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I, INTRODUCTION

During the past decade increasing interest has been shown in the
effects of electromagnetic fields on the mechanics of solids. Although
investigation in this field has practical applications in the fields
of optics and accoustics, the first attempts to study this phenemenon
were made by geophysicists who wished to understand the effect of the
earth's electromagnetic field on seismic waves, Since then many
authors including Banos, Chadwick, Kaliski, Petykiewicz, Dunkin, and
Eringen have solved problems concerned with infinite and semi-infinite
spaces subjected to electric and magnetic fields, Contributions to the
theory of this subject have been made by Dunkin, Eringen, Toupin, and
others, For a complete list of references the interested reader should
consult Suhubi [1] .

Other shapes than the infinite and semi-infinite space have been
studied, but not many problems have been solved in this area, Dunkin
and Eringen cdnaidored the first problem of this type, They investi-
gated the vibration of an infinite plate in a strong uniform megnetic
field. Suhubi [1] studied small torsional oscillations of an infinite
circular cylinder with finite conductivity in a constant axial mag-

netic field,

The following study is concerned with small oscillations of a
beam-column with finite electrical oconductivity in a constent trans-
verse magnetic field, It is based on a linearized theory of electro-

magnetic-elastic interactions and simplified by using the elementary



theory of bars rather than the more exact elasticity theory,

In what follows three problems are considered. First the small
oscillations of a conducting column are examined., By equating the end
load to zero the frequency equation for a conducting beam is obtained,
The roots of this equation are examined by an approximate method. By
retaining the end load the elastic stability of a conducting column
is studied., Second a conducting beﬁm-column is investigated., Both the
frequencies of vibration and the elastic stability of this beam-column
are examined., Finally a problem in the forced vibration of a conduct-
ing column is considered. Primary interest is focused on the elastic
stability of this structure,

In all of the afore mentioned problems two questions are of
primary importance., The first i1s the nature of the effect of the
magnetic field. The second is the size of megnetic field required to

make these effécts noticeable,
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II., DERIVATION OF EQUATIONS

It is desired to investigate various aspects of the behavior of
an electrically conducting beam-column as it performs small oscilla-
tions in a transverse magnetic field FE,oriented as shown in figure 1,
The bar has density pE , modulus of elasticity E , moment of inertia
T , and length L ., It is subjected to mechanical loads qfx) end P
as shown, First the equations of motion will be derived for the beam-
column. This will be done neglecting the effect of shear on the
deflection of the bar, Also neglected will be the rotary inertia and
axial aooeleratioﬂ of each element of the structure, Consider the

free-body diagram of an element of the beam-column shown in figure 2,

SFy=-NtR Adx +N +Nixclk =0

Nn‘+AFX=O (2.1)

SFy= ~V+Ff Adx +V +Vixelx kﬂdx=()Ade,tt

q +ux +Afy=pA Ut (2.2)

S Mo = M +Vdx ~qdx dx- fy Adx &x

= (M +M,x dx )“ (N +N,xdx)U>xd\:=O



Figure 1.,- Beam-column in magnetic field,

l q(x) \

U*U)\d\

1 '\“’N,xdx
M +M)de :

V¢ V,xdx

l a_t—-: (OIU)‘K,0>

Figure 2,- Freebody diagram of differential element of beam-column.



Neglecting second order terms the following equation is obtained.

Mx tNUyx -V = 0O (2.3)
From the elementary theory of beam deflections
ELIUixx=—M « (2.4)

Now equations (2.2) and (2.3) are substituted into equation (2.4)
as follows, .
EI Uyxxx =-Mx= NU,x =V
Thus

ETU,xxxx — (N Uyx ),U— PA Uitt = A&, tq. (2.5)
Equations (2.1) and (2.5) are the governing equations for the defleo->
tion of the bar and the normal force,

The electromagnetic force per unit volume is given by

F=JxB+eE. (2.6)

To determine the quantities in the above expression Maxwell's equa-

tions are necessary. They are

vkg-f' .é:t:'o 6-5-: Pe_
o . (2.7)
VrH-D,t= J T-B=0.

Constituative equations are also required, For a homogeneous beam

they are

—

D=€E +X Ut Ty x H

— — — 2.8
B= kH-«XUt TyxE (2.6)



T= Ut Ty +T (E+ Ut T,x B ).
In equations (2.8)
X = ke - E."’- (2.9)

and ]; is a unit vector directed in the positive 3 direction,

Consider a state of equilibrium of the beam-column characterized'~
by the deflection U and the normal force No combined with a steady
state electromagnetic field in turﬁ characterized by the field vectors
Eo, WB. Do , Bs ’ To o The body force is denoted by ro o The

governing equations are

ET Uoxxxx = (NoUoyx),x = A&x‘ 1 9o (2.10)

No+Afox = O (2.11)
VyEs =0 7-0.=0
o . . (2.12)
Vx o™ o V'Boto

o

o

]

~ M
|

o

(2.13)

fo= JoXxBe - (2.14)

In the above equations Poe=O . 8ince the material has finite

conductivity there can be no free charge except on the surface,



Now use equations (2,13) to put equations (2.12) and (2.14) in terms

of Eo and Wo e The results are

fo=TKkE.xHo (2.15)
7 XE.=0

U xHo= TEs

o (2.16)
T Eo=0

V- -Ho=0.

