Improved Numerical Procedures for Soil-Structure Interaction

Including Simulation of Constructicn Seguences,

by
John Gwin Lightner, III

Thesis submitted to the Graduate Faculty cf the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in

Civil Engineering
APPROVED:

- m e w  EE T W e W A W =

C.S-—Pesai

D.N. Contractor R. T« RreLs

A.E. Scmers

Septenber, 1979
Blacksburg, Virginia



ACKNCWLELDGEMENTS

I would like to express my deepest appreciation for the
support of my wife, Yvette, without whose help this work

would never have been accomplished.

Appreciation is extended to Dr. Ca Sa Cesai for his

guidance and support. A special thanks goes tc Dr. S. Sture

for his comments and suggestionsa.

ii



TABLE OF CONTENTS

ACENOWLEDGEMENTS 2 o « o o o = = = = = =

Chapter

IQ

II.

IIIl.

Iv.

INTRODUCTION o o 2 o o o = o = o =

motivations and otjectives . . .
description of various technigques
SCOpe Of WOLK o o o @ = » o = =
outline Of chapters . « =« « « =

LITERATURE REVIEW <« o o o @ = o =« =

introduCtion o o @« « o = = = = =
basic feM o o @ « = e « a = =« =
enbankments o o o« e o o = @ = =
€XCAVALIONS <« o © = = = = = = =
interface €lements o o« = « <« < =
constitutive m0delsS .+ « « @« o o
COMBENELS o« a = = = @ = @ » = =« =

THEORETICAL LEVELOPMENTS o o« « o« =

introduction « o o« o o o o o o
irreqular gecmetries . .« . - « =
material modeling <« o« « o « =
contact problems (soil-structure
construction sSequUences .« « « « o
COMMENES w o o 2 = a o » = 2 = =

introduction o« 2 o « 2 « = = = =
basic formulation <« <« « = 2 = =
material models « o« o o w @« o =
linear e€lastiC « + o 2 « « =
nonlinear elastiC o« o« o « = =
elastic-plastiC « + o = o = «
other element typesS . o o = o =
interface element . o« <« <« - =
bar elements . « « =+ o ® = =
construction SEQUENCES o o « = »
in SitU = o o o « = =« = = = =
dewatering o« o« o = = = « « =
exXcavationl . 2 a = 2 o ° » =

-

-

»*

interaction)

- ii
page
- 1
- 1
« 2
~ 3
- 4
- b
.« b
« 6
.- 7
- 8
. 10
. 1
- 12
- 13
- 13
- 13
- 15
- 20
. 22
-« 29
. 30
« 37
- 46
- Ub
. 53
- 56



V. CODING
vIi.

Vii.
REFERENCES
VITA . .

VERIFICATION CF CODE

deposition or embankment . . . .
tie-backs .
structural element placement . .

-

introduction .
philosophy .

features cf program
coding difficulties

comments

-

Introduction .

General Verification
distorted element
pure beam bending

cap model test
bar element test

-

-

-»

-

-

-

-

- - - - - - -

.
8 & ¢ 4
[}

[

]

.

- - - - - - -

- - - - - -

tests < & - . .
problem . . . .
thick-cylinder probtlem . . . . .
hypertclic test .

- o - - ™ - -

interface element teSt & o « « «

soil-interface study

Construction Sequences
in situ .

dewatering
embankment
excavation

-

-

tie-back wall example

advanced fproblems

footing problem .
dam with sequential

retaining wall

Comments <

CONCLUSTIONS .

Summary

»

-

Future Recommendations

-

-

iv

Verification

embankemnt .

- - - - - - -

o ¢ s 4

62
64
66

67

67
67
68
72
17

78

78
78
80
83
86
90
95
98
101
104
108
110
110
110
113
113
120
120
122
126
130

132
132
133

134

141



LIST OF TABLES

Comparison of Two and Three Point Integraticn
Distorted Element Test Besults « « o & = « «
Results for Beam Bending Problem . . . . < .
Axisymmetric Problem RESUItS o« « « 0o o = o =
Material Parameters for Hyperbolic Test . .
One-Dimensional Test ReSULtS o« o 2 o o = =+ «
Interface Parameters for Soil-Interface Test
Besults of Scil-Interface Test o < o o« = o »
Material Properties of Simple Retaining Wall

Material Prcperties for Ctter Brook lfam . .

page

102
106
107
117

125



LIST OF FIGURES

Mesh

Figure

1. Basic Plane Element . <« o« a « =

2. Interface Element < o« w o = « =

3. Behavior of Interfaces . . . . «

4. Bar ElementsS o o o o « ¢ « = = o

5. Example of Dewatering Mesh . . .

6. Tie-back Illustration . . « <«

7. Unloading Stress-Strain Response

B8a Single Test Element Mesh . « - «

9. Distorted Element Gecmetry . . »

10. Meshes for Distérted Element Tests .
11. Pure Beam Bending Problem . . .

12. Axisymmetric Pressure Vessel . .

13. Hyperbolic Test Problem . . . .

14. Hyperbolic Test Problem Results

15. Cap Model Test Problem - . « . «

16. Cap Model Test ResSUltS o« o + o »

17. Bar Element Test Problem . . . .«

18 Interface Element Test Prcblem .

19. Mesh for Soil Interface Test . .

20. Construction Sequences Dekugging

21. One-Dimensional Initial Stress Results
22. One-Dimensional Dewatering Results . .

vi

prage

100

103

105

109

112



23.
24.
25
26.
27.
28.
29.
30.
31.

32.

One-Dimensional Excavation Results . . . .
Simple Retaining Wall Problem . - « <« - «
Wall Deflection of Simple Retaining Wall .
Surface Settlement Behind Simple Retaining
FOOting PIOLlEM w2 2 » » o =2 @ = = « = = =
Load-Deflecticn Curve of Footing . . « .
Geometry and Mesh for Otter Brook Dam . =
Displacement of Otter Brook Dam Face . . .
Mesh for Passive Earth Pressure Test . . .

Results for Passive Earth Resistence Test

vii

wWall

114

115

118

119

121

123

124

127

129

131



Chapter I

INTRODUCTION

1.1 MOTIVATIONS AND OBJECTIVES

The advent of the modern digital ccmputer has 1lead to
increased use of numerical models to simulate various
physical phenomena. The Finite Element Methcd (FEM) is one
such model which has been used extensively for solving
complex engineering problenms. Simulaticn «c¢f construction
sequences and soil-structure interaction is one such problenm

to which the FEM has been applied.

Accurate simulation of construction seguences and

soil-structure interaction has been attempted many times in

the past. Most of these attempts have g[fprcven to be
successful only for 1limited classes of construction
sequences and soil-structure interaction prctlens. The
difficulty occurs due to factors such as nonlinear
materials, complex geometries, contact phencrenon between

soil and structure and nonhomogenecus materials. The FEM is
capable of handling many of these factors with considerably
less effort than cther numerical or analytical techniques.
The work presented here endeavers to extend and improve, 1in
a unified manner, on formulations and codes developed in the

past.



1.2 DESCRIPTION CF VARIQOUS TECHNIQUES

The FEM is a numerical technique tased on discretization
and interpolation. Its advantages are rather great compared
to other methods such as the finite difference method. The
FEM's major rawback is its generally higher <cost in
computer time as compared to other methcds such as the
finite difference method or the boundary 1integral method.
However, as the complexity of the problem increases, the FEM
becomres more and more competitive in this resrect. The
major stronqg rpoints of the FEM are its ability to accoun*
for complex gecometries, | nonhomogeneities and material

nonlinearities.

The basic idea in the FEM is to divide the ccntinuum into
discrete subdomains called elementsa. These e€lements are
connected at discrete points called nodes, which lie on the
element boundaries. The form of the solution for each
element is assumed a priori by using appropriate
interpolation functions for the unknown guantities within an
element and from node to node. The solution for the total
domain is found by solving the set of simultanecus equations
arising from assembling the equations for all of the

elements.



There are four main types of finite element formulations
based on variational principles (energy methods). They are
the displacement approach, the equilibrium agproach, the
hybrid approcach and the mixed appgoach. Each of these
approaches have their own strengths and weaknesses. A
displacement approach model was chosen for this research due

to its simplicity and the availabilty of vast amounts of

kncwledge on it.

1.3  SCOPE CF HWCRE

Derivation of a formulation for a displacement FEM model
for simulation of construction seguences including

soil-structure interaction was the majcr result of this

research. The rmajor sequences considered were initial
stress state (in situ), consolidation {devatering),
excavation, deposition or embankment, tie-backs and

structural components.

The material nonlinearity of the scil was modeled by
making several different assumptions such as linear
elasticity, nonlinear elasticity‘and plasticity. A FORTRAN
computer code was written tc irplement the formulationa
This program for modeling SECuential CONstruction (SEQCON)

represents the bulk of the work. It is intended to be a



practical tool for wuse by engineers 1in the «construction

Areda

1.4  QUTLINE OF CHAPTERS

The research consisted of three major secticns. These
sections are the formulation of the model, the coding of the

formulation and the verification of the ccde.

The formulation of the model is discussed 1in chapters I
through V. Charpter I provides the intrcduction and
discusses the choice of the tasic model tyrpe. Chapter II
contains a literature review and highlights past work in the
area of construction sequences and scil-structure
interaction. Chapter III discusses the physical nature of
the wvarious contributions to the simulation problenm
including geometry and constitutive modeling. Chapter IV
contains the actual derivation of the various parts of the

formulatioNe

The coding of the formulaticn is explained in chapter V.
A great deal of emphasis was spent in obtaining an efficient
code which is easy to implement. The details of how this

was accomplished are included in this charter.



Verification <o¢f the computer code 1is one <f the more
important sections. The verification procedure is outlined
and discussed in chapter VI. It is in this chapter that the
various <capabilities of the code are demcnstrated. The
importance of this section is due to the need to establish
the validity of the rprogram and to build <ccnfidence in the

mind of the user.



Chapter II

LITERATURE REVIEW

2.1 INTRODUCTION

A review of the past work 1in the area of finite elements
and construction sequences was performed in order to provide
a basis for the present research. Emphasis was placed on
the review of previous models for simulation of comstruction
sequences. The description of these nmodels generally
included such subjects as basic FEM procedures, material
nodels and interface elements. Although this review is not
complete, an attempt was made to provide an overview of the
history and the state-of-the-art of the =simulation of

sequential constructiona

2.2  BASIC FEM

The FEM has been popular for many years now. Most of the
general aspects of the FEM have been describted in books.
Authors such as Desai and Abel (19), Desai {17), ©Oden and
Reddy (48), Zienkiewicz (57), and others (2) have presented
complete details on the basic FENM. Therefore, «c¢nly topics
relevant to sequential ccnstruction steps such as

enbankments and excavaticns will be discussed in detail.



Most of these specialized topics are only tcuched wupon in

the books mentioned above.

2.3 EMBANKMENTS

One of the earliar works o¢n embankments was performed by
Goodman and Brown {27). They recognized the errcor in using
direct gravity turn on analysis and devised an incremental
solution based on closed form elasticity soluticns. Cnly
the stresses and equilibrium of the enmtankment were

analysed.

One of the earlier studies on embankment analysis which
considered sequential deformation of the system was by
Clough and VWoodward (14). Their vork <ccnsidered nmost

factors of simulating embankment construction that are used

NOWa These include incremental sclutions and nonlinear
material properties. Emphasis was placed on deformations.
They contended that although most embankment designs
satisfied stability requirements, often excessive

deformations could cause problenms.

Kulhawy, Duncan and Seed (U42) presented the use of the
FEX for embankment analysis using a hypertclic 1law to
simulate stress-strain curvesa. Their work is an extension

of Clough and Woodward's work (14).



2.4 EXCAVATICNS

Finite element modeling of excavations was begun very
shortly after the FEM became available. Brown and King (3)
did some of the earliar analyses 1in this area. They
extended the work cf Goodman and Brown (27) <c¢n embankments
for application to the simulation of excavation. No
retaining structures were ccnsidered. They developed a
general FEM program for modeling Loth excavation and
embankments. Major emphasis was placed on equilibrium and

stability considerations.

Clough and Duncan {3,8) nmade important advances in
modeling excavations. They developed a prcgram based on
four node gquadrilaterals for simulation of general
construction sequences including retaining structures and
interface elements. Interpolaticn of the stresses of
several elements was used to calculate the stress on the
excavated surface. Use of a noniinear elastic material
model was made. Results of finite element predictions for
various assumptions of wall roughness were compared to
theoretical soclutions and field observaticns for lock

structures.



