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Continuum Analytical Shape Sensitivity Analysis of 1-D

Elastic Bar

Soumya Sambit Nayak

ACADEMIC ABSTRACT

In this thesis, a continuum sensitivity analysis method is presented for
calculation of shape sensitivities of an elastic bar. The governing differential
equations and boundary conditions for the elastic bar are differentiated with
respect to the shape design parameter to derive the continuum sensitivity
equations. The continuum sensitivity equations are linear ordinary differential
equations in terms of local or material shape design derivatives, otherwise known
as shape sensitivities. One of the novelties of this work is the derivation of three
variational formulations for obtaining shape sensitivities, one in terms of the
local sensitivity and two in terms of the material sensitivity. These derivations
involve evaluating (a) the variational form of the continuum sensitivity
equations, or (b) the sensitivity of the variational form of the analysis equations.
We demonstrate their implementation for various combinations of design
velocity and global basis functions. These variational formulations are further
solved using finite element analysis. The order of convergence of each variational
formulation is determined by comparing the sensitivity solutions with the exact
solutions for analytical test cases. This research focusses on 1-D structural
equations. In future work, the three variational formulations can be derived for

2-D and 3-D structural and fluid domains.



Continuum Analytical Shape Sensitivity Analysis of 1-D
Elastic Bar

Soumya Sambit Nayak

GENERAL AUDIENCE ABSTRACT

When solving an optimization problem, the extreme value of the performance
metric of interest is calculated by tuning the values of the design variables. Some
optimization problems involve shape change as one of the design variables.
Change in shape leads to change in the boundary locations. This leads to a
change in the domain definition and the boundary conditions. We consider a 1-
D structural element, an elastic bar, for this study. Subsequently, we
demonstrate a method for calculating the sensitivity of solution (e.g.
displacement at a point) to change in the shape (length for 1-D case) of the
elastic bar. These sensitivities, known as shape sensitivities, are critical for design
optimization problems. We make use of continuum analytical shape sensitivity
analysis to derive three variational formulations to compute these shape
sensitivities. The accuracy and convergence of solutions is verified using a finite
element analysis code. In future, the approach can be extended to multi-

dimensional structural and fluid domain problems
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Chapter 1

Introduction

1.1 Motivation

Solving an optimization problem requires the calculation of the change in the
response of a performance metric to change in design parameters in a given
domain. Some design parameters involve changes in the configuration or change
in domain shape. Structural optimization variables can be classified into three
basic categories, namely, sizing, shape and topology. Sizing optimization is
incorporated to obtain optimum size of a specific member in a fixed domain.
Topology optimization determines optimal distribution of material inside a given
design domain. While, in shape optimization, the domain definition changes.
This leads to change in boundary locations as well as domain material points
with respect to the shape design variable(s). The current work is focused on

calculation of shape sensitivities for shape optimization.

Shape optimization finds its applications in various engineering domains
involving structures, fluids and fluid-structure interaction. This requires

evaluation of shape sensitivities that influence the improvement in design



performance in each iteration. Developing an accurate and efficient method for
computing these shape sensitivities is necessary for the application of shape
design optimization to complex systems. This thesis demonstrates the derivation
of variational formulations in order to calculate shape sensitivities for the case

of a 1-D elastic bar. The main research objectives are highlighted next.

1.2 Research Objectives

The goal of this research is to derive formulations and estimate their accuracy
in predicting local and material shape sensitivities. This necessitates the

following research objectives.

1. Develop continuum sensitivity equations for local and material shape
sensitivities.

2. Derive variational formulations for shape sensitivities using the above
equations.

3. Discuss the accuracy of shape sensitivity solutions and determine its order

of convergence using Finite Element Analysis (FEA).

These objectives are addressed in Chapter 3 and Chapter 4.
1.3  Thesis Outline

The organization of this thesis is as follows.

Chapter 2 (Background) talks about sensitivity analysis with shape as a

parameter followed by a brief discussion about discrete and continuum sensitivity



analysis. This chapter concludes with a literature review of shape sensitivity

analysis in structures and fluids.

Chapter 3 (Theory) deals with the definition of a 1-D elastic bar and its
governing equations. The continuum sensitivity equations are then developed.
The most important part of this chapter is the derivation of variational

formulations for local and material sensitivities.

Chapter 4 (Results) discusses the accuracy of these formulations by comparison
with exact solutions. Initially, we maintain constant forcing and manipulate the
design velocities and basis functions to generate comparison plots. FEA is then
used to determine the order of convergence of local and material sensitivity
solutions from these variational formulations. This is performed for multiple

design velocities and forcing terms.

Chapter 5 (Conclusion) briefly summarizes the key highlights of the current
research. Finally, we discuss the potential applications of the thesis research in

multi-dimensional problems and future scope of this research.



Chapter 2

Background

2.1 Sensitivity Analysis

Sensitivity is the effect of change in a system parameter on the system’s response.
Basic examples of sensitivity include effect of change in material stiffness on the
deflection in a bar, effect of change in Reynolds number on the pressure at a

point on a body, and effect of change in shape on the drag force on a body.

Sensitivity Analysis can be used for:
a) Hypothesis generation (understand the problem and solution)
b) Gradient-based optimization
c) Reliability calculation

d) Uncertainty quantification

Sensitivity analysis can be classified into two primary methods — Analytical and
Numerical. The system equations are differentiated with respect to the parameter
for sensitivities in analytical sensitivity calculation. On the other hand, in finite

difference (numerical) sensitivity calculation, the change in system’s response



due to a small perturbation in the parameter is evaluated. Complex step method
is another type of numerical method where the parameter is assumed to be

complex and the perturbation is on the imaginary axis.

Design

Sensitivity
Analysis
I

I I

==t Finite Difference

= Complex Step

Continuum

Figure 2.1 Design Sensitivity Analysis Classification

Finite difference and complex step methods cannot conduct sensitivity for
multiple parameters at the same time, that is, they are unable to handle adjoint
sensitivity calculations. While, analytical sensitivity analysis can be formulated

to conduct multiple sensitivity analyses at the same time.
2.2  Shape Sensitivity Analysis

Shape change is a considerably different problem than a change in coefficient.
Change in shape leads to change in the boundary locations. This leads to a
change in the domain definition and the boundary conditions. The domain

equations remain the same as typically PDEs do not change. The change in



position of points in the domain with respect to the shape parameter is called
the design velocity. The two classifications mentioned in Figure 2.1, numerical
and analytical methods, can deal with any parameter including a shape
parameter. We use Analytical Shape Sensitivity Analysis because of the
computational and accuracy advantage of analytical sensitivity over finite
difference. There are two types of shape sensitivities, local and material. Local
or Fulerian sensitivity corresponds to the change in the response at a fixed
location in space while Material or Lagrangian sensitivity denotes the change in
the response at a location moving with shape change. The two derivatives are

related by:

daS
g=q + ;IXD 2.1

where, ¢ represents the material derivative and q' represents the local derivative.

as

as
q®® is the analysis solution. Thus, ddq—x becomes the spatial derivative of the

analysis solution. Lastly, D is the domain derivative with respect to shape

change, in other words, the design velocity.

Analytical Shape Sensitivity Analysis can be primarily classified into two

methods: Discrete and Continuum as illustrated in Figure 2.1.
2.3 Discrete Sensitivity Analysis

Discrete Analytical Shape Sensitivity Analysis (DASSA) is based on the change
in discretized domain equations due to change in domain. Thus, this leads to

material sensitivity and needs the design velocity throughout the domain.



Consider a PDE in space given by:

F(qg(x),c)=0 2.2

q(x) here is a field variable, ¢ is the shape parameter, and F represents a

differential operator.

