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I. INTRODUOTION 

During the past decade increasing interest has been shown in the 

effects of electromagnetic fields on the mechanics of solids. Al~hough 

investigation in this field has practical applications in the fields 

of optics and accoustios, the first attempts to study this phenemenon 

were made by geophysicists who wished to understand the effect ot the 

earth's electromagnetic field on seismic waves. Since then many 

authors including Banos, Chadwick, Ke.li'ski, Petykiewicz, Dunkin, and 

Eringen have solved problems concerned with infinite and semi-infinite 

spaces subjected to electric and magnetic fields. Contributions to the 

theory of this subject have been made by Dunkin, Eringen, Toupin, and 

others. For a complete list of references the interested reader should 

consult Suhubi [ 1 ] • 

Other shapes than the infinite and semi-infinite space have been 

studied 1 but not many problems have been solved in this area. n.mkin 

and Eringen co'nsidered the first problem of this type. They investi-

gated the vibration of an infinite plate in a strong uniform magnetic 

field. Suhubi [1] studied small torsional oscillations of an infinite 

circular cylinder with finite conductivity in a constant axial mag-

netic field. 

The following study is concerned with small oscillations of a 

berun-column with finite electrical conductivity in a constant trans-

verse magnetic field. It is based on a linearized theory of electro-

magnetio-elastio interactions and simplified by using the elementary 
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theory of bars rather than the more exact elasticity theory. 

In what follows three problems are considered. First the small 

oscillations of a conducting column are examined. By equating the en4 

load to zero the frequency equation for a conducting beam is obtained. 

The roots of this equation are examined by an approximate method. By 

retaining the end load the elastic stability of a conducting column 

is studied. Second a conducting beam-column is inYestigated. Both the 

frequencies of Yibration and the elastic stability of this beam-column 

are examined. Finally a probl$m in the forced Yibration of a conduct-

ing column is considered. Primary interest is focused on the elastic 

stability of this structure. 

In all of the afore mentioned problems two questions are of 

primary importance. The first is the nature of the effect of the 

magnetic field. The second is the size of magnetic field required to 

make these effects noticeable. 
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II. DERIVATION OF EQUATIONS 

It is desired to investigate various aspects of the behavior of 

an electrically conducting beam-column as it performs small oscilla-

tions in s. transverse magnettc field Ho oriented s.a shown in figure 1. 

The bar has density p , modulus of elasticity E , moment of inertia 

I , and length L • It is subjected to mechanical loads ,c~) and P 
as shown. First the equations of motion will be derived for the beam-

column. This will be done neglecting the effect of shear on the 

deflection of the bar. Also neglected will be the rotary inertia and 

axial acceleration of each element of the structure. Oonaider the 

free-bod7 diagram ot an element of the beam-oolumn shown in figure 2. 

(2.1) 

E l="y = -V + F~ /\ rJ x +-v +-v) c1 x t 9 c-J x = f A. d'>c Ultt 

Cf +-\1,x +AF~-=-f'~ U,tt c2.2) 

'"':l-t 
I Mr N +Vdx -c=,rlx. ~x- +y A.dx '4:>t 

- (M +-M,• d"K-)- ( N +-N,x.dx )U, xd't -=-o 
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Figure 1.- Beam-column in magnetic field. 

9(,t) 

u+u,-.dx 

N l rfx NH·J,,.d-x. 
p 

\/ M + Ml).~ X 

Vf-V,xdx 

l - ( o,U,tt, o) ~-=? 

Figure 2.- Freebody diagram of differential element of beam-column. 
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Neglecting second order terms the following equation is obtained. 

M,x fN lJ,-.. -V • o 
From the elementary theory of beem deflections 

EIU,x~z.-M • 

(2.}) 

(2.4) 
Nov equations (2.2) and (2.,) are substituted into equation (2.4) 
as follows. 

EI lJ, 't. )( =-- M, X .. Nu, 'K. - V 
Thus 

Equations (2.1) and (2.5) are the governing equations tor the deflec-

tion of the bar and the normal force. 

The electromagnetic force per wiit volume is given by 

r - J X (3 4-fe E . (2.6) 

To determine the quantities in the above expression Maxwell's equa• 

tione are necessary. They are 

- - -\]'1..E + C3,t = o 

- -V1'H-O)t- J 

V· ES= fe. 
tJ•B-=o. 

(2.7) 

Oonstituative equations are also required. For a homogeneous beam 

they- are 

o = E e -1-o< u, t I~ x Ii 
8- kH - o( U)t I~ XE 

(2.8) 
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J= feU:,tf~ ~cr(E""+U>tI'fxtr) .. 
lh equations (2.8) 

o(z k€.- ~-i. (2.9) 

and is a unit vector directed in the positive direction. 

Consider a state of equilibrium of the beam-column characterized 

by the deflection Uo and the normal force No combined wit~ a steady 

state electromagnetic field in turn characterized by the fiel~ Yector1 -Eo, Ho, Do , Be, , jo • The body force h denoted by +o • The 

goYerning equations are 

(2.10) 

No+A.fo~ = 0 (2.11 ) 

(2.12) 

(2.1~) 

f: -= crEo 
ro,:: To X Bo • (2.14) 

In the above equation, foe - O • Since the material has finite 

conductiYity there oan be no free charge except on the surface. 
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Now use equations (2.13) to put equations (2.12) and (2.14) in terms 

ot Eo and Mo • The results are 

f 0 =CfKEoXHo 

VXEo~o 
__. - -\} ~Ho= CJ"E'o 

ff· Eo· o 

The governing equations are (2.10), (2.11), (2.15),·and (2.16). 