Design and analysis of a tied-back wall system was done
by Clough, Weber and Lamont (13). The work presented
demonstrated the power of FEM modeling of excavation and
sequential construction in application to design. The FEM

results are ccmpared favorabkly to field measurements.

Desai, Jchnson and Hargett (21) aprlied the FEM with
sequential construction to the protlem of a gravity lock on
pile foundations. The results were ccanpared with field
observations. They pointed out various limitations of

previous models for simulating construction seguencesa

Christian and Wong (€) demonstrated that numerical
procedures 1involving excavation assuming 1linear elas*ic
material could be 1in serious error. They showed that
excavating a straight cut in one lift was nct equal *o using
several lifts. They reasoned this was due tc inability of
lower order elements to model the high stress gradients at

the toe of the excavation.

The validity of the plane strain assumpticn for modeling
tied-back retaining walls was addressed by Tsui and Clough
(56) « Through the use of laboratory models, closed form

solutions and numerical methocds they «concluded that the
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plane strain assumption can be valid for many ccnventional
tie-back spacings. Por walls which use solider piles with

vide spacing the use of plane strain models may be in error.

Clough and Mana {10) demonstrated the usefulness of a
linear strain isoparametric quadrilateral for tied-back and
braced walls. Their major contribution was a procedure for
obtaining an approximent stress free boundary Ly satisfying

total element equilibrium.

One of the wmost recent advances in FEM nmodel of
excavations was made Ety Osaimi and Clough (49). They
developed a model which accounts for excavaticn, retaining
structures and consolidation. The inclusion cf a coupled
consolidation formulation provides a means cf acccun+ting for

pore water pressure changes in a consistent manner.

2.5 INTERFACE ELEMENTS

Interface or jcint elements have often teen used to
account for earth-structure 1interactions. Cne of the
earliest joint elements was developed by Goodman, Taylor and
Brekke {29). It was initially developed for mcdeling rock
joints. Desai {(18) and others ({9,21) have adopted the

element for use in soil-structure interacticn problems. The
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basic features of the Goodman, Taylor and Brekke model are
that it is based on relative displacements as guasi strains
and assumes zero Jjoint thickness. Althcugh relative
displacements are used in the formulation, +the element
equations contain nodal displacements as unknowns.
Zienkiewicz, et al. (58) has made use of solid isoparametric
elements to model interface behavior. Ghaboussi, Wilson and
Isenberg (26) have «criticized the rrevicus interface
elements for a variety of reasons. They have developed ar
element in which the relative displacements themselves are
the unknowns to be solved for. Ghaboussi, Wilson and
Isenberg c¢laim better numerical stability among other
benefits for their element. However, their fcrmulation may

not be much different from the previous approaches.

Herrmann (32) has presented interface mcdeling as the
more general case cf contact problem modeling. He does not
generally use a specific element for interface modeling,
instead, he makes use of springs <connecting the two

materials across an interface.

2.6 CONSTITUTIVE MCDELS

Constitutive models for geologic media have developed

greatly in Trecent yearsa Several excellent overviews of
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constitiutive modeling are available. One of the best is by
Christian and Desai (5)a. The reader is referred to their

work for a complete review.

2.7 CCMMENTS

A critique and the state-of-the-art on varicus aspects of
soil-structure interaction is presented in the text by Desai
and Christian {20). Detailed consideraticns cn constitutive

laws for geologic media are also presented in this book.



Chapter III

THEORETICAL CEVELOPMENTS

3.1 INTRODUCTION

Simulation of construction sequences and scil-structure
interaction requires coasideration of various physical
characteristics of the ©prcblenm. An accurate simulation
rodel must consider as many of the factors affecting the
process as 1is possible. The complex nature cf construction
sequences and soil-structure interaction reqguires tha* more
factors be considered <compared to other commcn problenms.
The remainder of this chapter discusses these complexities

and describes how they are handled in a numerical procedure.

3.2 IRREGULAR GECMETRIES

Construction sequences and soil-structure interac*ion
problems usually involve complex gecmetries. An additional
complexity that often occurs during sipulation of
construction sequences 1is changes 1in thke gecmetry of the
domain. Two exarzples of these changes are, excavation
during which the dcmain becomes geometrically smaller, and
deposition during which the domain increases. Such Jomains
may include arbitrarily shaped slopes and other factors such

as right angles and curves.

13
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Most analytical solution techniques utilize some type of
idealized geometry. Most geometries encountered in the
simulation of construction seguences have nc known closed
form solution. The finite difference method may be capable
of handling <certain 1levels of complex gecrmetries, but
special techniques or efforts are often necessary. Two
techniques which can handle irregular gecmetries quite
easily are the FEM and the boundary 1integral method. The
boundary integral method has some other difficulties which

will be mentioned later.

There are two major reasons for the FENM's ability to
model complex geometries easilya First, element shapes can
be arbitrary and can be chosen to fit whatever boundaries
that are likely tc be encountered. Possible €lement shapes
include triangles and quadrilaterals with varicus orders of
curves for the element sides. Second, and most importantly,
elements do not have to be the same size cr shape. Using
only gquadrilaterals it 1is ©possible to model a «circular
boundary by dividing the domain into sufficiently small

elements.
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3.3 MATERIAL MODELING

Geologic media is well known for its great variation in
properties and highly nonlinear constitutive tehavior. Real
problems dealing with geologic media usually have many
layers of material with each layer having different
por?erties- The nonhomogeneity of geologic media is one
complexity which precludes the easy use cf <clcsed fornm
solutions. The FEM is capable of handling the
nonhomogeneous nature of geologic media through its ability
to include any number of elements with different materials
properties. By dividing the domain 1in such a way that
element boundaries coincide with the interfaces of different
materials, nonhomogeneocus media can be mcdeled. Finite
element formulaticns can also be derived wherein the

material properties vary within an element.

The nonlinear behavior of geologic media frcvides one of
the more difficult problems in the simulation fpreccess. The
FEM is <capable of accounting for the nonlinearity but it
requires the use of an incremental and/or iterative solution
approach. The main problem in nonlinear geclcgic media is
not the solution procedure itself. Instead it 1is the
representation of the stress-strain relaticnship of the

material in a realistic mannera The stress-strain
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relationship is known as the constitutive law cr model of
the material. Ccnstitutive models are functions of many
variables such as the present stress state, the density, the
temperature, the strain state, the water content, the stress
history and the type of loading. To determine which of
these factors are significant, extensive (labhoratory) tests
must be performed. A constitutive model may then be derived

using the laboratory data as the tasis.

Three basic material model classes were considered. They
are linear elastic, non-linear elastic and elastic-plastic.
Each of these model classes are applicable to geclogic media
although the most realistic mcdels are prckaktly those based

on plasticity.

Linear elastic models are the simplist tc derive and use.

They are alsc the least accurate since the ncrlinear nature

of the problem 1is ignorede Their main use can be for
initial studies of simulation problens. For problems with
small displacements and stresses, the linear elastic model

may provide reasonable results. There are only two material
parameters required to completely define the tehavior for a
linear elastic and isotropic mateial. Overall, the linear
elastic model has 1limited value 1in most scil-structure

interaction prcblems including simulation of ccnstruction.
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Nonlinear elastic models represent the first step toward
a true nonlinear ccnstitutive law. These mcdels are based
on a piecewise linear elastic assumption and as such are
merely an extensicn of 1linear elasticity. The procedure
followed is to modify the (two) material r[farameters fronm
linear elasticity 1in an incremental fashion to follow
nonlinear material behaviora The material farameters are
often taken to be functions of the current =stress statea
Several different models have been derived in this class.
Their basic feature is that various laboratory test results
are represented 1in either a tabular form or in a direct
functional form. Most of the models are assumed to fit sone
type of function such as a hyperbola, spline, pclynomial or
exponential. Hyperbolas are the most pcpular functions in
use at this time although others such as splines or modified

Ramberg-0Osgood may be superior.

Hyperbolic models have been used for several years and
there is a great deal of information availatle of their use.
They are relatively easy to implement and tc use in solving
general simulation 'problems in construc*ticn sequences.
Their major drawback 1is the 1inconsistency of ‘their
formulationa. They can be used to represent cnly one set of

stress-strain curves at a time. Hence, they cannot be used
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for problems involving 1large variations of stress paths.
Therefore their wuse in soil-structure 1interaction problems

is limited and great cautiocn is needed when they are used.

Plasticity models can allow consideration of stress
history and stress pathsa Twe plasticity models which will
be used here are a Drucker-Prager type model and a cap type
model. Most plasticity models are based on stress
invariants. They are usually derived 1in a consistent
fashion and can lead ¢to well behaved mcdels for a given
class of problems. Most simple plasticity mcdels do not
adequately represent geologic media and it is necessary to

use more sophisticated types.

Plasticity models nmake use of so called yield surfaces
for determination of the state of the body. At any point in
a body weither the medium is on the yield surface or below
it. The body is said to be rplastic if the state of stress
is on the yield surface and elastic if below it. The yield
surface can be either some type of failure envelope or a
pre-failure yield envelope. Yield surfaces are usually
direct functions of the stress invariants and often sonme
additonal quantity representing the history cf 1loading of

the body. The maximum past hydrostatic [pressure is one
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variable which may be wused to represent the history of

loading.

The Drucker-Prager wmcdel represents one of the simplist
models which have been applied to geologic media. They make

use of only one yield surface which is defined by (5):

- 1 - =
£ = /3! + al, k=0 Eg. 3.1
Where
J, = [(o, =0 )% + (g - 2 - 2
2 xx Oyy ( yy Gzz) + (oxx ozz) 1/6
+ 02 4+ g2 + g2
Xy Xz yX
I, =0 + + 0
1 XX vy zz
&,k = material constants
0,. = Stress tensor

Linear elasticity 1is usually assumed for s*tress stazes
below the yield surface. The major otjection to the
Drucker-Prager model 1is the large volumetric plastic strains
which the model rpredic=ts. These strains have not been
observed in laboratory tests. Therefore the Crucker-Prager

model may not be very satisfactory for representing wmany
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geologic materials. It 1is 1included here due <to 1its
simplicity and as a demonstration of the use cf a plasticity

modela

Capped yield nodels represent one of the improved
constitutive laws for application to geclogic media.
Through the use of two cr more yield surfaces it is possible
to have a continuous nonlinear response. One or more yield
surfaces represent the failure envelope in a cafp model while
the cther yield surface allows rlastic strains to develop
below failure stress states. This pre-failure yield surface
is commonly refered to as a cap. The cap is allowed to move
depending upon some variable such as the plastic volumetric
straina There are a variety of functions used to describe
the cap and failure surfaces. The failure surface is often
assumed to be of the Drucker-Prager type while a tullet or

ellipse is assumed for the cage

3.4 CONTACT PROBLEMS (SOIL-STRUCTURE INTEEACTICN)

Transitions from geologic media to man made structures
usually involves large changes in material prcrerties. The
changes are often so great that the medium wmay becone
discontinuous at the soil-structure interface. The

resulting phenomonen, known as soil-structure interaction,
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is the most complex factor to be considered 1in simulating
construction sequencesa. Basically the —reascn for the
difficulty 1lies in the fact that under ccmpression the
interface remains continuous. Tension causes the interface
to separate and the body becomes discontinuous. The problen
is magnified by the requirement that under compression the
interface has infinite normal stiffness while under tension

it has zero stiffness. Relative shear movements between the

two materials must also be accounted fore For
soil-structure interaction protlenms, shearing tehaviour is
the important mode to be modeled. Shear strains can be as

large as several hundred to several thousand fercent at an

interface.

Most interface models use the <concept <cf relative
displacements to avoid the problem of finite strains. These
models use stresses and displacements as basic gquantitiesa.
They have material parameters which relate the stresses
directly to the relative movement of the two materials.
These interface models bhave had 1limited success for a
variety of | prcblems. Often they cause numerical
instabilities in a problen. The —reason may 1lie in the
inconsistency of their formulation as ccmpared to the

two~-dimensional s0lid elements useda Research in this area
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is continually going on and hopefully imprcved interface

models will become available in the near future.

3.5 CONSTRUCTIION SEQUENCES

The actual sters of constructicon need tc ke considered
for an accurate simulation. Since the problem is generally
nonlinear, the order and manner of the actual construction
needs to be taken into account. The problem is to identify
the steps in the actual field construction and then reduce
them to valid numerical equations. The reduction to the
numerical equations needs to include as many c¢f the field
conditions as can ke thought cf. During the fcrmulation of
the model 1is where most simplifying assumptions should

oCcur.

