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(ABSTRACT)

The DNA microarray is a powerful tool to study expression levels of thousands of genes simul-

taneously. Often, cDNA libraries representing expressed genes of an organism are available, along

with expressed sequence tags (ESTs). ESTs are widely used as the probes for microarrays. Design-

ing custom microarrays, rich in genes relevant to the experimental objectives, requires selection of

probes based on their sequence. We have designed a probe selection method, called GeneSieve, to

select EST probes for custom microarrays. To assign annotations to the ESTs, we cluster them into

contigs using phrap. The larger contig sequences are then used for similarity search against known

proteins in model organism such as Arabidopsis thaliana. We have designed three different methods

to assign annotations to the contigs: bidirectional hits (BH), bidirectional best hits (BBH), and

unidirectional best hits (UBH). We apply these methods to pine and potato EST sets. Results show

that the UBH method assigns unambiguous annotations to a large fraction of contigs in an organism.

Hence, we use UBH to assign annotations to ESTs in GeneSieve. To select a single EST from a

contig, GeneSieve assigns a quality score to each EST based on its protein homology (PH), cross

hybridization (CH), and relative length (RL). We use this quality score to rank ESTs according to

seven different measures: length, 3′ proximity, 5′ proximity, protein homology, cross hybridization,

relative length, and overall quality score. Results for pine and potato EST sets indicate that EST

probes selected by quality score are relatively long and give better values for protein homology and

cross hybridization. Results of the GeneSieve protocol are stored in a database and linked with

sequence databases and known functional category schemes such as MIPS and GO. The database is

made available via a web interface. A biologist is able to select large number of EST probes based

on annotations or functional categories in a quick and easy way.
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Chapter 1

Introduction

1.1 Motivation

In recent years, DNA microarrays have emerged as a powerful technique for the measurement of the

expression levels of tens of thousands of genes simultaneously. In some circumstances, a microarray

hybridization can yield a transcriptome-wide measurement of RNA levels in a given cell or tissue

at a given point in time, or an average characterization of the response of a tissue to experimental

manipulation. Information gleaned from these studies can generate working hypotheses for molecular

pathways essential to a given biological process or potential drug targets for therapies.

The utility of the large volume of data generated, however, depends upon proper experimental

design at many levels. Selection of a set of cDNA probes to be printed on a microarray is an

important step that is often not given due consideration. Frequently, selection is based primarily on

convenience and availability rather than on importance to the biological process under investigation.

While the selection process is relatively simple for an organism with a small genome, such as yeast,

it is more complex for an organism with a larger genome, such as mouse, human, or pine. It is

costly to print probes for all the genes in a multicellular organism on a single microarray. Typically,

a biologist is interested in studying only some specific tissues, biological processes, or biochemical

pathways. A focused selection of clones that are relevant to the experimental objectives will be more

economical. The selection process should ensure adequate coverage of genes of interest, sufficient

sensitivity and specificity, unambiguous annotation, and reproducible and biologically meaningful
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results. Also, increasing availability of microarray data creates a need to identify the same gene

from different species, so that results can be compared across species.

This study is a part of the development of Expresso, a microarray experiment management

system [3, 25, 58] that supports computationally all the stages of a microarray experiment, includ-

ing microarray design; selecting cDNA probes; retrieving experimental results as scanned images;

extracting meaningful information from these images; analyzing the results of an experiment as a

whole; and providing the biologists with tools to explore and mine these results. One biological

objective motivating Expresso is the functional genomics of stress response in loblolly pine Pinus

taeda. To meet this objective, it is necessary to design a cDNA microarray rich in genes relevant to

stress response in loblolly pine.

The goal of this research is to study factors affecting the probe selection for cDNA microarrays,

devise a strategy that can be applied to select a subset of clones relevant to the experimental

objectives, and design evaluation criteria that can be applied to measure the effectiveness of any

selected clone set.

1.2 Summary of Results

Because of their availability, ESTs are widely used as probes for microarrays. To select EST probes

for a custom microarray, it is important to assign annotation to ESTs. To assign reliable annotations

to ESTs, we cluster them into contigs. Longer contig sequences are then used to search for similarity

with known proteins in model organism. An EST is assigned the same annotation as its contig. We

have developed three different methods to assign annotations to contigs: bidirectional hits (BH),

bidirectional best hits (BBH), and unidirectional best hits (UBH). We implemented these methods

on pine and potato EST datasets, using Arabidopsis as the model organism for comparison. Results

show that the BH method assigns numerous proteins (∼18 on average) to each contig, resulting in

ambiguous annotations. The BBH method assigns only one protein to each contig and only one

contig to each protein, but it covers only a small fraction of the contigs (18% for pine and 23% for

potato). The UBH method assigns only one protein to each contig. Thus, it assigns an unambiguous

annotation to each contig. It also covers a large fraction of the contigs (45% for pine and 80% for

potato). For this reason, we use the UBH method to assign annotations to the contigs in GeneSieve.

Once a contig is selected based on its annotation, the next step is to select one of its component
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ESTs to be printed on the microarray. Often, the longest EST or the EST closer to the 3′ end of

the contig is selected. This EST may not have the properties desirable in a microarray probe. We

have devised a scoring system to evaluate the quality of an EST probe set. We assign a quality

score (Q) to each EST based on its protein homology (PH), cross hybridization (CH), and relative

length (RL). We assign quality scores to all of the pine and potato ESTs. We select a single EST

from each contig by one of seven measures: maximum length, 3′ proximity, 5′ proximity, maximum

PH, minimum CH, maximum RL, and maximum Q. we show that the longest ESTs show higher

cross hybridization with other contigs and show less protein homology. Thus, the overall quality

scores for such ESTs are relatively low. On the other hand, ESTs selected by 3′ proximity show

less cross hybridization, but show poor homology to known proteins. This is because 3′ regions are

less conserved than the protein coding regions. Also, our analysis reveal that only a small fraction

of contigs align to the 3′ end of the Arabidopsis proteins (11% for pine and 25% for potato). This

suggests that most of the ESTs selected from the 3′ end of the contigs actually come from the

coding regions of the genes. ESTs selected by quality score give considerably better values of all

three quality parameters. They show higher protein homology, less cross hybridization, and greater

length. For this reason, we recommend that EST probes be selected based on their quality scores.

We have designed a web interface for quick and easy selection of EST probes for microarrays. We

have linked the results obtained from the GeneSieve protocol to sequence databases and well known

functional categorization schemes such as MIPS and GO. This allows one to select EST probes based

on their annotation or functional categories.

1.3 Organization

The rest of this thesis is structured as follows. Chapter 2 gives biological background on cDNA

microarrays. Chapter 3 defines the problem and scope of this research. Chapter 4 gives a brief

overview of related work. Probe selection criteria are discussed in detail in Chapter 5. The probe

selection strategy is presented in Chapter 6. Results obtained using our probe selection strategy are

presented in Chapter 7. Chapter 8 gives details of GeneSieve – a web based tool that helps quick

and easy selection of EST probes for cDNA microarrays. Chapter 9 concludes this research and

provides direction for future research.
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Chapter 2

cDNA Microarray Background

Section 2.1 introduces the biological concepts necessary to understand this study. Section 2.2 de-

scribes the construction of cDNA and EST libraries. Finally, Section 2.3 presents the principles of

microarray technology.

2.1 Biological Background

All living organisms consist of cells, which contain many kinds of molecules, including nucleic acids

and proteins. This section introduces nucleic acids, genes, and proteins. It also describes the process

by which information is transferred from genes to proteins. Most of the material presented in this

section can be found in greater detail in standard textbooks on biology such as Alberts, et al. [2],

Cooper [14], and Griffiths, et al. [23].

2.1.1 Nucleic Acids: DNA and RNA

Nucleic acids are universal constituents of all living matter and are essential for storage, trans-

mission, and transfer of genetic information. A nucleic acid is either a single- or double-stranded

polynucleotide chain. A nucleic acid is either a deoxyribonucleic acid (DNA) or a ribonucleic acid

(RNA).

DNA is a logically linear, spatially double-helical, structure composed of two intertwined chains

of building blocks called nucleotides (see Figure 2.1). Each nucleotide consists of a phosphate group,
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Figure 2.1: Structure of DNA

a deoxyribose sugar molecule, and one of the four different nitrogenous bases — adenine, guanine,

cytosine, or thymine. Each of the four nucleotides is abbreviated to the first letter of the base that it

contains: A, G, C, or T. The carbons in the deoxyribose sugar group are assigned numbers followed

by a prime (1′, 2′, 3′, 4′, and 5′) to distinguish them from the numbering of the atoms in the bases.

In DNA, nucleotides are connected to each other at the 3′ and 5′ positions; hence each chain is said

to have polarity, with one end having a 5′ phosphate group and the other having a 3′ OH group.

The polarities of two intertwined nucleotide chains are in opposite directions; hence the chains are

said to be anti-parallel. Two nucleotide chains are held together by weak hydrogen bonds between

complementary bases: A pairs with T, and G pairs with C.

Replication is a process by which a copy of a DNA molecule is made. During replication, two

strands of the double helix unwind like a zipper (see Figure 2.2). The two exposed nucleotide chains
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then act as templates for deposition of free nucleotides. Polymerization of free nucleotides into a new

strand is catalyzed by the enzyme DNA polymerase. This enzyme initially binds to a double helical

DNA at a specific nucleotide sequence called the origin of replication and then moves along the

DNA, polymerizing new chains. Because of complementarity, the two daughter DNA molecules are

identical to each other and to the original molecule. However, one strand of each daughter molecule

is original, while the other is newly polymerized.

RNA is a single-stranded polynucleotide chain similar to DNA. Like DNA, RNA is composed

of nucleotides, but these nucleotides contain the sugar ribose instead of deoxyribose. Furthermore,

instead of thymine, RNA utilizes uracil (U), a base that has hydrogen bonding properties identical

to those of thymine. Hence, the RNA bases are A, G, C, and U. There are three main types of

RNA: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). In this study,

we are interested in mRNA (Section 2.1.3).
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2.1.2 Genes and Proteins

Genes are fundamental units of heredity and carry information from one generation to the next.

A gene is a functional region of a long DNA molecule. One end of the gene contains a regulatory

region to which various proteins may bind, causing the gene to be transcribed at the right time

and in the right amount. The other end of the gene contains sequence encoding the termination of

transcription (see Section 2.1.3 for more on transcription). Each gene is responsible for coding of

at least one specific protein or a part of a protein. In the genes of many eukaryotes, protein-coding

sequences are interrupted by segments called introns. The split-up coding sequences between the

introns are called exons.

Proteins are the main macromolecules of an organism. The primary structure of a protein is a

linear chain of building blocks called amino acids linked together by peptide bonds. This primary

chain is coiled, folded and, in some cases, associated with other chains, to form a functional protein.

Proteins are important either as structural components, such as the proteins that constitute hair,

skin, and muscle, or as active agents in the cellular processes, for example, enzymes and active-

transport proteins.

2.1.3 Transcription and Translation

The most important concept in molecular biology is the way information stored in DNA is passed

on and expressed. It is sometimes referred to as the flow of genetic information or the central dogma

of molecular biology. The transfer of information from a gene to a protein is a two step process.

These steps are: transcription and translation.

The first step taken by the cell to make a protein is to copy the information encoded in a gene into

an mRNA molecule by a process called transcription. This RNA molecule represents a working copy

of the gene and is called a transcript. The polymerization of ribonucleotides to form RNA is catalyzed

by the enzyme RNA polymerase. This enzyme binds to a specific sequence, the transcriptional start

site, near the 5′ end of the gene. It separates two strands of DNA and then moves along the gene,

maintaining the separated bubble. As it proceeds, it uses only one of the separated strands as a

template, synthesizing a growing tail of polymerized ribonucleotides that eventually become the full

length primary transcript. The addition of ribonucleotides by RNA polymerase is always at the 3′

end of the growing chain. In eukaryotes, the introns are then cut out of the primary transcript. The
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remaining RNA sequence is called messenger RNA (mRNA). The mRNA molecules exit the nucleus

through nuclear pores and enter the cytoplasm.

Protein synthesis takes place on cytoplasmic organelles called ribosomes. The nucleotide sequence

of the mRNA is read from the 5′ end to the 3′ end, in groups of three. These groups are called

codons. A ribosome attaches to the 5′ end of an mRNA molecule and moves along the mRNA,

catalyzing the assembly of the string of amino acids that constitute the primary structure of the

protein known as a polypeptide. Each amino acid is brought to the ribosome by a specific tRNA

molecule that docks at a codon of the mRNA. Docking is by base pairing between a three-nucleotide

tRNA segment, called an anti-codon, and the codon. This process of protein synthesis is called

translation. Figure 2.3 shows the transfer of genetic information from genes to proteins.

