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Abstract

Inflammatory bowel disease (IBD) is a debilitating and widespread immune-mediated illness characterized by excessive inflammatory and effector mucosal
responses leading to tissue destruction at the gastrointestinal tract. Interactions among the immune system, the commensal microbiota and the host genotype
are thought to underlie the pathogenesis of IBD. However, the precise etiology of IBD remains unknown. Diet-induced changes in the composition of the gut
microbiome can modulate the induction of regulatory versus effector immune responses at the gut mucosa and improve health outcomes. Therefore,
manipulation of gut microbiota composition and the local production of microbial-derived metabolites by using prebiotics, probiotics and dietary fibers is being
explored as a promising avenue of prophylactic and therapeutic intervention against gut inflammation. Prebiotics and fiber carbohydrates are fermented by
resident microflora into short chain fatty acids (SCFAs) in the colon. SCFAs then activate peroxisome proliferator-activated receptor (PPAR)γ, a nuclear
transcription factor with widely demonstrated anti-inflammatory efficacy in experimental IBD. The activation of PPARγ by naturally ocurring compounds such as
conjugated linoleic acid, pomegranate seed oil-derived punicic acid, eleostearic acid and abscisic acid has been explored as nutritional interventions that
suppress colitis by directly modulating the host immune response. The aim of this review is to summarize the status of innovative nutritional interventions
against gastrointestinal inflammation, their proposed mechanisms of action, preclinical and clinical efficacy as well as bioinformatics and computational
modeling approaches that accelerate discovery in nutritional and mucosal immunology research.

© 2013 Elsevier Inc. Open access under CC BY-NC-ND license.
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1. Introduction

Inflammatory bowel disease (IBD) is a chronic immune-mediated
illness of unknown etiology associated with a dysregulated mucosal
immune response to intestinal microorganisms in a genetically
susceptible host [1]. IBD is characterized by the destruction of gut
tissue, which is initiated from alterations of the intestinal epithelium
barrier function involving increased tight junction permeability and
maintained by a defective down-regulation of mucosal immunity
toward the intestinal microflora [2]. The two main clinical manifes-
tations of IBD are Crohn’s disease (CD) and ulcerative colitis (UC). UC
is characterized by the presence of localized inflammation and
superficial lesions in the colon, whereas CD is associated with
discontinuous and transmural lesions of the gut wall which can affect
the whole intestine, although a colonic presentation is most typical
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[1]. Both innate immunity and adaptive immunity play a role in IBD
pathogenesis, but dysregulation of T cell responses contributes to the
chronicity of IBD [2]. The immunopathology of CD is associated with
dysregulated T helper (Th) 1 responses characterized by over-
production of interferon-γ (IFN-γ) and tumor necrosis factor α
(TNF-α) [1]. More recent studies demonstrate an important role of
Th17 cells as key contributors to the immunopathology of IBD [3]. In
contrast to the predominance of Th1 and Th17 responses in CD, UC is
mediated by a predominant Th2 response [4].

IBD affects up to 0.5% of the human population in developed
countries, and numbers are increasing in the developing countries
[5]. The total number of IBD cases in the United States is estimated
to be around 1 to 1.5 million [6], which results in annual direct
health costs of $6.3 billion, with pharmaceutical claims accounting
for ~30% of those expenses [7]. Current treatments for IBD
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include corticosteroids (i.e., 6-methylprednisolone and budesonide),
aminosalicylates and immunomodulators (i.e., azathioprine, 6-mer-
captopurine, cyclosporine and methotrexate) and the Food and Drug
Administration (FDA)-approved, anti-TNF-α humanized antibodies
[8]. These therapies ameliorate IBD by inducing and maintaining
clinical remission, but cannot be considered for the long-term
management of the disease due to their significant adverse side
effects, which include immune suppression, enhanced susceptibility
to malignancies and suppressed resistance against infectious diseases
[9]. In addition, none of these approaches has been approved as a
prophylactic. Dissatisfaction with current traditional therapies has
resulted in increased use of complementary and alternative medicine
approaches such as prebiotics and probiotics, with an estimated
incidence of 49.5% among IBD patients [10]. Thus, exploring
novel therapeutic and preventive approaches for IBD and their
mechanisms of anti-inflammatory activity is both novel and impor-
tant. This review will summarize the status of innovative nutritional
interventions against gastrointestinal inflammation, their proposed
mechanisms of action, and their preclinical and clinical efficacy, and
present novel computational modeling approaches that can be
applied to accelerate knowledge discovery in nutritional and mucosal
immunology research.
2. Mucosal and nutritional immunology of relevance to
gut inflammation

The principal challenge of the intestinal immune system is
balancing the host response to pathogens while not responding to
stimuli derived from commensal microbiota and food antigens [7].
Commensal bacteria residing in the intestinal lumen are thought to
contribute to immune tolerance, although translocation of the same
commensal microfloral antigens to the lamina propria (LP) results in
effector and inflammatory responses. Also, mice are better protected
from colitis in a germ-free environment [11], suggesting a role of the
gut microbiota in the pathogenesis of IBD. Mucosal immune
homeostasis can be disrupted in IBD due to alterations in (a) barrier
function of the epithelium, (b) the innate immune cells [e.g.,
macrophages and dendritic cells (DC)] which provide the initial
innate response to invading bacteria and (c) lymphocyte function in
both the LP and the mesenteric lymph nodes (MLN), including the T
cell population of the normal gut mucosa [12].