Six main features of construction are considered and a

list is given belovwa.

1. ip situ - Calculation of the initial stress state

of the mediume.

2. Dewatering - Process of lowering the iritial water

table.



23

3. Excavation - Process of removing material from +he

domain.

4. Deposition - Process of adding material to the
domain.

5. Support system - Procedure of adding tracing,

anchors, tie-backs

6. Structure - Process of adding various man made
structural components such as concrete and steel

to the domaine

The initial stress state in a domain is generally assumed
to be known before the scluticn begins. Obtaining this data

is an important and difficult protlen.

The procedure to calculate the 1in situ stresses requires
the knowledge of the gecmetry of the body, the density of
the material and the coefficient of lateral earth pressure
at rest (45,1). The governing equations are of the

following form (40):

H
g = [ vdh Egq. 3.2
0
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Oy = Koov Ege 3.3
Where
0, = vertical stress
9, = hcrizontal stress
= effective unit weight
H = depth from grcund surface
K = ccefficient c¢f lateral eartt

Eressure at rest

The process of dewatering 1is ccmmonly enccuntered during

construction. Usually it is a preliminary step to
excavationa. The rroblem occurs when the water table lies
atove the 1level of excavation. Dewatering 1is usually

accomplished by installing well points at various places in
the domain and then pumping water from the well pcin*s. The
dewatering causes consolidation process and =should be

modeled as suche.

There are many consolidation wmodels availatktle, cach
making different assumptions about the npature of <the
problem. The nmost sophisticated model is frcbably Biot's

theory of consolidation. Biot's theory 1is a coupled model
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in which deformaticns of the soil skeleton are linked to the
changes 1in excess pore wWater [ressure. The eguations

describing Bioct's theory of consolidaticn are:

- EqQ. 3.4
19k1%Kk1, 3 1j%,; * %, =0 3
K.
L] lJ =
e T 05 T Ey ) 70 Ege 2.5

censtitutive matrix of scil skeleton

("N
.
=
[
0]

€x1 = strain tensor of soil skeletcn

@ = interaction coerfficient
51j = Kronecker delta function
U, = excess pore pressure
X, = body force of soil

" = time drivative of
Kij = Darcy permealrility tensor
Y, = unit weight of fluid
f. = fluid body force

Excavation is the basic <construction process required in
most constructicn Jjobsa It 1is used tc rprepare the

foundation of almecst all buildings. The simulation of
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excavation has great impor*tance due to the large number of
buildings <coastructed in close cproxinmity to exis+ing
buildingsa The major questions to te answered are what
effect will the excavation have on existing buildings and
how much bracing will be required to sugport the excavation.
These two questions are guite closely related. The answers
to these questions will determine to a great extent the cost

of the excavation and foundation.

The physical Fprocess of excavation is not very conmplex
and its governing equation is gquite basic. Ncte that while
the process itself 1is siample the actual numerical modeling
is not. The difficulties of modeling excavation will ke
discussed 1in chapter 1IV. The governing equation 1s a
statement of the satisfaction of equilibrium at all stages

of excavation. The equations are as follcws:

£, =0 Eq. 3.6

Where

Q
[]]

stress teansor

fi body force per unit volune
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From the use cf equation 3.6 equivalent 1lcads may be
found resulting from removal of material frcm the domain.
These 1loads are then treated like any <cther surface
tractions and the new displacement and stress state may te

calculated.

Deposition usually occurs then embtankments for buildings,
roads and dams are constructed. The procedure in the field
usually proceeds in the following manner. Initially a layer
of material 1is deposited evenly over tke site of the
proposed embankment. The 1layer is then ccmpacted to sone
predetermined density to form a section of the embankment.
The total embankment 1is constructed by a series of similar
layers or lifts. The material has little strength until the
compaction step 1is performed. Therefore when a lift is
}placed its main effect 1is tc add a surface loading or

traction to the layers beneath it.

The governing equation for deposition 1is very simple and
the problem itself is often well behaveda The monotonic

nature of the ©protlem is the rain reason +that the solution
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is comparatively easy. The equation is a follcws:

Where
Y = effective unit weight of lift
Vl = vclume of 1lift
F = surface traction due to 1lif+

Installation of support sys*ems can be considered siamilar
to <he prestressing ¢f concrete Leans. For exanmple,
tie-backs act to prevent tension in the geclcgic wmedia bty
imposing an overall compressive stress. The compressive
stress is greater than nay tension stresses which might
result and thereby the 'soil is always kert in a compressive
state. The installation of tie-backs in the field involves
three basic steps. The first step is to drill a hole (at an
angle to the horizental) 1intoc the face of the excavation.
The hole is bored to depth beyond the zone «c¢f influence of
the excavation. The &mnext step is the installation of the
tie-back into the torehole. Installation is acccaplished by
sliding <the tie-back into the hole and then —rcressure

grouting the end <¢f the tie-back tc from t+the anchora. The
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‘tie-back itself usually consists of either steel cables or
steel reinforcing rodsa. Oonly the last pcrtion of +*he
tie-back 1is grouted. The remainder of +he tie-back 1is
usually encased in a plastic <sheath to prevent any transfer
of load to the media near the excavation face. The last
step is the tensioning of the tie-back tc rprovide the

overall compressive stress.

The 1last feature of a model to simulate construction
sequences is the ability to handle the additicn of various
structural components to the domaina The main requirement
is that the structural elements be added or deleted to the
domain at the proper stage of construction. The structural
elements considered here are generally either retaining

walls or tunnel 1linings.

3.6 COMMENTS

e

A description «c¢f the physical nature and the theory of
the simulation of construction sequences has keen presented.
The details from this description will be used to formulate

the simulation model in Chapter IV.



Chapter IV

FORMULATION

4.1 INTRODUCTION

Pormulating a model for simulating construction sequences
requires consideratble judgement. Each facet of the actual

process must be accounted for or a reason given for ignoring

it. Formulation involves a balancing cf accuracy versus
cost. More complex formulations are usually mcre accurate
but they are alsoc more expensive. During each step in the

formulation it is necessary to ask what 1is the simplist
formulation which will give adequate results.
Acknovwledgement of the limitations and probakle errors must

be detailed in the formulation.

Formulation of the sequential constructicn model was
developed in four fparts. The basic FEM model is the first
part and all of the remaining ©fparts are linked in sone
manner to it. Modeling of material properties is the second
part coansidered. Develorment of various special finite
elements used forms the third part. The forrulation of the

various construction sequences is developed last.

30
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4.2 BASIC FORMULATION

Displacement finite element models have been used for a
wide range of solid mechanics problens. Their numerical
stability and ease of formulation has been demcnstrated for
many problems. Due to their wide usage, a large amount of

information on them is availatle.

An eight node isoparanmetric element with quadratic
variation of displacenments leads to linear stress
distributions within the element. The process of
construction sequences can invclve high stress gradients and
therefore the 1linear s*ress element was chosen as a
ccmpromise between lower and higher order mcdels. Lower
order models would not be carpable of accurately reflecting
the high stress gradients unless a fine nresh was used.
Higher order models could be too expensive in terms of
computer tine. Another difficulty with higher order
elements 1is the requirement 1in sequential ccaonstruction
problems of a rinimum number of elements. A rinimum number
of elements is required to accurately model the gecmetry and
different materials in the problenm. Thus, the increased
capability of the high order element would cften be under

utilizede.
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Factors considered in the formulaticn cf *he elenment

include internal body forces, surface tractions and
concentrated loads. The body force is assumed to be only
due to gravity and acts in the global Y direction. The

surface tractions may vary linearly alcng the element

boundary. Concentrated or point loads may be specified at
any nodal point. The quadratic iscparametric formula*ion
allows the element sides toc be a parabolic curve. Curved

boundaries may be modeled using fewer elements as compared

to straight sided 1linear elements.

An outline of the element formulaticn will now be given.
The basic element used appears in Figure 1 . The
displacements within the element are assumed to te quadratic

functions of the global coordinates. They are expressed as:

2
U(X,Y) = a, + a. X + &,y + a X2 + a XY + a,¥Y"

1 2 4 5 6
Eqe 4.1
V(X,Y) =3, +8.X +8.Y + 3 X> + 8_XY + 3. v2
1 2 3 4 5 6
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p 3
Z/
4

A |

Pigure 1: PBasic Plane Elemen*



The problem is simplified
cooridinates for the element

correspondence between local

Ly making use of a set of local
in which there is a one to one

Using

and g%ohal coordinates.

interpolation functions based on local cocrdinates, +he

loaction of any point 1in the body may te found by

interpolation. The following relationshirp is used:

4.3

Fg. 4.4

Where Ni are defined as the interpolation functions

-
=

1/4(1+ssi)(1+tti)(ssi+tti-1)

Global coordinates
Global coordinates at node 1

Loccal ccordinates
corresponding to X,Y

Local nodal coordinates

ccrresponding *o Xi’Yi

-
-

An isoparametric feroulation implies he same

approximation for displacements as fcr the gecmetry.
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Therefore the global displacements are defined as follows:

V(s ,t) FQ. U.6

"

Il o oo
=
<

Where

0,V = Global displacements in X and
Y directions respectively

U,,V, = Global displacements in ¥ ard Y
directions respectively at ncde 1

N, = Same as above

The strains in the element are given bty the following

equation:
{e} = [Bl{g} Eq. 4.7
Where
{e} = vector of strains
{gq} = nocdal displacements of the element

transformation matrix for
displacement to strain

(B]



The displacement approach is based on the —rcrinciple of
minimum potential €nergye The functional used is expressed

ass
m o=/ (1/2{e}tT(Cl{e} - {v}T(Thyav
\Y)

- 7 T/s r T -
é‘l(tu} 1TX} + {v} {Ty})dsl

Where
{e} = vector of strains
[C] = constitutive relation between
stress and strain
Y = tody force due to gravity
{u},{v} = global displacements
[TX],[T ] = prescribed surface tractions in
y X and Y directions
S| = area over which the surface
tractions are specified
After substituting fecr the various ternms, taking

variation and equating to zero the follcwing egquation

results:

;oertrereiiar - YT av
\
Eqg. 4.9
- T .— —
- L (NIHT 3+ ) T(T hyas, = o
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Equation 4.9 is the basic governing equaticn for a sirgle
element based on the displacement approach. Ncte that only
the displacements at the nodes are unknown. Stresses may be
calculated by first finding the strains and +*hen using the

constitutive matrix as follows:

{c} = [C)[B]{qg} EG. 4.10

4.3  MATERIAL MODEFLS

Four constitutive models to aprroximate scil or rTock
behavior were fornulated. They range frcr the simplest

possible linear elastic model to a sophisticated cap model.

4.3.1 linear elastic

A linear elastic model was first formulated. The
material was assumed to be linear, elastic, and 1sotroric.
These assumptions lead to a «constitutive matrix with only
t¥o constants, Young's uodulus and Poisson's Ratioa No
further discussion of the linear model 1is needed due»to its

common usage and simplicity.
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4.3.2 nonlinear elastic

Nonlinear elastic models in which *he elastic paramat*ers
vary in some fashion provide the next ster tcward a more
realistic model. Young's modulus and Poisscn's ratio are
assumed to be of a nonlinear form. The values of the
paramefers are as functions of the stress state in the body.
The *angent Young's modulus and *the tangent Pcission's ratio
are assumed to be hyperbolic functions of *the stress state
in the present nmodel. The equations used fc: the *tangen+*
Toung's modulus and the tangent Poissca's ra+io are as

follows (5,18,42):

: 2
R.(1l - sin¢) (c, - o.)
f 1
E, = |1 - 3 Kp, (04/p )
2c cos¢ + 20, sing a a
Eg. 4.11
_ ¢ - F log(o3/pa)
£ - \cl - 03)a ;2
. Rf(ol-OB)(l-51n¢) ‘s (5 /o )n§
2c cos¢ + 20. sino ¥a 73 Fa |

3

dhere
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principle stresses

w
1]

Rf = failure ratio
$,c = Mchr-Coloumb strength parameters
P. = atmospheric pressure
K,n,G,F,d = experimentally determined
material parameters
Detailed derivations of the hyperbolic fcrmulation are

available in {24).

