
Gate-level Leakage Assessment and Mitigation

Tarun Kathuria

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Patrick R. Schaumont, Chair

Cameron D. Patterson

Xun Jian

June 26, 2019

Blacksburg, Virginia

Keywords: Side-channel leakage, Countermeasures, Power analysis attacks

Copyright 2019, Tarun Kathuria

Gate-level Leakage Assessment and Mitigation

Tarun Kathuria

(ABSTRACT)

Side-channel leakage, caused by imperfect implementation of cryptographic algorithms in

hardware, has become a serious security threat for connected devices that generate and

process sensitive data. This side-channel leakage can divulge secret information in the form of

power consumption or electromagnetic emissions. The side-channel leakage of a crytographic

device is commonly assessed after tape-out on a physical prototype.

This thesis presents a methodology called Gate-level Leakage Assessment (GLA), which

evaluates the power-based side-channel leakage of an integrated circuit at design time. By

combining side-channel leakage assessment with power simulations on the gate-level netlist,

GLA is able to pinpoint the leakiest cells in the netlist in addition to assessing the overall

side-channel vulnerability to side-channel leakage. As the power traces obtained from power

simulations are noiseless, GLA is able to precisely locate the sources of side-channel leakage

with fewer measurements than on a physical prototype. The thesis applies the methodology

on the design of a encryption co-processor to analyze sources of side-channel leakage.

Once the gate-level leakage sources are identified, this thesis presents a logic level replacement

strategy for the leakage sources that can thwart side-channel leakage. The countermeasures

presented selectively replaces gate-level cells with a secure logic style effectively removing

the side-channel leakage with minimal impact in area. The assessment methodology along

with the countermeasures demonstrated is a turnkey solution for IP module designers and

is also applicable to larger system level designs.

Gate-level Leakage Assessment and Mitigation

Tarun Kathuria

(GENERAL AUDIENCE ABSTRACT)

Consider how a lie detector machine works. It looks for subtle changes in a person’s pulse

to tell if the person is telling the truth. This unintentional divulgence of secret information

is called a side-channel leakage.

Integrated circuits reveal secret information in a similar way through their power consump-

tion. This is caused by the transistors, used to build these integrated circuits, switching in

concert with the secret data being processed by the integrated circuit. Typically, integrated

circuits are evaluated for side-channel leakage only after they have been manufactured into

a physical prototype. If the integrated circuit is found vulnerable it is too expensive to

manufacture the prototype again with an updated design.

This thesis presents a methodology, Gate-level Leakage Assessment (GLA) to evaluate in-

tegrated circuits for side-channel leakage during their design process even before they are

manufactured. This methodology uses simulations to identify the specific transistors in the

design that cause side-channel leakage. Moreover, this thesis presents a technique to se-

lectively replace these problematic transistors in the design with an implementation that

thwarts side channel leakage.

Dedication

I dedicate this to my family, my parents and brother.

iv

Acknowledgments

I want to thank my advisor Dr. Patrick Schaumont, for his guidance and support. I also

want to especially thank Yuan Yao, for helping me in this research and making this thesis

possible.

Thank you to my friends Gaurav, Naveen and Shelly for supporting me.

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Power Analysis Attacks . 3

1.2 Countermeasures against Power Analysis attacks 5

1.3 Power Simulations for Designers . 7

1.4 Contributions . 9

1.5 Thesis Outline . 10

2 Gate-level Leakage Assessment 11

2.1 Overview . 11

2.2 Related Work . 13

2.3 Experimental Setup . 15

2.4 GLA Methodology . 17

2.4.1 Gate-level Simulations . 18

2.4.2 Power Correlation . 20

2.4.3 Architecture Correlation . 23

vi

3 Countermeasures 29

3.1 Overview . 29

3.2 Dual-Rail Precharge Logic . 30

3.3 Contributions and Outline . 37

3.4 Countermeasures Methodology . 38

3.5 Experimental Setup . 42

3.6 Results and Analysis . 45

4 Conclusion and Future Work 50

Bibliography 52

vii

List of Figures

2.1 GLA Overview . 12

2.2 SoC block diagram . 16

2.3 Architecture of AES encryption engine . 16

2.4 Simulation Procedure . 18

2.5 Gate-level functional Simulation . 19

2.6 Sample Power Trace . 20

2.7 Power Correlation Trace . 22

2.8 Leakage Sources in AES encryption engine 27

3.1 Transformation of SR cell to DR cell . 31

3.2 Dual Rail with Precharge cell . 33

3.3 DRP Flip-flop . 33

3.4 WDDL Flip-flop cell . 36

3.5 WDDL NAND cell . 37

3.6 Transformation of 2-input NAND cell . 39

3.7 Transformation of 2-input NOR cell . 40

3.8 Transformation of Inverter cell . 41

3.9 Transformation of Flip-flop . 42

viii

3.10 Correlation result for reference design . 46

3.11 Comparison of correlation coefficients with top 2 cells replaced 47

3.12 Comparison of correlation coefficients with top 40 cells replaced 47

ix

List of Tables

2.1 Architecture Correlation Scoring Rule . 24

2.2 Architectural Correlation coefficients for AES engine 25

2.3 Leakage Impact Factors for AES engine . 26

2.4 Runtime Evaluation for GLA Steps . 28

3.1 Dual-Rail logic transitions . 31

3.2 Dual-Rail with Precharge logic transitions 32

3.3 Trend of maximum and average correlation coefficients 47

3.4 Area Impact . 49

x

Chapter 1

Introduction

Side-Channel leakage is a critical vulnerability of security critical SoCs. In side channel

leakage, secret information is disclosed through physical side-effects while computing with

secret assets. The physical leakage typically used by an attacker includes power consump-

tion, electromagnetic dissipation, execution time, etc. The side channel leakage has made

the hardware attacker a particularly powerful adversary, relevant to embedded applications

of secure SoCs, such as those found in IoT context.

Among the multitude of side channel attacks, the power-based side channel attack signifi-

cantly challenges hardware security. By monitoring the power dissipation of a device, the

adversary can efficiently extract secret information.

Because of the side channel vulnerability in hardware, the design and integration of security

components, which implement cryptographic algorithms in hardware in modern System-on-

Chip (SoC), is challenging. Besides dealing with functional correctness and performance

concerns, the designer has to make sure that the security components are protected against

a multitude of adversaries.

Therefore, the SoC designer has to assess the vulnerability of the SoC design against side-

channel leakage. This procedure is called side-channel leakage assessment. Side-channel

leakage assessment is difficult. Common design tools estimate the average power consump-

tion and the peak power consumption, but they do not reveal side-channel leakage. SoC

designers often use real measurements on a prototype of the SoC design after the chip tape-

1

2 Chapter 1. Introduction

out. This is inefficient and expensive, because it will cause costly respins to fix the design in

order to eliminate the side channel leakage. Power measurements on a real implementation

are also subject to noise, leading to ambiguity in side-channel leakage assessment. Therefore,

a noiseless side channel leakage assessment at early design time before tape-out and before

costly respins saves time and money.

Moreover, aggregate power measurement and side-channel analysis of an SoC prototype only

confirms side-channel leakage, but the analysis does not reveal what architecture elements

(such gates, registers, buses, memories) is causing it. Precisely locating the side channel

leakage source is very important for the designers in order to fix the side channel leakage

of SoCs. However,this task is hard because of the massive complexity of modern SoCs. A

modern SoC integrates a hardware co-processor to perform cryptographic operations, which

is the primary source of side channel leakage. Even if the co-processor implementation is

protected with countermeasures, in the SoC, the co-processor is integrated together with

other elements e.g. caches, memory hierarchy, interconnect infrastructure and peripherals

which participate in the cryptographic operation and hence can also leak side channel in-

formation. The task of examining the architectural elements of the SoC for sources of side

channel leakage is precluded by the immense number of cells present in modern SoCs. The

complexity of modern SoCs has grown exponentially recently, leading to millions of cells

being integrated onto the same chip. As the complexity and the number of IP blocks in an

SoC increases, the precise identification of the side channel leakage sources at the gate-level

becomes arduous.

Side-channel leakage assessment is also crucial in SoCs that use third-party secure intel-

lectual property. Even if a secure co-processor is protected with countermeasures, then its

integration in the SoC with other elements such as interconnect and memory hierarchy may

still cause unintended side-channel leakage. Hence, GLA can fill a critical void in the verifi-

cation of complex secure SoCs.

1.1. Power Analysis Attacks 3

1.1 Power Analysis Attacks

Power analysis attacks are a type of implementation attacks which allow secret information

to be disclosed from cryptographic devices by exploiting the power consumption profile of

the device. The basic idea of power analysis attacks is the fact that the instantaneous power

consumed by a cryptographic device depends on the data it processes and the operations it

performs. Power analysis attacks are non-invasive and can be performed with off-the shelf

equipment, like power amplifiers and oscilloscopes, hence posing a serious threat to the se-

curity of cryptographic devices. These kind of attacks became popular after the pioneering

work of Kocher et al. [6].

Different types of attacking techniques come under the umbrella of Power analysis attacks.

Simple power analysis (SPA) is a technique that attempts to directly interpret power mea-

surement traces collected during cryptographic operations. The attacker using SPA tries

to reveal the key directly from visual inspection of a given power measurement trace. For

example, the RSA algorithm processes bits of the key one at a time and uses each bit to

decide whether sub-steps of a modular exponentiation are done or not. SPA is able to reveal

the secret key by detecting the sub-steps in the power trace and deducing the outcome of

the conditional branches. SPA attacks are used only when a few low noise power traces are

available for a given set of inputs and the detailed implementation of the device is known.

Differential power analysis (DPA) is a more popular technique introduced by Kocher et al.