Absorptive and secretory cells, as well as different epithelial cell
subsets such as microfold cells (M cells), goblet cells and Paneth cells,
form a single cell layer that constitutes the epithelial barrier. Goblet
cells form a protective mucus layer, whereas Paneth cells secrete
potent antimicrobial peptides known as defensins in the base of small
intestinal crypts. M cells are found in the follicle-associated
epithelium of the Peyer’s patches sampling intestinal mucosal
contents and delivering them via transcytosis to DC and lymphocytes.
The disruption of the epithelial barrier or the infiltration of
pathogenic bacteria into the LP activates DC and macrophages,
which process the antigen and present it on their surfaces through
the MHC class II complex. These antigen-presenting cells (APC) are
transported to the MLN, where they promote the differentiation of
naïve T cells into effector and regulatory T cells (Treg). The cytokine
environment secreted in part by the APC skews the differentiation of
naïve CD4+ T cells into T helper (Th1, Th2, Th17, Th9, T follicular
helper, Th22) or induced/adaptive Treg cell subsets. These now
differentiated T cells migrate back to the LP, where they start the
adaptive immune response towards the antigen. A predominance of
dysregulated Th1 and Th17 responses in the colonic LP has been
associated with CD [12]. Fig. 1 illustrates some key aspects of mucosal
immunity relevant to the pathogenesis of gut inflammation in the
context of nutritional protective mechanisms.
3. Animal models of gut inflammation

The development of animal models of colitis as a means of
studying the pathogenesis of human IBD and testing novel therapeu-
tics started almost half a century ago [13]. The recent introduction of
multiple models of mucosal inflammation indicates that a number of
immune imbalances can result in loss of tolerance to mucosal
antigens and therefore induction of gastrointestinal immunoinflam-
matory responses. In this review, we will summarize two models of
acute colitis, dextran sodium sulfate (DSS)-induced and trinitroben-
zene sulfonic acid (TNBS)-induced colitis, and two models of chronic
colitis, adoptive transfer studies using severe combined immunode-
ficient mice (SCID), lacking mature T or B cells due to a loss-of-
function mutation of the protein kinase, DNA-activated, catalytic
polypeptide (Prkdc) gene, or recombination activating gene 2-
deficient (Rag2−/−) mice, which fail to produce B or T lymphocytes,
and the interleukin-10 (IL-10) deficient mice.

The models of mucosal inflammation can be classified into two
broad categories: “type 1 models,” including TNBS- and DSS-induced
colitis, in which the defect lies with the effector mechanism of the
mucosal response, and “type 2 models,” including SCID-transfer
colitis and IL-10 deficiency, wherein the effector response is normal
but the regulatory cell response is impaired [2].

3.1. TNBS-induced colitis

The rectal administration of TNBS, a hapten, results in a transmural
infiltrative disease limited to the colon and characterized by an IL-12-
driven, Th1-mediated response based on CD40–CD40L interactions
[14]. Some studies have shown the importance of TNF-α in both the
initiation and the persistence of the Th1 response since TNBS could
not induce colitis in TNF-α-deficient mice [15]. On the other hand,
transforming growth factor (TGF)-β seems to be the main regulatory
cytokine, although IL-10 is necessary for the effectiveness of the
TGF-β response [16]. Hapten-induced colitis is a relevantmodel of gut
inflammation since it allows the study of early events in the
development of mucosal inflammation, as well as the analysis of the
relation of the response to a specific antigen (hapten) to the overall
mucosal immune response leading to colonic inflammation [2].
However, this is a severe model of acute colitis, and it might not be
ideal for testing nutritional protective mechanisms.

3.2. DSS-induced colitis

This is an old acute model that is frequently used to study the
efficacy of potential therapeutic compounds since a consistent level of
colitis is easily induced by the administration of DSS in the drinking
water [17]. Early changes in the epithelial barrier result in the
permeabilization of the intestinal wall, setting the stage for
macrophage activation and the release of proinflammatory cytokines
[17,18]. This model has been widely utilized for testing both efficacy
and mechanism of action of both drugs and nutritional compounds.
The severity of disease can be calibrated by the amount of DSS added
and the length of administration, although the most typical regimen
consists of 2.5% DSS in the drinking water for 7 days, which we have
used to test the anti-inflammatory mechanisms of conjugated linoleic
acid (CLA) [9], abscisic acid (ABA) [19,20] and pomegranate seed oil
(PSO) [21].