(2.15) 

(2.16) 

Now consider a small perturbation which is characterized by a 

small displacement ot the beam U (x.,t) • All variables will ·be perturbed 

as follows. 

N,= NotN 

I,\, -r: + r 
f,=Eot~ 
ff,= Bo 4-t" 

0::Do+-J 
f-L = Ho + t 
T.-=To+T (2.17) 

Substitute these quantities into equations (2.1), (2.5), (2.6), (2.7), 

and (2.8). It is assumed that the products of perturbed quantities and 

their derivatives are of a higher order than the perturbed quantities 

themselves. After simplifying, using equations (2.10), (2.11), (2.15), 
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and (2.16), and neglecting higher order terms the results are 

E.IU,XJl.>tlC. - (No u,l), ... -(NUo,\ ),, +-p ~U,tt = ~fa, .i 9 
N ,~ + ~f k. = o 
f= 3:xb +J-x.B0 ffeEo 
V >c.C: I t3t-= 0 tj•.J .. fe 
v). t: - J: t • J v .t - o 

J-= Ee +otU)tI~xHo=O 

b-:: k ( - o( lJ,t r~ X Eo • 0 

J er ( c.,. u,· t I~ x B"" o ) 

or j • o-(e: -I-kU,tI~XHo)_ 

(2.18) 

(2.19) 

(2.20) 

(2.21') 

(2.22) 

Use equations (2.22) to put equations (2.20) and (2.21) in terms 

of ~o, Ho' e andi:; • An.er simplification the following results 

are obtained. r = 0-Eo X ( I<~ - o{ lJJt r~ X Eo) + O""(~ + kU,t r~ xi-T.,)'J.kif., 
-1-~Eo 

vxC: .f-( k~ -o(U,tf~ xEo),t- o 

~K-c: - (€t +O('U,tI~ ~Jfo),t ={f (ef kU,l I, ~i:ro) (2.24) 

v-( e_e -10( u,t r~ x IT.)-= fC 
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The governing equations for the dynBllic probl&m are (2.18), (2.19), 

(2.23), and (2.24). These equations hold for any magnetic field as 

long as the oscillations are confined to the X, plane. For the 

specific problem under consideration 

Ho~ ( o, o, H C, ) 

where Ho is constant. Since the one dimensional theory of bars was 

used to derive equations (2.18) and (2.19) it will be assumed that all 

perturbed electromagnetic quantities are functions of only the 

variables X and l . Since ff o is constant 

\lXHo= Q. 
By equations (2.16) -Eo= o 
Thus breaking the Yector equations (2.23)·and (2.24) into components 

:,ields 

(2.25) 

(2.26) 

(2.27) 

I< ~~,t - o (2.28) 
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- e e> X +KL,~ ,t=- 0 

e1,x + k hc)t=o 

-€C:x,t-0<HolJ,tt -=Cfex. +crl<HoU.,t 

- l, ~))( - E: e ~,t - ere~ 
h ~, "' - £ C: t, t = G"" e~ 
t e 'A, )t -f o( HO u IX t • fe 
k x,x = o . 

(2.29) 

(2.~) 

(2.}1) 

(2.}2) 

(2.}}) 

(2.,4) 

(2.}5) 
Substituting equations (2.25) and (2.26) into equations (2.18) and 

(2.19) yields 

filJ,x10l~ - (N oU,~), x- (NUo,\ \"-t p~U,tt=-f\crk Hoe.~ -Nf l<H!O,t f 9 
(2.}6) 

N > X t ~Cf f< H-o e~ = 0 • (2.}7) 

From equations (2.'6) 

e • - IT'~ 1'.1-1. f EIVµu -(N,U,,),~-(NU.,,\, +('AU,tl WKI\H!IJ,l -~ 1 
Substituting the above result into equation (2.,1) it is found that 

E f ETU, )!.lt)t)C - (No u,~),% -(NUo,x), x t f A.U,tt f0-l<~H! lJ,t -9 l, t 
-t'ir f EI lJ,,,m - ( N. lJ,.),, - ( Nllo,, ), x + f A U,tt f lJ1C lJ,t -91 

1..,, l.1. 1." - Cfl<o( A.Ho v,t.t - 0- k A.Ho v,t-= O. 

Expanding out the above equation 
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E Eiu,AA~xt-£ (NoO,,.)J-..t -f CTETU,~~x~ -(f"(NoO,,.),xt f EpA U,tt.t 

-1-'if" /\ f (:'~ k II~ ( E. K-o() [!J,tt. 0 € (NUo,>t), d. W( NUo,\ ), 

. f E"Cf,t + er~. c2.,s> 

From equation (2.9) 
1 

€K-o(• C 1 • 

Using this information equation (2.,S) becomes 

E EIU,11.u11t-£ (NoOJ~),xl +crEJU,xuJC -er (NoO,\),~+E.pA.lJ,u.t 

+U-A(ff )U,tt• E (NOo,~),.,_tfCJ(NUo,).),x+t:~,t Hf1. (2.}9) 

Now an additional equation containing the Tariable N is required. 

