the specific role that physical traits of the environment 
play in aggressive driving has received less attention. This gap in the literature was noted by 
Burns and Katovich (66) in a study which suggested that aggressive driving could be better 
addressed through traffic facilitation based on the principles of Crime Prevention Through 
Environmental Design. More specifically, Burns and Katovich (66) proposed that an effort to 
understand the interaction between the transportation environment and aggressive driving would 
allow planning and design decisions to become more effective at preventing aggressive driving 
than traditional enforcement. 

Wang et al. (67) quantified driver behavior using onboard sensors recording at high-frequency 
intervals to take advantage of the potential of “Big Data.” Their study directly focused on the 
development of methods to identify the instantaneous volatility of decisions made while driving, 
which will prove useful to the current project’s task of identifying occurrences of aggressive 
driving behavior. Wang et al. (67) also noted a limitation that this project will work to satisfy: 
their research was unable to include geographically specific data in the analysis due to privacy 
concerns. They also indicated that location-specific data at a 1-second temporal resolution will 
be critical to identifying factors of aggressive driving and provided examples of environmental 
factors, including road type, road geometry, surrounding land use, traffic counts, traffic facilities, 
and the network attributes related to the road segments traveled. The Safety Pilot Model 
Deployment (SPMD) data containing the vehicle and driver observations for the behavioral 
portion of this study also include a geographic location for each observation. The geographic 
locations attached to the behavioral data will provide the ability to identify any correlations 
between aggressive driving and location-specific traits such as those suggested by Wang et al. 
(67), as well as any other relevant traits discovered in the review of other current literature. 

Physical Environment Variables  

While not as widely studied as psychological factors, the role of environmental elements in cases 
of aggressive driving existed prior the prevalence of the term “aggressive driving” in the U.S. 
The following subsections cover the research literature relating environmental factors to 
aggressive driving. 

To allow for appropriate quantification and identification of environmental factors independent 
of the SPMD observations, this project will focus on behaviors identified through vehicle 
maneuvers and traffic violations. These behaviors have been used as both dependent and 
independent variables in several studies and have been associated with both instrumental and 
hostile aggressive driving. The most common behaviors listed in aggressive driving reports are 
violations of traffic laws including exceeding the speed limit, disregard for traffic control 
devices, tailgating, failure to yield, frequent lane changes, and weaving in traffic (Stuster 2004; 
Balogun, Shenge, and Oladipo 2012; and others).  
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Speed and Other Network Attributes 

Studies have found that several of the violations associated with aggressive driving are correlated 
with network attributes. Casey and Lund (69) use the term “adaptation effect” to describe the 
tendency of operators who travel on roads with higher speed limits to also travel at faster speeds 
on roads with lower speed limits. This suggestion when applied to a local scale invites 
investigation into the proximity of one road segment to another with a higher posted rate of 
speed (70). Legal speeds may be present as an attribute of road edge features found in some GIS 
data. If present, this information can be used to accurately identify posted speed differences 
between roads or variations in the speed limit between segments of individual roads. In cases 
where these data are not available, a universal approach may be to use broader categories, such 
as road class, to identify where vehicles enter a highway or city street from an interstate. 

Speed-related aggressive driving does not always involve a higher rate of absolute speed. Rapid 
acceleration may be combined with tailgating, weaving in traffic, and failure to yield when an 
individual driver perceives driving as a competitive sport and races other drivers from one traffic 
control device to the next (71). Prime locations for this type of behavior are roads with multiple 
lanes and traffic control devices, especially when they are spaced at frequent intervals. Datasets 
identifying these roadway features should be investigated to pinpoint locations where aggressive 
driving behavior may occur. 

Similar to speeding, following too closely, or “tailgating,” may not be specifically targeted at the 
driver of the forward vehicle, but may simply be a result of difference in the desired speed of two 
drivers when there is not an immediate opportunity to pass (72). Tailgating has been identified as 
being most prevalent in congested areas (73) and where vehicles frequently reduce speed to turn 
off onto an alternate road in locations without deceleration lanes (Rajalin, Hassel, and Summala 
1997). Congestion for the study site in this project could potentially be modeled using a 
combination of the traffic counts, the number of intersecting road segments, and the presence of 
land-use categories related to the identification of pedestrian generators. 