3.3. The SCID-transfer model of colitis

This chronic model of mucosal inflammation is produced by the
transfer of SCID or Rag2−/−mice with either CD45RBhi T cells (naïve
T cells), which leads to severe colitis in 3–5 weeks, or CD45RBhi T cells
and CD45RBlo T cells (mature T cells), in which no inflammation



Fig. 1. Mucosal immune mechanisms of nutritional protection against colitis. The disruption of the epithelial barrier or the infiltration of pathogenic bacteria into the LP or Peyer’s
patches (PP) activates DC and macrophages (MAC), which process the antigen and present it on their surfaces through the MHC class II complex. These APC either stay in the PP or are
transported to the MLN, where they promote the differentiation of naïve T cells into effector and regulatory T cells. The cytokine environment secreted in part by the APC skews the
differentiation of naïve CD4+ T cells into T helper (Th1 and Th17) or Treg subsets. Th1 cells differentiate in the presence of IL-12; IL-6 and TGF-β induce a Th17 phenotype, whereas IL-
10 induces a Treg cell differentiation. These mature T cells migrate back to the LP following a chemokine gradient (CCL), where they start the adaptive immune response towards the
antigen, resulting in the production of effector and proinflammatory cytokines. The administration of prebiotics (inulin, oligofructose), dietary fibers (resistant starch, soluble corn
fiber) and probiotics decreases effector responses and proinflammatory cytokine expression by the production of SCFAs. Dietary compounds such as CLA, PUA, ESA and ABA, as well as
probiotic-derived SCFA, can activate PPARγ to suppress inflammation.
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occurs. Therefore, this model allows the identification and study of
two cell populations: the effector cells in CD45RBhi T cell populations
and regulatory cells in CD45RBlo T cell populations [2]. In this case, the
inflammation is limited to the colon, and it is also characterized by a
Th1 response driven by IL-12 and mediated by IFN-γ [22], although
there is recent evidence showing that Th17 cells also play an
important role in mediating colonic immunopathology in this
model. Several studies have also suggested TGF-β as the major
suppressor cytokine and the requirement of IL-10 to facilitate TGF-β
secretion and activity [9,23,24]. Moreover, cell activation in SCID-
transferred mice is an antigen-driven event occurring as a result of a
dysregulated response to antigens in the mucosal microbiota.
Therefore, this model demonstrates that abnormal reactivity to
antigen in the mucosal microflora can occur in the absence of genetic
abnormality and does not require disruption of the epithelial barrier
[2]. This model was used to investigate the mechanisms of anti-
inflammatory action of CLA [9] and probiotic bacteria [25].
3.4. IL-10 deficiency colitis

IL-10-deficient mice develop colitis characterized by epithelial cell
hyperplasia and transmural inflammation. The early stage of the
disease is characterized by a Th1 response that can be ameliorated by
anti-IL-12 antibody treatment. However, Th2 mediates the response
later on due to the absence of IL-10, and the lesions are no longer
treatable with anti-IL-12 [26]. Interestingly, IL-10-deficient mice do
not develop colitis under germ-free conditions [27]. Therefore,
antigens in the mucosal microflora contribute to the disease
pathogenesis in this model. IL-10-deficient mice show increased
intestinal permeability even before they develop colitis. This might
increase the stimulation by antigens in the mucosal microflora, thus
facilitating the development of inflammation [28]. We have used this
model to test the anti-inflammatory efficacy of dietary fibers [29],
punicic acid (PUA) [21,29] and probiotics [25].
3.5. Pig models of colitis

There are three distinctive advantages of using pig and gnotobiotic
(Gn) pig models to study the immunomodulating mechanism of
nutritional interventions: (a) neonatal Gn pigs avoid the interference of
maternal antibodies/immunoregulators and confounding factors from
commensal organisms and therefore provide an immunologically naïve
background that allows clear identification of the immune-modulating
effects of probiotics in hosts colonized with the uniform and clearly
defined microflora; (b) the gastrointestinal, nutritional, metabolic and
immunologic similarities between pigs and humans [30]; and (c)
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relatively large numbers of immune cells can be harvested from each
tissue of the pig, allowing comprehensive studies of many immuno-
logical parameters to identify the mechanism underlying the immu-
nomodulating effect of nutritional interventions. Thismakes pigmodels
ideal for translational gut inflammation research.

We have used pig models successfully to investigate the anti-
inflammatory mechanisms of fish oil and CLA [31]. A pilot study to
titrate the optimal dose of DSS was performed, showing that the
administration of 4% DSS in 100ml of water by gastric intubation once
daily for 7 days is optimal to induce colitis in pigs [31]. We have also
developed a bacterial-induced model of colitis in pigs, in which pigs
are challenged with two doses of 1010 colony forming units of Bra-
chyspira hyodysenteriae given in two consecutive days to study the
anti-inflammatory effects of CLA. This model results in dysentery, a
severe mucohemorrhagic diarrheal disease and colitis characterized
by mucosal enlargement as a result of crypt elongation and epithelial
necrosis [32,33]. We have used the Gn pig model of human rotavirus
infection to characterize the dose effects of probiotic Lactobacillus
rhamnosus GG and L. acidophilus NCFM strains on APC, natural and
induced Treg cell, IFN-γ-producing T cell, and B cell responses in the
intestinal and systemic lymphoid tissues [34]. More specifically, we
demonstrated that, in Gn pigs receiving an oral attenuated rotavirus
vaccine, high-dose L. acidophilus induced strong Treg cell responses
and promoted IL-10 and TGF-β production by tissue-residing Treg
cells, whereas low-dose L. acidophilus significantly enhanced IFN-γ-
producing T cell and decreased Treg cell responses, but it did not
enhance virus-specific B cell and antibody responses. The low- and
intermediate-dose L. rhamnosus GG and intermediate-dose L. aci-
dophilus significantly increased rotavirus-specific effector/memory T
cell, B cell and antibody responses and down-regulated the Treg cell
responses, leading to significantly increased protection rate against
virulent rotavirus challenge [34,35]. Together, these animal models
provide an ideal window to explore the immunological mechanisms
controlling inflammation at the gut mucosa and how they can be
modulated nutritionally.