We have boundary conditions (BCs):

B(q(x),c) =0 2.3

DASSA involves discretization followed by sensitivity analysis. Consider the

discretized system of equations for the above PDE along with BCs given by:

{f({qa(x)}, )} = {0} 2.4

where {f} denotes the vector of discretized equations and {q} denotes the vector

of discretized field variable.

To find the shape sensitivities we evaluate the material derivative of the

discretized system of equations with respect to the shape parameter.

aff} _otf) a{f}l @ _ <
dc dc o{q}
Here m is the Jacobian or coefficient matrix [J].
Eq[2.5] can be solved for shape sensitivity as:
la{f} 2.6



Though the equation seems simple to solve for a normal parameter, it is not the
case for a shape parameter. Change in shape parameter leads to change in
domain. This, in turn, requires computation of mesh Jacobian sensitivities (in
RHS) which is computationally inefficient. Hence, we need alternate approaches

like continuum sensitivity analysis.
2.4 Continuum Sensitivity Analysis

Continuum Analytical Shape Sensitivity Analysis (CASSA) involves evaluating
the sensitivity of the PDE with respect to the shape parameter followed by
discretization. Here it is easier to write sensitivity-PDE with respect to local
sensitivity because the spatial derivatives in the PDE will change with shape
transformation for material sensitivity. But the BCs are given on the boundary
and move with change in boundary, thus the sensitivity-BCs are -easily
represented with respect to material sensitivity. We can solve the equations by
converting everything either into local sensitivity variables or material sensitivity

variables.

Considering the same system of PDE and BCs:
F(q(x),c) =0 2.7
B(gq(x),c) =0 2.8

Taking the derivative of PDE with respect to the shape parameter ¢ in the local

frame, we have:

F'+—q' = 2.9



If there is no change in PDE with the shape parameter, F' = 0.

Taking the derivative of BCs with respect to the shape parameter c in the

material frame, we have:

. OB
B4+—g=0 2.1
+6qq 0

Replacing the value of ¢ from Eq[2.1]:
. 0B
B+—(q +q¥D)=0 2.11
dq
The type of BC determines, sensitivity-BC relationship. B = 0 for Dirichlet BC.

Here [3_1:] and [Z—Z] together represent the Jacobian or coefficient matrix [J].

Thus, the CASSA Equation in terms of local sensitivity looks similar to DASSA

Equation in terms of material sensitivity Eq[2.6]:

[/1lq'] = —[b] 2.12

But unlike DASSA, the RHS in CASSA depends on the term q¢°D, that is, the
spatial derivative of the analysis solution and the design velocity at boundary
where the shape is changing. Thus, the accuracy of spatial derivatives determines
the accuracy of local derivatives and sensitivity calculation. Furthermore, if we
need the material sensitivity (typically at the boundary), we need the spatial

derivative of the analysis solution again.



2.5 Literature Review

Accurate and efficient sensitivity or design derivative analysis is the foundation
for solving gradient-based design optimization problems. Though numerical
sensitivity methods discussed in the previous sections are easy to implement,
they can be computationally expensive and inaccurate. On the other hand,
analytical sensitivity methods (DASSA and CASSA) are highly accurate but
their implementation depends on the complexity of governing equations of the
physical problem. This literature review focuses primarily on CASSA. The
development of CASSA in recent times can be categorized into three primary
applications: structures, fluids and fluid-structure interaction. This section
summarizes major research contributions in structures. CASSA for fluids and

fluid-structure interaction is mentioned briefly.

Haug and Arora (1978) introduced CASSA in structural applications. They
developed formulations for design sensitivity analysis to treat three classes of
symmetrical mechanical systems: (a) finite element structural systems, (b)
boundary value problems, and (c) initial value (dynamic) problems. The early
1980s witnessed multiple papers on material sensitivity formulations for
structural mechanics problems. A noteworthy contribution during this period
was the introduction of two methods: (a) boundary integral method (local
CASSA), and (b) domain integral method (total CASSA or material sensitivity
CASSA). Boundary integral method involves transforming domain integrals into
boundary integrals. Chun and Haug (1983) used this for shape optimal design
problems governed by equations of 2-D elasticity and noted that it can be

computationally cheaper than traditional total CASSA. Braibant and Fleury

10



(1984, 1985) provided another direct formulation of total CASSA, the domain
integral method. Initially, they used it in simple examples such as beam, fillet
and plate with a hole which they later extended to more bidimensional problems.
A parametrical representation of the structure was used to predict the movement
of material points in the domain which helped to establish an analytical
formulation of the sensitivity analysis. Wickert and Canfield (2009) adopted the
term “continuum sensitivity analysis” (CSA) and utilized it for a fluid-structure
interaction problem. A major difference between local and total CASSA is in
their design velocity definition. While it is necessary to define design velocity
throughout the entire domain in total CASSA, just prescribing the design
velocity on the boundaries is enough for local CASSA. Consequently, local
CASSA can be computationally less expensive than total CASSA (Liu and

Canfield, 2013).

CASSA was used for fluid sensitivity applications by formulating sensitivity
equations in terms of local design derivative. Turner and Patil (2018) presented
a local form CASSA approach to the incompressible Navier-Stokes equations.
Local CASSA is convenient as it requires design velocity definition on just the
boundaries, but it has one drawback. The boundary conditions of local sensitivity
equations have terms with higher order derivatives. Cross and Canfield (2014,
2015) developed a technique to provide accurate approximations of these
derivatives by reconstructing a more accurate solution at the boundaries. They
introduced it in linear and non-linear systems and termed it as “spatial gradient
reconstruction” (SGR). The SGR only depends on analysis output, which enables

a general formulation of all boundary conditions (of local sensitivity equations).

11



Hence, local CASSA with SGR is shown to be a non-intrusive method. Kulkarni

et al. (2020) employed the same for various fluid applications.

12



Chapter 3

Theory

3.1 Problem Definition

Consider a 1-D Elastic Bar ODE with constant EA:
EAu,, +f =0

where E is the Young’s modulus

A is the cross-sectional area

u is the displacement at a point

f is the axial force.
Consider Boundary conditions (BCs):

I, : u(x = 0) = uy (Dirichlet/Essential BC)
I, : EAuy(x = L) = N, (Neumann/Natural BC)

Figure 3.1 below illustrates this elastic bar problem.

13
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7 T > > > >
=

—
L f

I, u=u, I—P x Ir,: EAu, = N,

Figure 3.1 Elastic bar with axial load

3.2 Design velocity

As explained in Section 2.2, design velocity is an integral part of shape sensitivity
analysis. We can define it as the movement of material points with respect to
shape parameter due to the change in boundary locations. Let us further

illustrate for the case of an elastic bar (Figure 3.2).

MW
o
o

AN
é S
AN

N

Figure 3.2 Different parametric representations of the elastic bar: (a)
parameterization 1 (material points move to the right), and (b)
parameterization 2 (material points move to the left). (Kulkarni M.D. et al.,

2020)
The shape parameter is the length of the bar, L for the elastic bar shown in
Figure 3.2. We can observe how the material points inside the domain shift due

to a change in boundary location or the change in length, L. This change in

14



position of each point with respect to the shape parameter, L represents the
design velocity. Hence, with the convention of right side as the direction of
positive x-axis, design velocities for parameterization 1 and parameterization 2

turn out to be % and %— 1 respectively.