Pedestrian Generators and Crosswalks 

“The Social Psychology of Driving Behaviour and the Traffic Environment” (74) measured the 
aggressive reactions of drivers at an uncontrolled pedestrian crossing. The focus of this study 
was not on whether interactions with pedestrians were a common trigger of aggressive driving 
but rather on quantifying the intensity of the aggressive response. Cinnamon et al. (75) suggested 
that land use can be used to identify pedestrian generators that may lead to the disruption of 
traffic. This reduces the dependency on obtaining known crosswalk locations and allows the 
inclusion of pedestrian impacts that may occur outside a legal crossing. The disruption potential 
of a location can be identified through a single point such as a bus stop or polygon identifying 
the area of a strip shopping mall, public parking, or other sources of pedestrian foot traffic near 
road ways (75, 76). Land-use zoning, parcel, or building information may be used to indicate 
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areas that lead to an increase in the level of hazard already present in the roadway, such as strip-
mall retail shopping locations (76). 

Land Use 

A 2003 article by Cackowski and Nasar 2003 studied the effects of roadside vegetation on anger 
and frustration tolerance while driving. The study was constructed as a simulated driving 
experience using a prerecorded video of three different roads: one with a largely built-up 
environment, one with a mixed environment, and one that was a scenic parkway. Participants 
were given anagrams that had no possible valid solutions and were instructed that if they could 
not solve the anagram, they could request an alternate anagram. The anagram test was conducted 
both before and after each simulated drive (77). The amount of time that respondents spent 
before requesting an alternate anagram was recorded and used to estimate their frustration 
tolerance after the drive relative to the amount of time spent on each puzzle before. Researchers 
found that all participants were willing to spend more time prior to giving up after “driving” 
along the scenic parkway, suggesting that the view of increased vegetation increased the ability 
of the respondents to focus and manage frustration (77). While the non-tasked simulated 
environment and the small number of sample groups limit the Cackowski and Nasar study, the 
research findings suggest that varying degrees of vegetation and built-environment obstructions 
(e.g. buildings) along the edges of the road may impact driver behavior by reducing stress, 
increasing the subject’s ability to manage frustration, and potentially diffusing anger. The 
correlation between roadside vegetation and aggressive driving can be useful in the current study 
and can be analyzed using publicly available datasets. 

Visibility 

Visibility is frequently a consideration in traffic accidents but is mentioned less often in research 
specific to aggressive driving. Visibility, or the area that can be seen by the vehicle operator, can 
represent two factors related to aggressive driving: visual communication with other drivers and 
the visible length of the roadway. The inability to see the driver of another vehicle increases the 
possibility that a driver will consider other vehicles as objects rather than people when assessing 
risk (78, 79). This results in a perception of anonymity likely to increase the level of aggressive 
reactions in several situations (80–82). 

Roadway Geometry 

The length of the driver’s field of view determines the amount of time a driver has to evaluate 
roadway information, make a decision, and execute the chosen action. At intersections that do 
not have active traffic signals and points where traffic from a minor road may enter a major road, 
drivers must use the information within the visible distance of the roadway to assess the speed 
and distance of oncoming traffic and make a determination to accept or reject the available gap 
in the flow of traffic (83, 84). Acceptable gap size is defined dynamically (85). Fang and 
Castaneda (84) reported that the acceptable gap size at four roundabouts ranged from 3.1 to 4.7 



21 
 

seconds, while gap acceptance for intersections with a stop bar fell below 50% probability at 
similar lengths to the 5.4 seconds defined by the Raff method (84, 86). The difference in the 
decisions individual drivers make at intersections has been measured by Rakha et al. (87), Kaysi 
and Abbany (83), Shinar et al. (88), and others. These differences in decision-making may result 
in frustration, aggressive behavior, and high-risk driving choices (83). Rakha et al. (87) found 
that when a vehicle was 51 meters from a changing traffic signal, the decision to stop or proceed 
was the least predictable; this presents the potential for conflict between two subsequent 
vehicles. Many road users may choose to avoid or disregard traffic control devices as a result of 
perceived time constraints or the traffic control device being too slow or inefficient (89). 

Specific locations of interest that may trigger aggressive driving include four-way stops, 
locations where U-turns are permitted, sequential traffic lights, merge lanes, and traffic circles. 
Increased attention should be given to locations where traffic from a minor road is combined 
with dense traffic on a major road (83). In addition to these variables, it may also be possible to 
include additional environmental characteristics from available geospatial data incorporating 
psychological factors related to aggressive driving such as frustration (90) and the social 
environment (91). 

