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Directive-Based Data Partitioning, Pipelining and Auto-Tuning for
High-Performance GPU Computing

Xuewen Cui

(ABSTRACT)

The computer science community needs simpler mechanisms to achieve the performance po-

tential of accelerators, such as graphics processing units (GPUs), field-programmable gate

arrays (FPGAs), and co-processors (e.g., Intel Xeon Phi), due to their increasing use in state-

of-the-art supercomputers. Over the past 10 years, we have seen a significant improvement

in both computing power and memory connection bandwidth for accelerators. However, we

also observe that the computation power has grown significantly faster than the intercon-

nection bandwidth between the central processing unit (CPU) and the accelerator.

Given that accelerators generally have their own discrete memory space, data needs to be

copied from the CPU host memory to the accelerator (device) memory before computation

starts on the accelerator. Moreover, programming models like CUDA, OpenMP, OpenACC,

and OpenCL can efficiently offload compute-intensive workloads to these accelerators. How-

ever, achieving the overlapping of data transfers with computation in a kernel with these

models is neither simple nor straightforward. Instead, codes copy data to or from the device

without overlapping or requiring explicit user design and refactoring.

Achieving performance can require extensive refactoring and hand-tuning to apply data

transfer optimizations, and users must manually partition their dataset whenever its size is

larger than device memory, which can be highly difficult when the device memory size is

not exposed to the user. As the systems are becoming more and more complex in terms

of heterogeneity, CPUs are responsible for handling many tasks related to other accelera-

tors, computation and data movement tasks, task dependency checking, and task callbacks.

Leaving all logic controls to the CPU not only costs extra communication delay over PCI-e



bus but also consumes the CPU resources, which may affect the performance of other CPU

tasks. This thesis work aims to provide efficient directive-based data pipelining approaches

for GPUs that tackle these issues and improve performance, programmability, and memory

management.
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Directive-Based Data Partitioning, Pipelining and Auto-Tuning for
High-Performance GPU Computing

Xuewen Cui

(GENERAL AUDIENCE ABSTRACT)

Over the past decade, parallel accelerators have become increasingly prominent in this

emerging era of “big data, big compute, and artificial intelligence.” In more recent su-

percomputers and datacenter clusters, we find multi-core central processing units (CPUs),

many-core graphics processing units (GPUs), field-programmable gate arrays (FPGAs), and

co-processors (e.g., Intel Xeon Phi) being used to accelerate many kinds of computation

tasks.

While many new programming models have been proposed to support these accelerators,

scientists or developers without domain knowledge usually find existing programming mod-

els not efficient enough to port their code to accelerators. Due to the limited accelerator

on-chip memory size, the data array size is often too large to fit in the on-chip memory, espe-

cially while dealing with deep learning tasks. The data need to be partitioned and managed

properly, which requires more hand-tuning effort. Moreover, performance tuning is difficult

for developers to achieve high performance for specific applications due to lack of domain

knowledge. To handle these problems, this dissertation aims to propose a general approach

to provide better programmability, performance, and data management for the accelerators.

Accelerator users often prefer to keep their existing verified C, C++, or Fortran code rather

than grapple with the unfamiliar code. Since 2013 [57], OpenMP has provided a straightfor-

ward way to adapt existing programs to accelerated systems. We propose multiple associated

clauses to help developers easily partition and pipeline the accelerated code. Specifically,

the proposed extension can overlap kernel computation and data transfer between host and

device efficiently. The extension supports memory over-subscription, meaning the memory



size required by the tasks could be larger than the GPU size. The internal scheduler guar-

antees that the data is swapped out correctly and efficiently. Machine learning methods are

also leveraged to help with auto-tuning accelerator performance.
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Chapter 1

Introduction

In this chapter, we will motivate our work on ”Directive-Based Data Partitioning and Pipelin-

ing and Auto-Tuning for High-Performance GPU Computing.” We will outline the challenges

and existing drawbacks of accelerator programming models and also describe the contribu-

tion of this dissertation.

1.1 Motivation

High Performance Computing has been evolving fast for its wide application in a lot of

domain areas, including healthcare, engineering, space research, urban planning, finance

and business, machine learning and AI, among others. The success of high performance

computing in the last two decades significantly improved the computation power, which

highly pushed the related domain areas to evolve even further. One of these areas, machine

learning and AI, has been really popular in the last couple decades. It has been changing all

other domain areas including HPC, not only improving the consumer market of HPC, but

also affecting the research and development of HPC.

If we look at the history of these theories (e.g., neural networks, backpropagation, LSTM),

mostly utilized by current techniques in machine learning and AI, most of them were pub-

lished in the early 1970s. It was not until the late 2000s that machine learning and AI started

to become useful because of limited data storage and computation power. Neural networks

1



2 Chapter 1. Introduction

have the advantages of continuing to improve as more training data is added. Model training

usually takes a lot computation power.

Back in the 1970s, the computers at that time were not capable of supporting that huge

computation power requirement. One of the most successful supercomputers in history,

Cray-1 [70], was announced in 1975 at Los Alamos National Laboratory. It could achieve

160 MFLOPS computation power with 303MB storage. The current fastest supercomputer,

Summit [85] at Oak Ridge National Laboratory achieves 200 PFLOPS computer power with

250PB storage. That is 1.25 billion times computation power speedup and 8.25 million

times capacity improvement. Being able to analyze behavior in real-time and act directly

based on that is really a game-changer for machine learning and AI. Part of this significant

computation power increase was due to the success of recent accelerators such as GPUs,

Co-processors, APUs, FPGAs, TPUs. On the other part, the success of distributed systems

(since Google released the key 3 papers about GFS, MapReduce, Bigtable) provides us

scalability, throughput, and reliability for operating big data.

We can see that the recent success of HPC and machine learning and AI have been promoting

each other reciprocally and finally made the era of “big data, big compute, and artificial in-

telligence.” However, determining how to achieve high performance and portability remains

difficult for developers without domain knowledge. Currently, we see that heterogeneous

systems with accelerators (GPUs, co-processors, APUs, TPUs, FPGAs, etc.) are promi-

nent on the Top500 list [25]. Supercomputers are becoming more and more complex to

speed up different computational requirements. Accelerators have been widely used in re-

cent computational tasks including scientific simulation, image processing, finance strategy

prediction, data mining, deep learning, and reinforcement learning. Due to their huge perfor-

mance/power efficiency benefit, a supercomputer may contain multiple different accelerator

chips in one system. Mostly, operating systems treat these accelerators as input/output(I/O)
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devices, which means these accelerators own their high-bandwidth memory. High-bandwidth

memory chips are usually expensive and have limited capacity. Current computing tasks,

especially simulation, machine learning, and deep learning tasks usually require a large size

of input data, which can not fit into these high-bandwidth memory chips. Determining how

to move these data efficiently between the host and device could be significantly important to

get optimal performance. On the other side, the CPU needs to take responsibility for copy-

ing the input data to the accelerators, launch jobs to the accelerators to process these data,

and then copy the results back to the main host memory to output. The CPU host memory

and device accelerator memory is usually connected by Peripheral Component Interconnect

Express (PCI-e), which is a high-speed serial computer expansion bus standard. Both com-

putation power and data transfer bandwidth are important to achieve high-performance

improvement while using accelerators.

Figure 1.1: GPU Double-Precision Peak FLOPs (data from [56])
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Figure 1.1 shows the peak double-precision FLOPs of Nvidia GPUs and CPUs since 2008

when the first few GPUs were released for general-purpose computing. We can observe that

over the years, the GPU computation power grows significantly better than CPUs. The

first GPU designed for server, Tesla S1070 (released on 2008) could achieve 311 GFLOPs

performance on double-precision operations. Over the years, the GPU performance increased

significantly. We also saw a huge increase around 2015. We think it probably was because of

the high demand for computational power from the popular machine learning and AI tasks,

which pushes the communities to grow even faster. We can also see that the most recent

GPU in the Tesla product line, Tesla V100 can achieve 7450 GFLOPs. This means 24×

performance improvement in the last 10 years.

Figure 1.2: PCI-e generations (data from [61])

Figure 1.2 shows the peak data transfer bandwidth provided by the PCIe connection between

host memory and device memory. The first generation of PCIe (1.0) was released in 2003.
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Figure 1.3: PCI-e bandwidth details (data from [61])

Up to today, it has already been evolved by three generations. However, even though the

recent release is PCIe 4.0 in 2017, most servers are still equipped with PCIe 3.0 to provide

better compatibility to other devices. Figure 1.3 shows the peak transfer bandwidth provided

by PCIe. We observe that PCIe 1.0 provides 4-GB/s bandwidth while PCIe 4.0 provides

31.5-GB/s bandwidth, approximately an 8X bandwidth improvement in 14 years.

We can clearly observe that computation power has grown significantly faster than the

data connection during the past 10 years. Moreover, we also observe computing patterns

(e.g, convolution, pooling, transpose) that cost as much time to compute as that of data

movement. The data movement overhead could potentially become the bottleneck of the

accelerators, especially in the near future. Therefore, efficiently handling data movement for

accelerators is very important.

On the other side, the burden of the CPU increases a lot, due to the increasing number

of accelerators. Since the systems treat these accelerators as I/O devices, the CPU has

to handle the data movement, task launching, and even synchronization problems. This

significantly increases the CPU resource usage, harming other tasks that might be handled

on the CPU side. How to bypass the CPU control in most operations of the accelerators,

thus releasing as much CPU resources as possible, has become a popular topic in recent

years [63, 83].

While many new programming models are proposed to support accelerators, rather than
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grapple with the unfamiliar, scientists often prefer to keep their existing verified C, C++, or

Fortran code. Since version 4.0 [52, 58], OpenMP has provided directive-based accelerator

support that is similar to OpenACC [86] and provides a straightforward way to adapt existing

programs to these systems. These models provide multiple options to pipeline data but still

have drawbacks in terms of performance, programmability, and memory management.

Even though “big data” is bringing us “magic” projects that improved our research methods

using high-performance computing, we can see that the significantly increased data size is

becoming a big hurdle to the development of these systems. It may become the bottle-

neck of overall performance even with faster computation power. Developers need a better

way to store and move the data efficiently. The community needs a better mechanism for

accelerators to achieve better overall performance, programmability, and portability.

This dissertation aims to provide efficient data transfer pipelining frameworks and extensions

to help developers overlap kernel computation with data transfer in an efficient, heuristic,

and easy-to-use way. Since 2013 [57], OpenMP has provided a straightforward way to adapt

existing programs to accelerated systems. We aim to extend the current OpenMP standard

to provide better data pipelining approaches for accelerators in terms of programmability,

performance, and memory management. Detailed work will be discussed in the following

chapters.

1.2 Directive-based Partitioning and Pipelining for Graph-

ics Processing Units

In directive-based offload models, users annotate their data with mapping or copying di-

rectives to ensure that the accelerator can access the data. They then launch computation
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on the accelerator and ensure that the results are available on the host when needed. If

the accelerator cannot directly access host memory or if using the accelerator memory can

improve performance, the data is copied to the device memory. The naive offload model syn-

chronously performs these copies, which can take significant execution time. Furthermore,

the data may not fit in the device memory because scientific applications frequently use

huge data arrays or matrices. However, overlapping the transfers with computation and/or

partitioning the data and computation can require extensive coding changes. To offload data

in directive-based models, we associate the existing host variable name with a corresponding

variable of the same name on the device. The result is that only one such mapping can exist

for a given name or for a name and a slice range for arrays (in which case they must not

overlap). Thus, users have limited control of memory mapping, partitioning, and pipelining

with this mechanism.

To tackle these issues, we propose a directive-based pipelining extension for OpenMP speci-

fication on GPUs. Our extension supports automated data partitioning and overlapping of

transfers through pipelining. It allows data to be mapped into a smaller buffer to reduce

memory use and offers a simple interface to pipeline a parallel loop with an index handler

and a kernel scheduler. We also provide a detailed evaluation including a comparison with

state-of-the-art implementations.

1.3 Block-Level Data Pipelining for Graphic Process-

ing Units

OpenMP [24, 52, 58] currently supports the data copy and computation pipeline in an

asynchronous way but requires users to modify their code manually. Users must split the
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task into chunks and launch multiple sub-kernels with different GPU streams. This manual

task partitioning and sub-kernel launching entail extra code re-factoring and may introduce

programming errors. Furthermore, splitting code to process multiple chunks causes extra

function-call overhead. The hyper-parameters, e.g., #streams and #chunks, must be care-

fully tuned to achieve optimal performance; otherwise, poor choices may significantly harm

performance. Moreover, as the growth of heterogeneity on supercomputers, systems are be-

coming more and more complex with various accelerators, co-processors, and other devices

with discrete memory. These devices drastically increase the burden of the CPU to cooperate

with all kinds of drivers for the data movement among these discrete memory spaces. Bypass-

ing the CPU is an efficient way to deal with offloading tasks on accelerators [43, 81, 83, 88].

However, traditional kernel-level data pipelining still requires the CPU to be involved in the

data movement, sub-kernel launch, and task dependency control between each task, with

significant CPU resource utilization. The GPU-bound processes may hurt CPU processes

and CPU-bound processes may hurt GPU performance in the other ways [69].

We propose a block-level pipelining mechanism to resolve these issues: Our block-level

pipelining performs data communication and computation inside one GPU kernel and can

totally bypass CPU control after this single kernel launch. The task dependencies between

sub-tasks are maintained by flag arrays on the GPU and the sub-tasks are executed in the

topology order of the program, with no extra requirement on developers to serialize the tasks

to map to traditional GPU streams. We also implemented block-level pipelining mechanism

in OpenMP by introducing a directive-based pipeline syntax to provide better programma-

bility for block-level pipelining programming. We completed a detailed evaluation using our

approach for various benchmarks, as well as providing a detailed comparison between our

work and the current state-of-the-art implementations.
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1.4 IterML: Iterative Machine Learning for Intelligent

Parameter Pruning and Tuning in Graphics Pro-

cessing Units

With the rise of graphics processing units (GPUs), the parallel computing community needs

better tools to productively extract performance from the GPU. While modern compilers

provide flags to activate different optimizations to improve performance, the effectiveness of

such automated optimization has been limited at best.

Consequently, extracting the best performance from an algorithm on a GPU requires signif-

icant expertise and manual effort to exploit both spatial and temporal sharing of computing

resources. In particular, maximizing the performance of an algorithm on a GPU requires

extensive hyperparameter (e.g., thread-block size) selection and tuning. Given the myriad of

hyperparameter dimensions to optimize across, the search space of optimizations is extremely

large, making it infeasible to evaluate exhaustively.

As we mentioned, machine learning and AI have been successful these years. It has been

changing all other domain areas including HPC, not only improving the consumer market

of HPC, but also affecting the research and development of HPC. Most machine learning

and AI tasks contain two stages, training and inference. Both stages require a large amount

of data flow to go through the same neural network model iteratively, which means the

computation patterns do not change through the process. This feature makes it possible

to adjust the hyperparameters of the hardware accelerators during the iterations to achieve

better performance, which could also be implemented using machine learning methods.

We propose an approach that uses statistical analysis with iterative machine learning (IterML)

to prune and to tune hyperparameters to achieve better performance. During each itera-
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tion, we leveraged machine-learning models to guide the pruning and tuning for subsequent

iterations. We evaluated our IterML approach on the GPU thread-block size across many

benchmarks running on an Nvidia P100 or V100 GPU. Our experimental results showed

that our automated IterML approach reduced search effort by 40% to 80% when compared

to traditional (non-iterative) ML and that the performance of our (unmodified) GPU ap-

plications can improve significantly — between 67% and 95% — simply by changing the

thread-block size.