2.2 cDNA and EST Libraries

Complementary DNA (cDNA) is synthetic DNA made from mRNA with the use of a special en-

zyme called reverse transcriptase. With the use of an mRNA as a template, reverse transcriptase

synthesizes a single-stranded DNA molecule. This process is called reverse transcription. This

single-stranded DNA molecule can then be used as a template for double-stranded DNA synthesis.

Because it is made from mRNA, cDNA is devoid of both upstream and downstream regulatory

sequences and introns. Therefore, cDNA from eukaryotes can be translated into functional proteins

in bacteria.

Clone refers to a section of DNA or cDNA that has been inserted into a vector molecule, such

as a plasmid or a phage chromosome, and then replicated to form many copies. A collection of such

cDNA clones is known as a cDNA library. To prepare a cDNA library, total mRNA is extracted from
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Figure 2.4: Relationship between RNA, cDNA, and ESTs

a particular tissue, and DNA copies (cDNA) of the mRNA molecules are produced by the enzyme

reverse transcriptase. A short oligonucleotide, complementary to the poly(A) tail at the 3′ end of

the mRNA, is first hybridized to the mRNA to act as a primer for the reverse transcriptase, which

then copies the mRNA into a cDNA chain, thereby forming a DNA/RNA hybrid helix. Treating

the DNA/RNA hybrid with alkali selectively degrades the RNA strand into individual nucleotides.

The remaining single-stranded cDNA is then copied into double-stranded cDNA by the enzyme

DNA polymerase. If a gene is transcribed abundantly in the cells from which a cDNA library was

made, it will be represented often in the cDNA library producing redundant clones. For this reason,

normalization procedures are used to reduce the frequent representation of highly expressed genes,

and thus enhance the probability of finding rarer mRNA transcripts [13, 32, 42, 44].

The most important advantage of cDNA clones is that they contain only coding sequences and

only those genes that have been transcribed into mRNA in the tissue from which the RNA came.

As the cells of different tissues produce distinct sets of mRNA molecules, a different cDNA library

will be obtained for each type of tissue. cDNA libraries are also constructed to reflect the genes

expressed by cells at different stages in their development.

To ensure that most of the information present in the cDNA library has been extracted requires

sequencing a sufficiently large number of clones. Single-pass unverified reads are normally obtained

from the 3′ or 5′ end of randomly selected cDNA clones. Sequences produced by this strategy are
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termed expressed sequence tags (ESTs). ESTs are short (typically 400–600 bases) and relatively

inaccurate [49, 57]. Typically, each EST sequence represents only a small part of a cDNA clone.

Figure 2.4 illustrates the relationship between RNA, cDNA and ESTs.

This approach, known as EST sequencing, has been enormously successful in the framework of

many genome projects. Single-pass sequencing is an important aspect of making the approach cost

effective. In most cases, no initial attempt is made to identify or characterize the cDNA clones [49].

A clone is annotated by comparing its EST sequence to the sequences of known genes. It is fully

expected that many clones will be redundant and that a smaller number will represent various sorts

of contaminants or cloning artifacts. There is little point in incurring the expense of high-quality

sequencing until later in the process, when clones are validated and a non-redundant set is selected.

Despite their fragmentary and imprecise nature, ESTs are an invaluable resource for the discovery

of new genes whose functions can be tentatively deduced from their sequence and experimentally

verified.

More details on construction of cDNA libraries can be found in textbooks biology such as

Cooper [14] and Griffiths, et al. [23]. Kohchi, Fujishige, and Ohyama [32] and Patanjali, Pari-

moo, and Weissman [44] discuss construction of normalized cDNA libraries. Adams, et al. [1] and

Jongeneel [30] provide information on EST sequencing and EST databases.

2.3 cDNA Microarrays

The cDNA microarray is a hybridization-based experimental technique that allows one to study

expression levels of tens of thousands of genes simultaneously. The principle behind the microarray

technique is that two complementary strands of nucleic acid can hybridize. This method provides

a high degree of accuracy of detection as a consequence of exquisite, mutual selectivity between

complementary strands of nucleic acids.

The process of a microarray experiment starts with a biological hypothesis and selection of a set of

genes of interest. DNA templates for these genes are then obtained and amplified by the polymerase

chain reaction (PCR). Following purification and quality control, clones are deposited on coated

glass slides using a computer controlled robot. Tens of thousands of clones can be deposited on

a single glass slide. These clones on the glass slide are known as probes. To determine the genes

that are differentially expressed when cells are exposed to experimental conditions, such as drought,
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stress, or toxic chemicals, total mRNA is extracted from both test and reference cells and reverse

transcribed to form cDNA molecules. cDNA molecules are then labeled with either Cye3 or Cye5

fluorescent dye. These fluorescently labeled cDNA clones are known as targets. Targets are pooled

and allowed to hybridize to the probes on the glass slide. Laser excitation of the incorporated targets

yields an emission with a characteristic spectra, which is measured using confocal scanners. The

result is two images, one for each dye, in which each pixel is a measured intensity value. The two

images are analyzed using image processing software. Information such as clone identifier, intensity

values and intensity ratios, is attached to each target. Ratios of Cye3 and Cye5 signal intensities

are analyzed for significant deviations from 1 (no change) which indicate either increased (> 1) or

decreased (< 1) levels of gene expression relative to the reference sample.

The reader can refer to [9, 16, 24, 29, 35, 48] for more information on cDNA microarrays and

their applications.
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Chapter 3

Problem Definition

An important step in microarray design is the selection of a set of cDNA clones to amplify and

print on the microarray. Selection is strongly influenced by the availability of the cDNA clones. An

alternative is to use prefabricated arrays, either commercially available in the market or available

from collaborators. Most commercially available off-the-shelf arrays contain a series of well charac-

terized genes expressed across many cell types. The primary advantages of commercial arrays are

their wide availability and general applicability. The efficiency, sensitivity, and reproducibility of

the commercially available arrays are good and improving.

There are three main disadvantages to using prefabricated arrays. First, a group interested

in studying some specific tissue or process, may find that a significant number of the genes being

assayed are not relevant to the experiment. Time, effort, and expense is consumed in analyzing these

irrelevant genes. Second, until whole genome arrays become available, it is quite likely that the given

array used in the experiment will be lacking genes that may be important for the tissue or process

being studied. This results in an incomplete picture of the process being studied. Third, the number

of species for which prefabricated arrays are available is small, and their cost is often prohibitive.

Many companies offer custom services for producing arrays, but the process is still expensive and

cumbersome and does not lend itself well to the commonly changing needs of the researcher.

For these reasons, it is useful to design custom microarrays containing only those genes relevant

to the tissue or biological process being studied. For example, a researcher interested in liver will

be better served by an array representing only those genes expressed in liver cells, and a researcher
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interested in metabolic pathways will find more value in an array rich in the genes involved in

metabolic pathways. In the Expresso project [3, 25, 58], plant biologists are interested in studying

genes that are responsible for resistance to stress in loblolly pine trees. The goal is to identify genes

whose expressions are influenced by the application of stress. These genes serve as candidates for

further experimentation and to direct the construction of more specific hypothesis.

A microarray experiment starts with some biological hypothesis. A list of genes relevant to this

hypothesis can be selected by reviewing literature and results from previous biological experiments

on the same or other related species. Often a biologist is interested in studying all the genes belonging

to a certain functional category or biochemical pathway. Then the need is to identify a set of cDNA

clones or ESTs representing those genes in the species being studied.

The ESTs representing a gene of interest can be identified by a sequence similarity search. There

can be a large number of ESTs showing similarity to the gene of interest. ESTs from other closely

related genes also show high sequence similarity. Then the problem is to select an EST which best

represents the gene of interest. The factors that affect the performance of a microarrays are as

follows:

• Specificity: Kane, et al. [31] define specificity as the sequence similarity between hybridizing

probe and target sequences. It can also be viewed as the ability of a probe to distinguish the

target from other similar sequences.

• Cross Hybridization: Xu, et al. [71] define cross hybridization as the binding of the mRNA of

one gene to the probe of another gene. Cross hybridization results from the regions of high

sequence similarity found among repetitive elements or between the members of a multi-gene

family. Cross hybridization contributes to the overall signal intensity and leads to misinterpre-

tation of the expression data. To increase reliability of microarray results, cross hybridization

needs to be minimized.

• Coverage: Coverage is the fraction of all genes relevant to the experiment included on the

microarray. High coverage is desirable so that a complete picture of the process being studies

is obtained.

• Redundancy: According to Tomiuk and Hafmann [64], redundancy is the selection of more

than one clone to represent the same gene. Redundancy reduces the number of genes that can

be represented on a microarray.
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The results obtained from microarray experiments are variable. Some of the factors contributing

to this variability include: low sequence fidelity, inconsistency in spotting and hybridization, low

specificity of the EST probes, cross hybridization, inaccurate signal intensities obtained from image

processing, and discrepancies in fold-change calculations by different statistical methods. Because

of these factors, it is important to independently confirm microarray results with non-array based

methods such as northern blots, in situ hybridization, and RT-PCR. Making biological inferences

from microarray data requires correct and unambiguous annotation of the EST probes. Typically,

an EST represent only a small part of a gene. For this reason, it is often difficult to assign reliable

annotation to ESTs based on homology to the known proteins. Annotation helps in organizing ESTs

in functional categories and comparing results with literature databases.

Increased use of microarrays makes it possible to compare microarray results across different

species. In many situations, results obtained in one species can be verified or studied in greater

detail in another species. For example, genes identified by a microarray study on human cancer can

be used to form a hypothesis of the disease model. This model can be verified by studying those

genes in mouse or rat, as mouse and rat can be subjected to physiological or genetic manipulations.

In some situations, genes identified by experiments on mouse and rat can be investigated in humans.

Such a study requires identification of equivalent probes representing the same genes in different

species.

A selection process can be devised to select a subset of clones from a much larger initial set and

from a variety of sources. The selection process should strive for high coverage of relevant genes,

sufficient sensitivity and specificity of the array, reproducibility of the results to ensure statistical

significance, and correct annotation to provide unambiguous link to the corresponding entries in

gene and literature database.

The goal of this research is to study factors affecting the probe selection process, to design a

probe selection strategy and to implement the strategy in an efficient computational framework.

The strategy includes a set of evaluation criteria that can be used to measure the quality of any

selected probe set. Considering the diverse nature of animal and plant species, both biologically

and the amount of information available, the scope of this research is restricted to the plant species

Arabidopsis thaliana, Pinus taeda (pine), and Solanum tuberosum (potato). Arabidopsis thaliana is

chosen as the model organism while Pinus taeda and Solanum tuberosum are selected for cross-species

comparison.
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Chapter 4

Related Work

This chapter discusses prior work on clone selection, custom microarray design, cross hybridization

between closely related genes, and finding equivalent clones in different species.

4.1 Biological Considerations

Tomiuk and Hofmann [64] discuss various probe selection criteria in detail. Physical properties of

a probe, such as its length, can affect its hybridization properties. Quality of an array depends

on the reliability of the cDNA or EST library used. Whenever possible, probes should be selected

from normalized cDNA libraries to avoid frequent representation of highly expressed genes. Another

method to control redundancy is clustering of EST data. In clustering, ESTs from the same gene are

assigned to the same cluster based on their sequence similarity. Gene region (3′ untranslated region,

5′ untranslated region, or coding region) from which a probe is selected can greatly affect specificity

and cross hybridization. Coding regions are more conserved and show high degree of similarity with

other closely related genes. Hence, probes selected from coding region are the most susceptible

to cross-hybridization events. The choice of selection strategy depends on the application and the

problem to be solved. In general, high-throughput arrays containing all the genes in an organism do

not require an intensive scrutiny of the spotted cDNA probes. Targeted arrays, on the other hand,

do not aim at identification of new genes but allow monitoring of complex expression patterns.

Targeted arrays require careful annotation and quality control of cDNA probes. Often, a probe

selection strategy is a compromise between experimental objectives and practicability.
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4.2 Custom Arrays

Many research groups build custom microarrays to accommodate specific requirements of their

focused research. Loftus, et al. [36] discuss selection of a human neural crest-melanocyte (NC-M)

cDNA set for microarray analysis. Using 21 NC-M expressed genes and NCBI dbEST, they identify

one library (library 198) rich in NC-M ESTs. The dbEST is a division of GenBank that contains

sequence data and other information on single pass cDNA sequences, or ESTs, from a number of

organisms. After clustering 22,889 ESTs in library 198, they select 852 ESTs that have a library

distribution profile similar to that of the 21 neural crest-expressed genes.

Barrett, et al. [8] design a similar neural cDNA microarray containing 1,152 human cDNAs.