The governing equations are (2.10), (2.11), (2.15), and (2.16).
Now consider a small perturbation which is characterized by a
small displacement of the beam U(x,t) « All variables will be perturbed

as follows,

U= UstU D=0, +d

Ni= NotN Ho=f+ T

f-f+ T J_T-=J-j+:j‘ (2.17)
E=FE.tE€ q.= 9049

B Both

Substitute these quantities into equations (2.1), (2.5), (2.6), (2.7),
and (2.8). It is assumed that the products of perturbed queantities and
their derivatives are of a higher order than the perturbed quantities

themselves, After simplifying, using equations (2,10), (2.11), (2.15),



and (2.16), and neglecting higher order terms the results are

ETUjxnxx = (No Uye) v - (NUopx ) x + PAUL = Afy 4 9 (2.18)

Nyxt+ Afx =0 (2.19)
F- J—:'XE+IX§°+G>¢E.° (2.20)
TUxe +bt=0  Td - Pe |

_ . o (2.21)
VXL -dit =] v-t-o

d=€ce +o Ut T x Ho=0
E;i= |<.[: - c((J,t ]jw X E?o"()
J= T(C+0,t T xBo)

or J=0 (& +kUtTyxHo).

Use equations (2.22) to put equations (2.20) and (2.21) in terms

(2.22)

of Eo,Wo, & endh . After simplification the following results

are obtained.

F= T x (KT~ XUt Ty xEo )+ T (€ + K Ty xTL)xkl,
+QE, | | (2.23)

UxE+ (kL -«UtT xEt- 0

T xb - (€€ +o(U,t11‘ xl_fo),t T (€4 kUt ?[1 XHo ) (2.24)

V(€4 Ut Ty x )= e
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-V_.- (k_L: - Dt I(’ XE«)’ O

The governing equations for the dynamic problem are (2.18), (2.19),
(2.23), and (2.24), These equations hold for any magnetic field as
long as the oscillations are confined to the x,tj plane, For the
specific problem under consideration

n.o:." ( O) O, HO )
where ||, is constant., Since the one dimensional theory of bars was
used to derive equations (2,18) and (2.19) 1t will be assumed that all
perturbed electromagnetic quantities are functions of only the

variables X and t « Since Ho 1is constant

V xH.= O.
By equations (2,16)
E.o =0
Thus breaking the vector equations (2.23) and (2.24) into components
yields
"Fx = U"KC% Ho | (2.25)
fy=-TKexHo— Tk Ha Ut (2.26)
1(1 =0 (2.27)

< wa,t =0 (2.28)



- 14 -

-€xx +Khyt=0 (2.29)
eyx tk bhet =0 (2.30)
€8xt —{HoUptt =Tex +T KHo Uyt (2.31)
~hax - €eyt =Ty (2.52)
hyx-€Cxt =T e€x (2.33)
€ Cyx t{ HoUyxt = & (2.34)
khLx,x=0 . (2.35)

Substituting equations (2.25) and (2.26) into equations (2.18) and

(2.19) yields

EL Uy~ (Nollx), - (NUo,x) xt AUt -ATK Hoex -ATKU U 4 Q
(2.36)

N)X* A.Q-KHOC((:(), oo
From equations (2.36)
€x-~ <‘ T gEIU,MKX°(NDUJX),X—'(NUO’X)IX{’()AU’t‘:.,,q—'(AH.:UJt_ﬁg

Substituting the above result into equation (2.31) it is found that
€ {ETU, xoxx = (No Uy ,x"(NUO,x))U'eAU,tt +G’KAH};U,L-C‘£ t

1T f ET 0,nan= (o) - (NUo,x),x 4 PAUL 17K A Ut —q}
- Tk AH:' Ut - W‘K‘AHT, Dt = O.

Expanding out the above equation gives
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€ ELOaaxt - € (ol )t +TE LU, wex -G'(N.,(),‘),xué(JA Uttt

AL o+ kH: (€K-a) Ut = € (NUo,x) xt 4 (NUoix ), »
+EqL+ 9. » (2.38)
From equation (2.9)

d
€EK-o" cz.
Using this information equation (2.38) becomes
€ EI(),xxnt"‘ € (No()_,x),xt +G—EIU,)WU( -T (No ,ij'f-E_(DAU,{f_t
+TA(p+ l%gi J0itt= € (V0o xt 4T (NUop) xE L $T79 . (2.39)

Now an additional equation containing the variable N is required,

Differentiating equation (2,30) once with respect to X yields

haxt = =% €yxx . (2.40)
Differentiating equation (2.32) once with respect to { yields
hz,xt=-€eqtt-Teyt. (2.41)
Equating the right sides of equations (2.40) and (2.41) one finds
that
KECytt +KTeyt - eyxx = 0. (2.42)
From equation (2.37)

Substituting equation (2.43) into equation (2.42) it is found that

Nyxxx = EKNyxtt —-TKNyxt = O - (2.44)



- 16 =

Equations (2,39) and (2.44) are two equations containing the four
variables U, N,Uo and No. Thus two more equations are required.