1.5 Dissertation Organization

The remaining dissertation chapters cover the following topics. Chapter 2 shows the back-

ground information of parallel accelerators, programming models and memory management

techniques. It also provides the related work of existing solutions to achieve high perfor-

mance data movement between discrete memory space (between CPUs and Accelerators)

on supercomputers. Chapter 3 presents our directive-based partitioning and pipelining for

graphics processing units. Chapter 4 covers our block-level data pipelining for graphic pro-

cessing units work. Chapter 5 elaborates our performance auto-tuning work with machine

learning methods. Chapter 6 summarizes the dissertation and future work.



Chapter 2

Background and Literature Review

In this chapter, we provide a brief background introduction regarding state-of-the-art het-

erogeneous computing and programming models for various accelerators. Related memory

access techniques are also covered in this chapter. Overall, this chapter discuss the state-of-

the-art research work related to this dissertation.

2.1 Programming Models of Accelerators

Supercomputers increasingly have accelerators, such as GPUs, FPGAs, APUs, and co-

processors like the Intel Xeon Phi to increase their performance per watt and performance

per dollar. Accelerators have been applied in many cutting-edge research areas, such as

scientific simulations [60], medical solution development [94], machine learning [89], and

regular expression [91, 92] matching. Programming these accelerators requires the use of

alternate programming models or language extensions such as CUDA, OpenMP, OpenACC,

and OpenCL.

OpenMP is a directive-based extension for Fortran, C and C++ that is best known for

providing portable multithreading on shared-memory multicore systems. Insertion of an

OpenMP directive can parallelize a loop. OpenMP 4.0 introduced device constructs that

target offload to devices with potentially distinct memory spaces. OpenMP support for

accelerators is still relatively nascent and, so, offers opportunities for improvement [20, 21,

11
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34, 74].

OpenACC is a directive-based model that Cray, CAPS, Nvidia, and PGI developed specifi-

cally to address heterogeneous CPU/GPU systems. As with OpenMP, a user can annotate C,

C++ and Fortran code with compiler directives to identify areas that should be accelerated.

Current OpenACC implementations are more mature than existing support for OpenMP

4.X. Thus, several studies have compared its directive-based approach to CUDA in terms of

performance, portability, and programmability [45, 84].

CUDA is an application programming interface (API) that Nvidia created. It supports gen-

eral purpose processing on CUDA-enabled GPUs – an approach termed GPGPU (General-

Purpose computing on Graphics Processing Units). CUDA is designed to work with pro-

gramming languages such as C, C++, and Fortran. It provides a powerful, flexible API

with low-level GPU control. GPU threads are grouped as a grid of thread blocks, which

are mapped to GPU streaming multiprocessors. CUDA often requires users to refactor their

code significantly [11, 31, 34, 36, 90, 93].

OpenCL (Open Computing Language) [77] is a standard, low-level model similar to CUDA

that the Khronos group maintains. OpenCL implementations offer portability across GPUs,

multicore CPUs, DSPs, co-processors, and FPGAs. However, OpenCL’s complex, low-level

API, often requires significantly more code than even CUDA.

2.2 Memory Access of Accelerators and Data Pipelin-

ing Techniques

In this section, we will cover a few new features and techniques of memory access on accel-

erators and related data pipelining techniques.



2.2. Memory Access of Accelerators and Data Pipelining Techniques 13

2.2.1 Unified Virtual Addressing

Figure 2.1: Unified Virtual Addressing

Unified Virtual Addressing (UVA) [56] was first introduced with CUDA 4. It is a memory

address management system that enables Fermi and Kepler GPUs running 64-bit processes.

UVA means that a single memory address is used for the host and all devices as shown

in Figure 2.1. The physical memory location can be determined by the pointer itself. It

also enables libraries to simplify their interfaces (e.g. cudaMemcpy). UVA also enables the

Zero-Copy Memory feature, which means Pointers returned by cudaHostAlloc() can be used

directly from within kernels running on UVA enabled devices (i.e, no need to obtain a device

pointer via cudaHostGetDevicePointer()).

2.2.2 CUDA Streams

A CUDA Stream is a sequence of operations that execute on the device in the order in which

they are issued by the host code. While operations within a stream are guaranteed to execute

in the prescribed order, operations in different streams can be interleaved and, when possible,

even run concurrently. As long as the device is capable of ”concurrent copy and execution,”
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developers may launch the kernel computation and the data transfer in different, non-default

CUDA streams asynchronously. The tasks should also be first partitioned to multiple chunks,

then assigned to different GPU streams, which may entail extra code refactoring that often

introduces significant programming errors.

2.2.3 Unified Memory

Figure 2.2: Developer View with/out Unified Memory

Unified Memory (UM) [56], as shown in Figure 2.2, which was introduced in 2014 with CUDA

6 defines a managed memory space in which all processors see a coherent memory address

space. This hardware/software technology allows applications to allocate data that can be

read or written from code running on either CPUs or GPUs (often called CUDA managed

data). CUDA system software and/or the hardware automatically migrates memory pages

to memory that the device can access. The Pascal GPU architecture is the first system

with hardware support for virtual memory page faults and migration. Older GPUs based

on the Kepler and Maxwell architectures support a more limited form of UM [49]. Since

CUDA 9, the runtime supports a few optimization functions for Unified Memory to be

more efficient in terms of data movement between host memory and device memory (e.g.,
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prefetching). Nvidia claims that the data transfer occurs on demand for both GPU and

CPU, requiring the use of only one array of data and no need for duplicate pointers as

data is transferred between the two processors. Furthermore, they emphasize that this new

method simplifies the programming model, as well as enables close to maximum bandwidth

for the data transfer. On-demand migration is powerful in the way it enables fine-grain

overlap between data transfers and kernel execution. However, on-demand data migration

will never beat explicit memory copies in terms of large data regions. If the application’s

access pattern is well defined and structured, developers may use the prefetching technique

of Unified Memory to tile the data and to overlap the data movement with computation

kernel to achieve optimal performance [55].

2.3 Related Work

We first proposed an extension to support compiler-implemented pipelining for data transfer

and compute overlap in directive-based models such as OpenMP [58] and OpenACC [86].

Previous work [21] presents some of the benefits of this approach. While double buffering,

and pipelining in general, is a common manual optimization, it is not a common facility

of either production programming models or research prototypes although some researchers

have explored mechanisms that could show support.

Higher-level logically global models like Legion [6] encode the structure of their data and

computation as part of the base model and can apply optimizations like those that we discuss

in their runtimes. The challenge is that they cannot be incrementally applied to existing

codes, thus requiring significant refactoring if not rewriting. Similarly, global models like

Chapel [15] could logically support optimization of abstract loop computations through

custom domain maps and other policies, but existing codes must be significantly modified
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in order to use them.

Recent studies on MPI libraries such as MVAPICH2 [81, 82, 83], MPICH2 [2, 39], and

OpenMPI [88] provide support to pipeline data transfers between PCIe with the data transfer

on high performance interconnects to optimize bandwidth. Some of the custom data-type

facilities of these libraries provide similar specification facilities to those that we propose,

but differ in that they represent the data type as a whole rather than as something tied to

computation and thus indexable as part of one. MPI-ACC [1] is an integrated and extensible

framework. It allows end-to-end data movement in accelerator-based systems. The runtime

system provides good performance by integrating support for an accelerator memory space

into MPI with several optimizations, such as pipelining and parameter tuning.

On the system level, studies such as ADSM [27], CGCM [38], Spark-GPU [97], and RSVM [40]

provide compiler-based optimizations for data management and movement between CPUs

and GPUs, depending on static or dynamic compile-time analysis or on programmer supplied

annotations. Instead of only focusing on data movement and management only, our research

work focuses more on the techniques to overlap the data movement with computation effi-

ciently.

Existing literature [66, 67, 68] has studied and tackled the data movement problem—specifically

the file I/O bottleneck—in large-scale deep learning systems. We can observe that data move-

ment plays an important role in providing good overall performance. These research studies

inspired some of our research work to focus on data movement to prevent it from becoming

the hurdle of computation.

The Nvidia’s Unified Memory (UM) mechanism might impact performance, compared to a

standard implementation without it. Typically, solutions that increase flexibility and ease of

programming impose some performance overhead. Li et al. [49] evaluated UM by comparing



2.3. Related Work 17

a selected set of applications with and without UM run on the Nvidia K40 and Jetson TK1

GPU platforms. The applications tested were Diffusion3D Benchmark, Parboil Benchmark

Suite and Matrix Multiplication. This paper shows that Unified Memory versions cause 10%

performance loss on average for these benchmarks. They also validated that the performance

loss is caused by redundant memory transfers and page faults when adopting the Unified

Memory programming model. This performance loss turned out to be the cost for an easier

programming model. Landaverde et al. [47] investigate the performance and behavior of UM

on a variety of common memory access patterns, especially the communication behavior

between a host CPU and GPU. They develop multiple customized microbenchmarks for the

GPU architecture with the Rodinia benchmark suite. They categorize the benchmarks by

their behaviors and apply UM to these benchmarks and evaluate the change in performance.

They find that for the vast majority of applications, UMA generates significant overhead

and results in notable performance loss. Furthermore, the UMA model only marginally

simplifies the programming model for most applications. However, for individual tests, it

was demonstrated that application of UM may bring performance benefits. Specifically, if

a subset of data is queried by multiple kernels multiple times before some other data are

accessed. The authors state that in such case the UM mechanism can place data favorably

which brings benefits compared to the standard API.

CoreTSAR [72, 73] explores automated coscheduling between devices with potentially dis-

joint memory spaces. CoreTSAR uses mapping functionality that associates data to compu-

tation along a single dimension for certain specific patterns. Our specifications take similar

information to the array association pattern employed by CoreTSAR. However, CoreTSAR

uses this information to divide computation across devices rather than to overlap compu-

tation and communication and to reduce memory use. Task-based models like OmpSs [14]

and StarPU [5] construct graphs of “tasks” composed of statically sized chunks of data and
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computation, which are then scheduled. A user can achieve overlap by subdividing a given

loop into multiple tasks, as long as they select the size and translate addresses manually.

Bauer et al. [7] study CudaDMA, an extensible API for efficiently managing data transfers

between the on-chip shared memory and off-chip global memory of CUDA-enabled GPUs.

They partitioned the warps in a thread block to compute warps and DMA warps. Both

sequential and stride DMA patterns are supported to improve flexibility. The approach

achieves good speedup (3.2x) for the SGEMV benchmark with small matrices due to the

increased sustained memory bandwidth. Results with larger matrices or other benchmarks

show 0.87X to 1.15X overall speedup because the benefit from reduced register pressure was

not enough to overcome the overhead of the additional CudaDMA transfer through shared

memory.

Aji et al. [3] proposed a scheduling attribute to OpenCL context and the runtime could

automatically generate an ideal queue for different tasks. Part of our research work related

to “dynamic queue” was inspired by this work.

Several papers focus on improving the computational task execution pipeline to utilize the

hardware resource better. Wu et al. [87] proposed an SM-centric scheme for task scheduling.

The tasks that a thread executes is based on the ID of the SM on which the thread runs.

The approach provides more opportunities for optimizing GPU programs with scheduling

strategies. Some of the research work in this dissertation is using similar techniques during

the Persistent Thread Blocks implementations.

Zheng et al. [98] proposed VersaPipe, which leverages the combination of persistent threads

and the SM-centric mechanism [87]. VersaPipe supports coarse-grain pipelining, fine–grain

pipelining and a hybrid pipeline mode that assigns different pipeline stages to different

SMs to utilize SM resources fully. It significantly improves the computation performance of
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several applications including Pyramid, face detection, CFD, image rasterization and LDPC.

Belviranli, et al. [8] introduced Juggler, a dependence-aware, in-device task execution runtime

for GPUs. The runtime uses in-GPU dependence resolution and task placement. They also

implemented a compiler transformation to integrate their runtime into OpenMP 4.5.

The Whippletree Megakernel [76] inherits some traits from persistent megakernels [46]. Un-

like traditional persistent megakernels, Whippletree assigns available threads to work on the

incoming tasks by implementing a dynamic queue and a new scheduling policy. It provides

an abstraction to implement complex software pipelines, recursive algorithms and many

other applications. The megakernel implementations inspired our implementation to use

Nvidia’s cooperative thread groups while implementing the block-level data partitioning and

pipelining.

Nowadays, accelerators other than GPUs are also widely used. Bo et al. [10] proposed

automata identify gRNA off-targets in Bioinfomatices and achieved over 10x speedups com-

pared with the state-of-the art approaches. They also found that using spatial architectures

(FPGAs and Micron’s Automata Processor) could provide additional speedups. ANMLZoo

and AutomataZoo [79, 80] are two benchmark suites that are designed for evaluating and

validating automata processing engines. They are composed of various applications from

different domains besides regular expressions. They also provide sample input files including

the automata description files and the input streams. Researchers working on network or

system security problems are also leveraging GPUs to seek better and more efficient solu-

tions [95, 96]. We observe that the recent success of GPU has drawn more attention from

researchers in various of areas. This observation also motivates some of the work in this

dissertation to provide better programmability, performance and data management.

Choi et al. [18], Li et al. [51], and Tran et al. [78] auto-tune the performance of a particular

algorithm or application on accelerators. However, their auto-tuning still requires exten-
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sive expertise (or intuition) to select the key parameters manually as well as the compiler

flags. To address this problem, we propose an approach that automatically identifies a much

smaller (pruned) search space that contains a (near-)optimal setting, which can then be

searched. Cui et al. [22, 23] utilized linear regression and decision tree approaches to help

with tuning on accelerators. Specifically, given a large search space, our iterative machine-

learning (IterML) approach gathers information during each iteration, builds models, and

finds the best interaction between the parameters and performance. This, in turn, provides

automated guidance as to how to tune performance in the context of a large parameter

search space.

Various statistical or machine-learning (ML) methods have been applied to help with auto-

tuning parameters to get better performance. Joseph et al. propose a linear regression model

to predict processor performance based on micro-architectural parameters [42], however, it

requires a large amount of processor profiling data as input to build the linear model. Li

et al. utilized deep-reinforcement learning approaches to identify the optimal values of

tunable parameters in computer systems — from a simple client-server system to a large

data center [50]. While this approach can be deployed into a production system to collect

training data and suggest tuning actions during the system’s daily operation, it requires the

system to be mostly static — less applicable to new algorithms or libraries that target new

devices like GPUs. There are pheromone models based on the profiling data of GPUs [32, 71],

but these models require large training sets across many programs and with a wide variety

of performance counters. Moreover, they require developers to have intimate knowledge

about the programs. Other related research focuses on designing coding machines to handle

the programming tasks [48]. In contrast, our goal in this dissertation is to help developers

productively tune their programs to achieve near-optimal performance with the least amount

of effort and domain knowledge.
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Directive-based Partitioning and

Pipelining for Graphics Processing

Units

3.1 Introduction

Systems with accelerators, particularly GPUs, are now prominent on the Top500 [25]. While

many programming models support these systems, rather than grapple with the unfamiliar,

scientists often prefer to keep their existing verified C, C++ or Fortran code. OpenMP

version 4.0 [52, 58] introduced directive-based accelerator support that is similar to that

provided in OpenACC [86] and that provides a straightforward way to adapt existing code

to use these systems.

In directive-based offload models, users annotate their data with mapping or copying direc-

tives to ensure that the accelerator can access the data. They then launch computation on

the accelerator and ensure that the results are available on the host when needed. If the ac-

celerator cannot directly access host memory or if using the accelerator memory can improve

performance, the data is copied to device memory. The naive offload model synchronously

performs these copies, which can take significant execution time. Furthermore, the data may

21
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not fit in device memory because scientific applications frequently use huge data arrays or

matrices. However, overlapping the transfers with computation and/or partitioning the data

and computation can require extensive coding changes.

To offload data in directive-based models, we associate the existing host variable name (e.g.,

of an array) with a corresponding variable of the same name on the device. Result is, only

one such mapping can exist for a given name, or a name and a slice range for arrays in

which case they must not overlap. Thus, users have limited control of memory mapping,

partitioning and pipelining with this mechanism.