These cDNAs represent all the major cellular types of the brain including neurons, astrocytes,

microglia, and oligodendrocytes. Rockett, et al. [53] develop a 950-gene cDNA array for examining

gene expression patterns in mouse testis. They assemble two lists of genes, one of 950 mouse genes

and the other of 960 human genes, expressed in either mouse testis or human testis or both. All

of these genes are available as sequence-verified clones from public sources. 764 of these genes

are homologs in human and mice, making it possible to compare gene expression between mouse

models and human clinical testicular samples. Carlisle, et al. [11] design a microarray comprising

5,184 cDNA clones for prostate gene expression studies in human. A method similar to the NCBI

UniGene [49] is used to cluster sequences derived from prostate cDNA libraries sequenced within

the context of the Cancer Genome Anatomy Project. A single cDNA is selected to represent each

cluster and placed on the array. Takemasa, et al. [61] construct “Colonochip”, a cDNA microarray

specialized for human colorectal carcinoma. It contains 4,608 non-redundant cDNA clones from over

30,000 cDNA clones derived from three types of human cDNA libraries, as well as clones from 170

genes suspected to be involved in colorectal carcinogenesis.

Pennie [47] discusses the construction of “ToxBlot II”, a custom microarray containing cDNAs

representing 12,564 human genes chosen on the basis of their potential relevance to a broad range

of toxicities. ToxBlot II allows the simultaneous expression profiling of genes representing cellular

pathways, facilitating a detailed investigation of potential mechanisms of toxicity. Such microarrays

can contribute significantly to our understanding of basic toxicology mechanisms, and may in the

future contribute to the faster development of drugs and agrochemicals products. Lorenz, et al. [37]

construct “ImmunoChip”, a microarray for mouse immunology research. They select immunologi-

cally relevant clusters based on the expression of ESTs in the immunological organs and cells. They
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categorize these clusters into one of the three modules: gene module (GM), homologous gene module

(HM), or EST module (EM). Based on the presence of a cluster in a specific module, they rank each

constituent EST based on its alignment and BLAST score with the reference gene (GM), length

(HM), or its presence in the immunological libraries (EM). For each cluster, they choose the clone

with the highest rank as the best representative for that cluster.

4.3 EST Annotation

NCBI UniGene [49, 68] is a system for automatically partitioning a set of GenBank sequences into a

non-redundant set of gene-oriented clusters. UniGene takes ESTs of an organism from GenBank and

creates clusters of sequences based on their similarity. This is done by converting similarity scores

between sequences to boolean links between them. Two sequences are considered linked if their

sequence similarity exceeds a threshold. To reduce the frequency of multiple clusters being identified

for a single gene, any cluster that does not contain at least one sequence with a polyadenylation

signal or two labeled 3′ ESTs is discarded. In eukaryotes, the end of the transcription process is

marked by cleavage of the primary transcript at the polyadenylation signal followed by the addition

of a poly-A tail. Thus, each UniGene cluster is likely to contain sequences that represent a unique

gene in that organism. Each cluster is linked to related information, such as a list of accession

numbers of ESTs and known mRNAs or gene transcripts belonging to the cluster, tissue types in

which the gene is expressed, and location of the gene on a chromosome map. Each sequence in

the UniGene is compared to the database of known proteins in the model organisms. A protein

is assigned to a cluster if their sequence similarity exceeds a threshold. Figure4.1 shows a sample

output for one of the UniGene clusters for Arabidopsis:

The UniGene collection has been used as a source of unique sequences for the fabrication of

microarrays for large-scale gene expression studies [17]. While the UniGene collection is very useful,

it has four disadvantages. First, UniGene is likely to put all splice variants of a gene in the same

cluster [49]. Hence, it does not help in finding probes to distinguish among different splice variants of

the same gene. Second, UniGene does not produce contigs or consensus sequences for EST clusters.

A contig is defined as a continuous sequence of DNA that has been assembled from overlapping

DNA fragments. Also, UniGene does not give an alignment of the constituent ESTs within a

cluster. Third, out of many ESTs constituting a cluster, UniGene does not indicate which one is
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UniGene Cluster At.47584 Arabidopsis thaliana

L-ascorbate peroxidase

LINKS: HomoloGene

SELECTED MODEL ORGANISM PROTEIN SIMILARITIES

organism, protein and percent identity and length of aligned region

A.thaliana: pir:S20866 - S20866 L-ascorbate peroxidase (EC 1.11.1.11) precursor -

Arabidopsis thaliana (fragment) 100.00 % / 263 aa (see ProtEST )

E. coli: ref:NP_052682.1 - Catalase-peroxidase [Escherichia coli] 24.61 % / 210 aa

(see ProtEST )

S. cerevisiae: pdb:1JDR - A Chain A, Crystal Structure Of A Proximal Domain Potassium

Binding Variant Of Cytochrome C Peroxida 39.92 % / 237 aa (see ProtEST )

EXPRESSION INFORMATION

cDNA sources: roots ; Leaf ; aboveground organs ; seedlings leaf and root ; whole plant ;

green siliques ; seed ; inflorescence ; root ; seedling hypocotyl ; flower buds

SEQUENCE INFORMATION

mRNA SEQUENCES (7)

X59600.1 A.thaliana mRNA for ascorbate peroxidase PA

AY039879.1 Arabidopsis thaliana At1g07890/F24B9_2 mRNA, complete cds P

AY056395.1 Arabidopsis thaliana At1g07890/F24B9_2 mRNA, complete cds P

NM_100663.2 Arabidopsis thaliana ascorbate peroxidase, putative (APX) (At1g07890) mRNA,

complete cds P

AY094002.1 Arabidopsis thaliana At1g07890/F24B9_2 mRNA, complete cds P

AY086425.1 Arabidopsis thaliana clone 25057 mRNA, complete sequence P

NM_179276.1 Arabidopsis thaliana ascorbate peroxidase, putative (APX) (At1g07890) mRNA,

complete cds P

EST SEQUENCES (10 of 145)[Show all ESTs]

BE662951.1 cDNA clone AtAOzE28 Leaf 1.0 kb P

CF652474.1 cDNA clone MPIZp2001A011Q root 5’ read 0.9 kb

CF651760.1 cDNA clone MPIZp2001A011Q root 5’ read 0.9 kb

CB257555.1 cDNA clone MPIZp771F153Q whole plant 5’ read 0.7 kb

CB264317.1 cDNA clone MPIZp2000O173Q inflorescence 5’ read 0.7 kb

CB257556.1 cDNA clone MPIZp771F163Q whole plant 5’ read 0.6 kb

CB259445.1 cDNA clone MPIZp770P119Q whole plant 5’ read 0.6 kb

BE662835.1 cDNA clone AtCOzJE1 Leaf 0.6 kb P

BE662830.1 cDNA clone AtCOzJB8 Leaf 0.6 kb P

CB261482.1 cDNA clone MPIZp769A163Q whole plant 5’ read 0.6 kb P

Key to Symbols

P Has similarity to known Proteins (after translation)

A Contains a poly-Adenylation signal

M Clone is putatively CDS-complete by MGC criteria

Figure 4.1: Example of an NCBI UniGene cluster
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the best candidate as a microarray probe. It does identify the longest EST in each cluster, which

certainly could be selected as a microarray probe. Fourth, proteins are assigned to a cluster based

on sequence similarity between sequences constituting a cluster and known proteins in the model

organisms. Typically, any EST sequence in a cluster represents only a small part of a gene. This

might result in an inaccurate assignment of a protein to a cluster. Use of a consensus sequence,

which is usually larger than the constituent EST sequences, for protein similarity search can assign

more reliable annotations to clusters.

The TIGR Gene Indices [50] are a collection of species- specific databases that uses a highly

refined protocol to analyze EST sequences and identify genes represented by them. For each species,

it first obtains EST sequences from dbEST. It trims these EST sequences to remove vector, polyA/T

tails, and contaminating bacterial sequences. It also obtains gene sequences (NP sequences) from

GenBank and expressed transcripts (ET) sequences from the TIGR EGAD database. Then, it

compares EST and gene sequences using FLAST, a rapid sequence comparison program, in which

query sequences are first concatenated and then searched against a nucleotide database. Sequences

sharing a minimum of 95% identity over a 40 nt or longer region with less than 20 bases of mismatched

sequence at either end are grouped into clusters. For each cluster, component EST, NP, and ET

sequences are obtained and these sequences are then assembled using CAP3 [28] to produce TCs.

Each cluster is assembled separately. A TC containing a known gene is assigned the function of that

gene; TCs without assigned functions are searched against a non-redundant protein database. High

scoring hits are assigned a putative function.

The Sputnik database at MIPS [55] is a similar system for automatically clustering and annotat-

ing large ESTs datasets. It assembles ESTs into contigs using the HarvESTer software and then uses

consensus sequences for assigning annotations based on homology to the known proteins. Sputnik

also links ESTs to the MIPS functional categories. Software tools, such as ESTAnnotator [27] and

PipeOnline [7], are available for high throughput EST annotation. GOblet [26] is a software package

for automated Gene Ontology annotation for anonymous cDNA or protein sequences.

4.4 Cross-Species Comparison

Wang, et al. [65] discuss ProbeMatchDB — a web based database to facilitate search for ESTs

that can be used to represent the same gene across different microarray platforms and species. It
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integrates the UniGene and the HomoloGene databases of NCBI [68] as well as probe information

provided by Affymetrix, Research Genetics, and Operon. It can be used to find equivalent EST clones

in the Research Genetics sequence verified clone set based on results from Affymetrix GeneChips.

The accession numbers of the oligo probes in the GeneChips are available, which can be used to

identify UniGene clusters represented by these probes. A list of ESTs constituting any cluster is

obtained and then these ESTs are searched for in the Research Genetics database. ProbeMatchDB

can also be used to identify probes representing homologs across human, mouse, and rat on differ-

ent microarray platforms. This is done by using HomoloGene database of NCBI, which identifies

homologs in several organisms by sequence comparison between all UniGene clusters for each pair

of organisms. ProbeMatchDB essentially uses the UniGene database for all its searches, and hence,

inherits the disadvantages of the UniGene database, as discussed in Section 4.3.

4.5 Cross Hybridization

If there is high sequence similarity between two closely related genes, then the mRNA of one gene may

sometimes hybridize to the probe of another gene. This phenomenon is known as cross hybridization.

Xu, et al. [71] analyze gene expression in the cytochrome P540 gene super-family of Arabidopsis

thaliana. P450 genes are classified according to the degree of amino acid sequence identity, with

P450s of the same family defined as having greater than 40% identity, and P450s of the same

subfamily having greater than 55% identity. They design experiments to evaluate the specificity

of P540 microarrays. Results show that sequences with less than 80% identity with probe display

less than 20% cross hybridization. Sequences with greater than 80% identity with probes show

higher cross hybridization. Averts, et al. [18] describe hybridization experiments with a model

array representing four distinct gene families: chemokinases, cytochrome P450s, G proteins, and

proteases. The cDNA clones selected for this array exhibit pairwise sequence identities ranging from

55% to 100%. Results reveal that sequences containing less than 80% sequence identity to the probe

sequences show cross hybridization ranging from 0.6% to 12%. The mRNA sequences containing

greater than 80% sequence identity to the probes show higher cross hybridization. Wren, et al. [69]

discuss observations of cross hybridization on microarrays made by others and argue that overall

similarity across large regions is not as much of a predictor of cross hybridization effects as the

existence of small, highly similar regions, such as repetitive elements.
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4.6 PCR Primer Design

Due to the problem of potential cross hybridization, using full-length genes for microarray construc-

tion is not appropriate in some situations. To avoid cross hybridization, researchers sometimes do

not use full-length genes but rather use gene-specific fragments as probes on a microarray. For this

purpose, it is necessary to identify a fragment of a gene that does not have high sequence similarity

to any other sequence in a given organism and then to design forward and reverse primers based on

the selected gene-specific fragment to allow amplification by PCR.

Several software products are available to design PCR primers for amplifying microarray probes.

Nielsen and Knudsen [43] describe PROBEWIZ, an automated approach to design PCR primers for

amplifying probes for cDNA microarrays. PROBEWIZ designs PCR primers for amplifying probe

sequences that have minimal sequence homology with the other expressed sequences from a given

organism, and at the same time places the probe as near to the 3′ end of the sequence as possible.

The primer selection is based on user-defined penalties for homology, primer quality, and proximity

to the 3′ end. Xu, et al. [70] develop PRIMEGENS, a bioinformatics tool for the automatic design

of PCR primers using DNA fragments that are specific to individual open reading frames (ORFs).