4. The role of prebiotics and dietary fibers in gut inflammation

Recent evidence suggests that the intestinalmicroflora contributes
to modulating immune responses and protecting from gut inflam-
matory diseases [36]. Accordingly, the use of specific prebiotics to
stimulate growth and activity of intestinal microbiota has been
successful in animal models of colitis [37], although knowledge
regarding their mechanism of action is limited. Prebiotics are
nondigestible oligosaccharides, defined as “selectively fermented
ingredients that allow specific changes, both in the composition
and/or activity of the gastrointestinal microflora that confers benefits
upon host wellbeing and health” [38]. Nowadays, only two dietary
nondigestible oligosaccharides fulfill all the criteria for prebiotic
classification: inulin and oligofructose, which are natural food
ingredients or dietary fibers present in certain plants as storage
carbohydrates [39]. Many other food components, including other
dietary fibers, have been claimed to have prebiotic activity [38] even
though they do notmeet the required criteria: (a) resistance to gastric
acidity, hydrolysis by mammalian enzymes and absorption in the
upper part of the gastrointestinal tract; (b) fermentation by beneficial
bacteria in the intestine; and (c) selective stimulation of growth and/
or activity of colonic microflora toward a healthier composition [40].

Prebiotics and fiber carbohydrates are not digested in the upper
gastrointestinal tract, and they are thought to be selectively fermented
by residential bacteria into short chain fatty acids (SCFAs) and lactate
once they reach the colon. Besides increasing the production of SCFAs
such as acetate, propionate and butyrate, other protective mechanisms
of prebiotic activity have been proposed including changes in the
intestinal microbiota, improvement of the intestinal barrier and
regulation of the mucosal and systemic immune response [41].
However, the mechanisms underlying these effects remain unknown.

Dietary prebiotics can be applied to the prevention of human
enteric inflammatory disorders while maintaining optimal levels of
immune surveillance. In this regard, dietary fibers can act as effective
prebiotics by altering the intestinal microbial composition and
promoting the growth of beneficial bacterial communities within
the large intestine, resulting in colitis reduction [42,43]. Recent
studies showed how prebiotics increased the number of beneficial
bacteria such as lactobacilli and bifidobacteria, while decreasing the
disease-causing bacteria in both animal models and human clinical
studies [42,44]. Moreover, prebiotics can also provide resistance to
colonization by pathogenic bacteria by inhibiting the adherence of
pathogens to the gut epithelium. For instance, inulin inhibits the in
vitro intestinal colonization of Clostridium difficile [45].

C. difficile is typically a harmless anaerobic bacterium, but recently,
it has reemerged as a pathogen that can cause nosocomial diarrhea,
colitis and even death [46], particularly after antibiotic treatment. It
grows in the intestine of individuals with altered commensal
microflora [47] due to treatment with antimicrobials, immunosup-
pressants, cytostatic agents or proton pump inhibitors [48]. An
increase in both incidence and severity of C. difficile-associated
disease has been reported over the last years [49], probably due to the
emergence of new hypervirulent strains such as NAP1/BI/027, which
has resulted in increasedmorbidity andmortality in the United States,
Canada and Europe [50].

There are several explanations for the selective stimulation of
protective microflora in detriment of disease-causing bacteria.
Fermentation of nondigestible carbohydrates in the colon decreases
the pH, which inhibits the growth of certain organisms such as Bac-
teroides spp. [50,51]. Some protective bacteria like Bifidobacterium
infantis have specific enzymes that hydrolyze saccharides, resulting in
their own proliferation [52]. Other organisms can induce the
proliferation of beneficial bacteria by a cross-feeding mechanism.
For instance, B. longum releases free fructose during oligofructose
degradation, which results in the proliferation of other organisms,
which are not able to ferment oligofructose themselves [53]. Although
several bacteria can ferment prebiotics, lactobacilli and bifidobacteria
are their most capable fermenters [54,55].

