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ABSTRACT 

 

Wildlife diseases often occur under quantifiable and consistent patterns, which can be 

understood to statistically predict their occurrence and spread across landscapes. Chronic wasting 

disease (CWD) is a neurodegenerative disease in the deer family Cervidae caused by a prion, a 

pathogenic and misfolded variant of a naturally occurring protein. Managing and controlling 

CWD is imperative for conservation of ecologically and economically important cervid species, 

but unclear transmission mechanisms within landscapes complicate evidence-based 

management. Gaps of information in the landscape ecology for CWD are particularly 

pronounced for areas with recent disease emergence and spread, such as within the CWD cluster 

in the Mid-Atlantic United States. Thus, I identified current gaps in information and sought to fill 

neglected areas of research, specifically focusing on landscape determinants for CWD 

occurrence and spread in the state of Virginia. In chapter 2, I conducted a scoping study that 

collected and synthesized decades of CWD research and identified trends with respect to 

statistical and mathematical modeling methods used, connectivity within the CWD research 

community, and the geographic areas from which studies were performed. In chapter 3, I 

investigated landscape determinants for CWD in Virginia using remote sensing landscape data 

and an epidemiological dataset from Virginia Department of Wildlife Resources (DWR) using 

diverse algorithms and model evaluation techniques. Finally, in chapter 4, I modeled landscape 

connectivity between confirmed CWD cases to examine potential paths and barriers to CWD 

spread across landscapes. My results indicate that landscape ecology was rarely incorporated 

throughout CWD’s 50+ year history. I provide evidence that remotely-sensed landscape 

conditions can be used to predict the likelihood of CWD occurrence and connectivity in Virginia 

landscapes, suggesting plausible CWD spread. I suggest areas of future work by explicitly 

identifying gaps in CWD research and diagnostic methods from which models are based, and 

encourage further consideration of host’s ecology in modeling. By integrating remotely-sensed 

data into my modeling framework, the workflow should be easily adaptable to new study areas 

or other wildlife diseases. 
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GENERAL AUDIENCE ABSTRACT 

 

 Understanding why diseases occur in some locations and not others can be a critical 

challenge for disease ecologists. One disease that has received significant attention from the 

media and scientific community is chronic wasting disease (CWD), which is caused by a 

misfolded protein called a prion. Virginia Department of Wildlife Resources (DWR) has 

identified a stark increase in the number of CWD cases since first discovered in 2009, which 

threatens white-tailed deer populations and a 500 million dollar industry used for conservation of 

Virginia wildlife species. Previous research found that CWD does not occur randomly on the 

landscape, but otherwise little is known about the landscape ecology of CWD. To provide insight 

on Virginia’s CWD outbreak, I assessed methods used to investigate other CWD outbreaks in 

both space and time. Also, I used landscape data collected from satellites and data from CWD 

cases in Virginia, and applied statistical tools to identify patterns in the landscape that were 

linked with CWD cases. My results suggest that landscapes were rarely examined to understand 

CWD, and instead, researchers focused on understanding how populations will respond to the 

disease. I also provide evidence that, at least in Virginia, researchers can use satellite information 

with disease data to predict CWD on the landscape and estimate its spread. This information can 

be used by wildlife managers to control the disease. For example, disease surveillance can be 

increased in areas where CWD has been predicted, or herd sizes can be reduced in areas likely to 

promote disease spread. This information could also be used to tailor wildlife health regulations 

aimed to minimize the risk of other deer populations acquiring the disease. Ultimately, the 

landscape plays an important role in CWD, but research on this topic is limited; therefore, 

additional research is needed to understand and eventually control this disease affecting 

ecologically and culturally important game species. 
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CHAPTER 1: INTRODUCTION 

Steven N. Winter 

 

Chronic wasting disease (CWD) is a contagious and invariably fatal transmissible 

spongiform encephalopathy (TSE) caused by a misfolded protein called a prion (Williams and 

Young 1980; Prusiner 1982). Consistent with other TSEs and prion diseases, CWD-infected 

cervids experience cognitive decline and neurodegeneration from infectious prion (PrPSc) 

manifestation in neurons. Due to CWD’s transmissibility, prevalence can reach 40-50% in wild 

cervid populations (Edmunds et al. 2016; Carlson et al. 2018), and 80-100% in captive 

populations (Keane et al. 2008). These epidemiological characteristics make CWD management 

a priority for wildlife managers and conservationists responsible for species of economic and 

conservation concern (Wisconsin Department of Natural Resources 2010; Texas Parks and 

Wildlife and Texas Animal Health Commission 2015). Currently there is no vaccine or treatment 

for CWD that provides complete protection (Goñi et al. 2015); thus, managers depend on culling 

host species to mitigate disease spread in local (Wasserberg et al. 2009; Manjerovic et al. 2014; 

Wolfe et al. 2018) or more severe regional scales (i.e., population eradication; Mysterud and 

Rolandsen 2018; Rolandsen et al. 2019). 

Chronic wasting disease is an emerging wildlife disease worldwide. Initially, CWD was 

observed in 1967 in a captive deer facility in Colorado, USA, classified as a TSE in 1979 

(Williams and Young 1980), and discovered to be emergent in wild cervids in western US States 

in 1981 (Spraker et al. 1997). Chronic wasting disease’s origin is unknown, but has been 

speculated to emerge from contact and possible spillover from scrapie-infected sheep (Ovis spp.), 

which were held in the same facility with the first cervids that developed CWD (Williams and 

Young 1980; Miller and Fischer 2016). Wildlife managers found CWD in white-tailed deer herds 
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(Odocoileus virginianus) in Wisconsin in 2002 (Joly et al. 2003), which served as the impetus 

for CWD surveillance programs in many states east of the Mississippi River. More recently, 

enhanced CWD surveillance resulted in the discovery of CWD in Mid-Atlantic States (i.e., 

Maryland, Pennsylvania, Virginia, and West Virginia) in 2005 in West Virginia. Soon thereafter, 

CWD surveillance efforts resulted in the confirmation of CWD in Virginia (2009), Maryland 

(2010), and Pennsylvania (2012) (Evans et al. 2014). By late 2020, CWD was confirmed in wild 

cervid populations in 24 US states, two Canadian provinces, and areas of Norway, Sweden 

(Statens Veterinärmedicinska Anstalt 2019; USGS 2020), and Finland, as well as in captive 

facilities in 17 US states, four Canadian provinces, and two South Korean provinces (Kim et al. 

2005; Dubé et al. 2006; USGS 2020).  

Considering the diversity of landscapes and host species affected, a main question in the 

study of CWD is the degree to which the landscape can explain its geographic distribution. This 

question is largely connected to prion’s unusual properties to remain infective in the environment 

for prolonged periods (i.e., possibly decades; Georgsson et al. 2006; Almberg et al. 2011), and 

the pathogen’s close relationship with its host relative to other diseases (e.g., vector-borne 

diseases). Previous research suggests geomorphology and landscape features (e.g., forests, rivers; 

O’Hara Ruiz et al. 2013; Nobert et al. 2016) can influence CWD’s distribution. Nevertheless, 

much remains unknown about the landscape ecology of CWD.  

This thesis is an effort to synthesize research and apply methods from landscape ecology 

to elucidate CWD-landscape relationships in the CWD outbreak in Virginia. In Chapter 2, I 

compiled decades of CWD research to characterize the state of modeling in a scoping study 

framework that addresses landscape modeling approaches used, focal study species, and 

collaboration structures among CWD researchers in Virginia and worldwide. Subsequent 
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chapters address the CWD outbreak in Virginia more explicitly. In Chapter 3, I utilize remote 

sensing and CWD epidemiological data to determine the extent to which CWD can be 

quantifiably predicted from landscape conditions. Finally, in Chapter 4, I seek to examine 

connectivity between current CWD cases identified in Virginia, and between this known area 

and an additional susceptible cervid population within Virginia for disease management 

consideration. 
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Abstract 

Chronic wasting disease (CWD) is an infectious and fatal prion disease occurring in the 

Cervidae family. To update the research community regarding the status quo of CWD 

epidemiological models, we conducted a meta-analysis on CWD research. We collected data 

from peer-review articles published since 1980, when CWD was first diagnosed, until December 

2018. We explored the analytical methods used historically to understand CWD. We used 14 

standardized variables to assess overall analytical approaches of CWD research communities, 

data used, and the modeling methods employed. We found that CWD modeling initiated in the 

early 2000s and has increased since then. Connectivity of the research community was heavily 

reliant on a cluster of CWD researchers. Studies focused primarily on regression and 

compartment model-based models, population-level approaches, and host species of game 

management concern. Similarly, CWD research focused on single populations, species, and 

locations, neglecting modeling using community ecology and biogeographic approaches. 

Chronic wasting disease detection relied on classic diagnostic methods with limited sensitivity 

for most stages of infection. Overall, we found that past modeling efforts generated a solid 

baseline for understanding CWD in wildlife, and increased our knowledge on infectious prion 

ecology. Future analytical efforts should consider more sensitive diagnostic methods to quantify 

uncertainty and broader-scale studies to elucidate CWD transmission beyond population-level 

approaches. Considering that infectious prions may not follow biological rules of well-known 

wildlife pathogens (i.e., viruses, bacteria, fungi), assumptions employed when modeling other 

infectious disease may not apply for CWD. Chronic wasting disease is a new challenge in 

wildlife epidemiology. 

 

 

This chapter has been published in Journal of Wildlife Diseases (DOI: 10.7589/2019-08-213). 



 7 

Introduction 

Chronic wasting disease (CWD) is an invariably fatal neurological disorder caused by a 

misfolded protein called prion (Prusiner 1982). It has recently received considerable attention 

from the public and scientific community. It is a transmissible spongiform encephalopathy (TSE; 

Williams and Young 1980). Cervids experience cognitive decline and neurodegeneration as a 

result of infectious prion (PrPCWD) replication in neurons. Chronic wasting disease was first 

observed in 1967 in a captive deer facility in Colorado, USA, classified as a TSE in 1979 

(Williams and Young 1980), and discovered in wild herds in 1981 (Spraker et al. 1997). By late 

2019, the disease was detected in wild cervid populations in 24 US states, two Canadian 

provinces, and areas of Norway, Sweden (Statens Veterinärmedicinska Anstalt 2019), and 

Finland, as well as in captive facilities in 17 US states, four Canadian provinces, and two South 

Korean provinces (Kim et al. 2005; Dubé et al. 2006; USGS 2019). Naturally susceptible 

Cervidae species include white-tailed deer (Odocoileus virginianus), mule deer (Odocoileus 

hemionus), elk (Cervus canadensis), red deer (Cervus elaphus), caribou (Rangifer tarandus), 

moose (Alces alces), black-tailed deer (Odocoileus hemionus hemionus), and sika deer (Cervus 

nippon) to date (Spraker et al. 1997; Baeten et al. 2007; Benestad et al. 2016; Centers for Disease 

Control and Prevention 2019a). Due to its highly contagious nature, CWD prevalence can reach 

40-50% in wild cervid populations (Edmunds et al. 2016; Carlson et al. 2018), and 80-100% in 

captive populations (Keane et al. 2008). These epidemiological characteristics make CWD 

management a priority for wildlife managers and conservationists responsible for species of 

economic and conservation concern (Wisconsin Department of Natural Resources 2010; Texas 

Parks and Wildlife and Texas Animal Health Commission 2015). 
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Despite traditionally concerning wildlife professionals, new emphasis on CWD’s 

spillover potential has garnered attention from the US Centers for Disease Control and 

Prevention (Centers for Disease Control and Prevention 2019b) and the European Food Safety 

Authority (EFSA Panel on Biological Hazards 2018). Experimental challenge via intra-cranial 

prion inoculation demonstrates other wildlife, such as raccoons (Procyon lotor; Moore et al. 

2019), common livestock species including sheep (Ovis aries) and cattle (Bos taurus; (Hamir et 

al. 2006, 2007), and non-human primates (Marsh et al. 2005) can be susceptible to prion 

infection. Similarly, swine (Sus scrofa) have shown susceptibility to PrPCWD after consuming 

prion-infected tissues (Moore et al. 2017). While there are no reports of CWD infecting humans, 

public health experts discourage consuming CWD-positive cervids (Centers for Disease Control 

and Prevention 2019b) and posit that CWD’s ever-increasing spread and exposure warrants 

action (Osterholm et al. 2019). 

To determine which measures of surveillance, control, and prevention for infectious 

diseases are appropriate, epidemiologists work to comprehend the phenomena and mechanisms 

that trigger and facilitate disease spread. Since the mid-1700s, epidemiologists have utilized 

statistical and mathematical models for describing epidemiological data and complex infection 

processes (Heesterbeek et al. 2015). Models are often valued for their abilities to simplify 

complex biological systems, describing and forecasting infectious disease events, and evaluating 

control methods under diverse, what-if, scenarios (Garner and Hamilton 2011). A plethora of 

studies have examined diverse epidemiological modeling approaches for infectious diseases 

caused by viruses (Gambhir et al. 2015; Herzog et al. 2017), protozoa (Wallace et al. 2014), 

fungi (Maanen and Xu 2003), bacteria, and nematodes (Hollingsworth et al. 2015; Lou and Wu 

2017).  
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Like other wildlife diseases, research on the ecology of CWD has relied on modeling of 

epidemics. For example, models have found associations between deer demographics and CWD 

infection, typically with highest CWD prevalences in older males followed by older females, and 

then yearling males (Grear et al. 2006; Heisey et al. 2010), which led to development and testing 

of demographically-weighted harvesting systems for disease control (Walsh and Miller 2010; 

Jennelle et al. 2018). Other studies have expanded knowledge on CWD transmission 

mechanisms, prion dynamics, and host population dynamics (Mejía-Salazar et al. 2016; Samuel 

and Storm 2016). Recent landscape epidemiological studies have identified factors that explain 

roles of the landscape in CWD prevalence (Walter et al. 2011a; O’Hara Ruiz et al. 2013; 

Edmunds et al. 2018). Similarly, physical landscape features like geomorphology (Mateus-

Pinilla et al. 2013), and rivers and roads (Robinson et al. 2013) have shown linkages with CWD 

transmission (Rees et al. 2012) and modify the shape of CWD epidemics (Robinson et al. 2013). 

Identifying trends in research is commonly employed to identify promising approaches, 

gaps of knowledge, and guide additional efforts in epidemiology (Allen et al. 2012; Heesterbeek 

et al. 2015; McCallum 2016; Herzog et al. 2017). Chronic wasting disease is of interest for 

wildlife and veterinary professionals, livestock industries, and public health agencies, and has 

therefore been the subject of previous assessment of its trends (Schauber and Woolf 2003; 

Conner et al. 2008). A recent assessment of sixteen articles found that models support the role of 

management interventions (i.e., selective and non-selective culling, seasonal hunting, and 

vaccination), and identify uncertainty in models (Uehlinger et al. 2016). We used a broad 

definition of modeling in the epidemiological sense (statistical or mathematical). Our aim was to 

explore past trends in CWD epidemiology. We identified analytical approaches, diagnostic 
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methods applied, collaboration structure among researchers, model parameterizations, and gaps 

of information.  

Methods 

Search and screening approach 

We collected articles from Web of Science (Clarivate Analytics, Philadelphia, 

Pennsylvania, USA) in January 2019. Keywords included chronic wasting disease, prion, 

model*, landscape, and spatial, combined to capture articles published from January 1980 to 

December 2018, encompassing more than 35 years of CWD research since its formal recognition 

in Colorado (Williams and Young 1980). We conducted an initial screening of titles and 

abstracts to retain online peer-reviewed research manuscripts (i.e., non-literature reviews) related 

to statistical or mathematical modeling. We applied the following selection criteria: 1) articles 

written in English language, 2) models applied were statistical or mathematical (i.e., not animal 

models), 3) articles that were not clinical or pathogenetic, 4) CWD infection accounted for in 

models (i.e., not loosely implied), and 5) model approaches accounted for cervid ecology (i.e., 

CWD reservoirs explicitly considered in models). Next, the bibliographies of articles were 

inspected manually to identify articles not detected in our initial search and falling within our 

inclusion criteria. 

Data collection 

Articles were reviewed, and data were extracted and assembled in four major groups: 

article title, publication year, journal name, and authors, to address what, when, where, and by 

whom, articles were published. Additionally, we extracted epidemiological data from articles 

using a content analysis (Hsieh and Shannon 2005) considering different research approaches. 
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More specifically, research approaches were defined based on biological organizational levels as: 

1) individual-level studies (i.e., focused on individual or cohort pathogenesis/survival); 2) 

population-level studies (i.e., one or more cervid populations defined by the article were the 

dependent variables of the modeling application); 3) community-level (i.e., models integrating 

multiple species from diverse taxa), 4) ecosystem-level (i.e., models integrating environmental 

features and epidemiological data); and 5) biogeographic-level studies (i.e., coarse-scale, broad-

extent studies). We also collected the geographic location, host species involved in the modeling, 

data source (i.e., primary or secondary), sample size and CWD prevalences, and diagnostic 

methods used to detect CWD infection. We categorized between studies based on empirical and 

simulated data (i.e., virtually created populations and/or environments). Finally, we identified the 

modeling algorithms used, model evaluation methods, type of modeling (predictive vs. 

descriptive), and variables assessed. Variables included in the modeling were characterized in 11 

categories: 1) control/management method (i.e., exploration of methods for management control, 

such as harvest); 2) demographic (i.e., population-centric variables); 3) epidemiological (i.e., 

characteristics of pathogens or hosts); 4) landscape (e.g., land cover types); 5) life cycle (e.g., 

functions of population viability); 6) location, 7) sampling method (e.g., route of data collection); 

8) time; 9) sampling effort; 10) trophic-related variables; and 11) spatial- following Auchincloss 

et al. (2012). 

Data analyses 

We organized, summarized, and visualized data with R software (R Core Team 2020) 

using ggplot2 and dplyr packages in the tidyverse platform (Wickham and RStudio 2018). 

Additionally, we used ArcMap 10.5 (Environmental Systems Research Institute, Redlands, 

California, USA) for choropleth map generation to show geographic distribution of studies by 
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state. We used a social network analysis to describe the structure of the CWD modeling 

community (Newman 2004). We compiled an adjacency matrix containing the number of 

selected publications written by and between authors. We extracted each authors’ affiliations 

listed in the articles, and categorized affiliations as: 1) state wildlife agencies; 2) academia, 3) 

federal science agencies; and 4) other governmental agencies (e.g., city government). Finally, I 

used Gephi 0.9.2 network analysis software (Bastian et al. 2009) to quantify author influence in 

connectivity and affiliation-based structures of the research community. 