An ORF is a section of a sequenced piece of DNA that begins with a start codon and ends with

a stop codon. It is presumed to be the protein coding sequence of a gene. PRIMEGENS first

carries out a BLAST search for each target ORF against all other ORFs of the genome to identify

possible homologous sequences. Then it performs optimal sequence alignment between the target

ORF and each of its homologous ORFs using dynamic programming. PRIMEGENS uses these

sequence alignments to select gene specific fragments, and then feeds these fragments to the primer3

program to design primer pairs for PCR amplification.

Talla, et al. [62] design a Saccharomyces serevisiae microarray with an aim of reducing cross

hybridization between related sequences. They design probes of similar lengths, preferably located

near the 3′ end of the open reading frames. They compare the sequence of each gene against

the entire yeast genome to identify non cross hybridizing regions. They submit these non cross-

hybridizing regions to the primer3 program. They compare each candidate primer sequence to the

16 yeast chromosome sequences using BLASTN program. Primers are considered unique if no match

is found. They select the best primer pair for each ORF based on the following criteria: an optimal

probe length of 500 base pairs, at least one of the two primers is unique, and the position of the

reverse primer is as close as possible to the 3′ end of the ORF. They are able to design primers for
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more than 97% of yeast genes using this approach.

4.7 Oligonucleotide Probe Design

High density synthetic oligonucleotide microarrays are widely used in biomedical research. These

microarrays are made from either short (20-25 mers) or long (50-70 mers) oligonucleotide probes.

Kane, et al. [31] demonstrate that oligonucleotide microarrays compare well with cDNA microarrays

and that a single oligonucleotide probe per gene is sufficient to monitor gene expression. The

oligonucleotide approach allows researchers to design a probe specific to each gene to avoid regions

that are repetitive or very similar to other known genes.

Several softwares are available for the selection of oligonucleotide probes for microarrays. Rouil-

lard, Herbert, and Zuker [54] develop OligoArray, a program to design gene specific and secondary

structure free oligonucleotide probes for genome-scale oligonucleotide microarrays. For each sequence

in a given organism, OligoArray reads from the 3′ end using a moving window of length equal to

the length of the oligonucleotide. It checks compares each oligo sequence to all other sequences in

a given organism using BLAST. Sequences that pass the specificity criteria are examined for the

presence of strong secondary structure that could interfere with hybridization. Oligo sequences that

are free of secondary structures are then selected as microarray probes. Li and Stormo [34] design

ProbeSelect, an algorithm for the selection of short or long oligo probes for each gene in the entire

genome based on sequence information and hybridization free energy. Wang and Seed [66] present

a strategy for selecting oligonucleotide probes for protein coding sequences. They compare each

candidate probe with all other sequences in a given organism and reject it if it contains 15 bases

of perfect identity with any other sequence. Next, they remove sequences with low complexity and

predicted poor probe accessibility. Oligos free of secondary structure are used as microarray probes.
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Chapter 5

Selection Criteria

When monitoring expression levels of a large number of genes, sufficient sensitivity and specificity

of an array, as well as broad coverage of relevant genes, are of crucial importance. In addition, the

quality of an array should guarantee reproducible results to ensure their statistical significance. This

chapter describes some of the criteria to be considered while selecting probes for cDNA microarrays.

5.1 General Considerations

Physical properties of probes, such as probe length, can influence hybridization kinetics and sen-

sitivity of a microarray [59, 60]. Longer cDNA probes have more reliable hybridization properties

but increased viscosity can complicate the array manufacturing process. In addition, increasing the

probe length raises the danger of non-specific cross-hybridization events. If probes of substantially

different lengths are used, they may exhibit different hybridization kinetics, making it difficult to

compare results across different genes on the same array.

The choice of a probe selection strategy depends on the objective of a biological experiment.

Microarrays can be designed to be either broad coverage ‘discovery’ style arrays, which include

an unbiased selection of gene sequences (which may include probes for genes of uncharacterized

functions), or ‘hypothesis driven’ where the arrays are designed to focus on genes relevant to a

particular biological problem. In situations, where little prior information is available, or where the

prime motivation is an unbiased overview of global changes in gene expression patterns, high density

arrays are appropriate choices. Typically, probes are selected from a pre-existing collection of cDNA
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Figure 5.1: Probe selection approaches

clones. A disadvantage of this approach is the lack of reliable clone annotations, shifting work to

the post-hybridization phase. On the other hand, small but specialized arrays are designed with a

focus on defined biological problems such as genes relevant to a particular metabolic pathway or a

particular tissue type. The limited number of probes on these arrays allow a more thorough selection

and annotation protocol. Figure 5.1 illustrates a range of probe selection approaches between high-

density and high-accuracy arrays. These probe selection approaches are discussed in the following

sections.

5.2 Sequence Libraries

The easiest and the least expensive option is to use clones from a cDNA library without prior

sequencing. Only those clones that show differential expression after hybridization are subjected

to sequencing and further analysis. This strategy is useful for high density arrays, since only a

small fraction of presumably interesting genes must be annotated. Typical applications include

high-throughput arrays for potential new drug targets or analysis of biological systems without any

available sequence information. Often, highly expressed genes are represented more frequently in

the cDNA libraries. Normalization procedures can be used to reduce the frequent representation of

such highly expressed genes [44, 13].

A more reliable choice is to use sequenced cDNA clones as microarray probes. NCBI’s dbEST [10]

provides sequence data and other information on single pass cDNA sequences, or ESTs, from a
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number of organisms. The IMAGE consortium [33] and several other distributors provide access to

physical clones. ESTs are a valuable and widely used source for microarray probes. One common

problem when dealing with ESTs is their sometimes poor reliability. Three different types of errors

are often observed: a sequence in a database is different from the actual clone; a sequence is correct,

but corresponding gene annotation is wrong; and the predicted 3′ or 5′ orientation is wrong [64].

Whenever prior information on relevant genes is available, a pre-selection can be made by first

assembling a list of genes of interest, and then selecting EST clones based on this list. The ESTs

obtained can be used directly for the production of a microarray. A more reliable, but also more

costly and time consuming strategy is to amplify the suitable region of an EST by polymerase chain

reaction (PCR). This can help in controlling important properties of a probe such as its length, its

3′ or 5′ orientation, and its position within the gene.

5.3 Clustering

When using cDNA or EST clones as microarray probes, an obvious problem is redundancy. Highly

expressed genes are often represented by multiple clones. As a result, several selected probes might

correspond to a single gene, and hence, do not enhance the coverage of the array. The standard

method for controlling redundancy in microarray probe selection is clustering of EST data. In the

clustering process, two cDNA clones belonging to the single gene are recognized by their overlapping

sequences and assigned to the same cluster. For most of the large scale EST sequencing projects,

there are also publicly available EST cluster databases. The most notable in this respect is the

NCBI UniGene database (Section 4.3), which provides non-redundant gene-oriented clusters for the

GenBank sequences. UniGene clusters are the basis for several sets of cDNA array probes [17].

TIGR [50, 51] and SANBI [39] also provides similar databases of clustered EST sequences. Several

software packages are available for sequence clustering, such as phrap [22] and TIGR Assembler [19].

These tools allow clustering of any EST sequence collection that is not addressed by the databases

mentioned above.

Sequence clustering is not a perfect process, and there are two reasons for failure. Tomiuk and

Hafmann [64] discuss these modes of failures. The first reason for failure is under-clustering, when

all the ESTs corresponding to the same gene are not placed in a single cluster (see Figure 5.2). This

results in more clusters than the number of actual genes. Often, two clusters per gene are observed,
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one being formed by 5′ ESTs, and the other consisting of 3′ ESTs. For large genes, the number of

clusters per gene can be greater than two. Under-clustering is frequent and hard to avoid. As a

consequence, multiple probes per gene may be selected, resulting in unwanted redundancy.

The second reason for failure is over-clustering. Here, ESTs that do not correspond to the same

gene are found erroneously combined within a single cluster. The major cause of this type of error

is the presence of chimeric clones, containing sequence coming from more than one genes. Figure

5.3 illustrates over-clustering. There are multiple dangers for probe selection in an unnoticed over-

clustering situation. First, only a single probe is selected for two or more genes. Second, depending

on the fragment selection, a probe can represent either a single gene or a combination of more than

one genes. The orientation of the cDNA may change at the chimeric boundary. Third, annotation

of such a cluster will be erratic unless a very good annotation protocol is used. Despite the problems

mentioned above, sequence clustering is the most useful method to avoid redundancy in microarray

probe selection.

5.4 Genes and Gene Regions

One important issue in probe selection is: how many genes, and which ones, to represent on a mi-

croarray? A straight forward approach is to select DNA fragments corresponding to all the genes

of a given species. This approach has been used for organisms with smaller genomes such as Sac-

charomyces cerevisiae. The genes of higher eukaryotes are more complex and subject to alternative

splicing, resulting in multiple proteins per gene. Identification of all splice variants on the one hand,

and selection of corresponding DNA fragments on the other hand, complicates generation of an

‘all inclusive’ microarray suitable for analysis of a complete transcriptome. Often, investigation of

defined biological questions or subject areas is the objective of a microarray experiment. Exam-

ples include toxicology and tissue-specific arrays. Besides general selection criteria, experimental

objectives either dictate the choice of relevant genes or, at least, offer guidelines for gene selection.

After selecting cDNAs corresponding to genes of interest, one has to determine whether the

complete cDNA clone or a pre-selected part of it should be deposited on the array. The use of

complete cDNA sequence bears the danger of cross hybridization to other closely related genes. A

probe can be selected from the 3′ UTR, 5′ UTR, or the coding region of a gene (see Figure 5.4).

The choice of a probe from the 3′-untranslated region of a gene reduces the probability of cross-
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hybridization because sequence divergence is typically greater in this region [66]. Additionally, this

region is rarely affected by alternative splicing events. However, potential existence of alternative

polyadenylation signals and elevated propensity for repetitive elements require a careful examination

of probes coming from this region. The 3′ regions of genes are not conserved. Hence, a probe

selected from the 3′ region of a gene may not show homology to a known gene, especially when

the 3′ region is very long. For this reason, it is often difficult to assign reliable annotation to

these probes. Figure 5.5 illustrates the effect of alternative polyadenylation. Microarray probes

localized in the 5′-untranslated regions are closely linked to promoters. However, these regions

are often missing in cDNA clones generated by reverse transcription. Moreover, a 5′-untranslated

region bears the danger of alternative promoter usage. Figure 5.6 illustrates the effect of alternative

promoter usage. Selecting a probe from the coding region of a gene, i.e. the region that is translated

into the corresponding protein sequence, enables the most reliable annotation. However, it is the

coding region that shows the highest degree of similarity with related sequences and therefore is the

most susceptible to cross-hybridization events. Also, coding regions of eukaryotic genes suffer from

alternative splicing events (see Figure 5.7). For these reasons, ESTs from coding region have to be

thoroughly investigated before they are used as microarray probes. If the 3′-untranslated region of

a gene is extremely long, it is possible that the coding region may not be present in the cDNAs

generated by reverse transcription process.

5.5 An EST Selection Strategy

Considering the above mentioned criteria, a recommended microarray probe selection strategy in-

cludes the following steps (see Figure 5.8): The first step is to select a list of genes relevant to the

biological experiment. Then, if available, obtain the complete genomic DNA sequence for each of

these genes of interest. Mask repetitive elements and the region beyond the first polyadenylation

signal. Remove introns and untranslated regions from the remaining gene sequence. Use the remain-

der of the gene sequence to predict its protein sequence. Compare this predicted protein sequence

with all other sequences in a given organism to identify homologous sequences. Use this information

to mask regions of a gene that could cross hybridize with other closely related genes. Finally, select

EST probes using gene segments with no apparent risk of cross hybridization.

Choice of an actual probe selection strategy depends on the application and the problem to be
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solved. In general, high-throughput procedures do not require an intensive scrutiny of the spotted

DNA fragments before the hybridization. On the down side, substantial analysis work has to be

performed for each spot showing an interesting expression behavior. Targeted arrays, on the other

hand, do not aim at identification of new genes, but allow monitoring of complex expression pat-

terns. This objective requires careful annotation and quality control of DNA fragments to allow a

reliable interpretation of results. Often, the choice of selection strategy is a compromise between

experimental objectives and practicability. It is the decision of the user as to which strategy is the

most suitable for the application.
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Chapter 6

GeneSieve – Selection Strategy

This chapter describes the GeneSieve probe selection strategy. The GeneSieve selection process

starts with gathering sequence information for a model organism and for an organism of interest. A

model organism is one whose genome has been fully sequenced, that has been studied in great detail

in the past years, and that is close to the organism being studied, in terms of evolution history. For

example, the higher plant Arabidopsis thaliana can serve as a model organism for plant species such

as pine and potato. For such a model organism, a complete list of genes, gene sequences, their protein

products, and associated functional categories are available through various public databases, such

as TIGR [50, 51], MIPS [38, 56], and TAIR [52, 20]. The organism of interest is the one being

studied in the experiment. Often, only EST sequences, without proper annotation and functional

categorization, are available for this organism. NCBI and TIGR maintain EST sequence databases

for many such organisms. Section 6.1 provides an overview of the selection strategy. The following

sections explain various steps involved in the selection process in detail.