[6]. DPA attacks only require the knowledge of the cryptographic algorithm and do not

require detailed knowledge of the implementation of the cryptographic device itself. While

SPA attacks map the power consumption to the cryptographic operations, DPA attacks

4 Chapter 1. Introduction

exploits the data dependency of the power traces, hence requiring more number of power

traces. While using DPA, the attacker uses key guesses and generates the values for a certain

key-dependent intermediate variable for all the measurement traces. Next, the attacker sub-

tracts the mean of the traces where the intermediate variable was 0 from the mean of traces

where the intermediate value was 1 for the current key guess. This process is repeated for

each key guess. The key guess displaying the largest difference between these mean traces

is the correct key. This process is done to reveal the key byte by byte. Both SPA and

DPA require the attacker to have the knowledge of the approximate time during which the

intermediate variable is processed.

Later, Correlation power analysis (CPA) was introduced by Brier et al. [4] which is a more

powerful technique. In addition to the intermediate variable, CPA also uses a power model to

correlate the power traces with. A power model is an attribute of the intermediate variable

that the power traces are expected to be dependent on. As the dynamic power consump-

tion depends on the data moving inside the device, one of the simplest power models is the

Hamming Weight model. This power model will look at a specific point in the encryption

algorithm, for e.g. for AES, the Hamming weight of the output of the first S-box operation

(after the SubBytes() operation of the first round). CPA also works byte by byte to reveal

the key. For each guess of the key byte, the Pearson correlation coefficient of the modeled

and actual power consumption is calculated. The guess which yields the highest correlation

is the correct key. Since CPA attacks one byte at a time, we have 256 guesses for each

byte where the key guess with the maximum correlation is selected. For sixteen bytes in

AES-128, the key can be guessed in 16x256 attempts as opposed to 2128 attempts by brute

force. Moreover, the attacker does not require knowledge of the approximate time where the

intermediate variable is calculated. This thesis will heavily use the techniques used by CPA

to evaluate the side channel vulnerability of cryptographic devices.

Currently, newer methodologies have been proposed, such as Test Vector Leakage Assess-

1.2. Countermeasures against Power Analysis attacks 5

ment (TVLA) [2], which can be used for side-channel leakage assessment of a design that

implements a cryptographic algorithm. These methodologies allow designers to detect po-

tential side-channel problems in the cryptographic device in a fraction of the time taken by

other key extraction attacks like DPA and CPA. Techniques like TVLA do not rely on the

knowledge of a leakage model for the design. The output of TVLA is a confidence score

which can be used as a pass/fail criterion for designs vulnerable to side-channel leakage,

hence making it much more suitable for conformance style testing as compared to evaluation

style testing approaches like DPA. While GLA, and CPA, employs bit-wise correlation with

the leakage model for leakage assessment, TVLA uses the t-test. In TVLA, t-tests are used

to check whether two well chosen input data sets (plaintext and key), when processed by the

cryptographic device yield statistically distinguishable side-channel leakage. TVLA being a

high-level leakage assessment methodology makes it appropriate for assessing the vulnerabil-

ity of the design to side-channel leakage with ease, but makes it unfit for identifying leakage

sources. The leakage model used in CPA style attacks depends on a intermediate variable

in the algorithm which in turn maps to a specific set of cells in the implementation caus-

ing the power-based side-channel leakage [7]. This is the main reason why we use bit-level

correlation rather than TVLA as the side channel leakage evaluation tool.

1.2 Countermeasures against Power Analysis attacks

Power analysis attacks are feasible due to the dependency of the power consumption of cryp-

tographic devices on the intermediate values being computed in a cryptographic algorithm.

To prevent these attacks countermeasures need to be deployed in hardware and/or software.

By using these countermeasures, the objective is to make the power consumption of the

cryptographic device independent of the intermediate values being computed in the cryp-

6 Chapter 1. Introduction

tographic algorithm. In practice the dependency cannot be fully eliminated, so the goal of

countermeasures is to avoid or at least to reduce these dependencies. The countermeasures

published so far can be divided into two major groups: Masking and Hiding.

Masking works by making the side channel information random and hence unpredictable.

This is achieved by randomizing the intermediate values that are computed by the crypto-

graphic device. The basic idea is that if the power consumed while processing the randomized

intermediate variables is independent of the actual intermediate variables. Hence the device

only processes the randomized intermediate variables. For a masked implementation, every

intermediate value is concealed by a boolean operation (e.g. XOR) or an arithmetic oper-

ation (e.g. addition) with a random number which is unknown to the attacker. The result

of the encryption is masked as well and hence the mask needs to be removed to obtain the

actual ciphertext. Masking techniques are generally algorithm specific and hence require

research to find a randomized version of the specific algorithm.

On the other hand, Hiding countermeasures work by decoupling the power consumption of

the cryptographic device from the processed intermediate values. While masking changes

the intermediate values computed, devices protected by hiding countermeasures process the

same intermediate variables as unprotected devices. The protected devices compute the

same intermediate variables as the unprotected devices but the power characteristics of the

cryptograpic device is altered in such a way that the difficulty of extracting exploitable in-

formation in the power traces is increased significantly. There are two approaches for Hiding

based countermeasures. The first Hiding approach is to randomize the power consumption of

the cryptographic device by randomly inserting dummy operations between cryptographic

operations or shuffling of the cryptographic operations themselves. As DPA requires the

cryptographic operations to be located at the same temporal location in each power trace,

these countermeasures significantly increase the number of power traces required for a suc-

cessful DPA attack by misaligning the traces. These countermeasures require architecture

1.3. Power Simulations for Designers 7

level changes to either hardware or software.

The second Hiding approach changes the amplitude dimension of the power consumption

instead of changing the time dimension. These countermeasures directly change the power

consumption characteristics of the cryptographic operations such that overall power con-

sumption remains constant irrespective of the operation. These countermeasures can be

applied at the cell level such that the low level hardware implementation of the crypto-

graphic algorithm is changed without changes to the high level architecture. The hardware

circuit of the algorithm is implemented using special logic styles such that the power con-

sumption is independent of the intermediate values and the operations. The logic cells in

these logic styles consume constant power in each clock cycle. These special logic styles

are typically called DPA-resistant logic styles. Typically, these logic styles are implemented

as dual-rail precharge (DRP) logic styles where each gate has a complementary dual gate

and the inputs of these complementary gates are initialized to a constant value every clock

cycle. Techniques based on DRP will be the primary countermeasure techniques used in this

thesis.

As the dependency between power consumption and intermediate values cannot be fully

removed, the countermeasure techniques can only increase the number of measurements re-

quired to disclose the key. A good practice is to update the key used by the cryptographic

device as frequently as possible to avoid disclosure.

1.3 Power Simulations for Designers

Power analysis attacks are typically mounted on power measurement traces obtained from

a physical prototype of a cryptographic device. However, in this thesis we aim at attacking

the device at design time by using the simulated power measurements from the digital design

8 Chapter 1. Introduction

of the cryptographic device. This approach is more suited to the designers of cryptographic

devices instead of attackers who do not have access to the design files of the device. The

power consumption of digital circuits can be simulated at three levels of complexity, the

behavioral level, the logic level and the analog level. Increasing the complexity of power

simulation leads to more accurate power measurement but at the cost of more simulation

time and resources.

The lowest level of complexity is power simulations at the Behavioral level. Power simula-

tions at the behavioral level are typically done using instruction set power simulators which

use high-level power models of the major components of the design (CPUs, memories, buses

etc.) to estimate the average power consumption of the design. Behavioral power simu-

lations are fast but not accurate enough to be used for power analysis attacks. The next

level of complexity is power simulations at the logic level which utilizes a synthesized netlist

of standard-cells for simulation. Logic level power simulations are performed in two steps.

First, the netlist, back-annotated with the signal and cell delays, is simulated to obtain a

toggle trace/wavedump of the design. This toggle trace contains the transitions and their

respective timestamps for each cell in the design. Next, this toggle trace is mapped to a

power trace using power models provided by the standard-cell library. These power models

use information such as fanout and the transition times of input and output wires of cells

to convert transitions into power consumption. Tools such as Primetime PX are used for

performing logic level power simulations. We will rely on logic level power simulations to

obtain simulated power measurements in this thesis.

The last and most accurate level of power simulations is the Analog level of power simula-

tions. Analog level power simulations are performed on a netlist of transistors and parasitic

elements. Parasitic elements include the capacitances of the wires and the cells. Analog cir-

cuit simulators, such as SPICE, use differential equations to solve for voltages and currents

in the circuit described by the netlist. Such simulations consume a lot of simulation time

1.4. Contributions 9

and resources to calculate the power consumption of modern digital designs making it unfit

for utilization in power analysis attacks.

1.4 Contributions

The contributions of this thesis are summarized as follows:

• Introduction of a design time methodology for side-channel leakage assess-

ment: A novel methodology, called Gate-level leakage assessment (GLA), is devised

in this thesis which can assess the vulnerability of a gate-level netlist to power-based

side-channel attacks. The methodology also identifies the cells in the netlist that cause

side-channel leakage.

• Demonstration of GLA using the design of an encryption co-processor: The

GLA methodology is introduced by demonstrating it on the design of an AES en-

cryption engine. GLA pinpoints sources of side-channel leakage in the netlist of the

encryption engine.

• Implementation of selective cell-level countermeasures: We demonstrate that

sources of side-channel leakage can be selectively be implemented in DPA resistant

logic styles to eliminate side-channel leakage with minimal area impact and design

effort.

• Utilization of standard design tools and portability: The GLA methodology

uses standard ASIC design tools and hence can be incorporated into existing EDA de-

sign flows. The countermeasure strategy uses standard-cells to construct DPA-resistant

cells without the need of fully-custom cells.

10 Chapter 1. Introduction

1.5 Thesis Outline

In chapter 2 we define a design methodology called Gate-level Leakage Assessment (GLA)

which combines gate-level power simulations with side-channel leakage assessment to identify

sources of side-channel leakage in a netlist. Next, in chapter 3 we demonstrate the use of cell-

level countermeasures to selectively replace these sources of side-channel leakage to effectively

reduce the vulnerability of the netlist to DPA attacks. In the last chapter, we conclude the

thesis.