They are found by substituting E,=0O 4nto equation (2.15) and using

this result in equations (2.10) and (2.11). This process yields

EIUO,XXXX - (Nooo,x),x= ﬁo (2.45)
Nex =0 - (2.46)

Equations (2.39), (2.44), (2.55), and (2.46) are the complete set of

governing equations necessary to find the deflection of the beam-

column,
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III. BOUNDARY CONDITIONS

To derive the boundary conditions necessary to solve equations
(2.39), (2.44), (2.45), and (2.46) it will be assumed that the beam-
column is simply supported and free from externally applied end
moments, The mechanical boundary conditions for the static problem are

Uo (0,t) = Uo (L,t) = Uopnx (05t) = Usyax (L it) = O. (3.1)

It will be assumed that the electromagnetic boundary conditions
at the left end of the beam can be adjusted at will, The right end of
the beam will be thought of as the boundary between the interior
region (beam) and the exterior region (surrounding environment). No
attempt is made to satisfy the electromagnetic boundary conditions on
the sides of the bar, This would be inconsistent with the elementary
theory of beams which does not attempt to aatisfy mechanical boundary
conditions on the sides of the bar, The cross section of the bar at

X= [ is now the boundary between two regions with different
electromagnetic properties, The fields on either side of this boundary
are related by the jump conditions of electromagnetic theory., The
following notation will be used to denote a jump condition,

[7:]== -ZiEl_igj[
where 7: is the value of A on the exterior side of the boundary
surface and ?RI is the value of 1: on the interior side of the bound-
ary surface, Two jump conditions, as given by Stratton;{z], are

appropriate to this problem, One is |
[S+e5tra-4 E05+58)F + O3Bt L] A =0. .2y
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where FT is a normal unit vector pointing outward from the discon-

tinuity surface, The other is

[ﬁ] t = jj (3.3)

where the subscript on the left indicates that only the component of
Fr tangent to the discontinuity surface is considered in the above
equation,
Equation (3.2) will now be applied to the static problem; For

the surface in question
n=(1,0,0)

and ﬁ.o = (OJ o, ”o)-

The desired component of equation (3.2) is

Soxx -'—%_ KH;L = _"—L'. KOH: - f’/A
St;xx= "z" (k"’(‘u) H’t;’.~ F’/A .

The first term on the right hand side is the Maxwell stress on the
boundary, Introducing Xz K/ko = / the above equation becomes
Soxx = 5 kex Ho = P/A. (3.4)
To convert the Maxwell stress to forceyequation (3.4) is multiplied
by P\ since Sexx is considered to be constant across the cross sec-
tion. The final boundary condition is thus
No(L,t)= = P4z KeX Als. (3.5)
The boundary conditions for the dynamic problem must also be

found, The faoct that the beam-column is simply supported combined with
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equations (3.1) yields

O (o)t) = U)xx(o;'t)=() (Lt)= D)xx (LJ‘!: ) = 0. (3.6)

Now equation (3.2) will be applied to the dynamic problem,

-R‘='>'(L\x, L\‘1,l1?.)

Using the above information together with equation (3.3) the required

component of equation (3.2) becomes

Sxx - K Ho LI% - — koHo L\t}_ . (3.7)

With the assumption of zero surface currents equation (3.3) becomes
H|], =oO.
1,

(ot L]t =o. (3.8)

Thus

In the Z direction the component of equation (3.8) is

Ho+ L'i :—"' Ho + L\Ez
or L\l% = LE% . (3.9)

Substituting equation (3.9) into equation (3.7) yields

SXX = (k" ko ) Ho L\:;_

er N=(k-ko)AHohx. (3.10)
Differentiating equation (3.10) once with respect to t yields
Nt = (K-Ko) AHo hz,t. (3.11)
From equations (2,30) and (2,43)
L] - __.'_ c X = N)XX - (5011)
R S L YT

Substituting’ equation (3.12) into equation (3.11) gives



AHo
= -Ko ) m—m——— - 501
Nyt= (ko) map Nox (3.13)
Recalling the definition of "X the boundary condition finally becomes
TK*Ne (L)~ Ko X Nyxx (LE) = O . (3.14)

The boundary conditions are now contained in equations (5.1), (3.5),
(5'6)9 and (5011‘)0



IV, OSCILLATION OF A COLUMN

For a column one takes

9o=q=0
in the governing equations,

Thus equations (2.39), (2.44), (2.45), and (2.46) become

€ ET U xxxxt — € (NoUyx) xt +T"E TU,xxxx -U’(NoU,‘))x +e(JAU,m

+TA(e4 'é-‘{:)U,tt = € (NUoy),xt 4T (NUox), | (4a1)
N, xxx - EKN,xtt ~TkN,xt =0 | (4-2)
E L0o,xxxx = (NolUoyx Jx= O (4.3)
No,x = O . | (4.4)

The boundary conditions are given by equations (3.1), (3.5), (3.6),
and (3.14).