3.3 Material and Local Derivatives

Let us derive some identity relations for local and material sensitivities.
For a design velocity D, the local form — material form relationship becomes:
u=u"+Du¥ 3.4
Similarly, for &, the material sensitivity of u,,
U, = u + Du% 3.5

Note here we have used the fact that the order of spatial derivative and local

sensitivity are interchangeable and denoted by uy:
U = (W)x = (W)’ 3.6
Taking derivative w.r.t x in Eq[3.4],
U, = Uy + D,ud + Du 3.7

From Eq[3.5] and Eq[3.7] above, we have a relationship between the material

sensitivity of u,, that is %, and the spatial derivative of 1, that is 1,

Uy = U, — Dyuds 3.8

15



Further, taking derivative w.r.t x in Eq[3.6],
Uy = Uy + Dy us® + 2D uls + Duly, 3.9
The local and material form relationship for U, ,
Uy = Uy + DUL, 3.10

From Eq[3.9] and Eq[3.10] above, we have,

Txx = Ty — Dyxtly® — 2Dy usy 3.11
3.4  Material Sensitivity ODE

For simplicity, let us consider EA = 1. So, the 1-D Elastic Bar Analysis ODE

becomes:
Uy + f =0 3.12
The material Sensitivity-ODE becomes:
Uy +f =0 3.13
This can be further simplified using Eq[3.10]:
Uy — Do — 2D, uE +f =0 3.14
The material form Sensitivity-BCs are:
u(0) =1 3.15

w(@) =N, 3.16

16



Eq[3.16] above can be further simplified as:

U (L) = Ny, + Dy (L)ugs (L)
3.5 Local Sensitivity ODE

The local form Sensitivity-ODE becomes:

Uy +f =0

We can notice here that:
we = (U)x = ()’
And local form Sensitivity-BCs:
u'(0) = u(0) — ux*(0)D(0)
(L) = 1D —uE WD L)
Eq[3.20] and Eq[3.21] above can further be simplified as:
u'(0) = 1o — ux*(0)D(0)

up(L) = Ny —ugy (LD (L)
3.6 Variational Form of Analysis ODE

Rewriting the Analysis ODE for a 1-D Elastic Bar with EA =1,

17
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Uy + =0 3.24

With boundary conditions,
u(0) = uq (Dirichlet/Essential BC) 3.25
u,(L) = N;, (Neumann/Natural BC) 3.26

The variational form of this Analysis ODE Eq[3.24] would be,

L
f(uxx+f)¢dx =0
0

3.27

L
> f (~wethe + F) dx + ugpls = 0
0

Here ¢ is the weight function.

Assuming the weight function satisfies the homogeneous Dirichlet BC, ¥(0) =

0, and replacing the value of Neumann BC in the variational form, we get,

L

L
Juxl,l}x dx = jfl/) dx + N,y (L) 3.28
0

0

3.7 Material Sensitivity of the Analysis

Variational Form

Now, let us evaluate the material sensitivity of the variational equation.

18



L L L
f U, dx + f usY dx + f u%st, dx

0 0 0

3.29
L . L . L —_ . .
= [ fodx+ J} pbdx+ | fuds + Np@) + N (1)
0
It can be shown that,
dx = Dydx 3.30
Similar to previously derived equation Eq[3.8], we can show,
E = Ijjx — D,y 3.31
Rearranging and simplifying Eq[3.29] using Eq[3.30], Eq[3.31] and Eq[8],
L L L
[ ctpedar | [ugsiheds = [ pipax = W)
0 0 0
L L L
= fugs P dx+fugs P dx—fugs Py dx 3.32
0 0 0

L L
+ J fydx + J fYD, dx + N,(L)
0 0

It can be noted that the part of the equation inside square brackets turns out to
be zero as it satisfies the variational form of the actual ODE with weight function

. The simplified form of the above Eq[3.32] becomes:

L L

[ itpedx = [ @ Dpe + o+ pyp dx 4 M) 333

0 0
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3.8 Variational Form of Material Sensitivity

Equation

Rewriting material form sensitivity equation:

Uy — Do — 2D, uE +f =0 3.34

With boundary conditions:
u(0) = ug 3.35
1, (L) = N, + D, (L)u®(L) 3.36

The variational form of the material sensitivity ODE Eq[3.34] would be,

L
] (ttgx — Dyxu%s — 2D, udS + f)pdx = 0
0

, 3.37
N f (—Tihy — Dy u®SY + 2u (D) + f1) dx
0

+uxlp|8 - ZugsDxlplé =0

We need to use the integration by parts for the u$; term because it is typically

not available in an approximate solution.
Applying the boundary conditions,

Assuming (0) = 0 for homogeneous Dirichlet BC and replacing the value of

Neumann BC in the variational form, we get,
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L

L
[ itbedx = [ (£ + Do + 20,0 dx
0

0

3.38

+NY(L) — D (LN (L)
3.9 Equivalence of the Variational Forms for

Material Sensitivity

Subtracting the equation Eq[3.38] from Eq[3.33], we get:

L
j (FD, — DexuSh — ulSth,Dy) dx + Dy(LNY(L) = 0 3.39
0

Eq[3.39] above can be rearranged as:

L
](_ufclsDxxlp - uacclsDxlpx + flpr) dx + u}%SDxlplé =0
0

3.40

L
> f (U + f)Dyp dx = 0
0

Eq[3.40] above is satisfied for all cases as it represents the variational form of
the governing equations Eq[3.27] except with a weight function of D,y instead
of Y. Hence, the equation for material sensitivity of variational form Eq[3.33]

can be shown to be analytically similar to Eq[3.38].
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3.10 Local Sensitivity of the Analysis

Variational Form

Let us recall the variational form of the analysis ODE Eq[3.28].

L

L
fu%slpx dx — ffll} dx — N, yY(L) =0 3.41
0

0

Now, let us evaluate the local sensitivity of the variational equation.

L L L

fu}z/;x dx + f u®y, dx + f u®y, (dx)'
0 0 0
3.42

L L L
=ffwmwj7¢%x+fmmuy+M¢@yuwwu>
0 0 0

As (dx)" = 0, two of the terms with (dx)’, foL U, Y, (dx)" and foL fw(dx)', can be
eliminated. Eliminating these terms and rearranging to further simplify the

equation,

L L

L
ju;sz dx + Jugszp,’c dx—offlp’ dx — N ' (L)

0 0
3.43

L
= [ rrwdx+ Ny
0

It can be noted that the part of the equation inside square brackets turns out
to be zero as it satisfies the variational form of the analysis ODE with weight

function ¥'. The simplified form of the Eq[3.43] above becomes:
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L

L
f W, dx = f £ dx + N (L) 3.44
0

0

N, or uy(L) can be further written as:
u,(L) = u(L) —u&(L)D(L) = N} = N, — u&(L)D(L) 3.45

So, another form of the final equation Eq[3.44] would be,

L

[ e = [ rypdr+ M) —ugwp@w@w 346
0

0

3.11 Variational Form of Local Sensitivity

Equation

Rewriting local form sensitivity equation:

Uy +f =0 3.47

With boundary conditions:
u'(0) =uy —u(0)D(0) 3.48
u, (L) = N, —u%(L)D(L) 3.49

The variational form of this local sensitivity ODE would be,

L
f(u’xx +f)Wdx=0 3.50
0
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L L
= | uppedx = | flPdx + [Pl
Jrimes]

Applying the boundary conditions,

Assuming (0) = 0 for homogeneous Dirichlet BC and replacing the value of

Neumann BC in the variational form.

L

[ e = [ ry a4 wn, —panswpay 351
0

0

So, Eq[3.46] and Eq[3.51], are exactly identical.

Finally, the order of accuracy of sensitivity solutions from each of these
variational formulations depends on the least accurate term(s) in the

formulation. Chapter 4 illustrates the same in detail.
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Chapter 4

Results

4.1

Key Sensitivity Equations

Let us revisit the seven key sensitivity equations derived in Chapter 3.