Chapter 2

Gate-level Leakage Assessment

2.1 Overview

In this chapter we describe a design methodology called Gate-level Leakage Assessment

(GLA). GLA combines power simulations on a gate-level netlist with power analysis attack

methods to precisely locate sources of side-channel leakage. Security against power analysis

attacks is generally an after thought for chip designers as most side-channel leakage assess-

ment methodologies require real power measurements on the ASIC prototype of the chip for a

DPA style attack. Real power measurements on the prototype are also prone to noise. To fix

the side-channel vulnerabilities exposed by power measurements on the prototype, designers

have to rethink the design, go through the tape-out procedure and re-spin the chip. This

ordeal leads to losses in terms of revenue and time to market. As the GLA methodology uses

gate-level simulations, it is noiseless and is applicable at design time before the tape-out of

the chip. Moreover, merely confirming the existence of side-channel leakage from a design is

not enough. GLA goes one step further by precisely identifying cells in the gate-level netlist

that cause side-channel leakage. By locating the cell-level or architecture-level sources of

leakage, the designer can fix the side-channel leakage by implementing selective countermea-

sures.

Figure 2.1 is an overview of the GLA methodology. We have a hardware implementation

of a cryptographic algorithm, e.g. AES, in the form a synthesized gate-level netlist. We also

11

12 Chapter 2. Gate-level Leakage Assessment

Figure 2.1: GLA Overview

have detailed knowledge of the cryptographic algorithm itself. The first step is similar to a

CPA [4] attack. For a CPA attack, an intermediate variable V is first chosen in the algo-

rithm e.g. the output of the first SubBytes() operation. Next, a leakage model is computed

from an attribute of the intermediate variable e.g. Hamming Weight. This leakage model

represents the modeled power consumption for a particular plaintext and a key byte. A

gate-level power simulation of the netlist with the same plaintext and key yields the actual

power consumption of the design. As opposed to CPA, we compute the Pearson correlation

between the power model and the actual power consumption only for the correct key guess.

This process, termed as Power Correlation Analysis, yields periods of side-channel leakage in

the form of correlation peaks. During these periods of leakage we correlate net activities in

the netlist with the power model. We call this process Architecture Correlation Analysis and

it yields the nets which switch in concert with the power model. Finally, the drivers of these

nets are the sources of side-channel leakage and are ranked in order of their contribution to

side-channel leakage by computing a metric called Leakage Impact Factor (LIF).

The intermediate variable of the cryptographic algorithm along with its attribute chosen

2.2. Related Work 13

as the power model can be termed as the Leakage model. The GLA methodology heavily

depends on the choice of a leakage model. The leakage sources revealed by GLA correspond

to the particular leakage model chosen. Hence choosing a different leakage model will result

in different, and possibly completely separate, set of leakage sources in the design. Further-

more, the GLA methodology described in this thesis assumes that the designer is aware of

vulnerable leakage models for the cryptographic algorithm. This thesis demonstrates GLA

using a hardware implementation of the AES algorithm which has well-known leakage mod-

els. For example, the Hamming distance of the adjacent rounds outputs in hardware AES

implementation which reveals the side channel leakage during the update of the state regis-

ter, is a typical leakage model used by attackers to attack AES. Hence, it is a fruitful GLA

target for the designer.

The designer does not necessarily need to be aware of leakage models beforehand as an

exploration can be conducted on the design to find vulnerable leakage models. Moreover,

information tracking techniques such as GLIFT [9] , which reveal how secret data propagates

in an architecture and can be employed by designers to identify an appropriate leakage model.

2.2 Related Work

As described in chapter 1, several attack methodologies exist for extracting secret information

from the power consumption of a cryptographic device. But most of these methodologies have

used power measurements from a physical ASIC prototype chip. For design time assessment

of side-channel leakage, precise power prediction is needed from the design pre-tapeout.

Estimation of power consumption of the digital circuit is challenging as the power not only

depends on transitions in the design but low-level electrical effects caused by circuit parasitics

and the varied consumption of standard-cells in the technology library used for fabrication

14 Chapter 2. Gate-level Leakage Assessment

of the design. We have discussed in section 1.3 that power simulations at accuracy of the

logic level or the analog level are needed for mounting a DPA-style attack on the design of

the cryptographic device.

A couple of previous works have used power simulations at the accuracy of the analog

and logic levels. Regazzoni [13] has explored the implementation of certain portions of a

processor in a DPA-resistant logic style by carrying out simulations using Synopsys Nanosim,

a transistor level simulator. Bhasin [3] has proposed an early-design time methodology to

assess side-channel leakage by comparing power traces at varying levels of accuracy. They

conclude that logic-level digital simulators generate power traces with reasonable accuracy

while keeping the runtimes under limits as compared to SPICE simulators like Ultrasim.

Logic level power simulations are speedier, hence Barenghi and Regazzoni [1] use Synopsys

PrimeTime to devise and verify a security metric which combines measurements to disclosure

with the computational effort needed to lead a attack on the design of a crytographic device.

The previous works [1] [13] [3] employ power simulations at the analog or logic levels to

confirm the presence of side-channel leakage in the design but are not capable of pinpointing

the causes of this side-channel leakage.

Power simulations at the Register-Transfer level (RTL) are not generally accurate because

RTL is a behavioral level description of the design and ignores low-level electrical effects such

as circuit parasitics and the technology library used for fabrication. A recent work RTL-PSC

[11] describes side-channel leakage assessment at design time by using RTL power simulations

for the purpose of achieving faster simulations. But due to the inaccuracies involved in

behavioral level power simulations, RTL-PSC is limited to identification of leakage sources

at the level of design modules.

Previous works like GLIFT [9] and SecVerilog [18] use information-flow tracking instead

of performing power simulations. These approaches are more useful in identifying timing-

based side-channel leakage as they analyze the propagation of an intermediate variable in

2.3. Experimental Setup 15

the architecture or a gate-level netlist. But these mechanisms cannot directly be used for

assessment of power-based side-channel leakage.

By using Synopsys Primetime PX, we perform power simulations at the logic-level which uses

the transitions in the netlist and combines it with power models in the technology library,

we aim at precisely identifying the sources of side-channel leakage. We show that runtimes

remain reasonable by adopting logic level power simulations.

2.3 Experimental Setup

The target for GLA is the AES Encryption Coprocessor integrated into the FAMEv2 SoC

which is designed in house by the Secure Embedded Systems Lab at Virginia Tech. Figure 2.2

shows a block diagram of the SoC. FAMEv2 is the second iteration of the FAME(Fault-attack

Aware Microprocessor Extensions) SoC [17] and is a fault-attack-resistant SoC with addi-

tional fault injection and analysis features. The components of the SoC are centered around

an in-order RISC core, based on the open-source and synthesizable 32-bit LEON3 design

and the SPARC-V8 architecture. In addition to the FAME core, the FAMEv2 also consists

several peripherals, on chip memory and co-processors interconnected through AMBA AHB

and APB buses. FAMEv2 has an AES co-processor with encryption/decryption functional-

ity and support for Electronic Code Book(ECB) and Cipher Block Chaining(CBC) modes

of operation. This co-processor is an unprotected, 1 round-per-cycle design that serves as

a hardware module for experiments with side-channel analysis. The co-processor interfaces

with the FAME core on the APB peripheral bus using memory-mapped registers for transfer

of data and commands to control the co-processor’s operation.

The AES co-processor implements the AES algorithm in hardware. Even though the GLA

16 Chapter 2. Gate-level Leakage Assessment

Figure 2.2: SoC block diagram

Figure 2.3: Architecture of AES encryption engine

methodology is applicable to the complete SoC, this thesis aims at performing side-channel

leakage assessment and identifying leakage sources within the AES co-processor. For this

2.4. GLA Methodology 17

purpose, all experiments in this thesis are performed on the RTL design of the encryption

engine of the co-processor which is extracted from the FAMEv2 design. The design consists

sub-modules for key expansion, round counter and substitution box (S-box), all of which are

employed during the AES encryption operation. By creating this standalone AES encryption

setup, we lose the APB interface and the ability to program the encryption engine via

software running on the LEON3 core. Instead the AES encryption engine is stimulated

through a Verilog testbench which provides plaintext and encryption key. As shown in

Figure 2.3 the datapath of the AES encryption engine is a single round of the AES-128

algorithm consisting of byte substitution, shift row, mix columns and key addition functions

with simultaneous key expansion. The AES encryption completes one 128 bit encryption in

11 clock cycles.

2.4 GLA Methodology

This section will describe the GLA methodology and demonstrate its use on the design of

the AES encryption engine. Four steps are involved in the methodology. In the first step,

the waveform dumps and simulated power traces are obtained using gate-level simulations.

In the second step we look for correlation between the power model and the simulated power

traces. The third step involves correlating the net activity with the power model during

periods of side-channel leakage. Finally, in the last step we compute the Leakage Impact

Factor (LIF) for each cell in the design using the correlation factors and power traces obtained

in the second and third steps. The output of GLA is a list of leaky cells in the design.

18 Chapter 2. Gate-level Leakage Assessment

Figure 2.4: Simulation Procedure

2.4.1 Gate-level Simulations

In the first step, we use the gate-level description of the design and perform functional and

power simulations. The purpose of this step is to generate Value Change Dump (VCD)

waveform files, and subsequently, simulated power traces which are used in later steps for

side-channel leakage assessment and leakage source analysis. Figure 2.4 shows the simulation

procedure including functional and power simulations.