Results 

The search strings yielded a total of 679 articles. After removing duplicates, 589 unique 

articles remained. Following our selection criteria, 79 research articles were found, including 

eight additional articles not captured by the search on Web of Science but recovered from 

articles’ bibliography (Joly et al. 2003, 2006; Johns and Mehl 2006; Miller et al. 2008; Al-

Arydah et al. 2012; Edmunds et al. 2016; Galloway et al. 2017; Schuler et al. 2018). The 79 

articles and their corresponding metadata can be found in Table A1.  

The number of articles on CWD modeling has steadily increased since 2000 (Fig. 2.1), 

with a mean of 4.2 (SD=2.2) publications being published per year. Miller et al. (2000) and 

Conner et al. (2000) published the first research articles applying analytical modeling to CWD. 

The first article integrating spatial statistics across scales was published in 2003 (Joly et al. 

2003). Ecological modeling including environmental covariates started in 2005 (Farnsworth et 

al. 2005; Krumm et al. 2005). Integrating genetics in CWD epidemic modeling started in 2008 

(Miller et al. 2008). 

A total of 37 journals contained the articles collected. Of these, the Journal of Wildlife 

Diseases, PLoS One, Journal of Wildlife Management, and Ecological Applications contained 



 13 

about half of the articles (Fig. A1). Articles were published mainly in journals related to ecology 

(e.g., Ecology, Journal of Applied Ecology, Ecosphere), and biomathematics (e.g., Journal of 

Mathematical Biology, Bulletin of Mathematical Biology, ISRN Biomathematics), with a limited 

presence in veterinary journals (e.g., Preventative Veterinary Medicine, Veterinaria Italiana). A 

total of 180 individual authors participated in the 79 research articles. The social network of the 

CWD community revealed that a few specific researchers (nodes) occurred in most modeling 

studies (Fig. 2.2). Additionally, individual authors’ level of influence in overall network 

connectivity (eigenvector centrality) was unevenly distributed among the CWD-modeling 

community, with a small number being the most influential in connectivity. State and federal 

agencies (e.g., natural resource departments and US Geological Survey) comprised a 

considerable number of connections with other researchers (Fig. 2.3a), and with academic 

institutions (Fig. 2.3b). About 18% articles were generated by isolated groups of authors (i.e., 

mathematicians), while authors from other disciplines were generally well-connected to the 

major network. Only one researcher was not affiliated with a STEM (science, technology, 

engineering, and mathematics) department.  

The research approaches employed were not evenly distributed across the pool of articles. 

For example, two articles were performed at the individual-level, in studies of cohort survival 

and transmission (Monello et al. 2017; Davenport et al. 2018). Population-level studies were the 

most common scale studied (n=48), followed by ecosystem-level (n=20). The number of 

population-level articles remained relatively constant over time but ecosystem-level analyses 

became more frequent during the 2010s. Six community-level articles explored predator 

populations directly or indirectly through predation-associated mortality on cervids and infection 

status (Miller et al. 2008; Walsh and Miller 2010; Wild et al. 2011; Monello et al. 2014; DeVivo 
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et al. 2017; Maji et al. 2018). Nine articles mixed methods by including cervid genetics, spatial-

analyses, and landscape-level variables (Blanchong et al. 2008; Miller et al. 2008; Grear et al. 

2010; Cullingham et al. 2011b, 2011a; Rogers et al. 2011; Robinson et al. 2013; Kelly et al. 

2014; Mejía-Salazar et al. 2017). We did not identify studies using biogeographic level 

approaches or studies across large study areas.  

Thirteen studies used artificial, simulated environments for modeling (Gross and Miller 

2001; Diefenbach et al. 2004; Johns and Mehl 2006; Nusser et al. 2008; Almberg et al. 2011; 

Wild et al. 2011; Al-Arydah et al. 2012; Potapov et al. 2012; Cortez and Weitz 2013; Oraby et al. 

2014; Sun et al. 2015; Vasilyeva et al. 2015; Maji et al. 2018). Excluding aspatial simulations, all 

modeling studies were conducted in the US and Canada (Fig. 2.4). Wisconsin (n=25) and 

Colorado (n=21), US, were the most represented states in the literature, followed by neighboring 

states of Wyoming (n=10) and Illinois (n=7). In Canada, provinces with most articles were 

Saskatchewan (n=7) and Alberta (n=6). Similarly, cervid species used in the pool of research 

articles were unevenly represented. Articles modeled white-tailed deer (n=39) and mule deer 

(n=37) most frequently (88%), followed by elk, which were rarely the target species (n=5). Five 

studies did not report the host species studied (Wild et al. 2011; Oraby et al. 2014; Sun et al. 

2015; Vasilyeva et al. 2015; Maji et al. 2018). We did not find studies focused on other known 

CWD-susceptible host species (i.e., moose, sika deer, red deer, or caribou). 

Most articles (n=54) relied on secondary data sources for modeling (i.e., published data 

collected from surveillance or literature), while primary-sourced data (original field or 

experimental data) studies were less common (n=25). Excluding simulation-based studies with 

artificial populations, articles using secondary data sources (e.g., statewide surveillance 

programs) had sample sizes that accounted for >96% of cervids used in models. These secondary 
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sources typically revealed higher CWD prevalences and larger sample sizes across articles 

(μ=11.7%; range=0 to 94.7% and μ=12,405; range=39 to 152,133, respectively). Reported 

prevalences and number of cervids sampled in articles at the year of their publication was highly 

variable (Fig. 2.5).  

Regarding CWD prion diagnostic or detection, nearly all studies (72/79) relied on 

immunohistochemical (IHC) and/or enzyme-linked immunosorbent assay (ELISA). These 

methods were used directly or indirectly for determining CWD infection status in cervids. Five 

studies did not report diagnostic methods used or assumed for CWD detection (Diefenbach et al. 

2004; Almberg et al. 2011; Cullingham et al. 2011a; Galloway et al. 2017; Maji et al. 2018). 

Only one study (Davenport et al. 2018) incorporated real-time quaking induced conversion (RT-

QuIC) and no studies reported use of protein-misfolding cyclic amplification (PMCA).  

Analytical methods 

Phenomenological models, like regression analyses, and mechanistic models, such as 

compartmental models using differential equations (i.e., S-I-R), were the most common 

analytical approaches, followed by hierarchical Bayesian models, population matrix models, and 

descriptive statistics (Fig. 2.6). Less common methods included diffusion models, machine 

learning (i.e., boosted regression trees and Maxent), and network models, among others (Table 

A2). Additionally, 32% (25/79) studies were descriptive, aiming to reconstruct past epidemics, 

while 58% (46/79) relied on modeling algorithms that were predictive in nature, aiming to 

forecast unknown CWD scenarios.  

From the 79 modeling articles, 49 relied on time explicitly (e.g., prevalence over time) or 

implicitly (e.g., in compartment model timesteps), 40 articles incorporated spatial information 

(e.g., Game Management Unit, geographic coordinates, or Township-Region-Section; Conner 
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and Miller 2004; Krumm et al. 2005; Kelly et al. 2014, respectively). Four studies explored 

sampling effort in CWD research (Joly et al. 2009; Walsh and Miller 2010; Rees et al. 2012; 

Mateus-Pinilla et al. 2013) and six examined trophic variables as top-down effects of predation 

on cervids and infection status (Miller et al. 2008; Walsh and Miller 2010; Wild et al. 2011; 

Monello et al. 2014; DeVivo et al. 2017; Maji et al. 2018). No studies investigated bottom-up 

effects, and a few explored cervid body condition (Edmunds et al. 2016; DeVivo et al. 2017) and 

consumption rates (Potapov et al. 2013) as functions of movement habits and prion deposition, 

respectively. Common landscape variables of ecosystem-level studies included characteristics of 

forest composition, agricultural habitat, and soils, while wetlands and riparian habitats were 

rarely incorporated (Table 2.1). Demographic variables including sex and age of cervids, and 

epidemiological variables like prevalence were the most frequent in CWD modeling (Fig. 2.7). 

Discussion 

Using 79 research articles, our research revealed trends in epidemiological modeling of 

CWD. We collected and standardized metadata using methods comprehensible and accessible for 

both epidemiologists and wildlife professionals. We offer a synthesis of analytical modeling of 

CWD, the prion disease with the highest spillover potential (Escobar et al. 2020). The articles we 

outlined have generated valuable findings to guide current and future management actions and 

efforts from the research community remain critical in understanding this emerging infectious 

disease.  We note the following patterns: 1) population-level studies were predominant, 2) 

models relied on diagnostic tests of limited sensitivity, 3) the research community is 

collaborative among professions and institutions, and 4) the data collected are geographically 

clustered, representing portions of CWD’s distribution. 
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Our review indicated that the first modeling applications began over 30 yr after the initial 

detection of CWD. This lag is likely a result of the timeline of the diagnosis of CWD as a TSE 

and identification in wild herds in the early 1980s (Spraker et al. 1997). Also, delays in 

publication are subject to lengths of surveillance periods, data cleaning and analysis, and other 

practical limitations. Still, in less than two decades, the magnitude of CWD modeling research 

has increased consistently along with the number of researchers.  

The CWD modeling community is tightly linked with major researchers at federal and 

state agencies. In academia, veterinary scientists and ecologists possess strong ties expressed as 

co-authorship across academic realms. Supportively, publications in ecological and veterinary 

journals featured authors with larger collaboration networks, while isolated clusters of authors 

often published in specialized journals. The fact that the community of researchers was well 

connected, with a few isolated clusters, suggest strong collaboration among disciplines and 

agencies, and multidisciplinarity in the study of CWD. A deficiency of social science researchers 

suggests little input from experts in human-dimension, economics, and policy, which could limit 

the use of CWD model for management.  

Research approaches focused on population-level modeling that has revealed 

demographic patterns on CWD infection (Miller and Conner 2005; Grear et al. 2006) useful for 

testing epidemiological control at the local level, including culling practices to reduce prevalence 

(Wasserberg et al. 2009; Potapov et al. 2012). Whether CWD transmission is frequency- or 

density-dependent (or a hybrid of the two) is still in debate and models show mixed results 

(Grear et al. 2010; Cortez and Weitz 2013; Storm et al. 2013; Jennelle et al. 2014; Oraby et al. 

2014). We found that population-level models that incorporate spatial analysis revealed that 

CWD is not randomly distributed, rather it is observed in geographic clusters (Joly et al. 2003, 
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2006). These clusters result in hotspots of infection that could serve as a source for posterior 

CWD spread to other regions (Nusser et al. 2008; Heisey et al. 2010). Population-level studies 

incorporating genetics identified heterogeneous transmission risk (Matsumoto et al. 2013), allelic 

selection (Monello et al. 2017), impacts of genetic relatedness on probability of transmission 

(Grear et al. 2010; Mejía-Salazar et al. 2017), and patterns of geographic spread (Blanchong et 

al. 2008; Cullingham et al. 2011a, 2011b; Rogers et al. 2011; Robinson et al. 2013; Kelly et al. 

2014).  

Community-level studies often determined the roles of cervid predation in CWD spread. 

These studies were generally empirically-based (Miller et al. 2008; Walsh and Miller 2010; 

Monello et al. 2014; DeVivo et al. 2017) and theoretical applications were less common (Wild et 

al. 2011; Maji et al. 2018). Ecosystem-level studies revealed the importance of landscape 

features for CWD spread (Garlick et al. 2011; Nobert et al. 2016; Hefley et al. 2017b). For 

example, landscape epidemiology identified positive associations between CWD prevalence and 

specific variables such as urban (Farnsworth et al. 2005), forested (O’Hara Ruiz et al. 2013; 

Storm et al. 2013) and riverine landscapes (Edmunds et al. 2018), while soil composition had 

limited effects (O’Hara Ruiz et al. 2013; Storm et al. 2013; Manjerovic et al. 2014) in contrast to 

(Walter et al. 2011b). One individual-level study determined cohort pathogenesis and 

transmission (Davenport et al. 2018), while the other investigated survival in relation to genotype 

(Williams et al. 2014). 

Most studies were conducted in regions severely afflicted by CWD (USGS 2019). For 

example, modeling studies were conducted in 11 of the 26 CWD-affected US states and in two 

out of the five countries in which CWD has been detected in wild cervids. This is probably a 

result of available funding in CWD endemic areas, low detection of prions outside foci of 
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infection, and limited data available for modeling other regions. Most articles in our review used 

study areas selected pragmatically or based on political boundaries, which has been cautioned 

against, considering the lack of biological support and artifactual results of such study designs 

(Barve et al. 2011). Interestingly, some study areas were defined through Game Management 

Units, delineations of which can vary in their accommodation to wildlife-populations (Miller and 

Conner 2005), landscape, and human associated variables, such as land cover types and 

infrastructure (Wisconsin Department of Natural Resources 1998; Joly et al. 2009). Fortunately, 

despite traditional wildlife management operating within political boundaries, recent 

recommendations from wildlife managers are now promoting CWD management and monitoring 

across state and provincial boundaries (Western Association of Fish and Wildlife Agencies 

2018). 

Many susceptible cervid species (e.g., moose, caribou, red deer) were neglected in the 

revised modeling studies. The three species generally included in models (i.e., white-tailed deer, 

mule deer, and elk) are highly economically valued as game species (Koontz and Loomis 2005; 

Wisconsin Department of Natural Resources 2010; Mule Deer Working Group 2015), which 

may suggest an implicit economic bias in the species selection. Alternatively, the lack of 

modeling studies for moose, caribou, red deer could reflect either lower prevalences detected in 

these species, or a deficiency of journal publications of the research conducted on these species. 

Sample sizes of studies showed a tendency to increase, but CWD prevalences were 

considerably variable across time. This may suggest an increased sampling effort, but 

inconsistent sampling designs. Also, it is unclear if prevalence estimations represented different 

stages of CWD epidemics. In addition, it is possible that variability of prevalence across time 

and studies is linked to inclusion (or not) of samples from passive surveillance (e.g., road-killed 
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deer) that may have different prevalences than samples from active epidemiological surveillance 

(e.g., hunting for sampling). The high variability in prevalences reveals the increase in research 

teams studying CWD prevalence in wildlife using non-standardized methods for estimations, 

making studies hard to compare. For example, some studies rely on decade-long surveillance 

data and others across years. Unfortunately, efforts to elucidate correction of prevalence values 

by sampling bias as well as controlling for expanding geographic coverage has been limited. 

Indeed, geographic areas and temporal periods, which are critical units to estimate CWD 

prevalence, varied considerably among studies. I call for more informed, standardized reports of 

CWD prevalence that include the sample size (e.g., number of animals tested), sampling period 

(e.g., annual basis, duration since local discovery, or stage of epidemic), and study area extent 

(e.g., hectares). This will make metadata more reliable as a baseline to facilitate prevalence 

comparison across regions, periods, and populations.  

Most CWD data originated from two diagnostic tests: IHC and ELISA. These tests are 

considered the gold standard for CWD diagnosis (Haley and Richt 2017). Routine procedure 

uses ELISA for initial screening, followed by IHC for confirmation. Strikingly, recent studies 

showed that IHC has questionable sensitivity when detecting low concentrations of prions in the 

asymptomatic phase of infection. For example, IHC could fail to detect PrPCWD-infected 

individuals in controlled, transgenic mice (McNulty et al. 2019). Similarly, ELISA fails to detect 

low concentrations of CWD prions in brain homogenate (McNulty et al. 2019), which may be 

consistent with earlier stages of the disease. Therefore, considering that diagnostic methods used 

in CWD modeling produce false negatives, previous epidemiological models could be 

underestimating CWD prevalences. In the US, IHC and ELISA are the only accepted methods 

for CWD diagnosis officially (US Department of Agriculture 2014). Thus, state agencies in the 
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US are restricted from using other non-US Department of Agriculture validated tests (i.e., ultra-

sensitive methods like PMCA or RT-QuIC) in routine CWD surveillance. This could influence 

understanding of CWD in wildlife, including increased temporal lags in detecting the effects of 

management intervention. Future research should consider developing corrector parameters to 

account for uncertainties in CWD detection. Such parameters could be estimated by estimating 

CWD detection error using other diagnostic methods with elevated sensitivity (e.g., PMCA, RT-

QuIC) of subsets of samples tested using conventional diagnostic tests. I note that this approach 

may be impractical for large sample sizes but could help detect the circulation of lower prion 

concentrations otherwise missed, which may be specifically crucial in early stages of CWD 

invasion when outbreak control could be more effective.  

Analytical methods to analyze CWD were dominated by regression and compartment-

based models. These models have generated a baseline to guide management efforts and build 

new research hypotheses. Nevertheless, the quality of compartment models is subject to the 

robustness and biological realism of specific parameters, and is context-, population, and time-

specific (Uehlinger et al. 2016). Regression models chiefly identified linkages between CWD 

infection and environmental features (Mateus-Pinilla et al. 2013). This empirical work can help 

guide experimental work to assess CWD transmission under specific landscape features (e.g., 

plant species) to build upon preliminary work with scrapie prions (Pritzkow et al. 2015, 2018). 

This will elucidate mechanisms of causation of CWD environmental transmission and will guide 

evidence-based interventions based on landscape modification for CWD control (Goñi et al. 

2015). Additional research could include exploring the effects of more sensitive CWD detection 

on parameter estimation for SI, hierarchical, and matrix models as it pertains to prion 

transmission dynamics and demographic trends in wild cervids. For example, environmental 
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prion loads may be better quantified with accurate detection of cervids in the preclinical phase of 

infection (Henderson et al. 2017). Finally, hunter-sourced data has been invaluable in CWD 

surveillance programs, however, these data can be biased (Conner et al. 2000) or incomplete 

compared to active epidemiological sampling. Future research could include assessing bias 

mitigation strategies for the epidemiological surveillance derived from samples obtained 

opportunistically from hunters. 

Model evaluation and field validation remain barely explored; current models only focus 

on calibration. That is, CWD descriptive models prioritize model-fit to the data available (e.g., 

Akaike information criteria). For predictive models, evaluation approaches should split data to 

ensure temporal and spatial independence among datasets. We found that current evaluation 

methods do not assure statistical independence between calibration and evaluation datasets (e.g., 

cross-validation) and require accurate detection of positive and negative individuals (e.g., 

evaluations based on sensitivity and specificity), which is not a robust approach considering the 

CWD detection capacities of major diagnostic methods employed (i.e., IHC and ELISA). 