4.3.3 elastic-plastic

Plasticity offers another method of modeling geologic

media. It provides a more ccnsistent formulation *than the

piecewise linear model above. The Drucker—-Prager model is
one of the simpler plasticity models. Althcugh it is not
applicable to scils in general, it is capable of

representing some soilsa The Drucker-Prager mcdel is based
on the extended Mohr-Cclumb failure «criteria given by

{(5,23):

S =c¢ + on tan¢ Eg. 4.13

Where

S = Shear strength of media
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€ = cchesion
on = normal stress

¢ = internal angle of friction

The yield surface, which is, 1in this casse,

surface is defined on the basis of the first

stress invariantsa

£=oal, + /3 - k=0 Eg.

Where

o,k = material parameters

An associated flow rule 1is used whichk 1is

follows:

o
[
I
>
Q@
Qjlrh
[g1)
Ve
]

i]

a failure

and second

defined

as
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Also

de® = de®. + geP
13 = 98y *Todel Eq. 416
do . = ° - 4.1
15 7 Ci5en T £ 817

Differentiating eguation 4.14, and using egquations 4.15,

4,16 and U4.17 *c eliminate X, the follcwing equation
results:
doij
g = de.. - [A(g .6 + 0,.6
2G i 195 .. )
J 1j 1j k1 Fg. U.18
+ BS, & +
k1%1j T G940 1de
Where
h
A = EE
8 = (qoil Bl _ 3Ky
@ 6/Jé 3ap Ep
_ 1
S YAl
yJ! 2
_ 2 9a“K
P‘T(l+ G)



(o
[}

o w
o
I
o\ H

:

2

K = bulk modulus

E = elastic modulus

V = Poisson's ratio

(]
1]

Shear modulus

For plane strain conditions equation 4.18 reduces +“o:

——él = (1 - 2Aoll - B - Coil )dell

+ [-A(cll +0,,) =B - C011022)1d822

* (=Ag , = Coy19y,)dYy,

Eg. 4.19
dczz
5= = [-A(o, | + 0,,) = B - Co ,0,,ldey,
+ (1 - 2A0,, - B - Coéz)ds22
t (mRoy, = COy,0,,0dY,
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do33
26 = [7AlG) £ 953) =B - Copjog,lde) )
+ ['A(Gz2 + 04,4) - B Co,,0,41de,,
+ (—Ao12 C012033)dy12
Eg. U421
dclz
5 = (RO, = Copp9y50deyy
t (-Ro , = COp,05,)d8,
* U5 = Coly)dy,
Eqa 4.22

A, B and C are defined as akbcve.

o and k are defined in terms of the Mohr-Cclumb s=renqgth
parameters ¢, the cohesion, and ¢, the fricticn angle. For
plane strain one relationship between these r[fparameters is

the following:

tano

/(9 + 12 tan?o)
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3c

V(9 + 12 tan?o)

For more explicit derivations of the wequaticns above see

{5,58).

More advanced plasticity models may te derived by the use
of an additiomal yield surface called a cage. This cap
permits plastic flcw below the failure surface and can nodel
many more materials than the Drucker-Prager mcdel. The cap
model presented here arises frcm the work gpresented by
Sandler and Rubin (52). In this model an exponential
failure surface 1is used in <ccnjunction with an elliptical

Care

The functicn for the failure surface is as fcllows:
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and for the cap:

E (3,6 = £ /UIX() = L(x)]?

Eq. 4.26€
- I - L)1} = /3
in which:
X(x) = x - R £.(x) EGa U4a27
- /K 1f x < 0
L(x) <} if x> 0 Egq. 4.28
The hardening parameter 1s related tc the plastic

volumetric strain by the following equaticns:

EP = W[eDX(K) - 1] Fg. 4.29

[J]
Qa
]
=
.
w
o

deP is dssio, or «<J, and «x<0

0 Ootherwise
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Where
K = hardening parameter for cap
P . . .
€, = Plastic volumetTic strain

A,B,C,D,R,W material parameters

4.4 CTHER ELEMENT TYPES

The complex nature of simualtion cf ccnstruc*ion
sequences requires the wuse of several one dimensional
elements. Three such elements are formulated here. They
include an interface <element, a 1linear displacemen* bar

element and a gquadratic displacement tar element.

4.4.1 intecface element

The interface element used to model the discontinuity
between geologic media and man made media is tased on the
model proposed by Goodman, Taylor and Brexke ({29) and later
nodified and used Ly Desai (15,18,21). The original element
was developed for rock joints, but with the wuse cf proper
material parameters it can be applied to scil-structure

interfaces.

The basic assumptions invclved are that displacements

vary linearly along the element and that rotations are nct
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explicitly considered. The concept cf relative

displacements are used and they are defined as fcllows:

- 1{-A 0 -B 0B O0OAU ug
v “‘lo-a 0-3080a| |v,
%2
Vo Eg. 4.31
u3i
V3
Yy
Yy
Where
Auo = relative displacement or strain
in X direction
Avo = relative displacement or strain
in Y direction
A= 1- 2L/
B =1+ 2L/2
4;sV; = displacements in X and Y directions

respectively at node 1

Now relating the shear and npormal stresses to the

relative displacements by a stiffness nmatrix leads to the



ug

thickness = 0

m—

'Figure 2: Interface Element

v
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equation:

T SSs Ksn Auo
= e 3.3
o K K Av Eq 2
n sn nn 0]
The Ksn term is usually taken to Lke zero due to
experimental difficulty in determining its froper valuea.

Using equations 4.31 and 4.32

matrix is as follows:

2K 0 0
S S
2K 0 K
n n
2K 0
S
) 2K
(K] = ¢
symmetric
L
The material parameters of

either be constants or variables.

the local

element stiffrness

-K 0 =-2K 0
S S
0 -K 0 =2K
n n
-2K 0 K 0
S S
0 =2K 0 -K
n
2K 0 K
2K 0
n n
2K 0
S
2K
n
p
Eg. 4.33
the 1interface element nmay

Tvo mcdels fcr material



behavior of interfaces were formulated. The first model was
an assumption cf linear elasticity of the jcint. The effec*
of this assumption turns out to be that and are
bilinear. Wken the interface is compressed, the skear
stiffness will be some constant taken from a latora“ory
test. The normal stiffness will be_taken as a relatively
large value to revent the element from <closing *o a
negative thickness. f the element is under tension, borth
the shear stiffness and normal sitffness will te sert to a
relatively small value. This is done to mcdel the gap
between soil and structure since 1in most cases soils connot
maintain tensiona No rprovision for the failure of *the
interface in compression was made for this mcdel. The next
model formulated accounts fcr most o¢f +the rhenomenon of

interfaces.
A hyperbolic function was wused tc provide a ronlinear
model for the interface element. The basic <c¢riterion for

failure of the 1interface in shear 1is the Mohr-Colounmb

criterion (15,18,21):

= + o)
S c o, tand Eg. 4.34

Where
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Tension 9,
“n
Compression

Tension | o,
s

Compression

Figure 3: Behavior of Interfaces



(@]
1]

adhesion of scil tc structure

o
[l

friction angle between scil
and structure

The nonlinear Etehavior up to and including the failure

criteria is rerresented by the following equaticn:

Rflosl

K - 2 - 2 FEgQe. 4.35
st KjYw(Gn/pa) (1 Ca + Ontané] d
Where

K.t = tangential shear stiffress

K, = shear stiffness factor

yw = unit weight of water

p = atmospheric rressure
a
Rf = failure ratio
C ,6 = defined as albove

Equation 4.35 1is wvalid c¢nly for compressive normal
stresses. If the ncrmal stress goes in%tc tensicn the shear
stiffness is given a relatively small value. The normal
stiffness is defined in the same manner as 1in the firs*

model.
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4.4.2 bar elements

Two Dbar e€lements were formulated for use in wmodeling
tie-backs. A quadratric model was derived toc provide
compatibility Lketween the soil elements and bar elements. A
linear model provides a tar element which can Lte independent

of the soil elements.

The linear bar element follows Desai's (17) derivations

and the local stiffness matrix 1s as follows:

1 -1
l Eg. 4.36

Where
A = Area of bar
E = elastic modulus
¢ = length of the element
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The global stirffness of the linear element is as follows:

c? cs -C? -Cs

_ AE §s? -Ccs -s? Eq. 4.37
[K] - 7 C2 CS
SZ

Where
C = cos @
S = sin @

o = inclination of element with resrect
to the X axis

The quadratic bar element's 1local and glcbal stiffness

are similar to the linear stiffnesses:

7 -8 1 Fq. 438
(K] = %% -8 16 —8,
1 -8 7
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2-node Bar

3-node Bar

Figure 4: Par Flements
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[7c% 7cs -8c? -8cs  c?  cs]

75% -8CS -8S*? CS S?

(k] = 2E 16C* 16CS -8C? -8Cs
32 1652 -8c§ -852
symmetric c 7C§

i 757

Eq. 4.39

The material parameters are assumed to ke <ccnstant in each

element for both models.

4.5 CONSTRUCTION SEQUENCES

The majority <cf the fcormulation work was spent in
developing the sequential construction algorithns. Each of
the construction stages to Dbe simulated was <carefully
analyzed. Then the theoretical developments frcm Chaprter

III were modified and the model was fcrmulated.

4.5.1 in situ

The initial stress state in a media is gemerally assumed
to be known. Equations 3.2 and 3.3 provide the means to

reproduce the in situ stress in the simulaticn modela. The

finite element Tfrogram provides a means tc <calculate the

vertical stress with no additional formulation effort. The
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soil mass is assumed to kehave as a linear elastic body and
the forces are derived from the gravity loading-cf the body.
The horizontal stresses are then set equal t¢ the vertical
stresses mnmultiplied by the <coefficient of lateral earth
pressure at rest. Shear stresses are assumed tc be zero for
all casesa If the ground surface is sloping, appropriate
shear stress should be included. For hcrizontal ground
surfaces the formulation will provide good representation of

the ip situ stress if the «coefficient <¢f lateral earth

pressure at rest 1is known.

4.5.2 dewatering

Dewatering is the next stage of =sequential construction
considered. In Chapter III the time dependent and coupled
nature of the dewatering problem was discussed. In order to
provide an economical formulation a very crude approximation
of the dewatering process will be formrulated. Both the

coupling effects and the time effects are neglected.

The only effect of dewatering accounted for 1is the
increase in the effective weight of the soil. This increase
is accounted for by a body force within an element which has
been dewatered. The body force is taken to be <+the unit

weight of water. The equation below represents the method
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of calculating the body force.

{F} = 5 vy [N]Tdv' Ege 4.40
vr ¥

Where
{F} = ncdal forces

Y. = unit weight of water

[N] interpolation function matrix

V'

vclume of dewatered element

Note that equation 4.40 applies only toc elements which
were submerqed during the stage before and are now above the
vater table. No loads are generated by a decrease in pore
water pressure alone. In Figure 5 only elements 1, 2 and 3
have Dbody force 1loads due to dewaterinqg The remaining
elements are affected 1indirectly by the loading from these
three elements. The material parameters of dewatered
elements may be changed alsoc. While the formulation
neglects many important features of dewatering, it does
provide an approximate solution to the proktlen. For sonme
problems dewatering may not be the «critical step and
therefore the proposed formulaticon can provide a reasonable

ansver at an economical costa
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Initial water level

uIQ

1 2 3
Final water
4 5 6
level
7 8 9

Pigure S: Example of Dewatering Mesh
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4.5.3 excavation

The process of excavaticn requires careful formulation in
order to obtain reasonable answers. The basic requirement
of the problem is that the excavated surface be stress free.
Also, due to the nonlinear material involved, the thickness

of the layer removed at each step nust be fairly small.

The quadratric element generally alloss a mcre accurate
fulfillment of the stress free boundary requirement as
conpared to lower crder elements. A guadratic element can
have one boundary with zero stress while other toundaries
have some finite stress. Linear elements have constant
stresses throughout and therefore to obtain a stress free
boundary the entire element must have a zerc stress state.

The basic algorithm for excavation is described telow:
1« The initial stress state of the body is ottained.

2. The elements to be excavated are deleted from the

systema

3. Iterations are performed until equilibrium of the
remaining elements 1is obtained and a stress free

boundary is approximently obtained.

