
CPU/GPU Code Acceleration on Heterogeneous Systems and Code
Verification for CFD Applications

Weicheng Xue

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Aerospace Engineering

Christopher J. Roy, Chair

Eric De Sturler

Kevin G. Wang

Bhuvana Srinivasan

Dec. 12th, 2020

Blacksburg, Virginia

Keywords: MPI, OpenACC, Code acceleration, Code verification, CFD

Copyright 2021, Weicheng Xue

CPU/GPU Code Acceleration on Heterogeneous Systems and Code
Verification for CFD Applications

Weicheng Xue

(ABSTRACT)

Computational Fluid Dynamics (CFD) applications usually involve intensive computations,

which can be accelerated through using open accelerators, especially GPUs due to their

common use in the scientific computing community. In addition to code acceleration, it

is important to ensure that the code and algorithm are implemented numerically correctly,

which is called code verification. This dissertation focuses on accelerating research CFD codes

on multi-CPUs/GPUs using MPI and OpenACC, as well as the code verification for turbu-

lence model implementation using the method of manufactured solutions and code-to-code

comparisons. First, a variety of performance optimizations both agnostic and specific to ap-

plications and platforms are developed in order to 1) improve the heterogeneous CPU/GPU

compute utilization; 2) improve the memory bandwidth to the main memory; 3) reduce

communication overhead between the CPU host and the GPU accelerator; and 4) reduce the

tedious manual tuning work for GPU scheduling. Both finite difference and finite volume

CFD codes and multiple platforms with different architectures are utilized to evaluate the

performance optimizations used. A maximum speedup of over 70 is achieved on 16 V100

GPUs over 16 Xeon E5-2680v4 CPUs for multi-block test cases. In addition, systematic

studies of code verification are performed for a second-order accurate finite volume research

CFD code. Cross-term sinusoidal manufactured solutions are applied to verify the Spalart-

Allmaras and k − omega SST model implementation, both in 2D and 3D. This dissertation

shows that the spatial and temporal schemes are implemented numerically correctly.

CPU/GPU Code Acceleration on Heterogeneous Systems and Code
Verification for CFD Applications

Weicheng Xue

(GENERAL AUDIENCE ABSTRACT)

Computational Fluid Dynamics (CFD) is a numerical method to solve fluid problems, which

usually requires a large amount of computations. A large CFD problem can be decomposed

into smaller sub-problems which are stored in discrete memory locations and accelerated by

a large number of compute units. In addition to code acceleration, it is important to ensure

that the code and algorithm are implemented correctly, which is called code verification.

This dissertation focuses on the CFD code acceleration as well as the code verification for

turbulence model implementation. In this dissertation, multiple Graphic Processing Units

(GPUs) are utilized to accelerate two CFD codes, considering that the GPU has high compu-

tational power and high memory bandwidth. A variety of optimizations are developed and

applied to improve the performance of CFD codes on different parallel computing systems.

The program execution time can be reduced significantly especially when multiple GPUs are

used. In addition, code-to-code comparisons with some NASA CFD codes and the method

of manufactured solutions are utilized to verify the correctness of a research CFD code.

CPU/GPU Code Acceleration on Heterogeneous Systems and Code
Verification for CFD Applications

Weicheng Xue

(GRANT INFORMATION)

The code verification work (Chapter 6 and Chapter 7) is partially based on research spon-

sored by the U.S. Air Force under agreement number FA865019-2-2204. The U.S. Govern-

ment is authorized to reproduce and distribute reprints for Governmental purposes notwith-

standing any copyright notation thereon.

iv

To my parents, for their unconditional love, from the past to the future

v

Acknowledgments

To my advisor, Dr. Christopher Roy, without your guidance and support for the past five

years, I would not have a chance to finish any of my work for my Ph.D. Thank you very

much for your kindness, help and support for my Ph.D. life at Virginia Tech.

To my committee members, Dr. Eric de Sturler, Dr. Kevin Wang and Dr. Bhuvana

Srinivasan, thank you very much for being my committee members and offering helpful sug-

gestions through my Ph.D. life at Virginia Tech.

To Dr. Feng Wu, thank you very much for offering me the funding to work with you in a

machine learning based autotuning project in 2017 summer.

To the AOE staff at Virginia Tech, especially Kelsey Walls and Steve Edwards, thank you

very much for your help in answering Ph.D. program questions and fixing IT issues, respec-

tively.

