
CS5604 (Information Retrieval) F2020

Front-end (FE) Team Project

Yusheng Cao Reza Mazloom Makanjuola Ogunleye

December 17, 2020

Instructed by Professor Edward A. Fox
Assisted by Satvik Chekuri and the
Digital Library Research Laboratory

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Abstract

With the demand and abundance of information increasing over the last two decades, gener-
ations of computer scientists are trying to improve the whole process of information searching,
retrieval, and storage. With the diversification of the information sources, users’ demand for
various requirements of the data has also changed drastically both in terms of usability and
performance. Due to the growth of the source material and requirements, correctly sorting,
filtering, and storing has given rise to many new challenges in the field. With the help of all four
other teams on this project, we are developing an information retrieval, analysis, and storage
system to retrieve data from Virginia Tech’s Electronic Thesis and Dissertation (ETD), Twit-
ter, and Web Page archives. We seek to provide an appropriate data research and management
tool to the users to access specific data. The system will also give certain users the authority
to manage and add more data to the system. This project’s deliverable will be combined with
four others to produce a system usable by Virginia Tech’s library system to manage, maintain,
and analyze these archives. This report attempts to introduce the system components and
design decisions regarding how it has been planned and implemented.

Our team has developed a front end web interface that is able to search, retrieve, and
manage three important content collection types: ETDs, tweets, and web pages. The interface
incorporates a simple hierarchical user permission system, providing different levels of access
to its users. In order to facilitate the workflow with other teams, we have containerized this
system and made it available on the Virginia Tech cloud server. The system also makes use
of a dynamic workflow system using a KnowledgeGraph and Apache Airflow, providing high
levels of functional extensibility to the system. This allows curators and researchers to use
containerised services for crawling, pre-processing, parsing, and indexing their custom corpora
and collections that are available to them in the system.

1

Contents

1 Overview 7

1.1 Project Introduction . 9

1.2 Management . 9

1.3 Problems and Challenges . 9

1.4 Improvements . 10

2 Literature Review 11

2.1 Base Design 2019 . 11

2.2 Information Retrieval System . 12

2.3 Collection of ETDs . 13

2.4 Collection of Tweets . 13

2.5 Elasticsearch . 14

2.6 React and ReactiveSearch . 14

2.7 Docker . 15

3 Requirements 15

3.1 Introduction . 15

3.2 Functionalities . 15

3.3 Performance . 15

3.4 User Support . 15

3.4.1 User Type . 16

3.4.2 User Manual . 17

4 Design 17

4.1 Application Structure . 17

4.2 Docker . 18

4.3 Front-end . 19

4.3.1 Homepage . 19

4.3.2 User Login and Register . 19

4.3.3 Curator page . 19

2

4.3.4 Administration page . 19

4.3.5 Modify User page . 20

4.3.6 Modify Index page . 20

4.3.7 Searching Page . 20

4.3.8 React and NodeJs . 20

4.4 Back-end . 20

4.4.1 Flask . 20

4.4.2 MySQL . 21

4.5 Dynamic Configurations and Environment Variables 22

4.6 Milestones . 22

4.7 Future work . 22

5 User Manual 23

5.1 Understanding the Homepage . 24

5.2 Minimal Login . 25

5.3 Main Login . 26

5.4 Register as a User . 26

5.5 User Management . 27

5.6 Index Management . 29

5.7 ETD search . 30

5.8 Tweet search . 31

5.9 Webpage Search . 32

5.10 User Manual for KnowledeGraph . 33

5.11 Curator User Manual . 34

6 Developer Manual 35

6.1 File Inventory . 35

6.2 Setting up the Database . 37

6.3 Setting up, Building, and Deploying Reactivesearch Components 37

6.4 Setting up Elasticsearch Locally . 37

6.4.1 Creating simple Elasticsearch indexes with JSON data 38

6.5 Workflow . 39

3

6.5.1 Elasticsearch Dataflow in ReactiveSearch . 39

6.5.1.1 DataSearch . 40

6.5.1.2 MultiList . 40

6.5.1.3 ResultList . 40

6.5.1.4 SingleRange . 40

6.6 Docker Image Creation and Deployment . 40

6.6.1 Preparations . 40

6.7 Container Deployment . 41

A Sample Data 43

A.1 ETD Sample Record . 43

A.2 TWT Sample Record . 46

A.3 WP Sample Record . 50

B Tasks and Responsibilities 50

4

List of Figures

1 Project High-level Overview . 8

2 FE Team 2019 Design . 12

3 Application Structure . 18

4 Homepage Screen Shot . 24

5 Minimal Login Screen Shot . 25

6 Login Screen Shot . 26

7 Register/Signup Screen Shot . 27

8 General Admin Page . 28

9 Edit user Page . 29

10 Edit index Page . 30

11 ETD Search Screen Shot . 31

12 Tweet Search Screen Shot . 32

13 Webpage Search Screen Shot . 33

14 Curation Services page . 34

15 General User Page . 35

16 Curator Page . 35

17 File and folder tree . 36

List of Tables

1 System Functionality . 16

2 Tasks and Responsibilities . 51

5

Acknowledgements

We would like to express our gratitude towards Dr. Edward A. Fox for his mentorship, in
addition to the help from the members of the Digital Library Research Laboratory at Virginia Tech
that helped us bring this project to fruition. We would also like to give our thanks to all other
participating teams in the CS5604 Fall 2020 class – INT, ETD, TWT, and WP – as well as the
Fall 2019 class’s FEK team that provided the foundation we worked on. We appreciate the two
agencies supporting this project:

• Institute of Museum and Library Services, through grant LG-37-19-0078-19

• National Science Foundation, through grants CMMI-1638207 and OAC-1835660

Finally we also appreciate all of the external help and feedback we received from the Virginia Tech
CS department, Library, IT staff, and the inter-university researchers that helped us along the way.

6

1 Overview

The Electronic Thesis and Dissertation (ETD), tweet, and webpage information retrieval and
analysis system is a web application that will provide full-text and metadata search of Virginia
Tech’s ETD, Twitter posts, and webpage archives. Aside from the basic search, result display,
ranking and curation of content collections, used by researchers, the system will also provide an
internal logging system for further analysis.

Our team is in charge of developing a usable web-based front-end for all potential users, creating
an opportunity to interact with the exploration and analysis of three datasets: the archived ETD
dataset, tweets from Twitter, and indexed web pages. The major task for our team is using
Flask and other GUI applications to visualize the data provided from the three content teams in
addition to providing client-side filtering. The basic UI would be similar to the general search
engine interface. The engine requires the user to choose which database they want to access and to
then input their search term(s). The UI would then show the resulting data based on the feedback
from the analysis and indexing back-end developed by other teams.

The FE Team will make use of the previous FEK team’s project as a foundation, update the
ETD processing, and add new features to support the tweets and web pages. In addition to the
base functionalities, we also support multi-access user login as well as faceted search, and provide
functionality accordingly (Figure 1).

During the IR1 (Interim Report 1) period, we have thoroughly analyzed all the code left from
the previous project. We researched all the tools and APIs we are going to work on, and we used
some sample data from other teams to create a prototype.

By the end of the IR2 period, we had built a working front-end prototype which is able to search
metadata. By analyzing and modifying the given sample data from the TWT and ETD teams, we
populated and used a local Elasticsearch server to prototype the entire workflow. Most of the
data was clean but some modifications were necessary such as adding indices for widely used fields,
and some formating problems that required fixing before our local Elasticsearch server accepted the
data. Then we used the existing Reactivesearch UI tools to create a working Elasticsearch front-end
that uses the modified sample ETD and Twitter data.

During IR3, we transported our local workflow to a container-based cluster. The first step was
to create a Docker image for the project and connect the current project to the class Elasticsearch
server. We improved the result UI for the tweets and incorporated a new page for the web page
data. We made some improvements to the search filter, to be further improved based on the content
teams’ feedback. We linked the UI login mechanism to the same cluster back-end.

In the final phase, we improved the login mechanism and added a number of internal admin
management features. On the user management page, any admin can view and modify a user’s
information, and on the index management page, an admin or curator can view and edit access
limitations to individual Elasticsearch indices, and grant special privileges or set limitations for
each individual user.

We have added and improved curation features. In certain pages, we assigned access limits to
different users, where some functions will only be accessible by certain users. For instance, there are
some curation specific tasks that can only be accessed when the system detects the user is logged

7

in as a curator.

We have also added KnowledgeGraph functionalities. A curator services page with dynamic
input capabilities has been created. The system has been improved to connect to the Ceph file
system to allow file downloads/uploads. Airflow connections have also been integrated to run the
content teams’ services and to display/provide results.

Project High-level Overview

Figure 1: High level view of all of the components from the Information Retrieval Project from
the Fall2020 CS5604. This shows the connection between the front end and the analysis back-end
which provides APIs to Elasticsearch and the KnowledgeGraph after the raw corpus of each one is
analyzed. This image was designed by the class moderators.

8

1.1 Project Introduction

The full-text search project includes a web application that provides metadata and full-text
search for over 30,000 ETDs, about 5 billion tweets, and around a few million web pages.

1.2 Management

We are managing this project through weekly meetings between members, leveraging Ally.io
and the use of Objectives and Key Results (OKRs) as well as in and out of class discussions. The
IR1 milestone is defined as a stage for us to create basic familiarity with the tools and the available
resources such as the existing software/tools from the 2019 iteration of the class. IR2 is defined as
the first point where a working prototype of the software is available as a proof of concept. This
stage’s results will be a building block upon which all developers, this group and the rest of the
class, will be able to improve functionality and UI design and performance. IR3 is considered as the
step before finalizing the product which comes just before the Final Report requiring the removal
of any discovered problem from all the previous milestones making it ready for deployment in the
real world.

1.3 Problems and Challenges

There are a number of challenges in this project. One is to learn how the previous project is set
up and how it works given what information is available from its developers. This includes reports,
repositories, and helpers of those teams (i.e., Professor, TA, etc.). Furthermore, we plan to use our
team’s innovative power to add and build new features based on what is already available. Further
challenges are learning how to use the relevant tools such as Flask to develop UI, build queries
for Elasticsearch APIs, visualizing using Kibana, using KnowledgeGraphs, dividing user authority
based on the type of the users, and so on. Ultimately, connecting all of the different bits and pieces
of this system with all the curation, analysis, and integration teams and containerizing them will
be one of the most important challenges to overcome.