4. Repeat steps 2-3 for each 1lift.
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Two key features of the excavation routine are the fact
that excavated elements are completely removed from the
system and that the stress free surface 1is cbtained by
satisfying equilibriunm. The equation wused for calculating
the nodal forces in an element due tc the element's stress

state is:

{F} = (B8] T{c} av Fg. 4.41

<~

Where
{F} = nodal force vector
[B] = displacement strain transformatico matrix
{oc} = vector of stresses

Summing all the forces calculated by equaticn 4,41 for

each elements and adding to the applied forces leads to a

global residual load vectora This load vectcor reflects the
degree to which the element assemblage is not in
equilibrium. Equation 4.41 provides the tasis for the

iterations to find the equilibrium and corresgcnding stress

free surface of the body.
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The use of an quadratic element and the consistent methcd
for calculating the =egquilibrating load vector can be
considered fairly new. Some of the merits of these fea*tures

have been discussed by Clough and Manna (10).

4.5.4 deposition or embankment

The formulation of simulating embankment cconstruction

vwill be considered now. Enbankment cons*ruction is the
opposite of excavation. Simulation cf enbankment
construction is <considerakly easier than excavation. The

simulation of embankment construction is performed as

follovs:

1. The initial stress state is obtained

2. A layer of the embankment is placed.

3. The resulting stresses and displacements are
calculated assuming the newly placed material has

little strength.

4. TIterations are performed (if necessary) to oktain

equilibriunm.

5. The displacements of the surface of the embankment

are set to zero.
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6. Steps 2-5 are repeated for each layer.

The governing equation used toc calculate the loads is

given below:

{F} = 5 v, (N] Tav Eqe 442

Where
{F} = ncdal forces
Y = weight of soil in the 1lift element
[N] = interpolation functiocans
V = vclume of 1ift emenment

Equation 4.42 is valid only for newly placed 1lift
elements. The remaining elements in the assemktlage are
loaded indirectly Lty the new 1ift. The displacements at the
top of each new 1ift are set to zero to simulate the fact
that embankments in the field are usually brought to the

proper elevation before a new 1lift is added.
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4.5.5 tie-backs

The major part of formulating tie-back simulation was
done above when the tar elements were formulated. As stated
in Chapter ITI, tie-back installaticn invclves four steps.
Boring the hole, placing the tie-back, grouting the tie-back

and then tensioning the tie-backa

The boring of the hole will be neglected 1in this
formulation due to the ccmplex nature of the prcblen. The
grouting process will be ignored for the same reasona The

actual processes in tie-back installation as formulated are:

1. Apply a force along the direction of the tie-back
equal and cpposite to the tension force in the

tie-backe
2. Solve for the new stresses and disrlacesents.
3. Add the bar elements which make up the tie-back.
4. Set the bar element stresses to the 1ini*tial

tension of the tie-tack.

The order of these steps seems odd but a glance at Figure
6 will illustrate the reason <clearly. If the Ltar elements
vwere added before the tensioning force was afpplied, they

would tend to resist *he tensioning force.
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Figure 6: Tie-back Illustration
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4.5.6 structural element placement

The placement of structural elements is the last
construction phase considered. Structural element placement
usually involves two steps. Removal of the geclogic media
where the structure is to be placed is first. Second is the

placement of the structural element.

The present formulation does not account for the removal
of the material where the structure 1s to be flaced. What
is formulated is to simply change the element constitutive
law from one of soil material +*c¢ that of structural

material.

This simple formulation can be quite adequate for most
prcblemsa Consideration of the actual removal of soil is

too expensive to be justified for most practical problems.



Chapter V

CODING

5.1 INTRODUCTION

Development of a code in order to model the process of
sequential construction has been one of the major tasks ia
this thesisa The complex nature of the proklem required a
rather large program. Due to the size of the cocde, a large
amount of time was needed to debug tkte program as

subroutines were added.

5.2 PHILOSOPHY

Significant effort was expended to make the code both

flexible and economical. At the same time, the input data
was minimized and simplified. All of these factors are
highly dependent <cn one another. Priority was given *o

making the input data as simple as possible.

Modeling sequential comstruction requires a great deal of
input data just to describe the problen. By minimizing the
data, the amount of user effort 1is decreased and
correspondingly 1input errors are decreaseda. Although

computational effort is increased, the ©program is nmore

67
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economical due to the reduction in human labor. Flexibility
of the code was ccnsidered to be the second mcst important
factor. Because of newv advances in the FEM, especially with
regard to geomechanics, the ability of +the <code to be
modified to include the new factors is important. Also the
code's ability to be modified to model new construction
sequences easily was considered important. At all stages of
the coding, the prcgram's computational efficiency was
optimized within the limits of simple user input data and

code flexibility.

The various features of the code are not new or original.
However, the use of all of these features in a simulation
prcgram for sequential construction may be considered to be
fairly unique. A1l of the features which will be discussed
below, either contributes to the ease in data input, program

flexibility or program efficiency.

5.3 FEATURES OF FROGRAN

Dynamic dimensioning of the arrays wused in the code
contributes to computer efficiency. By changing two lines
in the code both small and 1large problems may be solved
efficiently. An equation is provided to enaktle the user to

set the array size. Arguments of the equation are the
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number of nodal fpoints, the number of elements and the
maximum front width. The number of nodes and elements are
self explanatorye The maximum front width gquanitity is
related to the solution scheme used and will te discussed in
detail below. By tailoring the array size toc the problem
the region requirements for a fproblem are zinimized and

therefore the cost of the computer run.

The computer ccde is quite modular in design and utilizes
numerous sSubroutines. The use of a 1large number of
subroutines reduces the apount of duplicate <coding and
allows for ease in adding or deleting varicus features of
the code. For example, to obtain a highly efficient code
for modeling excavation only, all that is required 1is to
delete the subroutines dealing with <cther rhases of
copstruction. In the same manner, subrutines mdy be added
to model the <construction <c¢f reinforced earth retaining

walls or frozen earth tunneling technigues (43,36,53).

The frontal solution technigue developed by Iromns (35) is
used. Its use results in beth increased efficiency (35, 34)
and a reduction in data preparation effort. The technique
is based on Gaussian elimination which is cptimized for use

in conjunction with the FEM. Its unique feature 1is that
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degrees of freedcnm are eliminated as sccn as their
corresponding stiffnesses are (fully) assembled. The result
is reduced core storage requirements since the total global
stiffness matrix is never present at one time. Other
techniques such as the band-width method recguire that the
total global stiffness matrix be assembled before the
solution process begins. Cne result of the special solution
process is that the nodal numbering has nc effect on the
time required for solutiona. Other solution techniques are
directly dependent on nodal numbering for their solution
efficiency. However, the frontal solution does require that
elements be numbered in a special manner. The maximum front
width is a measure of how well the elements have been
numbered. By minimizing the maximum front wid+h, optimum
solution efficiency can be obtained. To calculate the front

width the following algorithm may be used:
1« Loop through each element, (M) in numerical order.

2. For each element (M) find the numbter cf nodes, (I)
which are attached to both elements numbtered lower

than M and elements numbered higher than M.

3. Take IMAX tc be the largest I fcund.
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4. The maximum front width (MFRON) is then egqual to
IMAX plus the number of nodes in the element
corresponding to IMAX, (NNE) all times the number

of degrees c¢f freedcm, {DOF) in the prcltlem.

The equation is as follows:

MFRON = (IMAX + NNE) DOF €q. 5.1

Numbering the elements to cbtain a minimum frcnt width is
much easier than numbering nodes in order to ofptimize other
solu*tion techniques. Another benefit is that the addition
of elements to a mesh is merely a matter of renumbering the
elements to retain optimum solution efficiency. Other
techniques require renumbering the nodal points for
retention of solution efficiency. Renumbering nodes also

requires changing all of the element connectivity data.

A graphics subroutine which plots +he input mesh 1is of
great aid to the user. The routine is intended to provide
an easy means of <checking the input data relating to the
nodal point data and element connectivity data. The routine

plots the mesh and numbers bcth the nodes arnd the elements



on most standard plottersa Most errors 1in the nodal or
element data may then be easily found by exarining the plot

of the mesh.

A data debugging code was also prepared in conjunctiocn
with the progran. This code is a special versicn of the
main code. Only the data for a proktlem is read im and then
written out onto [paper or at a terminal. Nc ccmputations
are done. The mesh plotting routine mentioned above is also

utilized.

The use of a seperate code which is much smaller than the
main program allows the program to be run interactively at a
computer terminal. Through the use of the debugging code
interactively, error free input data may be prepared gquite

rapidly and economically.

5.4  CODING DIFFICULTIES

Coding the formulation regquired the surmcunting of a
number of difficulties. while the formulaticn of the model
was quite precise, the translaticn of the fcrmulation into
FORTRAN code was at times nota. The nonlinear nature of the
problem was the —reason fcr most of the difficulties. The

formulation presents a set of equations which are to be
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coded. These equations usually cannot be solved exactly and
obtaining the the answer 1involves solving the problenm
several times. The number of solutions required for a
problem depends on the degree of nonlinearity involved, +the
conputer code and the accuracy desired. Ancther coding
difficulty encountered was *the handling of the changes in

the domain for various stages of cconstruction.

Nonlinear egquations were solved by a ccmtination of
incremental and iterative approaches. Incremental solution
techniques involve the application of the lcad in steps. A
solution of each step is performed and the results are adided
to the previous results. This process is <c¢cntinued until
the simulation 1is conpletea The number <¢f 1increments
required depends upon the e€lement nesh, the material
behaviour and the degree c¢f accuracy desired. Mesh
dependency arises from ccnstruction steps involving
excavation and embankments. The smallest lcad step possible
for these cases depends on the =size of the elements to be

removed or added.

Iterations were coded to allow improvement of <the
agreement between the stress-strain s+tate, the constitutive

law and to obtain equilitrium. The Newton-Rarhscn technique
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was used %o handle the iterationsa. This rmethod involves
recalculating and resolving all the FEM equaticns for each

iterationa

Incremental solutions are generally gquite statle.
However, a large number cf increments are cften needed in
order to provide an accurate solution. The use of several
iterations for each step allows the use of larger
increments. This combination is usually the most economical
although finding the proper <combination of increments and
iterations is difficulr. In wusing the iterative approach,
care must be taken for scme loading raths. The iterations
may actually diverage for some material models under certain

conditions.

One aspect of material modeling which was particularly
difficult to code was the unloading behavicr of the soil
elements. The prcblem arises fror the relatively stiff
response of soil as it is wunloaded compared tc the response
as it 1is loaded. This feature is illustrated in figure 7 .
The figure shcws representative stress-strain curves for
unloading. Both the actual socil response and the response
as predicted by varicus nmodels are shcwro. If large

increments are used the computations may be in great error.
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Figqure 7: Unloading S*ress-Strain Response
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Small increments give better agreement between the model and
actual responses. The cost of using small increments can be

prohibitive. Therefore the method coded was the following:

1« Find the solution for the first increment.

2. Check for any elements which have unloaded for the

first time during this increment.

3. Identify the newly unloaded €lementsa.

4., Completely resolve for this increment using

unloading mcduli for the unloaded elements.

The effect of these steps is to find the elements which are
going to unload and assign to them the prcrer material

parameters.

Modification of the @mesh at various stages in the
simulation of sequential posed another coding challange.
The key to the sclution of this prcblem was to read the
entire mesh into storage ini*ially. Then this mesh may be
modified at each stage of construction to accurately portray

the gecmetry.

Elements which are inactive do not enter into any of the

calculations. This provides a more economical approach than
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assigning a small stiffness value to reduce the deleted
element’s effect (9,40). By completly removing the element

the set of equations becomes numerically more statle.

The coding was rperformed in such a manner that the nodes
and elements to Lte deleted or added may be —rumbered in any
order. The ability of random numbering makes it much
simpler to prepare data and to make modificaticns in the
data. Some computational efficiency was 1lcst due to the
need to check each element tc see 1if it is active or not.
The ability to have random numbering was considered *o be

more important than the small loss in efficiency.

The 1inactive elements are maintained im a numerical
array. A subroutine is used to read the changes to the mesh
and then to modify the array accordingly. A function
subprogram is used to check fcr the existence of an element

in the inactive array.