Results of a recent study demonstrated the efficacy of resistant
starch (RS), soluble corn fiber (SCF) and inulin to ameliorate clinical
disease and prevent inflammatory lesions in an IL-10−/− mouse
model of IBD [29]. The protective effect of RS was proposed to be
associated with an increase in SCFA production, butyrate in particular
[56]. A decrease in “healthy”microbiota and of SCFAs is characteristic of
patients with IBD [36]. Therefore, the increase of colonic SCFA
production by the fermentation of RS-75 and SCF was considered a
likely mechanism of action [57,58]. The changes occurring in the
gastrointestinal lumen due to administration of dietary fiber of RS are
well characterized, but little is known about their immunomodulatory
effects in the mucosal immune system. We found that the preventive
effect of RS-75 is also associated with increased percentages of Treg in
the spleen and Peyer’s patches aswell as a reduced production of IFN-γ,
suggesting a suppression of Th1 cells in the gut. Dietary RS-75 and
inulin supplementation modulates the Treg compartment, causing
changes in the gut’s microbial ecology and resulting in increased
butyrate levels that subsequently activate peroxisome proliferator-
activated receptor (PPAR)γ [59]. PPARγ is a nuclear receptor and
transcription factor involved in lipid metabolism and glucose homeo-
stasis [60]. Interestingly, PPARγ was required for the protective anti-
inflammatory actions of Treg against effector T cell-induced colitis in
mouse adoptive co-transfer studies [61]. Moreover, PPARγ antagonizes
several proinflammatory pathways such as STAT, AP-1 and NF-κB.
Therefore, activation of PPARγ represents a conserved anti-inflamma-
tory mechanism involved in the prevention of inflammatory and
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immune-mediated diseases [9,32,61,31]. PPARγ was first shown to be
efficacious in suppressing intestinal inflammation based on results of
DSS challenge studies using synthetic agonists known as thiazolidine-
diones [62]. To date, mounting evidence supports the prophylactic and
therapeutic effects of PPARγ activation in multiple strains of mice, rats
and pigs with acute colitis induced by chemical compounds [62,63] or
gut pathogens [32], as well as chronic colitis occurring after the transfer
of naive CD4+T cells in SCIDmice [9] or spontaneous panenteritis in IL-
10-deficient mice [64]. Therefore, targeting PPARγ is a promising
avenue for developing novel prophylactic and therapeutic interven-
tions for gut inflammation. A recent study in UC patients demonstrated
that rosiglitazone (Avandia), a thiazolidinedione agonist of PPARγ and
a US FDA-approved drug for treating type II diabetes, is also efficacious
in the treatment of mild to moderately active UC [65]. However,
rosiglitazone is unlikely to be adopted for treating IBD due to its
significant side effects [66,67]. Hence, the discovery of novel naturally
ocurring agonists of PPARγ that exert therapeutic and prophylactic
actions against IBDwith no adverse side effects is timely and necessary.

5. Activation of PPARγ by naturally occurring compounds

Many polyunsaturated fatty acids (PUFA) and their metabolites
are natural ligands for PPARγ [68] and have been proposed as a
promising avenue for developing safer nutritional interventions
against gut inflammation without adverse side effects. In an effort
to expedite the discovery of anti-inflammatory natural products,
virtual screening (VS) can complement traditional experimental
methods for identification of novel PPARγ agonists. VS allows the
screening of thousands of compounds within a collective of large
compound libraries in a cost-effective manner [69]. Our group has
successfully established a protocol for screening fatty acid compounds
against PPARγ as a means to identify novel agonists, which can be
later verified through in vitro assays [70,71]. We performed a small-
scale screen focusing on conjugated trienes due in part to their
structural similarity to CLA, which is a well-known PPARγ agonist
(Fig. 2). Moreover, conjugated trienes are effective at ameliorating
chronic inflammation [72,73]. Hence, the integration of molecular
modeling with wet nutritional immunology experimental validation
represents a cost- and time-efficient approach for the discovery of
novel anti-inflammatories.

5.1. Conjugated linoleic acid

CLA refers to a mixture of positional and geometric isomers of
linoleic acid (LA), of which cis-9,trans-11 (c9,t11) and trans-10,cis-12
(t10,c12) CLAs predominate. CLA is naturally present in milk, cheese
and ruminant products and can be produced industrially by partial
hydrogenation of LA [74,75]. CLA has been considered for the
prevention and treatment of gut inflammation since 2002 [76]. By
using a bacterial-induced colitis pig model, we found that dietary CLA
supplementation suppresses colonic inflammation and up-regulates
colonic PPARγ expression. Specifically, CLA ameliorated tissue
inflammation and weight loss associated with B. hyodysenteriae-
induced colitis [32]. In 2004, similar findings were observed in mouse
models of DSS- and CD4-induced colitis [9]. CLA repressed TNF-α
expression and NF-kappaB activation while inducing the immuno-
regulatory cytokine TGF-β1. This seminal publication provided
molecular evidence in vivo demonstrating that the loss of the
PPARγ gene in the colon abrogated the beneficial effects of CLA in
DSS colitis, suggesting that CLA ameliorates colitis through a PPARγ-
dependent mechanism. PPARγ is mainly expressed in the colon by
epithelial cells and LP mononuclear cells such as macrophages and T
and B cells. Although some studies show the importance of PPARγ in
each cell type, additional investigations in animals with cell type-
specific expression of PPARγ are required to determine the main
cellular source responsible for the therapeutic effect of PPARγ [77].

More recently, we investigated the immunoregulatory efficacy of
CLA in patients with mild to moderate CD [78]. Overall, oral CLA
administration was well tolerated and suppressed the ability of
peripheral blood T cells to produce proinflammatory cytokines such
as IFN-γ, TNF-α and IL-17, decreased disease activity and increased
the quality of life of patients with CD. Thus, the results of this clinical
trial validated the findings of previous pig and mouse CLA-feeding
studies. In contrast to the promising clinical findings with CLA in CD
patients, clinical data on n-3 PUFA in IBD remain generally
unimpressive. The gut anti-inflammatory activity of CLA versus n-3
PUFA was reviewed previously [79].