Few modeling studies incorporated sampling effort and no studies integrated 

biogeographic approaches in models (e.g., continental geomorphology), which are often starting 

points in which infectious diseases are generally explored (Emmanuel et al. 2011; Peterson 

2014). Instead, models were restricted to finer-scale population-level variables and localized 

geomorphology (i.e., soil composition). Considering resistance and environmental 

transmissibility of prions (Zabel and Ortega 2017) and recent experiments showing potential of 

prion deactivation from natural weathering processes (Yuan et al. 2018) research on CWD based 

on landscape epidemiology warrants further investigation. 



 23 

A new frontier in CWD modeling research includes addressing the detection, 

quantification, and mitigation of sampling biases in surveillance. Biases could be linked to the 

geographic areas studied, species inspected, and diagnostic approaches employed. Specifically, 

broad-scale biogeographic models are encouraged to account for the roles of environmental 

variation on past CWD epidemics (Evans et al. 2016). Such coarse-scale studies will allow 

researchers to reconstruct patterns in CWD spread, establishment, and maintenance in novel 

areas and populations, as has been proven useful for other infectious disease agents including 

worms, bacteria, and viruses (Reisen 2010; Cadavid Restrepo et al. 2016). Continental-level 

assessment of CWD surveillance will elucidate whether current CWD distributions are driven by 

sampling effort, specifically in more probabilistic areas for CWD infection (e.g., CWD-free 

counties neighboring endemic CWD areas). 

Chronic wasting disease and other prion diseases remain a challenge in wildlife disease 

modeling. Prion diseases may not follow traditional rules and assumptions derived from other 

pathogens for which more information is available. For example, unlike most diseases, hosts fail 

to demonstrate immune responses to prion infection, and prions lack genetic identity necessary 

for coevolution (Zabel and Avery 2015). Additionally, prions remain resilient in extreme 

conditions otherwise fatal to other pathogens (Jung et al. 2003), and their unclear origins further 

complicate CWD tracking. More importantly, CWD is the only prion disease affecting free-

ranging wildlife, it has no treatment, and its zoonotic potential cannot be discredited, limiting the 

scientific community’s abilities to develop experimental work in basic laboratory settings. Our 

overview of CWD modeling could serve as a baseline for future CWD research. 
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Table 2.1: Landscape variables used in chronic wasting diseases research published in journals from 1980-2018. From ecosystem-level studies in 

meta-analysis, columns show categorized landscape variables, how often they appeared in articles, an example of the variable or its description, 

and their respective sources. Variables related to forests, urbanization, and agriculture were more common, while riparian and broad-scale 

variables (e.g., ecoregions) were seldom examined. Note that climactic variables are absent. 

 Number   

Variable COa  LCTb Example Sources 

Forest 11 8 Forest size, percent forested area, 

edge size, proportion deciduous forest 

Joly et al. 2006; Nusser et al. 2008; Skuldt et al. 2008; Garlick et al. 2011; 

Rees et al. 2012; Mateus-Pinilla et al. 2013; O’Hara Ruiz et al. 2013; 

Robinson et al. 2013; Storm et al. 2013; Garlick et al. 2014; Kelly et al. 2014; 

Manjerovic et al. 2014; Evans et al. 2016; Mejía-Salazar et al. 2016; Nobert et 

al. 2016; Hefley et al. 2017b, 2017a; Edmunds et al. 2018 

Soil 

characteristics 

6 0 Percent clay, pH, average organic 

matter 

Mateus-Pinilla et al. 2013; O’Hara Ruiz et al. 2013; Robinson et al. 2013; 

Storm et al. 2013; Manjerovic et al. 2014; Evans et al. 2016 

Terrain 6 0 Topographic variability, ruggedness, 

elevation, slope 

Rees et al. 2012; Mateus-Pinilla et al. 2013; O’Hara Ruiz et al. 2013; Kelly et 

al. 2014; Evans et al. 2016; Edmunds et al. 2018 

Agriculture 4 7 Percent cropland, pasture, cultivated 

crops 

Joly et al. 2006; Nusser et al. 2008; Skuldt et al. 2008; Garlick et al. 2011; 

Rees et al. 2012; O’Hara Ruiz et al. 2013; Garlick et al. 2014; Kelly et al. 

2014; Mejía-Salazar et al. 2016; Nobert et al. 2016; Edmunds et al. 2018 

Development 5 5 Amount or percent of developed land Farnsworth et al. 2005, 2006, 2007; Garlick et al. 2011; O’Hara Ruiz et al. 

2013; Kelly et al. 2014; Evans et al. 2016; Hefley et al. 2017b, 2017a; 

Edmunds et al. 2018 

Rivers 4 5 Proximity, density Blanchong et al. 2008; Cullingham et al. 2011b; Rees et al. 2012; O’Hara 

Ruiz et al. 2013; Robinson et al. 2013; Kelly et al. 2014; Nobert et al. 2016; 

Hefley et al. 2017b; Edmunds et al. 2018 

Private land 2 0 Proportion, percentage Farnsworth et al. 2005, 2006 

Streams 2 0 Proximity, density Rees et al. 2012; O’Hara Ruiz et al. 2013 

Human 

population 

2 0 Average density Mateus-Pinilla et al. 2013; O’Hara Ruiz et al. 2013 
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Roads 2 5 Proximity, density  Krumm et al. 2005; Blanchong et al. 2008; Rees et al. 2012; Robinson et al. 

2013; Kelly et al. 2014; Nobert et al. 2016; Edmunds et al. 2018 

Riparian 2 3 Proportion, percentage Garlick et al. 2014; Evans et al. 2016; Edmunds et al. 2018 

Shrubland 1 4 Area (hectares) Joly et al. 2006; Rees et al. 2012; Mejía-Salazar et al. 2016; Nobert et al. 

2016; Edmunds et al. 2018 

Wetlands 1 1 Area (hectares) Joly et al. 2006 

Fragmentation 1 0 Connectivity, size Kelly et al. 2014 

Grassland 0 7 Proximity, presence Joly et al. 2006; Garlick et al. 2011, 2014; Rees et al. 2012; Kelly et al. 2014; 

Mejía-Salazar et al. 2016; Edmunds et al. 2018 

Waterbodies 0 2 Relating to motility functions Garlick et al. 2011, 2014 

Ecoregions 0 2 Southeast glacial plains, Great lakes, 

Southwest savanna 

Rogers et al. 2011; Robinson et al. 2013 

Scrubland 0 2 Foothill, saltbrush, salt desert scrub Garlick et al. 2011, 2014 

a CO= quantitative covariate, b LCT= qualitative land cover type. 
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Figure 2.1: Selected chronic wasting disease modeling studies published from 2000–2018 (x̄=4.2 

publications/year, SD=2.2). Modeling studies started in 2000. Bar plots (gray) show number of 

publications (left) by year. The solid line represents cumulative number of articles (right) across years.  
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Figure 2.2: Collaboration network of chronic wasting disease modeling research. Nodes (circles) 

represent authors having between one (small circle) and 19 publications (largest circle). Edge (connecting 

lines) thickness represents magnitude of collaboration between authors in terms of shared publications 

and vary from low (thin lines) to high (thick lines). The influence of authors for connectivity (eigenvector 

centrality) is denoted as showing in decreasing densities of shades from high (dark gray) to low influence 

(light gray). Note that a few authors have been central to connect CWD research in the community (large 

circles) and a few isolated clusters reflect research conducted independently. Inset the last name of high-

influence authors in the network.  
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Figure 2.3: Network of CWD researchers’ affiliations. Network models showing individual authors and 

their number of publications (node size), while edge (connecting line) thickness denotes strength of 

collaboration via number of papers written between authors. Author affiliations recorded from authors’ 
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publications. A) Collaboration among state wildlife agencies (yellow), federal science agencies (blue), 

other government (gray), and academia (red). Note the apparent role of state and federal science agencies 

in connecting academia. B) Academia-affiliated authors categorized as biological and ecologically based 

departments (green), veterinary and animal science (orange), epidemiology and health (pink), 

mathematics and mathematical biology (yellow), statistics and biostatistics (blue), biophysics (turquoise), 

soils (brown), and business (red). Note the strong connection (large nodes) between ecology (green) and 

veterinary fields (orange).
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Figure 2.4: Spatial distribution of chronic wasting disease modeling studies by administrative area. In the 

United States, studies were conducted in Wisconsin, Illinois, Colorado, Wyoming, Utah, Maryland, 

Virginia, Pennsylvania, West Virginia, North Dakota and South Dakota. In Canada, studies occurred in 

the provinces of Saskatchewan Alberta, and British Columbia. No modeling studies were conducted in 

other states, provinces, or countries (white). Research articles based on artificial, simulated data were 

excluded (n=13), and we retained the remaining articles (n=66). 
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Figure 2.5: Reported prevalences and sampling sizes of chronic wasting disease modeling studies by year 

for published articles. The cumulative sample sizes (×103; black line) and reported prevalence in percent 

(grey boxes). Note the variability of prevalence values among studies. No published articles reported 

prevalences in 2001 and 2003. Studies using simulated data were omitted. 
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Figure 2.6: Modeling methods used in chronic wasting disease research. Regressions (e.g., logistic, 

linear, GLMM, negative binomial) were the most commonly used models, followed by compartment 

models using differential equations (e.g., SIR models), Hierarchical Bayesian, matrix population models, 

and descriptive statistics, respectively. Less common methods were omitted from the figure and are 

described in Appendix A. 
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Figure 2.7: Variables used for model parameterization in chronic wasting disease modeling research. 

Demographic variables (e.g., sex and age) and epidemiological variables (e.g., prevalence and 

transmission rate) were frequently included in the models. Variables relating to sampling methods, effort, 

or control measures were less common. Landscape variables are presented in Table 2.1. 
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Abstract 

Context 

Many infectious diseases in wildlife occur under quantifiable landscape ecological patterns 

useful in facilitating epidemiological surveillance and management, though little is known about 

prion diseases. Chronic wasting disease (CWD), a fatal prion disease of the deer family 

Cervidae, currently affects white-tailed deer (Odocoileus virginianus) populations in the Mid-

Atlantic United States (US), and challenges disease ecologists with its unclear mechanisms and 

associations within landscapes. 

Objective 

We aimed to provide guidance for wildlife disease management by identifying the extent to 

which CWD can be reliably predicted from landscape conditions.  

Methods 

Using the CWD outbreak in Virginia (US), as a case study system, we used diverse algorithms 

(e.g., support vector machines, kernel density estimation, and principal components logistic 

regression) and data partitioning methods to quantify remotely-sensed landscape conditions 

associated with CWD cases in using both presence-only and presence-absence approaches. We 

used various model evaluation tools (e.g., partial receiver operating characteristic, cumulative 

binomial probability testing, coefficients of determination) to assess predictions of disease 
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transmission risk using independent CWD data. We further examined presence-only model 

variation in the context of uncertainty. 

Results 

We provided significant support that landscape conditions can predict and map CWD 

transmission risk. Presence-only model predictions improved when incorporating inferred home 

ranges instead of raw hunter-reported coordinates. Different data availability scenarios identified 

variation among models. Compensating for zero-inflation in presence-absence models had mixed 

performance, and associated projected probability maps appear biased towards significant 

parameters. 

Conclusion 

By showing that CWD could be predicted and mapped, our project adds to the limited 

information regarding the landscape ecology of CWD transmission risk in free-ranging 

populations and natural conditions. Our presence-only modeling framework and use of widely-

available landscape data could be replicated for other infectious wildlife diseases and study 

areas.  

 

Introduction 

Effective wildlife disease management and control depends upon epidemiological 

surveillance, though identifying geographic locations where surveillance should be deployed can 

be challenging. Recent advances in landscape epidemiology have identified likely areas for 

pathogen presence from associations between disease occurrence and landscape characteristics 

using correlative methods (Peterson 2008; Peterson et al. 2011). Comprehensive protocols and 

conceptual bases in landscape epidemiology are well developed for domestic animals (Pfeiffer 

2010), but are still in development for wildlife.  
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Prions are infectious pathogens that cause neurodegenerative diseases in humans and 

animals (Prusiner 1982). Landscape epidemiology approaches remain limited for infectious 

prions in general (Winter and Escobar 2020), which may be due, at least in part, to unclear 

origins of prion biology and the atypical biological properties of prions with respect to other 

pathogens (Zabel and Avery 2015). Because of their inextricable connection with hosts and the 

unclear role of other animals in their propagation, prion diseases are the new challenge in 

wildlife epidemiology (Escobar et al. 2020). 

Chronic wasting disease (CWD) is a prion disease of wildlife (Williams and Young 

1980). Identified in wild cervid populations in the western United States (US) since the 1980s 

(Spraker et al. 1997), CWD was not detected in eastern portions of the US until the early 2000s 

(Evans et al. 2014). High CWD prevalences have been shown to diminish wild cervid population 

viability (Edmunds et al. 2016; Carlson et al. 2018); therefore, monitoring and surveilling for the 

highly contagious and invariably fatal disease is crucial for wildlife management. Direct contact 

between susceptible and infected cervids can transmit prions causing CWD (Davenport et al. 

2018; Kramm et al. 2019). Also, prion contamination of the landscape through infected hosts’ 

bodily fluids and tissues (Zabel and Ortega 2017; Escobar et al. 2020) can indirectly transmit the 

pathogen and complicate CWD control.  

Many transmission mechanisms related to environmental exposure to CWD prions 

remain unclear. Experimental work with scrapie prions show that plants can effectively bind, 

absorb, and uptake the pathogen, suggesting a potential method of indirect CWD prion 

transmission (Pritzkow et al. 2015). Also, common environmental materials (e.g., wood, plastic, 

rocks, cement) and specific soil minerals can serve as substrate for infectious prions and 

potentially alter their infectivity (Johnson et al. 2007; Pritzkow et al. 2018). Recent work with 
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CWD prions identified that pathogen infectivity varies with soil type (Kuznetsova et al. 2018), 

but not with time; only prion recovery within soil decreases with longer binding duration, which 

suggests that failing to detect prions in the environment may not totally negate transmission risk 

(Kuznetsova et al. 2020). Recent research focused on the CWD cluster in the Mid-Atlantic US 

(i.e., Maryland, Pennsylvania, Virginia, West Virginia) identified forested landscapes to be 

negatively related to CWD occurrence (Evans et al. 2014, 2016), contradicting patterns in 

disease distributions found in the Midwestern US where CWD was found to be positively related 

to forested landscapes (O’Hara Ruiz et al. 2013; Storm et al. 2013). Evans et al. (2016) 

postulated that reduced CWD occurrence in forested landscapes could be indicative of the early 

stages of an outbreak, or that this CWD-landscape relationship is unique to the Mid-Atlantic. 

Most modeling efforts to reconstruct and predict CWD transmission have prioritized finer-scale 

population-level transmission models to generate useful findings for management (Winter and 

Escobar 2020). The role of the landscape, however, has seen less attention in CWD 

epidemiology. This is potentially due to the unclear role of the landscape in CWD transmission, 

and limited protocols to study the landscape epidemiology of prion diseases.  

Black-box approaches in landscape epidemiology use locations of known disease 

outbreaks as occurrence data for model calibration and predicting distributions when specific 

transmission mechanisms are not entirely known, as is the case of CWD (Peterson 2014; Johnson 

et al. 2019). Often, data collected from remote sensing technologies facilitate black-box 

landscape epidemiology by acquiring environmental variables at local scales that may otherwise 

be unattainable in situ, or were not collected at the time of disease emergence (Horning et al. 

2010; He et al. 2015; Quiner and Nakazawa 2017). Often in black-box analyses, recorded 

locations of occurrences are used to draw relationships between landscape characteristics and 
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disease presence, similar to landscape genetics (Graves et al. 2012). Likewise, most CWD-

landscape models rely on environmental conditions at harvest locations of CWD-infected 

individuals (Winter and Escobar 2020). However, hunter bias and the cryptic nature of chronic 

diseases can obscure forensic efforts to identify local sources of infection from occurrence points 

(Conner et al. 2000; Wobeser 2007), which could restrict our understanding of CWD-landscape 

relationships. 

Presently, CWD is actively spreading in the Mid-Atlantic US and refined guidance on 

CWD surveillance is critically needed. For example, sustained active and passive surveillance 

and monitoring efforts throughout the state of Virginia have identified increasing CWD burden 

over the last two decades (Fig. 3.1). We hypothesized that a black-box landscape epidemiology 

approach can significantly predict areas suitable for CWD transmission to guide prioritization of 

surveillance. In this study we attempt to test our hypothesis by utilizing a long-term 

epidemiological dataset from the state of Virginia, USA, and remote sensing vegetation 

phenology data to identify the extent at which CWD in Virginia can be reliably predicted using: 

i) only samples with CWD positive diagnosis in presence-only models, and ii) all samples (i.e., 

CWD positive and negative diagnosis) in presence-absence models. This analysis intends to 

facilitate management decisions (e.g., disease management area delineation), guide CWD 

surveillance, and assess landscape epidemiology methods to predict a wildlife disease. 

Methods 

CWD in Virginia 

Virginia Department of Wildlife Resources (DWR) began testing deer for CWD in 2002; 

however, active surveillance was not formally initiated until 2005, after a white-tailed deer 

(Odocoileus virginianus) tested positive for CWD in neighboring West Virginia (DWR 2014). 
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Active, systematic epidemiological monitoring has largely occurred in Virginia’s disease 

management areas, which have been created in response to CWD confirmations (Fig. 3.1A). On 

the West Virginia border, DWR detected the first CWD-positive deer in Virginia in 2009. 

Disease Management Area 1 (DMA1) in northwestern Virginia is delineated by the political 

boundaries of Frederick, Shenandoah, Clarke, and Warren counties (Fig. 3.1A) (DWR 2019). 

Subsequently, DWR has identified increasing CWD incidence (i.e., number of new CWD 

positive deer) over time (Fig. 3.1B). Similarly, increasing prevalence (i.e., ratio of CWD-positive 

deer to total deer tested) has been detected in localized, CWD-endemic areas within DMAs (Fig. 

3.1C), and within portions of counties. Sampling to date has been achieved through diverse 

sampling methods (e.g., active surveillance via hunter harvest and roadkill sampling, passive 

surveillance via the testing of clinically ill deer) (Fig. 3.1D). In 2019, a second Disease 

Management Area (DMA2) was developed in Culpeper, Madison, and Orange counties in 

response to a CWD confirmation in Culpeper County. 