Our extension to this model supports automated data partitioning and overlapping of trans-

fers through pipelining. It allows data to be mapped into a smaller buffer to reduce memory

use and offers a simple interface to pipeline a parallel loop with an index handler and a

kernel scheduler.

We evaluate our partitioning and pipelining extension using four applications on multiple

accelerators. Our results show that it significantly reduces memory use and improves per-

formance. We also compare it to CUDA 9 Unified Memory (UM) [30], which supports GPU

page faults with optimizations like prefetching and duplication, thus offering an automated

alternative for memory oversubscription, on the Pascal P100 GPU [13] using multiple data

sets. Our extension outperforms UM in most cases, especially when the data set size signif-

icantly exceeds the GPU memory limit.

This chapter makes the following contributions:

• A new directive-based pipelined extension that automates the overlap of data transfers

and kernel computation and reduces GPU memory use;

• A prototype of the proposed extension;

• Evaluation of our prototype of the extension with four applications on Nvidia K40m,
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P100, and AMD Radeon HD 7970 GPUs;

• Evaluation of CUDA-9 Unified Memory and its optimization methods and a compari-

son to the performance with our framework on the P100 GPU.

3.2 Pipeline Extension API and Usage

Figure 3.1 presents the syntax of our extension. The pipeline map-type modifier extends

the semantics of the map clause, which makes all data available at the beginning and/or at

the end of the region. Our modifier splits the data updates and subsequent loop computation

into multiple subtasks.

The list_items parameters to map have a new option to take an expression based on an itera-

tor as their begin parameter. The format of this parameter is <var>[(iterator_expr|begin):len].

The <var> is the variable or base pointer of an array. The [iterator_expr:len] parameter

identifies the dimension to split and size required for the given iteration to function. The

function defines the split starting offset in that dimension while the len defines the range.

The split currently can be performed in one or two dimensions since our runtime system

supports 1D and 2D memory copies. This len parameter helps us determine the array off-

set. We use different internal APIs for data movement based on the subsequent loop, which

we discuss later.

The chunk_size is the number of indices in the subsequent loop that we handle in each

device buffer (potentially fewer in the last chunk). The overlap parameter determines the

number of GPU streams. This parameter determines the number of chunks that we launch

asynchronously. We choose these two parameters as the key components of our framework

not only because they provide information to improve the data transfer between host and

device, but also because they can significantly affect performance and memory use.
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The overlap and chunk_size parameters determine the size of the device buffer, which we

tune before we allocate the buffer to fit the total memory usage within the available GPU

memory size. The other target clauses, for example, device or private, work as previously.

#pragma omp target teams distribute
map(pipeline(iterator[,chunk_size[,overlap]]):items…) 
iterator(ident = begin:end[:step])

pipeline() inputs

overlap number of blocks or streams to overlap while copying
chunk_size number of iterations in a chunk (possibly less in last)
iterator iterator, defined on same directive, representing range and stride

map() inputs 
list_items array declaration arr[iterator_expr[:len] | begin:len]

iterator() inputs 
ident identifier for the iterator
begin/end/step bounds and step of the iteration space

Figure 3.1: Our Proposed Pipeline Extension for OpenMP

Figure 3.2 shows a three-level nested loop that performs a stencil computation in which

pipeline(k,1,3) sets chunk_size to 1 and the number of GPU streams to 3. The to

specifies that the three-dimensional input array A0 will be pipelined. iterator(k = 1:nz-1)

indicates that the outermost loop is split and pipelined. Here we denote the outer loop

variable as k. We use a function of k and <num> to indicate the data chunks that we must

copy before launch of the kth chunk’s kernel. For instance, the [k-1:3] indicates that we

must copy the k−1, k and k+1 chunks in that dimension to the device before the kth kernel

executes. The [k-1:3] in the first set of brackets on A0 means that we split this array by its

Z dimension. It defines the dependency relationship between the array and the outermost
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loop. For example, before kernel iteration k=t, we must copy chunk t-1, t, and t+1 of A0 to

device memory. The [0:ny-1][0:nx-1] defines the other dimensions of array A0. The from

in the map clause defines the output array Anext. For this array, the [k:1] indicates that

each iteration only stores its corresponding chunk. The teams distribute parallel for

clause still parallelizes the nested loop i and j inside loop k.

1 #pragma omp target \
2 map(pipeline(k,1,3),to:A0[k-1:3][0:ny-1][0:nx-1])\
3 map(pipeline(k,1,3),from:Anext[k:1][0:ny-1][0:nx-1])\
4 iterator(k = 1:nz-1) \
5 for(k=1;k<nz-1;k++) {
6 #pragma omp target teams distribute parallel for
7 for(i=1;i<nx-1;i++) {
8 for(j=1;j<ny-1;j++) {
9 Anext[Index3D (i, j, k)] =

10 (A0[Index3D (i, j, k + 1)] +
11 A0[Index3D (i, j, k - 1)] +
12 A0[Index3D (i, j + 1, k)] +
13 A0[Index3D (i, j - 1, k)] +
14 A0[Index3D (i + 1, j, k)] +
15 A0[Index3D (i - 1, j, k)])*c1
16 - A0[Index3D (i, j, k)]*c0;
17 } }
18 }

Figure 3.2: A Stencil Benchmark Example

A powerful code analysis engine capable of deep analysis of code and dependencies [53] could

significantly simplify our proposed extension. Potentially the compiler could determine the

array definition information and even the data dependencies. However, the assumption of

these capabilities would limit the applicability of our extension to code that can be analyzed

completely at compile time and complicate its adoption into the OpenMP specification.

Thus, our prototype allows all parameters to be passed explicitly.

3.3 Prototype Implementation and Technical Details

Our prototype runtime framework of our proposed extension splits each loop into configurable-

sized chunks that are handled by different streams. Each chunk has data dependencies that
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must be present on the device before its kernel executes. We map the data from the original

data space to the buffer data space and copy each chunk to its corresponding location in the

buffer. Currently, we use the mod operator (%) to get the offset of each chunk inside the

buffer. For example, if we have a buffer that can hold four chunks, so it has positions 0,

1, 2, and 3, then, we copy chunk i to position (i % 4). Once a data chunk is not needed

for later partitions (kernels), we replace it. As long as the data is present, we schedule the

corresponding subtask kernel to launch on the GPU.

Based on the stream numbers and array declaration information, we pre-allocate a fixed-size

buffer. Each array defined by the pipeline modifier in the map() clause in the OpenMP

region is associated with a data region. The array dimensions, chunk_size and num_stream

determine the size of the device buffer for this data region. Once created, our runtime records

the array’s information for later use. We use a static pointer for the device buffer, which we

allocate in GPU memory with cudaMalloc() on Nvidia devices. We use cudaHostalloc()

to allocate pinned host memory, which avoids the data movement time from virtual to pinned

buffer memory. The asynchronous memory copy is handled by cudaMemcpyAsync() for con-

tiguous data movement; We also implement a 2D array interface using cudaMallocPitch()

and cudaMemcpy2DAsync() to support non-contiguous data transfer. Currently, our pro-

totype handles non-contiguous copies for 2D arrays, which means buffering a “Block” of a

matrix. If split_iter is applied to both dimensions of a 2D array, we mark it as a 2D data

region and record the corresponding information, e.g., x_offset and y_offset. Depending

on the data dependencies of each subtask, we map the required data to this buffer and then

pass the offsets in the buffer to the corresponding computation kernels.

To compare to Nvidia’s Unified Memory (UM), we also need to apply UM to multiple

benchmarks. We compile and link with the -ta=tesla:managed flag provided by the PGI

compiler. This command line option allocates all dynamic memory in CUDA Unified (Man-
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aged) Memory. To make sure there is no explicit data transfer, we also eliminate all data

movement clauses and check the runtime information provided by the PGI compiler.

On Pascal and later GPUs, managed memory may not be physically allocated when alloca-

tion API is called; it may only be populated on access (or prefetching). In other words, pages

and page table entries may not be created until they are accessed by the GPU or the CPU. So

we also use cudaMemPrefetchAsync() to prefetch the data. To compare fairly, we make sure

that the data are prefetched in the way that our pipelining does. In other words, the num-

ber of cudaMemPrefetchAsync() function calls is the same as that of cudaMemcpyAsync()

for contiguous data movement. However, cudaMemPrefetchAsync() does not support non-

contiguous data movement, we here simply prefetch the entire array.

We also notice that directive-based extensions are becoming more complex as we incremen-

tally incorporate more functionality into the design to make it more powerful. On the other

side, Unified Memory focus on reducing the complexity of the programmability while trying

to offer compatible performance. However, Unified Memory requires underlying hardware/-

software technology since it is transparent to the programmer. The goal of our work is

to provide portable performance whether Unified Memory is available or not. In our ex-

periments, which are discussed in the evaluation section, we also observe that the Unified

Memory can provide good enough performance in some cases, especially when kernels are

launched multiple times with little data motion. We are also considering implementing an

auto-scheduler to help the developer to make choices under different circumstances.

3.4 Prototype Evaluation Results on Modern GPUs

In this section, we evaluate the performance and memory consumption of our proposed

extension and compare to Nvidia’s Unified Memory. We first evaluate our approach on four
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benchmarks: a 3D Convolution benchmark; a stencil benchmark; a matrix multiplication

benchmark; and a production Lattice QCD application. We run our experiments on three

types of GPUs: Nvidia Tesla K40m, AMD Radeon 7970 and Nvidia Tesla P100.

Our Nvidia experiments run on one of two platforms: an x86_64 node containing two Nvidia

Tesla K40m GPUs, each of which has 2880 stream cores and 12GB of on-board memory; and

a Power-8 platform with NVLink containing four Nvidia Tesla P100 GPUs, each of which

has 3584 stream cores and 16GB of on-board memory.

Our AMD experiments run on a node with an AMD Radeon HD 7970 GPU, which has 2048

stream processors and 3GB of on-board memory.

For each benchmark, we measure the performance in terms of the function that contains the

GPU operations, including all transfers but ignoring time for code that is identical in all

versions. We execute all test runs six times and use their average as the final result. The

error in the performance numbers is within 0.2 seconds in all cases. For memory usage, we

use the Nvidia System Management Interface nvidia-smi to inspect memory usage during

execution.

3.4.1 Initial study of the pipeline technique

The naive offload model, i.e., synchronously copying and executing, is inefficient. Figure 3.3

shows a time distribution on an Nvidia K40m of different phases in a naive Lattice Quantum

Chromodynamics (QCD) application written with OpenACC. Data transfers consume nearly

50% of execution time, during which no computation is performed. This execution model

wastes GPU and CPU compute resources during data transfers. Thus, the current standard

interface still has limitations in terms of performance, programmability, and memory usage.

To understand the pipeline technique and the impact of stream counts and data sizes, we
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Figure 3.3: Lattice QCD Time Distribution (left) and Normalized Speedup (right) on Nvidia
K40m

first use the Lattice QCD application as a case study on the Nvidia Tesla K40m GPU. From

Figure 3.3, we observe that pipelining achieves a 1.6× speedup for the small test case. As

the problem size grows, the speedup increases, indicating that larger cases may approach the

theoretical upper bound of 2×, which would be achieved if data transfers and computation

were perfectly overlapped.

We also vary chunk size and number of streams in Figure 3.4. These two parameters can

significantly affect performance. The number of streams value is the number of GPU streams

that we use in parallel, which is the number of transfers and kernels that may simultaneously

be in flight. More GPU streams could potentially hide more “bubbles” in the pipeline.

However, more GPU streams requires more scheduling overhead. As we divide the task

into multiple chunks, chunk size determines the size of each chunk and, thus, the number

of chunks. More chunks requires more API calls, and thus more overhead. Few chunks
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mean that the transfers of the first input chunk and the last output chunk, which cannot be

overlapped, are larger and account for more of the runtime which can degrade performance.

Thus, we vary these parameters to explore the trade-off.
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Figure 3.4: Different Chunk Sizes and GPU Stream Counts on Nvidia K40m

Figure 3.4 shows the results for the large test case on the K40m. Using two streams gener-

ally performs significantly better than one, showing the benefits of overlapping data transfers

and computation. However, using more than four streams offers no further benefit due to

increasing API and scheduling overheads while only slightly increasing potential overlap.

Increasing the chunk size reduces API call and kernel launch overhead but makes load bal-

ancing harder. Increasing the chunk size usually does not adversely impact performance.

Thus, we can ignore the additional overhead to use more chunks for this case. The K40m

needs two streams to reach its best performance for this application.
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3.4.2 Performance and Memory Evaluation

We evaluate our framework on four benchmarks on Nvidia and AMD GPUs. We denote

the baseline version as “Naive”. We overlap the data transfer and kernel computation and

implement a “Pipeline”. We then apply our framework to these benchmarks thus implement

a “Framework”. We have to note that the “Pipeline” version of the Matrix-Multiplication

benchmark also benefits from the algorithm change. To utilize the idea of saving memory bet-

ter, we replace the Naive Matrix-Multiplication algorithm by a Block Matrix-Multiplication.

3D Convolution

Many science and engineering applications use convolutions on multi-dimensional periodic

data. Applications include deconvolving blurred images, signal and image processing, noise

suppression, feature extraction, wave properties modeling and many others [12, 14, 28].

More specifically, convolution is used as a processing step in many electromagnetic (EM)

problems involving scattering and radiation. Moreover, convolution neural networks are

becoming important building blocks for most of deep learning networks [44]. Thus, fast

convolution computation is becoming increasingly important for the training speed of deep

learning tasks [17]. We use the 3D Convolution benchmark from the Polybenchmark set as

an example on which to evaluate our approach.

Figure 3.5 presents its performance on the K40m. The Pipeline version achieves 1.45×

speedup over the Naive version. Our prototype also delivers 1.46× speedup over the Naive

version, which provides exactly the same performance compared to the hand-coded Pipeline

version. Thus, the benefit from overlapping data transfer and kernel computation is still

much larger than the overhead from extra index translation and API calls.

Figure 3.6 shows the memory usage across versions. Since the default test case of the
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Figure 3.5: Performance Evaluation on Nvidia K40m

benchmark is relatively large, the Naive and Pipeline versions require about 3.5 GB of GPU

memory. Our Framework version only consumes 93 MB of GPU memory, which means we

could save 97% of device memory. With this huge memory savings, we could potentially

run much larger datasets or keep other useful data structures in device memory for a larger

application.

Figure 3.7 shows that the number of overlapping streams affects the performance of the

Pipeline version. However, using two streams no longer delivers the best performance; we

instead need up to eight streams to achieve the best performance. As our results show with

our other benchmarks, the number of streams can significantly affect performance, but the

ideal number of streams varies across benchmarks. We also find that our prototype uses

slightly more memory as the number of streams increases, because we must pre-allocate a

larger buffer as we increase the number of streams. Still, we reduce memory use 96% even

with eight streams.
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Figure 3.8 (left) shows the performance of the 3D Convolution benchmark on the AMD

Radeon 7970 GPU. We first compare the Naive version with the Pipeline version. The

Pipeline version is 57% slower than the Naive version, which is significantly different from

our Nvidia K40 results. To understand this difference, we use the AMD APP Profiler to

profile the Pipeline version, which reveals that data transfer times lead to the significant

performance degradation. Although the data volume that is transferred is the same, the

Pipeline version takes much longer to move it: the transfer rate for the Naive version is

about 6 GB/s while it is only 2 GB/s for the Pipeline version.
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Figure 3.7: Execution Time Varying GPU Stream Count on Nvidia K40m

To ameliorate this issue, we vary the chunk size and number of streams. Our conclusions

include that even if more chunks imply more API call overhead, it can be ignored on Nvidia

GPUs. However, that overhead is more significant with the AMD GPU. The AMD APP

Profiler results indicate that the performance degradation arises because:

• We split the task by the outer loop into small chunks, which means the chunk size is

1 and number of chunks is the problem size in that dimension, which requires many

API calls and high scheduling overhead;

• Splitting the tasks into small chunks decreases the array size of each transfer, possibly

to below the data transfer unit size for the AMD GPU, thus limiting bandwidth.