5.5  COMMENTS

Some aspects of coding the FORTRAN program SEQCCN have
been discussed. The resulting code stems frcm a great deal
of trial and error work. The discussicn atcve represents
only a small, but important part of the kncwledge gained

from writing the fprograna



Chapter VI

VERIFICATION OF CODE

6.1 INTRODUCTION

A large numker of problems were run utilizing the program

SEQCON. The problems range from simple one element %ypes to

complicated sequential construction tyres. The purpose of
all of these problems was to test and verify the
capabilities of SEQCON. Three classes o¢f rrotlens vwere
solved. First vwere the proktlems for which closed form

solutions exist. Second were the problems with no solutions
to compare them with. For these problems, c¢nly the trends
were considered and the results were intergreted in a
qualitative manner. The third group involved comparison
with results from other numerical codes and field dataa.
Disscussion of the various problems 1is grcured by the
complexity of the problem and the feature <c¢f the code it

highlights.

6.2 GENERAL VERIFICATION

The first problem considered was a single element with a
uniform 1loading. Figure B8 gives the gecmetry of the

problen. This problem 1is tFtasically one-dimensional and

78
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provided the first verificatiocn of the basic ccde. Two runs
of the problem were made using both a twc-point and a

three-point gaussian quadrature rule for integration.

The results are given in table 1 . The displacements
compare well with the simple <closed form =sclution for a -
one—-dimensional body. It 1is interesting tc note that the
two-point integration gives mRrore accurate results than
three-point integration for this simple probtlem. Therefore,
it appears that twvwo-point integration shculd te used for

reqularly shaped elements under uniform loads.

6+2a1 distorted element tests

———

The effect of element shape on the soluticn was explored
next. Studies by Stricklin (54) and Taylor {55) 1indicate
severe errors when distorted quadratic elements are
utilized. The study presented here uses twc ©problems to
explore the effect of element shapes on the sclutiona The
first problem considers a uniform load 1in a ©plane strain
condition. The second problem uses the same mesh as the
first but substitutes a fpoint lcad for the wuniform load.
The geometry and 1loading of these two problems 1is shown in

Figure 9 . Four different meshes were used to model both
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TABLE 1

Comparison of Two and Three Point Integration

(o S Geis B s ot B G e Gt ot it Skt S B e Sy

solution stress in displacement at
type Y direction Y = 2.0
closed fornm 100.0 -0.0002000
2 - point 100.0 -0.0001820

3 - point 98.5 -0.0001815

. e ce e . oh . —— —— S — o da St
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Figure 9: Distorted Element Geometry



problenms. The mesh configurations are shown in figure 10 .
The material was assumed to be 1linear elastic and +he

material parameters used were:

3000000.0 Pa

tg
1}

<
I}

Mesh I is assumed as the standard with which the other

meshes are compared.

Table 2 compares displacements of one pfcint for the
various problems. These results indicate that for uniforrm
stress states the shape of the element has almcst no effect.
Thus, it is possikle to degenerate the quadralateral into a
triangle at locaticns c¢f constant strain. The rfpoint load
problems show large errors for distorted element.meshes. It
would appear that elements in areas of high stress gradients

should be as rectangular as possiltle.

6e2.2 pure beam tending rroblem

The problem of a beam in pure bending vwas modeled next.
Plane stress conditions were assumed and the results are

compared to those cbtained by Desai and Akel (19 p.16S) from
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Figure 10: Meshes for Distorted Flement Tests
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TABLE 2

Distorted Element Test Results

(e e e e bt Rin e A ST e M M ame e e S e

Mesh Uniform Load Point Lcad % Error
Y Displacement Y Displacement Fcr Point
at A m{X10—%) at A m{X10—%) Load
I ~9.90471 -9.99518 0.00
II -9.90474 -7.05400 29.43
ITI -9.90469 -7.64162 23.55

Iv -9.90474 -7.59990 23.96

by e e A - e o e i e e Sume v — — — — —
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a program utilizing four ncde quadrilateral ccmposed of four
constant strain triangles. Figure 11 illustrates the
geometry and mesh for the problen. The follcwing material

parameters were used:

E = 30 x 10 psi
V = 0430
Thickness = 1.0 inch

The results are given in Tabtle 3 Comparing the eight-node
results to the four-node results demonstrates the greater
efficiency of the higher crder element. The SECQCON program
yields results which are almost identical tc the exact
solution with a relatively coarse mesh. Additionally, this
problem verifies the accuracy of the SEQCON program for

linear elastic plane problems.

6e2e3 +thick-cylinder proltlem

A check of the axisymmetric capability cf the code was
made by modeling a thick-walled cylindera The cylinder is
assuned to be of infinite length and the material properties

are:

1.0 X 10S Ppa

td
I
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TABLE 3

Results for Beam Bending Problenr

—“-‘-—.—-—-——-—-—.—-_-.—.—_-—-u.—;—-u.—.-—u.————-—-—g—uu““u——.—w

Solution Type Displacement in Inches (X10—¢%)
Pcint A
X Y
Exact 1.500000 -1.275000
Desai and Abel 1.455171 -1.238908

25 Nodes 16 Elements

Desai and Abel 1. 486224 -1.264569
81 Nodes 64 Elements

SEQCON 1.500100 -1.274930
65 Nodes 16 Elements

Point B
Exact 0.3750000 ~0.3187500
Desai and Atel 0.3€79722 -0.3123025
25 nodes 16 elenments
Desai and Abel 0.3732400 -0.3171139
81 nodes 64 elements
SEQCON 0.3750270 -0.3186380

65 nodes 16 elements

L e o e e e e . —— . o e = — — o — — — A — o in oot e D e e i e b e i s s )
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v = 0.20
p = 1000.0 Pa
A closed form sclution from Popov (50, p. 418-419)
used for comparison.
2 2
pPr re
— O
o, = - T T (1 - ;;) €g 6.1
(o] 1
Pr; r?
g = = 1
t ré 77 (1 + =) €q 6.2
1
1 - v 2 2.2
4 = [- Pryt _ PEits ] €q 6.3
E r- - r? r(r® - r?)
1 (0] 1
Where:
O, = Radial S*ress
O, = Tangential Stress
p = External Pressure
I, = Inner Radius
r, = Outer Kadius
r = Radius

u = Radial Displacenment

is
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The geometry, loading and mesh are illustrated in Figure
12 . Comparison of computed displabements and stresses with
closed form solutions are given in Table 4 . The
displacements of the inside wall of the <cylinder are in
error by 20 percent. The displacements of the cuter wall of
the cylinder are only in error by 4 percent. The computed
and closed form stresses are 1in almost exact agreement.
Considering the coarseness of the mesh the <clcse agreement
between the calculated and exact solutions indicate the

validity of SEQCON for linear elastic axisymmetric problems.

be2.4 hyperbolic test

The hyperbolic constitutive nodel tehavior was
investigated using a single plane strain element. A uniform
surface load was arpplied. A confining stress cf 20 pounds
per square foot was used. The geometry of the problem is
shown in Figure 13 . Material parameters used are given in
Table 5 . These parameters represent a sandy soil with
Poisson's ratio assumed constant. In additicn to checking
the hyperbolic model behavicr, three different ccmbinations
of load increments and iterations were studied. First, nine
load increments of ten psf each witk no iteraticns was used
(incremental method). Second, nine load increments of ten

psf each with one iteration was used (mixed methcd). Last,
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TABLE 4

Axisymmetric Protlem Results

E S ]
i |
H |
| |
i ]
| ]
{ |
| Solutiom Tangential Radial Tangential |
| Type Stress Pa Stress Pa Stress Fa |
i at r=12.11 at r=27.89 at r=27.89 ]
[ ]
| Computed ~-1904.00 -980.80 -1269.00 |
{ |
| Exact -1892.12 -980. 37 -1269.63 {
| ]
i |
i |
{ |
i |
{ solution Radial Displacements =n ]
| type at r=10.0 at r=30.0 {
4 }
L R}
| Computed -0.216 -0. 288 |
| |
| Exact -0.180 -0. 300 |
| {
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Figure 13: Hyperktclic Test Prcblenm
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TABLE 5

Material Parameters for

V= 0.30 Failure
d = 40.0 Modulus
c = 0.0 Modulus

Hyperbolic

Ratio
expcnent

Factor

1}

bt e o b . w— o - — Bt Saoe 20
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one load increment of 90 psf with nine 1iteraticns was used
{iterative method). An exact soiution was clktained using
equation 4.11 . The results of these four sclutions are
shown in Fiqure 14 . Frcm the graph it is seen that the
element is loaded to failure. The solution wutilizing one
load increment and nine iterations rprovides the most
accurate answvera. It is also the lowest cost method. The
incremental method gives the least accurate solution
although it 1is fairly accurate for 1lower stresses. The
mixed procedure provides a better soluticn than the
incremental methcd alone especially as failure is
approached. The iterative solution gave the best results
for this particular problen. The results of +this problem
verify the hyperbolic coding and the solution techniques for

nonlinear problems.

6.2.5 cap model test

A similar test problem was run for the cap type

plasticity modela. Here a single axisymmetric element is
used. The geometry is given in Figure 15 . The problem is
a one-dimensional type with the fcllowing material
parameters:

E = 100 ksi c = 0.18
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Figqure 14: Hyperbolic Test Problem Results
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v = 0.25 D = 0.67
A = 0.25 R = 2.5
B = 0.67 W = 0.0686

Four load incremen*s with six 1iterations per increment were

used. The results are ccmpared toc those given by Sandler
and Rubin {52) in Fiqure 16 . The results were calcula+ted
by specifying the 1load or stress applied. This is in

contrast to those given by Sandler and Rubin who specify the
strain displacement and then calculate the stress. It is
considerably more difficult <to calculate strains if the
stress 1is specifieda However, for most geomechanics
problems the loading is what is known not the displacements.
The graph inm Figure 16 shows that the calculated values from
SECCON are in good agreement with those <¢f Sandler and

Rutine.

6.2.6 bar element test

The bar element was checked through the use of the
problem illustrated in Figure 17 . The material parameter

assumed are:

]
1}

30 x 106 psi

2.0 in

Area
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Figqure 16: Cap Model Tes* Results
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A closed form solutiocn was found using elementary
mechanics and small displacement assumptions. As seen in
Table 6, the calculated results are in exact agreement with

the closed form solutione

6.2.7 interface element test

The next problem considered was a simple *test of the

interface elenment. The problem consists c¢f a single
interface element in pure shear. The gecmetry of the
problem is given in Figure 18 . The interface was

considered to be linear elastic and the material parameters

are as follows:

Normal Stiffness = 1000.0 Pa

Shear Stiffness = 10000.0 Pa

The computed hcrizontal displacement c¢f 0.02 meters at
point A is exactly the answer expected. The shear stress of
200.0 Pa is alsoc exacta Thus for this simple problem the
interface element appears to be correct. The next problem
investigates scme cf the interface element's frcperties more

closely.
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TABLE 6

One-Dimensional Test Results

o L e B e G Moo G dm G Mk oo e Gmts G Mo

Solution Stress Displacement
psi At Node 3
in {X10—3)
Bar 1 Bar 2 X Y
SECCON -3125.00 1875.00 3.95833 -9.37500

Exact -3125.00 1875.00 3.95833 -9.37:500

he b e e e i e A e e e c— - —— —— o
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Figure 18: 1Interface Element Test Proktlem
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6.2.8 soil-interface study

The following problem was devised to investigate the
influence of interface elements on surrcunding plane
elements. Two 1interface elements are placed between two
plane strain elements. The gecmetry is given in Figure 19 .
Five problems utilizing different combinaticns of 1linear
elastic interface material parameters were considered. The

solid element material parameters are as follcws:

(o]
|

3.0 x 10% Ppa

v = 0.30

The interface prorerties for the various cases 1is given in
Table 7 . The results shown in Figure 8 are compared with
the same problem with no interface elements as a control.
The first three rrroblems indicate that the results are
independent of the value of the shear stiffness. This is
what is expected due to the geometry and 1lcading imposed.
Problems IV and V 1indicate the 1importance of using a
relatively high value for the normal stiffness. If the
normal stiffness is too small, as in prchblem IV, the
assemblage becomes too soft. The computed displacements are
larger than the control sclution and the calculated stresses

are smaller than the control values. The higher normal
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TABLE 7

Interface Farameters for Soil-Interface Test

e G e e b bt Bt G M M S gs B G S bt e S S e

Problen Normal Stiffness Shear Stiffnpess
Pa (X10s) Pa (X10s)

I 3.0 1.15385

IT 3.0 0.384615

ITI 1.0 3.46154

IV 1.0 1.15385

v 8.0 1. 15385

bl e e e et e o G e St e ol - — — — G — =)
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TABLE 8

Results of Scoil-Interface Test

P G e G B G S M e e M St g e Gt B e Bt et S e )

Problem Stress in Displacement
X Direction in Y Direction
Pa at A m (X10—3)
I 321.2 -1.068
I1 321.2 -1.068
III 321.2 -1.068
Iv 237.7 -1.131
v 382. 4 -1.024

Control 428.6 -0.9905

b e e i — v S — o o — S Bt Bt o (s GO0 s poont s e bl
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stiffness in problem alleviates this difficulty to a large
degree. This indicates that caution should be taken when
using the interface element contained in SEQCCN. Choositg a
relatively high value for the normal stiffness is in general

a must for soil-structure interactiona

6.3 CONSTRUCTION SEQUENCES VERIFICATION

Initial verification and debugging of the construction
sequences was performed using a <simple nine element mesh.
The problems were considered tc bLe plane strain with linear
elastic material properties. The rroblems ccnsidered were
of a one-dimensicnal nature and the geometry and mesh are
shown in Figure 20 . The material parareters are as

follows:

E = 1.50 X 1020 kg/m2

V = 0.3
Yg = 2000.0 kg/m3
K, = 0.50
Y, = 1000.0  kg/m3
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6.3.1 in situ

Initial stress calculations were the first construction
step analyzed. Cue to the hcmogeniety and cne-dimensional
nature of the problem equation 3.2 provides an exact
solution. Figure 21 illustrates the correspcndence hbetween

the exact solution and the ccmputed results.