6.1 Overview

The GeneSieve probe selection strategy consists of the following steps:

1. Protein sequences and functional categories: Obtain a complete set of proteins, their sequences,

functional annotations, and the functional categories associated with them for a suitable model

organism such as Arabidopsis thaliana.
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2. EST sequences: Obtain a complete set of EST sequences and corresponding base quality scores

for the organism of interest such as pine or potato.

3. Clustering: Assemble ESTs into contigs and singletons using a clustering program such as

phrap. For each resulting contig, obtain its consensus sequence, list of constituent ESTs, and

its alignments with these ESTs.

4. Sequence similarity search: Set up a stand-alone BLAST server for sequence similarity search.

Configure local BLAST databases to incorporate protein sequences, EST sequences, and contig

sequences.

5. Contig selection: Obtain a list of proteins that are relevant to the biological experiment. Select

contigs showing homology with these proteins.

6. EST selection: Choose a single EST from each of the selected contigs based on length, proximity

to the 3′ or 5′ end, protein homology, or the possibility of cross hybridization.

Figure 6.1 illustrates the GeneSieve probe selection process as a system. The remaining sections

describe the steps involved in the selection process in detail.

6.2 Protein Sequences and Functional Categories

The first step in the GeneSieve selection process is to obtain a complete set of protein sequences for

the model organism, their annotations, and their functional categories. We use protein sequences

of the model organism for cross-species homology search because protein sequences are free of in-

trons, untranslated regions, and nonsense repeats. Also, protein sequences are more conserved across

different species than gene sequences. For model organisms, such as Arabidopsis thaliana or Saccha-

romyces cerevisiae, a complete set of proteins, their sequences, and associated functional annotations

can be downloaded in FASTA format from the MIPS or TIGR FTP site [40, 63].

Functional categories help to speed up selection of a large number of genes that are similar in

function or involved in the same biological process or biochemical pathway. Functional categorization

also helps in better interpretation of microarray results. For model organisms, such as Arabidopsis

thaliana or Saccharomyces cerevisiae, many of the genes have been assigned to functional categories.

MIPS [38, 56, 40] and the Gene Ontology (GO) Consortium [6, 21] maintain functional category

databases for Arabidopsis thaliana.

32



BLAST
Contig

Sequences

Phrap

EST
Sequences

Protein
Sequences

Phrap
Parser

EST−Contig
Map

Blast
Parser

Functional
Categories

PHP
Web Interface

Contig
Selection

EST
Selection

Quality
Scores

Contig
Annotations

3’, 5’, and
Longest ESTs

Filter
EST

GeneSieve
Relational
Database

Experimental (Target) Organism

BLAST
Results

Model (Reference) Organism

Figure 6.1: GeneSieve system architecture

33



MIPS

MIPS maintains a database for manually assigned functional categories for Arabidopsis thaliana.

Arabidopsis proteins are assigned to functional categories based on experimental evidence or se-

quence similarity to other manually classified proteins. Proteins and associated functional cate-

gories can be downloaded from the MIPS web site [40]. Below is an example of the MIPS functional

hierarchy:

01 METABOLISM

01.01 amino-acid metabolism

01.01.01 amino-acid biosynthesis

01.01.01.01 assimilation of ammonia, biosynthesis of the glutamate family

At5g38710 proline oxidase, putative

At5g04140 glutamate synthase (GLU1)

GO

The goal of Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can

be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating

and changing. GO provides three structured networks of defined terms to describe gene product

attributes. These three ontologies or categories are as follows:

1. Biological Process Ontology: Biological process refers to a biological objective to which a gene

or gene product contributes. An example of the biological process hierarchy is as follows:

GO:0008150 : biological_process

GO:0007610 : behavior

GO:0000004 : biological_process unknown

GO:0009987 : cellular process

GO:0007154 : cell communication

GO:0007155 : cell adhesion

At5g03170 fasciclin-like arabinogalactan-protein (FLA11)

2. Molecular Function Ontology: Molecular function is defined as the biochemical activity (includ-

ing specific binding to ligands or structures) of a gene product. An example of the molecular

function hierarchy is as follows:
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GO:0003674 : molecular_function

GO:0016209 : antioxidant activity

GO:0045174 : glutathione dehydrogenase (ascorbate) activity

GO:0004362 : glutathione-disulfide reductase activity

GO:0004601 : peroxidase activity

At1g05260 peroxidase 3 (PER3) (P3)

3. Cellular Component Ontology: Cellular component refers to the place in the cell where a gene

product is active. An example of the cellular component hierarchy is as follows:

GO:0005575 : cellular_component

GO:0005623 : cell

GO:0005622 : intracellular

GO:0005737 : cytoplasm

GO:0005829 : cytosol

At1g07890 L-ascorbate peroxidase 1

6.3 EST sequences

The next step in GeneSieve is to obtain a set of EST sequences for the organism of interest. EST

sequencing is the method of choice for many large scale sequencing projects because the transcrip-

tome of most organisms is much smaller than their genomes, making this approach cost effective.

Several public databases, such as TIGR [50, 51] and NCBI dbEST [10], maintain collections of EST

sequences for many organisms. A collection of EST sequences for an organism can be downloaded

from these web sites. We obtain pine and potato EST sequences from the Center for Computa-

tional Genomics and Bioinformatics (CCGB) at University of Minnesota [12] and TIGR [63] web

sites respectively. For an organism, the number of sequences in the EST database depends on the

complexity of the sequencing project and that of the organism itself.

Often, the corresponding base quality files are available along with the EST sequence files. The

format of the quality file is similar to that of the sequence file, but it gives the quality of each base

in EST sequences. Base quality scores are integers between 0 and 99 and reflect probability of errors

in base calls at each position in an EST. Base quality score q is calculated using the transformation
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q = −10log10(p). Here, p is the probability of error in base calling. Thus, a base quality score of 30

corresponds to an error probability of 1/1000.

6.4 Clustering

As discussed in Chapter 5, depending on the complexity of the cDNA library, a single gene might

be represented by a large number of ESTs. Selecting more than one clones from the same gene

adds redundancy to the microarray. If coverage and efficiency is an issue, redundancy has to be

minimized. Clustering is the standard method to control redundancy in microarray probe selection.

Many software packages are available for sequence clustering, such as phrap [22] and TIGR Assembler

[19], allowing clustering of any EST sequence collection.

6.4.1 Phrap

We use phrap [22] for clustering EST sequences. Phrap is the most widely used program for auto-

mated contig assembly in genome projects. A contig is defined as a continuous sequence of DNA

that has been assembled from overlapping DNA fragments. Phrap can handle very large sequence

data sets, allows the use of entire EST sequence (not just the trimmed, high quality part), and

uses a combination of user-supplied and internally computed data quality information to improve

accuracy of the assembly in the presence of repeats. It constructs a consensus sequence for each

contig as a summary of the highest quality parts of ESTs. It also provides extensive information

about assembly, such as base quality for each contig sequence, a list of constituent ESTs for each

contig, and the start and the end positions for contig-EST alignments. This information is useful in

finding the longest EST, or the EST closest to the 3′ or the 5′ end of a contig, for example.

The phrap assembly algorithm consists of the following steps [15]:

1. Read in sequence and quality data, trim off any near-homopolymer runs at ends of reads,

construct read complements.

2. Find pairs of reads with matching words. Eliminate exact duplicate reads. Do swat com-

parisons of pairs of reads which have matching words, compute (complexity-adjusted) swat

score.

3. Find probable vector matches and mark so they aren’t used in assembly.
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4. Find near duplicate reads.

5. Find reads with self-matches.

6. Find matching read pairs that are ”node-rejected” i.e. do not have ”solid” matching segments.

7. Use pairwise matches to identify confirmed parts of reads; use these to compute revised quality

values.

8. Compute LLR scores for each match (based on qualities of discrepant and matching bases).

(Iterate above two steps).

9. Find best alignment for each matching pair of reads that have more than one significant

alignment in a given region (highest LLR-scores among several overlapping).

10. Identify probable chimeric and deletion reads (the latter are withheld from assembly).

11. Construct contig layouts, using consistent pairwise matches in decreasing score order (greedy

algorithm). Consistency of layout is checked at pairwise comparison level.

12. Construct contig sequence as a mosaic of the highest quality parts of the reads.

13. Align reads to contig; tabulate inconsistencies (read / contig discrepancies) and possible sites

of misassembly. Adjust LLR-scores of contig sequence.

Phrap relies heavily on quality values assigned to each base by its companion program, phred.

The use of base quality information, whenever available, along with EST sequence data is strongly

recommended. It greatly improves the accuracy of assembly and the quality of consensus sequences.

Phrap considers sequences for which there is only one EST as unreliable. It trims off ends of a contig

if there are not at least two ESTs confirming each other’s sequence.

6.5 Sequence Similarity Search

Once clustering is done and contig sequences are available, the next step is to search for sequence

similarities between these contigs and known proteins in the model organism. This process associates

a functional annotation with each contig. EST sequences can also be compared to contig sequences

to estimate the probability of cross hybridization. Several algorithms, notably BLAST [4, 5] and

FASTA [46, 45], are available to compare a query sequence against a sequence database.
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6.5.1 BLAST

BLAST (Basic Local Alignment Search Tools) [4, 5] is a set of sequence comparison algorithms that

can be used to search sequence databases for optimal local alignments to a query. BLAST improves

the overall speed of searches, while retaining good sensitivity, by breaking the query and database

sequences into small fragments (words) and initially seeking matches between words. The initial

search is done for a short word with some minimum score when compared to the query using a given

substitution matrix. Word hits are then extended in either direction in an attempt to generate an

alignment with a score exceeding a threshold. The pair-wise alignments with scores exceeding the

threshold are ranked by score.

BLAST programs are available as executables or as source code from the NCBI website [41].

A similar set of programs, called WU-BLAST [67], is also available from Washington University.

We set up a BLAST server using the NCBI BLAST programs. This allows us to create custom

searchable databases for contigs and ESTs in different organisms. Of course, querying is faster than

submitting sequences to the BLAST server at NCBI. After installing the BLAST server, we have

configured custom databases for protein sequences from the model organism, and for EST and contig

sequences from several organisms of interest. Consequently, we can readily compare EST and contig

sequences to themselves or to the protein sequences of the model organism.

6.6 Selection of Contigs

Selection of a contig requires finding its similarity with known proteins of the model organism

and assigning an unambiguous annotation to it. For this, we need to establish “reasonable links”

between contigs and known proteins. Based on these links, we can transfer annotation and functional

categories of a protein to a contig.

We propose three approaches to establish links between contigs constructed from organism of

interest and proteins of a model organism: bidirectional hits (BH), bidirectional best hits (BBH),

and unidirectional best hits (UBH). There is a similarity link between two sequences if the E value

from BLAST is less than 10−06.
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6.6.1 Bidirectional Hits (BH)

A bidirectional hit is defined as follows: A protein P in the protein-dataset Dp and a contig C in the

contig-dataset Dc are bidirectional hits if there are similarity links between them when P is searched

against Dc and when C is searched against Dp. Figure 6.2 illustrates the concept of bidirectional hits.

Here, P1 and P2 are proteins and C1 and C2 are contigs. There are bidirectional similarity links

between (P1, C1), (P2, C1), and (P2, C2). There is a similarity link between (P1, C2), when C2 is

searched against the protein database. But there is no similarity link between (P1, C2) when P1 is

searched against the contig database. S1, S2, S3, andS4 are the BLAST scores for the corresponding

similarity links. So, by definition, (P1, C1), (P2, C1), and (P2, C2) are bidirectional hits.

Often, BLAST does not give symmetric results, i.e., the BLAST score and the E value between

a protein P and a contig C when searched using P as a query against the contig database can be

different from the BLAST score and the E value when searched using C as a query against the protein

database. As we apply a threshold for the maximum E value, it is possible that some similarity links

are present in just one direction and not the other. The BH approach eliminates such asymmetric

similarity links from consideration.

One drawback of the BH approach is that, often, it assigns more than one annotations to a contig.