The solution to equation (4.4) combined with boundary condition
(3.5) 1s

No=—P +5 Ko X AHe - (4.5)

From the elementary theory of elastic stability it is known that if
No 1is less than Buler's load the column can be in equilibrium only
in the undeflected position, Thus the solution to equation (4.3)

combined with boundary oonditions (3.1) is
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UO: O . (406)
Combining equations (4.1) and (4.6) yields

€ ELU,xaat —ENo Uxet HT ELU,xxxx =T NoUjny +€‘el\0,ttt

JTA(p+ 9 )Ugt - 0. 1)
To solve this oquation the following series solution is assumed.
t
U= hZ, 0,, st e (4.8)

Substituting solution (4.8) into governing equation (4,7) gives

€ETWN*T? ;€ Noln' T . cernty? 4 TN
L4 Lt L4 R

swlepntw'oA (o4 K“") 0.

Rearranging terms this becomes

3 T EInT
W+ (p+R )L, w +"§{’_1( LT NG
mﬁ’" (EIH ﬂ’L_‘,N ) O. (4.9)

* AL

Equation (4.9) is the frequency equation for this vibration problem,

For simplicity 1let

T
(G"’ ct ) —(3

Gv= N.L (EW\h PNo) (4.10)

Cs® S[hﬁrt(cralr +No )

EPALY

Now equation (4.9) becomes
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WG W +au) +63 = O. (4.11)

In order for the solution of equation (4,9) to be stable it is
necessary that the roots of equation (4.11) have no positive real
parts since these lead tovsolutionq which are ever inoreasing in time,
A method of determining whether or not the roots of a polynomial
equation have positive real parts is due to Routh, To apply this test
it is necessary to set up tho.Routh tabulation as gdescribed, for
instance, by Kuo [5] « The tabulation has the following form when

applied to equation (4-11),

w> [ G o
1
w G, a4 O
i CQ(G.L‘GG' O ®)
U) G
(Ajo (oY (9] o

The Routh criterion for stability states that all terms in the first

column of the tabulation must be positive. Thus for stability

a, = <(—>+ %Q_;L)ég(; (@) (4.12)

Gon e (o0 Kb \T P (EINTY, | Th'T [EIn'T"
OG-y = (p+ )g(’ AL‘(T+N°) GGAU( a N.)>0
(4.13)

0
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_.(Th"tr"(EIh“Tr" )>O 414
Qa= E;(DAi.l K +No . ( )
Clearly inequality (4,12) is always satisfied. Inequality (4.14) is
satisfied if

Tl
EIL?_ T +No > O. (14.15)

Inequality (4.13) can be aimplified as follows,
1 " 1
(SRR (1 8-1)>
or [ Th*T* KHo
(ST SR sor > O- (4.16)
Inequality (4.16) is satisfied only if inequality (4.15) is satisfied.

The condition for instability is seen from inequality (4.15). It is
ST AT
¢ ELET o

No
—_ T
or —P*%kufoJr-—‘:'{?w <o
or P= EI"L” + KoXAHG. (4.17)

The buckling load for this column is thus changed over the classical
Euler load by the addition of the Maxwell force. "X can be positive
or negative depending on the material, Therefore the Maxwell contri-
bution can be either positive or negative.

Now it is desired to investigate the roots of the frequency
equation, For this discussion 1t will be assumed that

P=o0-

Thus the frequency equation now corresponds to the problem of free

vibrations of a conduocting beam, The frequency equation is
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un( +l(§14°)°'w %‘2{1 (—T—+No)w g‘é‘,\'[l (EIWJrNo) O. (4a8)

For given numerical values of the parameters equation (4.,18) can be
solved by the use of the cubic formula, Without resorting to such a
procedure it is possible, however, to discover the general effect of

the magnetic field on the three roots., Toward this end substitute into
equation (4,18 ‘
: ( ) =mJ
€
where M 48 any number,
The result is

¢ "3y (H'(:"")g; pg (elmrm )ﬂ‘m,rmr

e? el\l." € ('AL" (H = N°>

2 oyt Gl' hlﬂ'l EIVIH' l(o'X.AHo) m+t)=0.
or m- (VHJ-H-M“")#(F,_QAL.L ( K 4 2 ( ) (4.19)