Hardware synthesis is performed on the RTL design using Synopsys Design Compiler with

the TSMC 180nm technology library to obtain a gate-level netlist. Also timing information

of the design is captured by the synthesis tool in a Standard Delay Format (SDF) file. As we

have not performed place and route, the timing information only captures the individual cell

2.4. GLA Methodology 19

Figure 2.5: Gate-level functional Simulation

delays but not the interconnect delays. The functional and power simulations are automated

to run with randomized plaintext stimuli using Bash scripting to obtain a set of 600 VCDs and

power traces. Each VCD file, for a particular plaintext stimulus, generates a corresponding

power trace.

Functional Simulation:: The gate-level netlist, backannotated with the delays in the SDF

file, is stimulated with a Verilog testbench on the ModelSim simulator. A clock generator in

the testbench clocks the design at 24MHz which is the nominal frequency of the FAMEv2

SoC. The testbench resets the encryption engine, provides the 128bit plaintext and key to

the inputs of the engine and triggers encryption. When the done signal is asserted by the

design, the testbench reads out the ciphertext from the output port of the design, after

which the simulation is terminated. During the simulation, ModelSim commands are used

to record the toggle activities of all the wires in the design into a VCD file. Figure 2.5

shows the simulation in ModelSim graphical interface. The two cursors mark the start and

done signal of encryption. Power Simulation:: For power estimation at design time,

we use Synopsys Primetime PX. Primetime PX id a power analysis solution that accurately

analyzes full-chip and modular power dissipation of cell-based designs. Primetime PX builds

a detailed power profile of the design based on the circuit connectivity, the switching activity,

the net capacitance and cell-level power behavior data in the technology library (.db). We

20 Chapter 2. Gate-level Leakage Assessment

Figure 2.6: Sample Power Trace

use the Time-Based Power Analysis mode in PrimeTime PX in which the tool calculates the

power per event to generate power waveforms over time. The gate-level switching activity is

provided in the form of our VCD file obtained from functional simulation. Time-based mode

allows us to report dynamic and leakage power over time of all design hierarchies, including

the leaf cells. We take into account the dynamic power which is the power dissipated by

the cells due to switching activity on the inputs or outputs of the cells. The leakage power

is ignored for our power measurements as it is the power dissipated by the cell when it is

not switching i.e. static power. For a CPA attack, we only need the power of the whole

design, but the power of the individual cells (leaf cells) will be used when we rank them

for their contribution to side-channel leakage. When time-based power analysis is complete,

Primetime PX generates power waveforms that displays power numbers over time either in

a Fast Signal Database (FSDB) format or an ASCII based textual format (.out). We use

the textual (.out) format for the power traces as it more convenient to use for the next

steps of GLA. Figure 2.6 shows a sample power trace in visual form after import to Riscure

Inspector.

2.4.2 Power Correlation

Pearson Correlation:: Once we have obtained the simulated power traces, we can cor-

relate them with the power model. Similar to CPA, the power model is an attribute of an

2.4. GLA Methodology 21

intermediate variable of the cryptographic algorithm. In the case of the AES co-processor,

we analyze the update of the state register as the potential source of side-channel leakage

[10]. Hence the intermediate variable chosen is the value of the state register. The power

model chosen is the Hamming distance of the state register outputs of adjacent AES rounds,

the first AddRoundKey and the second AddRoundKey operation. Similar to a CPA attack,

we compute the Pearson Correlation between the simulated power traces and the power

model. As opposed to CPA, we are already aware of the key. The set of power traces have

randomized plaintext but a constant encryption key. Also we know that the correct power

model corresponding to the correct key hypothesis yields the highest correlation value [4].

Hence we compute the correlation only for the correct key guess. Since we are running the

simulation with full knowledge of the secure asset, we typically find sharp correlation peaks.

In addition, our experiments show that due to the noiseless character of a power simulation,

we are able to obtain sharp correlation peaks with only a limited number of power traces.

Let ti denote the ith simulated power consumption trace and T be the set of traces. Let

V denote the intermediate variable of the algorithm, pi(V) be the power model value cor-

responding to the intermediate variable for the ith trace and P be the set of power model

values. For each bit in the intermediate variable V , we obtain the correlation coefficient ρ

as follows:

ρT,P =
cov(T, P)

σTσP

(2.1)

where: cov : the covariance
σT : the standard deviation of T
σP : the standard deviation of P

The correlation coefficient is a measure of the linear relationship between the simulated

power measurements and the power model. The correlation coefficient value can range be-

tween -1 and 1. The calculation of the correlation coefficients is mapped to a custom Java

module in Riscure Inspector. The module uses the plaintext and stimuli to calculate the

intermediate value and the power model. The output is a correlated trace over time for each

22 Chapter 2. Gate-level Leakage Assessment

Figure 2.7: Power Correlation Trace

of the 128 bits in the intermediate variable. We represent the secure asset’s most significant

bit as bit-0, and the least significant bit as bit-127. After analyzing the correlation results

for the AES co-processor design, we observe that the seventh bit in each byte has the high-

est correlation value as compared to the rest of the bits suggesting that the seventh bit is

the leakiest bit corresponding to the secure asset chosen. Bit-118 has the most significant

peaks in its byte as observed by visual inspection. Therefore, we choose the bit-118 as the

GLA analysis target. Figure 2.7 shows the result of power correlation for bit-118. A high

correlation value indicates side-channel leakage in the design. The time duration shown in

the figure is the time interval of the update of the state register after the first round and of

AES (after first AddRoundKey operation) with margins.

Identification of Leakage Time Interval:: We need to the identify the time regions

during which side-channel leakage occurs. The time regions over which ρ is above a given

threshold ρthreshold) are called Leakage Time Interval (LTI). The definition of ρthreshold is

based on the designer’s definition of a distinguishable correlation peak. For example, un-

der the assumption of the Gaussian noise model, we utilize confidence intervals to define

2.4. GLA Methodology 23

ρthreshold. During these time regions, we will further analyze the design using the next steps.

For identifying the LTI for bit-118, we select the threshold as the 99% confidence interval

boundary for the bivariate correlation coefficient (Pearson Correlation coefficient) value with

a sample size of the number of simulated traces. For 600 traces, the resulting confidence

interval is [-0.105, 0.105]. This suggests that a correlation coefficient value greater than 0.105

or lower than -0.105 is considered significantly different from zero with a 99% probability.

The resultant leakage time interval using this threshold is shown in Figure 2.7.

2.4.3 Architecture Correlation

In the next step of GLA, we perform correlation between the leakage model and the toggle

activities of the gate-level design. The basic idea of this step is to isolate the wires in the

design that toggle in accordance with the leakage model during periods of side-channel leak-

age i.e. the Leakage time interval (LTI). From the power simulations step, we have access to

the toggle traces (VCD) of the design for the different stimuli. Value change dump (VCD)

files, as the name suggests, record the activity of the design in the form of time-ordered

value changes for the nets in a design. A discrete correlation coefficient is computed from

the toggle activity of wires in the design and the leakage model using a custom scoring rule.

The scoring rule is depicted in table 2.1. The scoring rule is applied to each net in the

design that is active during the LTI in any of the stimuli. For a particular stimuli, if the

leakage model predicts a value of 1 and the wire toggles during the LTI, the score of the

wire is incremented. Similarly if the leakage model predicts a value of 0 and the wire does

not toggle, the score of the wire is incremented. In the rest of the two cases where the toggle

activity of the wire is not in accordance to the leakage model, the score is decremented. The

architectural correlation coefficient Cj for net j is the sum of its scores over all the stimuli.

24 Chapter 2. Gate-level Leakage Assessment

Table 2.1: Architecture Correlation Scoring Rule

Leakage Model
Net Activity Toggle No Toggle

1 +1 -1
0 -1 +1

A high value in Cj has a different meaning compared to a high value in ρ. A high value in

ρ reflects a strong dependency between measurement and leakage model; a high value in Cj

reflects a strong dependency between activity of net j and the power model. A high architec-

ture correlation therefore means that the assumed power model is realized by one (or more)

specific net(s). For the our specific scenario, involving the AES co-processor and bit-118 of

the state, the architecture correlation is realized using two read iterations of the set of VCD

files. In the first read iteration all of the nets which toggle during the LTI in any of the VCD

wavedumps are added to a dictionary. Now, in the second read iteration we compare the

toggle activity of the power model and the toggle activity of the nets in the LTI and assign

correlation scores as shown in Table 2.1. The power model chosen is the Hamming Distance

of the state register between consecutive rounds of the AES algorithm. For bit-118, if the

Hamming Distance is 1, the state register bit toggles else it remains the same. Hence, if the

Hamming Distance is 1 and a particular net toggles, its score is incremented by 1. Similarly,

if the Hamming Distance is 0 and the net does not toggle, its score is incremented by 1.

Otherwise the score is decremented by 1. For 600 traces, the maximum architecture cor-

relation score for nets is capped at 600 for nets which toggle in concert with the power model.

Table 2.2 shows ten nets with the highest architectural correlation coefficients. aes_cipher_top

is the instance name of the top level module of the AES encryption engine, while us23 is the

instance name of a Substitution box (S-box). The flip-flop of the state register which holds

bit-118 perfectly correlates with the power model. Rest of the nets correspond to outputs

of gates in the S-box. U296 also correlates perfectly with the power model because it is an

2.4. GLA Methodology 25

Table 2.2: Architectural Correlation coefficients for AES engine

Net Architecture Correlation coefficient
aes_cipher_top/sa23_reg_1_/Q 600
aes_cipher_top/us23/U257/Y 600
aes_cipher_top/us23/U296/Y 442
aes_cipher_top/us23/U179/Y 442
aes_cipher_top/us23/U148/Y 434
aes_cipher_top/us23/U178/Y 434
aes_cipher_top/us23/U174/Y 432
aes_cipher_top/us23/U338/Y 424
aes_cipher_top/us23/U316/Y 350
aes_cipher_top/us23/U147/Y 346

inverter attached to the flip-flop corresponding to bit-118, and hence toggles in the exact

opposite manner of the power model. Rest of the nets correspond to gates in the S-box but

with lower architecture correlation coefficients as they are combinational gates dependent

on other inputs as well.