To Fred and Mary Kay, thank you very much for your help in teaching me how to improve

my oral English.

To my friends and labmates, especially Jian Liu, Zhenzhong Zhang, Tong Xu, Zuen Ren, Yi

Luo, Ning Liu, Hongyu Wang, Nan Si, Andrew McCall, Charles Jackson, William Tyson,

Juntao Wang, Yang Zeng and Yuzhi Li, thank you very much for your help and support for

my life, far more than research. Without you all, I cannot imagine what would happen and

I would not have the courage to overcome any difficulties.

To my aunt, Xianxiu Xue, thank you very much for supporting my family since my child-

hood.

vi

To my cousin and her husband, Jiaoer Xue and Ming Chen, thank you very much for taking

care for my father when I am studying in US. You have already done so much for me.

To my father and mother, thank you very much for your unconditional love all the way, from

the past to the future. You have already sacrificed a lot to bring me up and provide me a

good education. I think it is time for me to take care of you. I love you all so much!

vii

Contents

List of Figures xv

List of Tables xx

1 Introduction 1

1.1 Related Work . 4

1.1.1 Code Acceleration . 4

1.1.2 Code Verification . 6

1.2 Outline . 6

Bibliography . 8

2 Multi-GPU Performance Optimization of a CFD Code using OpenACC 17

2.1 Introduction . 21

2.2 CFD Code: Buoyancy Driven Cavity Solver 25

2.3 Implementation . 27

2.3.1 Stencil Computation . 27

2.3.2 Domain Decomposition . 28

2.3.3 Hardware Configuration . 30

2.4 Results . 32

viii

2.4.1 BDC Solution . 32

2.4.2 Scaling Performance Metrics . 33

2.4.3 Grid Growth for Weak Scaling . 35

2.4.4 Multi-CPU Scaling Performance . 36

2.4.5 Multi-GPU Scaling Performance . 39

2.4.6 CUDA-aware MPI and GPUDirect 51

2.4.7 Overlapping Communication and Computation 56

2.5 Conclusions . 59

2.6 Appendix . 60

Bibliography . 60

3 An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC 65

3.1 Introduction . 67

3.2 Description of the CFD code: SENSEI . 70

3.3 Overview of CPU/GPU Heterogeneous System, MPI and OpenACC 73

3.3.1 CPU/GPU Heterogeneous System 73

3.3.2 MPI . 74

3.3.3 OpenACC . 75

3.4 Domain Decomposition . 75

3.5 Boundary Decomposition in Parallel and Boundary Reordering 78

ix

3.6 Platforms and Metrics . 81

3.6.1 Platforms . 81

3.6.2 Performance Metrics . 82

3.7 OpenACC Parallelization and Optimization 84

3.7.1 V0: Baseline . 86

3.7.2 GPU Optimization using OpenACC 90

3.8 Solution and Scaling Performance . 105

3.8.1 Supersonic Flow Through a 2D Inlet 105

3.8.2 2D Subsonic Flow past a NACA 0012 Airfoil 109

3.8.3 3D Transonic Flow Past an ONERA M6 Wing 113

3.8.4 GPUDirect . 118

3.9 Conclusions & Future Work . 119

Bibliography . 121

4 Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC 128

4.1 Introduction . 131

4.2 Description of the CFD Code: SENSEI . 135

4.3 Domain Decomposition and Aggregation Methods 138

4.4 Results . 140

4.4.1 Hardware Configuration . 140

x

4.4.2 Performance Metrics . 140

4.4.3 Supersonic Inlet Case . 141

4.4.4 NACA 0012 Airfoil . 144

4.4.5 ONERA M6 Wing . 147

4.5 Conclusions . 150

4.6 Future Work . 151

Bibliography . 152

5 Machine Learning based Autotuning of a GPU-accelerated Computational

Fluid Dynamics Code 155

5.1 Introduction . 157

5.2 Related Work . 160

5.3 Data Collection . 161

5.3.1 Platforms . 161

5.3.2 The Computational Fluid Dynamics Code Base: SENSEI 162

5.3.3 A Test Case . 162

5.3.4 Settings for Neural Network . 162

5.3.5 Tuning Parameters . 164

5.3.6 Feature Centering and Scaling . 164

5.4 Results . 165

5.4.1 Training on Single Platform . 165

xi

5.4.2 Combined Training . 167

5.5 Conclusions . 169

Bibliography . 170

6 Code Verification for Turbulence Modeling in Parallel SENSEI Acceler-

ated with MPI 173

6.1 Introduction . 174

6.2 The CFD Code Base: SENSEI . 175

6.2.1 Overview of SENSEI . 175