6a3.2 dewatering

A dewatering segquence was then analyzed. The gecme+*ry
and mesh are identical tc the above problenm. The water
table 1is initially at the ground surface. It is then

lowered one meter and the stress and disrlacements are
calculated. Figure 22 shows the correspondence between
closed form soluticn and calculated results. Note that the
closed form solution is based on the simple thecry outlined

in Chapter V for dewateringe

6.3.3 embankment

Embankment simulation was tested next. The mesh used in
the two problems above was wutilized by initially deleting
the top three elements and then adding them back as an

embankment lift. Material rarameters are as above. The
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computed results ccmpare well with the closed fcrm solution.
In fact, the results are identical to thcse shcwn in Figure
21 This is the expected result due to the gecmetry and

material properties assumed for this fproblenm.

fe3.U excavation

The last basic constructicn sequence verified with the
sinple mesh shown in Figure 20 is excavation. The top three
elements in the mesh are removed as an excavaticn step. Tkhe
results are shown in Fiqure 23 . The stresses agree as well

for the excavation sequence as for the other sequences.

The four simple problems atove verify the validity of the
basic construction sequences modeling rcutines. The
following problems will examine more complex rrchblems.

6.4 TIE-BACK WALL EXAMPLE

A more complex problem which modeled an excavation
supported by a retaining wall will now be shown. Tke
geometry of the rroblem 1is shown in Fiqure 24 . Two
analyses were made of this prcblen. The first analysis was
made with out any tie-back support. The second analysis

used a tie-back which ran from point A tc pcint B. Point B
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is assumed to be fixed in the X-direction. The tie-back was
prestressed to 2000 pounds. Linear elasticity was assuned
for each vproblena The material parameters used for both
analyses are given in Table 9 . The excavaticn was carried
out in three steps down to level EF. The tie-back was

installed after the first excavation step.

Figqure 25 compares the wall deflection cf the analysis
with and without the tie-backa. The use cf the tie-back
actually pushed the wall into the soil mass. From this it
can be ascertained that the initial tie-back tension was *oo
greata The proper tie-back tensicn could be found through
additional analyses using various values fcr the +tension
force. TFigure 26 shows how settlements behind the retaining
vall are reduced by the use of the tie-back. In this case
the ground heaves due to the 1large initial tie-back
loadinga The absclute value cf the ground surface moverent

has been reduced by approximently a factor of ten.

The results from this problem indicate the capability of
SEQCON in sipulating tie-backs. The next grcur of problens
demonstrates the accuracy of the code 1in ccmparison with

other numerical studies and with field data.
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TABLE 9

Material Properties of Simple Retaining Wall

Parameter Soil Structure
E 20.0 X105 psf 30.0 X108 psf
v 0.45 0.30
Y 100.0 1b/ft3
o 0.50

Tie-Back Properties

[ aae M e e g M mme dee e b g 6 e e G S meie S g e G e S S e 4y

E = 43.2 x 108 psf

Area = 0.025 ft=2
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6.5 ADVANCED PRCBLEMS

Three complex problems were solved to demcnstrate the
validity of SEQCON for more typical protlems as encountered

in the field. They are descrited in detail belcw.

6<5.1 footing prcblem

An infinite footing <c¢cn a half space was the first
practical problem considered. A mesh consisting of 21
elements and 84 nodes was used. The geometry c¢f the problem
is shown in Figure 27 . The footing element was considered

to be linear elastic and used the following parameters:

E = 4.0 x 10S psi

v = 0.30

The soil was modeled wusing the Drucker-Prager plasticity

model. The material parameters are:

E = 4000.0 psi

V = 0.35
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The plane strain assumption is used to model the problenm.

The vertical displacement, vV is compared wih the
experimental results given by Desai and Phan (22). A
comparison of the results 1is shown 1in Figure 28 . The

computed results appear to compare pcorly with the
experimental data. Thus the Drucker-Prager model does not
accuratély represent the socil material. The reason is
probably due to the model's inability to represent the
volume <change due to sheara The wuse of a cap type

plasticity model would probably give tetter results.

———

6.5.2 dam with sequential embankenmnt

e

An actual field problem analyzed was the ccnstruction of
the Otter Brook Dam. An intensive analysis cf the dam was
made by Kulhawy, Duncan and Seed {(42) and the problem data
is adopted from their work. The dam itself was considered
to be homogeneous and symmetric. Therefore only half of the
domain was discretized. The dam was considered as a plane
strain casea The gecmetry and mesh for the problem are
shown in Figure 29 . Table 10 gives the material properties
used. The so0il was assumed *to follow the hyperbolic
constitutive model. The mesh contained 42 elements and 153
nodes. Seven equal lifts were used with one iteration per

life.
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TABLE 10

Material Properties for Otter Broock [Can

T

|

|

|

i

{

i

| Variable Symbol Value

{ Unit soil weight Ys 140.0 1lr/ft3
|

| Cohesion C 2160.0 1lk/ft2
|

| Angle of internal $ 14.0 degrees
| friction

|

i Modulus factor K 40.0

|

| Failure ratio R 0.68

|

i

| Poisson's G 0.3

]

| Ratio F -0.05

i

| Parameters d 0. 60

i

e i Sme e G G en e G e G o G G—— b B Sl it avinns Welit oot s, o . Stws  wivan s s
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The computed results were compared with thcse found by
Kulhawy, Duncan and Seed. The ccmputed values obtained by
SEQCON compared well with both Kulhawy, Duncan and Seed's
results and with the field results. Figure 30 1is
representative of the accuracy of the calculated values.
The figure plots the horizontal displacements of the
upstream face of the dama. The good <comparison of the
displacements here indicates the overall accuracy of the
computer model for this problenm. This analysis illustrates
the practical use of SEQCON for design and analysis of

embankments.

6.5.3 retaining wall

A problem dealing with the passive resistence of soil to

a retaining wall was the last prctlem analyzed. This
problem is alsoc analyzed bty Matsuzaki (46). The problem
consists of an infinitely long retaining wall. The wall is

3.05 meters high and the soil behind the wall extends for
10.7 nmeters. The so0il 1is a medium-dense sand and the

following hyperbolic material properties are used.

E = 48 mPa
Ys = 17.5 kXNt /m3
» = 35.0 degrees
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The mesh, shown in Figure 31, contains 15 elements and 62
nodes. The wall and its movement was modeled by displacing
the nodes on line AB to the right in increments. Twenty

displacement increments with nc iterations were used.

The wall nmovement was nondimensionalized ty dividing by
the wall heighta The socil resistehce was characterized
through the use c¢f the <classical passive earth pressure

coefficient defined as:

K = = Eqe. 6.4

Where
K = Passive earth pressure coefficient
P = Total wall fpressure
Yy = Unit weight cf soil
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H = Wall heigktt

Figure 32 ccmpares the results cbtained frcm SEQCON and
those given by Matsuzaki. The results compare fairly well.
Part of the difference Lbetween the results may be due to the
large number of increments used for the SEQCON calculations.
The shape of the curves are quite similar and for large wall
displacements both solutions appear to converge to the sanme

ansver.

6.6  COMMENTS

The validity of SEQCON as applied to the proklems above
has been shown. The results, 1in general, were reasonably
accurate; Also, the code was shown to be capatle of a wide

variety of sequential construction prchblems.
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Chapter VII

CONCLUSIONS

7.1  SUMMARY

A formulation fer modeling soil-structure interaction has
been presenteda. In conjunction with the formulation, a
computer code was written to implement it. Several problems

were analyzed to demonstrate the accuracy of the code.

The progranm called SEQCON utilizes an eight-node
iscparametric quadrilateral. An interface and Lbar element
are also available. Four material models are used. They
are the linear elastic, the hyrperbolic, the Crucker-Prager,

and the cap model.

Several constructon sequence steps were nodeled. They
include in situ, dewatering, excavation, deposition
{embankment) and tie—-backs. The code itself is modular in

design and quite flexible. It is easy to implement and to

modify.
The use of SEQCON on various problems has rpointed out
some of the difficulties of modeling sgcil-structure

interaction problems. The modeling of the interface

132
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behavior is the worst protlen. The interface element in
SECCON must be used with caution if accurate results are to
be obtained. The material tehavior is ancther difficult
problen. The hyrerbolic model must be used with caution
especially for the stress paths that cccur during
excavation. The cap model has not been verified for general

problems and its use is of a research nature at this time.

7.2 FUTURE RECOMMENDATIONS

A large amount of research in this area remains. Several
changes to SEQCON «could result in a much more accurate
model. These include development of new constitutive models

and new interface elements.

A program of laboratory retaining wall model studies in
conjunction with numerical studies using SEQCCN would also
be desirable. This wculd allow the prograr tc be nmore
throughly tested. Such a model has been <ccnstructed and
will be wutilized at later stages 1in <conjunction with

improved FE procedures based on mixed and hybrid approaches.



REFEBRENCES

Andraves, Kamal Z., and El-Sohby, Mohamed A., "Factors
Affecting Coefficient for Earth Pressure," Journal
of the Soil Mechanics and Foundations L[ivision.
ASCE, Vol. 99, No. SM7, Proc. Paper 9863, July,
1973, pp-527-539.

Bathe, Klaus-Jurgen and Wilson, Edward L., Numerical
Methods in Finite Element Analysis, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1976.

Brown, C.B. and King, I.P., "Automatic Frtankment
Analysis: Equilibrium and Instability conditiomns,”
Geotechnigue, Vol. XVI, No. 3, Sept. 1966, ppa
209-219.

Chang, Chin-Yung and Duncan, James M., "Analysis of
Soil Movement Around A Deep Excavation," Jcurnal of
the Soil Mechanics and Foundations Division, ASCE,
Vvol. 96, No. SM5, Sept., 1970, pp. 165S-1681.

Christian and Desai, "Constitutive Laws fcr Geologic
Media," Numerical Methods in Geotechnical
Engineering, Desai and Christiam Ed., McGraw Hill
Book Company, New York, New York, 1977, pp. 65-115

Christian, John T., and ¥Wong, Ing Hieng, "“Errors in
Simulating Excavations in Elastic Media Ly Finite
Elements," Soils and Foundaticns, Jaranese Society
of Soil Mechanics and Foundation Engineering, Vol.
13, No. 1, Mar. 1973, pp. 1-10.

Clough, G.W., "Application of the Finite Element*t Method
to Earth-Structure Interaction,™ Aprlications of the

Finite Element Method in Geotechnical Engineering,
Proceedings of the Symposium Held at Vicksburg,
Mississippi, May 1972, pp- 1057-1116.

Clough, Wayne G. and Duncan, James W., "Finite Element
Analysis of Retaining Wall Behavior," Jcurnal of the
Soil Mechanics and Foundations Division, ASCE, Vol.
97, No. SM12, Dec. 1971, pp- 1657-167:.

134



9.

10.

11.

12.

13.

14.

15.

16.

17.

135

Clough, G.W. and Duncan, J.W., Finite Elerent Analyses
of Port Allen and 0ld River locks, Rercrt No. TE
69-3 to U.S. Army Engineers Waterways Exreriment
Station, Sep*t. 1969.