Differentiating equation (2.~) once with respect to X yields 

h"t.;'(t .• - e~,x~ . (2.40) 
Differentiating equation (2.}2) once with respect to t yields 

~t = -€ e.~,tt-c.rc:~,t. (2.41) 
Equating the right sides of equations (2.40) and (2.41) one :f'Uids 

that 

k E c.,,tt. -1-KO-e~,t - e~,>t>t = 0 • 

From equation (2.}7) 

L" - - N,x - A 

I erk /:\Jfo 

(2.42) 

Substituting equation (2.4}) into equation (2.42) it is found that 

N,-.x-. - EK N,d.t -erk N,lt -= 0 . (2.44) 
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Equations (2.39) and (2.44) are two equations containing the four 

variables U, N , Uo and No. Thus two more equations are required. 

They are found by substituting E0 -= 0 into equation (2.15) and using 

this result in equations (2.10) and (2.11). This process yields 

EIUo,X.X.~)( - (NoOo,Jt), \ = 0 

No/~=- o . 
(2.45) 

(2.46) 

Equations (2.~9), (2.4J.), (2.45), and (2.46) are the complete set of 

governing equations neoessar1 to find the deflection of the beam-

ool1.111n. 
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III. BOUNDARY CONDITIONS 

To derive the boundary conditions necessary to solve equations 

(2.}9), (2.44), (2.45), and (2.46) it will be assumed that the beam-

column is simply supported and free from externally applied end 

moments. The mechanical boundary conditions for the static problem are 

Uo (o, t)'" Uo (L.,l) : Uo,»x (o,l) = Uo,,u, {L,t) = 0. c,.1, 
It will be assumed that the electromagnetic boundary conditions 

at the left end of the beam can be adjusted at will. The right end of 

the beam will be thought of as the boundary between the interior 

region (beam) and the exterior region (surroundU.C ,environment). No 

attempt is made to satisfy the electromagnetic boundary conditions on 

the sides of the bar. This would be inconsistent with the elementary 

theory of beams which does not attempt to satisfy mechanical boundary 

conditions on the sides of the bar. The cross section of the bar at 

X= L is now the boundary between two regions with different 

electromagnetic properties. The fields on either side of this boundary 

are related by the jump conditions of electromagnetic theory. The 

following notation will be used to denote a jump condition. 

[A]~ AE -1.._I 
-E 

where A is the value of A. on the exterior side of the boundary 

surface and "/\xis the value of A.. on the interior side of the bound-

ary" surface. Two jump conditions, as given by Stratton. [2 ), are 

appropriate to this problem. One is 

[s + f:!'o+-lfB-{ (E•t>+H°·B) + (oii3)U,tI~] -~ =o. c,.2> 
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where h 1a a normal unit vector pointing outward from the discon-

tinuity surface. The other is 

[H"]t: Js 
where the subscript on the lert indicates that only the component of 

H tangent to the discontinuity surface is considered in the above 

equation. 

Equation (,.2) will now be applied to the static problem. For 

the surface in question 

h (1, o,o) 

and 

The desired component of equation (,.2) is 

' 2 ' k 't r/ Sox). -=i_ l<Ho == --=[ oUo - A 
. ,.( 1.. I So l\X = '2. k-l<"D) J.t.1> - I° A. • 

The first term on the right hand side is the Maxwell stress on the 

boundary. Introducing --X.-z k/ l<o - I the abov9: ··equation becomes 

So1t~ = ..;_ ko?<. H'!- f' /A. (}.4) 

To convert the Maxwell stress to force 1 equation (,.4) is multiplied 

by f>... since Sou is considered to be constant across the cross sec-

tion. The final boundary condition is thus 
. ,_ 

No(L,t)~ -f-f ½ Ko'"X.J\Ho. 
The boundary conditions for the dynamic problem must alao be 

found. The fact that the beam-column is simply supported combined with 
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equations (;.1) yields 

b (0 ,t) = U.,x>1.(o,t)-=U (L,t)= O,u (L,t) = 0. c,.6) 
Now equation (}.2) will be applied to the dynamic problem. 

-i:; ~-("111, 4~, ~l.) 
Using the above information together with equation(;.,) the required 

component of equation (;.2) becomes 
I . ~. 

Sx>t - kHo~u • - koHo~~. ,,.1, 
With the assumption of zero surface currents equation c,.,, becomes 

Thus 
[iT]t - 0. 

[lfo-f t;Jt --O. 

In the direction the component of equation (;.8) is 

or 

Sub1Stituting equation (;.9) into equation (;.7) yields 

or 

Sx~ :: (k- l<o) Uo h, 
N= (k-k'o)A.Hohl:.. 

Difi'erentiating equation (}.10.) once with respect to t 
N,t-= (K-f<.:,)/\Ho ~c>t. 

From equations (2.,0) and (2.4;) 
I, 1. tJ,n Ji1:.,t = - I<' e. ~' \ -= cr1< -i.~1-h • 

Substitut!k 1 equation c,.12)11nto'equa.t1on ,,.11) g1Te8 

,,.a) 

c,. 10) 

7ielde 

c,.11 > 

,,.11) 
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Recalling the definition of l(, the boundary condition finally become• 

O-K1.N,t(L,t)- l(o'X.N,.,,_,._ (L,t) = 0. c,.14) 
The boundary condition• are now contained in equation• (,.1), (,.5), 
c,.6>, a.nd c,.14). 
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IV. OSCILLATION OF A OOLUMN 

For a column one takes 

in the governing equations. 