The other challenging section of our work was on creating and initializing and customizing the
code. This was mainly done to allow high level reusability and further development using our
guidelines. Since React programming has a component-based structure, its code has to be compiled
in order to provide a standard HTML page parsable by any browser’s Document Object Model
(DOM). Hence, component HTML properties are slightly different such as “class” being called
“className” in React due to “class” being a reserved name for Object Oriented modules. The
module installation, debugging, testing, and building processes are also different and require their
own dependencies (explained in Section 6.5.1). Additionally, other structures such as Bootstrap
(responsive components) and customizability should also be linked to the current components so
developers can make use of them during the UI development.

Finally, the overall design needs to possess a high level of dynamic configuration points that can
be changed easily such as: links to external servers, databases, upload/download points, persistent
data volumes, etc. These will allow for better control when the different parts come together in
containers and sections such as KnowledgeGraph APIs, or new Elasticsearch servers/indices are

9

introduced. The REACT programming approach helped reduce many of these dynamic program-
ming challenges while introducing its own set of problems such as inter-component communication
and a different design paradigm.

To overcome these challenges many different tools and workflows were considered and the most
suitable were selected. Containerization with Docker is used to isolate all platform related issues and
simplify initial setup using pre-configured Docker images. Elasticsearch is used as the general mul-
tipurpose indexing and searching tool for the datasets and their metadata while KnowledgeGraphs
are used to search, select, and execute dynamic workflows.

1.4 Improvements

There will be multiple major aspects of the 2019 version of the system that has been worked
on and more that needs to be worked on. First we will be expanding the existing user system
and creating accessibility to visuals and APIs for the planned three types of users. In addition, we
created new pages for certain users to manage existing website resources and other users. Next is
updating the existing UI and transforming the support for the tobacco corpus into support for the
Twitter and web-page contents to search and query. Additionally, two new segments have to be
developed for data curators/analysts in addition to linking into KnowledgeGraphs to increase the
dynamic capabilities of data processing.

In the 2019 version, many of the external dependencies and data connection points in the code
were not accessible on a high level (e.g., environment variables) which can cause issues when setting
up a multi-component system using Docker which is our final product. These components include
software such as Kibana. There were problems from the 2019 version due to hard coded addresses,
websites/server URLs, the user database, and the Elasticsearch server/indices. Resolving these
will be essential when building self-deploying images and when using a Docker cluster for setting
up the final deliverables of the project. This will also allow higher level container management
software like Docker, Docker-compose, Kubernetes, or any other platform to modify and manage
the external connections through high-level controls. The exact setting will be further discussed in
the Developer Manual (Section 6).

Additionally an entire new section was added for a new group of users called curators. This
allows them to run services introduced by the system developers and potentially other curators.
Achieving this required entire new systems such as user level/permissions and Airflow services.
Each was added in combination with their corresponding APIs and UIs that were designed in-
house. This provides more flexibility to creators who need more than just search permissions on
the mostly static interfaces which are usually available.

10

2 Literature Review

2.1 Base Design 2019

We decided on using a similar project design to the 2019 iteration of this project (see Figure
2) so it could be used a base for designing the interface. This would reduce the time and effort
spent on setting up the infrastructure and tool sets. Since the project has similar objectives and
structure to the current project, many of the foundational designs can be reused. There exists a
repository that we used as one of the major points for the initial setup [16]. However, there are
some deliverables that would require us to extend last year’s work. They include but are not limited
to:

1. An interface that allows researchers and curators to manage the collections (adding, updating,
adding value) or doing research with the collections (developing, testing, experimenting with
new techniques).

2. An interface to the Reasoner and Knowledge Graph for invoking Airflow for running workflows
for curation/research.

Moreover, a number of reports from said year as well as other years with slightly different designs
and objectives are also available with more information regarding the design and usage of the tools
and structures [17].

11

FE Team 2019 Design

Figure 2: The connection between the front and back end, and the connections to Elasticsearch,
from 2019. Adapted from [17].

2.2 Information Retrieval System

Information retrieval is finding materials, referred to in the literature as documents, of text
and other types of content, that satisfies an information need from within large collections (stored
on computers) [14]. Traditionally, this was limited to librarians and professional clerks, however,
with the advancements in technology and the exponential increase in data availability, retrieval
of information has graduated into an everyday task for most people. ChengXiang Zhai and Sean

12

Massung describe the relevance and importance of information retrieval this way: “There is an
urgent need for developing intelligent text retrieval systems to help people get access to the needed
relevant information quickly and accurately, leading to the recent growth of the web search industry”
[22].

2.3 Collection of ETDs

ETDs are electronic versions of theses and dissertations. They enable the incorporation of
graphics, animations, sounds, videos, and other forms of multimedia. They are especially valuable
for reasons that include:

• Availability: ETDs make theses and dissertations available and accessible to the world wide
web.

• Enhancing Library functions: ETDs help enhance the storage and archiving functions of
libraries and make it much easier and more cost effective. Libraries do not need to worry as
much about additional physical storage since the documents are already in electronic form.

VT has been a world leader in the electronic theses and dissertations initiatives for more than 20
years. On January 1, 1997, VT was the first university to require electronic submission of ETDs [20].

The VT ETD system allows graduate students to submit, review, and publish their theses and
dissertations online. The system can be accessed through this link https://guides.lib.vt.edu/find/
byformat/etds. Listing 6 in Section A.1 shows a sample metadata record representing one ETD in
JSON format.

When working with corpora such as ETDs, and as mentioned in [4], there are many challenges
that have to be addressed such as format, storage, correctness, conflicts, and many more that both
the front-end team and each of the respective teams are facing. Many designs within the system are
used to tackle or avoid such problems. The most prominent include the formatting and correctness
of ETDs which in some cases needed validation, in contrast to tweets and web pages. Please refer
to the “Fall 2020 ETD” team’s report for more information.

2.4 Collection of Tweets

A tweet is a message sent on Twitter. It is a form of modern independent media or self-media,
where users can publish text and pictures to a potentially interested audience. In order to send a
tweet, the user has to create an account on Twitter. Any tweet posted on Twitter has the potential
to be viewed by every Twitter user or non-Twitter user if the user didn’t set up any limits. Most
users usually set up filters to only receive tweets from their interested Twitter feeds from other
users.

In May of 2020, Kyle Vincent and Emma Meno used a collection of tweet data to build a
KnowledgeGraph for subject matter experts (SMEs), statisticians, and developers. This enabled
them to generate workflows for their projects involving Twitter data and its advanced analysis [15].

Tweets are particularly interesting for textual research purposes and Natural Language Process-
ing because of the quality of data it possesses. Twitter restricts users to 240 characters per tweet.

13

https://guides.lib.vt.edu/find/byformat/etds
https://guides.lib.vt.edu/find/byformat/etds

This restriction pushes users to use their best words in a tweet that passes their messages most
effectively. This in turn increases the overall word value used in tweets.

We have a Tweet Collection Management team (TWT) who are working on ingesting 5 billion
tweets. This includes cleaning the tweets, analyzing the metadata, extracting key information,
classifying tweets into categories, and finally indexing the tweets into Elasticsearch so they can be
searched [18]. A sample metadata record representing a tweet in JSON format can be found in
Listing 8 in Section A.2.

In an attempt to understand the data, we observed three types of metadata sources for location
reference in tweets. The first one is in the tweet location in the JSON file. It contains an exact
location with long/lat coordinates or four pairs of lat/long coordinates that define a “bounding box”
for the possible location. The second is the mentioned location which is the location contained in
the tweet message. The final one is profile location which mentions the account-level coordinates
for locations of interest [3]. We will be able to search all of the tweets based on each of the three
location data points. However, this can become challenging since not all tweets contain all three
instances of location data. It is unclear how to handle such cases, when all or none of these instances
are available for searching with Elasticsearch. This is one of the problems to be discussed with the
TWT team, including about a consistent format in the representation of tweets.

2.5 Elasticsearch

Elasticsearch is a distributed open-source search and analysis engine suitable for all data types,
including text, numbers, geospatial, structured, and unstructured data. Elasticsearch was devel-
oped based on Apache Lucene and was first released in 2010 by Elasticsearch N.V. (now Elastic).
Elasticsearch is known for its simple REST-style API, distributed features, speed, and scalabil-
ity [9]. It is the core component of the Elastic Stack; Elastic Stack is a set of open-source tools
for data collection, enrichment, storage, analysis, and visualization. People usually call the Elastic
Stack ELK Stack (referring to Elasticsearch, Logstash, and Kibana). At present, the Elastic Stack
includes a series of rich, lightweight data collection agents, collectively called Beats, which can be
used to send data to Elasticsearch [11]. All teams working on this project will be using Elasticsearch
for its many functions to manage and use our colossal corpora.

2.6 React and ReactiveSearch

React is a newly popularized library for JavaScript which simplifies web UI development by
introducing reusable components [7]. React uses the JSX language which works with JavaScript
but not with the current browsers directly. The approach introduced by React allows for a syntax
similar to classical programming languages like Java and C++ with encapsulation, inheritance,
internal variables and functions, while making use of the dynamic nature of the JavaScript language
on the web.

React uses immutable properties (props) from when the component is instantiated, and states,
to manage and update the components and their dependencies. It is designed such that information
flows from the parent elements to the children, creating a mostly strict information flow. The tool
provides a great platform for creating reusable components with high flexibility. However, due to

14

the nature of information flow in React, it has a steep initial learning curve for more experienced
web designers. That being said, its advantages outweigh its disadvantages, and it can more easily
be used to create and manage pages/elements that are both highly dynamic in addition to being
responsive to user interactions.

ReactiveSearch is an Elasticsearch UI components library for React and React Native. It has
25+ components consisting of lists, ranges, search UIs, result displays and a way to bring any
existing UI component into the library [2]. We have discussed the ones that we used in Section
6.5.1.