Clough, G. Wayne and Mana, Abdulaziz, I., '"lessons
Learned in Finite Element Analyses cf Temporary
Excavations in Soft Clay," International Conference
on Numerical Methods in Geomechanics, 24, Virginia
Polytechnic Institute and State University, 1976.

Clough and Tsui, "Static Analysis of Earth Retaining

Engineering, Desai and Christian Ed., McGraw Hill
Book Ccmpany, New York, New York, 1977, pp. 506-527.

Clough, G. Wayne and Tsui, Yvet, "Perforrance of Tied-
Back Walls in Clay," Journal of the Georechnical
Engineering Division, ASCE, Vel. 100, No. GT12, Deca
1974, ppe 1259-1273.

Clough, G.®%., Weber, P.R., and Lamont, J., "Design and
Observation of a Tied-Back Wall," Perfcrmance of
Earth and Earth-Supported Structures, Vol. I, Part
2, Proceedings, Purdue University, lLafayette,
Indiana, June 11-14, 1972, pp-. 1367-1389.

Clough, Ray W. and Woodward, ERichard, J. III, "Analysis
of Embankment Stresses and Peformations,™ Journal of
the Soil Mechanics and Foundations Division, ASCE,
Vol. 93, No. SM4, July 1967, pp-. 529-549.

Desai, Chandrakant S., "Numerical Design-Analysis for
Piles in Sands," Journal of the Geotechknical
Engineerinqg Division, ASCE, Vol. 190, Noc. GT6, June,
1974, rp. 613-635.

Desai, Chandrakant S., "Nonlinear Analyses Using Spline
Functions," Journal of the Soil Mechanics and
Foundations Division, ASCE, Vol. 97, No. SM10,
October, 1971, pp. 1461-1480.

Desai, C.S., Elementary Fini*e Flement Method, Prentice
Hall, Inc., Englewood Cliffs, New Jersey 07632,
1979.



18.

19.

20a

21.

224

23.

24.

25a

26.

27.

136

Desai, C.S., Soil-Structure Interaction and Simulation
Problems, A Theme Paper, rroceedings, International
Symposium on Numerical Methods in Soil Mechanics and
Rock Mechanics, University of Karlsruke, West
Germany, Sept., 1975.

Desai and Abel, Introduction to the Finite Element
Method, Van Nostrand Eeinhold Company, New York, New
York, 1972.

Desai, C.S. and Christian, J.T., ed., Numerical Methods
in Geotechnical Engineering, McGraw-Hill Book
Company, New York, 1977.

Desai, C.S., Johnson, Lawrence D., and Hargett, Charles
M., "Analysis of Pile-Suppored Gravity Lcck,"
Journal of the Geotechnical Engineering LCivision,
ASCE, Vol. 100, No. GT9, Sept., 1974, rp. 1009-1029.

Desai, C.S. and Phan, H.V., "Three Dimensional Finit*e
Element Aralysis Including Material and Gecmetric
Nonlinearities," Proceedings, Second International
Conference on Computational Methods ir Ngmlinear
Mechanics, University of Texas, Austin, Texas,
March, 1979.

Drucker, D.C., and Prager, W., "Soil Mechanics aad
Plastic Analysis of Limit Design," Quarterly Applied
Mathematics, Vol. 10, No. 2, pp. 157-16%, 1952.

Duncan, James M. and Chang, Chin-Yung, "Nonlinear
Analysis of Stress and Strain in Soils," Journal of
the Soil Mechanics and Foundations Civision, ASCE,
Vol. 96, No. SM5, Sept., 1970, pp. 1€29-1653.

Dunlop, Peter, and Duncan, James M., "Develcpment of
Failure Arcund Excavated Slopes," Jcurnal of the
Soil Mechanics and Foundations Divisicnp, ASCE, Vol.
96, No. SM2, March, 1970, pp. 471-493.

Ghaboussi, Jawshid, Wilson, Edward L. and Isenberg,
Jeremy, "Finite Element for Rock Joints and
Interfaces," Journal of the Soil Mechanics and
Foundations Divisicn, ASCE, Vcla 99, Nc. SM10,
Oct., 1973, pp. 833-848.

Goodman, L.E., and Brown, C.B., "Dead Lcad Stresses and
the Instability of Slopes," Jourmal of the Soil
Mechanics and Foundations Division, ASCE, Vol. 89,
No. SM3, May, 1963, pp. 103-134.




28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

137

Goodman, R.E., and Christopher, John, "Finite Element
Analysis fcr LCiscontinuous Rocks," Nurmerical Methods
in Geotechnical Engineering, Desai and Christian
Ed., McGraw Hill Book Company, New York, New York,
1977, pp-. 148-175.

Goodman, Richard E., Taylor, Robert L. and Brekke, Tor
L., "A Model for the Mechanics of Jointed Rock,"
Journal of the Soil Mechanics and Foundations
Division, ASCE, Vol. 94, No. SM5, May, 1968, pp.
637-659.

Haliburton, T. Allan, "Numerical Analysis of Flexible
Retaining Structures," Jourpal of the Scil Mechanics
and Foundations Division, ASCE, Vcl. 94, No. S¥H6,
Nov., 1968, pp. 1233-1251.

Hanna, Thomas H. and Kurdi, Ibrahim I., "Studies on
Anchored Flexible Retaining Walls in Sand,'" Journal
of the Geotechnical Engineering Divisicn, ASCE, Vol.
100, No. GT10, Oct., 1974, pp. 1107-7122.

Herrman, Leonard R., "Finite Element Analysis of
Contact Problems,™ Journal of the Engineering
Mechanics Division, ASCE, Vol. 104, Nc. EMS, Oct.,
1978, pp. 1043-1057.

Hinton, E. and Owven, R.J., Finite Element Programming,
Academic Press, New Ycrk, 1977.

Hood, P., '"Frontal Soluticn Program for Unsymmetric
Matrices," Internatignal Jcurnal for Nugmerical
Methods in Engineering, Vol. 10, 197€é, pp. 379-399.

Irons, Bruce M., "Frontal Solution Program for Finite
Element Analysis," International Journal for
Numerical Methods in Engineering, Vol. 2, 1970, pp.
5-32.

Jones, John S., and Brown, Ralph E., "Temporary Tuanel
Support by Ar*ificial Ground Freezing," Journal of
the Geotechnical Enqineering Division, ASCE, Vol.
104, No. GT10, Oct., 1978, pp. 1257-1276.

Katona, M.G., et. al, CANDE- A Modern Arrroach for the
Structural Design and Apnalysis of Buried Culverts,
Keport No. FHWA-RD-77-5 to Cffice of Research,
Federal Highway Administration, Washingtcn, D.C.,
Oct., 1976, ppe 127-160.




38.

39.

uo.

a".

42-

43.

44.

45.

be6.

138

Kausel, Eduardc, Roesset, Jose M., and Christian, John
Te, "Nonlinear Behavior in Soil-Structure
Interaction,”" Journal of the Geotechrnical
Engineering Division, ASCE, Vol. 102, Nc. GT11,
Nov., 1976, pp. 1159-1170.

Kay, J.N., and Qamar, Mohamed Igbal, "Evaluation of
Tie-Back Anchor Respcnse," Journal cf the
Geotechnical Engineerinpg Division, ASCE, Vol. 104,
No. GT1, Jan., 1978, pp. 7-89.

Kulhway, F., "Embankments and Excavations,”" Numerical
Methods in Geotechnical Engineering, LCesai and
Christian Ed., McGraw Hill Bock Company, New York,
New York, 1977, pp. 528-555.

Kulhawy, Fred H., and Duncan, James M., "Stresses and
Movements in Oroville Dam," Journal cf the Soil
Mechanics and Foundations Division, ASCE, Vol. 98,
No. SM7, July, 1972, ppe. 653-665.

Kulhawy, F.H., and Duncan, J.M., and Seed, H.B., Firnite
Element Analysis of Stresses and Movements in
Embankments During Construction, Report No. TE 69-4
to U.S. Army Engineers , Waterways Experiment
Station, Nov. 1969.

Lee, Kenneth 1., Adams, Bobby Dean, and Vagneron, Jean-
Marie J., "Reinforced EFarth Retaining %walls,"
Journal of the Soil Mechanics and Foundations
Divisiocn, ASCE, Vol. S99, No. SM10, Oct., 1973, pp-
745-764.

Mansur, Charles 1., and Alizadeh, M., "Tie-Backs in
Clay tc Support Sheeted Excavation," Jcurnal of the
Soil Mechanics and Foundations Divisicn, ASCE, Vol.
96, No. SM2, March, 1970, pp. 495-509.

Massarsch, R., and Broms, Bengt, "Lateral Earth
Pressure at Rest in Soft Clay," Jourmal cf the
Geotechnical Engineering Division, ASCE, Vol. 102,
No. GT10, Cct., 1976, pp. 1041-1047.

Matsuzaki, Keiichi, "Prediction of Earth Pressure in
Retaining Structure," A Thesis Submitted for the
Degree of Doctor of Philosophy, University of New
South Wales, Department of Civil Engineering
Materials, October, 1978.



47.

48.

49,

50.

51.

52.

53‘

54.

55.

56.

57..

139

Moore, John B., Watfiv: Fortran Programring With the
Watfiv Compiler, Reston Publishing Company, Inc.,
Reston, Virginia, 1975.

oden, J.T., and Reddy, J.N., An Introductiocn to the
Mathematical Theory of Finite Elements, John Wiley
and Soans, New York, 1976.

Osaimi, Ayed E., and Clough, Wayne G., "Eore-Pressure
Dissipation During Excavation," Jcurnal cf the
Geotechnical Engineering Divisiion, ASCE, Vol. 05,
No. GT4, April, 1979, rp-. 481-498.

Popov, E.P., Mechanics of Materials, Prentice Hall,
Inc., Englevood Cliffs, N.J., 19%2.

Prevost, Jean H., "Flasticity Theory fcr Scil Stress-
Strain Behavior," Journal of the Engineering
Mechanics Division, ASCE, Vol. 104, Nc. ENMS, Oct.,
1978, pp- 1177-1194.

Sandler, I.S. and Rubin, D., "An Algcrithm and a
Modular Subroutine for the Cap Model," International
Journal for Numerical and Analytical Methods in
Geomechapnics, Vol. 3, 1979, ppe.
173-186.

Sanger, Frederick J., "Grcund Freezinpg in
Construction," Jcurnal of the Soil Mechanics and
Foundations Division, ASCE, Vol. 94, No. SM1, Jan.,
1968, pp. 131-158.

Stricklin, J.A., et. al, "On Isoparametric vs. Linear
Strain Triangular Elements," Internaticnal Journal
for Numerical Methods in Engineering, Vcl. II, No.
6, 1977, pp. 1041-1043.

Taylor, David W., "More on Distorted Isofparametric
Elements," International Jocurnal for Numerical
Methods in Engineering, Vol. 14, No. 2, 1979, pp.
290-291.

Tsui, Yvet, and Clough, G. Wayne, "Plane Strain
Approximations in Finite Element Analyses of
Temporary Walls," Conference on Apalysis and Design
in Geotechnical Engineering, ASCE, Austin, Texas,
1974, pp- 173-198.

Zienkiewicz, C.C., The Finite Element Methcd, McGraw-
Hill Bcok Company Ltd., London, England, 1977.




140

58. Zienkiewicz, 0.C., et. al., "Analysis of Nconlinear
Problems in Rock Mechanics with Particular Reference
to Jointed Rock Systenms,'" Proceeding cf the 2nd
Congress of the International Socie*y for Rock
Mechanics, Belgrade, Yugloslavia, 1970.




The vita has been removed from
the scanned document



IMPROVED NUMERICAL PRCCELURES FOR SCIL-STRUCTURE INTERACTION
INCLUDING SIMULATION OF CONSTRUCTION SECUENCES

by

John Gwin Lightner, III

(ABSTRACT)

A formulation for modeling soil-structure interaction has
been presented. In conjunction with the formulation, a
ccmputer code was written to implement it. Several problenms

were analyzed to demonstrate the accuracy of the code.

The program called SEQCON utilizes an eight-node
isoparametric gquadrilateral. An interface and tar element
are also available. Four material models are used. They
are the linear elastic, the hyrperbolic, the Trucker-Prager,

and the cap model.

Several constructon sequence sSteps were modeled. They
include in situ, dewatering, excavation, deposition
(embankment) and tie—-backsa The code itself is modular in
design and quite flexible. It is easy to inplement and to

modify.
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