Thus equations (2.;9), (2.44), (2.45), and (2.46) become 

€ EI LJ, >t~" ~t - €. (NoU, "-), xt +tr' t IU, n>tx -q-(No U)\), x f Ef l\U,ttt 

+0-/\(f+ ~~:)U,tt = E (~Uo,~)J"t +(J"(NUo,x),x (4.1) 

N, - Ek N,xtt -Q""l<N,'(t-o (4.2) 

No, X = 0 . (4.4) 

The boundary conditions are given by equations (;.1), (;.5), (;.6), 
and (;. 14). 

The solution to equation (4.4) combined with boundary condition 

(;.5) is 

N I "2.. o-= -P +-=r ko--X.A.Ho. (4.5) 

From the elementary theory of elastic stability it is known that if 

No is less than Euler's load the column can be in equilibrium only 

in the undeflected position. Thus the solution to equation (4.;) 
combined with boundary conditions (;.1) is 
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Uo= o. (4.6) 

Oombining equations (4.1) and (4.6) yields 

·e EIUJu,.l.t -E NoU>,cc.t +crEIO,x~>-" ..:..u-NoU,,..\ +E..e~O,ttt 

~er A. (p.i ~~;) lJ,tt = o. (4.1) 

To solve this equation the following series solution is assumed. 

lJ = f G., s~"" bI[)IL e..wt (4.8) 
h • I 

Substituting solution (4.8) into governing equation (4.7) gives 

E EIWrt 4 -,r4 £ N0Wh'1..f(1. + crEih 4tT~+ O-N0 h1.IT1. 
L 4 Lt Li . L "\. 

+ w~E fA +w \rA. (e-+ ~~;) ==o. 
Rearranging terms this becomes 

tu'?> + ( r.:> + ) er W 1. t bJf -z. I EI n1-r+ N o)tu 
\ c.,'- E(' f/\L,. \ L,. 

+ U-h1i'1-(EI~-z.t('-.J. No)-= 0 ,. 
EfA-l 1. L -i. 

(4.9) 

Equation (4.9) is the frequency equation for this vibration problem. 

For simplicity let 

(ro+ kl4; ) q-a.,= · \ C}· Ef 
1..TT 1. ( ETff "h 'L ) 

G. t. = n N.. 't Lt +N., . 
e ,. '" ,_ ) 

r. = q-~'½r (Eih tr +N 0 
u..?> E.f>~ ,._ L '- • 

(4.10) 

Now equation (4.9) becomes 
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( 4. 11 ) 

In order for the solution of equation (4.9) to be stable it is 

necessary that the roots of equation (4.11) have no positive real 

parts since these lead to solutions which are ever increasing 1n time. 

A method of determining whether or not the roots of a polynomial 

equation have positive real parts is due to Routh. To apply this test 

it is necessary to set up the Routh tabulation as jeecribed, for 

instance, by Kuo [,]•The tabulation has the following form when 

app~ied to equation (4-11). 

0 

u./· a, 0 

Lu' O.c a.,. -a'). 0 0 
a,, 

WO <k3 0 0 

The Routh criterion for stability states that all terms in the first 

column of the tabulation must be positi~e. Thus for stability 

a, -= (o+ ~;) ST > o 
\ C'- Ef (4.12) 

o.,a. -U:3 = (Pi kuC:-\v ti:tr"' (EI.,ir\N )-q-h1:!f1 (Eihl.rr~N ))o 
l. , c.,. k~ etL.L,. -er- 0 E(;fl.l,. 0 

(4.13) 
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(4.14) 

Olearly inequality (4.12) is always satisfied. Inequality (4.14) is 

satisfied if L 

EI L~ tr + No ) 0 . (4.15) 

Inequality (4.13) can be simplified as follows. 

( EI hT4-N ) O-n':[: (1 ·1 _,) > 0 L,. 0 E.fAL'l. 1' ('C,. 
or ( ~r~,_,._H\J ) crh.,_Tf,. JsH; > o 

L,. 0 6 (-' #((1. (_<)C}· • (4.16) 

Inequality (4.16) is satisfied only if inequality (4.15) is satisfied. 

The condition for ihstabUity is seen :f'rom inequality (4.15). It is 

N -f Erri11r,.( 0 o Lt 

or -f J. kit-X.A + Eih,-1. ( O -z. L,. 

or F= EI h11T "l. I '1. l,. + 1. ko'X.A.H o. (4.17) 

The buckling load for this column is thus changed over the classical 

Euler load by the addition of the Maxwell force. X can be positive 

or negative depending on the material. Therefore the Maxwell contri-

bution can be either positive or negative. 

Now it is desired to investigate the roots of the frequency 

equation. For this discussion it will be assumed that 

f'= 0-
Thus the frequency equation now corresponds to the problem of free 

vibrations of a conducting beam. The frequency equation is 
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, . .3"'(,i~:!-)_g:-w1.4-'-'T-i. (enrii~N )w+Ji,,'t.ir" (Erff"\,~N )-=o 
w pC.'- G f~L t. --i:r- 0 € (>,.._l,. L 1. ., • 

(4.18) 

For given numerical values of the parameters equation (4.18) can be 

solved by the use of the cubic formula. Without resorting to such a 

procedure it is possible, however, to discover the general effect of 

the magnetic field on the three roots. Toward this end substitute into 

equation (4.18) 

where tn is any number. 