5.2. PSO-derived PUA

PUA, also known as trichosanic acid, is a conjugated triene fatty acid
naturally found at high concentrations in the seed of Punica granatum
(Punicaceae, pomegranate) and Trichosanthes kirilowii [73]. PUA
constitutes 64% to 83 % of the PSO, but it also contains minor amounts
of α-eleostearic acid (ESA), catalpic acid (CAA) and jacaric acid (JAA)
[80]. All these acids are collectively known as conjugated linolenic acids
(CLnAs) and are stereo- or regioisomers of each other (Fig. 2). PUA is a
conjugated octadecatrienoic acid containing c9, t11, c13 double bonds
that resembles the cis-9, trans-11 CLA isomer [76,81]. Due to the
similarities between the chemical structure of PUA and the c9, t11 CLA
isomer, PUA was suggested as a potential PPARγ agonist. PUA was
shown to robustly bind and activate PPARγ, therefore increasing
PPARγ-responsive gene expression and ameliorating diabetes and gut
inflammation. The loss of PPARγ in immune cells impaired its ability to
modulate glucose homeostasis and obesity-related inflammation [73].
PUA was later shown to ameliorate DSS-induced colitis and spontane-
ous panenteritis in IL-10−/−mice [70]. Specifically, PUA intake down-
regulated RORγt expression in the colon and suppressed colonic and
M1 macrophage-derived TNF-α. Dietary PUA also increased the levels
of IL-17 and IFN-γ in CD8+ T cells in the MLN. In line with previous
studies, the loss of PPARγ in immune cells impaired the ability of PUA to
ameliorate experimental colitis, strongly suggesting that PUA modu-
lates mucosal immune responses and ameliorates gut inflammation
through a PPARγ-dependent mechanism. Recent studies by our group
show that the immune modulatory actions of ESA may be both PPARγ
dependent and PPARγ independent to ameliorate disease activity and
intestinal lesions in mice with DSS colitis.

A recently published study showed that supplementation of PSO
into milk formula reduces the incidence and severity of necrotizing
enterocolitis (NEC) in rats [82]. NEC is a devastating disease
associated with severe and excessive intestinal inflammation, and it
is the major cause of morbidity and mortality in premature infants.
Although its etiology is unknown, it is thought that the combination
of intestinal immaturity, high immunoreactivity of the intestinal
mucosa and genetic predisposition lead to the development of NEC
[83]. The administration of PSO protects against NEC in a neonatal rat
model. PSO’s beneficial effect is associated with improved enterocyte
proliferation, protection of intestinal architecture and reduced
expression of proinflammatory cytokines.

In addition to CLnAs, PSO also contains a diverse array of
phytochemicals, including polyphenolic constituents, hydrolyzable
tannins and condensed tannins [84]. Phytosterols (i.e., β-sitosterol,
campesterol and stigmasterol) are also found in quite high concen-
trations in the PSO (4089–6205 mg/kg of PSO) [85]. Some of these
compounds seem to have potent antioxidant and anti-inflammatory
properties implicated in the prevention and intervention of several
inflammation-related diseases, including cancer [84,86]. It has been
demonstrated that these pomegranate phytoconstituents utilize
Nrf2-mediated antioxidant mechanisms to abrogate the oxidative



Fig. 2. Chemical structure of naturally occuring agonists of PPARγ. (A) Representative binding mode of the most stable docked orientation of ligands with PPARγ illustrated in ribbon
mode. Ligand poses are generated by AutoDock Vina. Cis-9, trans-11 CLA is in red; trans-10, cis-12 CLA is in magenta; PUA is in blue. (B) c-9,t-11 CLA. (C) t-10,c-12 CLA. (D) 2-D PUA.
(E) ABA. (F) 2-CAA. (G) JAA. (H) α-ESA. (I) β-ESA. (J) Butyric acid, a type of SCFA.
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stress generated during diethylnitrosamine (DENA) hepatocarcino-
genesis [87]. Nrf2 may also act as a key modulator of inflammatory
pathways through its interaction with NF-κB, a master regulator of
the proinflammatory response [88]. A study of the same group
showed how pomegranate constituents are able to suppress DENA-
mediated inflammatory cascade by down-regulating the expression
of inflammatory mediators, including iNOS, 3-NT, HSP70, HSP90,
COX-2 and NF-κB [89].

5.3. Activation of PPARγ by ABA

ABA is an isoprenoid phytohormone discovered in the early 1960s
that has received some recent attention due to its medicinal
applications [90]. Specifically, oral ABA administration has shown
prophylactic and therapeutic efficacy in mouse models of IBD
[19,20,91–93]. However, little is known about the role of ABA in the
modulation of immune and inflammatory responses and the cellular
and molecular mechanisms underlying its health effects.

ABA has been shown to ameliorate colonic inflammation by
suppressing immune cell infiltration. These changes are associated
with significant down-regulation of cellular adhesion molecule
expression and an increase in Treg cells systemically [19]. Interest-
ingly, the loss of PPARγ in T cells abrogated the anti-inflammatory
efficacy of ABA against experimental IBD. Dietary ABA worsened
colonic inflammation and enhanced cellular adhesion molecule
expression in T cell-specific PPARγ null mice. Therefore, ABA-
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mediated activation of anti-inflammatory pathways might predom-
inate when PPARγ is expressed in T cells, whereas proinflammatory
pathways, such as NF-κB, become ABA's targets when PPARγ is
deleted from T cells [94]. Although ABA has been shown to activate
PPARγ [92], it does not bind to its ligand-binding domain, and such
activation can be blocked by inhibiting intracellular cyclic adenosine
monophosphate production or protein kinase A activity [91],
suggesting that ABA triggers an alternative mechanism of PPARγ
activation. A recent study suggested that ABA can indirectly activate
PPARγ through LANCL2/cAMP-initiated signaling and LANCL catalytic
functions [95]. Further research is necessary to understand the cell-
specific response of ABA-induced PPARγ activation and how it
resembles and differs from the mechanism of PPARγ activation by
other compounds.