Leakage Impact Factor:: A significant architectural correlation coefficient for a net does

not guarantee large contribution to power-based side-channel leakage. We also need to take

into account the power consumed during transitions of the nets. Hence, as the final step

of GLA, we compute the Leakage Impact Factor (LIF) of the driver of each net as the Ar-

chitecture correlation of the net weighted with the power consumption of the driver of the

net, during the LTI averaged over all stimuli. The power consumption of individual cells is

extracted from previously generated power traces which record the power consumption of

all leaf cells. Finally, the LIF of all gates are ranked from highest to lowest. The net drivers

that rank highest in the list are marked as gates with side-channel leakage.

Table 2.2 shows ten nets with the highest Leakage Impact factors for the AES co-processor

and bit-118. The flip-flop which holds bit-118 of the state has the highest LIF and contributes

most to side-channel leakage. As the 128bit state register holds the state of the AES process

and is updated after every round, it is no surprise that it should be most leaky net in the

26 Chapter 2. Gate-level Leakage Assessment

Table 2.3: Leakage Impact Factors for AES engine

Net Leakage Impact Factor
aes_cipher_top/sa23_reg_1_/Q 0.221
aes_cipher_top/us23/U257/Y 0.196
aes_cipher_top/us23/U296/Y 0.057
aes_cipher_top/us23/U211/Y 0.056
aes_cipher_top/us23/U148/Y 0.053
aes_cipher_top/us23/U234/Y 0.051
aes_cipher_top/us23/U316/Y 0.050
aes_cipher_top/us23/U293/Y 0.043
aes_cipher_top/us23/U101/Y 0.042
aes_cipher_top/us23/U298/Y 0.041

co-processor. The output of U296, an inverter in the S-box, is the second leakiest net as it is

the inversion of the output of the flip-flop and toggles in synchronization with the flip-flop

output. Rest of the nets correspond to gates in the S-box as well. These gates in the S-box

are part of the logic cone of either the flip-flop output or the inverter hence participating in

the substitution operation on bit-118 of the state, thereby leaking side-channel information.

The sixteen lookup based S-boxes used in the design of the co-processor contribute to a

major chunk of the die area occupied by the co-processor and hence responsible for power

side-channel leakage. Figure 2.8 shows a partial schematic of the S-box design. The leaky

gates, marked in red take the state register output as input. Observing these results bolsters

our confidence in our strategy as it is able to identify sources of leakage in our co-processor

design.

Runtime evaluation of GLA: The critical path of GLA is broken down into Gate-level

simulations, Power Correlation, Architectural Correlation and Computation of the Leakage

Impact factors (LIF). The Table 2.4 indicates the run times for the phases in the GLA

procedure for our design. The design of the AES encryption engine contains 9585 cells and

is exercised by a set of 600 stimuli. The gate-level simulations and power estimation, which

2.4. GLA Methodology 27

Figure 2.8: Leakage Sources in AES encryption engine

are included in Power Correlation, need to be performed only once for each application and

can be used for analysis with varying leakage models. The Architectural Correlation and

Computation of LIF steps are performed only for a leaky bit, while the Power Correlation

is performed for all the 128 bits in the state. The total runtime for GLA depends on the

following factors: the complexity of the design, the number of simulated traces and the

expansiveness of the leakage time interval. Nevertheless, the time consumed for evaluating

the design using GLA is insignificant as compared to the delay and revenue loss caused by

28 Chapter 2. Gate-level Leakage Assessment

Table 2.4: Runtime Evaluation for GLA Steps

GLA Steps Runtime (s/simulation)
Gate-level simulations 14.1
Power Correlation 0.87
Architectural Correlation 0.15
Computation of LIF 0.08

a re-spin of the chip.

Chapter 3

Countermeasures

3.1 Overview

In chapter 2 we introduced a methodology called Gate-level Leakage Assessment (GLA),

which allows us to do side-channel leakage assessment of a netlist at design time by corre-

lating simulated power traces with a leakage model. Moreover, GLA allows us to precisely

identify the cells in the netlist which are responsible for power-based side-channel leakage by

correlating the toggle activity in the netlist with the leakage model. We demonstrated this

methodology using the standalone hardware implementation of an AES encryption engine.

Leakage sources were identified in the netlist of the encryption engine which included both

sequential elements (flip-flops) and combinational gates.

We introduced countermeasure against power analysis attacks in section 1.2. The objec-

tive of countermeasures is to make the power consumption of the design independent of the

intermediate values computed by the cryptographic algorithm implemented by the design.

Currently, countermeasure techniques can be divided into two major categories: Masking

and Hiding. Masking works by making the side channel information random and hence un-

predictable. Masking techniques are generally algorithm specific and hence require research

to find a randomized version of the specific algorithm. On the other hand, Hiding techniques

ensure that the logic dissipates a constant amount of power thus decoupling the side chan-

nel leakage from the internal states of the algorithm. As hiding techniques are algorithm

29

30 Chapter 3. Countermeasures

independent, they are applicable to a wider set of designs. We concentrate on Hiding based

countermeasures in this thesis.

The power consumption of traditional standard cells are dependent on the signal activity

i.e. the Hamming distance of consecutive data values. This is the fundamental reason why

information can leak through power measurements. To build a cryptographic device that

consumes a constant amount of power for all operations and data values being processed is

not trivial. As DPA attacks use a large number of traces, they can exploit minute differences

in power consumption to extract the secret key. Hiding techniques enforce constant power

dissipation by employing special logic styles for building the cells of the cryptographic de-

vice. If the power consumption of each cell, built using the special logic style, is constant the

power consumption of the entire design will be constant. These special logic styles are typi-

cally based on logic style called Dual-Rail Precharge Logic (DRPL). We will first introduce

DRPL.

3.2 Dual-Rail Precharge Logic

Dual-Rail Precharge Logic (DRPL) is used to build logic cells that consume a constant

amount of power in each clock cycle by combining the concepts of Dual-Rail Logic and

Precharge Logic.

Typically, boolean logic cells, for instance a combinational NAND gate, are implemented as

Single-Rail (SR) logic where each logic signal Y is represented by a single wire. A typical

wire carrying a SR logic signal can either not transition, consuming no power, or transition,

consuming power by charging or discharging the capacitive load at the output of the wire.

Dual-Rail (DR) logic on the other hand uses differential encoding where each logic signal is

implemented using two complementary wires, a non-inverted signal Y and its complement

3.2. Dual-Rail Precharge Logic 31

Figure 3.1: Transformation of SR cell to DR cell

Table 3.1: Dual-Rail logic transitions

Y Y
1 -> 1 0 -> 0
1 -> 0 0 -> 1
0 -> 1 1 -> 0
0 -> 0 1 -> 1

Y. The logic signal is only considered valid when these two wires carry complementary

values. DR logic balances the scenarios where a transition occurs as shown in Table 3.1.

When the wire Y transitions from either 0->1 or 1->0, its complement, Y. Extending this

to a logic cell, each 2-input DR logic cell has two pairs of complementary inputs and a pair

of complementary output. Figure 3.1 shows the transformation of a 2-input SR-cell to a

2-input DR cell.

Even though transitions are balanced as shown in Table 3.1, when Y does not transition, its

complement Y does not transition either. This causes side-channel leakage as the data that

causes transitions can be distinguished from data which does not cause transitions. This is

where the concept of Precharge logic comes in. A precharge circuit is applied to all logic

signals such that the logic signal alternates between a precharge value (0 or 1) and the actual

logic value. Therefore, each logic signal goes through two phases, a precharge phase where

all signals are set to a precharge value, and an evaluation phase, where each signal gets its

current logic value. Typically, the clock is used to control the sequence of precharge and

evaluation phases so that each clock cycle is broken down into the two phases. Table 3.2

32 Chapter 3. Countermeasures

Table 3.2: Dual-Rail with Precharge logic transitions

Y Y #Transitions
1 -> 0 -> 1 0 -> 0 -> 0 2
1 -> 0 -> 0 0 -> 0 -> 1 2
0 -> 0 -> 1 1 -> 0 -> 0 2
0 -> 0 -> 0 1 -> 0 -> 1 2

shows the pattern of transitions for Dual-Rail Precharge (DRP) logic. Assuming that the

precharge value is 0 and the first half of the clock cycle is the precharge phase, the values

on both the complementary wires are set to 0 during the precharge phase. During the clock

cycle, the complementary wires combined effectively make the same two transitions, 0->1

and 1->0, in all scenarios. This behavior makes the power consumption of the complemen-

tary wires constant and independent of the transitions on the wire.

Extending this logic to the modification of a 2-input SR cell to incorporate both dual-rail

and precharge properties, the cell needs to have complementary inputs and outputs, and

the inputs need to be precharged to 0 by ANDing with the inverse of the clock as shown

in Figure 3.2. Special care needs to be taken for implementing inverters and registers as

they cannot be precharged in the same way as other combinational cells. As complementary

outputs are available from each cell, the inverter for a logic signal is implemented simply by

swapping the the complementary wires that carry the signal. DR flip-flops are implemented

in a Master-Slave configuration consisting of two stages of back-to-back flip-flops as shown in

Figure 3.3. When the Master stage flip-flop is in the precharge phase i.e. its output is set to

0, the Slave stage provides the stored values to the combinational logic. The combinational

logic calculates an output value and just before the Slave stage and the combinational logic

is updated with the precharge value, the Master stage stores the output of the combinational

logic. Hence, all the cells in the circuit are precharged without any loss of data.

The behaviour of DRP logic cells ensures that the transitions that occur at the comple-

mentary outputs of the cells are the same in each clock cycle, irrespective of the input data.