2.7 Docker

Developing apps today requires more than just writing code. Multiple languages, frameworks,
architectures, and discontinuous interfaces between tools for each lifecycle stage creates enormous
complexity. Docker simplifies and accelerates workflows, while giving developers the freedom to
innovate with their choice of tools, application stacks, and deployment environments for each project
[5].

3 Requirements

3.1 Introduction

The goal of the FE team is to create a web-based front-end interface, which provides all of the
listed functions below. All of the results should be displayed in a fashion that is easy to access and
understand with a well formatted layout.

3.2 Functionalities

Table 1 defines the list of functions and their planned status in this project.

3.3 Performance

The load on the web server container can be alleviated by adding a load balancing layer to the
containers (e.g., using Kubernetes). This will ensure that the application would scale as more users
start to use it. The most common functionalities of the system do not have any shared writing
tasks, hence parallelization conflicts would rarely occur.

3.4 User Support

We are planning to introduce a ticketing system that allows the users to submit problems with
the system which should greatly assist in solving problems.

15

Table 1: This is a tentative table for all current and potential functionality of the front-end system.
When there are two check marks specified, the code was improved to add more functionality and/or
be more efficient. Each IR represents an interim report date specified by the project managers. The
Stretch goals are tasks that will be attempted if time allows.
Function List 2019 IR1 IR2 IR3 IR4 (Final) Stretch
Tobacco search (excluded from this project)
ETD search
Link to original content (Elasticsearch)
Content filtering by author, date, location, etc.
Login and sign up pages
Recommendations for searching
Clean and update developer environment
Real-time data aggregation for ETD filters
Combined Reactivesearch, Bootstrap and custom styles
Tutorial for setting up the development environment
Tweet search
Log system to record user activities
Web-page search
Multiple user access support
Docker support
Admin management
Team introduction and descriptions
Project concept overview page
Curator user support
Curator service interaction
User support ticket system
Visualization using Kibana API

3.4.1 User Type

The system categorises the users into three types:

1. General users are able to search any type of content available in the system.

2. Researchers or curators are allowed to manage their collections and do research with them
in addition to the general user functionality.

3. Administrators have all the functionality mentioned before with the addition of managing
users.

Furthermore, the previous three user types can have extra privileges. If the user has VT affiliation,
each individual will in addition to public indices have access to indices available to members of the
VT community. These restrictions will mainly be addressed by the data provider or by the VT
library/legal staff.

16

3.4.2 User Manual

The user manual explains all of the functions and pages we have developed so far and is available
in Section 5.

4 Design

This section discusses the design decisions of the system both on the high structural and lower
database levels.

4.1 Application Structure

The overall structure of this system is very complex due to its numerous external dependen-
cies. It starts from Kubernetes which manages the front end container all the way down to the
PostgreSQL database and Ceph file systems. Figure 3 shows the complex relations between the
components.

17

Virginia Tech Network

Users

cloud.cs.vt.edu Cluster

Elasticsearch
@cs.vt.edu

Kubernetes

Ceph
Filesystem

FE Namespace

INT Namespace

Permissions

ETD Namespace

TWT Namespace

WP Namespace

Uses

Airflow

VT VPN
Web App Container

Flask Web framework
Search
Queries

Service In/Out
Files

Reactivesearch

Services

Services

Services

Read Corpora &
Keep Extracted Objects

Runs

Use &
 Index

Access

Maintain
Container

Load
Balancer

Application Structure

Figure 3: High level view of the system, including most of the direct and indirect external depen-
dencies that support and drive the system. Please note that everything under the cloud cluster
umbrella is a container.

4.2 Docker

Docker is a container-based tool that separates the processes from the host system. It is well
known for its ease of use and compatibility functionality in software development and testing. The
prototypes and final system will be available as Docker images on the project repository [21]. We
will provide documentation on how to initialize and use the system which would work on any
machine when provided with an analysis back-end. See Section 6.6 for more details.

18

4.3 Front-end

4.3.1 Homepage

The home page will provide all of the links to all of the functions this system provides. Here
is the current link to the home page: http://[2001:468:c80:6102:1:7015:4f8b:c659]:3000/. However,
this link could change from time to time, as the front-end container is reconfigured.

4.3.2 User Login and Register

The system will allow any user to register as a general user of the system. Different types of
user will be given different types of authority to use this system. Admin users also can use this
system to manage all of the users and track their activities.

4.3.3 Curator page

As we mentioned above, different types of users have different levels of access to the system. Here
we describe a set of users called curators or researchers. They are capable of access beyond general
users. They have the ability to manage the collections (including adding, updating, and adding
values). They can also perform exploratory research with the collections (e.g., developing, testing,
and experimenting with new techniques). They are able to use and potentially create services that
can be run on datasets and collections directly to achieve different research goals. The open-ended
nature of these services provide a vast basis for such users to explore and experiment.

This system is built such that once a user logs in, it detects the user type and then provides
access based on their respective privileges. This implies that only a curator would be allowed to
see curator features, that a general user cannot see. Currently, curators can see all public indices
and ones that they have access to or manage privately. The system can be extended such that they
can choose which index they want to search on, or can define entirely new indices.

We discuss this page and its functionality in further detail in the user manual.

4.3.4 Administration page

The full admin page will be accessible only to an admin user. They can access this page by
going through the link from the home page after they log in. The system will check their credentials
and grant the right to modify the user and index permissions. On the admin page, the user will
able to access two lists:

• User list: This list will show all the users who are registered in the system. The admin will
be able to modify an individual user’s information and role in the “Modify User” page, which
can be accessed from this list.

• Index List: This list will show all the available indices accessible by this system. Admins
will be able to modify each individual’s index access permissions and can grant a user access

19

http://[2001:468:c80:6102:1:7015:4f8b:c659]:3000/

privilege to an index in the “Modify Index” page, which they can access from this list.

The curator will able to access the admin page with limited access to its index modification func-
tionality. Currently, the curator will only be able to access the index list and edit the indexes about
which he or she has ownership.

4.3.5 Modify User page

The admin will access this page through the admin page’s user list. This page will pull the
requested individual user’s information and let the admin change it. The user’s username, email,
and user role are the attributes that can be modified on this page. Also, the admin can delete this
user on this page.

4.3.6 Modify Index page

The admin or the curator who has the ownership of an index will access this page through the
admin page’s index list. The page will pull the requested Elasticsearch index’s access information
from the server and let the admin modify it. The admin can change the index’s public access status
and grant an individual user special privilege on this index, such as editing or owning the index.
The user’s role will change automatically when the privilege is granted and/or removed.

4.3.7 Searching Page

This page gets search keywords and commands from the users, then retrieves data from the
analysis back-end and presents the data in a summarized format which can be expanded for a
better view. Additionally, the system also provides filtering functionality for the users to perform
on the data.

4.3.8 React and NodeJs

Reactivesearch [2] is an Elasticsearch UI component library for React and React Native. It has
more than 25 components consisting of lists, ranges, search UIs, result displays and ways to bring
any existing UI component into the library. NodeJs [19] is a free open source server environment
which runs on various platforms consisting of many modules for web-based development which uses
JavaScript.

4.4 Back-end

4.4.1 Flask

Flask is a lightweight web application framework in Python for developing websites quickly and
easily. It has the ability to scale up to complex project applications and it is one of the most popular
Python web application frameworks [12].

20

4.4.2 MySQL

This project uses MySQL, a light weight relational database system, to manage its users and
their permissions [8]. There are currently three levels of access planned as mentioned in Section
3.4.1. Currently the database only contains three tables within a database named after the team
acronym FE:

• Table ‘user’

This table contains all of the information about an individual user. For now, all information
can only be modified by admin users. Admins can modify this table through the individual
Edit User Page[5.5] with the link in the User list in the Admin page[5.5]. The user can be
promoted to an admin if another admin promotes them through this Edit User Page[5.5].
The user will be automatically promoted as curator if they are granted special privileges to
an Elasticsearch index.

1. user type: Type of user privilege

2. username: Name of the user

3. email: Email address attached to the username for password retrieval

4. register time: Time when the user registered at the website

5. password: Encrypted password of the user

6. vt: User has VT affiliation or not

• Table ‘IndexTable’

This table contains all the Elasticsearch server’s public UI reading access settings. Since we
don’t want to modify the Elasticsearch server status, we use this table to limit the user access
privilege. All of the indices are set as private by default until an admin makes a change. Only
the admin can modify this table through the index manage page[5.6].

1. idIndextable: Auto increment ID for tracking the number of records

2. Iid: Name of the Elasticsearch index

3. Raccess: Public reading access status of the index

• Table ‘PermissionTable’

This table contains all personal privileges and limitations for an individual to access the
Elasticsearch indices. The user can pass the limit set by the IndexTable conditioned on them
having a record in this table. The admin can also ban a user by adding a specific record in
this table regardless of whether the index is public or not.

1. idPermissiontable: Auto increment ID for tracking the number of records

2. Iid: Name of the Elasticsearch index

3. Uid: Username for an individual

4. permission: The permission details of the individual relative to the index

21

4.5 Dynamic Configurations and Environment Variables

Many internal configurations are used throughout the back end and front end code. How-
ever, dynamic behavior will mainly be necessary for external links to programs (e.g., Kibana),
data (Elasticsearch), services (Airflow), the main URL, etc. These will allow high level access
during runtime, providing flexibility for the use of different stages such as development, testing,
and deployment. Some have already been implemented such as the REACT APP BASE URI and
REACT APP ELASTICSEARCH URI environment variables which allow the main URL of the
website and the Elasticsearch server URL to be changed during deployment. These will be essen-
tial when setting up a stand-alone installation such as container-based usage with Docker and/or
Kubernetes. We are using environment variables to avoid localized variables in the settings. Please
refer to the end of Section 6.6 for more details on the environment variables.

4.6 Milestones

• The Interim Report 1 (IR1): This milestone is defined to create basic familiarity with
the tools and the available resources such as the existing web pages from the 2019 iteration
of the class.