Key ODEs with BCs:

Eq[1]

Bar Analysis ODE:

Upy = —f
4.1
u(0) =up, u(l) =N,
Local Sensitivity ODE:
UWyx =—f"
4.2
w'(0) = g — ugF(0)D(0);  uz(L) = Ny — ugs(L)D(L)
Material Sensitivity ODE:
Uy = _f + 2ugz Dy + ug®Dyy/
4.3

u(0) =1, Uy(L) = Ny + D (L)uds(L)
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Key Variational formulations:

Eq[4]  Analysis Variational form:

L

L
fuxlpx dx = ffl/) dx + N (L) 4.4
0

0

Eq[5] Local Sensitivity Variational form:

L

L
f Wapy dx = f £ dx + YN, — pLuSL)D(L) 45
0

0

Eq[6] Material Sensitivity Variational form (Material Sensitivity of

Analysis variational form):

L L

f Iy dx = f WS YDy + fb + YD) dx + Nyp(L) 46

0 0

Eq[7] Material Sensitivity Variational form (Variation of Material

Sensitivity ODE):

L

L
f iy dx = f (F + Dott® + 2usy, D) dx
0

0 4.7

+N (L) + Dy (L)N,p(L)

4.2 Design Velocities and Trial Functions

Let us consider a simple case where the forcing term is a constant. To evaluate
and compare local and material sensitivities, we need to define two parameters,

the design velocity and trial function (for approximate solutions via variational
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formulations). In this study, we have included results for three types of functions

for design velocity: linear, quadratic and piecewise linear.

D = ad 4.8
=7 i
N 2
D= (Z) 4.9
L
0 (o)
D 2x ( I L) 4.10
L 2’
Furthermore, we have examined a few sub-cases for linear design velocity.
D=1 ad 4.11
= T )
D = ad 1 4.12
=7 :
D=-> 4.13
=-7 )

For solving the variational form sensitivity equations, we have chosen the trial

2
(E) and Y = finite element hat functions.

. X
function Y ==, -

L

4.3 Exact Sensitivity Results from

Sensitivity ODE

Let us derive local and material sensitivities for a forcing term:

f=b 4.14
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where b is a constant.

So, the local and material derivatives of f would be:

f'=0
f=0
Let us choose design velocity:
D — f
L
Consider Bar ODE with BCs:
Uy + =0

u(0) = 0 (Dirichlet/Essential BC)

uy(L) = 0 (Neumann/Natural BC)

Solving this ODE, we get:

2
u=—-——+cx+d

where ¢ and d are constants.

Applying BCs, we get the values for ¢ and d as:

u(0)=0=>d=0

u,(L)=0=—-bL+c=0= c=>bL

Finally, we get the analysis solution:
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4.19

4.20

4.21

4.22

4.23



bx? 1
us = — > + bLx = Eb(ZL — X)X 4.24

Material sensitivity equations with BCs derived in the previous section simplify:

Uyy — Dxxufcls - ZDxufclJSc + f =0 4.25
u(0) =0 4.26
i, (L) = 0 427

Solving this material sensitivity ODE, we get:

: —2b
Upx = —f + 2uzDy + UF Dyy = I 4.28
o1
Su=7 (—bx%? +7rx +5) 4.29
Applying BCs, we calculate the values of r and s to get:
. _b 2
U =—x"+2bx 4.30

L

Local sensitivity equation with BCs derived in the previous section simplify to:

W+ f =0 431
w'(0) =0 4.32
w.(L) = —usS(L)D(L) = b 433

Solving this local sensitivity ODE, we get:

Uy =—f'=0 4.34
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s>u =rx+s 4.35

Applying BCs, we calculate the values of r and s to get:
u’ = bx 4.36

We can check the calculated material and local sensitivities by

u=u+Duy
4.37

-b X
sz + 2bx = bx + (—bx + bL)Z

Similarly, we have evaluated the local and material sensitivities for other design

velocities. The results are tabulated below (Table 4.1).

u?s from u’ from u from
D
ODE Eq1 ODE Eq2 ODE Eq3
z bx b 2b
I —ZX + X
N 2 —b b
- bx? 734202
(L) _T+be bx sz +Lx + bx
L
0 (O'E) bx
2b
2_x_1(£ L) bx —Tx2+4bx—bL
L 2’

Table 4.1 Exact analysis solution, local and material sensitivity using ODEs

Eq[1], Eq[2] and Eq[3] for constant forcing

In this case, local sensitivity solution u’ solely depends on the boundary values

as the integral term in the equation is zero. This applies for the variational forms
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also. As the values of the above three design velocities at the boundaries is same,
u' gives the same result. The material sensitivity solutions depend on the design
velocity. The u obtained for the piecewise function is found to be continuous.

The results obtained from these ODEs Eq[l], Eq[2] and Eq[3] are the exact

solutions.
Let us further solve for other linear design velocities. We get,
u'=—bLforD=1-7 4.38
and
u' =bLfor D=>-1 4.39
as u' here depends on the value of design velocity at x = L.
For D = —%, we get

u' = —bx 4.40

Just the negative of its value for D = %

On the other hand, solution of material sensitivity 1 varies with the coefficient

(or sign) of % in the design velocity. That is,

u=§x2—2bxforD:1—§; 441

X

u=—§x2+2bxfor1):z—1; 4.42

and
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u=§x2—2bxforD=—’L—‘. 443

4.4  Approximate Sensitivity Results using the

Variational Forms

We will first derive the results for a sample case for material and local
sensitivities respectively. We will then discuss about a correction term that has
to be added in the Variational form of Material Sensitivity ODE in case of a

piecewise design velocity. Finally, we will tabulate the results for all these cases.

4.4.1  Approximate Analysis Solution using

Variational Form

Let us derive the results for a forcing term:

f=bh 4.44
where b is a constant.
Let us choose design velocity and trial functions as:

D= 4.45

X
L

) 4.46
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Let us assume:

X
u® =aq, (—) + a, (Z) 4.47
where a; and a, are constants.

2
Note that the assumed trial functions % and (%) satisfy the Dirichlet BCs.

Substituting in the analysis variational form Eq[4] and using the same weight
functions as the trial functions, we get a system of linear equations in a; and a,.

Solving for a; and a, we get,

, bI2 4.48
a, = bL ) a, = _T

Finally, we get the analysis solution which ends up being exact since the exact

solution can be represented using the trial function space.

uas:bLZ(%)_bTLz(%)zz_b_xz_Fbe 4.49

4.4.2  Material Sensitivity Results

The material sensitivity of f would be:
f=0 4.50

The material sensitivity equation in a variational form is given in Eq|[6]:

L

L
[ itpedx = [ Do+ o+ pyp dx+ Np) 451
0

0
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Let us assume:

u=a3(f)+a4(%) 4.52

where a; and a, are constants.

Note that the assumed solution satisfies the Dirichlet BC for material sensitivity
1(0) = 0. Substituting this assumed solution in Eq[6] and using the same weight
functions as the trial functions, we get a system of linear equations in a; and a,.

Solving for az and a, we get,

a3 = ZbL, a4, = _bL 4’53

Finally, we get the material sensitivity u,

i = 2bL (%)—bL(%)Z =_Tbx2+2bx 454

The sensitivity equation derived using variational form of material sensitivity
Eq[7]:

L

L
f iy dx = f (F + Dott® + 2us5y, D) dx
0

0 4.55
+N, (L) — Dy (L)N,p(L)
This equation too gives us the same 1,
U= _—bxz + 2bx 4.56

L
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This solution matches the analytical sensitivity calculated using ODE Eq|[3]
because the analytical sensitivity can be represented in terms of the assumed

trial function space.
4.4.3  Local Sensitivity Results

The local sensitivity of f would be:
f'=0 4.57

Let us choose design velocity and weight functions as:

D = 4.58

x
L
2

¢=%(%) 4.59

The sensitivity equation derived using local sensitivity of variational form (or

variational form of local sensitivity) Eq[5]:

L

[ e = [ ry a4 w@N, —pans@pa) 460
0

0

Solving this equation for uy, we get,

L
Ju;sz dx=>b 4.61
0
Let us assume:
A ) 4.62
u —as(z)+a6(z) -



where as and ag are constants.