3.2. Dual-Rail Precharge Logic 33

Figure 3.2: Dual Rail with Precharge cell

Figure 3.3: DRP Flip-flop

But ensuring that the transitions on the complementary outputs are uniform is not enough

as the power consumption of the DRP cell depends on the capacitive load that the comple-

mentary outputs drive. Thus special steps need to be taken during placement and routing

of DRP cells so that the capacitive load on the outputs are balanced, making the routing

procedure more complex as compared to SR cells. Either the two complementary wires are

34 Chapter 3. Countermeasures

routed in parallel by applying constraints using a method called differential routing, or two

complementary circuits are laid out identically using a method called backend duplication.

As we are not working with a post-layout netlist, we will not focus on placement on routing

for the netlist which utilizes countermeasures in this thesis.

DRP logic styles that can be used to build DPA-resistant circuits can be divided into two

categories which differ in design effort and the degree of DPA resistance. The first category

of logic style need new logic cells to be implemented from scratch using transistors. Sense

Amplifier Based Logic (SABL) introduced by Tiri et al. in [14] was among the first proposals

for a DRP logic style. SABL cells require a fully-custom implementation using cross coupled

inverters and a differential pull-down network (DPDN) constructed out of NMOS transistors.

One important aspect of SABL based designs is that all SABL cells are connected to the

clock separately for precharge. The second category DRP logic styles build logic cells using

the SR cells available in existing standard-cell libraries. Using existing cells reduces design

effort at the cost of lower DPA resistance. Wave Dynamic Differential Logic (WDDL) [16]

and Masked Dual-rail with Precharge Logic (MDPL) [12] are DRP logic styles which use

standard technology libraries. WDDL cells are built using standard cells and rely on the

Hiding technique. MDPL combines the concept of Masking i.e randomization of interme-

diate values with masking bit, with the WDDL technique to achieve higher levels of DPA

resistance and also avoids some of the implementation constraints required by WDDL. It has

been shown in [5] and [7] that WDDL is not as secure as SABL, as the time of evaluation

of combinational WDDL cells is still somewhat dependent on the data being processed. As

we are interested in modifying an existing netlist of standard cells we will explore WDDL

further.

Wave Dynamic Differential Logic (WDDL): WDDL was introduced by Tiri and Ver-

bauwhede in [16]. WDDL cells are constructed using SR cells available in the standard-cell

library. Most synthesis tools do not support DRP cells and are instead optimized to use

3.2. Dual-Rail Precharge Logic 35

SR CMOS cells. Hence, logic synthesis of the RTL design is generally performed using a

SR standard cell library and then the cells in the resultant netlist are converted to DRP

cells. Thus the semi-custom design flow used in most ASICs today can be extended easily

to use WDDL cells. In circuits constructed using WDDL cells, only the inputs signals of the

circuit need to be precharged. Combinational WDDL cells evaluate when their inputs are

set to complementary values while they precharge when the inputs are set to the precharge

value. The precharge value ripple through the circuit like a wave, hence the name Wave

Dynamic Differential Logic. The sequential elements i.e. the flip-flops can be constructed

in two ways. The first configuration called Single Dynamic Differential Logic (SDDL) uses

two CMOS flip-flops in a dual-rail configuration with a precharge circuit at the output of

each CMOS flip-flop. The second configuration called Master-Slave Dynamic Differential

Logic (MSDDL) is constructed using four CMOS flip-flops as shown in Figure 3.4 so that the

evaluated values are preserved during the precharge phase. Due to the 2-stage flip-flops the

WDDL circuits need to be clocked at twice the frequency of traditional CMOS SR-cell based

circuits. It has been shown in [8] that SDDL flip-flops are less resistant to power analysis

attacks as compared to MSDDL flip-flops.

The combinational WDDL cells are built using two complementary SR-cells. The first SR

cell takes the non-inverted set of inputs and delivers the non-inverted output. The second

complementary cell takes the inverted set of inputs and delivers the inverted output. For this

property to hold, and for the precharge wave to propagate in a series of such combinational

cells, these cells must represent boolean functions which are positive monotonic functions.

A positive monotonic boolean function is a function that changes its outputs in a fixed di-

rection which is the direction of the change in its inputs. 0->1 transitions on the inputs of

a positive monotonic boolean function can only result in a 0->1 transition on its output.

Similarly 1->0 transition on inputs will only yield a 1->0 transition on the output. AND

and OR boolean functions satisfy this property and hence are positive monotonic functions

36 Chapter 3. Countermeasures

Figure 3.4: WDDL Flip-flop cell

while XOR is not positive monotonic. When all the inputs of a positive monotonic function

are set to 0, its output is 0. If this is not the case, a 0->1 transition will not cause a 0->1

transition on the output as the output is already 1. This property is used for precharge prop-

agation in the WDDL circuit. The two complementary SR cells used to build the WDDL

cell are De Morgan’s complements while inverters are implemented as by exchanging the

complementary outputs. Figure 3.5 shows the WDDL NAND cell, which is realized using an

AND, OR and cross coupled wires. Similarly the whole synthesized netlist can be converted

to a WDDL netlist by using AND, OR and inverters. During the precharge phase the inputs

3.3. Contributions and Outline 37

Figure 3.5: WDDL NAND cell

of all the WDDL cells are set to 0, hence all their outputs are 0. During the evaluation

phase, the inputs to the cells are complementary and the outputs of the cells deliver the

non-inverted and the inverted form of the boolean function implemented by the cell.

3.3 Contributions and Outline

In this chapter, we describe a hardware-based countermeasure technique, applied selectively

to the gate-level cells pinpointed by GLA, to thwart the side-channel leakage. We demon-

strate how existing countermeasure techniques can be applied to the leaky cells selectively

with minor modifications. Finally, we discuss the advantages of GLA combined with selec-

tive countermeasures over traditional countermeasures and the overheads involved.

38 Chapter 3. Countermeasures

3.4 Countermeasures Methodology

In chapter 2, we described a design-time methodology, GLA, to identify cells that cause side-

channel leakage in a gate-level netlist. We demonstrated GLA on the synthesized netlist of

a AES encryption engine. In this section, we develop a cell-level countermeasure strategy

using which can be used to perform transformations on the netlist to thwart power-based

side-channel leakage. The transformation on the netlist will be in the form of selective and

iterative cell replacement of the leaky gates identified by GLA. We have discussed hiding

countermeasures based on Dual-Rail Precharge (DRP) logic in section 3.2. As the netlist

is constructed using Single-Rail (SR) cells from the TSMC standard-cell library, we are

limited to using logic styles similar to WDDL which use existing SR cells in the standard-

cell library to construct DRP cells as opposed to logic styles like SABL which require cells

to be implemented from scratch.

However, the selective replacement strategy presents several challenges in implementation

of WDDL cells in the netlist. WDDL based designs demonstrated in [16] and [15] employ

logic style conversion of the complete netlist to dual-rail cells which are based on positive

monotonic boolean functions so that propogation of the precharge wave can take place.

Selectively replacing combinational gates in the netlist requires us to create an interface

from the SR-cell paradigm to the DR-cell paradigm and back to the SR-cell paradigm.

Secondly, since we cannot ensure that the netlist will consist solely of positive monotonic

boolean gates, the precharge wave does not propogate in the design. Therefore each cell will

be needed to be precharged separately using a clock signal. Lastly, due to the DRP flip-flops

containing 2-stages of flip-flops, the secure design requires a special clocking scheme where

the registers need to operate at a higher frequency as compared to the rest of the unaltered

design. We will demonstrate how we overcame these challenges using transformations of

specific cells in the netlist.

3.4. Countermeasures Methodology 39

Figure 3.6: Transformation of 2-input NAND cell

Transformation of 2-input NAND and NOR cells: Figure 3.6 shows the circuit

of a transformed 2-input NAND cell. The complementary inputs, A and B, required for

Dual-rail operation, are generated locally using inverters. As this modified NAND cell is

going to replace a NAND cell in an otherwise single-rail netlist, there exists no precharge

wave like other WDDL designs. Hence, the inverted and non-inverted inputs are precharged

by four 2-input AND gates which precharge the inputs to 0 when the clock signal is high.

Similar to a WDDL NAND, the AND operation is implemented using complementary AND-

OR SR-cells, while the inverter is implemented using cross-coupled wires. For converting

back to single-rail logic the complementary (inverted) output needs to be terminated. The

complementary output is inverted again and ORed with the primary output. A buffer is

connected to the primary output to fix the imbalance in capacitive loads between the primary

and complementary outputs caused by the addition of the inverter to the complementary

output. Figure 3.7 shows the circuit of a transformed 2-input NOR cell which is built along

similar principles. As compared to the transformed NAND cell, the complementary AND-

OR SR cells are exchanged to achieve NOR functionality using DRP logic. As observed

40 Chapter 3. Countermeasures

Figure 3.7: Transformation of 2-input NOR cell

from the structure of the transformed NAND and NOR cells, a single SR-cell is converted

to a DRP cell using eleven SR-cells. This overhead is caused by the addition of the interface

between SR and DRP logic and the addition of precharge logic.

Transformation of Inverter cell: The transformed inverter cell is intended to replace

single-rail inverters in the netlist. Due to the absence of preceding and succeeding dual-rail

gates, we cannot achieve the functionality of an inverter using cross coupling. As seen in the

transformation of the NAND cell, several SR-cells are needed to create the interfaces between

single-rail and dual-rail logic and vice versa. Figure 3.8 shows the circuit of a transformed

inverter. A complementary input is created locally using an inverter. Next, the dual inputs

are precharged by ANDing with the inverse of the clock signal. The inverter itself is realized

using cross-coupled wires. Finally, we merge the two complementary outputs using a buffer,

inverter and an OR gate similar to the transformed NAND gate.