• The Interim Report 2 (IR2): IR2 is defined as the first point where a working prototype
of the software is available as a proof of concept. This stage’s results will be a building
block upon which all developers will be able to improve functionality and UI design and
performance. At this stage, our working prototype should be able to search with each of this
year’s content types using metadata (ETDs, tweets, web pages).

• The Interim Report 3 (IR3): IR3 is considered as the step before finalizing the product
which comes just before the Final Report which should have removed any potential problem
from all of the previous milestones making it ready for deployment in the real world. Also at
this stage, our working system should be able to search with each of this year’s types of content,
using text content (ETDs, tweets, web pages). It should also have an Interface to the Reasoner
and Knowledge Graph for invoking Airflow for running workflows for curation/research [10].

• Final Report: This is the final report on the project where all of the components need to
be delivered as a final package to the project coordinators.

• Stretch: These are some goals that are great additions to the system and are not part of the
requirements. However, due to their numerous benefits, they will be implemented when extra
time is found at the end of the project development lifecycle.

You can see a tentative further breakdown of our milestones in Table 1 including the milestones
and the deliverable dates.

4.7 Future work

Here are some features that were not added to the system due to time/design constraints, but
are good choices for new features. Many of these ideas were researched but did not make the final
product due to constraints.

22

• Use the Flask back end as a proxy for Reactivesearch requests: Currently the
Reactivesearch components send a request directly to the Elasticsearch VM with the required
credentials. However, this is not ideal since in addition to security risks to the Elasticsearch
VM, the requests could also be targeted. This could cause further issues when the client is
on an external network compared to Elasticsearch, causing the requests to fail. Despite our
best efforts, we were not able to find a good enough solution.

• Using a secure production web-server as a back end for the Flask base: Flask is not
recommended as a standalone production web server for large scale applications. However,
it supports many such widely used servers. This will become critical when the system is
deployed in a large scale production version.

• Using HTTPS and using a proxy for external services to avoid CORS problems:
The system currently uses HTTP for all of its pages. However, this does not provide enough
protection for things such as sensitive traffic (e.g., login, private data) and data storage (e.g.,
passwords and permission tables). We have mainly focused on creating a functional prototype
and it can be easily secured by an expert while keeping all the functionality.

• Allow searching through multiple indices and group indices based on structure:
Currently, our search pages work mainly on the content team’s primary indices. However,
when new indices are added it will be fairly trivial to group them based on structure and allow
uses to switch between them based on the already implemented permissions when searching.

• Service registration page: Currently our system can make use of the services registered
through the INT team’s API. However, it would be ideal if a UI could be built that connects
to the API for registering these services, thus reducing the technical know-how for doing so.

• View and edit services/goals for admin and/or curator users visually with a graph-
ical UI: The workflow graph that is comprised of services and goals could be dynamically
visualized by the system. This could be beneficial to the system both visually and func-
tionally, allowing super users access to make efficiency and usability tweaks directly to the
nodes/edges. The details needed to make such tweaks could be unknown to the users when
not properly visualized. A number of examples of these could be duplication of nodes, mul-
tiple nodes withing a workflow that are preceded by a more generalized step or a chain of
nodes that could be replaced by one saving overhead time.

• Create standards for service/index/goal usage and design: As the system and the idea
behind it grows, it will require better documentation and coordination between its components
and users for increasing productivity. This could be achieved by introducing standards and
baselines for the different components. This would streamline many of the processes, and
focus creativity of development and research in the right direction.

5 User Manual

This section introduces all available pages for the users and their functionality using screen
shots.

23

5.1 Understanding the Homepage

Figure 4 shows the homepage of the website when a user with the highest access privilege account
is signed in (this is done to show all available features in one place). When not signed in, the “Sign
In” button will bring up a minimal login that allows you to log in to the system (see Section 5.2 for
details). If you do not have an account, the “Register” button redirects you to a page to create a
general user account to access the system (see Section 5.4 for details). The “Curation Services” link
(denoted by A) will take you to the page designed for running Airflow services. See Section 5.10 for
details. A and B are only accessible to a user with at least curator privileges. The upload link (B)
will allow a curator to edit indices while the “Q&A” link (C) will direct you to some useful links,
and commonly asked questions with their answers. E and G will let you access your profile and
logout from the system. The “Admin” (F) link will redirect you to the administration dashboard
(see Sections 5.5 and 5.6). The search buttons (H) redirect you to the ETD, Twitter, and Webpage
search pages, respectively (discussed in Sections 5.7, 5.8, and 5.9). Finally, links at the bottom of
the page redirect users to the developer repositories and group pages (I-L).

Homepage Screen Shot

Figure 4: Screen shot of the current homepage screen with all of its functional elements.

24

5.2 Minimal Login

The page in Figure 5 is displayed when a user requests to login or attempts to access the search
page and has not logged in. This page will show as a hovering frame over your page allowing you to
login using your username and password (A). It also provides a link to register for a new account
in case you do not have one (B).

Minimal Login Screen Shot

Figure 5: Screen shot of the minimal login screen with all of its functional elements.

25

5.3 Main Login

The main login page shown in Figure 6 is the login page and is mainly used for cases of credential
errors on the system. This is shown as a warning in red below the avatar (A). Otherwise, this page
works exactly like the “Minimal Login” page described in Section 5.2 with login (B) functionality
and a registry navigation link (C).

Login Screen Shot

Figure 6: Screen shot of the main login screen with all of its functional elements.

5.4 Register as a User

The registration page can be accessed through the homepage or any of the login pages. You
can go back to the homepage with the back button on the top left (A). Registration requires a
unique username, a valid email address, password, and accepting the fair use terms (B) to create
a general user (D). If you already have a username you can use the “Sign In” link at the bottom
(E) to login instead. The public version of this page registers the new user as a general user. The
admin can access a page with a similar layout from the admin page, but the new user created there
will automatically have admin user privileges.

26

Register/Signup Screen Shot

Figure 7: Screen shot of the register screen with all of its functional elements.

5.5 User Management

The admin page will only be available to admin users . This page[8] can be accessed through
the homepage after login in as an admin user or the curator. In this page, all that the existing
user will be shown is a table which includes their username, called Users List (A). This list will be
invisible for curators since they don’t have the right to view or edit it. The current admin user is
able to view all available information about an individual user in a new page by clicking the button
(B) next to the username in the admin page. In that new page [5.5], the current admin user is able
to view the user’s (A) information such as username, password, created time, and the user role (B)

27

for this individual user. Additionally, a user’s username, password, and role can be modified in
this page as well (C D E). Switching a user’s role will change the user’s access permissions within
the system. Admins can delete users from the system as well (G). Below the admin page [8], the
admins are able to access a special register page. The new user created by this page will be an
admin by default (C).

Admin Page

Figure 8: Screen shot of the admin screen with all of its functional elements.

28

Edit User Page

Figure 9: Screen shot of the edit individual user screen with all of its functional elements.

5.6 Index Management

The index management page [5.6] will only be available to the admin users, or curators who
have some index ownership. This function shares the same page with the user management of the
Admin page [8]. You can view all of the existing Elasticsearch indices in a table called “Indices
List” (D). The admin user will be able to add or edit permissions for any index. If an admin or
curator wants to change permissions, they can access the individual index management page by
clicking the edit button next to the index name in the indices list (E). Curators who don’t have the
index’s ownership will not able to access this feature. In the index management page [5.6] there
are two major parts. The first part shows the general reading access of this Elasticsearch index.
This limits the reading access for the general users who don’t have a special role such as curator
or admin. The VT reading access will allow all users who have VT affiliation to access the index
even when the index is private. Users who access this page will able to view the current index
access status (C). The current user can update the general reading access by selecting from two
options, and click on the update button to change the current status (D). The second part of this
page is the “User List” which identifies all users who were granted special privileges to access this
index. Admins can view each user’s privileges (G), and use the update button below the username
to update its privilege details (H). Additionally, admin users can add a user to the list by using the
blank form which contains a text box where the desired username can be entered (E). Privileges
can be assigned to this user using the right portion of this page.

29

Edit index Page

Figure 10: Screen shot of the edit individual index screen with all of its functional elements.

5.7 ETD search

Figure 11 shows a screen shot of the ETD search page. The main search bar (A) can be used to
search within all fields (which will be highlighted) other than ones that have category specific filters
on the left hand side (G-K). Helper buttons on the right of the main search bar can be used to
search using voice 1 (B) and clear the search contents (C), respectively. The second search bar (E)
allows for more tailored searches based on a selection of categories. You can selected multiple fields
to search on within the drop-down on the right side of the page (F). A suggestion box will appear
for each of the search boxes based on their respective filters (similar to D). The two categorical
entries on the left (G-I and K) are populated dynamically including both the filtering option and
their counts. Filter (I) allows you to enter the year range for when the document was issued. The
available options in (H and I) can be searched using the search boxes on top of each section. The
already used filters are listed as items on the top of the results next to L and can be removed
individually or fully using their respective buttons. The number of results and Elasticsearch server
turnaround time are shown below the filtering items (L). For each result the title (M), embedded
with a link to the ETD, the list of authors (N), type and issuing time (O) and keywords (P), is
displayed. The abstract can also be shown/hidden (Q) as an extension to the result header (R).

Future improvement: The interface can be further customized to meet the needs of the users
and subject matter experts, and based on their feedback.

1This feature is based on Javascript and should work with most modern browsers.

30

ETD Search Screen Shot

Figure 11: Screen shot of the current ETD search screen with all of its functional elements.

5.8 Tweet search

The tweet search page, shown in Figure 12, is very similar to the ETD search page mentioned
in the previous section. From the abundant amount of metadata, the username (B), post text (D),
user picture (A), user ID (C), and the tweet’s posting date (E) are displayed. Currently we have a
UI with the basic display resembling Twitter’s style.

Future improvement: We will adjust the main search bar to search in all of the indices in the
Elasticsearch server. Additionally, similar to the ETD search, we will give the user an option to
choose the data indices they want to search. The secondary data indices (not searchable, like date
and location) will be treated as a filter option on the side as filters.