 

Epidemiological and landscape data 

Surveillance data consisted of 11,201 individual white-tailed deer tested for CWD via 

postmortem extraction of medial retropharyngeal lymph nodes (DWR 2014). By March 2020, 

DWR identified 88 confirmed cases of CWD in Virginia (Fig. 3.1B). These data largely 

originated from DMA1 hunting grids at 2.59 km2 spatial resolution. DWR also investigated exact 

hunting locations for each CWD-positive deer with hunters to reduce spatial uncertainty. 

Preliminary CWD-testing was accomplished via using either enzyme-linked immunosorbent 

assay (ELISA) or immunohistochemistry (IHC). All confirmatory testing was accomplished via 

IHC (DWR 2014; Haley and Richt 2017).  
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We used vegetation indices as surrogates of landscape characteristics across space and 

time. Vegetation indices are versatile remotely-sensed metrics of photosynthetically active 

radiation and vegetative evapotranspiration that consistently identify and correlate with 

landscape patterns (Pettorelli 2013).  More specifically, we used the enhanced vegetation index 

(EVI) due to its strong relationship with vegetative productivity, elevation, temperature, 

precipitation, and soil characteristics (Zhang et al. 2009; Pettorelli et al. 2011), which have 

associations to CWD distribution. Enhanced vegetation index also corrects for soil and 

atmospheric interferences, and remains sensitive to canopy-structured evapotranspiration (i.e., 

forested land cover types; Huete et al. 2002, Horning et al. 2010, Pettorelli 2013). We collected 

EVI data at 250 meter spatial resolution and 16-day temporal resolution from the MODIS sensor 

in NASA’s Terra satellite (Didan 2015; Busetto and Ranghetti 2016). We collected EVI data 

from 2005 to 2019, assuming CWD circulation at least four years before the first detected case in 

Virginia (i.e., 2009), which corresponds to the maximum incubation period in white-tailed deer 

(Williams 2005). 

 

Landscape data preparation 

Spatial models in general are affected by the study area extent, and should be meaningful 

in the context of the focal species (Barve et al. 2011). Thus, we confined the case study area 

based on the estimated movement potential (i.e., possible area accessible) of CWD reservoirs 

(Poo-Muñoz et al. 2014). More specifically, we used dispersal (i.e., permanent movement away 

from a place of origin) due to its role in extreme bouts of deer movement (Oyer et al. 2007). 

Because the maximum dispersal distance observed for white-tailed deer in Mid-Atlantic US is 45 

km (Long et al. 2005), we used this distance as a radius around CWD-positive cases, and took 
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the dissolved union of circular buffers to define the extent of the study area (Fig. 3.2). Next, we 

averaged individual 16-day rasters to monthly pairs to reduce gaps in data caused by cloud 

obstruction and cropped rasters to the study area extent (Fig. 3.3A). 

We performed principal components analysis (PCA) on the EVI raster data to reduce 

multicollinearity and dimensionality (Fig. 3.3B). Principal components analysis ensures 

orthogonality in predictor variables by normalizing and transforming correlations found within 

data into new dimensions called principal components (PCs), which summarize both magnitude 

and direction of variance by generating eigenvalues and eigenvectors, respectively. Principal 

components differ in the amount of variance they explain, where the first PC explains the 

majority of variance and subsequent PCs characterize decreasing amounts of variance (Gotelli 

and Ellison 2013). Based on the long-term nature of the remote sensing data, the PCA resulted in 

176 PCs, which were reduced to those deemed statistically significant using the broken-stick 

method (Jackson 1993). Significance is determined by whether the observed eigenvalues exceed 

those generated from null theoretical components (Jackson 1993; Barros et al. 2016; Jarvis et al. 

2019). The broken-stick methods’ reduction resulted in the inclusion of the first four PCs 

(explaining 67% of total variance) to be used in modeling as rasterized dimensions in 

environmental space. 

 

Epidemiological data preparation 

Our black-box model used a data-driven identification of landscape conditions occupied 

by CWD cases (n = 88) in environmental space (Qiao et al. 2017). To validate models, we 

divided data into calibration (model construction) and evaluation (model testing) sets in a 50:50 

ratio (Fig. 3.3C). We partitioned data geographically rather than relying on random selection to 
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avoid artificially inflating models’ predictive performance (Radosavljevic and Anderson 2014). 

By partitioning CWD cases into geographic quadrants using their reported coordinates (i.e., NE 

= northeast, NW = northwest, SE = southeast, SW = southwest; Fig. 3.2), we reduced spatial 

autocorrelation by ensuring spatial independence between quadrants used in calibration and 

evaluation (Muscarella et al. 2014). We tested all six combinations of paired quadrant 

arrangements. 

We investigated two scales from which we extracted landscape data, referred to as 

Harvest Location and Home Range scales. For the Harvest Location scale, we extracted CWD-

associated landscape data from the principal components at the precise reported coordinates of 

CWD-positive deer for Harvest Location models (Fig. 3.3D). Yet, we assumed that simple 

harvest locations might fail to encompass the range of landscape conditions that motile white-

tailed deer experienced, which could underrepresent CWD-landscape relationships. In the Home 

Range scale (i.e., named after the area most commonly inhabited for foraging, mating, and 

parental care; Burt 1943), we constructed buffers of 1.2 km2 surrounding the same coordinates 

of CWD cases to represent local home ranges (Campbell et al. 2004) to capture a more 

generalized representation of landscape relationships (Fig. 3.3D). Then, we averaged the PCA 

raster values found within the buffers constructed to generalize variation at a broader scale, and 

used these averages at each dimension as landscape data in Home Range models.  

 

Model calibration 

 We estimated the environmental conditions occupied by CWD infected deer based on 

detailed delineation of environmental space occupied by cases (i.e., hypervolume), which can 

then be projected onto geography (Blonder 2018). Hypervolume estimation performance 
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improves with use of a low number of continuous, uncorrelated variables to avoid constraining 

its shape (Blonder et al. 2014), making the PCA analysis compatible with this black-box 

approach of identifying areas of disease transmission risk with only positive cases. We 

determined the environments occupied by CWD cases using the hypervolume package in R 

(Blonder 2019; R Core Team 2020).  

We used the PCA data extracted at the two scales (i.e., Harvest Locations and Home 

Ranges) from all six possible combinations of paired quadrants to be later evaluated with their 

complementary evaluation datasets (Fig. 3.3D). We developed hypervolume models with two 

algorithms: Gaussian kernel density estimation (KDE) and one-class support vector machines 

(SVM). In general, KDE performs a density analysis in environmental space to delineate areas in 

the hypervolume model with higher probability given the data available, while SVM uses cluster 

analysis to fit a boundary around data in environmental space that classifies conditions (i.e., “in” 

and “out” of the hypervolume) that should be similarly classified, but potentially unobserved 

(Blonder et al. 2018) (Fig. 3.3E). Both algorithms for hypervolumes delineate environmental 

conditions where CWD transmission would be more likely, influenced by the parameters for 

each algorithm (i.e., KDE uses kernel bandwidth, weighting of the data, and quantile threshold; 

SVM uses smoothing parameter, γ, and error rate, ν) (Blonder et al. 2018). Bandwidth selection 

in KDE determines how tightly the estimated probability density function fits the data in 

multivariate space (e.g., small bandwidth values yield high fit to the data). We followed previous 

efforts supporting the use of smoothed cross-validation to determine KDE bandwidth for four 

dimensional data (Duong and Hazelton 2005), which also has been reported to reduce predictive 

error in hypervolumes (Blonder et al. 2018). Additionally, based on DWR’s comprehensive 

surveillance, we allowed even weighting of the data because we assumed each CWD case was 
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equally probable in describing environmental conditions. We assumed a consistent quantile 

threshold of 95% (α = 0.05) to curtail the KDE probability density to give the hypervolume its 

shape (Peterson et al. 2011; Blonder et al. 2018). Further, we relied on the default SVM 

parameters of γ = 0.5 and ν = 0.1, based on their support found in literature (Blonder et al. 2018). 

Finally, we projected each of the 24 hypervolumes generated from all quadrant combinations, 

algorithms, and scales (i.e., six quadrant combinations at two scales for two algorithms) from 

environmental space onto geographic space (Fig. 3.3F) in the form of risk maps for CWD 

transmission to evaluate models.  

 

Model evaluation 

We evaluated predictive abilities in the 24 hypervolumes by testing the hypothesis that, 

when projected in the form of risk maps, hypervolume models are predicting CWD transmission 

in landscapes that were independent of model calibration (i.e., evaluation quadrants) better than a 

random expectation. For example, when the NE and SW quadrants were used for model 

calibration, the NW and SE quadrants were used for evaluation, and model predictions would be 

deemed statistically significant if risk maps for evaluation quadrants appropriately predict risk 

where known CWD cases have occurred (adopting α = 0.05) (Fig. 3.3G). We restricted risk map 

projections to the quadrants independent of model calibration because model evaluation methods 

that rely on the quantification of the proportion of areas predicted as “suitable” for high risk 

(Peterson et al. 2008) would be inherently inflated in model calibration quadrants.  

Evaluation methods were specific to type of geographic map generated when projecting 

hypervolumes. For example, binary outputs (i.e., no risk = 0, risk = 1) were the only option in 

SVM-delineated hypervolumes due to the nature of classification; however, we selected a fixed 
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95% threshold to generate binary maps for hypervolumes delineated with KDE. For all binary 

maps, we used a cumulative binomial probability distribution accounting for the proportion of 

area predicted as “suitable” for risk and the number of independent occurrence records 

successfully being predicted by the map (Anderson et al. 2002; Peterson et al. 2011). For model 

projections of continuous probability from KDE, we used the partial receiver operating 

characteristic (partial ROC) in the ntbox package (Osorio-Olvera et al. 2020). Partial ROC 

evaluates the relationship between model sensitivity in relation to varying thresholds of 

proportional area predicted with a user-defined error rate assumed from false-negatives (Peterson 

et al. 2008). Specifically, we used 500 bootstrapping samples using 50% of the models’ 

complementary evaluation data resampled with replacement, accounting for a 5% error rate in 

omission presumed from any errors in diagnostic methods. We based model interpretations on 

ratios between the model’s area under the partial ROC curve (AUC) and a null model 

(AUC=0.50), whereby ratio values greater than one suggest model performance in predicting 

independent data is better than a random expectation (Peterson et al. 2008).  

 

Uncertainty estimation 

To examine whether CWD was occurring in consistent and quantifiable vegetation 

phenology conditions, we examined variation in hypervolume models from different data 

availability scenarios as a proxy of uncertainty (Barros et al. 2016; Carmona et al. 2016; 

Verhoeven et al. 2020). That is, we generated models with different magnitudes of CWD data to 

determine whether CWD occurred in consistent environmental conditions. This was determined 

by measuring the change in position and size of hypervolume models relative to changes in 

CWD data. For both scales (Harvest Locations and Home Ranges), we used a jackknife (i.e., 
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leave-one-out) approach by building multiple hypervolume models iteratively removing single 

occurrence records (i.e., n – 1), which is generally used in statistics to assess model variation and 

bias (Gotelli and Ellison 2013) (Fig. 3.4A). To assess variation in hypervolume models, we 

compared all leave-one-out hypervolume models against a model using the full CWD dataset as 

a baseline. Model comparison was done using the Jaccard similarity index, which calculates 

intersection of two hypervolume models (i.e., full data vs. leave-one-out) relative to their union, 

where values of 0 indicate dissimilar models and 1 indicate identical models (Mammola 2019) 

(Fig. 3.4B). Also, to examine variation in hypervolume model size, we calculated the volume for 

each leave-one-out hypervolume in environmental space. Finally, leave-one-out hypervolume 

models were assembled (i.e., averaged) to generate single continuous risk maps at each scale to 

identify areas where high risk predictions were consistent among all data availability scenarios. 

 

Presence-absence modeling 

Addressing our second aim, we examined contrasting landscape determinants between 

deer samples diagnosed with CWD and those without prion detection. Some geographic 

locations (i.e., hunting grids) over the study period yielded mixed disease statuses (i.e., spatial 

and temporal co-occurrence of CWD-positive and CWD negative (i.e., non-detection in the 

sample suing immunohistochemistry). Given the nature of prions to remain infectious for long 

periods following deposition from cervid tissues and fluids, and possible imperfect sampling 

(Conner et al. 2000; Georgsson et al. 2006), we omitted from analyses 92 samples of CWD 

negative (undetected) cases that also occurred in locations where CWD was detected. Next, we 

controlled for potential bias in CWD non-detect landscape conditions driven by sampling effort 

by filtering remaining data to a uniform distribution, ensuring only unique reported coordinates 
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are used. This resulted in a working dataset for presence-absence model construction containing 

1328 samples (i.e., 1240 negatives and 88 positives). 

We used reported coordinates of harvest locations from deer samples to extract 

environmental data from the four principal components (see Landscape data preparation section 

above). These data were used to model the relationship between diagnosed disease status: 1 =  

CWD-positive, 0 = CWD non-detect) and extracted values from principal components (Aguilera 

et al. 2006). Specifically, we constructed principal components logistic regression (PCLR) 

models, which evaluated principal components’ relationships with a response variable without 

concern for multicollinearity influencing models (Aguilera et al. 2006). We developed one PCLR 

model using the full dataset (i.e., coordinates from all spatially unique locations), and ten PCLR 

models adjusting for zero-inflation by using a 1:1 ratio of CWD-positive to different sets of 

CWD negative samples (i.e., 88 CWD non-detect samples). Most CWD-positive cases occurred 

in the northwestern tip of the state where surveillance becomes jurisdictionally constrained, and 

CWD non-detect cases were predominant in southern areas relative to most CWD cases (Fig. 

3.5). Therefore, purely random selection of CWD non-detects in the 1:1 ratio models would 

disproportionately under-represent CWD non-detect environmental conditions in northern 

latitudes. We compensated for this by developing geographic quadrants (Muscarella et al. 2014), 

and building models such that equal number of CWD-positives and negatives were sampled with 

replacement from all quadrants (i.e., 22 CWD positives and 22 CWD negatives; Fig. 3.5). 

We evaluated models using analysis of deviance and obtaining levels of significance (i.e., 

p-values representing evidence of differences in PCLR models to null models) and coefficients 

of determination (R2 values) to identify whether sufficient evidence suggests PCA values’ 

relationship with disease status is not due to chance and to understand the effect sizes of 
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relationships, respectively. We converted all statistically significant models into pixel-level 

probability (p̂) maps of CWD positivity using the following equation modified from Fletcher and 

Fortin (2019):  

  (Eq. 1)  

where b0 is the coefficient for the logistic regression model intercept, b1 is coefficient for the first 

principal component raster layer, b2 is coefficient for second principal component raster layer, 

etc. x1 is the first principal component raster layer, x2 is second principal component raster layer, 

etc. We complied summary statistics (i.e., mean, standard deviation, range) on the converted 

probability maps to identify areas with consistently higher probability of CWD positivity. 

 

Results 

Under both KDE and SVM algorithms, we found similarly statistically significant 

predictions of CWD cases according to cumulative binomial probability testing (Table 1). 

Notably, models were statistically significant at both scales despite the proportion of area 

projected as suitable being higher in hypervolumes delineated from Harvest Locations (Table 1). 

When evaluating KDE-delineated hypervolume projections of continuous risk outputs, partial 

ROC and bootstrapping manipulations identified that most data resampling resulted in models 

with AUC ratios > 1 in all paired quadrant combinations signifying statistically significant 

predictive abilities (Fig. 3.5). Hypervolume models calibrated from Home Ranges yielded 

significantly higher AUC ratios to those from Harvest Locations (µ = 1.318 and 1.305, 

respectively; t(5531) = 3.949, p < 0.001). The lowest AUC ratios observed were calibrated with 

NE and NW quadrants at the Harvest Locations scale, but still had a mean AUC ratio greater 
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than 1 (µ = 1.1). Nevertheless, this model as a whole did not predict better than random 

expectation (p > 0.05) as > 5% of the AUC ratios from bootstrapping were less than 1 (Fig. 3.6).  

 

Uncertainty estimation 

We found considerable Jaccard similarity among hypervolume models with different 

magnitudes of CWD data (µ = 0.94 for Harvest Locations and µ = 0.95 for Home Ranges; Fig. 

3.7A). Still, Jaccard values were variable among iterations of data availability scenarios (i.e., n-

1) both within and between scales, where Jaccard values from Home Ranges were significantly 

higher than Harvest Locations (t(87) = 3.632, p < 0.001). We also observed differences in 

calculated volumes in environmental space (Fig. 3.7B). Size (i.e., volume) from models built 

using Home Ranges were generally smaller in volume (t(87) = –246.38, p < 0.001) compared to 

Harvest Locations (Fig. 3.7B). Finally, maps assembled from the leave-one-out hypervolume 

models revealed areas of consistent predicted CWD transmission risk was heterogeneous across 

the study area and between scales (Fig. 3.8). In general, mapped hypervolume models delineated 

with data at Harvest Locations predicted CWD transmission risk across broader geographic areas 

(Fig. 3.6). 

 

Presence-absence modeling 

Results indicated that the majority (60%) of models using a 1:1 ratio of CWD-positives to 

CWD non-detects were statistically significant (p < 0.05) and possessed generally low, but 

varying degrees of variance explained expressed in R2 values (range: 0.040–0.107; Table 3.2). 

Additionally, the model containing the full dataset was statistically significantly different from a 

null model (p = 0.008), but yielded a low R2 value (0.008). The averaged probability map from 
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1:1 significant models identified higher relative probability of CWD-positive disease status 

occurring in central Frederick County, as well as in eastern Loudon County (Fig. 3.9A), with 

little variation noted in the study area (Fig. 3.9B). These areas of higher probability for positive 

CWD status appeared consistent even in the lowest range of values observed (Fig. 3.9C); values 

at the highest range identified widespread high probability (Fig. 3.9D). 

 

Discussion 

Predicting where wildlife diseases may occur next is a challenging pursuit that relies on 

careful collection of predictor variables, epidemiological data, and consideration of the host 

species’ ecology. Here, our black-box analysis demonstrated that using remotely sensed 

vegetation phenology data alone can predict CWD transmission risk with statistical significance. 

Furthermore, we highlighted that consideration of the host species’ ecology (i.e., home range) 

and can enhance understanding for a free-ranging wildlife disease. Finally, we showed that 

incorporating both CWD positive and CWD negative samples in presence absence modeling 

provides less robust results than presence-only using identical predictor variables. 