6.2.2 Turbulence Models into the FANS Equations in SENSEI 178

6.2.3 The Negative Spalart-Allmaras Turbulent Model 180

6.2.4 The Menter’s Shear Stress Transport Turbulence Model 182

6.2.5 The Menter’s Shear Stress Transport Turbulence Model with Vorticity

Source Term . 184

6.2.6 Finite-Volume Discretization . 185

6.2.7 Focus of this Paper . 185

6.3 MPI Implementation into SENSEI . 186

6.3.1 An Introduction of Message Passing Interface (MPI) 186

6.3.2 Domain Decomposition in SENSEI 186

6.3.3 Wall Distance Calculation in SENSEI 189

6.4 Order of Accuracy Test Results for the CTS Manufactured Solutions 190

xii

6.5 Grid Convergence Test Results for the Turbulence Modeling Verification Cases194

6.5.1 Some Considerations . 194

6.5.2 Non-physical Check and Update . 195

6.5.3 SA model for 3D Bump . 196

6.5.4 Menter’s SST model for 2DANW . 199

6.5.5 SST-V model for 3DB . 201

6.6 Conclusions . 203

6.7 Future Work . 203

Bibliography . 204

7 Code Verification for Unsteady Flows in SENSEI 207

7.1 Introduction . 208

7.2 The CFD Code Base: SENSEI . 211

7.2.1 Overview of SENSEI . 211

7.2.2 Governing Equations in Spatially Integral Form 212

7.2.3 Temporal Discretization . 214

7.2.4 Non-dimensionalization . 215

7.3 Observed Order of Accuracy Test . 216

7.3.1 Spatial Discretization Error . 216

7.3.2 Temporal Discretization Error . 217

xiii

7.3.3 Spatial and Temporal Discretization Error 217

7.4 OOA Test Results . 219

7.4.1 2D Euler Convecting vortex flow . 219

7.4.2 2D Taylor-Green Vortex . 222

7.4.3 2D Cross-term Sinusoidal MMS . 226

7.5 Conclusions . 230

7.6 Future Work . 231

Bibliography . 231

xiv

List of Figures

1.1 Multilevel parallelisms for GPU . 2

1.2 Heterogeneous CPU/GPU system . 3

2.1 Stencil (black+red: velocity and temperature stencil, blue+black+red: pres-

sure stencil) . 28

2.2 3D domain decomposition . 30

2.3 3D BDC solution . 33

2.4 Multi-CPU scaling using different decompositions 37

2.5 The effect of ppn (3D decomposition) . 38

2.6 Multi-CPU performance comparison across platforms (3D domain decompo-

sition) . 38

2.7 Multi-GPU weak scaling of different versions 48

2.8 Profiling results . 49

2.9 The fractions of different compute kernels 49

2.10 Multi-GPU scaling using different decompositions (Optimized V3) 50

2.11 Multi-GPU performance comparison across platforms (Optimized V3) 51

2.12 Weak scaling performance applying different grid growth methods (Optimized

V3) . 52

xv

2.13 Strong scaling performance across platforms (3D decomposition) 55

2.14 Weak scaling performance across platforms (3D decomposition) 56

2.15 Overlap of communication and computation on NewRiver (3D decomposition) 57

2.16 L2 norm residual history for the temperature 60

3.1 CPU and GPU . 74

3.2 The offload model . 74

3.3 A 3D domain decomposition . 77

3.4 An example showing the domain aggregation 78

3.5 An example of using MPI inter-communicator 80

3.6 An example of deadlock . 81

3.7 An explanation of ssspn . 84

3.8 An example of showing ghost cells breaking the non-contiguity of the interior

cell . 89

3.9 Change of blocking call position . 102

3.10 2D Euler supersonic inlet . 106

3.11 The relative iterative residual history for the inlet case 107

3.12 2D Euler supersonic inlet . 108

3.13 Performance comparison for the 2D inlet Euler flow 108

3.14 The scaling performance for the 2D inlet case 109

3.15 2D NS NACA 0012 airfoil . 110

xvi

3.16 2D Laminar NS NACA 0012 airfoil . 111

3.17 The performance of different versions for the NACA 0012 airfoil case (P100

GPU) . 112

3.18 Performance comparison between V 5 and V 6 for the NACA 0012 airfoil case

(P100 GPU) . 113

3.19 The scaling performance for the 2D Euler flow past a NACA 0012 airfoil . . 114

3.20 The scaling performance for the 2D laminar NS flow past a NACA 0012 airfoil 114

3.21 Grid and domain decomposition for ONERA M6 wing 115

3.22 Residual history and solution for ONERA M6 wing 116