Topographical Obstructions 

The term “topography” encompasses both the natural (terrain or surface of the earth, vegetation) 
and unnatural (built environment) features which exist in an area. Specific locations may possess 
topographical features that permanently limit visibility (92). These features may obstruct the 
view of oncoming traffic, the roadway, or roadway signage. One study identified failure to yield 
as the cause for 37% of the accidents investigated (93). This study also found that reduced 
visibility due to buildings, fixtures, terrain, and vegetation were a factor in 33% of the accidents 
(93). 

Vehicle-mounted sensors can provide a real-time scene of surrounding objects; however, these 
sensors are limited to specialized vehicles that have been outfitted specifically for data 
collection. In support of this study’s goal to create a set of methods that are transferable and 
reproducible at any location, this section will focus on environmental analysis using data that are 
readily available for the most-populated areas. Remote identification of potential topographical 
obstructions is possible with geographical datasets, including remotely sensed aerial imagery, 
georeferenced representation such as building footprints, and data collected by Light Detection 
and Ranging (LiDAR) sensors. 

Current GIS capabilities provide several tools for measuring visibility and have evolved from the 
concepts of environmental modeling predating current computational abilities. The term 
“isovist” appears in Tandy (94) to indicate the visibility around the solid walls and objects 
common in urban environments. This term seems to be less frequently referenced in current 
literature, and it is possible that it has been encompassed by the current understanding of a 
“viewshed”. A viewshed is a model of the visible field from a given point based on the 
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topography of an area (95). The basic viewshed model identifies the area visible above a surface 
from a specific location based on the relative elevation of the surface. Often referred to as 2.5D, 
the elevation is established by the values contained in a raster such as a Digital Elevation Model 
(DEM), Digital Surface Model (DSM), or Digital Terrain Model (DTM). The 2.5D model of 
visibility is improved by processing the input surface so that the values include a representation 
of solid objects in addition to the earth’s terrain alone. Building footprint polygons have been 
used to represent an obstructed view (96) and may be incorporated into the GIS model by 
relating elevation (z) values of the earth’s surface to the building footprints, thus giving “height” 
to a 2D building footprint polygon. GIS data containing building footprints are commonly 
available, and obstruction caused by buildings may play an important role in the analysis of 
visibility at intersections. However, buildings represent only one portion of the information 
needed to determine the overall visibility to a driver. In cases where buildings or additional 
obstructions are not included in the GIS, remotely sensed imagery and LiDAR data are 
especially useful. 

LiDAR is described by the National Oceanic and Atmospheric Administration (NOAA) as a 
form of remote sensing that is used to collect 3D information about built and natural 
environments (97). Airborne LiDAR requires an aircraft to carry an active sensor utilizing 
wavelengths within the near infrared portion of the spectrum. LiDAR is consistently available for 
U.S. coastal areas, with growing coverage for many other regions across the U.S. The 3D 
information provided by LiDAR is processed into a series of reflected returns containing 
information indicating both the elevation of the reflecting object and the intensity of the reflected 
light. The intensity of the reflected light will vary by the type of surface encountered. The 
elevation of the reflecting object is typically used to create a DEM or a DSM, either of which can 
be modeled as a 2D raster or with a 3D Triangulated Irregular Network (TIN), or Terrain. The 
DEM represents the surface of the earth, while the DSM represents the tops of objects such as 
trees or built structures that protrude above the surface of the earth (98). The intensity values 
from LiDAR data, in addition to being able to differentiate between concrete or asphalt and 
vegetation, increase the ability to differentiate between types of vegetation or types of building 
materials (99). 

These methods have been used to identify whether there is a clear line of sight from the eye of a 
driver to a point along a roadway (92, 100–103). The traditional 2.5D viewshed model is limited 
by the assumption that all objects represented by the surface are continuous features that intersect 
the surface of the ground. This vertically continuous assumption does not allow for instances 
where a driver may still be able to see under or through an object such as trees or other 
overhanging features. It has been suggested that determining the visual permeability of these 
features will reduce the impacts of this limitation (104). 