~ Now find frequencies of the form
. w=g (m*+om)
2
where M is the solution of equation (4.19) with Ho= O and Om
is a linear correction factor based on a small deviation of H: from

kS
zero. First M’ must be determined, With Ho=0O equation (4.19)

becomes
it (it 4 %ﬁgg (P#4)=0
or EIh“ﬂ“)
(*+1) (nm* J'q- oA o. (4.20)

The roots of equation (4,20) are
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. € Ih{"ﬂ'4 v
m¥e—| and rn*=ibo-_ (EEJTLT ) (4.21)

To find A equation (4.19) is thought of as a function of the

R
variables b and Wo . Thus

£ (mz) =m* (4 4‘;':3)q PAL‘ (CI’L‘JT |(o'XAHo)(m+)

From equation (4.22) it is seen that

df= 2 clmy Bhdlo= N (4.2)

(4 22)

ir Ho differs from zero by only a small amount dm can, as a first
approximation, be replaced by Am ., Also du_o becomes uo o Now equa-

tion (4.,23) can be written as

(a?:‘) A”“L<3H°) = O

4=o
Hg=© t
or

(B(/BH’S)&‘%O
(24 =0

Now evaluate the required partial derivatives,

(?.f) = ¥ K € I '<°7LA(|~\*+|) o

Ho (4.24)

Am = -

oM Js Mt Tar R T2
() zm’(zc( x )(3 2t ntrel o)
S “:: 4 ) thn * g oNLA
Substituting equationa (4.25) into equation (4.24) gives
Gg'-v. h:g:' KoxA (Vh" 1) .
A = ec ¢ Ho (4.26)
2t (t+1) +l~\*"-+§,_ __Kn_"‘;“q EL

When h"\"’="'|



and

A= - v ec H: . (4.27)

Arn=-— K h«\ TNt xA L 1 4,
g-@‘c‘ | ‘lq-e-x ‘D'Kue L:: & it { Ho (3.26)
1

(4.29)
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| T ALY A
s (v\E‘rrr*(I) (8.30)

Combining equations (4.28), (4.29), and (4.30) yields

* htgter ) € )
A =—_K cr GM* Nt K;k( )‘_K T pl\
'z(ac,"- T pirter e qf %r 2pt *ghm_;'
cr*- EALt a* Nt
and
| trtes ntrfer\h
A= — K WL{B‘ l<;&(g_) ( PALY > u"—
fé'ﬁll § EnfIieT I Z(JG hﬂrﬁ;r
AT TN (4 )

When Ho O the three roots consist of one which leads to pure damp-
ing and a conjugate pair which leads to simple harmonic vibrations,
Equation (4.27) indicatée that the previously purely demped mode re-
mains purely demped but its relaxation time is decreased., Equation.
(4.31) shows that the previously simple harmonic modes are now damped
harmonic modes, The frequencies of these mod&s can be increased or

decreased depending on the relative magnitudes of the two terms inside

the brackets,



V. OSCILLATIONS OF A BEAM-COLUMN

Consider a beam-column loaded by a distributed load in the form

of a half sine wave. In this case
Fo=qSMT* s q=0-

The governing equations (2.39), (2.44), (2.45), and (2.46) now become

€ETVunt -E(NoU,\)’it,'*U‘EIU,xxxx-d—(No ) FECAU b

JTA (94 'gj: )uu = € (NUop)xt +T (N Usx),x (5.1)
N,xxx~ EKN,xtt =T KN,xt= D | (5.2)
ET Usxxxx — (Ner,x),x= -Cf St I‘l:_x (5.3)
No,x =0 . (5.4)

The boundary conditions are given by equations (3.1), (3.5), (3.6),
and (3.14).
As in the previous section, when equation (5.4) is solved subject

to boundary condition (3,5) the result is

No=-P 45 KoXAHs (5.5)
To solve equation (5.3) together with boundary conditions (3.1) assume
Vo= Uo 5'“"“8{ . | (5.6)

‘Substituting solution (5.6) into equation (5.3) yields

= (eImt liJ'“);-’
Uo('_’@ + L". ﬁ



or 1
Ve = T rerr
L (S )
Thus the solution to equation (5.3) is
Uo = Ezﬂ' 'Sl"\n";‘_ . (5.7)
T (€2 +No)
A solution to equation (5.2) which satisfies boundary condition (3.14)
is t
TrX W
. N=NsSwTe . (5.8)

When equation (5.8) is substituted into equation (5.2) the result is

i 2
L,_+€|<w +Tkw= 0

or

w4 Tw+I =0 . (5.9)
c eKtL
The roots of equation (5.9) are ’
-_ T (f‘ . ) - 10
7e ¥ g TEcr ) - (5.10)

 Using the results obtained so far equation (5.1) can be written as

2
€ ELUumxt ~€ NoUpxt+TEIU,xxxx =T NoUyxxt E.(’AU:W-‘N-A(()* Eﬂ ? ) U,fi'

€NU, wr% “Dt R, Wl i e
TR0,

v v X wt

_T.." [oZIN T%" wt—-U‘ N 0o Sih LC (5.11)

L‘l

After a slight simplification equation (5.11) becomes
v

€ET Umt ~ € Nobjoit HTET Uy - TN QAU HTA 0 K

Tl':gﬂ‘z (Trew) Cos X et (5.12)
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For ease of solution it is desirable to expand the right side of

equation (5.12) in a Fourier sine series in the interval Q< X<L .