By using a method that accounts for independent evaluation data and the area predicted 

with respect to the area available (i.e., AUC ratio), we found strong quantitative support for the 

use of landscape information to trace CWD transmission risk. We quantified the extent to which 

CWD could be reliably predicted on the landscape using our data-driven hypervolume models 

delineated with both KDE and SVM. This was determined using the proportion of areas 

predicted as risky under both binary and continuous risk projections. We found that models that 

acknowledged the host species’ ecology (i.e., Home Range models) generated significantly 

different outcomes in performance (i.e., AUC ratios) than those developed from landscape 
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determinants at Harvest Locations. Specifically, Home Range models yielded higher AUC ratios. 

We suspect this finding is a result of summarizing the heterogeneity in EVI surrounding each 

CWD case in a manner compatible with the landscape ecology of chronic diseases.  

In the context of CWD in Virginia, our jackknife analysis identified that every CWD case 

influences the amount of risk predicted. Never reaching a Jaccard index value of 1 could suggest 

that variation seen in environmental space with new CWD cases could stem from disease non-

equilibrium (i.e., CWD current distribution may not be exhausting its potential occupancy of 

environmental conditions; Pili et al. 2020). Under this finer-population scale, this would not be 

surprising given the range of landscape conditions that CWD has been identified worldwide 

(e.g., Scandinavia; Benestad et al. 2016), and the environmental hardiness of prions in general. 

Results from our uncertainty analysis identify that landscape conditions associated with higher 

CWD transmission risk have been observed consistently in portions of DMA1 and DMA2, where 

DWR has conducted comprehensive sampling. Consistently high risk areas distant from known 

CWD cases could suggest new landscapes for potential CWD establishment assuming host 

dispersal is plausible, though human-associated movement of infected cervids or tissues still 

threaten unpredicted areas (Carlson et al. 2018). Notably, we identified EVI variation associated 

with higher CWD risk consistently in Rappahannock County, which remained outside disease 

management area delineation during the study period and has seen historically lower surveillance 

effort relative to neighboring counties within DMAs by the time of the study (µ=6 samples per 

year from 2007–2019). In light of these results, we suggest that increased surveillance during 

future harvest seasons, or promoting convenience sampling (e.g., roadkill deer) in risky counties 

could be prudent for management consideration (Nusser et al. 2008).  
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 The results from our presence-absence modeling identified that adjusting for zero-

inflation yielded mixed results in model performance. Pixel-level probability maps from 

presence-absence models show statistically significant models were generally consistent (i.e., the 

highest values in rasters were found in mostly identical locations). Interestingly, maps show 

landscape conditions associated with higher probability for positive CWD diagnosis in different 

regions from our presence-only modeling. For example, we noted higher relative probabilities for 

CWD positivity in central Frederick County and eastern Loudon County, and along riparian 

corridors. We suspect that this finding may be an artifact of predictor variables (principal 

components raster values) characterizing similar variation (e.g., lower overall signatures of EVI 

consistent with urbanization or water bodies) proximate to some CWD cases, relative to the 

broader sampling available for CWD non-detects. Overall, despite revealing a statistically 

significant relationship, the lowest R2 value from the “full” dataset relative to models adjusted 

for zero-inflation indicate that less variance is explained in the full dataset model than the 1:1 

models. 

The strength of black-box approaches lies in their nature of modeling the disease 

outbreaks sensu stricto, which can elucidate landscape relationships for poorly known diseases in 

humans and animals. Critical starting points in landscape epidemiology of orthopoxviruses and 

filoviruses (Pigott et al. 2015; Quiner and Nakazawa 2017) have relied on black-boxes to support 

public health interventions, for example. Still, despite the unclear ecology of prions in the 

environment relative to other pathogens (Escobar et al. 2020), we found analysis of CWD 

epidemics were surprisingly withheld from black-box approaches (see Chapter 2). This is likely 

related to our finding that landscape ecological approaches in general are historically under-

represented in CWD research (Winter and Escobar 2020). Similarly, the use of n-dimensional 
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hypervolumes have remained largely absent from both landscape ecological and landscape 

epidemiological research despite their functionality in ecological modeling of species 

distributions and niches (Blonder 2018). 

Our work presents methodology that is novel to CWD and prion diseases in general. Yet 

we recognize some inherent limitations to our modeling. For example, hypervolume models are 

data-driven, therefore additional data from new CWD cases could identify different, and possibly 

improved patterns. Relative to other algorithms (i.e., Maxent), hypervolume algorithms also do 

not provide strong extrapolation capabilities to landscape conditions outside of the study area. 

Nevertheless, our methodology selection permits a reduced number of parameters and their 

respective assumptions compared with approaches (e.g., presence-background). Further, CWD 

data are reliant on diagnostic tests with sensitivity and specificity noted for false negatives 

(Haley and Richt 2017), which could clearly influence the results in our presence-absence 

approach. Although false-negatives in the current dataset are more likely than false-positives 

(i.e., by DWR ensuring confirmatory diagnostic testing), the solution of using ultra-sensitive 

diagnostic tests would be unfeasible for extensive sampling. The current data yield patterns that 

can facilitate management decisions and emphasize the utility of a presence-only modeling 

protocol. Next, we recognize the assumption of inferring home range sizes surrounding CWD 

cases for model construction may be simplistic relative to empirical data (e.g., GPS-collaring 

cervids, integrating demographic differences in home ranges). Clearly, such data demand 

resources, logistics, and ethical considerations that may be prohibitive, sensitive to seasonality 

and restricted to finer-scale landscapes, and contradictory to management objectives (e.g., 

permitting CWD-infected cervids on the landscape to understand changes in home range sizes 

and dispersal; Edmunds et al. 2018). 
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Past CWD landscape ecology research utilized numerous, often static data sources for 

associating disease risk factors (e.g., national land cover datasets, human population densities) 

(Winter and Escobar 2020). In contrast, our study serves to utilize a dataset spanning over one 

decade with corresponding high spatial and temporal resolution remote sensing data to predict 

CWD transmission risk among dimensions of variation in environmental predictors. Our finding 

of model performance improving from testing broader scale landscape conditions associated with 

a chronic and cryptic disease (i.e., conditions present in potential home ranges) suggests an 

avenue for future research. For instance, the occurrence of spatial “outlier” cases in CWD 

epidemics could possess similar spatiotemporal conditions in environmental space, or landscape 

models calibrated from harvest locations may harbor bias in landscape relationships similarly 

found in population-level studies (e.g., prevalence estimates; Conner et al. 2000). We show here 

that CWD was able to be mapped using tools effective for other infectious diseases, even though 

CWD is caused by a very misunderstood and poorly known pathogen. Our project shows the 

capacities of widely available and standardized satellite-derived landscape data to reconstruct 

CWD transmission risk in free-ranging populations under natural conditions. 
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Figure 3.1: Natural history of chronic wasting disease in Virginia, US from 2007 to 2020. A – Virginia 

county colors represent average annual number of deer samples ranging from: no samples (white) to 

highest sampling intensity in Frederick County (dark red; ~400 deer per year); mean cumulative number 

of samples is 143 white-tailed deer per county. In response to CWD detections, DWR increased sampling 

intensity and delineated disease management areas (dotted county lines). Our case study area (dark gray 

rectangle) focused on the northern tip of Virginia and portions of Maryland, Pennsylvania, and West 

Virginia. B – Stacked bar chart shows sex-ratios of CWD positive cases from 2009 – 2019 hunting 

seasons. The apparent drop in number of cases in 2019 is attributed to reallocation of DWR resources to 

prioritize sampling in non-CWD endemic counties. C – Bar chart shows prevalence in CWD endemic 

Frederick County from DMA1 increasing over time. Details of higher prevalence values in some regions 

are lost due to administrative boundaries. D – Horizontal bar chart shows hunter harvest as the 

predominant sampling method, followed by testing roadkill and clinical suspect cases.   
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Figure 3.2: Case study area delineation and current CWD distribution. Map shows the study area outline 

(gray rectangle, as in Fig. 3.1) determined using dissolved buffers (red line) of maximum dispersal 

distance of deer (45km; Long et al. 2005) around positive cases (circles). Colored circles show quadrant 

organization of CWD-positives (n=88) used in modeling in Virginia Department of Wildlife Resources 

Disease Management Areas (DMA) 1 and 2 (gray polygons). This case study area was used for acquiring 

landscape information (see modeling workflow in Fig. 3.3).
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Figure 3.3: Workflow of black-box landscape epidemiology analysis. Workflow displays black-box 

modeling and evaluation procedure. A – We collected remotely sensed enhanced vegetation index (EVI), 

and cropped rasters to the extent of the maximum dispersal potential for our focal species as radii about 

disease records (for details see Fig. 3.2). B – We performed a principal component analysis on the EVI 

data to reduce multicolinearity and generate dimensions in analysis. C – Next, we selected only disease 

occurrence locations, and partitioned data into geographic quadrants for calibration and evaluation 

datasets. D – We extracted data at both Harvest Location and Home Range scales (the latter inferred from 

focal species’ home range size). E – WE developed 24 hypervolumes using Gaussian kernel density 

estimation and a one-class support vector machine for all six quadrant combinations and both scales. F – 

Each hypervolume was projected onto geography in the form of binary risk maps, but KDE hypervolumes 

were additionally projected into continuous risk maps. G – We used models to generate maps of likely 

CWD transmission risk and evaluated models using methods appropriate for the projection: cumulative 

binomial probability testing (for binary maps; Anderson et al. 2002) and partial ROC (for continuous 

maps; Peterson et al. 2008). To more rigorously test models, we penalized suitability inherent to 

calibration data and restricted each map to evaluation dataset quadrants (represented by “×”). 
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Figure 3.4: Workflow for hypervolume uncertainty analysis. A – Environmental variation determined by 

iteratively removing one CWD-positive case from total dataset, creating KDE hypervolumes for each 

iteration and examining overlap between total dataset (n=88) and subset (n=87). B – Key to terminology 

and equations used in calculating hypervolume overlap statistics including components that comprise 

Jaccard similarity index, adapted from Blonder et al. (2015). 
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Figure 3.5: Geographic distribution of CWD surveillance. CWD-positive cases (filled circles) cluster in 

the northwestern-most tip of the state of Virginia, while CWD non-detect cases (hollow circles) were 

more evenly distributed, emblematic of DWR’s comprehensive surveillance. We used geographic 

quadrants (colors) to evenly partition CWD positives and negatives to avoid under-representing northern 

environmental conditions. 
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Table 3.1: Evaluation of binary suitability maps generated from both algorithms under all quadrant and 

scale combinations. Cumulative binomial testing (following Anderson et al. 2002) use the number of 

Successes (i.e., number of CWD cases’ coordinates that successfully occur within modeled suitable 

landscapes for transmission risk), Trials (i.e., total number of CWD cases’ coordinates being tested from 

quadrants found in “Testing Quad”), and proportion of the area suitable for transmission risk relative to 

the overall area to generate significance levels (i.e., p-values). Results from models that were delineated 

using two algorithms: kernel density estimation (KDE) and one-class support vector machines (SVM) can 

be found within their respective columns. Note that all combinations of quadrants (rows) from data 

partitioning yielded statistically significant predictions better than by random expectation (p  < 0.05). 

Scale specifies whether models were delineated from data at specific Harvest Locations (HARVEST) or 

generalized Home Ranges (RANGE), which describe conditions from the exact reported locations that 

hunters harvested deer, or conditions within a home range buffer surrounding these locations. 

Calibration 

Quad.1 

Evaluation 

Quad. 

Scale2 Successes3 Trials4 Proportion of 

Suitable Area 

p-value 

KDE  SVM KDE SVM KDE  SVM 

NE and NW SE and SW HARVEST 38 19 44 0.675 0.167 0.001 <0.001 

NE and SW NW and SE HARVEST 40 21 44 0.707 0.251 <0.001 <0.001 

NE and SE NW and SW HARVEST 42 17 44 0.711 0.234 <0.001 0.007 

NW and SW NE and SE HARVEST 38 27 44 0.767 0.260 0.038 <0.001 

NW and SE SW and NE HARVEST 41 21 44 0.715 0.208 <0.001 <0.001 

SW and SE NW and NE HARVEST 44 22 44 0.710 0.289 <0.001 <0.001 

NE and NW SE and SW RANGE 35 10 44 0.458 0.070 <0.001 <0.001 

NE and SW NW and SE RANGE 33 15 44 0.527 0.147 0.001 <0.001 

NE and SE NW and SW RANGE 34 13 44 0.495 0.127 <0.001 <0.001 

NW and SW NE and SE RANGE 36 20 44 0.599 0.176 0.001 <0.001 

NW and SE SW and NE RANGE 34 12 44 0.443 0.111 <0.001 <0.001 

SW and SE NW and NE RANGE 34 13 44 0.467 0.133 <0.001 0.001 
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Figure 3.6: AUC ratio evaluation from partial ROC of continuous suitability maps in each geographic 

partition. Model evaluation according to different quadrants configuration used for calibration.  Half 

violin and raw data distribution plots denote bootstrapped AUC ratios obtained from the evaluation 

quadrants (not used in model calibration) for models based on Harvest Locations (gray) and Home 

Ranges (blue). Note that most configurations have AUC ratios > 1, which is above the threshold for 

random expectation (red line; p < 0.001), except for one Harvest Location model calibrated with the 

northeast and northwest quadrants with non-significant predictions (p > 0.05). Ribbon abbreviations 

follow cardinal directions (i.e., NE = northeast, NW = northwest, SE = southeast, SW = southwest). 
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Figure 3.7: Hypervolume variation and characteristics by scale. A – Plots show Jaccard’s similarity index 

between hypervolume sets of the full CWD-positive dataset (n = 88) and those created from iteratively 

removing one occurrence record (leave-one-out). Note that the models never reach a Jaccard similarity 

index values at 1 denoted with dashed horizontal line, which would indicate complete overlap and 

identical position and size in environmental space. B – Half violin plots and raw data distribution 

represent volumes extracted from hypervolumes created from leave-one-out iterations. Colors represent 

the scale for whether models were delineated from data at Harvest Locations (gray) or Home Ranges 

(blue). Note that hypervolumes from Home Ranges generally occupied smaller volumes in environmental 

space despite equal sample sizes. 
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Figure 3.8: Maps of projected CWD transmission risk from variation analysis. Risk maps identify areas 

determined with more (red) or less (blue) consistent risk for CWD transmission from jackknife analysis. 

We found more homogenous and widespread transmission risk being consistent among models using A – 

Harvest Locations compared to B – Home Ranges. Note counties with considerable transmission risk 

include Rappahannock County. Lines indicate boundaries of states (thick white) and counties (thin white), 

while points (white circles) represent known CWD cases (n = 88). Overall, the amount of area predicted 

as consistently risky was higher in models generated from Harvest Locations. 
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Table 3.2: Evaluation results for presence-absence principal components logistic regression models. First 

ten models used an equal weighting of CWD-positive and non-detect cases, while the final “Full” model 

used all spatially unique absences (n = 1240) with presences (n = 88). Statistically significant models are 

denoted with an asterisk (*). Coefficients for determination (R2) were generally low for all models, but 

more pronounced in the model using full dataset. 

 

Model p-value R2 

1 0.112 0.042 

2 0.066 0.046 

3 0.028* 0.059 

4 0.020* 0.061 

5 0.018* 0.059 

6 0.012* 0.071 

7 0.109 0.040 

8 <0.001* 0.107 

9 0.067 0.046 

10 0.021* 0.063 

Full 0.008* 0.008 
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Figure 3.9: Maps showing summary statistics of probability of CWD positivity from statistically 

significant models adjusted for even weighting of CWD-positive and CWD non-detect cases. A – Mean 

probability values observed from statistically significant models highlight hotspots of higher relative 

probability in central Frederick County and eastern Loudon County. B – Standard deviation observed 

between statistically significant models identify low variation in the northern tip of Virginia. C – Lowest 

range of values observed in models resemble similar patterns as mean values, albeit with generally lower 

values (µ = 0.378). D – Higher range of probabilities observed indicate similar areas of highest 

probability, but otherwise widespread probability greater than 0.5 (µ = 0.589). 
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Abstract 

In wildlife, landscape connectivity often facilitates disease spread, as evidence suggests is 

the case for the emerging neurological prion disorder called chronic wasting disease (CWD). 

Electrical circuit theory has been be adapted for ecological purposes as a widely-regarded tool 

for understanding landscape connectivity, and identifying areas where movement between 

locations of interest are more likely. Recent research validated the use of species distribution 

model outputs to complement other methods used in inferring landscape resistance to movement, 

such as individual deer movement data or genetics. Thus, in this chapter, we utilized 

hypervolume model outputs from Chapter 3 to calibrate circuit theory models testing different 

assumptions of risk-delineated resistance to CWD spread. We examined connectivity between 

known cases of CWD-positive white tailed deer (Odocoileus virginianus) between established 

disease management areas in the northwestern portion of Virginia, USA. In an additional 

practical application, we also examined statewide connectivity between known CWD areas and a 

recently established and susceptible elk population (Cervus canadensis) located in southwestern 

Virginia. Our results indicate there were few barriers to connectivity between most known CWD 

cases in Virginia, though pathways for spread in distant cases become less clear given the data 

available. Model outputs varied among different transformation functions used in both disease 

management area- and statewide-level study areas. Our local connectivity models complement 

recent broader scale research focusing on connectivity between deer populations in the Mid-

Atlantic CWD cluster (Maryland, Pennsylvania, Virginia, and West Virginia). Models serve as 

an initial attempt in relatively fine-scale population connectivity modeling, and thus, caution 

should be exercised when interpreting results from statewide analyses. Nevertheless, our work 

highlights important trends that may be useful for managers in controlling an invariably fatal 

disease of free-ranging cervids. 