This causes problem while selecting contigs by functional annotations or functional categories. The

same contig can be selected more than once, each time for a different annotation or a different

functional category.
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6.6.2 Bidirectional Best Hits (BBH)

The bidirectional best hit (BBH) is a more restrictive approach than the BH. It overcomes the

drawback of the BH approach. A bidirectional best hit is defined as follows: A protein P in the

protein-dataset Dp and a contig C in the contig-dataset Dc are called bidirectional best hits if and

only if P and C are bidirectional hits, there is no other contig C ′ in Dc that is more similar to P than

C is to P , and there is no other protein P ′ in Dp that is more similar to C than P is to C. Figure

6.3 illustrates the concept of BBH. Here, P1 and P2 are proteins and C1 and C2 are contigs. There

are bidirectional similarity links between (P1, C1), (P2, C1), and (P2, C2). There is a similarity

link between (P1, C2), when C2 is searched against the protein database. But there is no similarity

link between (P1, C2) when P1 is searched against the contig database. S1, S2, S3, andS4 are the

BLAST scores for the corresponding similarity links and S1 > S2 > S3 >> S4. So, by definition,

only (P1, C1) are bidirectional best hits.

The BBH criterion is stringent and suffers from low coverage. For example, if there are five

contigs showing the highest similarity with a protein P , when searched using contig sequences as

queries against the protein database, the one showing the highest similarity with P , when searched

using protein sequence as query against the contig database, will be assigned the annotation of P .

The remaining four will not be assigned any annotation, even though they show significant similarity

with the protein P .

40



P1

P2

C1

C2

S1

S2 S3

S4

Proteins Contigs

S1 > S2 > S3 > S4

Unidirectional Best Hits (UBH): {(P1,C1), (P1,C2)}

Figure 6.4: Unidirectional best hits (UBH)

6.6.3 Unidirectional Best Hits (UBH)

A unidirectional best hit is defined as follows: A protein P in the protein-dataset Dp is called the

unidirectional best hit of a contig C in the contig-dataset Dc if and only if there is a similarity link

between them when C is searched against Sp, and there is no other protein P ′ in Dp that is more

similar to C than P is to C. Figure 6.4 illustrates the concept of UBH. Here, P1 and P2 are proteins

and C1 and C2 are contigs. There are similarity links between (P1, C1), (P1, C2), (P2, C1), and

(P2, C2), when contigs C1 and C2 are searched against the protein databases. S1, S2, S3, andS4 are

the corresponding BLAST scores and S1 > S2 > S3 >> S4. So, by definition, (P1, C1), (P1, C2)

are unidirectional best hits.

The UBH approach is a compromise between the liberal BH approach and the stringent BBH

approach. It does not assign more than one annotation to any contig. At the same time, it ensures

that a contig is assigned an annotation if it shows a similarity link to at least one known protein.

For this reason, we use the UBH method in the GeneSieve probe selection process.

We also calculate a protein coverage score (PC) for each contig showing a similarity link to a

protein in the model organism. Whenever there are multiple contigs available for the selection for a

single protein, we select one with the highest protein coverage score. Protein coverage score PC is

defined as follows: Let C be a contig showing a similarity link to a protein P . Let LP be the length

of the protein P and LPC be the length of the protein P that aligns to the contig C. Then, the

protein coverage score is
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PC =
LPC

LP

(6.1)

6.6.4 Evaluation Criteria

We compare BH, BBH, and UBH based on the following criteria:

1. Assignment of unambiguous annotations: We compare the three methods based on their ability

to assign unambiguous annotations to the contigs, i.e., no contig should be assigned more than

one annotation. Otherwise, a contig can be selected more than once for a microarray, each

time representing a different gene or a different functional category.

2. Coverage: Coverage is defined as the number of contigs that are annotated using a given

method. The higher the coverage the greater number of contigs that will be available for the

selection.

6.7 Selection of EST in Contig

Once GeneSieve selects a contig to represent a gene or functional category of interest, the next step

is to select a single EST from this contig. There are several factors that may be considered to select

an EST, such as its similarity to a known protein, its potential to cross hybridize with other genes,

its length, and its proximity to the 3′ or 5′ end of the contig. These factors can be considered alone

or in conjugation with other factors to assess the quality of an EST.

6.7.1 Quality Function

We assign an overall quality score Q to each EST derived from three other scores: protein homology

(PH), cross hybridization (CH), and relative length (RL), which we define now.

Let E be an EST that belongs to a contig C. Let protein P be the unidirectional best hit of contig

C with BLAST score SCP . If protein P is also the best hit for EST E, when E is searched against

the protein database and if SEP is the BLAST score between them, then the protein homology score

for EST E is

PH =
SEP

SCP

(6.2)
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GeneSieve BLASTs each EST and each contig against the protein database. BLAST scores for

the best hits are considered for calculating PH. The best hit for a contig and that for a constituent

ESTs should be the same protein, otherwise the PH score for that EST is 0. The PH score indicates

how well a contig-protein alignment is represented by the constituent EST. The typical range for

PH is 0 to 1 (inclusive), but in a few cases it exceeds 1.

Let contig C1 be the best hit with BLAST score SEC1
and contig C2 be the second best hit with

BLAST score SEC2
, when an EST E is searched against the contig database. If E is a constituent

EST of contig C1, then the cross hybridization score for EST E is defined by the following equation:

CH =
SEC2

SEC1

(6.3)

Here, we BLAST each EST to the contig database for the same organism. The best hit contig

should be the one E belongs to; otherwise CH = 1. The CH score estimates the probability of an

EST hybridizing with other contigs. The range for the CH is 0 to 1 (inclusive). The higher CH is, the

greater the probability that the given EST will cross hybridize with non-target mRNA sequences.

Let E be an EST which belongs to contig C. Let LC be the length of C and LCE be the length

of C that aligns to E. Then, the relative length score of EST E is

RL =
LCE

LC

(6.4)

RL refers to the length of a contig covered by its constituent ESTs. In EST clustering, phrap

trims off ends of contigs if there are not at least two ESTs confirming each other’s sequences. As a

result, the whole length of an EST may not contribute to the consensus sequence of a contig. The

typical range for the RL score is 0 to 1 (inclusive).

Quality Score (Q)

Based on these three quality parameters, we assign a quality score to each EST. The quality score

Q for an EST is defined as follows:

Q = PH − CH + RL (6.5)

The typical range for Q is -1 to 2.
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6.7.2 EST Selection Methods

We calculate protein homology score, cross hybridization score, relative length score, and over all

quality score for each EST. Once we have selected a contig based on its similarity to the protein of

interest, a single EST can be chosen from this contig using one of the following methods:

1. Maximum Length: Among all the ESTs in a contig, select the one that is the longest. If there

is more than one EST with the same maximum length, select any one.

2. 5′ Proximity: Among all the ESTs in a contig, select one that aligns to the 5′ end of the contig.

If there is more than one such EST, select one that is the longest among them.

3. 3′ Proximity: Among all the ESTs in a contig, select one that aligns to the 3′ end of the contig.

If there is more than one such EST, select one that is the longest.

4. Maximum PH Score: Among all the ESTs in a contig, select one with maximum protein

homology score.

5. Minimum CH Score: Among all the ESTs in a contig, select one with minimum cross hy-

bridization score.

6. Maximum RL Score: Among all the ESTs in a contig, select one with maximum relative length

score.

7. Maximum Quality Score: Among all the ESTs in a contig, select one with maximum overall

quality score.

6.7.3 Evaluation Criteria

We compare these seven EST selection methods based on the following criteria:

1. Coverage: Coverage is defined as the fraction of the contigs in an organism that are available

for selection by each method.

2. Average PH: Average protein homology score for the ESTs selected by each method.

3. Average CH: Average cross hybridization score for the ESTs selected by each method.

4. Average RL: Average relative length score for the selected ESTs.
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5. Average Q: Average quality score for the ESTs selected by each method.

Singletons contain only one EST. So, no matter which selection method is used, the selected EST

will be the same. For this reason, we exclude singletons when evaluating results of different EST

selection methods.
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Chapter 7

Results

We apply the GeneSieve probe selection strategy described in the previous chapter to the loblolly

pine (Pinus taeda) and potato (Solanum tuberosum) EST data sets. We use Arabidopsis thaliana as

the model organism for pine and potato. Results for pine and potato datasets are presented in this

chapter. We obtain a total of 27,288 protein sequences for Arabidopsis thaliana, along with their

functional annotations, from TIGR [63]. Functional categories for these proteins are obtained from

MIPS [40] and Gene Ontology [21].

7.1 Pine

We obtained the EST data set for pine from the ftp site of Center for Computational Genomics

and Bioinformatics (CCGB) at University of Minnesota [12]. That data set contains 75,047 EST

sequences, derived from six pine xylem libraries. We exclude ESTs that are shorter than 100 base

pairs from the contig assembly. After removal of nearly duplicate sequences, phrap assembles 59,525

ESTs into 7,141 contigs and 13,331 singletons. We use the following assembly parameters in phrap:

minmatch=50 and minscore=100. Table 7.1 summarizes the results of clustering of the pine ESTs.

7.1.1 Contig Selection

We compare all 20,472 pine contigs (7,141 contigs + 13,331 singletons) for sequence similarity against

27,288 Arabidopsis proteins, in both directions, using BLAST. We then use these BLAST results to
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Number of ESTs 59,525
Number of contigs 7,141
Number of singletons 13,331
Total (contigs+singletons) 20,472

Table 7.1: Clustering of pine ESTs

assign annotations to the pine contigs using three different methods: BH, BBH, and UBH. Table

7.2 shows the results of the contig selection methods for pine.

BH BBH UBH
Number of contigs and singletons covered 8,833 3,743 9,065
Number of Arabidopsis proteins covered 15,803 3,743 5,563
Avg number of proteins assigned to each contig 17.09 1 1
Avg number of contig assigned to each protein 9.55 1 1.63

Table 7.2: Comparison of contig selection methods for pine

As shown in the table, the BH method covers a large number of Arabidopsis proteins and pine

contigs (15,805 and 8,833 respectively), but it suffers from redundancy and assigns ambiguous an-

notations to the contigs. The average number of proteins linked to each pine contig is 17, i.e. 17

different annotations can be assigned to the same contig, or that the same contig can be selected for

17 different proteins or annotations. Also, the average number of contigs linked to each protein is

9, i.e. 9 contigs are available for selection for each protein of interest. The BBH method assigns at

the most one annotation to each protein and at the most one contig to each protein, but it suffers

from very low coverage. Only 3,743 pine contigs and the same number of Arabidopsis proteins are

available for the selection. The UBH method is a compromise between the BH and the BBH. The

number of contigs covered by the UBH is slightly higher than that by BH, though the number of

proteins covered by the UBH is much lower than that by the BH. The UBH method assigns unam-

biguous annotations to pine contigs. Also, the average number of contigs available for selection for

each protein is also very low (1.63 contigs/protein).
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Annotation Analysis

Once annotations are assigned to the contigs based on their similarity with the known proteins in

Arabidopsis, we analyze these annotations to find proteins that are present in both Arabidopsis and

pine. This analysis also helps identify proteins that are present in Arabidopsis but not in pine.

Results of the annotation analysis are summarized in Table 7.3. Out of a total of 27,288 Arabidopsis

proteins, 16,221 (59%) proteins have similarity a link to at least one pine contig. Out of 11,067

Arabidopsis proteins that do not have a similarity link to any pine contig, 8,187 (74%) proteins

have uninformative annotations (i.e., ‘putative protein’, ‘unknown protein’, ‘hypothetical protein’,

or ‘expressed protein’). Out of 12,717 Arabidopsis proteins with informative annotations, only 2,880

(22%) do not have a similarity link to any pine contig. Though only 20.4% of the Arabidopsis proteins

are covered by the UBH method, they account for 37% of the unique annotations in Arabidopsis.

Arabidopsis Proteins showing Proteins showing
Proteins similarity to similarity to

pine contigs pine contigs by UBH
(p < 10−06) (best hit, p < 10−06 )

All Proteins 27,288 16,221 5,563
Putative Proteins (P) 4,958 2,520 826
Unknown Proteins (U) 2,108 916 378
Expressed Proteins (E) 2,672 1,441 730
Hypothetical Proteins (H) 4,833 1,507 385
Total (P+U+E+H) 14,571 6,384 2,319
Informative Annotations 12,717 9,837 3,244
Unique Annotations 6,788 4,999 2,515

Table 7.3: Annotation analysis for pine contigs

Annotation analysis can give the following information:

• Proteins present in both Arabidopsis and pine.

• Proteins present in Arabidopsis but not in pine: These might be proteins responsible for some

specialized function in Arabidopsis, and hence, not present in pine. Or these are the missing

genes as the EST libraries of pine may not represent all the genes in pine. Inclusion of EST

derived from other pine tissues can be useful in the later case.

• A list of unique annotations that can be helpful while searching for probes by gene/protein
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names.