The function to be expanded is

£(x)= cos 7__1_er .

Its sine series expansion is

F00= & by 5in IX

where the Fourier coefficients are fiven by

L
b = 2 L Fosin el

Substituting equation (5.13) into equation (5.15) yields

L
L.;%st ?-lT_-”‘sih‘lEf"olx ] ht
s § cos T(2-n)x _ c»osTtT(uv.)xg e
T L {2 () W (24n) o '
L L
[o.,‘ =1r(‘z—t1) gCoslT(z-n)—I}—TF(-l{;h—) {COSH'(?.’IM)—lz

h+1

From equations (5.16) and (5.17) one deduces that

o) n even

% n-4 h odd.

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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Substituting coefficients (5.18) into series (5.14) and this into

equation (5.12) gives the following form to the governing equation,
1
€ ELU uxt ~ENo U,xxt 4T EL U oo —U_N°U;X¥+GQAU,£& HA (e‘. léj:o):
sin 1 (5.19)

‘HTNUO
(Thew) e” Z e z

h=1),--

To solve equation (5.19) one seeks a solution of the form

U= Uut Uf:
where UN is a solution to the homogeneous equation and Up is a par-
ticular solution to the complete equation, The particular solution

will be found first. Assume t
Tx ¥

Ul’— Z Uh‘S’\‘\ hL c . (5.20)

When this is substituted into the governing equation (5.19) the result

is

1.t/ T ‘EI 2 ;!- -
? (T+ew) UL-{V (L[T +N.,)+w A(eewm-(a +%ﬂ )}U»\

L‘L ( h-‘_- 4
or

o

47N Us (Trew) — n
T h-4% .

<M—f HNo) +w"(aA]+ T Ate } Un=
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4TNp _
o LY n*-4 (5.21)
. Ut.,z “TI'E.L' < 5.21
'—‘ ( +N°)+wA§P (T rew)c™ g

Substituting coefficients (5.21) into solution (5.20) gives the

following particular solution.

—b i X

UP _ 4T N 6°CUt h=¢
L (R )w‘AggF&“‘-i(m oct}
n+43,... (5.22)

To find Uu equation (5.19) must be solved with the right side set
equal to zero. The governing equation then becomes identical to equa-
tion (4.7) which was treated in the previous section., Therefore
attention will be focused on particular solution (5.22). Clearly |

an instability will occur in this solution when its denominator is

set equal to zero. The equation to be studied is

h Tel WAL (TKHo _ .
T L HNo 40 AT ge @-+ew)(. z—o ) (223)

From equation (5.10) it can be seen that W ocan be either real or
complex, The case of a real W will be considered first.
Reference to equations (5.7) and (5.22) shows that Ur has one

instability when —
IhT
E'—L':: +tNo=0O



or o
’_

CI‘“ T4 Lk AR . (5.24)

Bquation (5.23) indicates that UF has another instability when

o gg ; TKHe 2
= 4"— ko% IS 52
P = Alo + m(————mw)c‘ . (5.25)

To find the buckling load one searches for the lowest value of the end
load which causes an instability. if‘ W 1is real the last term of
equation (5.25) is real, If this term is positive the critical value
of P 1is given by equation (5.24). If this term is negative the ecri-
tical value is given by equation (5.25). Olearly the sign of the term
in question is the same as the sign of (q-+ew) » From equation
(5.10) it is seen that two cases must be considered for which W s

real, The first is when

T 2
_q- - ._T[_ —3 O
4e* ekLr
In this case -

w= -3

and

cr+ew-—cr-£{= g_’>o .

Thé second case to consider is when

2
c°__T1° 5o,
4ect €KLY
Then 2 }'
W = -9 q.'t. - T \ t
€ 4et EKL*
and

1\ I
= =T + (1"- T )
0tew 1Y€ G e
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or T +\V
a1 (5 1)

In order for the above expression to be negative the second term
would have to be larger than the first, This is obviously impossible,
Thus
T+EwW » o.