Transformation of D Flip-flop cell: The transformed flip-flop circuit is based on

the WDDL flip-flop and consists of four standard cell flip-flops in a Master-Slave Dynamic

Differential Logic (MSDDL) configuration which is a 2-stage dual rail configuration as shown

3.4. Countermeasures Methodology 41

Figure 3.8: Transformation of Inverter cell

in Figure 3.9. While one of the stages stores the complementary logic values, the other stage

stores the precharge value. The transformed flip-flop alternates between the evaluation and

precharge phase at the positive edge of the clock cycle. As the values of the flip-flops are

updated every clock cycle, the precharge value appears on the output every alternate cycle.

Hence the precharge-evaluation clock PRECLK is half the frequency of the clock at which

the flip-flops operate (CLK). This requirement leads to part of the netlist to be clocked at

twice the frequency as compared to the original netlist. The two complementary outputs of

the flip-flop are terminated into a single-rail output using a buffer, inverter and an OR gate,

similar to the NAND and inverter transformations. Before the termination, the outputs are

precharged by ANDing with PRECLK. The two complementary inputs are not generated

locally but obtained from a preceding DRP logic gate to avoid any time delay between the

two complementary inputs.

42 Chapter 3. Countermeasures

Figure 3.9: Transformation of Flip-flop

3.5 Experimental Setup

The experimental setup for countermeasures is an extension of the setup used for Gate-

level Leakage Assessment (GLA) in section 2.3. We demonstrated GLA using a synthesized

netlist of an AES encryption engine. GLA helped us identify leakage sources which caused

bit-118 of the state to leak via power-based side-channel leakage. The leaky elements are

cells in the netlist, both sequential and combinational. For applying countermeasures, we

need to selectively replace these leaky cells in the netlist with the secure versions of these

cells detailed in the previous section. After replacement, the procedure remains similar to

GLA where we perform functional simulations, power simulations and power correlations to

assess side-channel leakage.

Architecture and Testbench modifications: The transformed NAND, NOR, inverter

and D flip-flop cells are declared as new top-level modules in the netlist. These secure

3.5. Experimental Setup 43

versions of the cells are constructed from cells in the standard-cell library as shown in the

previous section. The transformed NAND and D flip-flop modules are listed below.

//wddl nand

module WDDLNAND2X (A,B,clkinv,Y);

input A, B,clkinv;

output Y;

wire Ainv, Binv, Apre, Bpre, Ainvpre, Binvpre, y, y_bar, y_buf, y_barinv;

AND2XL U1 (.A(A), .B(clkinv), .Y(Apre));

AND2XL U2 (.A(B), .B(clkinv), .Y(Bpre));

INVXL U3 (.A(A), .Y(Ainv));

INVXL U4 (.A(B), .Y(Binv));

AND2XL U5 (.A(Ainv), .B(clkinv), .Y(Ainvpre));

AND2XL U6 (.A(Binv), .B(clkinv), .Y(Binvpre));

AND2XL U7 (.A(Apre), .B(Bpre), .Y(y_bar));

OR2XL U8 (.A(Ainvpre), .B(Binvpre), .Y(y));

BUFXL U9 (.A(y), .Y(y_buf));

INVXL U10 (.A(y_bar), .Y(y_barinv));

OR2XL U11 (.A(y_buf), .B(y_barinv), .Y(Y));

endmodule

//wddl d flip-flop

module WDDLDFFHQX2 (D, Dinv, CLK, PRECLK, Q);

input D, Dinv, CLK, PRECLK;

output Q;

wire q, qinv,z, zinv, qpre, qinvpre, qbuf, qbarinv, preclkinv;

44 Chapter 3. Countermeasures

DFFHQX1 reg_11 (.D(D), .CK(CLK), .Q(z));

DFFHQX1 reg_12 (.D(z), .CK(CLK), .Q(q));

DFFHQX1 reg_21 (.D(Dinv), .CK(CLK), .Q(zinv));

DFFHQX1 reg_22 (.D(zinv), .CK(CLK), .Q(qinv));

CLKINVX1 U2 (.A(PRECLK), .Y(preclkinv));

AND2X1 U3 (.A(q), .B(preclkinv), .Y(qpre));

AND2X1 U4 (.A(qinv), .B(preclkinv), .Y(qinvpre));

BUFX1 U5 (.A(qpre), .Y(qbuf));

INVX1 U6 (.A(qinvpre), .Y(qbarinv));

OR2X1 U7 (.A(qbuf), .B(qbarinv), .Y(Q));

endmodule

Most of the cells identified are combinational gates, NAND, NOR and inverters, in a par-

ticular S-Box instance (us23) of the design. us23 is an instance of aes_sbox_8 which is

the eighth declaration of the S-box. The synthesis tool flattens the design resulting in 20

separate declarations of the S-box where 4 declarations are used in key expansion, while

the rest 16 are used for the each byte of the state in the AES rounds. The S-box modules

are purely combinational, but as the transformed gates require precharge to be generated

locally, the declaration of aes_sbox_8 is modified to include a precharge clock as input.

With the precharge clock accessible from within the S-box, the leaky gate instances can be

simply replaced with corresponding instances of the transformed gates. The precharge clock

is included as an input while the rest of the inputs and outputs remains the same.

The leakiest cell identified was a flip-flop of the state register sa23_reg_1_. This flip-

flop instance is replaced with the transformed dual-rail precharged version which contains

4 standard-cell flip-flops. This flip-flip requires two clocks as input, the clock of operation

and the precharge clock. The precharge clock has half the frequency of the clock of oper-

3.6. Results and Analysis 45

ation. The flip-flop is declared in the top module of the design, aes_cipher_top. Hence

the declaration of aes_cipher_top is modified to include the precharge clock as input along

with the clock of operation. The testbench is enhanced to provide two clocks two the design

24MHz and 12MHz. The entire state-register is changed to include 2-stage flip-flops while

the sa23_reg_1_ is implemented with 4 flip-flops so that all the flip-flops in the state regis-

ter update simultaneously. The state-register updates at 24MHz while the rest of the design

operates at 12MHz.

Simulation Procedure: The synthesis tool outputs a verilog netlist consisting of cells

from the standard-cell library along with timing information of the cells in the form of a

SDF (Standard Delay Format) file. The SDF file contains delay information of each cell in

the netlist. Gate-level functional simulations take into account these delays by back anno-

tating the netlist with the cell delays. After replacement of the leaky cells in the netlist,

the SDF needs to be updated to include timing information for the new cells that have

been introduced due to the replacement. This procedure is carried out by importing the

new netlist into Design Compiler and generating a new SDF file. Once we obtain the SDF

file corresponding to the modified netlist, we can perform functional and power simulations

and then proceed to do power correlation in exactly the same way as demonstrated in GLA

(2.3).

3.6 Results and Analysis

In chapter 2, we identified sources of leakage corresponding to a leakage model in a netlist

of a AES encryption engine. In 3.4 we detailed cell-level countermeasures for selective re-

placement of leaky sequential and combinational cells in the netlist. However, WDDL based

countermeasures for leaky sequential cells (flip-flops) require replacement of CMOS flip-flops

46 Chapter 3. Countermeasures

Figure 3.10: Correlation result for reference design

with two-staged dual-rail flip-flops. This leads to the operating frequency of the overall de-

sign to be cut in half i.e. 12MHz while the flip-flops are updated at the frequency of 24MHz.

To make an accurate comparisons, the reference design, without countermeasures, was there-

fore enhanced such that the state register contains two-staged single-rail flip-flops. Also, the

testbench for the reference design was changed to clock the design at 12MHz. These mod-

ifications do not change the side-channel leakage characteristics of the design but allow for

easier comparisons to the designs with countermeasures. Figure 3.10 shows the correlation

peaks and leakage time interval for bit-118 in the new reference design.

In section 2.4, we obtained a list of leaky cells in the netlist ranked according to their

Leakage impact factor (LIF) which quantifies their contribution to side-channel leakage.

The two highest ranking cells were the flip-flop, sa23_reg_1, and the inverter U257. These

two cells correlate perfectly with the leakage model hence contributing the most to side-

channel leakage. The flip-flop and inverter are replaced with their transformed version from

section 2.4. Figure 3.11 shows the correlation peaks (in blue) after the replacement of the

two highest ranking leaky cells in the design and the comparison to the reference design (in

yellow). The comparison shows a decrease in the maximum correlation coefficient observed.

The enhanced design still shows some correlation peaks close to the threshold of 0.105.

We repeat the process of selectively replacing cells in the netlist with transformed NAND,

NOR and inverter cells. Figure 3.12 shows a comparison of the correlation peaks after re-

placement of 40 highest ranking cells in the design and the correlation peaks of the reference

3.6. Results and Analysis 47

Figure 3.11: Comparison of correlation coefficients with top 2 cells replaced

Figure 3.12: Comparison of correlation coefficients with top 40 cells replaced

design. The resulting correlation trace shows even more decrease in correlation peaks.

Table 3.3 shows a comparison of the maximum and average correlation coefficient values

for the interval shown in figure 3.10 as we proceed with iterative selective replacement of

leaky cells in the design. As we increase the number of cells replaced with their transformed

versions, the highest as well as average correlation coefficient values decrease. The sharpest

drop occurs after the replacement of the 2 most leakiest cells in the design. Thereafter,

replacing more and more cells leads to a flatter correlation curve.

The relationship between the number of traces needed for a DPA attack and the correlation

coefficients can be approximated to an inverse quadratic relationship for correlation values

less than 0.2 [7]. By replacing 40 leaky cells the peak correlation value drops by a factor of

Table 3.3: Trend of maximum and average correlation coefficients

No. of leaky cells replaced Max. Correlation Coefficient Avg. Correlation Coefficient
0(reference design) 0.1789 0.0823

2 0.0847 0.0226
20 0.0586 0.0248
40 0.0480 0.0178

48 Chapter 3. Countermeasures

4x, hence the traces required for a DPA factor increase by a factor of 16x. Therefore, we

have significantly increased the difficulty of mounting an attack on this AES implementation.