6. Manipulation of the gut microbiota by probiotics

The alimentary tract is a sterile organ at very early stages of
development (i.e., embryonic and fetal phases). However, after birth,
the gastrointestinal mucosa evolves to become densely colonized by
bacteria. Specifically, from birth to weaning, successive waves of
microorganisms will colonize the mucosa with a final result of 500–
1000 species, which amount to 100 trillion microorganisms, residing
in the large intestine of adult humans [96]. The number of gut
microorganisms is 10 times greater than the total number of somatic
and germ cells [97]. At the same time that intestinal host tolerance is
established towards foods and the commensal microflora, additional
mechanisms are in place to recognize and eliminate pathogens and
their toxins. A unique feature of the gastrointestinal mucosa is that, in
healthy individuals, it maintains a delicate equilibrium between
induction of effector immune responses and tolerance. The latter
involves a controlled down-regulation of mucosal immunity [98]. The
mutualism that exists between the host and the commensal
microflora is illustrated by the actions of Bacteroides thetaiotaomicron.
Hooper and colleagues demonstrated that this commensal bacterium
modulated the expression of genes involved in nutrient absorption,
Fig. 3. Integration of animal and computational modeling approaches in nutritional immunolo
and experimental validation studies. After literature search and generation of calibration dat
(SBML) compliant format. A fully calibrated model that synthesizes existing knowledge is crea
with the model to generate new hypotheses. These hypotheses will then be tested in vivo using
model through an iterative process.
intestinal maturation, angiogenesis and strengthening of the mucosal
barrier [99].

Recent estimates indicate that the human gastrointestinal tract
contains about 1014 bacteria, with about 103/ml in the stomachwith a
predominance ofHelicobacter pylori, rising with descent of the tract to
1011–1012/ml in the colon [100]. Among other beneficial effects, the
intestinal microflora serve important roles in the healthy intestine,
from the digestion, absorption and storage of nutrients to the
protection against pathogen colonization by the production of
antimicrobial substances and competition for nutrients. Moreover,
they are important for the development and optimal function of the
immune system [101].

The trigger of chronic intestinal inflammation is thought to
depend on the microflora since several studies have failed to induce
inflammation in germ-free animals. Also, intestinal inflammation will
not occur in IL-10-deficient mice or chemically treated rats without
the presence of the intestinal microflora [102]. The hypothesis that
the intestinal bacterial flora contribute to the pathogenesis of IBD is
supported by several experimental and clinical observations. Recent
studies revealed that IBD patients show a loss in microflora
biodiversity as well as an increase in the proportion of fungi [4]. A
decrease in bifidobacteria but not lactobacilli has also been reported
[103]. Moreover, UC and CD patients have lower levels of Bifidobac-
terium in samples collected from inflamed tissue compared with
healthy tissue [104].

Due to the evidence correlating the intestinal bacterial flora with
IBD pathogenesis, various attempts have been made to modify the
microflora by administering probiotics. Probiotics are live microbial
supplements which beneficially impact host health. These products
rely on introducing particular exogenous strains into the gut
microflora [105]. Several probiotics have been shown to be
efficacious in the treatment of IBD, specially the commercially
available mixture VSL#3, the Escherichia coli strain Nissle 1917 and
several Lactobacillus species [106]. The E. coli strain Nissle 1917 has
been demonstrated to improve intestinal homeostasis andminimize
the bacteria-induced reduction of the intestinal barrier, thus
gy research. The modeling approaches include fully integrated computational strategies
abase, a comprehensive network is created using a Systems Biology Markup Language
ted using Complex Pathway Simulator (COPASI). Computer simulations are conducted
mouse models of colitis. Finally, the new data generated will be used to recalibrate the
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decreasing the invasion of intestinal epithelial cells by several
pathogens [106].

Orally or rectally administered lactobacilli improve experimental
colitis in mice and rats. L. plantarum 299v prevented and reduced
established colitis in an IL-10-deficient mouse model [107] and in
chemically treated rats [108]. However, it failed to ameliorate
established colitis in TNBS-induced colitis in rats [109]. L. reuteri
(R2LC) and L. salivarius UCC118 decreased mucosal inflammatory
activity in IL-10-deficient mice [110,111]. Some of these probiotics
have been proposed for the prevention and treatment of antibiotic-
associated diarrhea and C. difficile-associated disease. These include
several bacterial strains such as Bifidobacterium, Lactobacillus GG, L.
rhamnosus, L. casei, L. plantarum 299v and Enterococcus faecium [SF68],
which are commonly available as lyophilized capsules or in the form
of a fermented drink [112]. The disturbance of normal flora,
particularly after antibiotic treatment, is believed to facilitate the
colonization by C. difficile. The delivery of bacteria to the gastrointes-
tinal tract by probiotic administration is believed to restore
equilibrium in the altered microflora, thus protecting against C.
difficile colonization [113].