Substituting this assumed solution in Eq[5] and using the same weight functions
as the trial functions, we get a system of linear equations in as and ags. Solving

for as and ag we get,

as = bL, ag =0 4.63

Finally, we get the material sensitivity u,

w=bL(D)+0(F) =bx 464

Again, this solution matches the analytical sensitivity calculated using ODE
Eq[2] because the analytical sensitivity can be represented in terms of the

assumed trial function space.

4.4.4  Singular Term for Piecewise Continuous

Design Velocity

Let us review the Equation we derived for Variational form of Material

Sensitivity ODE.

L

L
J Uy dx = f(flp + Dy udY + 2ugP,Dy) dx
0

) 4.65

+Np(L) + Dy (L)N,p(L)

Here, we observe that the second derivative term in RHS, foL D,yu,p dx would

be undefined at x = % for the piecewise design velocity. So, we will find inaccurate
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results for this equation unless we integrate the singularity at x = % We can
assume Uy’ and Y to be continuous at the point x = % So, the term fOL Dy Uy dx

L .
at x = 2 can be written as:

+

f DyuPp dx = uxélpé {DXL - DxL } 4.66
2

2
L
2

Nt~

2 2

This term simplifies to be a constant b (for the case of constant forcing) which
must be added to achieve accurate solutions for the piecewise design velocity

case.

In case the analysis solution is evaluated using finite elements, we may have

. C e L .
discontinuities in u¥ at x = > For these cases, we have considered u,, as the
2

average of its value at x = g —and x = §+, that is,

as as
uxé + uxé

u)cclz — zt 5 2 4.67

2

4.4.5 Tabulated Results

Let us solve the three variational form equations, one for local sensitivity and

two for material sensitivity, using different trial functions.
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u® from u’ from u from i from
D Y
Var Eqd4 Var Eq5 Var Eq6 Var Eq7
X b
I bx — sz + 2bx same as Eq6
X\ 2 b 3b
z bx ———x2 4+ — same as Eq6
(L) Lt 4
X /X 2 x2
Z;(Z) —T'i'be ixz
2L
L
0 (0, —) *neglecting the
2 bx _ ixz + %X singularity
2 _ 1 L L 4L 4
L 2’ same as Eq6
*integrating the
singularity

Table 4.2 Local and material sensitivity solutions using Eq[5], Eq[6] and Eq|7]

2
for trial functions Y = %(’L—C) and constant forcing

We have evaluated the local and material sensitivities for different design
. 2
velocities. The results for Y = Z’G) are tabulated in Table 4.2. In Table 4.2, we

have used the approximate analysis solution in the calculation of local and
material sensitivities using the three variational forms Eq[5], Eq[6] and Eq[7].
For this case the approximate analysis solution matches the exact solution. The
results for local sensitivity match the exact solution from Table 4.1. This is
because the local sensitivity solution in this case solely depends on the boundary
values of the weight function, design velocity and the second spatial derivative
of the analysis solution. Comparing the material sensitivity results from both the

variational forms, we find that it matches with the exact solution in the case
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2
where the design velocity is a linear function. For a design velocity of (%) , We

could only reach second degree accuracy because of our choice of quadratic trial
functions. Finally, for the piecewise design velocity case, we get a quadratic
material sensitivity throughout the domain. The solution is not piecewise here
because our trial functions are continuous. Also, we notice how we had to use a
correction term for recalculating the correct result for material sensitivity when

solving using Eq|[7].

When the trial functions are finite element hat functions for two elements, we

have the following results (Table 4.3).

u® from u’ from i from i from
D Y
ODE Eq1l Var Eq5 Var Eq6 Var Eq7
3bx
X b 2 Eq6
I X bx  bL same as Eq
2 elements 2 + 2
Hat functions 5bhx
X2 4
zZ 2x
(L) b =1-2 bx 3px  pL | S¥meas Eq6
L 4=
be 4 4
l/) — 2_x — T + blLx
) 0
2x bx — bL
L Y3 =2— T 2
0 (0’ E) *neglecting the
2x L 1/) = Z_X -1 bx bx singularity
— -1 (—, L) L
L 2 same as Eq6
*integrating the
singularity

Table 4.3 Local and material sensitivity solutions using Eq[5], Eq[6] and Eq|7]

for finite element trial functions for two elements for constant forcing
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In Table 4.3, we have used the exact analysis solution in the calculation of local
and material sensitivities using the three variational forms Eq[5], Eq[6] and Eq[7].
The results for local sensitivity match the exact solution from Table 4.1. Similar
to Table 4.2, the local sensitivity solution in this case solely depends on the
boundary values of the trial function, design velocity and the second spatial
derivative of the analysis solution. Comparing the material sensitivity results
from both the variational forms, we find that they are linear approximations of
the exact solution. Finally, for the piecewise design velocity case, we get a linear
material sensitivity with the same slope throughout the domain (same solution
for both elements). Again, we can notice how we had to use a correction term

for recalculating the corrected material sensitivity when solving using Eq[7].

When the weight functions are finite element hat functions for two elements, we
have the results in Table 4.4. In Table 4.4, we have used a finite element
approximation of the analysis solution in the calculation of local and material
sensitivities using the three variational forms Eq[5], Eq[6] and Eq[7]. The domain
is discretized into two elements. The results for local sensitivity in this case are
trivial and do not match the exact solution from Table 4.1. This is because the
second spatial derivative of the analysis solution, ul; is zero. And similar to
previous tables the local sensitivity here solely depends on the product of
boundary values of the weight function, design velocity and the second spatial
derivative of the analysis solution. Further, if we use the exact value of the
second spatial derivate of analysis solution, u% = —b, we get accurate local

sensitivities for all three design velocities. Comparing the material sensitivity

results,
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u® from u’ from U from i from
D Y
Var Eq4 Var Eq5 Var Eq6 Var Eq7
3bx
x 2
I 0 br  bL same as Eq6
J— + P
2 elements > >
Hat functions 31bx 11bx
XN 2 2x 24 8
() Y =1-—, 3bLx 0 19bx bL| |7bx bl
4 24 ' 4 8 ' 4
2x bL
P, = T T (L+x) 0
bL
2x *using hat functions bx ——
L Y3 =2- T 2
0 (0, E) *neglecting the
2x I 2x 0 bx singularity
=1 (—,L) Ve =71
L 2 same as Eq6
*integrating the
singularity

Table 4.4 Analysis solution, local and material sensitivity using Eq[4], Eq[5],
Eq[6] and Eq[7] for finite element trial functions for two elements for constant

forcing

we find that they are linear approximations of the exact solution. The material
sensitivities found using two variational forms, Eq[6] and Eq[7], are different
from each other in the case of quadratic design velocity. Finally, again we can
notice how we had to use a correction term for recalculating the corrected

material sensitivity when solving using Eq[7] for piecewise design velocity.