Several previous studies have presented methods and GIS tools that support the modeling of 
obstructions to driver vision (100–102, 105). These methods determine the visible length of the 
roadway between the current vehicle location and a series of points along the projected path. 
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This type of analysis requires the surface inputs of a viewshed analysis as well as target points 
located along the line that represents the road path. The observer point is established at the 
current location of the vehicle with a z value representing the eye level of the driver. In previous 
studies of driver vision, the height of the observer points have been set at the American 
Association of State Highway and Transportation Officials suggested height of 3.5 feet (101) or 
a height of 3.6 to 3.75 feet based on the vehicle used (106). Target points have previously been 
given a z value of 0.2 meters based on highway safety standards (105). For the current work 
focused on a driver’s ability to see another vehicle, it may be reasonable to make the target point 
height closer to vehicle bumper height or the driver eye level of the target location. 

While most potential obstructions can be included in a DSM, the desire to more accurately model 
trees and other features that may overhang the line of sight without being vertically continuous 
or intersecting with the ground must be represented using other methods. There are several 
methods for developing a digital canopy height model of trees based on subtracting the DTM 
from the DSM; however, this does not identify the bottom of the canopy, or the height of the 
visible area under the lowest branch. One possible solution is the use of existing multipatch 
objects (105). ArcGIS Pro allows multipatch objects to be created using z values from an 
attribute field of a polygon such as a building footprint, but this will not account for the unique 
shapes of individual trees unless accurate field data are present. Where there has been a need to 
represent unique objects with varying clearances, airborne LiDAR data have been used to create 
a wrapped surface. The wrapped surface method proposed by Kato et al. (107) begins with a 
digital canopy height model (DCHM) that allows individual trees to be located based on density 
or height-dependent segmentation. The LiDAR points are then grouped by tree based on the 
segmentation, extracted, and points representing the surface are selected. An isosurface method 
can then be produced where the exterior of the tree crown is represented by a value of zero. 
Against field measurements, the height of the lowest branch was found to have a root mean 
square error of 1.54 meters for coniferous trees (R2=0.72) and 1.73 meters for deciduous trees 
(R2=0.51). In the absence of accurate field data such as terrestrial LiDAR, the wrapped surface 
method offers improvement to a visibility model that must consider vision under the lowest 
branch. 

With a focus on the impacts of aesthetics as opposed to visual obstruction, vegetation along the 
roadway was quantified relative to other locations along the road in Cackowski and Nasar (77). 
The researchers used a 0.5-inch grid to measure the area of vegetation on the monitor that 
displayed the video of the driving route. Cackowski and Nasar (77) determined that measuring 
the vegetated area at 30-second intervals was appropriate for comparing the different routes. 
While video from a driver perspective would be ideal for assessment, our study of a larger area 
could utilize the National Land Cover Database (NLCD) to identify areas that are generally built 
up or offer a vegetated scene. NLCD data have been used in combination with viewshed analysis 
to establish the vegetated viewshed visible from an observer point for the purposes of aesthetic 
analysis reports (108). NLCD data available at a 30-meter resolution provide the ability to assess 
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the aesthetics visible from a 35-mph road at a 2-second temporal resolution. In addition to the 
NLCD data, other data containing land-use information may help our model properly specify 
where the number of occurrences of aggressive driving is lower than what is predicted based on 
other environmental variables. 

Summary 

The research literature demonstrates the significance of understanding the role that 
environmental variables may play in aggressive driving. While detailed measurements of the 
correlation have not been presented previously, the body of work has drawn attention to the need 
to evaluate how natural and built features impact driver behavior. 

The portion of the roadway that is visible to a driver at a given point in time has been shown to 
play a significant role in decisions impacting vehicle control and the nature of interactions with 
other drivers. The study of the visible road using GIS employed two separate methods. The 
general impacts of topography were automated using GIS, while the specific visual field around 
unique objects was manually built using GIS and then manually assessed using either video or 
3D rendering technology. The opportunity exists to extend automated 2D GIS analysis by 
incorporating 3D details, while also covering a complete network of roads. Existing work has 
introduced the combined use of remote-sensing data and GIS for managing and measuring 
transportation-related variables, highlighting that the evaluation process can be automated by 
developing software specific to the needs of the project. Well-suited for a study intended to 
explore Big Data, this automated approach will allow the interactions between several factors 
over a large area to be assessed. 
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