The result is 

Now find frequencies of the form 

Lu= f (m .. + ~rn) 
where hl is the solution of equation (4.19) with Ho = 0 and 0Pa 

'\, 

is a linear correction factor based on a small deviation of ~D from 

zero. First rn• must be determined. With 1-1~• 0 equation (4.19) 

becomes 
i,.... 1-1. /, -+ I) .j. E'L ITh4tri- ln-,-i +1 )-= 0 
Pl ~m + er"'" f>A.L4 \I 

or {h11+-1) (~ .. .J. .S,. Efi.,4l(t) =-0 • 
. <J"'" . (:>A. L4 . 

(4.20) 

The roots of equation (4.20) are 



- 26 -

+ · E ( Ein+lf 4 )'It. 
and n, = -L(f p~Lf- • 

To find flt,., equation (4.19) is thought of as a function of the 
'L 

variables l'l, and "o . Thus 

(4.21) 

f 1i 1/-)-= m 'l./ n-,fl f k Ho1.).,_g,. _!l!, "L (EI hi.tr~ l<o 'XAH~)(~+t) =Q. 
\rn) 0 \ fC."' Q" 1. fA.L,. L 1. 2 (4.22) 

From equation (4.22) it is seen that 

d ( = of d n-i -1- hl ... o( -= o . 
. c>Ho 

(4.2}) 
'1. 

It H0 differs from zero by only a small amount dh-\ oan, as a first 

b " 1 d Uo'?. beoome s 1101. approximation, e replaced by ut't1 • A so tt • Now equa-

tion (4.2}) can be written as 

(bf) ~"°"' + (()\) H -z o 
c)h-1 .,_, . oHo 14"L• o 

u,,'llo o 

(of/ o H~) "°,.:s'O 't 
1',.,,,, = - ( Io ) Ho • of n-, u;~o 

or 

(4.24) 

Now evaluate the required partial derivatives. 

(4.25) 

(4.26) 



and 

.. 
When 

<;1.. h47f ET 
;,.,-f qt. fAL'f-

-=-----

. - 27 -

(4.27) 

(4.28) 

• 

(4.29) 
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(4.;o) 

Oombining equations (4.28), (4.29), and (4.;o) yields 

and 

( h4lf4 EI)~1. 
H 1. ± • l l(o "X. (e...A.)': I( f #\ l 4 I U'"L 

o l, 4 (:' e-I 2fC. ,_ E.,, t,4TrfEI o 
lt(T"" D~L4 • 

' (4.}1) 
When Ho-=O the three roots consist of one which leads to pure damp-

ing and a conjugate pair which leads to simple harmonic vibrations. 

Equation (4.27) indicates that the previously purely damped mode re-

mains purely damped but its relaxation time is decreased. Equation 

(4.}1) shows that the previously simple harmonic modes are now damped 

harmonic modes. The frequencies of these modes can be increased or 

decreased depending on the relative magnitudes of the two terms inside 

the brackets. 
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V. OSCILLATIONS OF A BEAM-COLUMN 

Consider a beam-column loaded by a distributed load 1n the form 

of a half sine wave. In this case 

Cf 0 -= 'f s'tli lf"X l 9 = o . 
L . 

The governing equations (2.}9), (2.44), (2.45), and (2.46) now become 

E"EIOJu1xt-E(NoU,x),1rfU""EIU,~~u-(f (NolJ,'(),:\ +ffA. U,til 

4Cf~ (f~ )U,tt: E: (NUo,.,.),xt+cr(NUo>x),lt 

N,~x, - €.kN, ilt-CfkN,xt= o 

No,~ =o . 

(5.,1) 

(5.2) 

(5.4) 

The boundary conditions are given by equations (}.1), (,.;), (,.6), 
and (,.14 ). 

As in the previous section, when equation (5.4) is solved subject 

to boundary condition (~.5) the result is 

No= -F + { l<o-x.AJt;. (5.5) 

To solve equation (5.~) together with boundary conditions (~.1) assume 
- ' )t lJo-= U o IC, 1E · (,5.6) 

Substituting solution (5.6) into equation (5.,) yields 

fi ( EI~ -f- tie lf'") = q 
" L4 L,. 1 



- -

or - <f 
CJo = I['l. (EJ:..lr"t. ) 

L 1. L.,_ -I-No 
Thus the solution to equation (5.;) is 

L'L1 · lTX 
lJ o -= ,. ( ertr,. ) s, i.i 1 

lf L-i. +-No 
(5.7) 

A solution to equation (5.2) which satisfies boundary condition (;.14) 

is - , u-x. wt N ... N SI'-' I C: (5.8) 

When equation (5.8) is substituted into equation (5.2) the _result is 
"'l 

[,. + € l<W-z.+cr-kW = o 
or 

1. w,.-f (fw+ Tf -= o . 
6 El< L 1. 