Below are the results when the weight functions are finite element hat functions

for 4 elements (hat functions used to find the analysis solution) (Table 4.5).
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u® from u u from u from
b v Var Eq4 Var Var Eq6 Var Eq7
ar Eq Eq5 ar Eq arEq
7bx
4
b
—(L + 10x)
X
I 4 elements 0 { gb same as Eq6
Hat functions 5 (L + 2x)
4 LAST
Y =1~ Zx 4
4 115bx ( 39bx
Py =% ( 7b8Lx 96 32
b b
4 bL —(127x — 3L) —(43x—L)
({)2 Ys=2-7x | |p@+100) o |19 | 32
L \ 3bL —(103x +9L)| | =—=(35x + 3L)
_ 4 — (L +2x 96 32
S b a3x+541) |2 (15x + 18L)
— X — X
Ys=3-7x 0
*using hat ( 0
4 functions 3b
=—x—-2 {— 2x — L
Ve Lx b 7 (2x )
0 (0 L) 4 bx l bx
'S — 4 —_— b
e o VT 0 | {2Gx-1) 2
_x -1 (_ L) *neglecting the
L 2’ Wg = fx _3 Lé(x + 1) singularity
2
same as Eqb6
*integrating the
singularity

Table 4.5 Analysis solution, local and material sensitivity using Eq[4], Eq[5],

Eq[6] and Eq[7] for finite element trial functions for four element and constant

forcing

In Table 4.5, we have again used the finite element approximation of the analysis

solution in the calculation of local and material sensitivities using the three

42



variational forms Eq[5], Eq[6] and Eq[7]. But, here the domain is discretized into

four elements. As expected, all our observations are similar to that of Table 4.4.
4.5 Comparison Plots

Let us compare local sensitivities presented in the tables in section 4.3 and 4.4.
The local sensitivity is found to be bx for Tables 4.1, 4.2 and 4.3. Also, we
discussed why we had trivial solution for local sensitivity in Tables 4.4, 4.5 and
how we can rectify it by replacing the exact value of ugy(second spatial derivate
of analysis solution) in the equation. After replacing this value for ugy (L), we get

the same solution for local sensitivity, bx.

Unlike local sensitivity, material sensitivity varies depending on the trial
functions for the same design velocity. Let us plot these material sensitivity

solutions to compare their accuracy with respect to the exact solution.
4.5.1 Linear Design Velocity Plots

Table 4.6 summarizes the results for linear design velocity from Tables 4.1 to
4.5. Figure 4.1 compares the material sensitivity solutions for the linear design

velocity, D = % In all these plots, we have assumed the forcing term, b = 1 and

the length of the bar, L = 1. We notice that for quadratic trial functions ¥ =
2
%,G) , we are able to match exact value of material sensitivity with both

variational forms. When the trial functions are finite element hat functions (while
using the exact analysis solution), we get a linear approximation of the material

sensitivity. We get the same approximate linear material sensitivity from
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Variational Eq[6] and Eq[7] even when we use the finite element (two elements)
approximation of the analysis solution instead of the exact analysis solution.
When solving for four finite elements, we again get matching material sensitivity

solutions from the two variational equations, Eq[6] and Eq[7].

=

09 .
0.8 Analytical, Eq3 B
Quadratic Approx., Eq6
Quadratic Approx., Eq7
0.7 - .
2 FE (exact analysis), Eq6
2 FE (exact analysis), Eq7
2 FE (approx. analysis), Eq6
0.6 - 2 FE (approx. analysis), Eq7| 7|

4 FE (approx. analysis), Eq6
4 FE (approx. analysis), Eq7

Material Sensitivity
o
(]
T

N
o~

0.3

0.2

0.1

| | | | | | |
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Position

Figure 4.1 Material sensitivity solutions for linear design velocity

(different trial functions)
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X

ForD=L

u

(b=1,L=1)

Analytical, Eq3

b 24+2b
Lr x

Quadratic Approx., Eq6

same as analytical

Quadratic Approx., Eq7

same as Eq6

2 FE (exact analysis
solution), Eq6

3bx

2
bx+bL
2 2

2 FE (exact analysis

E
solution), Eq7 same as Eq6

2 FE (approx. analysis

. same as using exact analysis
solution), Eq6 9 Y

2 FE (approx. analysis

solution), Eq7 same as Eq6

( 7bx
4
b
4 FE (approx. analysis ) 3 (L + 10x)
solution), Eq6 3b (120
8
b (3L +x)
p X

4 FE (approx. analysis

E
solution), Eq7 same as Eq6

Table 4.6 Material sensitivity solutions for linear design velocity

Upon graphical comparison, we notice that the nodal values of the FEM solution
from Eq[6] and Eq[7] match the exact solution at nodes. We can understand the
convergence of the material sensitivity solution by solving these two equations
for more elements and comparing the errors. Further analysis on this can be

found in Section 4.6.
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4.5.2 Quadratic Design Velocity Plots

Table 4.7 summarizes the results for quadratic design velocity from Tables 4.1

to 4.5. Figure 4.2 compares the material sensitivity solutions for the quadratic

2
design velocity, D = (%) .

Analytical, Eq3

>
£
=
=
[2]
=
©
0 06 -
=
=
9]
2
©
=

Quadratic Approx., Eq6
Quadratic Approx., Eq7

2 FE (exact analysis), Eq6
2 FE (exact analysis), Eq7

0.4 9
——2 FE (approx. analysis), Eq6
———2 FE (approx. analysis), Eq7
0.2 —
4 FE (approx. analysis), Eq6
——4 FE (approx. analysis), Eq7
0 1 | | | | 1 | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Position

Figure 4.2 Material sensitivity solutions for quadratic design velocity

(different trial functions)
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u

2
ForD = (>
(L) (b=1,L=1)
Analytical, Eq3 —b s + b 2 +b
) Iz x I x X
b 3b
Quadratic Approx., Eq6 T —
pp q 2Lx + > X
Quadratic Approx., Eq7 same as Eq6
5bx
2 FE (exact analysis 4
solution), Eq6 3bx N bL
4 4

2 FE (exact analysis

E
solution), Eq7 same as Eq6

31bx
2 FE (approx. analysis 24
solution), Eq6 19bx_Fé£
24 4
11bx
2 FE (approx. analysis 8
solution), Eq7 % 4 b_L
8 4
( 115bx
96

b
4 FE (approx. analysis %(127x —3L)

lution), Eq6 b
solution), Eq 5¢ (103% +91)

b
— (4 4L
96( 3x + 54L)

39bx
32

b 43x—1
37 (43x — L)

4 FE (approx. analysis

lution), Eq7 b
solution), £q = (35x +30)

b
55 (15x +18L)

Table 4.7 Material sensitivity solutions for quadratic design velocity
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In all these plots, we have assumed the forcing term, b = 1 and the length of the
bar, L = 1. For this case, the exact solution for material sensitivity derived from

the ODE Eq[3] is a cubic polynomial. We notice that for weight functions ¢ = )—LC

2
,(%) , we are able to arrive at a quadratic approximation for material sensitivity

with both variational forms. When the weight functions are finite element hat
functions (while using the exact analysis solution), we get a linear approximation
of the material sensitivity. When we use the finite element (two elements)
approximation of the analysis solution instead of the exact analysis solution, we
get different solutions from Variational Eq[6] and Eq[7]. When solving for four
finite elements, we again get different material sensitivity solutions from the two
variational equations, Eq[6] and Eq[7]. Upon graphical comparison, we observe
that the finite element material sensitivity solutions with four elements is more
accurate than those with two elements. Again, further analysis on convergence

and error with more elements can be found in Section 4.6.
4.5.3  Piecewise Design Velocity Plots

Table 4.8 summarizes the results for the piecewise design velocity function from
Tables 4.1 to 4.5. Figure 4.3 compares the material sensitivity solutions for the
piecewise design velocity. In all these plots, we have assumed the forcing term,
b =1 and the length of the bar, L = 1. For this case, the exact solution for
material sensitivity derived from the ODE Eq[3] is a continuous piecewise

function as well (with first half linear and second half quadratic). We notice that