7.1.2 EST Selection

Once annotations are assigned to the pine contigs using the UBH method, we select a single EST from

each contig using seven different methods: the longest EST, 3′ proximity, 5′ proximity, maximum

PH, maximum CH, maximum RL, and maximum quality score. Results of these methods are

summarized in Table 7.4. For each selection method, the table gives the average values of the three

quality parameters and the overall quality score for the selected ESTs. We exclude singletons from

consideration as there is no choice for selection of ESTs from singletons.

Method of Selection Protein Cross Relative Quality ESTs
/Average Score Homology Hybridization Length (Q) Selected

(PH) (CH) (RL)
All ESTs 0.400 0.304 0.470 0.566 34,739
Maximum Length 0.811 0.187 0.851 1.475 4,496
5′ Proximity 0.714 0.189 0.776 1.300 4,496
3′ Proximity 0.682 0.178 0.781 1.284 4,496
Maximum PH 0.932 0.196 0.808 1.543 4,496
Minimum CH 0.508 0.112 0.642 1.037 4,496
Maximum RL 0.806 0.182 0.858 1.481 4,496
Maximum Q 0.919 0.180 0.837 1.576 4,496
Maximum Q (CH <= 0.5) 0.933 0.128 0.831 1.635 4,027

Table 7.4: Quality analysis for pine ESTs

Maximum average PH (0.932) and maximum average RL (0.858) are obtained when ESTs are

selected by PH and RL respectively. Minimum average CH (0.112) is obtained when selection is

based on CH. Selection of ESTs by Q gives maximum achievable quality score. General trend is

that the CH increases with the PH and the RL. The ESTs selected by 3′ proximity show lower

cross hybridization (0.178), but it is far from minimum that can be achieved (0.112) for the same

population of ESTs. Also, the average quality of selected ESTs is low (1.284). Analysis of the pine

contigs reveal that only a small fraction of pine contigs align to the 5′ or the 3′ end of an Arabidopsis

protein (9% and 11% respectively). This suggest that most of the ESTs selected from the 5′ or the

3′ end of the contigs actually come from the coding regions of the genes. Selection of ESTs by PH,

CH, or RL gives the best value for the parameter used for selection, but gives poor values for the
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other parameters.

Selection by Q gives averages for PH, CH, and RL that are close to the best achievable averages

for those parameters. An additional filter, such as CH <= 0.5, can greatly reduce cross hybridization

and improve the overall quality of the selected ESTs. This filter first excludes all the ESTs with

CH > 0.5, and then selects ESTs with the highest quality score from each contig. Similar filters can

also be applied to PH and RL. A combination of the filters, such as (PH >= 0.2 & CH <= 0.5 &

RL >= 0.2), can be used to find a probe set of desired quality to meet the experimental requirements.

7.2 Potato

We retrieved a total of 87,677 potato EST sequences and corresponding base quality scores from

the TIGR ftp site [63]. All the EST sequences are longer than 99 base pairs, and so, we use them

all for the contig assembly. GeneSieve assembles a total of 87,677 potato ESTs into 21,050 contigs

and 11,350 singletons using phrap. Parameters used for phrap assembly are: minmatch=200 and

minscore =100. Here, we use higher value for phrap parameter minmatch to avoid exceptionally

long runtime. The higher number of contigs in potato can be because of the use of base quality

scores as input to phrap, the use of higher value of assembly parameter mimmatch, or the quality

of EST libraries. Table 7.5 summarizes the results of clustering of the potato ESTs.

Number of ESTs 87,677
Number of contigs 21,050
Number of singletons 11,350
Total (contigs+singletons) 32,400

Table 7.5: Clustering of potato ESTs

7.2.1 Contig Selection

We compare all 32,400 potato contigs and singletons to 27,288 Arabidopsis proteins using BLAST.

We use these BLAST results to assign annotations to the potato contigs using the BH, the BBH,

and the UBH methods. Results of these contig selection methods are presented in Table 7.6:

Results for different contig annotation methods for potato are consistent with those for pine.

Again, the number of contigs covered by the UBH method is slightly higher than that by the BH
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BH BBH UBH
Number of contigs and singletons covered 25,602 7,458 26,175
Number of Arabidopsis proteins covered 20,912 7,458 10,338
Avg number of proteins assigned to each contig 19.63 1 1
Avg number of contigs assigned to each protein 24.03 1 2.53

Table 7.6: Comparison of contig selection methods for potato

method. The UBH assigns unambiguous annotations to the potato contigs. The UBH method

covers 81% of the potato contigs and 38% of the Arabidopsis proteins, while the respective numbers

for pine are 44% and 20% only. With the BBH method, 27% of Arabidopsis proteins are linked to

potato contigs, while only 14% of Arabidopsis proteins are linked to pine contigs.

Annotation Analysis

Results of annotation analysis are summarized in Table 7.7. Annotation analysis reveals that proteins

covered by the UBH method in potato represent 57% of unique annotations present in Arabidopsis,

while the corresponding number for pine is 37%. Comparison of pine and potato results suggest

that potato and Arabidopsis have more proteins in common than pine and Arabidopsis have. This

may be due to the poor coverage of the pine EST libraries or because of the fact that Arabidopsis

is genetically closer to potato than it is to pine.

Arabidopsis Proteins showing Proteins showing
Proteins similarity to similarity to

potato contigs potato contigs by UBH
(p < 10−06) (best hit, p < 10−06 )

All Proteins 27,288 21,185 10,338
Putative Proteins (P) 4,958 3,637 1,761
Unknown Proteins (U) 2,108 1,452 808
Expressed Proteins (E) 2,672 1,989 1,347
Hypothetical Proteins (H) 4,833 2,556 927
Total (P+U+E+H) 14,570 9,634 4,843
Informative Annotations 12,718 11,551 5,495
Unique Annotations 6,788 6,223 3,934

Table 7.7: Annotation analysis for potato contigs
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7.2.2 EST Selection

Table 7.8 shows results of the seven EST selection methods for potato. Overall results are in

agreement with those obtained for pine. Maximum average PH and RL are higher for potato than

those for pine (0.97 vs. 0.93 and 0.81 vs. 0.89). Minimum average cross hybridization is also higher

for potato than that for pine (0.54 and 0.29 respectively). Higher value for CH may be the result of a

large number of contigs with high similarity as more stringent value of parameter minmatch is used

in phrap assembly. A less stringent assembly process may merge some of these highly similar contigs

and bring the average CH to a lower value. The best possible average of parameter is obtained when

selection is based on that parameter. Maximum average value for PH and RL are higher for potato

than for pine.

Method of Selection Protein Cross Relative Quality ESTs
/Average Score Homology Hybridization Length (Q) Selected

(PH) (CH) (RL)
All ESTs 0.696 0.565 0.739 0.869 66,883
Maximum Length 0.762 0.479 0.828 1.110 17,725
5′ Proximity 0.802 0.470 0.857 1.188 17,725
3′ Proximity 0.829 0.457 0.866 1.238 17,725
Maximum PH 0.986 0.477 0.848 1.357 17,725
Minimum CH 0.769 0.407 0.846 1.207 17,725
Maximum RL 0.832 0.459 0.894 1.266 17,725
Maximum Q 0.971 0.448 0.873 1.395 17,725
Maximum Q (CH <= 0.5) 0.965 0.218 0.861 1.607 10,166

Table 7.8: Quality analysis for potato ESTs

As shown in Table 7.8, ESTs selected by 3′ and 5′ proximity show less protein homology. Analysis

of the potato contigs reveals that only a small fraction of the pine contigs align to the 5′ end or the

3′ end of a Arabidopsis protein (26% and 25% respectively). This suggest that most of the ESTs

selected from the 5′ or the 3′ end of the contigs actually come from the coding regions of the genes.

Selection of ESTs by PH, CH, or RL gives better average for the parameter used for selection, but

it gives poor averages for the other parameters and the overall quality.

Close to the best averages for PH, CH and RL can be obtained when ESTs are selected based

on overall quality. Also, an additional filter, such as (CH <= 0.5) greatly reduces average cross

hybridization and improves overall quality of the selected ESTs. Similar filters can be applied to
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PH and RL.

Correlation between quality parameters

Table 7.9 gives correlation between the parameters used to calculate overall quality. The table shows

that there is a high degree of correlation between PH and RL. But CH is not strongly correlated

with either PH or RL.

PH CH RL Q
PH 1.0000 0.0961 0.8110 0.8397
CH 0.0961 1.0000 0.2237 0.5621
RL 0.8110 0.2237 1.0000 0.8917
Q 0.8397 0.5621 0.8917 1.0000

i

Table 7.9: Correlation between quality parameters

7.3 Comparison of Pine3 Protocol and GeneSieve

The Pine3 protocol is used to select EST probes that represent the genes related to the stress

response in loblolly pine for the third round of the microarray experiments in Expresso [58]. In this

section we compare the Pine3 EST selection protocol with GeneSieve. The ESTs selected by the

Pine3 are compared with the ESTs selected by GeneSieve based on the average values for the quality

parameters and the overall quality. The Pine3 protocol consists of the following steps:

1. Prepare a list genes of interest based on previous results or literature survey. These are

candidate genes likely to respond to drought stress conditions in loblolly pine.

2. Search for these gene names in the Arabidopsis thaliana protein database, and identify Ara-

bidopsis proteins with these names.

3. Obtain amino acid sequences for these proteins.

4. Using BLAST, search the EST database of Pinus taeda using the Arabidopsis proteins as

query sequences. Obtain ESTs that have a similarity link with Arabidopsis proteins. Here, a

similarity link exist if the E value for BLAST score is less than 1e−04.
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Method of Selection Protein Cross Relative Quality ESTs
/Average Score Homology Hybridization Length (Q) Selected

(PH) (CH) (RL)
All ESTs 0.357 0.369 0.440 0.429 7,412
Maximum Length 0.874 0.238 0.906 1.542 1,193
5′ Proximity 0.827 0.239 0.870 1.450 1,193
3′ Proximity 0.812 0.226 0.871 1.456 1,193
Maximum PH 0.954 0.254 0.885 1.587 1,193
Minimum CH 0.723 0.196 0.800 1.330 1,193
Maximum RL 0.866 0.241 0.912 1.536 1,193
Maximum Q 0.945 0.239 0.899 1.604 1,193
Maximum Q (CH <= 0.5) 0.921 0.135 0.882 1.669 1,010
Pine3 0.689 0.184 0.712 1.216 1,682

Table 7.10: Quality analysis for stress responsive genes in pine: Pine3 protocol vs. GeneSieve

5. Select ESTs closer to the 3′ end of the proteins.

A total of 280 keywords and gene names were provided by the biologists. These genes are believed

to participate in the stress response mechanism in pine and are selected based on the results of the

previous experiments and literature survey. A total of 1,874 ESTs are selected using the Pine3

protocol representing 1,092 distinct Arabidopsis proteins. Here, we analyze quality of these ESTs

using the quality parameters defined in GeneSieve. Out of 1,874 ESTs present in Pine3, 1,682 are

covered in the GeneSieve results. These ESTs belong to 1,082 distinct contigs, i.e., on average 1.55

ESTs are selected from the same contig. This indicates some redundancy in the probes selected

by the Pine3 protocol. GeneSieve approach ensures that, when desired, only one EST be selected

from each contig. Using the GeneSieve annotations, we select the contigs matching these keywords.

Then, we select a single EST from each of these contigs by each of the seven methods described in

Section 6.7.2. The average quality of the ESTs selected by the quality score is much higher that for

the ESTs selected by the Pine3 protocol (1.604 and 1.216 respectively). Table 7.10 summarizes the

results of different EST selection methods for the 280 keywords/gene names.
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Chapter 8

GeneSieve – A Web-based EST

Probe Selection Tool

We have designed a PostgreSQL database to store the results obtained using the GeneSieve protocol.

We have also designed a web interface to query this database in a user-friendly manner. The database

schema is described in Section 8.1. The sample queries that can be performed on this database are

presented in Section 8.2. Important features of the web interface are presented in Section 8.3 using

a working search example.

8.1 Database Schema

We have designed a database to store the sequence information, functional categories, and the results

obtained using the GeneSieve protocol on pine and potato EST datasets. The database consists of

the following tables:

1. Arabidopsis Sequences (AT no, Annotation, Gene Sequence, Coding Sequence, Protein Sequence):

This table contains information about the Arabidopsis genes such as their ids, annotations,

genomic sequences, protein-coding nucleotide sequences, and amino acid sequences. This in-

formation is obtained from the TIGR ftp site.

2. MIPS Categories (AT no, Category id, Category Name): This table stores MIPS functional
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categories and Arabidopsis genes belonging to those categories.

3. GO Categories (AT no, GO id, GO Annotation, GO Type): This table contains Arabidopsis

genes and corresponding GO annotations as obtained from the Gene Ontology Consortium.