 

Introduction 

Anthropogenic land use change has resulted in ever-increasing landscape fragmentation, 

disruption of natural processes (e.g., migration; Berger et al. 2006), and division of wildlife 

populations (Hilty et al. 2019) for which conservation of high priority areas for connectivity is 

critical (Grafius et al. 2017; Dickson et al. 2018). Paradoxically, landscape fragmentation can 

both promote infectious diseases in some systems (Allan et al. 2003), and impede host and 
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parasite movement, resulting in reduced disease spread aligning with conservation efforts 

(Huang et al. 2015). For example, creating adaptive barriers to disrupt connectivity and halt 

disease spread to susceptible populations has been proposed by managers to control chronic 

wasting disease (CWD), a neurodegenerative disease in deer species (Williams and Young 1980; 

Mysterud et al. 2020). Distributed worldwide, CWD is caused by a pathogenic and misfolded 

protein, called a prion (Williams and Young 1980; Prusiner 1982). Despite the contagious and 

fatal nature of CWD, promoting fragmentation begets additional concerns for wildlife (e.g., 

genetic bottlenecking), and understanding how focal species respond to barriers on the landscape 

is imperative (Mysterud et al. 2020)  

Currently no method is regarded as a “silver bullet” for modeling disease connectivity 

because understanding disease spread across landscapes depend on focal species and populations 

and quality and amount of data available to researchers (Zeller et al. 2012). For example, 

landscape genetics studies often assume similarity in genetic structures from sympatric or 

interconnected populations, while observed heterogeneities are inferred as potential presence of 

barriers to dispersal, and thus pathogen spread (Biek and Real 2010). While there are benefits 

from empirical landscape genetics approaches, such as defining trends in allelic structures among 

populations, resources required for sampling and genotyping populations may be potentially 

prohibitive for managers. Further, these studies require careful interpretation because animal 

movement and gene flow have been noted to be non-synonymous (Spear et al. 2010). Ecological 

diffusion models are another method useful for understanding disease spread. In general, 

diffusion models use random walks to model stochastic movements of populations across the 

landscape, and can provide detailed spatiotemporal forecasts of biological processes (Okubo and 

Levin 2001). Random walks in diffusion models require calibration using imported or observed 
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motility and transmission coefficients to estimate rates of pathogen diffusion in discrete time 

(Garlick et al. 2011; Hefley et al. 2017a). Diffusion models can be useful in ecological contexts 

(Okubo and Levin 2001); yet, such detailed parameterizations and intensive computations often 

require simplification of landscapes and theoretically-derived values (Garlick et al. 2011), which 

are generally not available for poorly understood wildlife diseases. 

Circuit theory is a widely-regarded connectivity modeling method that relies on 

principles from electrical circuit theory to model movement across gradients of resistance 

inferred from landscape features (McRae et al. 2008). In circuit theory, effective resistance 

coefficients are derived through matrix selection functions to create a two-dimensional raster as 

proxy of a circuit (McRae et al. 2008). Then, electrical nodal analysis from Kirchhoff’s and 

Ohm’s laws passes current (i.e., simulated animal movement via random walks) simultaneously 

between nodes (i.e., sources and destinations of interest for which connectivity is examined). 

Simulated random walks travel through resistance-defined raster cells in matrix form and 

observed current between each pair of nodes are recorded to identify all general pathways 

between them (Shah and McRae 2008). Software created for circuit theory modeling (e.g., 

Circuitscape; McRae et al. 2009) records observed currents across raster cells, where high 

cumulative current density indicate a higher relative probability of a random walker passing 

through the cell, therefore emphasizing the cell’s importance in connectivity (Dickson et al. 

2018).  

While conceptually simple, circuit theory approaches are critically dependent on 

understanding how to infer resistance values from different landscape features, which can be a 

complex task. For example, although common, inferring resistance values from expert opinion 

has been exceedingly cautioned against due to lower performance and mixed results across 
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studies (Zeller et al. 2012; Reed et al. 2017). Alternatively, empirical resistance surface creation 

has historically relied on genetic data from which relationships are based using allelic structures 

(i.e., isolation by distance using pairwise Fst values; McRae 2006) and fine-scale movement data 

generated from collaring individuals (i.e., step selection functions). Additionally, recent work 

validated using outputs from correlative distribution models for inferring empirical resistance 

surfaces, whereby suitability is inversely related to landscape resistance (Keeley et al. 2016; 

Zeller et al. 2018). 

In addition to elucidating evolutionary processes and priority areas for biodiversity 

conservation (McRae et al. 2008; Brodie et al. 2015; Dutta et al. 2016), circuit theory has 

recently been used to model disease spread critical for wildlife health. For example, circuit 

theory characterized elevated risk areas for transmission of CWD among white-tailed deer 

(Odocoileus virginianus) and mule deer (O. hemionus) in CWD-endemic areas in Canada 

(Nobert et al. 2016). The landscape ecology of prions remains poorly understood (Winter and 

Escobar 2020), and modeling studies examining CWD spread through potential connectivity of 

cervid populations have predominantly used landscape genetics (Blanchong et al. 2008; 

Robinson et al. 2013; Kelly et al. 2014) and diffusion models (Garlick et al. 2011; Hefley et al. 

2017a, 2017b). These models, however, are focused on longer established CWD areas, such as 

Illinois and Wisconsin, United States (US), where area-specific modeling parameters can be used 

directly (Winter and Escobar 2020).  

In contrast, the contiguous CWD cluster in the Mid-Atlantic US (i.e., Maryland, 

Pennsylvania, Virginia, West Virginia) remains largely understudied due to its more recent 

establishment and limited and inconsistent available funding for disease surveillance (Evans et 

al. 2014; Winter and Escobar 2020). A recent assessment in the Mid-Atlantic cluster identified 
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landscape connectivity between CWD-affected subpopulations, supporting cervid dispersal as a 

driver for CWD spread (Miller et al. 2020), which is consistent with other regions (e.g. Colorado 

and Wisconsin, US and Alberta, Canada; Conner and Miller 2004; Skuldt et al. 2008; Nobert et 

al. 2016). Nevertheless, connectivity remains unexplored at a finer scale within populations 

experiencing expansions of CWD outbreaks, as is the case within the state of Virginia (US). The 

Virginia Department of Wildlife Resources (DWR) has recently documented a stark increase in 

the magnitude and extent of confirmed annual CWD cases. Previous regional analyses utilized 

dataset containing significantly fewer data points (i.e., five cases analyzed in Evans et al. 2016). 

For several years after the initial confirmation of CWD in Virginia in 2009, the disease was only 

detected in western Frederick County and northwestern Shenandoah County (DWR 2014, 2019). 

Subsequently, CWD was confirmed in a deer sampled from Culpeper County in November 2018, 

>70 km southeast from the next geographically proximate case in disease management area 1 

(DMA1). In the next deer hunting season after the initial CWD detection in Culpeper County 

(i.e., late 2019 to early 2020), DWR prioritized sampling in the edge counties of DMA1 (i.e., 

Clarke, Warren, Shenandoah Counties) and within DMA2 (i.e., Culpeper, Madison, and Orange 

Counties). In addition to more CWD-positive confirmations in previously established endemic 

areas, in 2020 new CWD cases were confirmed in two new counties for the first time (i.e., 

Clarke and Fauquier Counties).  

To prioritize CWD surveillance, DWR seeks to understand potential connectivity within 

and between DMAs; however, fine-scale deer movement and state-wide genetic data of highly 

admixed Virginia white-tailed deer populations (McDonald and Miller 2004) is absent in 

Virginia. Therefore, in this chapter we hypothesized that rasters of suitability for CWD 

transmission risk (Chapter 3) could characterize potential transmission pathways for CWD in 
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Virginia, but would provide limited clarity on isolated cases due to predicted widespread 

suitability for prion transmission. We calibrated circuit theory models to understand connectivity 

between known CWD cases within and between DMAs. Additionally, we provide a practical 

application modeling connectivity between known CWD areas and a susceptible population of 

management interest. 

Methods 

Resistance data 

We used correlative distribution models (i.e., hypervolume outputs) that characterized 

consistent CWD transmission risk to create resistance surfaces for connectivity analysis both 

within and between DMAs. Due to differences in geographic predictions (i.e., risk areas 

predicted) and evaluations (i.e., predictive performance), we used both maps of projected 

hypervolumes generated from an uncertainty analysis, calculated from data extracted at precise 

locations of harvest and inferred home ranges surrounding harvest locations (i.e., Harvest 

Location and Home Range scales; details in Chapter 3). The use of correlative distribution 

modeling outputs to infer resistance across the landscape assumes that pathways between 

suitable patches have more resistance when separated by unsuitable landscapes, rather than 

contiguous landscapes of equal or higher suitability (Keeley et al. 2016). These assumptions 

were expressed through different mathematical functions that transform values of consistent 

suitability of transmission risk to the inverse of resistance. Specifically, previous work 

commonly use two negative exponential functions (i.e., referred to as C4 and C8) and one 

negative linear function (i.e., referred to as negative linear) to describe resistance (Fig. 4.2; 

Keeley et al. 2016; Zeller et al. 2018). Past research evaluating these functions have found mixed 

results in which function performs best on independent data. For example, Keeley et al. (2016) 
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suggested that C4 and C8 perform better for habitat generalist species, while negative linear 

functions performed better for specialist species with less widespread suitability. In contrast, 

Zeller et al. (2018) identified that a negative linear function outperformed both C4 and C8 

functions when modeling connectivity using correlative distribution models’ outputs for a 

generalist species. Therefore, we transformed the values from hypervolume outputs using all 

mathematical functions given their mixed results in published literature. 

 

Nodal data preparation  

We used DWR’s CWD surveillance and monitoring dataset, which contained geographic 

coordinates for CWD positive cases detected in the state of Virginia (n=88). We rasterized these 

spatial points to an identical resolution and geographic projection as resistance surfaces. These 

rasterized points (cells) were used as nodes from which pairwise currents were calculated to 

understand connectivity. 

 

DMA connectivity modeling 

We performed a resistance-based connectivity analysis to estimate potential routes of 

current between CWD cases that fall within and between DMAs established in Virginia. 

Specifically, we normalized our risk map projections from both Harvest Location and Home 

Range scales (i.e., converted probabilities to a range of values from 0 to 1). Next, we 

transformed probabilities representing consistent transmission risk to resistance using all three 

functions described above (i.e., negative linear, C4, and C8). We employed our circuit-based 

analysis using Circuitscape (version 4.0.5; McRae et al. 2009) called in the R programming 

environment (R Core Team 2020) to examine pairwise connectivity between CWD cases. 
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Cumulative (summed) current maps are often used for connectivity model interpretations; 

therefore, we created the six cumulative (summed) current maps to represent all three 

transformation functions (i.e., negative linear, C4, and C8) for both Harvest Location and Home 

Range scales. Due to all pixels within the study area being used in the circuit and having values, 

we obtained more probable pathways by selecting the upper 50% quantile of cumulative (sum) 

current density values, which represent pixels that have more probability of a random walker 

traveling through them (McRae et al. 2008). Finally, we transformed pathways with log10 to 

improve visualizations, which is commonly used in connectivity modeling interpretations 

(Pelletier et al. 2014).  

 

Virginia statewide connectivity modeling 

In a practical application, we applied similar methods described in detail in Chapter 3 to a 

broader study area to encompass the state of Virginia and a susceptible population of elk (Cervus 

canadensis) in Buchanan County. We modeled statewide CWD transmission risk by constructing 

six support-vector machine (SVM) delineated hypervolumes to represent all combinations of 

paired quadrants from geographic partitioning of CWD-associated environmental data 

(Muscarella et al. 2014; Blonder et al. 2018). That is, we created hypervolume models from all 

paired quadrant combinations (adopting a 50:50 division of data similar to Chapter 3), and 

projected hypervolumes in the form of binary maps. These binary risk maps were averaged to 

identify areas that were consistently within SVM hypervolumes.  

Next, as above, statewide suitability for transmission risk maps were transformed using 

all three functions (i.e., negative linear, C4, and C8) to infer resistance. Using these outputs, we 

examined risk-delineated connectivity between the CWD outbreak in northern Virginia and a 
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recently established elk population in Buchanan County. To achieve this, we calculated two 

centroids of minimum convex polygons: one from reported elk locations in Buchanan County 

(unpublished data; Quinlan and Ford 2020), and the second from all CWD-positive deer in 

northern Virginia. Centroid points were rasterized as above to be used as nodes in circuit-based 

connectivity calculations. All analyses were conducted in the native spatial grain from 

hypervolume risk maps (250 meter spatial resolution) given their predictive abilities identified in 

Chapter 3. Finally, as above, cumulative (sum) statewide current maps were restricted to the 

upper 50%  quantile of values to obtain more likely pathways, and values were transformed with 

log10 and used for connectivity modeling interpretations. 

Results 

Circuit-based connectivity modeling identified considerable current density passing 

through high risk areas connecting CWD cases in Virginia (Fig. 4.3). Cumulative current maps 

revealed that pairwise connections between cases were often not directly related to the shortest 

available Euclidian distance. We found little differences between current maps from Harvest 

Location and Home Range scales (Fig. 4.3). The two negative exponential functions yielded 

different connectivity maps, where the function inferring lower transmission risk with the highest 

proportional resistance (i.e., C8) generated maps showing little evidence of direct pathways 

between CWD cases (Fig. 4.4). The other negative exponential (i.e., C4) and the negative linear 

function generated relatively similar connectivity maps. For all functions, relative to other 

pairwise connections, we found current density to be lower and more diffuse for distant CWD 

cases found along the peripheries of DMA1 and within DMA2. We found more clarity for 

potential pathways when a single pairwise connection was isolated from the overall cumulative 

current density map (Fig. B1). 
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Statewide transmission risk maps identified transmission risk throughout Virginia, with 

some similarities in projected risk found in the northernmost tip of Virginia (Fig. 4.5); however, 

models more broadly delineated landscapes as “outside” of hypervolumes (seen in black 

coloration in Fig. 4.5). We found that different transformation functions produced differences in 

pathways (Fig. 4.5). For example, we noted more concentrated current densities using the C8 

transformations, with currents being less clear in the negative linear transformation (Fig. 4.6). 

 

Discussion 

Overall, our results indicated that using hypervolume model outputs to infer resistance 

can identify pathways of connectivity. We found that the different mathematical functions used 

to infer resistance influenced currents passing between known CWD-positive deer. Similarly, 

functions’ influence were more pronounced in our practical application with a larger study area 

connecting CWD-affected areas with a potentially susceptible elk population. The results from 

our study can guide management and surveillance; however, we note some caveats to our results 

with respect to the pathogenic agent causing CWD. 

As expected, we found higher densities of pairwise currents between CWD cases that 

were more closely arranged, suggesting plausible connectivity and between most CWD cases in 

Virginia. We observed that currents connecting some CWD cases did not follow the shortest 

Euclidean distance, indicating some pathways were driven by resistance. The results of our 

analysis did not clearly identify pathways connecting isolated cases (i.e., cases in the periphery 

of the DMA1 and the geographically isolated case in Culpeper County); however, CWD cases 

detected in future surveillance efforts surrounding DMAs may provide insight on pathways.  

In congruence with other studies emphasizing the importance of topographic features in 

CWD spread (Mateus-Pinilla et al. 2013; Robinson et al. 2013), our statewide connectivity 
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application identified higher current densities falling within valleys and along the interstate I-81 

highway corridor. Current pathways were seemingly more pronounced in the C8 transformation 

in statewide connectivity, opposite of outputs generated in DMA modeling. We note that this is 

more likely a result of the differences seen in the hypervolume outputs. The statewide 

hypervolume more broadly delineated landscapes as “outside” the landscape conditions where 

CWD is currently found. When the C8 function is applied to outputs with a matrix of 

unsuitability interrupted with patchy areas of suitability, more distinct pathways are created 

because the least amount of relative resistance is inferred in these rarer highly suitable areas, 

effectively funneling currents through them. This contrasts with generally more diffuse currents 

found in the statewide map using the negative linear transformation because there is less 

resistance being inferred in unsuitable areas. 

Connectivity modeling for CWD in the Mid-Atlantic remains in its infancy, with Miller 

et al. (2020) serving as only published study that focused on CWD transmission between Mid-

Atlantic deer populations. In Virginia, Miller et al. (2020) identified two distinct subpopulations 

through genetic evaluation that appear divided near the I-81 highway corridor (see Figure 1 from 

Miller et al. 2020), but connectivity between these populations was not explicitly examined. Our 

analyses complement their work by identifying connectivity within Virginia’s CWD outbreak. 

We found that the I-81 corridor rarely impeded currents passing through, which is likely a result 

of the coarse resolution and transformation of landscape data (i.e., principal components analysis 

of 250 meter EVI; Didan 2015). 

To date, all approaches examining connectivity for CWD have relied on landscape 

variables of static seasonality with often correlated predictor variables (Nobert et al. 2016; Miller 

et al. 2020). In contrast, our DMA connectivity modeling used statistically significant predictions 
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of CWD risk that were derived from orthogonal variables characterizing long-term variation and 

seasonality in landscape features (i.e., principal components of EVI) in Chapter 3. Nevertheless, 

we note that despite serving as practical application of our methods, statewide connectivity maps 

should be taken with caution with respect to the data-driven nature of our models. That is, 

projected hypervolume models show limited transmission risk in the southeastern and coastal 

Virginia. We caution that these results are likely more caused by our limited understanding of 

CWD. For example, differences in risk could be due to differences in landscape conditions 

between where CWD cases have occurred and coastal Virginia, rather than these areas being 

completely inhospitable for prion transmission (i.e., EVI conditions in northern Virginia are 

presumably just different from the coast). Additionally, we recognize that the resistance model 

lacks empirical validation; therefore, caution should be taken when interpreting modeling 

outputs. Presently, connectivity evaluation methods remain in development without consensus 

(McClure et al. 2016). Nevertheless, common connectivity evaluation practices use secondary 

locations of known individuals to test paths and corridors against random expectation or using 

model fit (McClure et al. 2016; Zeller et al. 2018), assuming that either re-captured or new 

individuals will be present in areas of high current density and high-risk areas (Wade et al. 

2015). In the context of CWD, however, hunter harvest-based sampling makes re-locations for 

movement validation impossible. Finally, we note the assumption of landscape resistance being 

inversely related to suitability for transmission risk does not explicitly model movement 

capabilities of the host species, which is more common among resistance-based connectivity 

modeling (Zeller et al. 2012, 2018). Other than the limited availability of data to inform such 

models, we intentionally disregarded movement considering this area empirical research remains 

unexplored. That is, important discrepancies in cervid movement as CWD progresses is currently 
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unknown in general, much less across different landscape features found in CWD’s distribution. 

This topic, however, has seen attention in the western US (Edmunds et al. 2018) and warrants 

additional experimentation in more species and regions. 

The hardy nature of prions to remain infectious in conditions inhospitable for their hosts 

(i.e., extreme heat; Jung et al. 2003) may suggest that prion transmission risk is driven by hosts’ 

capacity for movement and prion deposition.  These two drivers emphasize the overall 

importance in understanding connectivity in the context of CWD, cervid hosts, and other wildlife 

(Escobar et al. 2020). Unfortunately, data required for detailed calibration of movement-related 

models may depend on observing infected cervids on the landscape, which would clearly 

undermine management objectives and defy stakeholder interests. Therefore, we suggest that 

future studies should investigate deer movement in the context of prion disease progression. 