However, there exists a limit to the reduction in the correlation coefficients by replacing cells

with WDDL-style cells. Even if the entire netlist is converted to WDDL the leakage cannot

be fully eliminated, as process variations and low level imbalances in capacitive loads come

into play.

Area and Performance Impact: The cell area of the synthesized netlist can be mea-

sured using the report_area command after importing the netlist along with the technology

library in Design Compiler. Table 3.4 shows the impact of iterative replacement of cells on

the cell-area of the design. As observed, the replacement of the two highest leaking cells

leads to the most impact on area. This is due to the overhead of replacing the entire state

register and output register with two-staged flip-flops. After the countermeasures for the

flip-flop have been applied, the replacement of combinational cells leads to minimal area

impact. With 40 cells replaced our countermeasure methodology incurs an area penalty of

only 10.5% as compared to a 3x impact on area in an WDDL implementation as shown in

[15]. The 3x area impact of WDDL designs is due to the requirement of expressing the entire

netlist in positive monotonic gates and then replacing each gate with complementary gates.

By using selective replacement, we are able to overcome this limitation. We demonstrate the

selective countermeasures for a single bit of the state, however securing more bits will have

minimal area overhead. As the state-register is already 2-staged, securing another bit of the

state will lead to adding two standard-cell flip-flops and transforming several combinational

gates. Moreover, in our experiments we observed that not all bits of the state leak to the

same degree hence converting a design to a full WDDL design is overkill.

The performance impact of our countermeasures methodology is similar to any technique

involving WDDL based cell-level countermeasures. Because WDDL flip-flops consist of two-

stages of single-rail flip-flops the design need to be clocked at twice the frequency to achieve

3.6. Results and Analysis 49

Table 3.4: Area Impact

No. of leaky cells replaced Area Increase in percentage
0(reference design) 0

2 8.44
20 9.43
40 10.54

the same throughput as the reference design. With the same input clock, our secure design

operates at half the frequency of the reference design hence providing half the through-

put. The reduced operating frequency of the AES encryption engine will not impact other

elements of the SoC however.

Chapter 4

Conclusion and Future Work

In this work we introduced a methodology, GLA, for performing power-based side-channel

leakage assessment of a cryptographic device at design time. Our methodology utilizes power

simulations and bit-wise correlation to assess the side-channel vulnerability of the design and

identify cells in the netlist of the design that are responsible for the side-channel leakage.

We demonstrate this methodology using the design of an AES encryption engine to identify

leaky cells in the engine and rank them according to their contribution to side-channel leak-

age.

Next, we introduced a cell-level countermeasures strategy to selectively replace the leaky

cells identified by GLA. The leaky cells are individually replaced with secure versions of

the cells which are constructed using a special logic style allowing us to decouple the power

consumption of the cells with the secret data being processed. We demonstrate that by

replacing several leaky cells in the design, side-channel leakage can be effectively thwarted.

The area overhead our countermeasures strategy is minimal as compared to traditional cell-

level countermeasures as traditional methods convert the entire design to a secure logic style.

Our GLA and countermeasures methodology can assist ASIC designers to identifying prob-

lematic gates and fixing the sources of side-channel leakage at design time without waiting

for the ASIC prototype.

Future work will include the exploration of other leakage models for the AES encryption

engine design using the GLA methodology. The selective countermeasures strategy will be

50

51

used to replace the cells reported as the leakage sources for the other leakage models. A DPA

attack might also be used on the simulated power measurements to evaluate the number of

measurements required for disclosure of the encryption key, as it is a good metric for com-

parison of the unprotected design and the protected design. Other cell-level countermeasure

techniques, for instance MDPL, can be used to overcome the limitations of WDDL and hence

achieve a more secure implementation. Finally, the methodologies described in this thesis

can be packaged into a tool capable of evaluating and fixing side-channel vulnerabilities in

an automated fashion.

Bibliography

[1] Alessandro Barenghi, Gerardo Pelosi, and Francesco Regazzoni. 2014. Simulation-Time

Security Margin Assessment against Power-Based Side Channel Attacks. IACR Cryp-

tology ePrint Archive 2014 (2014), 307. http://eprint.iacr.org/2014/307

[2] George Becker, J Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, G Kenworthy,

T Kouzminov, A Leiserson, M Marson, Pankaj Rohatgi, and others. 2013. Test vector

leakage assessment (TVLA) methodology in practice. In International Cryptographic

Module Conference, Vol. 1001. 13.

[3] Shivam Bhasin, Jean-Luc Danger, Tarik Graba, Yves Mathieu, Daisuke Fujimoto, and

Makoto Nagata. 2014. Physical Security Evaluation at an Early Design-Phase: A Side-

Channel Aware Simulation Methodology. In International Workshop on Engineering

Simulations for Cyber-Physical Systems, ES4CPS ’14, Dresden, Germany, March 28 -

28, 2014. 13. DOI:http://dx.doi.org/10.1145/2559627.2559628

[4] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation power analysis

with a leakage model. In International workshop on cryptographic hardware and embed-

ded systems. Springer, 16–29.

[5] Jean-Luc Danger, Sylvain Guilley, Shivam Bhasin, and Maxime Nassar. 2009. Overview

of dual rail with precharge logic styles to thwart implementation-level attacks on hard-

ware cryptoprocessors. In 2009 3rd International Conference on Signals, Circuits and

Systems (SCS). IEEE, 1–8.

[6] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In

Annual International Cryptology Conference. Springer, 388–397.

52

http://eprint.iacr.org/2014/307
http://dx.doi.org/10.1145/2559627.2559628

BIBLIOGRAPHY 53

[7] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2008. Power analysis attacks:

Revealing the secrets of smart cards. Vol. 31. Springer Science & Business Media.

[8] Amir Moradi, Thomas Eisenbarth, Axel Poschmann, Carsten Rolfes, Christof Paar,

Mohammad T Manzuri Shalmani, and Mahmoud Salmasizadeh. 2008. Information

Leakage of Flip-Flops in DPA-Resistant Logic Styles. IACR Cryptology ePrint Archive

2008 (2008), 188.

[9] Jason Oberg, Sarah Meiklejohn, Timothy Sherwood, and Ryan Kastner. 2014. Lever-

aging Gate-Level Properties to Identify Hardware Timing Channels. IEEE Trans.

on CAD of Integrated Circuits and Systems 33, 9 (2014), 1288–1301. DOI:http:

//dx.doi.org/10.1109/TCAD.2014.2331332

[10] Siddika Berna Ors, Frank Gurkaynak, Elisabeth Oswald, and Bart Preneel. 2004. Power-

Analysis Attack on an ASIC AES implementation. In Information Technology: Coding

and Computing, 2004. Proceedings. ITCC 2004. International Conference on, Vol. 2.

IEEE, 546–552.

[11] Jungmin Park, Adib Nahiyan, Apostol Vassilev, Yier Jin, Mark Tehranipoor, and others.

2019. RTL-PSC: Automated Power Side-Channel Leakage Assessment at Register-

Transfer Level. arXiv preprint arXiv:1901.05909 (2019).

[12] Thomas Popp and Stefan Mangard. 2005. Masked dual-rail pre-charge logic: DPA-

resistance without routing constraints. In International Workshop on Cryptographic

Hardware and Embedded Systems. Springer, 172–186.

[13] Francesco Regazzoni, Alessandro Cevrero, François-Xavier Standaert, Stéphane Badel,

Theo Kluter, Philip Brisk, Yusuf Leblebici, and Paolo Ienne. 2009. A Design Flow and

Evaluation Framework for DPA-Resistant Instruction Set Extensions. In Cryptographic

http://dx.doi.org/10.1109/TCAD.2014.2331332
http://dx.doi.org/10.1109/TCAD.2014.2331332

54 BIBLIOGRAPHY

Hardware and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,

Switzerland, September 6-9, 2009, Proceedings. 205–219. DOI:http://dx.doi.org/10.

1007/978-3-642-04138-9_15

[14] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. 2002. A dynamic and differen-

tial CMOS logic with signal independent power consumption to withstand differential

power analysis on smart cards. In Proceedings of the 28th European solid-state circuits

conference. IEEE, 403–406.

[15] Kris Tiri, David Hwang, Alireza Hodjat, Bo-Cheng Lai, Shenglin Yang, Patrick Schau-

mont, and Ingrid Verbauwhede. 2005. Prototype IC with WDDL and differential

routing–DPA resistance assessment. In International Workshop on Cryptographic Hard-

ware and Embedded Systems. Springer, 354–365.

[16] Kris Tiri and Ingrid Verbauwhede. 2004. A logic level design methodology for a secure

DPA resistant ASIC or FPGA implementation. In Proceedings Design, Automation and

Test in Europe Conference and Exhibition, Vol. 1. IEEE, 246–251.

[17] Bilgiday Yuce. 2018. Fault attacks on embedded software: New directions in modeling,

design, and mitigation. Ph.D. Dissertation. Virginia Tech.

[18] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A Hard-

ware Design Language for Timing-Sensitive Information-Flow Security. In Proceedings

of the Twentieth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015.

503–516. DOI:http://dx.doi.org/10.1145/2694344.2694372

http://dx.doi.org/10.1007/978-3-642-04138-9_15
http://dx.doi.org/10.1007/978-3-642-04138-9_15
http://dx.doi.org/10.1145/2694344.2694372

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Power Analysis Attacks
	Countermeasures against Power Analysis attacks
	Power Simulations for Designers
	Contributions
	Thesis Outline

	Gate-level Leakage Assessment
	Overview
	Related Work
	Experimental Setup
	GLA Methodology
	Gate-level Simulations
	Power Correlation
	Architecture Correlation

	Countermeasures
	Overview
	Dual-Rail Precharge Logic
	Contributions and Outline
	Countermeasures Methodology
	Experimental Setup
	Results and Analysis

	Conclusion and Future Work
	Bibliography