To test our theory, we modify our code to decrease the number of chunks. We then evaluate

the performance of the Pipeline version versus the Naive version as we vary the number of

chunks.
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Figure 3.8: 3D Convolution and Stencil Performance Degradation (Left) and Normalized
Speedup , Varying Number of Chunks (Right) on AMD HD 7970

Figure 3.8 (right) shows that if we split the problem into only two chunks that we achieve

1.2× speedup over the Naive version. Performance improves as we increase the number of

chunks until we use nine chunks, after which it degrades sharply. When we use between 20

to 50 chunks, performance is worse than the Naive version, it continues to decline to the

default chunk count.

Stencil

The Parboil Stencil benchmark represents an iterative Jacobi solver of the heat equation on a

3-D structured grid, which can also be used as a building block for more advanced multi-grid

PDE solvers. We implement a prototype of the stencil benchmark using our approach.

Figure 3.5 shows the performance evaluation for the stencil benchmark on the K40m GPU.
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The Pipeline version, which uses native OpenACC pragmas to pipeline the kernel compu-

tation and data transfer, achieves 1.57× speedup over the Naive version. Our Framework

version is even faster than the Pipeline version, even including the time to handle array in-

dexing and function calls. Our analysis finds that we only use two streams to implement the

Framework version. However, we assign one stream to handle each subtask with the Ope-

nACC async() clause, which indicates that it uses the maximum number of available GPU

streams by default. Although more GPU streams could potentially hide more “bubbles” in

the pipeline, they require more scheduling and API calls and can create contention overhead.

Overall, these effects have more overhead than the benefit from overlapping data transfer

and kernel computation. Since these parameters are building blocks of our schedules, we

evaluate their impact, as Figure 3.7 shows.

We observe that the Pipeline version uses eight streams by default, which explains its execu-

tion time of 6.48 seconds in Figure 3.5. Further, as we increase the number of streams, the

execution time of the Pipeline version increases dramatically while our Framework version

remains stable. If we limit the number of streams to two instead of using the default eight

streams, the Pipeline version performs best. However, as the stream count increases, the

performance crosses over: with over six streams, the Framework version is faster. Either

pipeline version provides at least 1.5× speedup over the Naive version.

Figure 3.6 shows the memory usage of our prototype for the Stencil benchmark. Our Frame-

work version reduces memory consumption nearly 50% compared with the Pipeline version.

Further, the GPU runtime and scheduler, rather than the data set, consume a large portion

of the memory for this small test case.

The stream count can significantly affect memory use. The Pipeline version requires more

memory to schedule the streams and to maintain the corresponding information. Our Frame-

work version also requires a larger buffer allocation. Also, memory use increases slightly as
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we increase the stream count. Our approach always reduces memory consumption nearly

50% for the Stencil benchmark.

Figure 3.8 (left) shows the poor performance of Parboil Stencil on the AMD HD 7970 with

the default number of chunks. For the Stencil benchmark, the Naive version is 56% faster

than the Pipeline version. We again verify that reduced effective transfer bandwidth leads

to the performance loss. Figure 3.8 (right) shows that with two chunks, the Pipeline version

achieves 1.35× speedup over the Naive version. As we increase the number of chunks to four,

performance improves slightly. With more chunks, performance degrades until it is the same

as the Naive version between 10 and 20 chunks, after which it becomes worse. The results

with the 3D convolution and Stencil benchmarks demonstrate that data transfer bandwidth

and API overhead limit the benefit of pipelining on the AMD GPU. More chunks require

more API calls and scheduling overhead and reduce the chunk size below that required to

maximize data transfer bandwidth.

Overall for the Stencil benchmark, our approach significantly reduces memory use while

performing competitively with a hand-coded OpenACC solution. Further, our approach au-

tomates index translation and scheduling, which improves programmability, thus increasing

the key motivation to use directive-based extensions. We find that stream count can impede

the OpenACC solution. Using too many GPU streams reduces performance of the Pipeline

version, while our prototype is not sensitive to stream count.

Lattice QCD

Quantum Chromodynamics (QCD) is the component of the standard model of elementary

particle physics that governs the strong interactions. Our Lattice QCD benchmark is a larger

application from the SciDAC Lattice Group. The main computational subroutine has several
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parallel regions, which operate on a high-dimensional lattice. These features complicate a

hand-coded implementation, which indicates that programmability is particularly important.

The problem size can be formalized by O(Cn4) where C is a relatively large constant. We

evaluate our prototype with three data sets where n is equal to: 12 (small), 24 (medium),

and 36 (large).

Figure 3.5 shows the performance of the Lattice QCD code. In the large test case, our

prototype delivers 1.54× speedup over the Naive version. The huge indexing operation to

map the high-dimensional space to the pre-allocated buffer probably leads to the performance

difference. We pass the offset variables into the OpenACC kernel region to point to the

corresponding location inside the pre-allocated buffer. Since the kernel is much larger and

contains many more array element accesses, the index calculations, additional operations

inside the kernel, reduce performance compared to the hand-coded version. Nonetheless, the

Framework version significantly outperforms the Naive one.

Figure 3.6 shows that compared with the Pipeline version, our Framework version signif-

icantly reduces memory use. As we increase the problem size, the memory savings also

increase. For the largest test case, our approach reduces GPU memory use up to 79% and

achieves competitive performance.

Matrix Multiplication benchmark

Matrix multiplication is a fundamental building block for many scientific computing applica-

tions. Moreover, the algorithmic patterns of matrix multiplication are representative. In our

previous benchmarks, all data transfers are contiguous. In this section, we use the Matrix-

Multiplication benchmark from the Polybenchmark suite as a case study to investigate the

performance of our approach with non-contiguous data transfers.
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We use a naive OpenACC matrix multiplication implementation from the Polybenchmark

suite as our “baseline”. With the matrix multiplication A×B = C, this Naive implementation

assigns one GPU thread to each element in matrix C. Each GPU thread gathers a line of A

and a column of B and then calculates the corresponding element in C.

Many optimization methods have been developed to improve matrix multiplication perfor-

mance; matrix blocking or tiling is an important one. By splitting the matrix into tiles, the

size of each sub-matrix can be controlled to fit in shared memory. We assign one GPU thread

block to each sub-matrix multiplication after loading the elements into shared memory. We

accumulate these results into C. Ensuring shared memory use with OpenACC is difficult;

we use the private() and cache() clauses. We denote this version as the “block-shared”

version. Each task only needs data from a column of blocks in matrix A and a row of blocks

in matrix B. We then apply our previous approach to this benchmark, partitioning the in-

puts and tasks into chunks by columns in A and rows in B. We assign one GPU stream to

each task and copy the necessary data to a pre-allocated buffer. Mapping columns of blocks

in Matrix A requires non-contiguous data transfers. After that we launch the computation

kernel, and finally pipeline these GPU streams. This version is our “pipeline-buffer” version.

Figure 3.9 shows matrix multiplication performance across versions on an Nvidia K40 GPU.

We observe that the block-shared version, which uses block partition and shared memory,

can achieve up to 3× speed up over the baseline: Using shared memory significantly reduces

global memory access. We also observe that our pipeline-buffer version achieves almost the

same performance as the block-shared version. We then use Nvidia Visual Profiler to profile

these two versions. We find that since the matrix multiplication is compute bound, the

data transfer takes little time compared to kernel computation. Although non-contiguous

data transfers take more time, it can be completely overlapped with the kernel computation.

Thus, the two versions achieve nearly the same performance.
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Figure 3.9: Matrix Multiplication Performance on Nvidia K40m

Figure 3.10 shows the memory usage of our Matrix Multiplication versions. Pipelined-buffer

significantly reduces memory consumption. As we increase the problem size, the memory

savings also increase. Since we only split the Matrix A and B, if the data size is large enough,

it reduces memory use nearly 66% while delivering competitive performance. This savings

allow the Pipelined-buffer to compute, with no performance loss, problem sizes that exceed

GPU memory for the other two versions, as shown by the two rightmost problem sizes in

Figures 3.9 and 3.10.
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Figure 3.10: Matrix Multiplication Memory Consumption on Nvidia K40m

3.4.3 Comparison to the Unified Memory Technique

Unified Memory is a feature of the CUDA programming model that simplifies porting appli-

cations to GPUs by providing a single, unified, virtual memory space. It was first introduced

in CUDA 6 on the Kepler GPU family. However, that version was still in early stages and

the performance was relatively poor [49]. Nvidia’s Pascal GPUs incorporate significant im-

provements to simplify programming and sharing of memory between CPUs and GPUs.

First, it extends the GPU addressing capabilities to enable 49-bit virtual addressing. There-

fore, the P100 Unified Memory allows programs to access the full address spaces of all CPUs

and GPUs in the system as a single virtual address space, unlimited by the physical memory

size of any one processor.
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Second, Unified Memory (UM) for Pascal GPUs supports device memory page faults. Com-

bined with the system-wide virtual address space, page faulting provides several benefits.

One of the most important benefits that is related to our directive-based extension is that

Pascal GPUs support GPU memory oversubscription. We designed experiments to compare

our proposed extension prototype to UM on the P100.

Based on our proposed extension, we implement a version of our runtime to add data transfer

hints to unified memory to exploit the data used for the distributed memory case. We also

extend two benchmakrss to exploit it: the 3D Convolution benchmark, and the Matrix

Multiplication benchmark. We apply the Unified Memory technique to these benchmarks.

We also apply the newest optimization techniques provided by CUDA 9 for UM to provide

better performance, such as “prefetching”. There exists two types of prefetching: (1) device-

to-host (DtoH) data copy prefetching and (2) host-to-device (HtoD) data copy prefetching.

We denote these two kinds of prefetching as ”CPU Prefetching” and ”GPU Prefetching,”

respectively.

Another reason to use prefetching is to compare the performance of the “UM + Explicitly

Memory Prefetching” with the traditional data copy launched by CudaMemCpyAsync(). We

also link the UM memory prefetching to multiple different non-default GPU streams, like

what we do with the cudaMemcpyAsync(), to overlap the kernel computation with the data

movement for better pipeline performance.

We run our experiments on compute nodes equipped with Nvidia TESLA P100 GPUs. They

have 3,584 Nvidia CUDA Cores and 16 GB HBM2 Stacked Memory with NVLink support.
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Figure 3.11: 3D Convolution on K40m vs. P100

Performance comparison K40m vs. P100

We compare the performance of our framework to Nvidia’s Unified Memory. Specially we

target Nvidia’s P100 GPU on a Power-8 platform with NVLink and CUDA 9. We will first

evaluate the performance difference between the K40m GPU and P100 GPU.

Figure 3.11 shows the performance of the 3D Convolution benchmark on these two devices.

We can first observe that the average normalized performance speedup on the P100 is much

higher than on the K40m, which is about 1.2×. We also vary the number of GPU streams
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on both devices.

We can observe that the number of overlapping streams affects the performance of the

Pipeline version on the K40m GPU. However, using two streams no longer delivers the best

performance; we instead need up to eight streams to achieve the best performance.

On the P100 GPU, however, we first find a huge performance speedup after switching the

number of GPU streams from 2 to 3, which is about 1.18× speedup. The performance stays

stable if we continue to increase the GPU stream count, which is significantly different from

that on K40m GPU.

Initial Study of Unified Memory

We first apply Unified Memory to the 3D Convolution benchmark from the Polybenchmark

set [65] using the standard dataset. This default version basically does an iterative job on

a 3D matrix. We denote this baseline as the “Naive” version. We first apply the pipelining

technique to the baseline version in the “Pipeline” version. After that we use our proposed

extension to implement a “Framework” version. At last, we apply the Unified Memory

technique to it and denote this version as “UM” version. Figure 3.12 shows the execution

time of different versions.

We observe that using pipelining to overlap the data transfer and kernel computation achieves

a 1.91× speedup. Our framework provides exactly the same performance compared to the

manually pipelined, “Pipeline,” version. However, here we find that the “UM” version pro-

vides 2.97× speedup over the baseline. To determine the reason, we use the Nvidia Profiler

to profile the program. We find that the data transfer size of the two different version is

extremely different. Figure 3.13 shows the data transfer size of the “Pipeline” version and

“UM” version for both device to host and host to device direction. We can see that the
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data transfer size of “Pipeline” is 27.5× more than the “UM” version. We find that the UM

runtime keeps the 3D matrix inside the GPU despite the array pointer exchange. However,

in real world applications, data changes between iterations. For instance, if we use multiple

nodes to compute, we need MPI exchange between the iterations. We cannot always keep

the data inside GPU. Deep learning is another good example since we usually use a ”small

batch” from the entire super large dataset to train the neural networks. To simulate this

kind of process, we add additional host data updates between each iteration to the data

matrices on the GPU in the following evaluation studies.
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Figure 3.14: Data Set Size

3D Convolution Benchmark

We implemented six 3D Convolution versions. First, our baseline GPU version, which is

denoted as “Naive”, uses that model’s naive offload method. Our “Pipeline” version uses

OpenACC APIs to pipeline the data transfer and kernel computation by splitting the task

into multiple chunks. The “Framework” version uses our prototype runtime framework. We

also implement three versions that use UM; “UM” uses the managed memory for the baseline

version. The other two use GPU prefetching and CPU prefetching.

Figure 3.14 shows the data set we use with the 3D Convolution benchmark. The red dash

line shows that the P100 GPU has 16GB GPU memory. Our two small data sets fit into

GPU memory. The third data set size is exactly 16 GB but does not fit into the P100

memory because of runtime memory overhead. The input data of our two large problems

exceed the memory limit.
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Figure 3.15: 3D Convolution Normalized Execution Time

Figure 3.15 shows the normalized execution time of 3D Convolution benchmark across dif-

ferent versions. We normalize all the execution time to the “Framework” version because

it fit all data sets and its performance is stable. First, we can observe that pipelining the

computational kernel and data transfer can provide 1.2× speedup over Naive, which is a

relative high performance improvement. Also, the “Framework” version provides exactly

the same performance compared to the “Pipeline” version when data size can fit into GPU

memory. However, the “Naive” and “Pipeline” versions fail with larger data sets. After ap-

plying the Unified Memory technique, we find that the UM executes all test cases correctly

but GPU and/or CPU prefetching improve its performance significantly. For small test
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cases, the UM version is about 1.9× slower than the framework version. For large test case,

where memory eviction is required, it is 3.6× to 6.5× slower than our framework version.

Both CPU prefetching and GPU prefetching provide performance benefit here, because it is

a iterative computation. If we apply both prefetching technique, we could get about 1.6×

improvements.

Matrix Multiplication Benchmark

Figure 3.14 shows the data set we choose for Matrix Multiplication benchmark. We have

two small and two medium data sets that fit into the GPU memory, one large data set that

slightly exceeds the GPU memory and one super large data set that significantly exceeds the

GPU memory. We note that the Matrix Multiplication Benchmark here is not a iterative

computation, which means we have only one iteration here.

Figure 3.16 shows the normalized execution time of the Matrix Multiplication benchmark.

First, we can observe that the block matrix multiplication algorithm can provide 1.6× to

2.2× speedup over the Naive matrix multiplication algorithm. We also find that prefetching

is not effective as we observe little performance improvement after applying the prefetching

technique, which is usually less than 2%.