31

Updated Tweet Search Screen Shot

Figure 12: Screen shot of the current tweet search screen with all of its functional elements.

5.9 Webpage Search

The Webpage search user interface shows many similarities with the Tweet and ETD search
pages. One new addition is the URL (F), showing the containerized front-end UI. The container
now exists on the Virginia Tech Cloud server. The link denoted (F) is the current link to access
webpage search. Please note the user must be on campus or on the VT network (using VPN) to be
able to access this link. Starting with (A), we have the search bar similar to ETD. We are currently
searching three fields on the Elasticsearch index: the title (B), the text (E) and the date. In Figure
13, the word “African” was queried and all of the titles and texts that have the word are returned.
The “view text” button (D) expands section (E) containing the full text of the webpage which is
scrollable.

32

Webpage Search Screen Shot

Figure 13: Screen shot of the current Webpage search screen with all of its functional elements.

5.10 User Manual for KnowledeGraph

Figure 14 shows a screen shot of the “Curation Services” page. This example page allows users
with curator privileges or higher to run Airflow services. First, the users will select from a list
what they will like to achieve as the final result (A). The designated workflow and its services
will be displayed. This particular example of a selected workflow has three services. Each service
has an input and an output block (e.g., B and L, respectively). For each input/output block you
download the current file (D); see the file description (E) and the size of the current file (F). Files
are uploaded/replaced by drag-and-drop of the file on the input boxes (B, M, and N), or browsing
the client machine (N) for a file after removing (C) the current file. Note that the output for the
first service (L) is automatically used as input to the second service (M). The user can download
and check the output, and make changes and re-upload the file if they deem it necessary.

The middle block controls the service. The status (G) and the service description (K) are shown
in addition to the ability to (re)start the service (I) and look at the logs for the last run of the
service (J). The service status bar will change based on its current status, which is updated every
10 seconds while the service is running (e.g., G and O).

33

Curation Services Screen Shot

Figure 14: Screen shot of the current Curation Services screen with all of its functional elements.

5.11 Curator User Manual

As described in Section 3.4.1, every user has a user type ID in the database, and information
that denotes who the user is and what access levels the user has. We currently have three access
levels.

• General user

• Curator

• Admin

Everyone at the time of sign up is assigned the default “user” category. A user can read and
search on all publicly available indices. If the user is affiliated with VT, they can also read VT tied
indices. They do not have write or owner access to these indices by default. A curator has access
levels above the general users. They can read, write, and own indices. They can also invite other
curators to edit an index. An admin has the highest level of access. They can promote a user from

34

general user to being a curator or admin. They can manage the assignment and re-assignment of
indices to curators as well.

The system tries to detect the user-type of the user by connecting to system’s database using
Flask. Once the user-type has been detected, the system then shows the user specific pages based
on permission levels.

Figure 15 is a page that a general user would see.

General User Screen Shot

Figure 15: Screen shot of the User Interface functionality that a general user sees.

However if a user is detected to be a curator, they would see the page in Figure 16. Curation
Services and Upload (A and B) of Figure 4 are additional services that a curator can access.

Curator page Screen Shot

Figure 16: Screen shot of the additional User Interface functionality that a user who is a Curator
or Administrator can access.

6 Developer Manual

This section is a useful manual intended for future developers of the system. It describes the
details on how to run the system and the major links required for managing the system.

6.1 File Inventory

Figure 17 shows a tree structure of files and folders that are essential for the system to perform.
The sections most important to the developers has been annotated.

35

team-fe-repo/

airflow/..................................Store local Airflow testing directory structure
data/...Store local Elasticsearch sample metadata

etd metadata sample v2

add data.py......................................Add data to Elasticsearch index
create mapping.py..............Elasticsearch mapping creator (source ETD team)
etd*.json..............................Final version of the ETD metadata sample

airflow*.json...Airflow API’s sample outputs
etd metadata.json...Sample ETD metadata
etd metadata indexed.json..........................Sample indexed ETD metadata
README.md...........................Readme file for adding metadata to Elasticsearch
twt sample indexed.json Sample indexed TWT metadata
wp sample indexed.json..............................Sample indexed WP metadata

reactivesearch/...................................Store code to build Elasticsearch UI
public/

src/.........REACT components of search pages.These require compilation before use
index.jsREACT main default wrapper page
App.js..REACT application main app page
curator.js........................Curator services front-end REACT components
index etd.jsETD search REACT UI components
index twitter.js..................................Twitter search UI components
index wp.jsWeb page search UI components

static/

templates/

README.md

routes/.......................................Record the webpage design and flow logic
auth.py

dbconnect.py...Database connection hanfler
knowledgegraph.py...................................Curator services back-end API
log.py

login.py...Login and registration handlers
search.py..................Backend file connecting the search pages to the homepage

static/...................................Store constant file for the other UI component
build/

css/

fonts/

images/

js/

scss/

visualizations/

prepros-6.config

templates/.....................Folder containing all non-REACT pages (e.g. homepage)
tests/

test app.py

test log.py

test login.py

.dockerignore

.gitignore

app.py

docker-compose.yml........File used to run Docker image will the required configuration
Dockerfile.....................................DockerFile used to create Docker images
flask monitoringdashboard.db

init db.sql.......................................MySQL database initialization script
README.md ...Main readme for the project
requirements.txt ..Python dependencies

Figure 17: Tree showing the files/folders in the repository with some annotations on what each one
is used for.

36

6.2 Setting up the Database

• You can download MySQL for your operating system using the links below:

– Ubuntu

– CentOS

– MacOS

– Windows

• You can download and install Elasticsearch by following the tutorial at https://www.elastic.
co/guide/en/elasticsearch/reference/current/install-elasticsearch.html.

6.3 Setting up, Building, and Deploying Reactivesearch Components

In order to run and build the Reactivesearch components of the website, the developers needs
to have NodeJs installed. Afterwards, the Reactivesearch project directory should be visited and
the following code can be run.

Listing 1: compiling the Reactivesearch components into DOM components

npm run build

npm start

The first command builds the app for production to the build folder. It correctly bundles React
in production mode and optimizes the build for the best performance. The build is compressed and
the filenames include the hashes. Now your app is ready to be deployed!

The second command then can be used to run the app in the development mode which can be
viewed at http://localhost:3000 in the browser.

6.4 Setting up Elasticsearch Locally

Once you have Elasticsearch and MySQL running on your computer, modify your Elasticsearch
config file: elasticsearch.yml – this can be found in the installation folder. Normally, the path
should be /usr/local/etc/elasticsearch/elasticsearch.yml

Add the following settings in this file.

Listing 2: Modifying Elasticsearch config file

http.cors.enabled: true

http.cors.allow -credentials: true

http.cors.allow -origin: /https ?:\/\/(localhost)?(127.0.0.1)

?(0.0.0.0) ?(:[0 -9]+) ?/

http.cors.allow -headers: X-Requested -With , X-Auth -Token , Content -

Type , Content -Length , Authorization , Access -Control -Allow -

Headers , Accept%

37

https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-centos-7
https://dev.mysql.com/doc/refman/5.6/en/osx-installation-pkg.html
https://dev.mysql.com/doc/refman/5.6/en/windows-installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html
http://localhost:3000

The third configuration here allows any browser on the localhost to directly communicate with
Elasticsearch. For the VM version of Elasticsearch this needs to allow the container of the front
end to have the same privilege. This can be limited to different requests, for instance PUT,
GET, DELETE, POST, etc. You can then start Elasticsearch by using the following command
elasticsearch

6.4.1 Creating simple Elasticsearch indexes with JSON data

A JSON (JavaScript Object Notation) file is a lightweight data-interchange file format. It is
easy for humans to read and write, as well as easy for machines to parse and generate.

JSON is built on two structures:

• A collection of name/value pairs. In various languages, this is realized as an object, record,
struct, dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector, list, or
sequence [6].

The ETD sample data in Section A.1 is an example of data in JSON format.

NDJSON (Newline delimited JSON) is a convenient format for storing or streaming structured
data that may be processed one record at a time. It works well with Unix-style text processing
tools and shell pipelines. It’s also a flexible format for passing messages between cooperating
processes [13].

Elasticsearch accepts and works with the newline delimited JSON file format. Therefore, it is
necessary to convert our JSON sample dataset to the NDJSON file format.

First remove all of the newlines and have each record be on a new line.

Next, above each line add a header with a counting ID.

{ "index": { "_index": "test", "_type": "type1", "_id": "1"} }

The following script can then be used to automate it, given each record is in one row, the first
and last brackets ([]) are removed, and the ending commas are removed after each record.

Listing 3: Automating the JSON to NDJSON conversion

c=0; while read p; do \

echo "{ \"index\" : { \"_id\" : \"$c\" } }" >> indexed.json; \

echo "$p" >> indexed.json; \

c=$(($c + 1)); echo $c;done <cleaned.json

Creating an Index in Elasticsearch

curl -X PUT \

http :// localhost :9200/ twts\

-H 'Content -Type: application/json'\
-d '{

"settings" : {

38

"index" : {

"number_of_shards" : 3,

"number_of_replicas" : 2

}

}

}'

Adding Test Dataset to Elasticsearch

curl -s -H "Content -Type: application/x-ndjson" \

-XPOST http :// localhost :9200/30k/\ _bulk \

--data -binary @indexed.json; echo

curl -s -H "Content -Type: application/x-ndjson" -XPOST http :// localhost :9200/ twts/\ _bulk \

--data -binary @clean -sfm -coronavirus -sample -geo.json; echo

To make sure it went through

curl -s -H "Content -Type: application/x-ndjson" \

-XGET http :// localhost :9200/30k/\ _count?pretty -d \

'{
"query ": {

"match_all ": {}

}

}'
To view indices and documents in your elasticsearch server

visit this link: http :// localhost :9200/\ _cat/indices

Delete all documents

curl -s -H "Content -Type: application/x-ndjson" \

-XPOST http :// localhost :9200/30k/\ _delete_by_query?pretty -d \

'{
"query ": {

"match_all ": {}

}

}'

Alternatively, you can use methods similar to the Python scripts in the repository found in
data/etd metadata sample v2/ ∗ .py to add and create mappings using Python.