(5.9) 

The roots of equation (5.9) are 

- er ( cr-7.. ["t. ) y,._ 
W - - 1.€. j 4E.,. - El<L,. • (5.10) 

Using the results obtained so far equation (5.1) can be written as 

E"EIU,xu'lt-E NoU~xt+~EIU,xx)(ll-crNl)U,nt E.fi\U,ttt. f(f"A.(~t ~.,t)U,tt.. 
E" NU,, w ""t.c-os '1. lLXewt. - E: NO ~ti ,.oi¼1. IC.Xe. wt 

L,. L O L'\. L 
-1-Q"" N Oo ..rr'L oos't.Tf)I. e. wt_, er N Oo 61', t. lixl e. wt (5.11) 

L,. L . 

After _a slight simplification equation (5.11) becomes 

£EI lJ,iw.._t-€NolJ,~t HfEilJ,u~ -Q'"Nl)U,x.,_ +E(?pJj,lt.t +cri\(()t ig_.!)~ 
tr~l1 (cy-+e:w) Co~ 1.I"' e.wt. (5.12) 
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For ease of solution it is desirable to expand the right side of 

equation (5. 12) in a Fourier sine series in the interval OS X L • 

The ftmotion to be expanded is 

f (x)= cos -z.1rx. L • 
Its sine series expansion is 

f (x) = ,,.t;_, b.., s·,~ ¥)t 
where the Fourier coefficients are fiven by 

b., "Ct Solf(>i.)Si"'~~~x .. 
Substituting equation (5.1}) into equation (5.15) yields 

L 6 = 2 J eos 1:.I[X. si~ ~.x ct )c; 
"' l o L L L 

< VOS tr (-z.-t,) X Gt> s ]J (7.-1-i.i) >c. I 
= 1 1lf (~_.,,) - ~TT ( ~f~) o 

L L 

b.., = 1f (~-.,) { CcS If(~..., )-1 ]- lf(~+") f Cos lf(t+" )-1 l 
'1 t l. 

From equations (5.16) and (5.17) one deduces that 

h e..vc..'1 

(5.1}) 

(5.15) 

(5.17) 

(5.18) 
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substituting coefficients (5.18) into series (5.14) and this into 

equation (5.12) gives the following form to the governing equation. 

f E!lJ,,.>.ut. -E.N o U,ut ~(fEIU,x.._" -Cf"NoU,1-c H:e~U,ttt. -t<f'A (f f ~;) = 

4TT Nub (cr-tEW) e.wt h 6 l "1 hlPt (5.19) 
L 'J. L- "1,._4 L 

"' ... ,,1,--
To solve equation (5.19) one seeks ·a solution ot the form 

lJi:lJu+Ur 
where UH is a solution to the homogeneous equation and Ur is a par-

ticular solution to the complete equation. The particular solution 

will be found first. Assume 
- · nrrx wt up= L U., '5/'-, L C • 

., at,'3, ••• 
(5.20) 

When this is substituted into the governing equation (5.19) the result 

is 

or 

f (inEw) ~,. (n'"[:tr J.N.)tw'-i\(tew+o-(' tlf;!;:-)] (]., 
_ 41fNOo (<r+€w) 1-'"l 

L~ h~- 4 
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Ui., = h -i.~'- (h 'TT~I + N 0 )+ w ""A. f D + [" k H! ... ) 
L L t ' (o-~E.t,.,)C. J 

. . (5.21) 

Substituting coefficients (5.21) into solution (5.20) gives the 

following particular solution. 

lJp= 
(5.22) 

To find UH equation (5.19) must be solved with the right side set 

equal to zero. The governing equation then becomes identical to equa-

tion (4.7) which was treated in the previous section. Therefore 

attention will be focused on particular solution (5.22). Olearly 

an instability will occur in this solution when its denominator is 

set equal to zero. The equation to be studied is 

t,1.Jre=-I +.No f W~L'l. f Pf (fKH:!- ) -=-0 
L 1. h'Llf,. \ p-+e:w)c."" 

From equation (5.10) it can be seen that W can be either real or 

complex. The case of a real W will be considered first. 

Reference to equations (5.7) and (5.22) shows that Ur has one 

instability when 
'L 1.. 

E'I\-1 Tr I N 0 L'\., T O = 
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or 'L "-EI Yl TI' t ..! .,, 'X.A 111. L ,_ '- "o ,..._ tto (5.24) 

Equation (5.2}) indicates that Ur has another instability when 

P-= ETh7r~ 4-J l<o A-AH! t w-z.F\l,. ~pt (JK H~ ) 
L .,_ '- h'"rr.,, l (cr+E.w) c"" - (5.25) 

To find the buckling load one searches for the lowest value of the end 

load wh1ch causes an instability. If Lu is real the last term of 

equation (5.25) is real~ If this tennis positive the critical value 

of P is given by equation (5.24). If this term is negative the cri-

tical value is given by equation (5.2,). Olearly,the sign of the term 

in question is the same as the sign of (~ •H:.lJJ) • From equation 

(5.10) it is seen that two cases must be considered for which Lu is 

real. The first is when 
cr"L. - -4Et. 

In this case 

and 

Lo= _.sr 
1.E 

The second case to consider is when 
'l.. 1. 

Cf_ 1T "">O. 
4E; 1.. EKL 1. 

Then 
- - (T (""l.. 1T1. )y'l w--±"--1.e. 4€. 1. EK Lt 

and 

Q t. ,. ) '''-er +EW:: <r-Q"" t E. - _L 
1- - ~~'l. €KL,. 



or 
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I rr ( rr 't. .,,..1.r.: )v,._ 
(J"4-EW-= t ± L - lkl> . . 4 

In order for the above expression to be negative the second term 

would have to be larger than the first. This is obTiously impossible. 