3.23 The single P100 GPU performance of different versions for ONERA M6 wing 117

3.24 Performance comparison between V 5 and V 6 for ONERA M6 wing 118

3.25 The scaling performance for the 3D Euler ONERA M6 wing case 119

3.26 The scaling performance for the 3D Laminar NS ONERA M6 wing case . . . 119

3.27 Performance comparison between V 9 and V 10 120

4.1 Inlet case using 1GPU+5CPUs . 142

4.2 Grid size: 417x129 (on Thermisto) . 143

4.3 Grid size: 833x257 (on Thermisto) . 144

4.4 NACA 0012 case using 1GPU+7CPUs . 145

4.5 Grid size: 897x257 (on Thermisto) . 147

4.6 ONERA M6 wing case using 2GPUs+6CPUs 148

xvii

4.7 Pressure contour of the ONERA M6 wing 149

4.8 The ONERA M6 wing case performance . 150

5.1 Multilevel parallelisms for GPU. 158

5.2 Two-parameter manual tuning for a lid-driven cavity code 159

5.3 Artificial Neural Network . 160

5.4 The Mach number and streamlines for 2D inlet Euler flow. 163

5.5 Training and testing on C2075 GPU . 166

5.6 Training and testing on V100 GPU . 167

5.7 Training and testing on P100 GPU . 167

5.8 Loss history. 168

5.9 R2 score. 168

5.10 Training and testing on combined dataset 169

6.1 Block decomposition module . 187

6.2 Integer Factorization module . 187

6.3 An example of using MPI inter-communicator 189

6.4 3D cross term sinusoidal manufactured solutions (Re = 78 million) 192

6.5 CTS MMS: Observed order of accuracy . 193

6.6 Pressure difference around the LE of the airfoil between turning on and turn-

ing off a flux limiter . 195

xviii

6.7 3DB SA: Grid convergence of various quantities 198

6.8 2DANW Menter’s SST: Grid convergence of various quantities 200

6.9 Absolute iterative residual history for the 3DB case using the SST-V model . 201

6.10 3DB Menter’s SST: Grid convergence of various quantities 202

7.1 2D Euler vortex flow separate order analysis 220

7.2 Error contours of 2D Euler vortex flow (M∞ = 2.54) 221

7.3 2D Euler vortex flow (M∞ = 2.54): SDIRK 2 222

7.4 2D Euler vortex flow (M∞ = 2.54): three point backward 223

7.5 2D Taylor Green vortex flow separate order analysis (Re=1) 224

7.6 Solution contours of 2D Taylor Green decaying vortex 225

7.7 Error contours of 2D Taylor Green decaying vortex 225

7.8 2D Taylor Green vortex flow (Re = 1): SDIRK 2 226

7.9 2D CTS MMS separate order analysis . 228

7.10 2D CTS MMS combined order analysis (k − ω SST) 229

7.11 2D CTS MMS combined order analysis (SA) 229

7.12 Error contours of 2D CTS MMS (SA) . 230

xix

List of Tables

2.1 Grid growth type 1 . 35

2.2 Grid growth type 2 . 36

2.3 Strong scaling comparison of different GPU code versions using 2 GPUs (on

NewRiver) . 53

2.4 Weak scaling comparison of different GPU code versions using 2 GPUs (on

NewRiver) . 54

3.1 Comparison of V00 and V0 performance metrics 90

3.2 Inlet case inflow boundary conditions . 105

3.3 NACA 0012 airfoil farfield boundary conditions 110

3.4 ONERA M6 wing farfield boundary conditions 115

4.1 Inlet case inflow boundary conditions . 141

4.2 The performance comparison between using 1GPU and 2GPUs for the inlet

case in the CPU-GPU heterogeneous mode 144

4.3 NACA 0012 airfoil farfield boundary conditions 145

4.4 The performance comparison between using 1GPU and 2GPUs for the NACA

0012 airfoil case in the CPU-GPU heterogeneous mode 147

4.5 ONERA M6 wing farfield boundary conditions 147

xx

5.1 Parameter settings for the neural network 163

5.2 Tuning Parameters . 164

6.1 Comparison of forces between using a limiter and no limiter 195

6.2 Observed order of accuracy on the three finest grid for the 3DB SA 198

6.3 Observed order of accuracy on the three finest grid for the 2DANW Menter’s

SST . 200

6.4 Observed order of accuracy on the three finest grid for the 3DB Menter’s SST-V203

xxi

Chapter 1

Introduction

The General Purpose Graphic Processing Unit (GPGPU) [1] has aroused domain scientists’