If the data set is small enough (the first two datasets), the Unified Memory versions pro-

vide about 96% to 99% performance compared to the corresponding versions without using

Unified Memory, which indicates that the compiler applies heuristic optimization that auto-

matically alleviate the GPU page-fault overhead, making prefetching technique less effective

at the same time. If we increase the data set size, where over 10 GB GPU memory is re-

quired, although it still fits into GPU memory, we observe 1.3× performance degradation for

UM versions. So, the heuristic optimization appears to have data set size limitations. As we
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continue to increase the data set size, making it much larger than the 16 GB GPU memory

available, the last two data sets show us significantly different results. We observe that when

data sets exceed the GPU memory limit, the UM version for naive matrix multiplication algo-

rithm performs normally, maintaining the same performance difference as before. However,

the Block UM version shows very huge (10.3× to 28.3×) performance degradation, which is

significantly different from that of the Naive UM version (2× to 5× performance degrada-

tion). Based on the previous assumption, the non-contiguous data transfer may cause some

extra data transfer due to the heuristic software level optimization by the compiler.
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We also notice that the prefetching technique does not provide performance benefit for both

Naive and Block versions in this case. The Matrix Multiplication is just a one iteration

computation, we also evaluate another version which has multiple iterations with host up-

dates between iterations. The results still show that the UM versions provide almost the

same performance compared to the versions without UM, which is the same as our results

discussed above. Also, prefetching still does not provide significant improvements.

We have to note that these experiments use the PGI 17.9 compiler with CUDA 9.0.176 for the

UM versions, because previous PGI compilers only used one GPU stream. In those versions,

PGI disabled asynchronous support for P100 and older GPUs when managed memory is used

to avoid segment faults that can arise if the host and device access the same address. We

may lose the benefit from prefetching technique for UM, because we are not able to overlap

the prefetching with the kernel computation if we have only one GPU stream.

To sum up, we show that the UM memory engine has compiler-level optimizations for small

data set movement between host and device that are effective for small test cases. However,

for large datasets especially datasets that exceed the GPU memory with non-contiguous

memory access patterns, it may cause performance degradation.

3.4.4 Summary and Discussion of Experiments

We implement a prototype framework for our proposed extension and apply it to four bench-

marks. We show the performance on Nvidia K40m GPU, P100 GPU and AMD Radeon HD

7970 GPU. Our approach significantly reduces GPU memory use while delivering compet-

itive performance to a hand-written pipeline version. Also we find that the K40m GPU is

sensitive to GPU stream count, but the P100 GPU is not. Using three GPU streams is much

better than using two GPU streams for P100 GPU. We observe that pipeline performance
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on the AMD device is sensitive to the number of chunks due to API calls launch overhead

and data transfer bandwidth limitations.

We then compare our framework to Nvidia’s newest Unified Memory technique provided

by CUDA 9 on Pascal P100 GPU. The experimental results shows that our extension out-

performs Nvidia’s Unified Memory by 25% to 40% for data sets that fit into GPU memory

and 260% to 2830% for those that do not. We also explain the potential reason is that

the Nvidia’s compiler has optimizations for non-contiguous data movement, which results in

extra data movement overhead.

Our evaluation results show that directive-based programming models for accelerators should

include our partitioning and pipelining extension. This approach significantly improves

performance and programmability. It also supports running applications with huge data

sizes without complex coding changes.

3.5 Conclusion

We propose a directive-based pipelining extension for offload models such as OpenMP and

OpenACC. Our extension allows GPU programmers to pipeline data transfers without major

refactoring, thus automating overlap of computation and communication. Further, mapping

subsections of the host array to a device buffer can reduce memory requirements and in-

crease portability. To show the benefits of our design, we choose four benchmarks: the

Stencil benchmark from the Parboil suite, the 3D Convolution and Matrix Multiplication

benchmarks from the Polybenchmark set, and a SciDAC Lattice QCD application. We ex-

tend them with our prototype runtime and present a detailed evaluation that compares the

programmability, performance and GPU memory consumption. We also compare it with

the state-of-the-art Unified Memory technique released by Nvidia on PASCAL GPUs. Our
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results show that our implementations hav better overall performance, particularly while

dealing with non-contiguous data movement.



Chapter 4

Block-Level Data Pipelining for

Graphic Processing Units

4.1 Introduction

GPU-accelerated systems are prominent on the Top500 list [25]. While many new and

proposed programming models support them, scientists often prefer to keep their existing

verified C, C++, or Fortran code rather than grapple with the unfamiliar. Since 2013,

OpenMP has provided a straightforward way to adapt existing programs to accelerated

systems [57].

The directive-based offload mode includes mapping annotations that ensure the accelerator

can access the data and that the results are available on the host after the computation.

If the accelerator cannot directly access host memory or if using accelerator memory can

improve performance, the data is copied to device memory. The naive offload model copies

data synchronously, which can adversely impact performance.

OpenMP [59] currently enables asynchronous data copy and computation pipelines. How-

ever, users must manually split the task into chunks and that they must launch with different

GPU streams. This manual approach requires error-prone code refactoring and incurs extra

function-call overhead. The hyper-parameters, e.g., stream (i.e., #streams) and chunk (i.e.,

53
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#chunks) counts, must be carefully tuned to achieve optimal performance; poor choices may

significantly reduce it.

As system heterogeneity grows more complex, the burden increases on the CPU to manage

data movement among discrete memory spaces. Bypassing the CPU can efficiently offload

tasks to accelerators [43, 81]. However, traditional kernel-level data pipelining still involves

CPU data movement, sub-kernel launch, and task dependency control, which still consume

significant CPU resources. The GPU-bound processes may adversely impact the CPU pro-

cesses and vice versa [69]. Further, the data may not fit in device memory because scientific

applications frequently use huge arrays or matrices. The user must then manually split the

data and the associated computation, which can involve significant code changes since the

user must partition large data arrays on the host and separately pass each array pointer.

We propose a block-level data pipelining (BLP) mechanism to resolve these issues. It per-

forms data communication and computation inside one GPU kernel and can completely

bypass CPU control after a single kernel launch. Persistent thread blocks occupy the GPU

streaming multiprocessors (SMs). We partition these thread blocks into groups to handle

various sub-tasks, including data communication. Our novel GPU flag-array mechanism

monitors sub-tasks for completion. BLP can map data into a small buffer to reduce memory

usage and to support GPU memory oversubscription.

Recent studies use GPU persistent threads to reduce kernel launch overhead and to share

a GPU between multiple programs [16]. However, these approaches suffer from limited

GPU occupancy and scheduling uncertainty, especially for programs that use locks. Our

approach leverages cooperative thread groups [19] to implement efficient synchronization

across persistent thread blocks, resulting in three major advantages. First, bypassing the

CPU for data movement and sub-task management releases many CPU resources, which

significantly benefits CPU-bound processes. Second, we enforce dependencies between sub-
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tasks with our GPU flag arrays and execute the sub-tasks in the program’s topological order,

which eliminates development effort to serialize tasks. Third, our OpenMP pipeline syntax

improves BLP programmability.

We find that a few reserved thread blocks for memory copying can provide equal or better

bandwidth compared to host-initiated memory copies. Our results for multiple benchmarks

on Nvidia V100 GPUs show that BLP without any parameter-tuning delivers stable and

competitive performance compared to traditional kernel-level stream-based pipelining.

This chapter makes the following contributions:

• An examination of the challenges and shortcomings of traditional kernel-level pipelining

with GPU streams;

• A comparison of the memory bandwidth achieved by direct access and that achieved

by traditional runtime copies on Nvidia V100 GPUs;

• Our BLP mechanism to overlap communication and computation within a single kernel

launch;

• A demonstration that with appropriate index mapping, BLP can support GPU memory

oversubscription while providing competitive performance; and

• A detailed BLP performance analysis of several application benchmarks.

4.2 Design and Implementation

4.2.1 Proposed OpenMP Syntax

Fig. 4.1 shows our extended OpenMP syntax to support BLP that avoids the pitfalls of

kernel-level pipelining. The pipeline map-type modifier extends the map clause, which



56 Chapter 4. Block-Level Data Pipelining for Graphic Processing Units

makes data available at the beginning and/or at the end of the region. We use the OpenMP

5.0 iterator concept to parameterize task splitting and the range and stride of the associated

data movement. Thus, we add an iterator clause that we use in parameters of the pipeline

modifier. Those parameters are dirc, which specifies the memory copy direction (the existing

OpenMP to, from and tofrom) and num_block, which specifies the number of thread blocks

to use to move data. Other thread blocks handle computation tasks.

#pragma omp target teams distribute
map(pipeline(iterator[,dirc[,num_block]]):items…) 
iterator(ident = begin:end[:step])

pipeline inputs
dirc copy direction
num_block number of streaming multiprocessors to copy in/out data
iterator iterator, defined on same directive, representing range and stride

map inputs 
items array declaration arr[iterator_expr[:len] | begin:len]

iterator inputs 
ident identifier for the iterator
begin/end/step bounds and step of the iteration space

Figure 4.1: Proposed OpenMP Extension for Block-Level Data Pipelining

We add an option to map array sections that uses an iterator expression as their begin

parameter. The format is <var>[(iterator_expr|begin):len] where <var> is the variable

or base pointer of an array and [iterator_expr:len] identifies the dimension to split and

the data size (e.g., len) accessed by a sub-task.

Fig. 4.2 shows a two-level nested, stencil computation loop. The iterator(i = 1:_PB_NI-1)

splits the i loop with range and step 1. The pipeline(i,to:4) inside the map clause splits

the data by the dimension that contains a function of i and that four thread blocks handle

the host-to-device copies of the two-dimensional input array A. A function of i and <size>

indicates the data chunks that we must copy before a compute thread block executes the ith



4.2. Design and Implementation 57

loop sub-task. For instance, the A[i-1:3][0:_PB_NI-1] indicates that we split this array by

its most significant dimension and must copy the i− 1, i and i+1 chunks in that dimension

to the device before executing the ith computation sub-task. The [0:_PB_NJ-1] defines the

other dimensions of array A. Similarly, the from:4 and B[i:1][0:_PB_NJ-1] clause defines

the output array B, its dependency for each i iteration and that four thread blocks handle the

device-to-host copies. The [i:1] indicates that each sub-task i only stores its corresponding

chunk i in the most significant dimension.

1
2 #pragma omp target teams distribute \
3 map(pipeline(i,to,4):A[i-1:3][0:_PB_NI-1]) \
4 map(pipeline(i,from,4):B[i:1][0:_PB_NJ-1]) \
5 iterator(i = 1:_PB_NI-1)
6 for (i = 1; i < _PB_NI - 1; ++i){
7 #pragma omp parallel for
8 for (j = 1; j < _PB_NJ - 1; ++j)
9 {

10 B[i][j] = 0.2 * A[i-1][j-1] + 0.5 * A[i-1][j]
11 + -0.8 * A[i-1][j+1] + -0.3 * A[ i ][j-1]
12 + 0.6 * A[ i ][j] + -0.9 * A[ i ][j+1]
13 + 0.4 * A[i+1][j-1] + 0.7 * A[i+1][j]
14 + 0.1 * A[i+1][j+1];
15 }
16 }

Figure 4.2: A Stencil Code with our Proposed Extension

A powerful code analysis engine capable of deep logic analysis of the code and dependen-

cies [53] could significantly simplify our proposed extension and back-end implementation.

Potentially, the compiler could determine the array definition and the data dependencies for

each sub-loop to construct sub-tasks for each thread block. However, the assumption of these

capabilities would limit the applicability of our extension to code that can be analyzed com-

pletely at compile time and complicate its adoption into the OpenMP specification. Thus,

we allow developers to specify this information.
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Figure 4.3: Block-level Pipelining Workflow

4.2.2 Block-Level Data Pipelining

Our BLP approach partitions GPU thread blocks into three groups to handle host-to-device

memory copies, computation, and device-to-host memory copies. Developers may specify

the partition sizes or allow our scheduler to choose them automatically. The best choice

varies with several factors, including memory copy bandwidth as Section 4.3 shows.

We launch persistent thread blocks on the SMs for the entire program execution. Each thread

of the data movement blocks reads data from pinned host memory and then writes it to GPU

memory for the host-to-device (device-to-host) direction. We use the CUDA 9 cooperative

group feature to address any issues with limited occupancy or thread block scheduling. It

also guarantees that the thread blocks run concurrently, which avoids potential deadlocks.

The host buffer must be pinned so that the CUDA kernels can use zero-copy reads from

host memory. This feature supports on-demand memory access for each operation. To

hide latency and to utilize available bandwidth fully, our direct access mechanism launches

multiple thread blocks that read host input data and store it in GPU global memory.

Our flag arrays in GPU global memory track when data movement and computation sub-

tasks finish. The corresponding flags trigger dependent computation or data-copy thread

blocks. Atomic operations or global memory operations read or write the flag arrays to
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guarantee that modifications are visible across SMs. We call __threadfence() after storing

the data but before the atomic flag update to guarantee that thread blocks that observe the

update read correct data.

Fig. 4.3 shows a BLP example on an Nvidia V100 GPU. In subfigure (a), the CPU launches

a kernel on 80 persistent thread blocks. Cooperative groups can support more thread blocks,

in which case multiple thread blocks would run concurrently on the SMs. In our example,

four thread blocks copy input data to the GPU (yellow), 72 thread blocks perform the

computation (green) and four thread blocks copy output data to the CPU (blue). Subfigure

(b) shows that the yellow thread blocks continually read input data from the CPU, which

they store in GPU global memory. They update the flags after each round to indicate that

the corresponding slice of the input data is ready. The green thread blocks spin-check the

appropriate input flags before executing each task. After the flags are updated, those blocks

execute the computation on that data, as subfigure (c) shows. Subfigure (d) shows that

when a green thread block finishes its task, it updates the output flag to trigger the blue

thread blocks to copy the results to the host.

If only one kernel is launched, the GPU handles all data movement, computation and the

logic between each task. Thus, we do not use the CPU to enforce sub-task dependencies

and do not need to tune the chunk size and number of GPU streams. Moreover, since

the GPU handles all operations, call-back instructions before/after each sub-task (including

computation and data movement) could easily be added without involving the CPU. The

GPU thread block size is always the key performance parameter, which is important to both

traditional stream-based pipelining and BLP. The work distribution of the thread blocks

could be determined by a system bandwidth test. Section 4.3 shows that the number of copy

threads limits BLP memory-copy bandwidth.
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4.3 Experimental Evaluation

4.3.1 Experimental Hardware

We use two state-of-the-art GPU platforms for our experiments. The first has IBM Power

9 CPUs and Nvidia Volta V100 GPUs that are interconnected with Nvidia NVLink2. The

second has Intel Xeon Gold 6136 CPUs and Nvidia V100 GPUs that are interconnected by

PCI-E 3.0. The V100 GPU has 5120 stream cores and 16GB of HBM2 memory.

4.3.2 Benchmarks

Our evaluation uses multiple GPU benchmarks from PolyBench GPU V1.0 [64] written in

CUDA.

2D Convolution and 3D Convolution

Convolutions on multi-dimensional periodic data are used to deconvolve blurred images,

to process signals and images, to suppress noise, to extract features, and to model wave

properties [28]. It is a step in many electromagnetic (EM) problems involving scattering and

radiation. Also, convolution neural networks (CNNs) are important building blocks for deep

learning (DL).

Generic Matrix-Matrix Multiplication (GEMM)

Matrix multiplication is a building block of many scientific computing and machine learn-

ing algorithms. We use the GEMM benchmark to investigate BLP performance with non-

contiguous data transfers. Many optimization methods improve GEMM performance, in-
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cluding matrix tiling. The block GEMM algorithm divides each matrix into multiple blocks,

then separately multiplies the blocks, and finally accumulates the results. The block size

is usually small enough to fit into the shared memory on GPUs to reduce global memory

access latency.

2-D Finite-Difference Time-Domain Kernel

A two-dimensional finite-difference time-domain (2D-FDTD) method can accurately find the

source location of an acoustic wave in an urban area [4]. Accelerators like GPUs excel at

problems that involve many independent computations such as the FDTD method [26]. This

particular 2D-FDTD benchmark actually consists of three separate compute kernels, each

representing an inter-dependent step in the overall 2D-FDTD kernel computation. These

kernels have separate input arrays and depend not only on their own input data but also

on the output of the other two kernels. These complex dependencies make partitioning and

pipelining difficult to map to an iterative procedure on sequential GPU streams. Our BLP

approach only needs to set the task dependencies, which the GPU manages.