Thus 

tJ + t.W '> o. 
From the above expressiona it oan be concluded that the electromag-

netic forces do not effect the buckling load. The beam-column 

at the same load that would be required if it were static and no 

electromagnetic forces ( other than the static Maxwell force) were 

present. 

It is also possible for W to be complex. In this case the 

demominator of Ur consists of a real and an imaginary part. Both ot 

these must equal zero simultaneously for an instability to occur. l"rom 

equation (5.10) it is noted that W is complex when 
q"- - lr 1. 
- 'L (0. 4E:'"- €KL 

Inspection of equation (5.2}) reveals that the real and imaginary 

parts of the equation are not identical. Thus one value of the end 

load would not make both the real and imaginary parts zero simultane-

ously as required. Consequently in this case also it is seen that the 

electromagnetic forces do not lower the buckling load which remains 
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VI. FOROED OSOILLATIONS OF A OOLUMN 

Oonsider the following case of forced vibration. 

Cf o= O '? = q 5j~ ~X e-lt. (6.1) 

Thie column has a load applied to it at t'=· O • It is noted that the 

solutions to governing equations (2.45) and (2.46) are the salil.e as 

those presented in section 1'1, namely 

I 1. No = -f + 1.. Ko'"X.~H o • 

(6.2) 

(6.,) 

Substituting equations (6.1) and (6.2) into equation (2.,9) yields 

the following governing equation. 

E ET0,~11Mt-EN0 0,-..-..t +[EIU,-..u.~ -<rtJoO,u ._erA-U,t.tt w~(e+ ~~!)u,tt• 
(cr-e.~)9~1'-'ye..-~ . . (6.4) 

Again a solution is sought in the form 

U=lJr-4-U~ 
where Ur is a particular solution to the complete equation and Uw is 

a solution to the homogeneous equation. It can be seen that the homo-

geneous equation ie identical to equation (4.8). Thus all the results 

of section IV apply equally well to the problem now under discussion. 

Now a particular solution to equation (6.4) will be found. 

Assume 
(6.5) 

Substitution of solution (6.5) into equation (6.4) yields 
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v~f' (~+N.)d'·/\(lfr+~-Eel )lu = ~-0>1 

or f (lf-E!) [f.'tcf fN.)+ ;1."-f] + ~~,_"H! l O• (<r-l~) 

or 

• 

Combining equations (6.5) and (6.6) gives the following result. 

Cf • tr>c. -at 
1, Sl'1 -l e up-= Tf'"El: ~'t.A.L-i. \ CTKff1. 

L 1. +No f 7fT p + ((T"-6:i)C:'· 

(6.6) 

(6. 7) 

For an instability to occur in UF the following condition must be 

satisfied. 

(6.8) 

Using solution (6.3) equation (6.8) becomes 

p: '[~~ + l ko~~H; t ~'"LA.L" ) -f O-l<H: l (6.9) 
L 1.. lf t l (-> (<T-t:J)C.,_ .. 

From equation (4. 17) it is seen the.t \JM exhibits its first insta-

bility when 
p_ EITr I k 1.. 
I - -er +2 o~A-1-fo • (6.10) 

Equation (6.10) will determine the buckling load for the column unless 

the third term of equation (6.9) is negative. For the eleotrome.gnetio 

foro~s to lower the buckling load it is necessary that 
(fKH} 

f> ( Cf-EJ) C 1. < O • 
(6.11 ) 



Let 

Equation 

or 

m >' . 
(6.11) now reads 

r+ KffJ < o 
(I -t->,) C 't 

'Z. es. 't. Ho > (h-, - t ) k . 

- ,a -

(6.12) 

From this expression one can determine the magnetic field which must 

be present in order for an instability to occur in the particular 

solution at a lower value off than that predicted by the homogeneous 

solution. 
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VII. NUMERICAL RESULTS 

All the results presented in this. section are tor aluminium for 

which 

Jl'rom equation (4.17) it is seen that the additional buokl1ng 

stress due to the magneti'c field 1a 

& Su: k~"X. If~ • 
l. 

Combining this with equation (2.1,) yields 

As 'X. "L 
Ll >c-. -:r 2.f<o B o • 

Equation (7.1) is plotted in figure,. 

(7 .1) 

Equation (4.}1) shows that the damping ooeffioient added to the 

preTiousl7 undamped modes is ,. 
2. § w .. AWp-= klfo __ o-__ _ 

i pc..'· If w-t i ' 
(7.2) 

where 
lv * = ( h 4 ir4 E.c) h.. ~rr L(EI )~1. 

f M + L 'l. f A. • 
Equation (7.2) can be written as 

(7.}) 

where 

or 
(7.4) 

The above expression shows that 
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Oombiniilg inequality (7.5) with equation (7.,) 7ield1 

/ ) 0-1< t 
\AWo ""4\. ::: . 2 € f>C..,. I-ti) 

Using equation (2.1,), equation (7.6) becomes 

(AWo),.,._, • "2l<o~fc_1• a: 
or 

Thus if the relaxation time is denoted by 'r, 
r._;~ = • 0-601. 

Equation (7.8) is plotted in figure 4. 