interest greatly in various scientific computing fields because of its advantages over the

Central Processing Unit (CPU). First, the GPU usually has thousands of lightweight threads

so that it is more suitable for compute-intensive work than the CPU, which has fewer threads

but is better at executing complex instructions. The CPU usually serves as the host which

offloads the data and computation to the GPU used as the accelerator device. Second, the

GPU is intentionally designed to have much higher memory bandwidth to its main memory

and higher memory clock rate and lower latency than the CPU. Finally, the GPU is optimized

for performance per watt so it can be more energy efficient compared to the CPU, which is

not considered in this work but is crucial for commercial applications.

Although the GPU has many advantages, programming on the GPU and obtaining high

performance is not easy. CUDA [2], OpenCL [3] and OpenACC [4] are the most commonly

used language extensions/directives for the GPU programming. CUDA and OpenCL are low

level programming models which require a good understanding of the underlying architecture,

while OpenACC is a high level library specification. With OpenACC, users only need to add

annotated directives to the legacy serial code; although satisfactory speedup may still require

performance optimizations. The compiler can determine the details of kernel scheduling on

the GPU if the user does not specify how how it can be done, and the performance can

still be fair. Also, with the advent of new architectures, it may require a large amount of

1

2 Chapter 1. Introduction

code modification and tuning if a code uses CUDA or OpenCL. While for OpenACC, fewer

adaptions are needed as a lot of runtime details can be decided by the compiler. OpenACC

provides three different parallelisms for the computational work on the GPU, which are gang,

worker and vector and can be seen in Fig 1.1. Gang, worker and vector are equivalent to the

three respective levels which are block, warp and thread using CUDA.

Figure 1.1: Multilevel parallelisms for GPU

A heterogeneous system is a hybrid system having multiple types of processing units, in-

cluding CPU/GPU, CPU/MICS, CPU/FPGA, etc. The CPU is usually used to deal with

instruction execution and another type of processing unit is used for the computations.

CPU+GPU is the most commonly used heterogeneous system currently, as it can combine

the advantages of the CPU and GPU and it is fit for non-uniform memory access (NUMA)

architecture. However, the data transfer in heterogeneous system can be complicated and

can be a very important performance bottleneck if scaling to a large number of nodes, espe-

cially for memory bound problems [5]. NVLink [6] or GPUDirect (GPUDirect is an umbrella

word for multiple GPU communication technologies) can be used to improve the memory

bandwidth and reduce the latency between CPU hosts and GPU devices and solely between

devices [7]. Fig. 1.2 shows that there are multiple types of connections in a heterogeneous

system. If multiple GPUs are used, both intra-node and inter-node communication exists,

3

which can be optimized by using NVLink, GPUDirect, or some manual data conversions.

Figure 1.2: Heterogeneous CPU/GPU system

Computational fluid dynamics (CFD) is a field which involves intensive computations to solve

fluid problems numerically. Major tasks for CFD include gaining execution time speedups

and obtaining high accuracy solutions for fluid problems, which are the focus of this disser-

tation. For large problems with more than a million degrees of freedom, it may take several

days or even longer to obtain a solution. Thus, it becomes necessary to accelerate such

applications through high performance computing such as GPU computing [8]. If optimized

properly, a single modern GPU is orders-of-magnitude faster than a single modern CPU

core [8]. Higher speedup can be achieved if using multiple GPUs. In addition to accelerating

a code, it is also important to prove the code is implemented correctly through rigorous

code verification studies [9, 10] and careful code-to-code comparison. This dissertation will

demonstrate how to verify the steady/unsteady Spalart-Allmaras [11] and k−ω SST [12, 13]

RANS turbulence model implementations in a research CFD code.