Matrix Transpose and Vector Multiplication

Matrix transpose and vector multiplication (ATAX) form the basis of fundamental algo-

rithms such as linear solvers and eigenvalue solvers on symmetric matrices and are used in

many scientific areas, such as quantum chemistry [75] and solid-state and nuclear physics.

Optimization typically focuses on cache utilization on CPUs and shared memory on GPUs.
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Figure 4.4: cudaMemcpy and cudaMemcpy2D Bandwidth with NVLink2

4.3.3 Comparison of Memory Copy Bandwidth

Fig. 4.4 shows cudaMemcpy() and cudaMemcpy2d() bandwidth on a Power9/V100 NVLink2

node as the number of chunks varies. The maximum bandwidth is around 60 GB/s with

only one chunk. Splitting the array into chunks drops the bandwidth substantially – a 99%

reduction with 1024 chunks. The 2D-copy decrease is more precipitous, with a 90% reduction

with only 64 chunks. The blue line in Fig. 4.5 shows the direct access memory bandwidth

as the number of copy threads varies. Direct access provides similar bandwidth compared to

the maximum bandwidth provided by cudaMemcpy() when enough GPU threads are used.

Fig. 4.6 shows the direct access bandwidth with a non-contiguous stride. We use a 32×32

thread block and copy the array chunk by chunk column-wise, which is similar to 64 chunks

with cudaMempcy2d() with the same data set. Direct access with four or more SMs achieves

nearly the maximum bandwidth or about 4× the cudaMempcy2d() bandwidth with the same

stride. We show later that this result is critical to GEMM performance.
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Figure 4.5: Direct Access Bandwidth with NVLink2

4.3.4 Block-Level Pipelining Optimizations

BLP uses persistent thread blocks to eliminate repeated kernel launch costs. Several persis-

tent thread blocks run on the SMs. The number of persistent thread blocks depends on the

number of SMs on the GPU, e.g., 80 persistent thread blocks on 80 SMs on a V100 GPU.

We partition the thread blocks to handle different tasks (i.e., host-to-device data transfer,

main computation, and device-to-host data transfer). However, to utilize the bandwidth

and computation power fully, partition sizes should be evaluated for each system. To track

the completion of each task, we maintain flag arrays for data movement or computation

sub-tasks. The implementation of flag read/write operations can also significantly affect

performance.

Memory Copy Optimization

Each thread in the memory copy thread block reads an element from the source memory

space and stores it in the destination memory space. By default, a single instruction may

load and store 32 bits from those addresses for data types such as int or float. We can use
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Table 4.1: Flag Read/Write Operations

Partition Operation Functions
HtoD write atomicAdd, atomicOr, atomicExch
Compute spin read atomicAnd, atomicCAS, global read
Compute write atomicAdd, amtoicInc
DtoH spin read atomicAnd, atomicCAS, global read

vectorized instructions to increase the bit count per instruction. For most benchmarks, we

merge four 32-bit load/store operations into a 128-bit load/store operation.

Fig. 4.5 shows the direct access bandwidth on a Power9/V100 NVLink2 node. The red line

shows that this optimization does not increase the maximum peak bandwidth. However, it

significantly reduces the number of GPU threads required to achieve it. Only three or more

thread blocks (each has 1024 threads) are required to achieve the maximum bandwidth.

Fig. 4.7 shows the direct access bandwidth on the PCI-E-connected node. Since the PCI-E

peak bandwidth is much lower, one thread block is sufficient.
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Figure 4.7: Direct Access Bandwidth with PCI-E

Flag Read/Write Optimization

Multiple implementations of the flag read/write operations are possible. We explore two

approaches, atomic operations and global memory read/write with the volatile keyword,

to guarantee that flag modification by one thread block is visible to other thread blocks.

Table 4.1 shows the available instructions for each flag read/write. For most atomic opera-

tions, atomicAdd, atomicAnd, and atomicOr outperform other atomic operations in terms

of throughput and latency. Due to concurrent flag write updates on the same data, we

currently only use atomic operations for flag write operations.

Persistent Thread Discussion

CUDA 9 introduces cooperative groups, which extend CUDA to allow kernels to organize

groups of threads dynamically. The cooperative groups programming model describes syn-

chronization patterns, both within and across thread blocks. It provides device APIs that

define, partition, and synchronize groups of threads. It also provides host APIs to launch

thread grids that execute concurrently to enable synchronization across thread blocks. This
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feature can significantly increase occupancy [29]. Even though some thread blocks are used

for direct access memory copy, we can still launch more thread blocks than the number of

SMs on a GPU to utilize its compute resources fully.

4.3.5 Application Performance

We now present our evaluation of BLP for the benchmarks described earlier. We com-

pare performance with two other data pipelining implementations and two simpler choices

based on Unified Memory (UM). In the following, we denote our BLP approach as blp. We

also implement a traditional data pipelining approach by partitioning the tasks to multiple

sub-kernels and mapping them to multiple GPU streams asynchronously, which we denote

as async. Alternatively, we do not partition the tasks and instead execute activities syn-

chronously, which we denote as sync.

We also compare to using UM to overlap data transfer and computation. The CUDA runtime

can automatically handle data movement on demand, which we denote as um. CUDA also

supports manual UM prefetching, which can guide the runtime to move data more efficiently.

We denote this prefetching procedure, which is mapped to asynchronous GPU streams. as

um-prefetch. We report all performance as the normalized speedup compared to the sync

version.

Convolution Benchmarks

BLP achieves 1.67× speedup on 2D convolution on the NVLink2 node, which is 95% of the

best hand-tuned async performance. Fig. 4.8 shows normalized async speedup on exhaus-

tively enumerated hyper-parameter combinations (#streams, #chunks). While it achieves

speedup as high as 1.77×, poorly chosen hyper-parameters can reduce performance by up to
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Figure 4.8: Normalized Speedup of Asynchronous 2D Convolution (NVLink2)

83%. Colors in the figure indicate relative asynch performance to blp. Recall that sync splits

the persistent thread blocks into three partitions. On the NVLink2 node, we use 4 persistent

thread blocks to handle the data transfers for each direction and the other 72 thread blocks

handle the computation sub-tasks. In Fig. 4.8, the blue blocks indicate that async perform

worse than blp while red ones indicate it is faster, which occurs rarely. Since Fig. 4.9 shows

no red blocks, the speedup with blp (1.62) is higher than all async hyper-parameter settings

on the PCI-E node.

Results for 3D convolution are similar. BLP achieves 1.95× speedup, which is 95% of the

best tuned async version on the NVLink2 node and always outperforms it on the PCI-E node,

as shown in Fig. 4.10 and Fig. 4.11. When we enumerate all hyper-parameter combinations

(#streams, #chunks) to tune async performance, we achieve speed up as high as 2.05×. We

observe that blp provides a speedup of 1.07 over the best hand-tuned async settings on the

PCI-E node.
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Figure 4.10: Normalized Speedup of Asynchronous 3D Convolution (NVLink2)

GEMM

Fig. 4.12 shows GEMM performance. We again compare blp and async. We leverage the

block matrix multiplication algorithm such that shared memory improves performance, which

requires non-contiguous memory copies to pipeline the tasks. We use a 32X32 block size so

the default chunk size is 32 elements. So we can only vary one parameter, the #streams, to

tune async performance and compare it to blp. The speedup of async is limited to under 2%

on the NVLink2 node due to the huge bandwidth drop caused by using cudaMemcpy2d() for
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Figure 4.11: Normalized Speedup of Asynchronous 3D Convolution (PCI-E)

non-contiguous memory copy. Our prototype provides about 5% stable speedup over sync.

On the PCI-E node, the speedup increases because the ratio of the data transfer and kernel

computation is larger, which increases the benefit of pipelining. Moreover, the bandwidth

drop caused by cudaMempcy2d() is also limited by PCI-E bandwidth. In this case, our

prototype still outperforms the best hand-tuned async version by about 4%.

2-D Finite Different Time Domain Kernel

The structure of the 2D-FDTD task dependencies leads us to a separate bandwidth test that

reads three input arrays and writes one output array slice by slice to guide data movement

choices. We consider two implementations. One assigns a thread block to each array, which

is our original memory copy method. The other, Interleaved, assigns each thread to handle

one index of all arrays simultaneously.

Fig. 4.13 shows the Interleaved access bandwidth as we vary the number of GPU threads. For

the NVLink2 node, Interleaved requires at least 5 thread blocks to achieve peak bandwidth.

Fig. 4.5 shows that if we assign one thread block to handle each input array, three thread

blocks already achieve the peak bandwidth. So, blp on the NVLink2 node uses one thread
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Figure 4.12: Normalized Speedup of GEMM

block to handle each input array. However, on the PCI-E node, Interleaved requires only

two thread blocks to achieve peak bandwidth, so we use that approach for blp on that node.

Fig. 4.14 shows the 2-D FDTD async performance on the NVLink2 node. Exhaustive tuning

can achieve as high as 1.26× speedup. With blp, we observe 1.34× speedup, which is a 6.3%

improvement over the best hand-tuned async result. Fig. 4.15 shows async performance

on the PCI-E node. The best tuned case yields 1.24× speedup while blp achieves 1.31×

speedup, a 5.6% improvement.

Matrix Transpose and Vector Multiplication

Fig. 4.16 shows the matrix transpose and vector multiplication async performance on the

NVLink2 node. Exhaustive tuning can achieve as high as 1.14× speedup while blp achieves

1.21× speedup, which is a 6.1% improvement over the best hand-tuned async result. Fig. 4.17
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Figure 4.13: Memory Bandwidth of Interleaved Access

shows async performance on the PCI-E node, where blp achieves 1.13× speedup, an 8.6%

improvement over the best tuned async performance.

4.3.6 Performance with Larger Datasets

Our previous results use the default Polybench datasets, as shown in Table 4.2, which shows

the GPU memory usage as measured by nvidia-smi. We now increase the dataset sizes.

Fig. 4.18 and Fig. 4.19 show the speedups with varied dataset sizes. The results of the

medium datasets are consistent with the default datasets. For medium datasets, BLP can

provide 0.95× to 1.14× speedup over the best tuned async version on the NVLink2 node.

We also see a speedup of 0.98× to 1.1× speedup on the PCI-E node.

Because BLP uses flag updates to trigger tasks, we can track the data blocks based on these

flags. With additional index mapping, BLP can support GPU memory over-subscription by

mapping large host arrays to smaller device memory buffers. To evaluate BLP in this mode,
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Figure 4.14: Normalized Speedup of Asynchronous 2D FDTD (NVLink2)
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Figure 4.15: Normalized Speedup of Asynchronous 2D FDTD (PCI-E)

we use two benchmarks, 2D convolution and matrix transpose and vector multiplication,

with datasets that exceed V100 GPU memory (16GB). We extend BLP with additional flag

handling and buffer index mapping. Because the dataset exceeds the V100 GPU memory, we

cannot use the sync and async versions. With BLP, the flags are allocated to label the data

block use time. Based on the data dependency topology, before execution, we can calculate

how many times the data are used. We initialize a flag with this number after the host-

to-device memory copy and decrement the flag each time it is used with atomic operations.

When the flag becomes zero, other data copy thread blocks can overwrite the data block

to reuse the buffer space. We currently use round-robin order mapping, but other orders



4.3. Experimental Evaluation 73

0.150.270.480.711
0.280.50.81.05
0.380.730.89
0.550.991.1
0.610.87
0.680.92
0.721.04
0.971.14

1
2
3
4
5
6
7
8

1 2 4 8 16
#chunks

#s
tre
am

s

0.00

0.50

1.00
1.21

1.50
Speedup

blp

Figure 4.16: Normalized Speedup of Asynchronous ATAX (NVLink2)
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Figure 4.17: Normalized Speedup of Asynchronous ATAX (PCI-E)

can be supported. The buffer size could also be varied. We compare this approach to the

latest update of UM on Volta GPUs, which supports GPU page faults and, thus, supports

memory over-subscription. We implemented the BLP buffer version and compare it to UM

with prefetching optimizations.

Table 4.3 shows the GPU execution time for 2D convolution and matrix transpose and vector

multiplication the NVLink2 and PCI-E nodes. For 2D convolution, BLP achieves 1.89× and

1.63× speedup over UM with prefetching on the NVLink2 and PCI-E nodes. For matrix

transpose and vector multiplication, BLP achieves 4.55× speedup on the PCI-E node. We

observe a huge performance degradation for the UM version on the NVLink2 node, which
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Table 4.2: Dataset GPU Memory Usage
Dataset GPU Memory Usage(GB)
2DCONV_default 0.60
3DCONV_default 0.56
GEMM_default 0.30
FD2D_default 0.51
ATAX_default 1.30
2DCONV_medium 4.50
3DCONV_medium 4.40
FD2D_medium 4.42
ATAX_medium 4.50

Table 4.3: GPU Execution Time (sec) when Data Set Exceeds GPU Memory
2dconv_nvlink 2dconv_pci-e atax_nvlink atax_pci-e

blp 0.22 0.90 1.60 1.78
UM 0.41 1.47 266.00 8.10

leads to BLP achieving nearly 166× speedup. Fig. 4.20 shows the GPU memory usage

for these two versions. We can observe that using BLP with buffer mapping reduces GPU

memory usage by 86% and 75% for the 2D convolution benchmark and matrix transpose

and vector multiplication, respectively.

Since the 2D convolution performance is linear, we can predict the theoretical performance

of the sync version, which shows that BLP provides about 1.3× speedup over the theoretical

sync version. However, UM with prefetching only provides about 0.68× the theoretical sync

performance. Perhaps UM prefetching would improve with different hyper-parameters but

its out-of-the-box performance is disappointing.

4.3.7 Static vs. Dynamic Task Scheduling

In the previous experiments, our BLP approach uses static task partitioning. The GPU

thread blocks are partitioned into thread groups to handle host-to-device memory copies,

main computation, and device-to-host memory copies. However, this static partition may not
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fully utilize the resource, which may lead to load balance issues. Thus, we also implemented a

preliminary version using dynamic thread block scheduling, which we denote as blp-dynamic.

We first identify the data dependencies for each compute thread block. We then group them

and assign a task ID for each group. After launching a persistent kernel, each thread block

obtains its corresponding task ID using atomic operations, which determines whether it

performs memory operations or computation.

Fig. 4.21 shows the normalized performance of matrix transpose and vector multiplication

(ATAX) on the NVLink2 and PCI-E nodes using the default and medium data sets. Overall,

we observe performance degradation for blp-dynamic. It only achieves 0.75× to 0.93× the

performance of the sync version, which appears to be due to using too many thread blocks to

copy data. In the previous experiments, BLP used only four thread blocks on the NVLink2

node and only one thread block on the PCI-E node for memory operations. We observe

performance degradation using more thread blocks. Because of the limited bandwidth, these

thread blocks compete to access memory and could instead be more productively used for
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Figure 4.19: Overall Normalized Speedup (PCI-E)

computation. Our bandwidth experiments show that memory copy bandwidth with direct

access is limited regardless of the total number of GPU threads. Thus, we can calculate the

optimal number of thread blocks for data movement based on a system-wise bandwidth test.

This choice avoids dynamic overhead and contention with more thread blocks while ensuring

enough thread blocks perform memory operations.

4.3.8 Summary and Discussion

With cooperative thread groups, the number of thread blocks may exceed the number of

SMs on the GPU. These thread blocks will execute concurrently. So we increase the number

of thread blocks from 80 to 160 and observe about 2% average performance degradation

for BLP. Our experiments show that we achieve peak data transfer bandwidth with four

(NVLink2) or two (PCI-E) thread blocks for each direction, which is only 5% to 10% of

the thread blocks without over-subscription. In general, we can determine the number of
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thread blocks required to achieve peak bandwidth for all applications on a given node with a

simple experiment. As long as we require few thread blocks, using over-subscription will not

improve data transfer bandwidth, but will use more compute resources, which is not a good

choice. However, memory-latency-bound kernels, which are generally well-suited to GPUs,

might benefit from the additional thread blocks.