If L 

then 

_A 16WF5() aluminum. beam has the following specifioat.ion1. 

E= lo, (6/;..,'L 
{° = 2.'l, x.10-3 .sfu~~f ,,.,'1 
I= ,.ss ~(O"l ;"' 4 

-= I .41 x.1 o i, "\.. 

is picked as follows 

L : ,. ' XI O 1. ;.., 

For aluminum U-/€-= f.21 Xfo 1'i Cf:>S • 

-rr i. t. 
Olearly \J > > • · 

(: "1. 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 
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except at extremely high modes of vibration. This result is typical 

of those obtained for beams of common shapes. Substituting inequality 

(7.9) into equation (7.4) yields 

j(w•)-= w* 1. (1.10) 

Substituting equation (7.10) into equation (7.,) giTes 

El<H-; W*,. ~Wp, 
2rcrc1. 

or * 1. '2. 
~Wo• W '3o 

2cr~!pc 4 · 
The relaxation time is thus 

T= 2cr1<!e,c4 
. w-t1 13; · 

Equation (7.12) ia plotted in figure 5. 

(7.11) 

(7 • 12) 

· From equation (6.1,) it is evident that the lowest Talue of 

which will effect the buckling load is 

Bo= (eKo)~i.c (w, _,) (1.1,) 

Equation (1.1,) is plotted 1n figure 6. 
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VIII. OONOLUSION 

Before discussing the results of the previous work it is useful 

to review the assumption, that were made to obtain those 

First it was aesumed that all were perturbed only a small 

amount. Second the of elementary.beam theory were used. In 

addition the effect of shear, rotary inertia, and the acceleration of 

a differential element of the bar in the axial direction,were neg-

lected. Finally, to be consistent with the elementary theory of beams, 

it wae assumed that all electromagnetic variables were tunctione only 

of X and t • While none of the above assumptions are unreasonable, 

they are certainly not the only assumptions that could be made. It is 

to be remembered that the results discussed in what follows are valid 

only to the extent that these assumptions are satisfied. 

The work presented concerned itself with two areas. They were the 

vibration and elaetic stability of the structures studied. Oonclueion:a 

with respect to vibration will be summarized first. 

In sections IV and V the oecillations of a column and a beam-

colunn respectively were studied. It was evident that, at least from 

a theoretical point of view, the addition ot a magnetic field had 

marked effects. In the column problem three roots to. the frequency 

equation were obtained ae compared to two roots in the absence of the 

magnetic field. The magnetic field introduced damping into the pre-

viously undamped modes, ohanged the trequencies of t~ese modes, and· 

introduced an additional totall7 damped mode. In the beam-col\.an more 
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additional frequencies were introduced due to the appeare.noe of the 

perturbed normal force in the governing equation for deflection. 

For the two problems discussed above the effect of the magnetic 

field on the elastic stability of the structures waa not so great. It 

is true that the buckling load was changed. This change was not, how-

ever,caused by the dynamic electromagnetic forces. It was caused by 

the addition of the static Maxwell force to Euler's load. It must be 

noted that the small perturbation assumption precluded the inclusion, 

of the term NU in the governing equation tor deflection. It is well 

known that this term has a prominent role to play in any discussion of 

elastic stability. A more inclusive theory would be required to inves-

tigate the effect of this term. In section VI it was discovered that 

for forced vibration of a column the dynsmic electromagnetic forces 

ce.n indeed lower the buckling load. 

The numerical results presented in :t,he following graphs indicate 

that the effect of the magnetic field is of slight practical impor-

tance. Figure 4. shows that the relaxation times can be small but only 

for extremely high Figures,., 5., e.nd 6. indicate that 

no appreciable effect can be noticed for magnetic fields of reasonable 

size. One cannot, however, rule out completely the effect of the mag-

netic field. It is certainly possible, for instance, to find some 

column whose Euler load is so small that the electromagnetic contri-

bution is significant. 

It 1• to be recalled that numerical results are presented for only 
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one material. It would be incorrect, therefore,.to conclude that the 

contribution of the magnetic field is without significance for all 

materials. Since aluminum is fairly typical of the usual structural 

m.etale it can be eaid that. for ordinar1 beams and· beam-ool1.111ne made 

of ordinary etruct.ural materials the e:f':f'eot o:f' a magnetic field on 

their. Tibrations and elaetio stabilit11• Yer, ema.11, 
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SMALL OSCILLATIONS OF A BEAM-COLUMN WITH FINITE ELEOTRIOAL 

OONOOOTIVITY IN A CONSTANT TRANSVERSE MlGNftlO FIELD 

By 

John Peddieson, Jr. 

ABSTRACT 

Small oscillations of a beam-column with finite electrical con-

ductivity in a transverse magnetic field are examined under the 

assumption that the vibration of the bar causes only a weak pertur-

bation in the electromagnetic-field. The frequency equation is derived 

for a column and reduced to that for free vibration of a beam by 

equating the end load to zero. The roots of this equation are obtained 

approximately and the effect of the magnetic field on the frequencies 

is noted. In addition, the elastic stability of a conducting column 

and beam-column are investigated. The effect of the magnetic field 

on the buckling load is determined. Numerical results are presented 

which indicate that the effect of the dynamic e~eotromagnetic forces 

is negligible except at extremely high frequencies of vibration. 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052