From the above expressions it can so concluded that the electromag-
netic forces do not effect the buckling load. The beam-column buckles
at the same load that would be required if it were static and no
electromagnetic forces ( other than the static Maxwell force) were
present,

It is also possible for (W) to be complex. In this case the
demominator of Ur consists of a real and an imaginary part, Both of
these must equal zero simulteneously for an instability to occur. From

equation (5.10) it is noted that W 1is complex when
‘ T
J T
A ; < O.
4e™* €KL
Inspection of equation (5.23) reveals that the real and imaginary

parts of the equation are not identical. Thus one value of the end
load would not make both the real and imaginary parts zero simultane-
ously as required, Consequently in this case also it is seen that the

electromagnetic forces do not lower the buckling load which remains

Tt~ e
F’-’ n T{lbf "’% Ko X AHo .
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VI. FORCED OSCILLATIONS OF A COLUMN

Consider the following case of forced vibration,
=5 < Tx -3t
fo=0  q=3sTe (6:1)
This column has a load applied to it at t=0O . It is noted that the
solutions to governing equations (2.45) and (2.46) are the same as

those presented in section 1I¥, namely

Uo=0 (6.2)
No ""‘-P “-%_ KD’K.AH-,; - v ) (605)

Substituting equations (6.1) and (6.2) into equation (2.39) yields

the following governing equation.

€ ETUmat ~ ENe Ut +HTELU xaan TNUa tEPAU 1 HTA(pH th} Jues

(T-e3)g simTxe 3" | (6.4)
Again a solution is sought in the form

U=0p+ Uu
where (}r is a particular solution to the complete equation and (Ju is
a solution to the homogeneous equation, It can be seen that the homo-
geneous equation is identical to equation (4.8)., Thus all the results
of section IV apply equally well to the problem now under discussion,
Now a particular solution to equation (6.4) will be found.

Assume _
Op=U sihT—{-_l‘ g3t (6.5)

Substitution of solution (6.5) into equation (6.4) yields
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eIl (15 o o T3 {0 -e5)7

or 1 .
g(v-eg) [ <W1E‘C+N )+ StAe} ¢ 21Tk 3 0- @€3) 7

or
_ g |
U = e Y . (6.6)

[CEL (N T K Hs
[t +No 4 T {P"’ (o~ €3)C* g
Oombining equations (6.5) and (6.6) gives the following result.,
0p= T = j,,_ - .S'M“—-CXCQSt . (6.7)

"R o S for g

For an instability to occur in UP the following condiiion must be

satisfied.
-P+ Jfﬂukox,w 4 3 AL g() TKHo }___ o (6.8)
Tt @-es)c :
Using solution (6.3) equation (6.8) becomes
1
= TEL 41 koxAus +3AL{ i'-'-'i”—"—} (6.9
P O Ho (J+ ((T-E!)C‘ . )

From equation (4,17) it is seen that |Ju exhibits its first insta-
bility when e N

P= I 1 koxmie . (6.10)
Equation (6.10) will determine the buckling load for the ¢olumn unless
the third term of equation (6.9) is negative, For the electromagnetic

forces to lower the buckling load it is necessary that
(0-es)ct )



Let
3=mg y M| (6.12)

Equation (6.11) now reads
e+ Kio < O
(1-m)C?

He> (m-1) B (6.13)

From this expression one can determine the magnetic field which must

or

be present in order for an instability to occur in the particular
solution at a lower value of f’ than that predicted by the homogeneous

solution,
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VII. NUMERICAL RESULTS

All the results presented in this section are for aluminium for

" . which

K'—"—KO ) €::"€° .

From equation (4.17) it is seen that the additional buékling
stress due to the magnetic field is
' 2
ASXX_"" K_%'K Ho .
Combining this with equation (2.13) yields
x T
ASX" Z—K.o Bo . (7.1)
Equation (7.1) is plotted in figure 3,
Equation (4.31) shows that the damping coefficient added to the

previously undamped modes is

1
€ | ¥
. Sw
AW,= Kho _ T~ 7.2
(o] ZFCL ' + EL w.* 2 s ( )
where : }'1.

ot (PR (Y

Equation (7.2) can be written as

AW, = K“o -j(w*) | (7.3)
Z(DC.
where w*
j(w )= w-t T €N ot
or %
j(‘*ﬂ) = g—b-t(%u—)ﬁ . (7.4)
e |

The above expression shows that
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< T
O¢< 3(&) )~ g -
Combining inequality (7.5) with equation (7.3) yields

aK L
(Aw")ma\ ::“:2---6—(')—(-?l Ho

Using equation (2.13), equation (7.6) becomes

T n
(Awo)mq‘ = m Bo

or

QY 2—%; Bo .

Thus if the relaxation time is denoted by T,

T
Tom = 363 -

Equation (7.8) is plotted in figure 4,

A 16WFS0 aluminum beam has the following specifications.

E= o [blin*
= 2.9¢ X(o™2 5‘035“'—.3

T= (.55x0 jut
A =]4TKioin".

If | 4is picked as follows
L= [6xio"in

then w%a 24_“47. CPS .

For eluminum VG /€= .27 \(lo“i Cps .