[IRa3

2
for weight functions ¥ =-, (E), we are able to arrive at a quadratic

L

approximation for material sensitivity with both variational forms. When the
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weight functions are finite element hat functions (while using the exact analysis
solution), we get a linear approximation which completely matches the linear
part of the exact material sensitivity solution. We get the same approximate
linear material sensitivity from both variational forms even when we use the

finite element (two elements) approximation of the analysis solution instead of

0.9 b

0.7 - b

Analytical, Eq3

o
[}
T
|

Quadratic Approx., Eq6
Quadratic Approx., Eq7

2 FE (exact analysis), Eq6
2 FE (exact analysis), Eq7
2 FE (approx. analysis), Eq6

0.4 2 FE (approx. analysis), Eq7| —

Material Sensitivity
o
(9]
T
L

4 FE (approx. analysis), Eq6
4 FE (approx. analysis), Eq7
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0.2 .

0.1+ n
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Position

Figure 4.3 Material sensitivity solutions for piecewise design velocity

(different trial functions)
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0 (0,%) i

For D =
2x L
£o1 ) w=11=1
bx
i 2b
Analytical, Eq3 0 apr— L
L
b 5b
Quadratic Approx., Eq6 —— x4 —
pp q L x° + 7 x
Quadratic Approx., Eq7 (corrected) same as Eq6
2 FE (exact analysis solution), Eq6 bx

2 FE (exact analysis solution), Eq7

(corrected) same as Eq6

2 FE (approx. analysis solution),

Eq6 same as using exact analysis

2 FE (approx. analysis solution),

Eq7 (corrected) same as Eq6

bx
bx
4 FE (approx. analysis solution), l 2 (6x — L)
Eq6 4
e
> X

4 FE (approx. analysis solution),

Eq7 (corrected) same as Eq6

Table 4.8 Material sensitivity solutions for piecewise design velocity

the exact analysis solution. When solving for four finite elements, we get
matching material sensitivity solutions from the two variational equations, Eq|6]
and Eq[7]. Upon graphical comparison, we can observe that the finite element
material sensitivity solutions with four elements are more accurate than those
with two elements. Again, further analysis on convergence and error with more

elements can be found in Section 4.6.
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4.6 Convergence in Finite Element Results

We are going to discuss the convergence of solutions, namely analysis solution,
local sensitivity and material sensitivity, obtained from finite element method.
Let us use six different grid sizes to compare the errors with respect to the exact
solution. Here we have used 2, 4, 8, 16, 32 and 64 element grids. For this analysis,
we have chosen three types of forcing functions: constant, quadratic and
sinusoidal.

X
f=b f=x(L-x), f=sin (T) 4.68

where b is a constant and L represents the length of the bar. Let us analyze the

convergence of solutions in each of these cases.
4.6.1  Exact Solutions from ODEs

Let us first tabulate the exact solutions for each type of forcing using ODE Eq[1],
Eq[2] and Eq[3]. We have already shown the exact solutions for constant forcing
in Table 4.1. Table 4.9 and Table 4.10 below show the exact solutions for

quadratic and sinusoidal forcing functions respectively.
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u®s from u’ from U from
D
ODE Eq1 ODE Eq2 ODE Eq3
x 213x — 2Lx3 + x*
L 3L
2 4 3.2 _ 2.3 _ 4 5
(f) Bx — 2Lxd 4+ 2t | 312x — 3 3L%x + L°x* — L°x> — 3Lx™ + 2x
L 6L2
12 6
L 3L%x — x3
0 (0 et
2 6
2 (g L) —L* + 5L3x + 3L%x* — 9Lx> + 4x*
L 2’ 6L

Table 4.9 Exact analysis solution, local and material sensitivity using ODEs
Eq[1], Eq[2] and Eq[3] for quadratic forcing
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4.6.2  Analysis Solutions

Let us analyze the convergence in the analysis solution. Figure 4.4 compares the
solution from each grid size with the exact solution. Here we have assumed the
forcing term, b = 1 and the length of the bar, L = 1. Upon evaluating errors in
each solution, we realize that the approximate solutions match with the exact
solution at every node (neglecting precision errors in the order of 1071%). Hence
it will be pointless to plot the log-log plots of Li, L2 or Lix norms in these cases
as error would be zero at nodes. So, for all three cases of forcing we are able to

get exact value of the analysis solution at nodes for all grid sizes.
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Figure 4.4 Convergence of analysis solution for (a) constant forcing function,
(b) quadratic forcing function, and (c¢) sinusoidal forcing function.

4.6.3 Local Sensitivity Results

Figure 4.5 shows the local sensitivity solutions obtained from Eql5] for each grid
level. The local sensitivity solution is found to be the independent of design
velocity. This is because in the local sensitivity variational equation, Eq[5], (a)
the integral term does not have design velocity associated with it and (b) the
boundary term uses the design velocity at the right boundary, D(L), which is the

same (= 1) for all three design velocity choices.

L

L
[ e dx = [ frodx+ [wm, -pougwp@) 469
0

0

As we have chosen
N, =0 4.70
and the second derivative of exact analysis solution
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Local Sensitivity
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Wix(L) = bly=, =b for f

ugasc(l') = (xz - Lx)lsz =0 fOT'

u& (L) = —sin (nL_x)

x=L

f=x(L—x)

=0 for f= sin(ﬂ—x)
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Figure 4.5 Convergence of local sensitivity solution using Eq[5] for (a) constant

forcing function, (b) quadratic forcing function, and (c) sinusoidal forcing

function.
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Since we are using a 2-node linear element FEM to evaluate the analysis solution,
we obtain linear approximations of the solution for each element. The second
derivative of this analysis solution would always be zero. Therefore, a three-point
approximation method (closest to the right boundary) is used to obtain a
quadratic polynomial for the analysis solution. Eventually, we use this
approximation to evaluate the boundary value of the second derivative of the
analysis solution. For constant forcing, this quadratic approximation matches
the exact analysis solution as the analysis solution is quadratic. For quadratic
and sinusoidal forcing, this quadratic approximation does not match the exact
analysis solution which is of higher degree. In these two forcing cases, we find
errors when we compare the finite element result with the exact local sensitivity

solution. Let us further analyze this error using the L, L2 or Lix norms.

We have normalized the L, norm by division with the number of elements for
each grid. Similarly, the L. norm is normalized by dividing by square root of the
number of elements. Lis norm requires no normalization as it just represents the

maximum error value. The error norms for an error vector e are given as,

Normalized L norm:
N
1
lelly =37 ) le 4.74
i=1
Normalized 1.» norm:

llell, = 4.75
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Liut norm:
llelle = max(|e;|) 476

We have plotted these three norms in a single log-log plot (Figure 4.6) to
understand the convergence of our solution. It can be observed that all of the
error norm lines are parallel to the reference line of slope ‘-1’. Hence, there is
first order of convergence in our solutions when we solve using Eq[5]. Let us

evaluate the terms of Eq[5] and our method of solving.

L

L
f Uy dx = f Fpdx + LN, —pLUSLDL) 477
0

0

—e—Normalized L, Norm
—o—Normalized L, Norm

L, Norm Maximum Error

Line with slope - 1

Norms: Local Sensitivity Errors
3

Norms: Local Sensitivity Errors
2

1021

L I J
109 10" 10%
2 Number of Elements, ne

102

10° 10' 10
Number of Elements, ne

(a) (b)

Figure 4.6 Log-log plots of error norms of local sensitivity solutions using Eq[5]

for (a) quadratic forcing function, and (b) sinusoidal forcing function.