4. Contig (Organism, Contig id, Contig Sequence): This table stores the contig ids and their

consensus sequences obtained as a result of contig assembly procedure using phrap.

5. EST (Organism, EST id, EST Sequence): This table stores EST sequences for different organ-

isms. These sequences are obtained from various public sources such as TIGR and CCGB.

6. EST Contig Mapping (Organism, Contig id, EST id, EST length, Sr no, LLR Score, Start pos EST,

End pos EST, Start pos Contig, End pos Contig): This table stores results of the contig as-

sembly procedure using phrap. For each contig, it stores its constituent ESTs, their length,

and start and end positions of their alignments with the contig.

7. 3p 5p EST (Organism, Contig id, Contig length, Longest EST id, 5p EST id, 3p EST id):

This table gives the longest EST, the 3′ EST, and the 5′ EST for each contig as defined

in Chapter 6.

8. Quality Table (Organism, EST id, Contig id, AT no, Annotation, Contig2protein Score, Pro-

tein Coverage, Protein Homology, Cross Hybridization, Relative Length, Quality Score, Se-

quence Identity): This table stores results of the GeneSieve protocol. For each EST, it gives

the corresponding contig, Arabidopsis protein, annotation, BLAST score for contig-protein

alignment, values of the three quality parameters, overall quality score, and its sequence iden-

tity with the second best contig hit.

The relationships among these tables are shown in Figure8.1. The Arabidopsis sequences are

linked to the MIPS and GO functional categories by the AT numbers. The quality table is connected

to the Arabidopsis sequences and the MIPS and GO functional categories by the AT numbers. The

quality table is also connected to the EST and the contig sequences by EST ids and contig ids

respectively.
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Figure 8.1: GeneSieve: database schema
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8.2 Database Search

The GeneSieve database supports a wide variety of searches because of the inter-connectivity of

various tables. Some of the searches that can be performed on the GeneSieve database are as

follows:

1. Search by annotation: ESTs are associated to the Arabidopsis proteins by sequence homology.

This allows one to search the database for ESTs based on protein name or key words, such as

ascorbate peroxidase, hexokinase, or isoflavon. A key word, such as kinase, will match to all

the kinases present in the database. Annotation search can also be used to identify possible

homologs of a gene in different organisms. For example, search with keyword “ascorbate

peroxidase” reveals that there are 8 Arabidopsis proteins matching this annotation. Pine has

8 contigs matching the same annotation while potato has 34.

2. Search by EST id: The database can also be searched by EST ids, i.e. NXCI 004 A05 F or

NXCI 006 C05 F. This can be helpful in assigning putative annotation and functional cate-

gories to the EST of interest. It can also be used to get the sequence of an EST.

3. Search by contig id: The database can be searched by contig or singleton ids, i.e. Contig7730

or Singleton5314. This can be used to get the consensus sequence of a contig or to get the list

of its constituent ESTs. It can also be used to assign annotation to a contig.

4. Search by Arabidopsis protein id (AT number): Search by an AT number, such as At1g07890.1,

can be used retrieve all the contigs and ESTs in a organism that match the protein of interest.

It can also be used to find homologs of a known protein in different organisms.

5. Search by MIPS or GO categories: The database can be searched by MIPS or GO functional

category name or number, such as stress response (11.01), amino-acid metabolism (01.01), or

pentose-phosphate pathway (02.07). This type of search is helpful in selecting a large number

of ESTs based on their functional similarity.

6. EST selection: Above mentioned searches can be further refined to select a single EST from a

contig or a protein of interest. A single EST can be selected from a contig of interest based on

its length, proximity to the 3′ or the 5′ end of the contig, protein homology, cross hybridization,

relative length, or overall quality score. A single EST can also be selected to represent a protein

of interest based on one of the quality parameters or the overall quality score.
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8.3 Web Interface

We have designed a web interface and connected it to the database using PHP. This allows one to

query the database in a user-friendly manner. In this section, a series of screen shots are presented

to show the important features and functionality of the GeneSieve web interface.

1. Main Search page: Figure 8.2 shows the main search page of GeneSieve. Each organism

available in GeneSieve is presented by an icon. An organism of interest can be selected by

clicking on one of these icons. Below the icons are the links to initiate an EST search by

annotation, MIPS or GO functional category, EST id, contig id, or Arabidopsis protein id.

These links lead to the relevant search pages. In this example, pine is selected as the organism

of interest.

2. Query Page: Figure 8.3 shows the query page for annotation search. Multiple annotations

can be searched simultaneously, but each of them should be entered as a separate line. Filters

can be applied on the upper bounds and lower bounds of the PH, CH, RL, overall quality score,

and protein coverage score. In this example, search is initiated for the annotation ‘ascorbate

peroxidase’. Filters are applied on the lower bounds of PH (0.5) and RL (0.2).

3. Result Page: Figure 8.4 shows the search results for ‘ascorbate peroxidase’ in pine. Results

can be sorted by any attribute by clicking on that attribute name. Query can be further

refined to select a single EST for each contig Arabidopsis protein based on its length, 3′ or 5′

proximity, one of the quality parameters, or the overall quality score. Selected ESTs can be

added to the list of microarray probes.

4. Microarray Probe List: Figure 8.5 shows the pine ESTs selected as microarray probes.

Similarly, ESTs can be searched using different annotations or functional categories and se-

lected ESTs can be added to the list of microarray probes. ESTs once selected are highlighted

in gray and can not be selected again. ESTs can also be deleted from the microarray probe

list.

5. EST/Contig/Protein Details: Details of an EST, a contig, or an Arabidopsis protein can

be viewed by clicking on their ids Figure 8.6 shows the sequence and the list of constituent

ESTs for a pine contig 5940. For an Arabidopsis protein, a similar page shows its genomic
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sequence, protein coding sequence, and amino acid sequence, and MIPS and GO functional

categories. Links to the corresponding BLAST reports are provided at the bottom of the page.

6. Functional Categories: Figure 8.7 shows the MIPS and GO functional categories for Ara-

bidopsis protein ‘At4g29130’.

7. BLAST Reports: Figure 8.8 shows the BLAST report for pine contig 5940.

Figure 8.2: The main search page of GeneSieve. An organism can be selected by clicking on the
respective icon. Search can be performed by using an annotation, a MIPS or GO functional category,
an EST id, a contig id, a protein id, or a combination of all.
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Figure 8.3: GeneSieve query page for annotation search. More than one annotations or keywords
can be entered simultaneously in the search box. Filters can be applied on the quality parameters
to control the quality of the microarray. Here, we search for the annotation “ascorbate peroxidase”
in pine.
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Figure 8.4: Results for the annotation search with the keyword “Ascorbate Peroxidase”. Search can
be refined to select a single EST from each contig or protein based on its length, 3′ or 5′ proximity,
one of the quality parameters, or the overall quality score.
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Figure 8.5: ESTs selected as microarray probes. The ESTs obtained using different search criteria
can be added to the microarray. At the end of the session, a list selected ESTs can be downloaded
as a text file.
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Figure 8.6: Details of pine contig5940. Sequence of the contig and a list of its constituent ESTs
can be viewed by clicking on the contig id. BLAST reports for this contig against the contig and
the protein databases can be viewed by following corresponding links provided at the bottom of the
page.
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Figure 8.7: MIPS and GO functional categories for Arabidopsis protein At4g29130.
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Figure 8.8: BLAST report for pine contig5940. The contig is BLASTed against the Arabidopsis
protein database.
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Chapter 9

Conclusion and Future Work

In recent years, cDNA microarrays have emerged as a powerful technique for the measurement of the

expression levels of tens of thousands of genes simultaneously. Often, cDNA libraries representing

expressed genes of an organism are available, along with expressed sequence tags (ESTs). ESTs are

widely used as probes for cDNA microarrays. Custom microarrays containing only genes relevant

to the experimental objectives are very useful. To build a custom microarray requires selection of

ESTs based on their sequence.

It is important to assign unambiguous annotations to ESTs. To assign reliable annotations to

ESTs from a given organism, we cluster them into contigs using phrap. The larger contig sequences

are then used to search for similarity with the known proteins in the model organism such as

Arabidopsis thaliana. An EST is assigned the same annotation as the contig it is part of. We

have developed three different methods to assign annotations to contigs: bidirectional hits (BH),

bidirectional best hits (BBH), and unidirectional best hits (UBH). We implemented these methods

on pine and potato EST datasets, using Arabidopsis as the model organism for comparison. Results

show that the BH method assigns a large number of proteins (18) to each contig, resulting in

ambiguous annotations. The BBH method assigns at the most one protein to each contig and at

the most one contig to each protein, but it covers only a small fraction of contigs (18% for pine and

23% for potato). The UBH method assigns at most one protein to each contig. Thus, it assigns

unambiguous annotations to the contigs. It also covers a large fraction of contigs in an organism

(45% for pine and 80% for potato). For this reason, we use the UBH method to assign annotations
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to the contigs in GeneSieve.

Once a contig is selected based on its annotation, the next step is to select one of its constituent

ESTs to deposit on a microarray. Typically, the longest EST or the EST closer to the 3′ end of

the contig is selected. This EST may not have the properties desirable in a microarray probe. We

have devised a scoring system to evaluate the quality of an EST probe set. We assign a quality

score (Q) to each EST based on its protein homology (PH), cross hybridization (CH), and relative

length (RL). We assign quality scores to all of the pine and potato ESTs. We select a single EST

from each contig by one of seven values: maximum length, 3′ proximity, 5′ proximity, maximum PH,

minimum CH, maximum RL, and maximum Q. We show that the longest ESTs show higher cross

hybridization with other contigs and show less protein homology. Thus, overall quality scores for

such ESTs are low. On the other hand, ESTs selected by 3′ proximity show less cross hybridization,

but show poor protein homology. Also, our analysis reveal that only a small fraction of contigs

align to the 3′ end of a protein (11% for pine and 25% for potato). This suggests that most of the

ESTs selected from the 3′ end of the contigs actually come from the coding regions of the genes.

ESTs selected by quality the score give considerably better values of all three quality parameters.

They show higher protein homology, less cross hybridization, and greater length. For this reason,

we recommend that EST probes be selected based on their quality scores.

Our methodology improves on NCBI UniGene as GeneSieve assembles ESTs into contigs and

uses more reliable consensus sequences to assign them annotations. GeneSieve is similar to TIGR

Gene Indices and Sputnik in assigning annotations to ESTs. However, GeneSieve also links ESTs to

MIPS and GO functional categories. In addition, GeneSieve assigns quality scores to the ESTs to

aid biologists in selecting EST probes for custom microarrays. To our knowledge, no other system

provides this capability to select EST probes for custom microarrays.

We have designed a web interface for quick and easy selection of EST probes for microarrays.

We have linked results obtained from the GeneSieve protocol to the sequence databases and well

known functional categorization schemes such as MIPS and GO. This allows one to select EST

probes based on their annotations or functional categories. Selection of EST probes by GeneSieve

ensures representation of all genes of interest, less redundancy, sufficient specificity, and less cross

hybridization. It also assigns unambiguous annotations and functional categories to the microarray

probes.. GeneSieve can also be used to assign annotations and functional categories to the ESTs of

interest. Recently, we have added other plant species, such as tomato, maize, barley, and rice to the
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GeneSieve database. GeneSieve can also be used to find homologs of a gene in different species and

selecting equivalent probes in multiple species.

At present Arabidopsis thaliana is the model organism for all the plant species included in Gen-

eSieve. ESTs from pine, potato, tomato, rice, maize, and barley are compared with the Arabidopsis

proteins to assign annotations. Once the completed rice transcriptome is available, we will add rice

proteins to the GeneSieve. Rice will serve as the model organism for plant species of the Gramineae

family, such as barley and maize. ESTs from these species will be compared to the rice proteins. We

will also add other members of the Gramineae family, such as wheat, oat, sorghum, and sugarcane

when sufficient number of ESTs become available for them. In the future, GeneSieve will be en-

hanced to be a flexible repository and analysis tool for biological sequences of additional kinds. BAC

sequences and promoter sequences will be incorporated in GeneSieve to support promoter analysis.

To summarize, we have developed the GeneSieve methodology that assembles EST sequences

from multiple target organisms into contigs; derives annotation for ESTs and contigs by comparing

them with annotated sequences of the model organism; links ESTs and contigs with well known

functional categories such as MIPS and GO; and evaluates ESTs according to various criteria and

scores to select an EST to best represent a contig and hence a gene in a target organism. We have

implemented the methodology with a system that maintains essential information in a relational

database and that supports user-guided selection through a web interface. The user has access to

protein annotation and functional categories (MIPS and GO) as means to initiate experiment-specific

selection.

We hope GeneSieve will become a single stop for selecting EST probes for custom microarrays.
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