Olearly T 5> (ot
e ’

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)



-l -

except at extremely high modes of vibration., This result is typical
of those obtained for beams of common shapes, Substituting inequality

(7.9) into equation (7.4) yields

). Ett 10
T(wh= S w (7.10)
Substituting equation (7.10) into equation (7.3) gives
3 1
Dp = EKHo (¥
Z(JO’C
or 1 1
*
AWp = ﬂ_ﬁ?_—‘* . (7.11)
ZUKOPC

The relaxation time is thus

r 3
T= M4, 4 (7.12)

Wt Be
Equation (7.12) is plotted in figure 5.
" From equation (6.13) it is evident that the lowest value of
which will effect the buckling load is
Bo= (QKo)hC (W' ")'(.L (7.13)

Equation (7.13) is plotted in figure 6,
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VIII. CONCLUSION

Before discussing the results of the previous work it is useful
to review the assumptions that were made to obtain those results,
First it was assumed that all variables were perturbed only a small
amount., Second the assumptions of elementary beam theory were used. In
addition the effect of shear, rotary inertia, and the acceleration of
a differential element of the bar in the axial direction were neg-
lected, Finally, to be consistent with the elementary theory of beams,
it was assumed that all electromagnetic variables were functions only
of X and L . While none of the above assumptions are unreaaonablg,
they are certainly not the only assumptions that could be made. It is
to be remembered that the results discussed in what follows are valid
~only to the extent that these assumptions are satisfied.

The work presented concerned itself with two areas, They were the
vibration and elastic stability of the structures studied. Conclusions
with respect to vibration will be summarized first.

In sections IV and V the oscillations of a column and a beam-
colunn respectively were studied. It was evident that, at least from
a theoretical point of view, the addition of a magnetic field had
marked effects. In the column problem three roots to the frequency
equation were obtained as compared to two roots in the absence of the
magnetic field. The magnetic field introduced damping into the pre-
viously undamped modes, changed the frequencies of these modes, and -

introduced an additional totally damped mode, In the beam-column more
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additional frequencies were introduced due to the appearance of the
perturbed normal force in the governing equation for deflection,

For the two problems discussed above the effect of the magnetic
field on the elastic stability of the structures was not so great. It
is true that the buckling load was changed. This change was not, how-
ever, caused by the dynamic electromagnetic forces, It was caused by
the addition of the statiec Maxwelllforce to Buler's load. It must be
noted that the small perturbation assumption precluded the iﬁcluaion‘
of the term NU in the governing equation for deflection, It is well
known that this term has a prominent role to play in any discussion of
elastic stability., A more inclusive theory would be required to inves-
tigate the effect of this term. In section VI it was discovered that
for forced vibration.of a column the dynamic electromagnetic forces
oan indeed lower the buckling load, |

The numerical results presented in the following graphs indicate
that the effect of the magnetic field is of slight practical impor-
tance, Figure 4, shows that the relaxation times can be small but only
for extremely high frequencies. Figures 3,, 5., and 6. indicate that
no appreciable effect can be noticed for magnetic fields of reasonable
size, One cannot, however, rule out completely the effect of the meg-
netic field., It is certainly possible, foé instance, to find some
column whose Euier load is so small that the electromagnetic contri-
bution is significant.

It is to be recalled that numerical results are presented for only



one material, It would be incorrect, therefore, to conclude that the
contribution of the megnetic field is without significance for all
materials, Since aluminum 1s fairly typical of the usual structural
metals it can be said that for ordinary beams and beam-columns made
of ordinary structural materials the effect of a magnetic field on

their vibrations and elastic stability is very small,
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Figure 3,- Additional buckling stress vs, magnetic induotion.
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Figure 4,~ Minimm relaxation time vs., magnetic induction,



g2k L,
(‘U*\ Bo
3
Bo
wh < Wl <w
T (sec) B (qavss)
w‘*: ‘O’LCPS w:wklo“'(_PS (U’*-lo“cpb
(o = ‘ [« %Y oo e
ot x10%% | 145x10% | 9.04x18" |
q04x10>2 | l45%R | Fotxp | o
qoqx 1 | Lgsxio? | qotxio®’ | l1o®
u
qofxio | L45X10" | 904w | lof
. i 9
qotxio | 14skior [ q.oex10' | ot

Figure 5.~ Relaxation time vs, magnetic induction,
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SMALL OSCILLATIONS OF A BEAM-COLUMN WITH FINITE ELECTRICAL
CONDUGTIVITY IN A OONSTANT TRANSVERSE MAGNETIOC FIELD
By
John Peddieson, Jr,

ABSTRACT

Small oscillations of a beam-column with finite electrical con-
ductivity in a transverse magnetic field are examined under the
assumption that the vibration of the bar causes only a weak pertur-
bation in the electromagnetic .field. The frequency equation is derived
for a column and reduced to that for free vibration of a beam by
equating the end load to zero., The roots of this equation are obtained
approximately and the effect of the magnetic field on the frequencies
is noted. In addition, the elastic stability of a conducting column
and beam-column are inveatigatea. The effect of the magnetic field
on the buckling load is determined, Numerical results are presented
which indicate that the effect of the dynamic electromagnetic forces

is negligible except at extremely high frequencies of vibration,
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