From our governing equations we can predict that the analysis solution would
have second order of convergence. Also, our order of convergence will reduce for

a higher derivative of our solution while it will increase where integration is
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involved. Hence in this case, the second and third derivatives would allow first
and zero order of convergence respectively. We have used known functions or
values for f', ¥, ¥y, Y(L), D(L) and N, (from BC). The integral term in LHS,
fOL u P, dx, will have second order of accuracy as integration would improve the
accuracy. The integral term in the RHS, fOL f'Ydx is exactly known. In the
boundary terms, we have u% (L), which has been calculated using a three-point
quadratic approximation of analysis solution at L. This, in turn, gives first order
of convergence for the whole formulation. Using a four-point cubic approximation

for this term might allow us to achieve second order convergence.
4.6.4  Material Sensitivity Results

Figure 4.7 plots the material sensitivity solutions from Eq[6] and Eq[7] for a case
of linear design velocity (again assuming b =1 and L = 1) for each grid size.
Similar to analysis solution, the finite element material sensitivity solutions
match the exact solution at nodes (neglecting precision errors in the order of
107%%). Hence, L1, L2 or Ly norms based on nodal errors in these cases would be

trivial as error is zero everywhere.
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Figure 4.7 Convergence of material sensitivity solution with linear design
velocity for (a) constant forcing function using Eq[6], (b) quadratic forcing
function using Eq[6], (c¢) sinusoidal forcing function using Eq[6], (d) constant
forcing function using Eq[7], (e) quadratic forcing function using Eq[7], and (f)
sinusoidal forcing function using Eq[7].

Now let us plot the results for a quadratic design velocity. Figure 4.8 shows the
material sensitivity solutions obtained from Eq[6] and Eq[7] for the quadratic
design velocity case for each grid level. Here we find errors when compared with

the exact material sensitivity solution. Let us further analyze this error using the

Li, Lo or Lix norms.
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Figure 4.8 Convergence of material sensitivity solution with quadratic design
velocity for (a) constant forcing function using Eq[6], (b) quadratic forcing
function using Eq[6], (¢) sinusoidal forcing function using Eq[6], (d) constant
forcing function using Eq[7], (e) quadratic forcing function using Eq[7], and (f)
sinusoidal forcing function using Eq[7].

Here, we have used the normalized L; and L; norms from Eq[4.74] and Eq[4.75]
respectively. We have plotted these three norms in a single log-log plot (Figure
4.9) to understand the convergence of our solutions from Eq[6] and Eq[7]. It can
be observed that all of the error norm lines are parallel to the reference line of
slope ‘-2’. Hence, there is second order of convergence in our solutions when we

solve using Eq[6] and Eq[7].

Let us evaluate the terms of Eq[6] and our method of solving.

L

L
[ itpedx = [ gD+ i+ fup dx+ Npa) 478
0

0
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We have used known functions or values for f, f, ¥, ¥y, Dy, Y(L) and N, (from
BC). The integral term in LHS, fOL Y, dx, will have second order of accuracy
as integration would improve the accuracy. The second and third integral terms

in the RHS, fOL(fl/)+f1[}Dx) dx is exactly known. The first integral term,

) OL u$ Y, D, dx, would have second order of convergence after integration. In the

boundary term, we have all known values at L. Thus, we get second order of

convergence for the whole formulation.

Let us now evaluate the terms of Eq[7] and our method of solving.

L

L
f Upthy dx = j(flli + Dyyuz®y + 2ugP, Dy) dx
0

0 4.79

+N (L) + Dy (L)N,(L)

We have used known functions or values for f, ¥, Dy, Dy, Y(L), D(L), D,(L); N,
and N, (from BC). The integral term in LHS, foL WP, dx, will have second order
of accuracy as integration would improve the accuracy. The first integral term
in the RHS, fOL fidx is exactly known. The second and third integral terms,
fOL(Dxxu,‘gSl/) + 2uY,D,) dx, would also have second order of convergence after
integration. In case of piecewise design velocity, at the point of singularity we
have used an average value of u$® around x =§ (singularity) allowing a second

order convergence. In the boundary terms, we have all known values at L. Thus,

we get second order of convergence from this variational formulation.
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Norms: Material Sensitivity Errors
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Figure 4.9 Log-log plots of error norms of material sensitivity solutions with
quadratic design velocity for (a) constant forcing function using Eq[6], (b)
quadratic forcing function using Eq[6], (c¢) sinusoidal forcing function using

Eq[6], (d) constant forcing function using Eq[7], (e) quadratic forcing function

using Eq[7], and (f) sinusoidal forcing function using Eq[7].
Now let us plot the results for a piecewise linear design velocity. Figure 4.10
plots the material sensitivity solutions for a case of piecewise design velocity
obtained from Eq[6] and Eq[7] for each grid size. In these cases, we have to
incorporate the correction term to account for the integral wvalue of

fOL(Dxxu,‘ﬁslp) dx which is zero everywhere except at singularity point, x =§.

Combining equations Eq[4.66] and Eq[4.67] for three types of forcing, we get,

+

f Dy u®Sy dx = ugflljé {DxL - DxL }
2z 2 2t

Nt~

2

L
= 4.80

as as
uxL + uxL
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=b for f=b

== for f=x(L—x)

= for f =sin (nL_x)

This value turns out to be a constant throughout all grid sizes for a given forcing
term. Here, the finite element solutions completely match the exact solution at
nodes (neglecting precision errors in the order of 1071%). Hence, Li, Lo or Ly
norms based on nodal errors in these cases would be trivial as error is zero

everywhere.
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Figure 4.10 Convergence of material sensitivity solution with quadratic design
velocity for (a) constant forcing function using Eq[6], (b) quadratic forcing
function using Eq[6], (¢) sinusoidal forcing function using Eq[6], (d) constant
forcing function using Eq[7], (e) quadratic forcing function using Eq[7], and (f)

sinusoidal forcing function using Eq[7].
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Chapter 5

Conclusions and Future Work

5.1 Research Summary

Analytical design sensitivity analysis methods offer the advantage of accuracy
and computational efficiency over numerical finite difference sensitivity methods.
These methods can be classified as DASSA and CASSA. DASSA employs a
“discretize then differentiate” approach, that is, the governing differential
equations are first discretized and then used to calculate sensitivities. CASSA,
however, involves differentiation followed by discretization. Hence, we first
differentiate the governing differential equations with respect to the shape
parameter to derive linear continuum sensitivity differential equations, and then
solve these equations to evaluate the sensitivities of the performance metric with
respect to design variables.

In this research, we have employed CASSA to calculate the shape sensitivities
of an elastic bar. This has led to the derivation of three variational formulations
to solve these shape design derivatives. These are:

(a) Local sensitivity variational formulation Eq[5]
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(b) Material sensitivity variational formulation Eq[6]: Material sensitivity of
the analysis variational form

(c) Material sensitivity variational formulation Eq[7]: Variation of material
sensitivity differential equation

We have used the following methods to address various issues associated with

each of these formulations.

(a) A three-point quadratic approximation of finite element analysis solution
to estimate its second spatial derivative at the right boundary location.
This is used in the local sensitivity variational formulation Eq[5].

(b) An approximate integration of a second order derivative term at
singularity. This is applied for the material sensitivity formulation Eq|7]
in the case of a piecewise continuous (linear) design velocity.

A first order of convergence in finite element results is observed for local

sensitivity solutions. This can be improved to second order by using a four-

point cubic approximation to estimate the spatial derivatives at the
boundary. For material sensitivity results, we notice a second order of

convergence.

5.2 Future Work

In this work, we have used CASSA to derive three shape sensitivity variational
formulations for 1-D structural equation of an elastic bar. In future, this
approach can be extended to multi-dimensional structural and fluid domain

problems.
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