6.5 Workflow

6.5.1 Elasticsearch Dataflow in ReactiveSearch

There are several UI components in Reactivesearch that are responsible for making search and
display of results work on the website. Here we give a brief overview of some of the highly useful
elements we utilized. Also Figure 11 is an image that shows them in action [1].

39

6.5.1.1 DataSearch

DataSearch displays a search input box. It supports autosuggestions, highlighting of results,
and querying against more than one field via properties (component A in Figure 11).

6.5.1.2 MultiList

MultiList creates a multiple selection based on the list UI component that is connected to a
field. It is similar to a SingleList except it can support multiple item selections. SingleList creates
a single selection based list UI component that is connected to a database field (D).

6.5.1.3 ResultList

ReactiveList creates a data-driven result list UI component. This list can reactively update
itself based on changes in other components or changes in the database itself (O).

6.5.1.4 SingleRange

SingleRange creates a numeric range selector UI component that is connected to a field [1].

6.6 Docker Image Creation and Deployment

To run the web application as a container you need to use the pre-built image from the 2020
front-end repository [21]. This section will cover how to build and eventually deploy the image for
production. Having Docker installed, and the Docker Demon, is a prerequisite to build an image.

6.6.1 Preparations

First you need to prepare an empty directory and pull the front end team’s repository [21]
git clone https://git.cs.vt.edu/cs-5604-fall-2020/fe/team-fe-repo/ and navigate to the
cloned repository’s directory cd team-fe-repo.

Afterwards, you can use the included DockerFile (shown in Listing 4) to build the Docker image
using the command docker build . -t TAGNAME. Tagname is the name that Docker saves the im-
age under. You can assign multiple tags to a Docker image using docker tag existing_tag new_tag.

Listing 4: Web application DockerFile used to create the application Docker image.

FROM node:latest

ENV LANG=C.UTF -8 LC_ALL=C.UTF -8

ENV PATH /opt/conda/bin:$PATH

RUN wget --quiet \

40

https :// repo.anaconda.com/miniconda/Miniconda3 -latest -Linux -x86_64.sh \

-O ~/ miniconda.sh && \

/bin/bash ~/ miniconda.sh -b -p /opt/conda && \

rm ~/ miniconda.sh && \

/opt/conda/bin/conda clean -tipsy && \

ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \

echo ". /opt/conda/etc/profile.d/conda.sh" >> ~/. bashrc && \

echo "conda activate base" >> ~/. bashrc && \

find /opt/conda/ -follow -type f -name '*.a' -delete && \

find /opt/conda/ -follow -type f -name '*.js.map' -delete && \

/opt/conda/bin/conda clean -afy

COPY . /app

WORKDIR /app/reactivesearch

RUN /opt/conda/bin/conda init bash && \

. /root/. bashrc && \

conda create -n env python =3.6 && \

conda activate env && \

pip install -r /app/requirements.txt && \

npm install

WORKDIR /app

EXPOSE 3000

CMD . /root/. bashrc && \

cd /app/reactivesearch && \

npm run build && \

cd /app && \

conda activate env && \

env && \

python app.py

We use the latest NodeJs container as a base (Listing 4 line 1), install Miniconda3 using the first
RUN command, create a Conda environment and install the required Python and NodeJS packages
using the second RUN, and eventually reserve building the React components and running the web
application using the CMD command for when the image is started as a container.

6.7 Container Deployment

Using the built image, either from the repository or the previous section, a container can now
be run. To do so, you need to configure several virtual environments for the container.

• REACT APP BASE URI web application URI to be accessible

41

• REACT APP ELASTICSEARCH URI elasticsearch URI

• REACT APP ES SECRET Elasticsearch credentials username:password

• FLASK DB database type (mysql/postgres)

• FLASK DB STRING Format: hostname;port;username;password;database name

• REACT APP ES MAIN ETD elasticsearch etd index name

• REACT APP ES MAIN TWT elasticsearch twitter index name

• REACT APP ES MAIN WP elasticsearch webpage index name

Your Docker run command will look similar to Listing 5 below.

Listing 5: Docker run command sample with environment variables.

docker run -d -rm \

-e REACT_APP_BASE_URI=http ://0.0.0.0:3000 \

-e REACT_APP_ELASTICSEARCH_URI=http :// localhost :9200 \

-e REACT_APP_ES_SECRET=username:password \

-e FLASK_DB=mysql \

-e FLASK_DB_STRING='localhost ;3306; username;password;db' \

-e REACT_APP_ES_MAIN_ETD=fe -etd \

-e REACT_APP_ES_MAIN_TWT=fe -twt \

-e REACT_APP_ES_MAIN_WP=fe -wp \

team -fe -repo:latest --name team -fe -webapp -p 3000:3000

When the container is run successfully you can access the page at your designated base URI
(default: http://0.0.0.0:3000).

42

http://0.0.0.0:3000

A Sample Data

A.1 ETD Sample Record

Listing 6: Example of a raw ETD metadata record

1 [{

2 "contributor -author": "Bailey , Justin Mark",

3 "contributor -committeechair": "O'Brien , Walter F",

4 "contributor -committeemember": [

5 "Dancey , Clinton L",

6 "Lowe , Kevin T",

7 "Wicks , Alfred L",

8 "Ng , Wing Fai"

9],

10 "contributor -department": "Mechanical Engineering",

11 "date -accessioned": "2017 -01 -06 T13 :34:06Z",

12 "date -available": "2017 -01 -06 T13 :34:06Z",

13 "date -issued": "2017 -01-05" ,

14 "degree -discipline": "Mechanical Engineering",

15 "degree -grantor": "Virginia Polytechnic Institute and State University",

16 "degree -level": "doctoral",

17 "degree -name": "PHD",

18 "description -abstract": "Future commercial transport aircraft will feature more

aerodynamic architectures to accommodate stringent design goals for higher

fuel efficiency , reduced cruise and taxi NOx emissions , ...",

19 "description -degree": "PHD",

20 "description -provenance": [

21 {

22 "description -provenance -summary": [

23 "Made available in DSpace on 2017 -01 -06 T13 :34:06Z (GMT). No. of bitstreams1

Bailey_JM_D_2017.pdf9128042 bytes , checksum7438e886322739e17247ed2c907658b0

(MD5) Previous issue date2017 -01-05"

24]

25 },

26 {

27 "Author Email": [

28 "jmb@vt.edu"

29]

30 },

31 {

32 "Advisor Email": []

33 }

34],

35 "format -medium": "ETD",

36 "handle": "73987" ,

37 "identifier -other": "vt_gsexam :9274" ,

38 "identifier -uri": "http ://hdl.handle.net /10919/73987" ,

39 "publisher -none": "Virginia Tech",

40 "rights -none": "This item is protected by copyright and/or related rights. Some

uses of this item may be deemed fair ...",

41 "subject -none": [

42 "Experimental Engine Testing",

43 "Distortion",

44 "Interaction",

45 "Total Pressure",

43

46 "Boundary Layer Ingesting"

47],

48 "title -none": "Full Scale Experimental Transonic Fan Interaction with a Boundary

Layer Ingesting Total Pressure Distortion",

49 "type -none": "Dissertation"

50 }]

Listing 7: Example of a cleaned ETD metadata record (complements to the ETD team)

1 [{

2 "contributor_author": "Gong , Hao",

3 "contributor_committeechair": "Cao , Guohua",

4 "contributor_committeemember": [

5 "Zhu , Yizheng",

6 "LaConte , Stephen Michael",

7 "Wyatt , Chris L",

8 "Wang , Ge"

9],

10 "chapters": [

11 {"1": [1,3]},

12 {"2": [3,5]},

13 {"3": [5,7]},

14 {"4": [7,9]}

15],

16 "contributor_department": "Biomedical Engineering",

17 "date_accessioned": "2017 -02 -17 T09 :00:17Z",

18 "date_available": "2017 -02 -17 T09 :00:17Z",

19 "date_issued": "2017 -02-16" ,

20 "degree_discipline": "Biomedical Engineering",

21 "degree_grantor": "Virginia Polytechnic Institute and State University",

22 "degree_level": "doctoral",

23 "degree_name": "PHD",

24 "description_abstract": "The current cardiac computed tomography (CT) technology

is mainly limited by motion blurring and radiation dose. The conceptual multi -

source interior CT scheme has provided a ...",

25 "description_degree": "PHD",

26 "description_provenance": [

27 "Author Email: haog1@vt.edu",

28 "Made available in DSpace on 2017 -02 -17 T09 :00:17Z (GMT). No. of bitstreams: 3

Gong_H_D_2017_support_1.pdf: 150830 bytes , checksum: ..."