VSL#3 is a mixture composed of four strains of lactobacilli (L. casei,
L. plantarum, L. bulgaricus and L. acidophilus), three strains of
bifidobacteria (B. longum, B. breve and B. infantis) and Streptococcus
thermophilus. Of these, L. casei has been identified as the beneficial
strain. VSL#3 has demonstrated efficacy in patients with UC [114] and
in animal models of colitis [115]. Interestingly, some of the strains
present in VSL#3 are able to produce CLA and CLnA isomers in vitro
Fig. 4. In silico effect of ABA administration on miRNA-146b expression. The model represents t
format (A). A COPASI scan task shows a down-regulation of miR-146b when ABA is admini
activates PPARγ and therefore favors IL-10 production and decreases IFN-γ levels (B). However
result, IFN-γ predominates due to DSS activation, and NCOA4 is unable to up-regulate PPARγ
from LA orα-LA [116]. In this line, a recently published study provides
novel in vivo evidence that VSL#3 administration changes microbial
diversity and local CLA production, which results in PPARγ-depen-
dent anti-inflammatory effects in different models of experimental
colitis in mice [106].

7. Computational modeling of mucosal immune responses in
nutritional immunology research

We constructed a computational model of mucosal immune
responses during IBD [117]. Overall, our modeling approach involved
the following: (a) creation of a structural network using Cell Designer,
a software package that enables users to describe molecular in-
teractions using a well-defined and consistent graphical notation
[118]; (b) parameter estimation based on published or newly
generated experimental data [119]; and (c) in silico experimentation.
Our model synthesized knowledge related to immunological mech-
anisms involving T cells, macrophages, DC and epithelial cells as they
move and interact with bacteria in the lumen, LP and MLN (Fig. 3). In
silico experiments revealed a positive inflammatory feedback loop
formed by inflammatory M1 macrophage activation of T cells as a
driving force underlying the immunopathology of IBD, thus suggest-
ing macrophage plasticity as key interventions points in preventive
and therapeutic nutritional interventions against gut inflammation.
Such computational prediction was later validated in vivo [120].
Specifically, results of DSS challenge studies in mice showed that
macrophage PPARγ deficiency worsens experimental IBD by
he interaction between DSS, ABA, miRNA-146, NCOA4, PPARγ, IL-10 and IFN-γ in SBML
stered to the system, resulting in increased concentrations of NCOA4, which, in turn,
, when PPARγ is deleted from the system, IL-10 production is drastically decreased. As a
(C).
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modulating the expression of inflammatory/effector and metabolic
genes, impairing the peripheral Treg compartment and increasing the
recruitment and activation of LP macrophages and T cells at the
colonic mucosa during DSS-induced colitis in mice. Moreover, the
induction of M2 macrophages by activation of PPARγ by pioglitazone
favored tissue reconstitution in mice with colitis [120].

In line with the previous modeling effort, we have also created a
small model representing a novel potential pathway by which ABA
might elicit its anti-inflammatory effects during DSS-induced colitis in
mice. Experimental findings showed that dietary ABA down-regulates
the expression of miRNA-146b during DSS-induced colitis. miRNAs
are small (~22–24-nucleotide), noncoding, single-stranded RNA
molecules that lead to the degradation and/or inhibition of translation
of specific mRNAs depending on the type of base-pairing between the
miRNA and its mRNA target [121]. Reverse transcriptase polymerase
chain reaction results demonstrate that the expression of nuclear
receptor coactivator 4 (NCOA4), a potential target of miR-146b and a
PPARγ coactivator, was up-regulated during ABA treatment. Although
changes in miRNA and mRNA expression in IBD patients have been
identified [122], many of the mechanistic links between miRNA
alterations and gene targeting remain to be determined. Therefore,
these experimental data were used to create and calibrate a
computational model with the aim to determine how ABA impacts
the mRNA expression of several cytokines via PPARγ and miRNA-
146b. In silico simulations illustrate a down-regulation of miR-146b
when ABA is administered to the system, resulting in increased
concentrations of NCOA4, which, in turn, activates PPARγ and
therefore favors IL-10 production and decreases IFN-γ levels.
However, when PPARγ is deleted from the system, IL-10 production
is drastically decreased. As a result, IFN-γ predominates and NCOA4 is
unable to up-regulate PPARγ (Fig. 4).

In conclusion, the use of computational approaches not only
can help us discover new nutritional interventions against gut
inflammation but also can facilitate discovering the mechanisms of
action by which such nutritional compounds elicit their anti-
inflammatory effects.
8. Conclusions

Dissatisfaction with current therapies for IBD has spurred interest
in the discovery of novel interventions without adverse side effects. In
this regard, the nutritional manipulation of gut microbiome and the
mucosal immune system represent promising prophylactic interven-
tions against gut inflammation. Dietary activation of PPARγ by fiber,
probiotics as well as other naturally ocurring compounds such as CLA,
CLnAs and ABA represents an efficacious and safe approach for the
prevention and amelioration of IBD. The combination of computa-
tional and animal modeling provides novel avenues for synthesizing
and rationalizing existing knowledge in a systematic way that
accelerates mechanistic nutritional immunology research and dis-
covery to improve gastrointestinal health outcomes.
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