References 

Allan BF, Keesing F, Ostfeld RS. 2003. Effect of forest fragmentation on lyme disease risk. 

Conserv Biol 17:267–272. 

Berger J, Cain SL, Berger KM. 2006. Connecting the dots: An invariant migration corridor links 

the Holocene to the present. Biol Lett 2:528–531. 

Biek R, Real LA. 2010. The landscape genetics of infectious disease emergence and spread. Mol 

Ecol 19:3515–3531. 

Blanchong JA, Samuel MD, Scribner KT, Weckworth B V, Langenberg JA, Filcek KB. 2008. 

Landscape genetics and the spatial distribution of chronic wasting disease. Biol Lett 

4:130–133. 

Blonder B, Morrow CB, Maitner B, Harris DJ, Lamanna C, Violle C, Enquist BJ, Kerkhoff AJ. 

2018. New approaches for delineating n-dimensional hypervolumes. Methods Ecol Evol 

9:305–319. 

Brodie JF, Giordano AJ, Dickson B, Hebblewhite M, Bernard H, Mohd-Azlan J, Anderson J, 

Ambu L. 2015. Evaluating multispecies landscape connectivity in a threatened tropical 

mammal community. Conserv Biol 29:122–132. 

Conner MM, Miller MW. 2004. Movement patterns and spatial epidemiology of a prion disease 

in mule deer population units. Ecol Appl 14:1870–1881. 



 95 

Department of Wildlife Resources, Virginia (DWR). 2014. Chronic wasting disease surveillance 

and response plan 2014-2019. Virginia Department of Wildlife Resources, Richmond, 

Virginia, 1–22 pp. 

———. 2019. Tracking chronic wasting disease in Virginia. 

https://www.dwr.virginia.gov/wildlife/diseases/cwd/tracking-cwd-in-virginia/. Accessed 

November 2019. 

Dickson BG, Albano CM, Anantharaman R, Beier P, Fargione J, Graves TA, Gray ME, Hall KR, 

Lawler JJ, Leonard PB, et al. 2018. Circuit-theory applications to connectivity science 

and conservation. Conserv Biol 33:239–249. 

Didan K. 2015. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid 

V006. https://lpdaac.usgs.gov/products/mod13q1v006/. Accessed 10 Nov 2019. 

Dutta T, Sharma S, McRae BH, Roy PS, DeFries R. 2016. Connecting the dots: mapping habitat 

connectivity for tigers in central India. Springer Berlin Heidelberg. Reg Environ Chang 

16:53–67. 

Edmunds DR, Albeke SE, Grogan RG, Lindzey FG, Legg DE, Cook WE, Schumaker BA, 

Kreeger TJ, Cornish TE. 2018. Chronic wasting disease influences activity and behavior 

in white-tailed deer. J Wildl Manage 82:138–154. 

Escobar LE, Pritzkow S, Winter SN, Grear DA, Kirchgessner MS, Dominguez‐Villegas E, 

Machado G, Townsend Peterson A, Soto C. 2020. The ecology of chronic wasting 

disease in wildlife. Biol Rev 95:393–408. 

Evans TS, Kirchgessner MS, Eyler B, Ryan CW, Walter WD. 2016. Habitat influences 

distribution of chronic wasting disease in white-tailed deer. J Wildl Manage 80:284–291. 

Evans TS, Schuler KL, Walter WD. 2014. Surveillance and monitoring of white-tailed deer for 

chronic wasting disease in the northeastern United States. J Fish Wildl Manag 5:387–

393. 

Garlick MJ, Powell JA, Hooten MB, McFarlane LR. 2011. Homogenization of large-scale 

movement models in ecology. Bull Math Biol 73:2088–2108. 

Grafius DR, Corstanje R, Siriwardena GM, Plummer KE, Harris JA. 2017. A bird’s eye view: 

Using circuit theory to study urban landscape connectivity for birds. Landsc Ecol 

32:1771–1787. 

Hefley TJ, Hooten MB, Hanks EM, Russell RE, Walsh DP. 2017a. Dynamic spatio-temporal 

models for spatial data. Spat Stat 20:206–220. 

Hefley TJ, Hooten MB, Russell RE, Walsh DP, Powell JA. 2017b. When mechanism matters: 

Bayesian forecasting using models of ecological diffusion. Ecol Lett 20:640–650. 



 96 

Hilty JA, Keeley AT, Lidicker Jr WZ, Merenlender AM. 2019. Background: Habitat loss, 

fragmentation, and climate change. In: Corridor Ecology: Linking Landscapes for 

Biodiversity Conservation and Climate Adaptation, Second Edition. Island Press, 

Washington, DC. pp. 6–16. 

Huang ZYX, van Langevelde F, Prins HHT, de Boer WF. 2015. Dilution versus facilitation: 

Impact of connectivity on disease risk in metapopulations. J Theor Biol 376:66–73. 
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 Figure 4.1: Hypervolume risk maps used in DMA connectivity modeling. Risk maps identify areas 

determined with more consistent probable risk for CWD transmission from jackknife analysis. We found 

more homogenous and widespread transmission risk being consistent among models using A – Harvest 

Locations compared to B – Home Ranges. Note counties with considerable transmission risk include 

Rappahannock County. Lines indicate boundaries of states (thick white) and counties (thin white), while 

points (white circles) represent known CWD cases (n=88). Overall, the amount of area predicted as 

consistently risky was higher in models generated from Harvest Locations. 
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Figure 4.2: Functions used for transforming suitability to landscape resistance. The negative linear 

function (green line) assumes the simple inverse of suitability is resistance. Negative exponential 

functions (i.e., C4 and C8 shown as red and blue curves) attribute higher resistance with lower values for 

suitability in different magnitudes (i.e., Resistance = 100-99*((1 – exp(-C*X))/(1 –exp(-C))), where C 

corresponds to either 4 or 8 depending on the function and X is are suitability for transmission risk values 

from correlative distribution modeling (i.e., hypervolume) outputs, reproduced from Keeley et al. (2016) 

and Zeller et al. (2018).  



 101 

 

Figure 4.3: Circuitscape maps showing current density between CWD cases. Risk values from variation 

analysis (see Fig. 5) were used to infer a negative linear relationship to resistance values for connectivity 

modeling. We found little differentiation between connectivity models derived from projected CWD 

transmission risk using A – Harvest Locations compared to B – Home Ranges. Despite higher relative 

current density (light pink color) being found between most cases, low current densities were found 

surrounding many isolated cases (dark purple to black colors). Lines indicate boundaries of states (white) 

and counties (light gray), while points (green circles) represent known CWD cases (n=88). 
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Figure 4.4: Current maps from negative exponential functions between known CWD cases. Panels 

represent different scales (i.e., Harvest Locations and Home Ranges) and resistance transformations, 

following Keeley et al. 2016; Zeller et al. 2018. A – C4 transformation from Harvest Location models; B 

– C4 transformation from Home Range models. C – C8 transformation from Harvest Location models; D 

– C8 transformation from Home Range models. Relative to the negative linear function, C4 and C8 infer 

a stronger negative relationship between resistance and suitability for transmission risk. Current density 

maps shows high concentrations of current (pink color) passing between most CWD cases (green circles), 

with differentiation among transformations and scales being noted in less-likely pathways (currents in 

black coloration) along the periphery of the study area.  
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Figure 4.5: Statewide CWD risk map and current density map between CWD areas to elk population. 

Risk values from SVM analysis (top) were used to infer a C8 transformation to resistance values for 

connectivity modeling (bottom). We found higher relative current density (light pink colors) in areas near 

Charlottesville, VA, with low current density (dark purple colors) traveling along coastal Virginia. Lines 

indicate boundaries of states (white) and counties (gray). 
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CHAPTER 5: CONCLUSIONS 

Steven N. Winter 

 

Studies have identified that CWD prevalence in wild cervid populations can reach 

upwards of 40-50%, which can reduce population viability by 10-20% (Edmunds et al. 2016; 

DeVivo et al. 2017; Carlson et al. 2018). Understanding how landscape conditions influence the 

distribution of CWD is a crucial first step in controlling prions in the environment indirectly 

transmitting CWD in wild cervid species. Limited information on the role of landscape on CWD 

spread, however, challenges wildlife managers and disease ecologists (Miller et al. 2004). The 

importance of the landscape has been emphasized in seldom researched directions examining 

prion dynamics, where modeling scenarios identified that future population reductions and 

extinctions could be dependent on the duration of prion persistence in the environment, and 

should CWD spread remain unabated, management interventions could eventually lose their 

efficacy (Almberg et al. 2011). Indeed, future research understanding population-level effects of 

prions remaining infective over time (Georgsson et al. 2006), evading detection both within 

environments and hosts (McNulty et al. 2019; Kuznetsova et al. 2020), and spreading throughout 

the ecosystem (Pritzkow et al. 2015, 2018; Escobar et al. 2020) will demand innovative and 

evolving scientific investigation building upon previous research studying CWD epidemics 

across space and time. Nevertheless, knowing similarities exist between epidemics in different 

areas is needed prior to more advanced research. 

General gaps in knowledge and discovery of novel tools for surveillance could be 

particularly important for conservation measures in areas experiencing rampant outbreaks of 

CWD, such as Virginia (US). In addition to previous efforts reviewing the state of CWD 

modeling neglecting research performed in the Mid-Atlantic US, they also spared landscape-
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level modeling and, instead, focused on population management (Conner et al. 2008; Uehlinger 

et al. 2016). Thus, the objectives of my thesis were to 1) synthesize and identify trends in the 

history of CWD modeling research, and 2) elucidate CWD-landscape relationships within the 

CWD outbreak in Virginia by applying methods from landscape ecology, based on evidence of 

their success in other ecological systems (Blonder et al. 2014; Nobert et al. 2016).  

Chronic wasting disease’s documented history began when it was first identified in 1967 

in a captive cervid facility in Colorado, and within two decades would be identified in wild herds 

(Williams and Young 1980; Spraker et al. 1997). My examination of the historical trends in 

CWD research revealed that the methods by which ecologists understand disease systems (i.e., 

statistical or mathematical modeling) did not reach published form until the 2000s, but quickly 

proliferated in the following two decades. Additionally, most researchers concentrated on the 

effects of the disease in the context of single species, single populations and within a single study 

area (Winter and Escobar 2020). In fact, investigating the landscape’s influence with CWD only 

began in 2005 (Farnsworth et al. 2005), and received relatively less attention only until recent 

years (i.e., the mid to late-2010s). Nevertheless, modeling research has generated invaluable 

findings in understanding the effects of adaptive management tools (e.g., harvest, culling, and 

selective predation; Wild et al. 2011; Mateus-Pinilla et al. 2013; Manjerovic et al. 2014), and 

inspires future research in developing corrections for commonly used diagnostic tests and 

applying broad scale (i.e., biogeographic) analyses to understand continental patterns in CWD 

spread. 

 Remote sensing technologies are useful for modeling landscape relationships for many 

diseases of humans and wildlife (Allen et al. 2017), and my work supports its use for CWD as 

well. My work directly examined vegetation values that relate to CWD transmission risk at high 
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temporal and spatial resolutions. Directly using vegetation values builds on previous work that 

found utility from indirectly using satellite-derived vegetation data in temporally coarse-grained 

categorical land cover classifications in past CWD landscape modeling (Mateus-Pinilla et al. 

2013; Storm et al. 2013; Evans et al. 2016). My work serves the CWD community by showing 

that satellite-derived vegetation phenology data (i.e., enhanced vegetation index) could serve as 

another reliable tool in future landscape modeling for CWD. Patterns in landscape conditions 

within Virginia were quantifiable to the extent that CWD could be predicted using independent 

data, and used to understand landscape connectivity for characterizing how CWD may have 

spread. My results can inform state wildlife managers on where locations for CWD check 

stations warrant reinforcement (i.e., Rappahannock County) either based on having similar 

landscape conditions associated with CWD transmission risk, or because connectivity modeling 

identified hypothetical pathways important for concentrating and facilitating disease spread. 

Management interventions to increase hunter participation are urgently needed in high risk areas 

because CWD emergence may reduce hunter participation (Erickson et al. 2020), which could 

lead to even higher CWD prevalences (Miller et al. 2020). Additionally, my results show that to 

date, CWD has not occurred in identical landscape conditions within Virginia according to 

different data availability scenarios, which according to theory, would suggest that establishment 

in new environments may be likely (Peterson et al. 2011). Indeed, CWD establishment in novel 

environments in Virginia may also have few impediments based on limited evidence for barriers 

to disease spread between known disease cases.  

Finally, my work provokes several future research directions. My identification that 

models’ predictions improved from incorporating aspects of deer ecology, such as home ranges, 

encourages empirically assessing home ranges in detail for at-risk CWD areas, and within the 
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context of disease progression. For instance, whether home ranges contract or expand with CWD 

progression remains barely explored, and only in western US (Edmunds et al. 2018). Also, 

preliminary research has revealed that landscape connectivity promotes CWD risk in longer-

established epidemics (Garlick et al. 2014; Nobert et al. 2016), which was also supported by my 

identification of little barriers to disease spread between CWD cases in Virginia. Yet, studies 

collecting empirical (i.e., collared deer) data used to calibrate movement and contact rates 

predominantly rely on healthy deer and remove individuals once diagnosed as infected (Schuler 

2006) in agreement with management objectives. Importantly, studies examining movement-

related changes from neurodegeneration found mixed results (i.e., both increased and decreased 

deer movement) in clinical experiments and more recent field settings (Williams and Young 

1993; DeVivo 2015; Edmunds et al. 2018), emphasizing that the movement potential for CWD-

infected deer remains unclear. Finally, future CWD research directions in Virginia’s outbreak 

could benefit from characterization of fine-scale deer densities across the state. Current deer 

density estimates in Virginia are based on harvest of male deer, and are only available at the 

county level. Present deer density reporting limits our abilities to understand the severity of 

CWD prevalence in some areas because deer subpopulations are undefined, thus restricting 

modeling abilities to forecast the efficacy of management interventions (i.e., reducing deer 

density via harvest or culling). These gaps in research are crucial for estimating rates and 

potential of CWD spread across the landscape, which will aid in understanding the exposure of 

other species to CWD-infected deer that may serve as potential vectors for prion movement, 

predators removing infected hosts, or opportunities for potential prion spillover (Escobar et al. 

2020). 
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1.3% 

Wisconsin; 

Illinois, USA 
Ecosystem 

Robinson SJ, Samuel MD, Rolley RE, Shelton P. 

2013. Using landscape epidemiological models 

to understand the distribution of chronic wasting 
disease in the midwestern USA. Landsc Ecol 

28:1923–1935. 

Demographics: Genetics. Location: 

Townships. Epi: Prevalence. Spatial: 

Proximity; Cluster. Landscape: Ecoregion; 
CO (Soil Characteristics; Forest; River; 

Road) 

IHC; 

ELISA 

GLM; Moran's I 

Statistic; 

Diffusion Model 

Secondary; 

Both 
NS NA 

Wisconsin; 

Illinois, USA 
Mixed 

Manjerovic MB, Green ML, Mateus-Pinilla N, 

Novakofski J. 2014. The importance of localized 
culling in stabilizing chronic wasting disease 

prevalence in white-tailed deer populations. Prev 

Vet Med 113:139–145. 

Epi: Prevalence.  Location: State. Control, 
Mortality, Management: Harvest; Cull. 

Time. Landscape: CO (Forest; Soil 

Characteristics) 

IHC; 

ELISA 
GLM 

Secondary; 

Descriptive 

2179 : 

152133 
1.4% 

Wisconsin; 

Illinois, USA 
Ecosystem 

Oraby T, Vasilyeva O, Krewski D, Lutscher F. 
2014. Modeling seasonal behavior changes and 

disease transmission with application to chronic 

wasting disease. J Theor Biol 340:50–59. 

Dem: Density. Time. Epi: Transmission. 

Life Cycle: Recruitment; Mortality.  

IHC; 

ELISA 

Diff. Eq./SI 

Models; Latin 

Hypercube 

Secondary; 

Predictive 
NS NA Simulation Population 

Monello RJ, Powers JG, Hobbs NT, Spraker TR, 
Watry MK, Wild MA. 2014. Survival and 

population growth of a free-ranging elk 

population with a long history of exposure to 

chronic wasting disease. J Wildl Manage 

Dem: Age. Epi: Prevalence; Transmission. 
Life Cycle: Survival; Recruitment; 

Mortality. Time. Trophic: Predation. 

Control, Mortality, Management: Harvest; 

Predation; Roadkill; Unknown; Disease. 

IHC Hier. Bayes. 
Primary; 

Descriptive 
24 : 136 17.6% 

Colorado, 

USA 
Community 
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78:214–223. 

Jennelle CS, Henaux V, Wasserberg G, Thiagarajan 

B, Rolley RE, Samuel MD. 2014. Transmission 

of chronic wasting disease in Wisconsin white-

tailed deer: Implications for disease spread and 

management. PLoS One 9:e91043. 

Dem: Age; Sex; Density. Epi: 

Transmission; Prevalence. Spatial: 

Direction/Distance of Spread. Life Cycle: 

Fecundity; Survival. Time. Control, 

Mortality, Management: Harvest. 

IHC; 

ELISA 

Matrix Model; 

GLM; Latin 

Hypercube 

Secondary; 

Predictive 

958 : 

16773 
5.7% 

Wisconsin, 

USA 
Population 

Heisey DM, Jennelle CS, Russell RE, Walsh DP. 

2014. Using auxiliary information to improve 

wildlife disease surveillance when infected 
animals are not detected: A Bayesian approach. 

PLoS One 9:e89843. 

Dem: Sex; Age. Sampling Method: SRS; 

Harvest; Other; Euthanasia. Epi: 

Prevalence.  

IHC; 

ELISA 

Bayesian Log. 

Reg. 

Secondary; 

Descriptive 

595 : 

20400 
2.9% 

Colorado, 

USA 
Population 

Kelly AC, Mateus-Pinilla NE, Brown W, Ruiz MO, 
Douglas MR, Douglas ME, Shelton P, Beissel T, 

Novakofski J. 2014. Genetic assessment of 

environmental features that influence deer 

dispersal: Implications for prion-infected 

populations. Popul Ecol 56:327–340. 

Dem: Sex; Age; Genetics; Density. 

Location: Unit (Study); TRS. Epi: 
Prevalence. Spatial: Cluster; Proximity.  