29],

30 "format_medium": "ETD",

31 "handle": "75054" ,

32 "identifier_other": "vt_gsexam :9743" ,

33 "identifier_uri": "http ://hdl.handle.net /10919/75054" ,

34 "publisher": "Virginia Tech",

35 "rights": "This item is protected by copyright and/or related rights. Some uses of

this item may ...",

36 "subject": [

37 "Multi -source",

38 "computed tomography",

39 "scatter correction",

40 "temporal resolution",

41 "interior tomography"

42],

43 "title": "A Scheme for Ultra -Fast Computed Tomography Based on Stationary Multi -

Beam X-ray Sources",

44 "type": "Dissertation",

44

45 "etd_uri": "/mnt/ceph/cme/sample_metadata /75054/ Gong_H_D_2017.pdf",

46 "figures_folder_uri": "/mnt/ceph/cme/sample_metadata /75054/ figures/",

47 "figures_total_count": 38,

48 "tables_folder_uri": "/mnt/ceph/cme/sample_metadata /75054/ tables/",

49 "tables_total_count": 0

50 }]

45

A.2 TWT Sample Record

Listing 8: Example of a tweet metadata record

1 {

2 "quote_count": 0,

3 "contributors": null ,

4 "truncated": true ,

5 "text": "The phoney quarantine is almost over. Bring on the real quarantine. #

covid_19 #coronavirus #freebritneyu2026 https ://t.co/BJTCp8fI6y",

6 "is_quote_status": false ,

7 "in_reply_to_status_id": null ,

8 "reply_count": 0,

9 "id": 1257271308062208000,

10 "favorite_count": 0,

11 "entities": {

12 "user_mentions": [],

13 "symbols": [],

14 "hashtags": [

15 {

16 "indices": [

17 68,

18 77

19],

20 "text": "covid_19"

21 },

22 {

23 "indices": [

24 78,

25 90

26],

27 "text": "coronavirus"

28 },

29 {

30 "indices": [

31 91,

32 103

33],

34 "text": "freebritney"

35 }

36],

37 "urls": [

38 {

39 "url": "https ://t.co/BJTCp8fI6y",

40 "indices": [

41 105,

42 128

43],

44 "expanded_url": "https :// twitter.com/i/web/status /1257271308062208000" ,

45 "display_url": "twitter.com/i/web/status /1 u2026"

46 }

47]

48 },

49 "retweeted": false ,

50 "coordinates": {

51 "type": "Point",

52 "coordinates": [

53 -80.25,

46

54 43.55

55]

56 },

57 "timestamp_ms": "1588591813470" ,

58 "source": "Instagram ",

59 "in_reply_to_screen_name": null ,

60 "id_str": "1257271308062208000" ,

61 "retweet_count": 0,

62 "in_reply_to_user_id": null ,

63 "favorited": false ,

64 "user": {

65 "follow_request_sent": null ,

66 "profile_use_background_image": true ,

67 "default_profile_image": false ,

68 "id": 1096083799534960640,

69 "default_profile": true ,

70 "verified": false ,

71 "profile_image_url_https": "https :// pbs.twimg.com/profile_images

/1251785729518288897/ csccyZlo_normal.jpg",

72 "profile_sidebar_fill_color": "DDEEF6",

73 "profile_text_color": "333333" ,

74 "followers_count": 125,

75 "profile_sidebar_border_color": "C0DEED",

76 "id_str": "1096083799534960640" ,

77 "profile_background_color": "F5F8FA",

78 "listed_count": 0,

79 "profile_background_image_url_https": "",

80 "utc_offset": null ,

81 "statuses_count": 1828,

82 "description": "The subject who is truly loyal to the Chief Magistrate will

neither advise nor submit tou00a0arbitrary measures .~~ Junius",

83 "friends_count": 428,

84 "location": "Dawn -Euphemia , Ontario",

85 "profile_link_color": "1DA1F2",

86 "profile_image_url": "http ://pbs.twimg.com/profile_images /1251785729518288897/

csccyZlo_normal.jpg",

87 "following": null ,

88 "geo_enabled": true ,

89 "profile_banner_url": "https ://pbs.twimg.com/profile_banners

/1096083799534960640/1587283898" ,

90 "profile_background_image_url": "",

91 "name": "Mafun Ho",

92 "lang": null ,

93 "profile_background_tile": false ,

94 "favourites_count": 15588,

95 "screen_name": "Tumulus17",

96 "notifications": null ,

97 "url": null ,

98 "created_at": "Thu Feb 14 16:28:36 +0000 2019",

99 "contributors_enabled": false ,

100 "time_zone": null ,

101 "protected": false ,

102 "translator_type": "none",

103 "is_translator": false

104 },

105 "geo": {

106 "type": "Point",

107 "coordinates": [

47

108 43.55,

109 -80.25

110]

111 },

112 "in_reply_to_user_id_str": null ,

113 "possibly_sensitive": false ,

114 "lang": "en",

115 "extended_tweet": {

116 "display_text_range": [

117 0,

118 160

119],

120 "entities": {

121 "user_mentions": [],

122 "symbols": [],

123 "hashtags": [

124 {

125 "indices": [

126 68,

127 77

128],

129 "text": "covid_19"

130 },

131 {

132 "indices": [

133 78,

134 90

135],

136 "text": "coronavirus"

137 },

138 {

139 "indices": [

140 91,

141 103

142],

143 "text": "freebritney"

144 },

145 {

146 "indices": [

147 104,

148 118

149],

150 "text": "wrayandnephew"

151 }

152],

153 "urls": [

154 {

155 "url": "https ://t.co/PF3a1rtMMG",

156 "indices": [

157 137,

158 160

159],

160 "expanded_url": "https ://www.instagram.com/p/B_w6qFEnTYF /? igshid =1

kb2euuf2aszb",

161 "display_url": "instagram.com/p/B_w6qFEnTYF/u2026"

162 }

163]

164 },

48

165 "full_text": "The phoney quarantine is almost over. Bring on the real quarantine

. #covid_19 #coronavirus #freebritney #wrayandnephew @ Guelph , Ontario https

://t.co/PF3a1rtMMG"

166 },

167 "created_at": "Mon May 04 11:30:13 +0000 2020",

168 "filter_level": "low",

169 "in_reply_to_status_id_str": null ,

170 "place": {

171 "full_name": "Guelph , Ontario",

172 "url": "https ://api.twitter.com /1.1/ geo/id /2740624 a2d391c5c.json",

173 "country": "Canada",

174 "place_type": "city",

175 "bounding_box": {

176 "type": "Polygon",

177 "coordinates": [

178 [

179 [

180 -80.326879,

181 43.473802

182],

183 [

184 -80.326879,

185 43.594596

186],

187 [

188 -80.153377,

189 43.594596

190],

191 [

192 -80.153377,

193 43.473802

194]

195]

196]

197 },

198 "country_code": "CA",

199 "attributes": {},

200 "id": "2740624 a2d391c5c",

201 "name": "Guelph"

202 }

203 }

49

A.3 WP Sample Record

Listing 9: Example of a web-page metadata record

1 [{

2 "URL": "https ://www.theguardian.com/science /2020/ apr /07/ cancer -research -uk-to -cut -

funding -for -research -by -44m?CMP=share_btn_tw",

3 "webpage_text": "\nCancer charities say coronavirus shortfall will set back

research | Science | The Guardian\nSkip to main content\nThe Guardian - Back

to home\nSupport The Guardian\nAvailable for everyone , funded by readers\

nContribute\nSubscribe\nContribute\nSearch jobs\nSign in\nMy account\nAccount

overview\nBilling\nProfile\nEmails & marketing\nSettings\nHelp\nComments &

replies\nSign out\nSearch\nswitch to the \nUS edition\nswitch to the \nUK

edition\nswitch to the \nAustralia edition\nswitch to the \nInternational

edition\ncurrent edition: \nUS edition\news\nOpinion\nSport\nCulture\

nLifestyle\nShow\nMore\news\nUS news\nElections 2020\ nWorld news\nEnvironment\

nSoccer\nUS politics\nBusiness\nTech\nScience\newsletters\nOpinion\nThe

Guardian view\nColumnists\nLetters\nOpinion videos\nCartoons\nSport\nSoccer\

nFL\nTennis\nMLB\nMLS\nBA\nHL\nCulture\nFilm\nBooks\nMusic\nArt & design\nTV &

radio\nStage\nClassical\nGames\nLifestyle\nFashion\nFood\nRecipes\nLove & sex

\nHome & garden\nHealth & fitness\nFamily\nTravel\nMoney\nWhat term do you

want to search ?\ nSearch with google\nMake a contribution\nSubscribe\nUS

edition\nswitch to the \nUK edition\nswitch to the \nAustralia edition\nswitch

to the \nInternational edition\nSearch jobs\nDigital Archive\nGuardian

Puzzles app\nThe Guardian app\nVideo\nPodcasts\nPictures\nInside the Guardian\

nGuardian Weekly\nCrosswords\nFacebook\nTwitter\nSearch jobs\nDigital Archive\

nGuardian Puzzles app\nUS\nElections 2020\ nWorld\nEnvironment\nSoccer\nUS

Politics\nBusiness\nTech\nScience\newsletters\nMore\nCancer research\n ...",

4 "title": "Cancer charities say coronavirus shortfall will set back research |

Cancer research | The Guardian",

5 "date": "2020 -04 -07"}

6 }]

B Tasks and Responsibilities

50

Task Description Start End Responsible

1 Getting 2019 code running IR1 IR1 Reza
1.1 Flask IR1 IR1 Reza
1.1.1 Setting up required packages/environment/configurations for debugging IR1 IR1 Reza
1.1.2 Fixing hardcoded database columns IR1 IR1 Reza
1.2 Database IR1 IR1 Reza
1.1.1 Reverse engineer database schema from Python code IR1 IR1 Reza
1.1.2 Create schema and add database initializer to repository IR1 IR1 Reza
1.3 Debugging and testing login/register (full stack) IR1 IR1 Reza

2 Reactivesearch IR2 IR2 Reza
2.1 Fixed and updated broken NodeJS dependencies in package.json IR2 IR2 Reza
2.2 Fixed Dynaconf connection for Flask/React configuration IR2 IR2 Reza
2.3 Cleaned old code and removed/fixed all errors in code IR2 IR2 Reza
2.4 Cleaned old code and removed all errors IR2 IR2 Reza
2.5 Added Bootstrap capabilities to entire project IR2 IR2 Reza
2.6 Added use of custome CSS in React components IR2 IR2 Reza

3 Local Elasticsearch IR2 IR2 Reza
3.1 Fixed major CORS error stopping external web requests to Elasticsearch IR2 IR2 Reza
3.2 Cleaned ETD data and imported to Elasticsearch IR2 IR2 Reza
3.2 Cleaned TWT data and imported to Elasticsearch IR2 IR2 Yusheng
3.4 Created Elasticsearch data initialization README IR2 IR2 Reza

4 ETD page IR2 IR2 Reza
4.1 Redesigned page using sample data IR2 IR2 Reza
4.2 Added new functionality such as voice search and categorized dynamically populated filters IR2 IR2 Reza
4.3 Added collapsing abstract IR2 IR2 Reza
4.4 Added highlighting from Elasticsearch and fixed it’s color IR2 IR2 Reza
4.4 Add new facets based on the ETD teams request IR4 IR4 Reza