Our approach focuses on overlapping device computation and data transfers between the host

and device. We show that direct access and flag-based dependence tracking support an easy-

to-use and efficient approach for both contiguous and non-contiguous data transfers. Our

block-level pipelining approach can outperform the best hand-tuned traditional overlapping

technique, which is based on GPU streams. With our approach, the CPU launches a single

kernel and the GPU performs all data transfer and dependence checking. Our method also

provides a better way to handle callbacks generated by the compute kernel (e.g., some data
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Figure 4.21: Performance Evaluation of Dynamic Task Scheduling for BLP

transfers are only conditionally required). Although we use some thread blocks to handle

data transfers, CUDA cooperative thread groups could support more GPU thread blocks for

latency-bound kernels. However, our results show that that support is often unnecessary.

Our BLP approach launches one kernel that handles the data transfer, computation, and

task dependencies. The user does not need to split the task into multiple sub-tasks with

extra API calls, which may cause significant launch overhead. Fig. 4.8 and Fig. 4.15 show

that async with only 1 GPU stream suffers significant performance degradations as we split

the task to more chunks. We see 50% to 90% performance slowdown with 1024 chunks. Even

with 32 to 128 chunks, performance decreases 10% to 20%. Even though we still achieve

good speedup from pipelining after mapping these sub-tasks to different GPU streams, the

increased launch overhead consumed part of the benefit of pipelining. As the task may

become large and complex, launch overhead may significantly increase and overwhelm the

benefit of pipelining and impact the performance of unrelated CPU work. Our approach
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removes the extra launch overhead while direct access can provide equal or even better

bandwidth than CUDA memory copy APIs issued by the CPU, especially for non-contiguous

accesses. Further, our approach enables overlap of finer-grained computation. With GPU

thread blocks, we can control the order of the memory block copies. As soon as the data

blocks are ready, we can start the corresponding computation tasks. CUDA memory copy

APIs do not guarantee the memory copy order for large data blocks while breaking the copies

into chunks decreases bandwidth significantly.

4.4 Conclusion

This work presents our block-level data pipelining (BLP) approach for GPUs. The GPU

handles all tasks, including data transfers, computation, and tracking of task dependencies.

The CPU only launches one kernel. We leveraged multiple techniques to optimize BLP.

Our results show that, with no manual tuning, our approach provides performance compa-

rable to the best hand-tuned manual pipelining on Nvidia V100 GPUs. With proper index

mapping, our flag mechanism also significantly reduces GPU memory usage while delivering

competitive performance, enabling BLP to support GPU memory over-subscription. We also

demonstrated that direct memory access can provide equal or higher bandwidth than CUDA

memory copy APIs, especially when dealing with non-contiguous data. We also designed an

OpenMP extension that supports our approach, which allows developers to pipeline data

transfers without major code refactoring.



Chapter 5

IterML: Iterative Machine Learning

for Intelligent Parameter Pruning and

Tuning in Graphics Processing Units

5.1 Introduction

Heterogeneous computing with accelerators, particularly GPUs, has become increasingly

prominent in the Top500 List [25] as well as in embedded high-performance computing (HPC)

systems, like those found in smartphones and smart cars. In such systems, the host CPU

manages the execution context while computation is offloaded to an accelerator. Leveraging

accelerators not only enables high performance, but it also improves energy efficiency [54].

However, extracting the optimal performance and energy efficiency from these accelerators

can be extraordinarily difficult for a software developer [35]. Thus, developers need simpler

abstractions and underlying mechanisms to program these accelerators [21, 49] as well as

significant domain knowledge to tune the performance of the code on these accelerators [33,

37].

Because heterogeneous architectures with accelerators expose many software and hardware

parameters for developers to tune to achieve optimal performance, the different combinations

of parameters result in an enormous search space, making it infeasible for developers to test

80
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each combination of parameters exhaustively. Furthermore, choosing the wrong combination

of parameters can result in severe performance degradation. As such, this paper presents

IterML, our iterative parameter pruning and tuning approach with machine learning (ML).

During each iteration, we use ML models to assist with the pruning (and tuning) of the

search space by their predicted performance [22, 23].

In all, our research contributions are as follows:

• The design of an iterative machine-learning (IterML) approach that automatically

determines nearly optimal parameter settings for the GPU thread-block size to achieve

high performance.

• An empirical study that illustrates how our IterML approach consistently delivers bet-

ter search speed over non-iterative ML methods and achieves nearly optimal perfor-

mance while sampling only 1.5% of the search space on average and, in turn, reducing

the search effort by 40%-80%. In addition, when compared to the PGI 17.5 com-

piler, IterML also delivers about a 50% improvement in performance by automatically

identifying a nearly optimal GPU thread-block size.

5.1.1 Motivating Example

Figure 5.1 shows a performance heatmap of our lid-driven cavity (LDC) code,1 where the

GPU thread-block size is varied (i.e., blockDim.x × blockDim.y ≤ 512) when running on

an Nvidia V100 GPU. The x- and y-dimensions are limited to 64, and each thread block

contains at most 512 threads. We observe that the performance varies significantly across

different thread-block sizes. At the ideal thread-block size of 4x32 for this code on this GPU,

the V100 achieves 893.3 GFLOPS. On the other hand, the performance can be 33% worse
1A well-known computational fluid dynamics (CFD) problem for viscous incompressible fluid flow.
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Figure 5.1: Performance of a Lid-Driven Cavity Code with Varying GPU Thread-Block Size
on an Nvidia V100 GPU

at 597.6 GFLOPS if the default thread-block size of the PGI 17.5 OpenACC compiler for

this LDC code is chosen, namely 64x4.

This 64x4 thread-block size only delivers approximately 67% of the optimal performance.

In addition, exhaustively generating the performance heatmap in Figure 5.1 is tedious and

time-consuming.

Figure 5.2 shows the performance heatmap of a two-dimensional (2D) convolution bench-

mark. This heat-map looks significantly different from that in Figure 5.1. Thus, different
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Figure 5.2: Performance of the 2D Convolution Benchmark with Varying GPU Thread-Block
Size on an Nvidia V100 GPU

codes on the same GPU can produce widely different performance characteristics, relative

to GPU thread-block size.

The GPU thread-block size is just one parameter that can be tuned. Many other potential

parameters that could be tuned, e.g., GPU block size, degree of loop unrolling, and register

usage limitation. These assortment of parameters massively increase the search space, mak-

ing it infeasible to exhaustively enumerate every combination. Thus, we need a simpler and

more efficient approach to identify ideal parameter settings for (near-)optimal performance.
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5.2 Approach and Design

Here we articulate the approach and design of our iterative machine learning (IterML) [22,

23], including the selection of the parameter search space, the iterative machine-learning

(pruning) algorithm itself, and the regression models to predict the rest of the search space.

5.2.1 Choosing the Parameter Search Space

For microbenchmarks or libraries, a set of hyperparameters that define the dimensions of

the tuning search space must be identified. The hyperparameters may (1) relate to software

(e.g., input partition chunks and thread count) or hardware (e.g., active core count, GPU

thread-block size, and compiler optimization options) and (2) be either binary in nature

(e.g., turning on/off a compiler flag) or multi-valued across a range (e.g., thread-block size

or number of partition chunks). Our iterative machine-learning (IterML) approach builds

knowledge based on machine-learning (ML) models as it uses samples from one iteration to

then look for potentially better samples in subsequent iterations.

5.2.2 Iterative Machine-Learning (IterML) Algorithm for Pruning

and Tuning

In order to reduce (i.e., to prune and to tune) the search space quickly and effectively, we

propose an iterative machine-learning (IterML) algorithm, as shown in Algorithm 5.3.

As inputs, the algorithm takes the search space D, specified by multiple design parameters

(e.g., thread-block dimension); a pick ratio, which is the sample ratio that needs to be

tested in each iteration; a cut ratio, which sets the ratio of the space to be pruned in each

iteration; and a model, which is the regression model used for prediction. Once the pick
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ratio is selected, the number of samples that we pick to test in each iteration stays constant.

For each iteration, we first apply the regression model to the samples. We then predict the

performance of the residual search space and drop the lowest performing ones by the cut

ratio, e.g., 50%. This process repeats until a stopping criteria is met. For example, if the

cut ratio is 50%, then after every iteration, the search space is halved, which, in turn, means

that the number of iterations is log2(size of search space). We may adjust the cut ratio based

on the size of the original search space.

Figure 5.3: Iterative Machine-Learning Algorithm (IterML)

Figure 5.4 shows basic workflows for non-iterative ML and our iterative ML (IterML) with

three iterations. We observe that a small portion of samples are randomly chosen in itera-

tion 0 (i.e., iter0). Then the model is generated to use as a guide for subsequent iterations

for data point selection in the residual search space. The corresponding performance of

these data points are measured and then utilized to further build models for next iterations.
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Figure 5.4: Comparison of Non-Iterative and Iterative Machine Learning

Finally, the best data point should be selected as the output result.

5.2.3 Regression Models

Based on our iterative machine-learning (IterML) approach [22, 23], we need to build a model

during each iteration to predict the rest of the search space. We study and explore the use

of the following five popular ML models to support our IterML algorithm.

Classification and Regression Trees (CART): Decision trees can be represented as a binary

tree, where each node represents a single input variable (x) and a split point on that variable

(assuming the variable is numeric). CART is typically fast to train and very fast to make

predictions. It requires no data pre-processing and can be accurate for a broad range of

problems.

K-Nearest Neighbors (KNN): Predictions are made for a new data point by searching through
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the entire training set for the K most similar instances (i.e., neighbors) and summarizing

the output variable for those K instances. We use the mean output variable as the result for

regression problems.

Support Vector Machine (SVM) Regression: SVMs use a hyperplane to split the input vari-

able space. The support vector regression (SVR) uses the same principles as the SVM for

classification, with only a few minor differences. In the case of regression, a margin of toler-

ance (i.e., ε) is set in approximation to the SVM, which would have already requested from

the problem.

Random Forest (RF): This type of ensemble ML algorithm is called bootstrap aggregation

or bagging. Multiple samples of training data are taken; models are then built for each

data sample. When a prediction for new data needs to be made, each model makes a

prediction, and the predictions are averaged to give a better estimate of the true output

value. Combining predictions from these models results in a better estimate of the true

underlying output value.

Multilayer Perceptron (MLP):

This model is a neural network that connects multiple layers in a directed graph, which

means that the signal path through the nodes only goes one direction. Each node, apart

from the input nodes, has a nonlinear activation function. MLP utilizes a supervised learning

technique called back propagation for training, which has drawn significant interest recently

due to its success in deep learning.
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5.3 Experiments

To evaluate our iterative machine-learning (IterML) approach, we leverage different ML

models while pruning the search space. To demonstrate the efficacy of our approach, we

focus on the GPU thread-block size as the hyperparameter of interest. The GPU thread block

is typically composed of an X-dimension and Y-dimension. Each dimension ranges between

1 and 1024, inclusive. The product of the two dimensions, which is the thread number of

each GPU thread block, is also limited by 1024. To identify the GPU thread-block size

that delivers the best (optimal) performance as a reference point to which to compare, we

exhaustively test the performance of different benchmarks using all possible combinations

of GPU thread-block size, a process that takes days to complete. We then demonstrate the

speed and efficacy of our IterML pruning and tuning approach on the GPU thread-block

size and evaluate its subsequent performance relative to the optimal performance.

5.3.1 Benchmarks Studied

As shown in Table 5.1, we use nine (9) GPU kernels from the Polybench suite [64], an

OpenACC kernel from the EPCC benchmark suite [41], and an OpenACC kernel from our

lid-driven cavity (LDC) code to conduct our experiments. The kernels use various GPU

functional units and exhibit diverse behavior. For CUDA benchmarks, relevant design pa-

rameters are substituted by C macros so that our design can easily modify and recompile

them. For the OpenACC benchmarks, we pass variables using the compiler flags to modify

the OpenACC pragma.

Each kernel is executed 10 times and the average execution time reported. Only the GPU

time of each kernel execution is measured and used, thus excluding any data transfer over-

head. Because we think the thread block size only affects kernel execution time on GPU.
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Table 5.1: Benchmarks Used

Benchmark Description
2dconv 2-D convolution
3dconv 3-D convolution
2mm 2 matrix multiplications
3mm 3 matrix multiplications
gemm Matrix-multiply C=alpha.A.B+beta.C
gesummv Scalar, vector and matrix multiplication
mvt Matrix vector product and transpose
syr2k Symmetric rank-2k operations
syrk Symmetric rank-k operations
epcc EPCC 27Stencil benchmark
ldc Lid-driven cavity code

5.3.2 Hardware Platform

We conduct our experiments on two Nvidia GPUs: Tesla P100 and Tesla V100. Our P100-

based node contains two 2.4-GHz Intel E5-2680v4 CPUs for a total of 28 CPU cores per

node. The V100 node pairs two 3.0-GHz Intel Skylake Xeon Gold CPUs for a total of 24

cores per node, In addition, there is 384 GB of memory and two Nvidia V100 (“Volta”)

GPUs per node. Both V100 and P100 GPUs are connected to CPUs using PCI-E 3.0.

5.3.3 Dataset Analysis

We measure the performance of 11 benchmarks while varying the GPU thread-block size.

We then generate a performance heatmap for each benchmark and conduct a preliminary

data analysis. We find that the performance distribution of these benchmarks typically fall

into two major categories: clustered or banded.

Clustered. Most of these benchmarks achieve higher performance when a specific GPU

thread-block dimension gets higher (or lower) values, i.e., “clustered” high performance. As

shown in Figure 5.2 and Figure 5.5, we observe better performance with higher blockX or
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Figure 5.5: Performance of the EPCC Benchmark with Varying GPU Thread-Block Size on
an Nvidia V100 GPU

blockY, respectively. In Figure 5.6, we see performance improvement with small blockY

values.

Figure 5.7 shows the SYR2K benchmark on the V100 GPU. The highest-performing configu-

rations are those with a blockX equal to eight (8). The performance then degrades gradually

as one moves away from the blockX = 8 line. When the performance of a benchmark changes

gradually along one axis (e.g., blockX or blockY) like this, we refer it as a “1D Cluster.”

Similarly, other benchmarks deliver high performance when the product of blockX and blockY
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Figure 5.6: Performance of the MVT Benchmark with Varying GPU Thread-Block Size on
an Nvidia P100 GPU

reaches a specific number or range, meaning that the total number of GPU threads within

a thread block should be limited in order to achieve the best performance. Visually, this

translates into a “locus” of high performance, where performance degrades as thread-block

size moves away from the “center of the locus.” For example, as shown in Figure 5.1, the

best-performing thread-block configurations occur when the total number of GPU threads

in a thread block is about 128.

Finally, Figure 5.8 shows that the peak performance for the GESUMMV benchmark on a

V100 GPU occurs near the lower-left corner of the heatmap, which means that many GPU
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Figure 5.7: Performance of the SYR2K Benchmark with Varying GPU Thread-Block Size
on an Nvidia V100 GPU

thread blocks with a small number of GPU threads in each thread block delivers the best

performance.

Banded. The banded performance distribution occurs for GPU programs that deliver peak

performance when a specific GPU thread-block dimension reaches a specific number or mul-

tiple of it. As the thread-block size moves away from these specific numbers, performance

degrades significantly. As shown in Figure 5.9 and Figure 5.10, the 2MM and GEMM

benchmarks deliver the best performance only when blockX is a multiple of 16 and 8, re-

spectively. For other values of blockX, the performance achieved is always below 60% of
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Figure 5.8: Performance of the GESUMMV Benchmark with Varying GPU Thread-Block
Size on an Nvidia V100 GPU

the performance achieved when blockX is a multiple of 16 and 8 for the 2MM and GEMM

benchmarks, respectively.