Landscape: LCT (Development; Slope; 

Forest; Grassland; Agriculture; Roads; 

Rivers); CO (Cover Types; Fragmentation; 
Connectivity; Cohesion; Clustering; 

Shape) 

IHC; 

ELISA 

Kriging; 

Bayesian 

Clustering; Lin. 

Reg. 

Secondary; 

Descriptive 
141 : 1988 7.1% 

Wisconsin; 

Illinois, USA 
Mixed 

Williams AL, Kreeger TJ, Schumaker BA. 2014. 

Chronic wasting disease model of genetic 
selection favoring prolonged survival in Rocky 

Mountain elk (Cervus elaphus). Ecosphere 5:60. 

Dem: Age; Sex; Genetics. Time. Epi: 

Incubation. Life Cycle: Survival; 
Mortality; Fecundity. Control, Mortality, 

Management: Harvest; Other (Non-

Harvest); Disease. 

IHC; 

ELISA 

Stochastic 

Simulation 
Primary; Both 37 : 39 94.9% 

Wyoming, 

USA 
Individual 

Garlick MJ, Powell JA, Hooten MB, MacFarlane 

LR. 2014. Homogenization, sex, and differential 

motility predict spread of chronic wasting disease 
in mule deer in southern Utah. J Math Biol 

69:369–399. 

Epi: Transmission; Prevalence; Contact 
Rate; Prion Dynamics. Life Cycle: 

Recruitment; Mortality. Control, 

Mortality, Management: Cull; Disease. 

Dem: Age; Sex; Density; Behavior 
(Movement). Time. Landscape: LCT 

(Forest; Open water; Agriculture; 

Scrubland; Desert; Grassland) 

IHC 

Diff. Eq./SI 

Models; 

Diffusion Model 

Secondary; 

Predictive 

0-38600 : 

19500-

38600 

NA 
Utah, USA; 

Simulation 
Ecosystem 

Vasilyeva O, Oraby T, Lutscher F. 2015. 

Aggregation and environmental transmission in 

chronic wasting disease. Math Biosci Eng 

12:209–231. 

Time. Epi: Force of Infection; 
Transmission; Prevalence; Prion 

Dynamics; Contact Rate. Life Cycle: 

Mortality; Lifespan; Recruitment. Control, 

Mortality, Management: Disease. 

IHC 

Diff. Eq./SI 

Models; Latin 

Hypercube 

Secondary; 

Predictive 
NS NA Simulation Population 

Potapov A, Merrill E, Pybus M, Lewis MA. 2015. 

Empirical estimation of R0 for unknown 

transmission functions: The case of chronic 

wasting disease in Alberta. PLoS One 10:1–15. 

Epi: Force of Infection; Prevalence; 

Transmission. Life Cycle: Survival; 

Mortality. Time. Dem: Sex; Behavior 

(Movement). Control, Mortality, 

Management: Cull; Harvest. 

IHC Matrix Model 
Secondary; 

Predictive 
77 : 15038 0.5% Alberta, CA Population 



 118 

Geremia C, Miller MW, Hoeting JA, Antolin MF, 
Hobbs NT. 2015. Bayesian modeling of prion 

disease dynamics in mule deer using population 

monitoring and capture-recapture data. PLoS One 

10:1–20. 

Dem: Age; Populations/Herds. Epi: 
Prevalence; Hazard. Life Cycle: 

Recruitment; Survival; Mortality; 

Lifespan. Time. Spatial: Aggregation; 

Cluster. 

IHC 

Matrix Model; 

Leslie Matrix 

Model 

Primary; Both 22 : 217 10.1% 

Colorado,; 

Wyoming, 

USA 

Population 

Sun L, Lee C, Hoeting JA. 2015. Parameter 

inference and model selection in deterministic 

and stochastic dynamical models via 

approximate Bayesian computation: Modeling a 

wildlife epidemic. Environmetrics 26:451–462. 

Epi: Transmission; Prion Dynamics; 

Prevalence. Time. Life Cycle: Mortality; 

Recruitment. 

IHC 

Diff. Eq./SI 

Models; Hier. 

Bayes. 

Secondary; 

Predictive 
NS NA Simulation Population 

Al-arydah M, Croteau MC, Oraby T, Smith RJ, 

Krewski D. 2016. Applications of mathematical 

modeling in managing the spread of chronic 
wasting disease (CWD) in wild deer under 

alternative harvesting scenarios. J Toxicol Env 

Heal - Part A Curr Issues 79:690–699. 

Epi: Incubation; Transmission; Contact 

Rate. Life Cycle: Lifespan; Mortality; 

Fecundity. Control, Mortality, 
Management: Disease; Harvest. Dem: Sex; 

Age; Density. Time. 

IHC; 

WB 

Diff. Eq./SI 

Models; Latin 

Hypercube 

Secondary; 

Predictive 
24 : 650 3.7% Alberta, CA Population 

Edmunds DR, Kauffman MJ, Schumaker BA, 

Lindzey FG, Cook WE, Kreeger TJ, Grogan RG, 

Cornish TE. 2016. Chronic wasting disease 

drives population decline of white-tailed deer. 

PLoS One 11:e0161127. 

Epi: Prevalence; Hazard; Incubation. Life 
Cycle: Recruitment; Survival. Dem: Sex; 

Age; Health; Behavior (Movement); 

Pregnancy. Time. Control, Mortality, 

Management: Predation; Roadkill; 
Unknown; Disease; Other; Harvest; 

Euthanasia. 

IHC; 

ELISA 

Log. Reg.; Leslie 

Matrix Model 

Primary; 

Descriptive 
57 : 161 35.4% 

Wyoming, 

USA 
Population 

Evans TS, Kirchgessner MS, Eyler B, Ryan CW, 
Walter WD. 2016. Habitat influences distribution 

of chronic wasting disease in white-tailed deer. J 

Wildl Manage 80:284–291. 

Dem: Sex; Age; Behavior (Movement). 

Epi:  Location. Sampling Method: 
(Roadkill; Harvest; Cull). Landscape: LCT 

(Forest; Development; Open); CO (LCTs; 

Soil Characteristics; Elevation; Riparian 

Corridors). Spatial: Cluster. 

IHC; 

ELISA 

Hier. Bayes.; 

Log. Reg. 

Secondary; 

Descriptive 
69 : 7427 0.9% 

Maryland; 

West 
Virginia; 

Virginia, 

USA 

Ecosystem 

Mejía-Salazar MF, Waldner C, Stookey J, Bollinger 
TK. 2016. Infectious disease and grouping 

patterns in mule deer. PLoS One 11:e0150830. 

Dem: Age; Sex; Populations/Herds. 
Landscape: LCT (Grassland; Forest; 

Shrubland; Agriculture). Time. 
IHC GLMM 

Primary; 

Descriptive 
365 NA Sask., CA Ecosystem 

Nobert BR, Merrill EH, Pybus MJ, Bollinger TK, 

Hwang YT. 2016. Landscape connectivity 

predicts chronic wasting disease risk in Canada. J 

Appl Ecol 53:1450–1459. 

Dem: Sex; Behavior (Movement). 

Location. Epi: Prevalence. Landscape: 

LCT (Forest; Shrubland; Agriculture); 

Rivers; Roads. Time. Spatial: 

Connectivity; Direction/Distance of 

Spread; Cluster. 

IHC 
Log. Reg.; Circuit 

Theory 

Secondary; 

Predictive 
94 : 19546 0.5% 

Alberta; 

Sask., CA 
Ecosystem 

Samuel MD, Storm DJ. 2016. Chronic wasting 

disease in white-tailed deer: Infection, mortality, 

and implications for heterogeneous transmission. 

Ecology 97:3195–3205. 

Dem: Sex; Age. Epi: Force of Infection; 
Hazard; Prevalence; Transmission; 

Contact Rate. Location: State. Life Cycle: 

Mortality. Control, Mortality, 

Management: Disease; Harvest. 

IHC; 

ELISA 

Bayesian 

WAIFW Matrix 

Model 

Secondary; 

Descriptive 
16257 NA 

Wisconsin; 

Illinois, USA 
Population 
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Mejía-Salazar MF, Goldizen AW, Menz CS, Dwyer 
RG, Blomberg SP, Waldner CL, Cullingham CI, 

Bollinger TK. 2017. Mule deer spatial 

association patterns and potential implications 

for transmission of an epizootic disease. PLoS 

One 12:e0175385. 

Dem: Sex; Age; Behavior (Reproduction; 

Movement); Populations/Herds; Genetics. 

Spatial: Proximity. Epi: Prevalence. Time. 

IHC GLMM 
Primary; 

Descriptive 
32 : 74 43.2% Sask., CA Mixed 

Hefley TJ, Hooten MB, Russell RE, Walsh DP, 

Powell JA. 2017. When mechanism matters: 

Bayesian forecasting using models of ecological 

diffusion. Ecol Lett 20:640–650. 

Location. Time. Spatial:  Landscape: CO 

(Forest; Development; Rivers). Dem: Sex; 

Age; Behavior (Movement).  

IHC; 

ELISA 

Diff. Eq./SI 

Models; GLMM; 

BRT; ML; Hier. 
Bayes.; GAM; 

Diffusion Model 

Secondary; 

Predictive 

2562 : 

103256 
2.5% 

Wisconsin, 

USA 
Ecosystem 

Galloway NL, Monello RJ, Brimeyer D, Cole E, 

Hobbs NT. 2017. Model forecasting of the 
impacts of chronic wasting disease on the 

Jackson elk herd. Biological Research Division, 

National Park Service, Washington, DC, USA 32 

pp. 

Dem: Sex; Age. Control, Mortality, 
Management: Harvest; Disease. Epi: 

Prevalence; Transmission. Time. Life 

Cycle: Survival; Recruitment; Mortality. 

NS Matrix Model Primary; Both NS NA 
Wyoming, 

USA 
Population 

Monello RJ, Galloway NL, Powers JG, Madsen-

Bouterse SA, Edwards WH, Wood ME, 

O’Rourke KI, Wild MA. 2017. Pathogen-

mediated selection in free-ranging elk 
populations infected by chronic wasting disease. 

Proc Natl Acad Sci U S A 114:12208–12212. 

Dem: Genetics; Populations/Herds. 

Location. Epi: Prevalence; Incubation. 

IHC; 

ELISA 

Hier. Bayes.; 

Log. Reg. 

Secondary; 

Descriptive 
1018 NA 

Wyoming; 

Colorado; 

North Dakota, 

USA 

Population 

Hefley TJ, Hooten MB, Hanks EM, Russell RE, 
Walsh DP. 2017. Dynamic spatio-temporal 

models for spatial data. Spat Stat 20:206–220. 

Dem: Sex; Age; Behavior (Movement); 

Density. Time. Location: Lat/Long. 
Landscape: CO (Forest; Development). 

Epi: Prevalence. 

IHC; 

ELISA 

GLMM; 

Diffusion Model; 
Diff. Eq./SI 

Models; Hier. 

Bayes. 

Secondary; 

Predictive 

168 : 

14648 
1.1% 

Wisconsin, 

USA 
Ecosystem 

DeVivo MT, Edmunds DR, Kauffman MJ, 
Schumaker BA, Binfet J, Kreeger TJ, Richards 

BJ, Schätzl HM, Cornish TE. 2017. Endemic 

chronic wasting disease causes mule deer 

population decline in Wyoming. PLoS One 

12:e0186512. 

Dem: Age; Sex; Health; Pregnancy; 
Genetics. Life Cycle: Recruitment; 

Survival. Epi: Prevalence; Hazard; 

Transmission. Time. Control, Mortality, 

Management: Harvest; Disease; Predation; 

Roadkill; Other. Trophic: Predation. 

IHC; 

ELISA 
Matrix Model 

Primary; 

Descriptive 
77 : 143 53.8% 

Wyoming, 

USA 
Community 

Edmunds DR, Albeke SE, Grogan RG, Lindzey 
FG, Legg DE, Cook WE, Schumaker BA, 

Kreeger TJ, Cornish TE. 2018. Chronic wasting 

disease influences activity and behavior in white-

tailed deer. J Wildl Manage 82:138–154. 

Dem: Sex; Age; Behavior (Movement); 

Health. Location. Epi: Prevalence. Spatial: 

Proximity. Time. Landscape: LCT 
(Development; Riparian; Grassland; 

Agriculture; Shrubland; Forest; Rivers; 

Road); CO (Curvature; Surface Area 

Ratio; Slope; Surface Relief Ratio; 
Compound Topographic Index; Heat Load 

Index; Circular Aspect Transformation). 

IHC 

Brownian-Bridge 

Movement 

Model; GLM 

Primary; 

Descriptive 
57 : 161 35.4% 

Wyoming, 

USA 
Ecosystem 



 120 

Davenport KA, Mosher BA, Brost BM, Henderson 
DM, Denkers ND, Nalls A V, McNulty E, 

Mathiason CK, Hoover EA. 2018. Assessment of 

chronic wasting disease prion shedding in deer 

saliva with occupancy modeling. J Clin 

Microbiol 56:e01243-17. 

Dem: Genetics; Sex. Time. Epi: 

Incubation; Prion Dynamics; 

Transmission. 

RT-

QuIC; 

IHC; 

WB 

Occupancy 

Modeling 

Primary; 

Descriptive 
45 NA 

Colorado, 

USA 
Individual 

Maji C, Mukherjee D, Kesh D. 2018. Deterministic 

and stochastic analysis of an eco-epidemiological 

model. J Biol Phys 44:17–36. 

Dem: Density. Life Cycle: Mortality; 

Recruitment; Survival. Epi: Transmission; 

Prion Dynamics. Control, Mortality, 
Management: Predation; Disease. Trophic: 

Predation. 

NS 

Diff. Eq./SI 

Models; Hopf 

Bifurcation 

Secondary; 

Predictive 
NS NA Simulation Community 

Wolfe LL, Watry MK, Sirochman MA, Sirochman 

TM, Miller MW. 2018. Evaluation of a test and 
cull strategy for reducing prevalence of chronic 

wasting disease in mule deer (Odocoileus 

hemionus). J Wildl Dis 54:511–519. 

Dem: Age; Sex; Populations/Herds. 
Location. Time. Epi: Prevalence. Control, 

Mortality, Management: Cull. 

IHC Desc. Stats 
Primary; 

Descriptive 
269 : 3566 7.5% 

Colorado, 

USA 
Population 

Jennelle CS, Walsh DP, Samuel MD, Osnas EE, 
Rolley R, Langenberg J, Powers JG, Monello RJ, 

Demarest ED, Gubler R, et al. 2018. Applying a 

Bayesian weighted surveillance approach to 

detect chronic wasting disease in white-tailed 

deer. J Appl Ecol 55:2944–2953. 

Dem: Age; Sex. Location. Time. Epi: 
Prevalence; Hazard. Sampling Method 

(Roadkill; Euthanasia). Control, Mortality, 

Management: Disease; Harvest; Cull; 

Roadkill; Other.  

IHC; 

ELISA 

Bayesian Log. 

Reg. 

Primary; 

Descriptive 
0 : 80 0.0% 

Virginia, 

USA 
Population 

Schuler KL, Jenks JA, Klaver RW, Jennelle CS, 

Bowyer RT. 2018. Chronic wasting disease 

detection and mortality sources in semi-protected 

deer population. Wild Biol 2018:wlb.00437. 

Dem: Sex; Age. Control, Mortality, 

Management: Predation; Roadkill; 

Harvest; Unknown; Euthanasia. Epi: 
Prevalence. Life Cycle: Survival; 

Mortality. 

IHC 
MARK Survival 

Model 

Primary; 

Descriptive 
8 : 67 11.9% 

South Dakota, 

USA 
Population 

1 LCT = Land Cover Type, 2CO = Covariate, 3Dem = Demographic variables, 4Epi = Epidemiological variables, 5TRS = Township-region-section, 6UTM = Universal transverse Mercator 

7IHC = Immunohistochemistry, 8ELISA = Enzyme-linked immunosorbent assay, 9WB = Western blot, 10RT-QuIC = Real-time quaking induced conversion  

11GLM = Generalized linear model, 12GLMM = Generalized linear mixed model, 13Log. Reg. = Logistic regression, 14Lin. Reg. = Linear regression, 15WAIFW = “Who-acquired-infection-from-whom”, 16BRT = Boosted regression 

trees, 17GAM = Generalized additive model, 18Diff. Eq/SI Models = Differential equations and/or SI models, 19Desc. Stats = Descriptive statistics, 20Hier. Bayes = Hierarchical Bayesian modeling, 21ML = Machine learning 

NS = Not specified. 



 

121 

 

Table A2: Less common modeling methods. Type of modeling method and number of uses (n) in CWD 

research. Includes methods with <5 uses in publications.  

 

Modeling Method n 

Anselin’s LISA 1 

Bayesian Clustering 4 

Bayesian Spatial Regression 1 

Bayesian WAIFW Matrix Model 1 

Before-and-After Control Impact (BACI) 1 

Boosted Regression Trees 1 

Brownian-Bridge Movement Model 1 

Circuit Theory 1 

Difference Equations 1 

Diffusion Model 4 

Ecological Niche Modeling 1 

Gaussian Geostatistical Model 1 

Generalized Additive Model 1 

Hierarchical Cluster Analysis  1 

Hopf Bifurcation 1 

Kriging 1 

Kulldorff Spatial Scan Statistic 1 

Leslie Matrix Model 3 

Lexis Diagram 1 

Machine Learning 2 

MARK Survival Model 1 

Meta-analysis 1 

Network Model 2 

Occupancy Modeling 1 

Partial Differential Equations 1 

Sampling Simulations 4 

Spatial Scan Statistic 2 
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Fig. A1: Distribution of chronic wasting disease modeling studies across scientific journals. Modeling 

studies were published largely in journals publishing in the areas of wildlife and ecology (green; n=48 

articles), mathematical biology (yellow; n=5 articles), multidisciplinary (gray; n=12 articles), 

epidemiology (magenta; n=4 articles), spatial analyses (blue; n=3 articles), veterinary sciences (orange; 

n=5 articles), biophysical sciences (light blue; n=1 article), and other technical reports (black; n=1 

article). 
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Appendix B: Supplementary circuit theory connectivity maps. 

Figure B1: Maps showing current density connecting two CWD cases. Panels show hypothetical connections between a single CWD case in 

Frederick County and the isolated Culpeper case under different scales and resistance transformations (i.e., C4, C8, and Negative Linear). Overall, 

many pathways indicate the hypothetical routes of spread still largely remain unclear. 

 



 

 