5 Containerized web app IR3 IR3 Reza
5.1 Created DockerFile and Image IR3 IR3 Reza
5.2 Colleborated to set up permissions on user table on INT team’s PostgreSQL container IR3 IR3 Reza
5.3 Added PostgreSQL connections to project in addition to MySQL IR3 IR3 Reza
5.4 Set all external locations to environment variables IR3 IR3 Reza
5.5 Deployed Container on cloud.cs.vt.edu IR3 IR3 Reza
5.6 Colleborated to make container available on VT network IR3 IR3 Reza

6 TWT page IR2 IR3 Yusheng
6.1 Create new page based on sample data IR2 IR2 Yusheng
6.2 Add Filter functions for the search IR2 IR3 Yusheng
6.3 Design search result based on the existing twitter page layout IR3 IR3 Yusheng
6.4 Add dynamic filters to fit the final Elasticsearch indices IR3 IR4 Yusheng

7 Internal permissions and management IR4 IR4 Yusheng
7.1 Upload existing table for user roles IR4 IR4 Yusheng
7.2 Creating new manage page for Admin users to manage existing users IR4 IR4 Yusheng
7.3 Link Kibana page for Admin users IR4 IR4 Yusheng
7.4 Record user’s role during login session and share to other pages IR4 IR4 Yusheng
7.5 Add module filters in each page for different users IR4 IR4 Yusheng

8 Webpage UI IR3 IR3 Ola
8.1 Cleaned sample data and converted to njson format needed for Elasticsearch IR3 IR3 Ola
8.2 Extracted more metadata(title, date) in addition to the sample data IR3 IR3 Ola
8.3 Created UI page for webpage search IR3 IR3 Ola
8.4 Added collapsing and scrollable ability for the webpage text IR3 IR3 Ola
8.5 Added and fixed date search feature IR3 IR3 Ola

8 Curator Page IR4 IR4 Ola
8.1 Create UI for curators IR4 IR4 Ola
8.2 Add selection box for Users to select what index to search IR4 IR4 Ola
8.3 Manage index content access and permissions based on user’s privileges/affiliations IR4 IR4 Ola

9 KnowledgeGraph and Airflow IR4 IR4 Reza
9.1 Create web interface with dynamic inputs i.e. textbox/files etc IR4 IR4 Reza
9.2 Design Airflow job status reporting mechanism IR4 IR4 Reza
9.3 Connect to Ceph for download/uploading files IR4 IR4 Reza
9.4 Connect to Airflow to run jobs from the content teams IR4 IR4 Reza

Table 2: Description and details of major steps for the project with timed milestones and individual
responsibility

51

References

[1] Reactive Search Components overview. https://opensource.appbase.io/reactive-manual/
getting-started/componentsindex.html, May 2020. Accessed: 2020-10-08.

[2] Reactive Search README.md. https://github.com/appbaseio/reactivesearch#:∼:
text=ReactiveSearch%20is%20a%20Elasticsearch%20UI,UI%20component%20into%20the%
20library, 2020. Accessed: 2020-11-23.

[3] Tweet geospatial metadata. https://developer.twitter.com/en/docs/tutorials/
tweet-geo-metadata#:∼:text=Twitter%20Places%20can%20be%20thought, 2020. Accessed:
2020-10-07.

[4] Cayabyab, T. A. C. A review of emerging ETD initiatives, challenges and future develop-
ments. International Journal of Information and Education Technology 5, 10 (2015), 772.

[5] Cormack, J., Ragunathan, A., and Crone, C. Why Docker? — Docker. https://www.
docker.com/why-docker, 2019. Accessed: 2020-10-08.

[6] Crockford, D. Json. ECMA International (2012). http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-404.pdf. Accessed: 2020-12-04.

[7] Domes, S. Everything You Should Know About React: The Ba-
sics You Need to Start Building. https://www.freecodecamp.org/news/
everything-you-need-to-know-about-react-eaedf53238c4/, Nov 2017. Accessed: 2020-11-
01.

[8] DuBois, P. MySQL. Addison-Wesley Professional, 2013.

[9] Elastic. ElasticSearch Ranking Evaluation API. https://www.elastic.co/guide/en/
elasticsearch/reference/current/search-rank-eval.html, 2019. Accessed: 2020-10-07.

[10] Fox, E. A. Fall 2020 FE Team Description. https://canvas.vt.edu/courses/115585/pages/
f2020-teamfe, Aug. 2020. Accessed: 2020-08-31.

[11] Gormley, C., and Tong, Z. Elasticsearch: the definitive guide: a distributed real-time
search and analytics engine. ” O’Reilly Media, Inc.”, 2015.

[12] Grinberg, M. Flask web development: developing web applications with python. ” O’Reilly
Media, Inc.”, 2018.

[13] Hoeger, T., Dew, C., Pauls, F., and Wilson, J. Newline Delimited JSON Specifications.
https://github.com/ndjson/ndjson-spec, Nov 2016. Accessed: 2020-12-04.

[14] Manning, C. D., Raghavan, P., and Schütze, H. Introduction to Information Retrieval.
Cambridge University Press, USA, 2008.

[15] Meno, E., and Vincent, K. Twitter-Based Knowledge Graph for Researchers. https:
//vtechworks.lib.vt.edu/handle/10919/98239. Accessed: 2020-10-07.

52

https://opensource.appbase.io/reactive-manual/getting-started/componentsindex.html
https://opensource.appbase.io/reactive-manual/getting-started/componentsindex.html
https://github.com/appbaseio/reactivesearch#:~:text=ReactiveSearch%20is%20a%20Elasticsearch%20UI,UI%20component%20into%20the%20library
https://github.com/appbaseio/reactivesearch#:~:text=ReactiveSearch%20is%20a%20Elasticsearch%20UI,UI%20component%20into%20the%20library
https://github.com/appbaseio/reactivesearch#:~:text=ReactiveSearch%20is%20a%20Elasticsearch%20UI,UI%20component%20into%20the%20library
https://developer.twitter.com/en/docs/tutorials/tweet-geo-metadata#:~:text=Twitter%20Places%20can%20be%20thought
https://developer.twitter.com/en/docs/tutorials/tweet-geo-metadata#:~:text=Twitter%20Places%20can%20be%20thought
https://www.docker.com/why-docker
https://www.docker.com/why-docker
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.freecodecamp.org/news/everything-you-need-to-know-about-react-eaedf53238c4/
https://www.freecodecamp.org/news/everything-you-need-to-know-about-react-eaedf53238c4/
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-rank-eval.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-rank-eval.html
https://canvas.vt.edu/courses/115585/pages/f2020-teamfe
https://canvas.vt.edu/courses/115585/pages/f2020-teamfe
https://github.com/ndjson/ndjson-spec
https://vtechworks.lib.vt.edu/handle/10919/98239
https://vtechworks.lib.vt.edu/handle/10919/98239

[16] Powell, E., Liu, H., Huang, R., Sun, Y., and Chao, X. CS5604InfoStorageFEK.
https://github.com/BourneXu/CS5604InfoStorageFEK, Dec. 2019. Accessed: 2020-08-31.

[17] Powell, E., Liu, H., Huang, R., Sun, Y., and Chao, X. Front-End Kibana (FEK)
CS5604 Fall 2019. Accessed: 2020-09-07.

[18] Pranav, C., Hicks, M., Ikjot, J., Manisha, K., Ujjval, M., Akash, P., and Irith, S.
Tweet Collection Management IR1 Report. https://canvas.vt.edu/files/14852530/download?
download frd=1. Accessed: 2020-10-07.

[19] Satheesh, M., D’mello, B. J., and Krol, J. Web development with MongoDB and NodeJs.
Packt Publishing Ltd, 2015.

[20] Vtechworks. ETDs: Virginia Tech Electronic Theses and Dissertations. https://vtechworks.
lib.vt.edu/handle/10919/5534, Sept. 2020. Accessed: 2020-09-14.

[21] Yusheng, C., Mazloom, R., and Makanjuola, O. CS 5604 Fall 2020 - Team FE Repo.
https://git.cs.vt.edu/cs-5604-fall-2020/fe/team-fe-repo/, 2020. First Accessed: 2020-09-14.

[22] Zhai, C. Massung, S. Text data management and analysis: a practical introduction to
information retrieval and text mining. Morgan & Claypool, 2016.

53

https://github.com/BourneXu/CS5604InfoStorageFEK
https://canvas.vt.edu/files/14852530/download?download_frd=1
https://canvas.vt.edu/files/14852530/download?download_frd=1
https://vtechworks.lib.vt.edu/handle/10919/5534
https://vtechworks.lib.vt.edu/handle/10919/5534
https://git.cs.vt.edu/cs-5604-fall-2020/fe/team-fe-repo/

	Overview
	Project Introduction
	Management
	Problems and Challenges
	Improvements

	Literature Review
	Base Design 2019
	Information Retrieval System
	Collection of ETDs
	Collection of Tweets
	Elasticsearch
	React and ReactiveSearch
	Docker

	Requirements
	Introduction
	Functionalities
	Performance
	User Support
	User Type
	User Manual

	Design
	Application Structure
	Docker
	Front-end
	Homepage
	User Login and Register
	Curator page
	Administration page
	Modify User page
	Modify Index page
	Searching Page
	React and NodeJs

	Back-end
	Flask
	MySQL

	Dynamic Configurations and Environment Variables
	Milestones
	Future work

	User Manual
	Understanding the Homepage
	Minimal Login
	Main Login
	Register as a User
	User Management
	Index Management
	ETD search
	Tweet search
	Webpage Search
	User Manual for KnowledeGraph
	Curator User Manual

	Developer Manual
	File Inventory
	Setting up the Database
	Setting up, Building, and Deploying Reactivesearch Components
	Setting up Elasticsearch Locally
	Creating simple Elasticsearch indexes with JSON data

	Workflow
	Elasticsearch Dataflow in ReactiveSearch
	DataSearch
	MultiList
	ResultList
	SingleRange

	Docker Image Creation and Deployment
	Preparations

	Container Deployment

	Sample Data
	ETD Sample Record
	TWT Sample Record
	WP Sample Record

	Tasks and Responsibilities