Using the performance classifications of “clustered” and “banded,” Table 5.2 shows the

overall distribution of application performance when varying the GPU thread-block size. In-

terestingly, the performance distribution across the P100 GPU and V100 GPU is consistent.

As a consequence, this feature might be useful as a guideline for further experimental work

on future accelerators.
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Figure 5.9: Performance of the 2MM Benchmark with Varying GPU Thread-Block Size on
an Nvidia P100 GPU

5.3.4 Pruning Procedure

We evaluate our iterative pruning approach [22, 23] after we collect all performance data of

the 10 benchmarks and applications by varying the GPU thread-block size. The pruning ap-

proach is implemented in Python with the Scikit-learn machine learning (ML) libraries [62].

We select five (5) commonly used models to predict the performance based on previous

samples; these models include CART, KNN, SVM, RF, and MLP, as presented in §5.2.3.

Because the thread-block search space is relatively modest, we use 0.5 as the cut ratio, which
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Figure 5.10: Performance of the GEMM Benchmark with Varying GPU Thread-Block Size
on an Nvidia V100 GPU

means that IterML drops 50% of the search space that has low predicted performance in

each iteration. We can tune this number depending on the scale of the search space. Each

time, we pick a portion of the sample based on the pick ratio and keep this sample number

consistent until end. Due to the random selection of the samples, we repeat this process

at least 100 times, thus drawing a distribution of the results using our iterative pruning

approach. We then compare the result of different models based on this distribution. We

normalize the samples to the result of the baseline, which entirely randomly selected the

samples.
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Table 5.2: Distribution of Application Benchmark Performance

P100 V100

Clustered

2dconv
epcc
3dconv
ldc
gesummv
mvt syrk
syr2k

2dconv
epcc
3dconv
ldc
gesummv
mvt syrk
syr2k

Banded
2mm
3mm
gemm

2mm
3mm
gemm

5.3.5 Case Studies

Here we present case studies to show how the selection of the GPU thread-block size affects

performance.

How does the manual selection of the thread-block size by an experienced developer impact

performance? In real-world GPU coding, developers set the GPU thread-block size based

on their experience (rather than relying on a default setting chosen by the compiler). Typi-

cally, the chosen block sizes are 64, 128, and 256. Figures 5.11 and 5.12 show the normalized

performance of benchmarks, where the GPU thread-block size is set by experienced devel-

opers, relative to the optimal performance. We observe that none of the manually chosen

thread-block sizes deliver consistently high performance across all benchmarks. In fact, some

settings achieve as low as 20% of the optimal performance across the benchmarks.

Does a universal thread-block size “rule them all”? Figures 5.13 and 5.14 show the mini-

mum normalized performance across all benchmarks tested on the V100 and P100 GPUs,

respectively. For brevity, we only show the cases where the total number of threads ≤ 512
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Figure 5.11: Normalized Performance Across Varying Thread-Block Sizes on the P100 GPU
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Figure 5.12: Normalized Performance Across Varying Thread-Block Sizes on the V100 GPU

and where each dimension ≤ 128. (Note: The omitted parts of the graphs show similar

results.) Overall, we observe that all blocks in the heatmap achieve less than 30% of optimal

performance across the tested application benchmarks. Thus, no such universal thread-block

size can provide high performance across applications.

Is the ideal thread-block size for one device good enough for other devices with similar archi-

tectures? We first identify the ideal thread-block size that achieves the best performance on

one device (e.g., P100) and then see if that thread-block size is also good enough for another

device (e.g., V100) with a similar architecture.

Table 5.3 shows how the ideal thread-block size on the P100 GPU performs on the V100 GPU

while Table 5.4 shows the converse. For some benchmarks (e.g., 2mm), the ideal block size

on the P100 delivers 99% of the optimal performance on the V100. However, a significant
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Figure 5.13: Minimum Performance Heatmap Across All Benchmarks on V100 GPU

number of the tested benchmarks (e.g., SYRK) achieve as little as 44%-47% of the optimal

performance. Thus, the ideal thread-block size for one device may not be good enough for

other devices with similar architectures.

5.4 Evaluation

We evaluate the total sample ratio needed to achieve high performance using our iterative

machine-learning (ML) approach for pruning and tuning. We vary the ML models used for
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Figure 5.14: Minimum Performance Heatmap Across All Benchmarks on P100 GPU

prediction and use random search sampling as our baseline. To quantify the goodness of the

performance compared to the optimal, we utilize the following two standards:

1. Standard 1: The sample ratio required to achieve a median that is higher than 95%

of optimal performance. It means that the result is expected to be at least better than

95% of the optimal performance on average.

2. Standard 2: The sample ratio required to achieve 5-percentile higher than 95% of the

optimal performance. Standard 2 is a more difficult standard to achieve than Standard

1. It means that there is at least a 95% probability to get a result that is better than
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Table 5.3: P100 Ideal Thread-block Size on V100

Benchmark Thread-X Thread-Y Performance
2dconv 512 2 0.974
3dconv 96 2 0.946
2mm 32 32 0.99
3mm 16 48 0.76
gemm 16 48 0.775
gesummv 16 1 0.868
mvt 14 1 0.903
syr2k 16 36 0.751
syrk 32 24 0.473
epcc 1 128 0.968
ldc 16 6 0.954

Table 5.4: V100 Ideal Thread-block Size on P100

Benchmark Thread-X Thread-Y Performance
2dconv 64 5 0.941
3dconv 88 10 0.846
2mm 64 16 0.994
3mm 32 26 0.938
gemm 32 26 0.938
gesummv 6 5 0.675
mvt 8 1 0.883
syr2k 8 124 0.601
syrk 8 124 0.447
epcc 8 64 0.778
ldc 4 32 0.945

95% of the optimal performance.

Figure 5.15 shows a box-and-whisker plot for the performance of the SYR2K benchmark on a

V100 GPU. The performance is tuned by IterML using the random forest model and varying

the total sample ratio used. Each bar in the box plot consists of at least 500 data points.

The middle line of each bar represents the median (for Standard 1); the lower-bound labels

the 5th percentile (for Standard 2). We only show the first three iterations in this plot as the

data set is relatively small in this case. The red color represents the baseline (non-iterative)
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Figure 5.15: Performance of SYR2K Benchmark with Random Forest (RF) and Varying the
Number of Iterations (see legend) Using IterML and the Total Sample Ratio (X-axis) on the
V100 GPU

results, which is based on the random selection of samples. The figure clearly shows that,

with the same number of total samples used, those using more iterations generally produce

better performance. Thus, our IterML approach performs better by using fewer samples per

iteration but with more iterations. However, the caveat is that some ML models may require

a certain minimum number of samples (per iteration) in order to be accurate for prediction.

Figure 5.15 also shows that IterML with three iterations (i.e., light blue-grey bars) reaches

Standard 1 with a total sample ratio of only 0.004 while the traditional, non-iterative, baseline

approach (i.e., red bars) requires a total sample ratio of at least 0.01, an order of magnitude

more samples than IterML, to reach the same standard. IterML achieves Standard 2 by

using three iterations of 0.004 (0.4%) samples for a total of 0.012 (1.2%) samples, as shown

by the light blue-grey bars. We then compare the IterML results to (1) the median and (2)
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Figure 5.16: Normalized Sample Ratio to Achieve Standard 1 on the V100 GPU (Lower is
Better.)
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Figure 5.17: Normalized Sample Ratio to Achieve Standard 2 on the V100 GPU (Lower is
Better.)

the 5th-percentile bar to 0.95 and collect the sample ratio required by each model to achieve

Standard 1 or Standard 2, respectively.

Figures 5.16, 5.17, 5.18, and 5.19 show the normalized total samples to reach Standard 1

or Standard 2 on the V100 and P100 GPUs, respectively. Depending on the performance

distribution of different benchmarks, we need different sample ratios to achieve high per-

formance. For comparison purposes, we normalize the number of the samples required by

different models to the baseline (denoted as the “non” model, short for non-iterative ML

model).

Figure 5.18 shows that the CART and RF models only require 0.2 (or 20%) of the samples

compared to the baseline. The worst case is the 3MM benchmark, which takes approximately
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Figure 5.18: Normalized Sample Ratio to Achieve Standard 1 on the P100 GPU (Lower is
Better.)
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Figure 5.19: Normalized Sample Ratio to Achieve Standard 2 on the P100 GPU (Lower is
Better.)

0.6 (or 60%) of the samples while using the RF model. Overall, in most cases, using our

iterative machine-learning (IterML) approach saves 40% to 80% search effort when choosing

the best model.

We also observe that the performance of SVM and MLP, respectively, are not stable. Some-

times these two models perform even worse than the baseline, especially when the sample

size is relatively small. We conjecture that these two models require a certain amount of

data to be effective.

On the other hand, the other three models (CART, RF, and KNN) always require fewer

samples to achieve high performance. We note that we used a cut ratio of 50% by default

in this case because the search space (i.e., GPU thread-block size) is relatively small. When
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Figure 5.20: Comparison of Machine-Learning (ML) Models for IterML, Relative to the
Normalized Sample Ratio (Lower is better.)

dealing with a larger search space, we may increase this value to achieve higher search

speed. However, this higher search speed could compromise the search quality; hence, there

is a tradeoff here, which we discuss in our future work.

Figure 5.20 shows the box plot of the overall average normalized sample required to achieve

Standard 1 and Standard 2 for different machine-learning (ML) models. The results are

normalized to the baseline, which exhaustively randomly chooses the parameter combinations

as samples. For the five popular ML models, random forest (RF) performs the best and

produces more stable results than all other models. Compared to the non-iterative approach

(baseline), it saves ∼ 40% to 80% required samples to achieve good performance. Overall,

it saves ∼60% required sample, which only requires ∼1.5% of the search space on average.

Previously, we categorized the benchmarks into two groups based on the performance distri-

bution. Figure 5.21 shows their average raw sample ratio to achieve Standard 1, which means
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Figure 5.21: Comparison of Benchmark Performance Distribution Group, Relative to the
Raw Sample Ratio to Achieve Standard 1 (Lower is Better)

the performance expectation is higher than 95% of the optimal. We only compare between

the non-iterative approach and our IterML with Random Forest model. We see that “The

Band” obviously requires a lot more samples to achieve good performance, which is around

3% on average. Our IterML approach can significantly reduce the sample ratio , which is

1.7% on average. For both groups, the IterML always provides more stable performance

than the non-iterative approach.

In conducting this empirical study on our iterative machine learning (IterML) algorithm and

comparing its performance to that of traditional non-iterative ML, we note that we used the
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default model functions provided by the scikit-learn library.

5.5 Conclusion

In this work, we presented our iterative pruning approach with machine learning models

(IterML) to auto-tune the performance of code running on accelerators, in particular, Nvidia

GPUs. In each iteration, we used machine-learning (ML) models to assist with pruning the

rest of the parameter search space. Specifically, we focused on auto-tuning the GPU thread-

block size.

Overall, our experimental results showed that IterML can significantly reduce the search

effort by 40% to 80% compared to the traditional non-iterative ML approach. We also

showed that the random forest (RF) model, in particular, better fits our IterML design than

other models like SVM or MLP.



Chapter 6

Conclusion and Future Work

6.1 Summary

Demand for extreme performance has been growing significantly in the last decades. We

have seen the computation power of top supercomputers increase by tens of billion times

during the last 40 years. We have also witnessed that companies are willing to develop

new hardware accelerators (e.g., GPUs, co-processors, FPGAs, and TPUs) to speed up a

specific category of applications. At the same time, we identify the following issues: How

can we easily port existing code to new hardware platforms? How can we extract the most

performance out of these new accelerators for different applications? How can we efficiently

leverage the high-bandwidth memory chips on the hardware while the big data can not fit

into it? How can we auto-tune the performance without much domain knowledge? This

dissertation handles the above issues by introducing more directive-based extensions to the

OpenMP standard in order to unify the API of accelerators (particularly GPUs) and to

provide better performance, programmability, and memory management.

First, we proposed a directive-based partitioning and pipelining extension for GPUs. We

noticed that developers and scientists are willing to keep their original C or Fortran code.

Compared to CUDA/OpenCL, OpenMP makes the procedure much easier without large

code refactoring and debugging. In light of the fact that OpenMP was originally intended

for a shared-memory programming model and “target” is new to OpenMP, we proposed

107
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associated clauses to improve pipelining efficiency. Our extension allows GPU programmers

to pipeline data transfers without major refactoring, thus automating overlap of computation

and communication. Further, mapping subsections of the host array to a device buffer can

reduce memory requirements and increase portability.

Secondly, we noticed that the previous pipelining implementation still has multiple potential

to be improved. First, the tasks are partitioned into multiple chunks, and these chunks are

bound to different GPU streams. The memory copy API calls and kernel launch overhead

have been magnified during this process. Secondly, we observed that the hyper-parameters

(e.g., block size, chunk size, and #streams) still significantly affect performance, which

makes tuning for optimal performance difficult. Finally, the CPU has to be involved during

these API launches. As we see the heterogeneity is increasing tremendously and we will see

more and more accelerators. This process will significantly increase the burden of the CPU.

Moreover, task order logic controls are handled by the CPU, which may also delay the whole

process because the information has to go through the network connection between CPU

and the accelerators. To solve this issue, we present our block-level data pipelining approach

for GPUs. The GPU handles all tasks, including data transfers, computation, and tracking

of task dependencies, while the CPU only needs to launch one kernel. We leverage multiple

techniques to optimize block-level data pipelining.

At the end, we found that the work focused on more enhanced programmability, performance,

and memory management. However, after successfully porting the code to accelerators, per-

formance hand-tuning is an important stage towards achieving high performance in specific

applications, which always creates a hard task for developers without domain knowledge

about accelerators. This dissertation then focused more on performance auto-tuning. We

presented an iterative pruning approach with machine learning models (IterML) to auto-tune

the performance of code running on accelerators, in particular, Nvidia GPUs. We noticed
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that most AI tasks use the iterative approach and the computation pattern actually does

not change during each iteration, only the data does. We then came up with IterML to

auto-tune the parameters as it runs iteratively, using as little samples as possible to achieve

relatively good performance.

6.2 Future Work

The dissertation focuses on proposing new directive-based extensions for accelerators to

provide better performance, programmability, and memory management. We have several

open research and engineering questions for future work.

6.2.1 Source-to-Source Translator

Current work focuses on the design, experiments, and evaluation. We proposed the extension

syntax, implemented the framework, and evaluated it with multiple benchmarks. The trans-

lation from traditional code with the extension to the real accelerated code still requires extra

source-to-source translator. This translator requires a lot of engineering work and depends

on the compiler and hardware. How we might accurately and efficiently translate the code

is still an open question for both research and engineering. A powerful code analysis engine

capable of deep analysis of code and dependencies could significantly simplify our proposed

extension. Potentially the compiler could determine the array definition information and

even the data dependencies. How to track the dependencies effectively and partition the

loops automatically is also a good research direction, which may significantly simplify the

extension and improve programmability.
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6.2.2 Inter-Node Pipelining

In our current work, the focus is on a single node with a single GPU or a single node with

multiple GPUs. In real-world applications or tasks, multiple nodes with Message Passing

Interface (MPI) are still required to achieve high performance. Most computational jobs

can not be partitioned to pure independent groups, which means communication between

nodes is required. How to overlap the communication with the computation efficiently is

still an open question in this area. Traditionally, MPI is the most popular way to handle

communication. However, the CPU has to be part of the process. While ”GPU Direct” [9]

or RDMA [81] improves this issue, the CPU still needs to be involved for a lot of API calls

and logic control. Moreover, developers without domain knowledge have challenging time to

program a multi-node accelerator code. As more and more new members are contributing

the development of accelerators, people really need an effective and easy-to-use abstraction

or unified API to program on these accelerators without much background knowledge.
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