4 Chapter 1. Introduction

1.1 Related Work

1.1.1 Code Acceleration

High performance parallel computing [14] including multi-processor computing and GPU

computing enables a program to run faster. For multi-processor computing, OpenMP [15],

MPI [16] and hybrid MPI+OpenMP have been widely used and their performance has also

been carefully analyzed [17, 18, 19, 20, 20, 21]. MPI is fit for coarse grained parallelism while

OpenMP is fit for fine grained parallelism. The hybrid MPI+OpenMP model can be applied

well to modern non-uniform memory access (NUMA) architectures. MPI and OpenMP are

also frequently used in GPU computing with multi-level parallelism. A lot of work has been

done to leverage the power of the GPU for CFD applications. Jacobsen et al. [22] investigated

MPI+CUDA and MPI+OpenMP+CUDA for the classic incompressible lid driven cavity

problem and they found that the MPI+CUDA implementation performs the best. Elsen et

al. [23] obtained a speedup of up to 40× on a single GPU using BrookGPU [24]. Brandvik

et al. [25] applied CUDA to accelerate a 3D Euler code using a single GPU and obtained

a speedup of 16×. Luo et al. [26] applied MPI+OpenACC to port a 2D incompressible

Navier-Stokes solver to 32 NVIDIA C2050 GPUs and achieved a speedup of 4× over 32

CPUs. Xia et al. [27] applied OpenACC to accelerate an unstructured CFD solver based

on a Discontinuous Galerkin method, and achieved a speedup of up to 24× on one GPU

compared to one CPU core. Gong et al. [28] presented an optimized OpenACC version for

a core kernel of an incompressible Navier-Stokes solver. Hoshino et al. [29] showed that the

gap between using CUDA and OpenACC can be decreased to only 2% after careful manual

optimizations. Also, it is interesting and rare to see that the OpenACC implementation can

be even slightly faster than CUDA [30].

The CPU host may idle when the GPU accelerator device is doing computations. To make

1.1. Related Work 5

full use of the computational resources in nodes, the host should be utilized to do some

computational work concurrently with the device. Mittal et al. [31] investigated numerous

heterogeneous computing techniques at the runtime, algorithm, programming, and appli-

cation level. Chandar et al. [32] developed a hybrid multi-CPU/GPU framework on un-

structured overset grids using CUDA, showing that the hybrid CPU/GPU framework can

outperform the pure GPU framework to some degree. Domanski et al. [33, 34] also showed

that the heterogeneous CPU/GPU approach can provide performance benefits over the pure

GPU implantation. Alvarez et al. [35] showed that a gain of 32% can be obtained by using

the hybrid implementation compared to the GPU-only implementation. For heterogeneous

computing, load imbalance and communication overhead should be carefully treated so that

the performance can be improved, otherwise the performance can be slower than the pure

GPU implementation.

Although the compiler can automatically determine the kernel scheduling parameters when

using OpenACC, some performance gains can be obtained if the user knows how to tune the

parameters properly [36]. Manual tuning requires a lot of experience and time, and is also

error-prone. Also, inter-dependency may exist among different tuning parameters, which

makes manual tuning rather difficult if there are too many parameters. Jia et al. [37] used a

statistic tree-based approach to cluster the data according to their importance, which may

require a large number of samples to achieve satisfactory accuracy. Collins et al. [38] applied

a principal component approach to find important parameters. Falch et al. [39] used artificial

neural networks to autotune some OpenCL kernels, but the model can be quite inconsistent

as the optimal configuration can vary greatly if running multiple times. Cui et al. [40] used

a pruning approach to select good samples for subsequent training. However, only one set

of thread-block size (two parameters) for one kernel was considered.

6 Chapter 1. Introduction

1.1.2 Code Verification

The purpose of code verification is to guarantee that the code implementation and scheme

are numerically correct [9, 10]. The most rigorous method is the order of accuracy (OOA)

test [9]. For steady flows, there is only spatial discretization error at the converged state

when the iterative residual error is driven to machine zero (There is also round-off error, but

it is generally small for double precision). For unsteady flows, the total discretization error

includes both the spatial and temporal discretization error components. There are a lot of

factors which can affect the magnitude of the discretization errors, including mesh quality,

numerical schemes, time step size (for unsteady flows), sub-iterative errors (for unsteady

flows) and even implementation errors.

Exact solutions and manufactured solutions are often used in OOA studies. However, for

turbulent flows, few exact solutions exist. After plugging the manufactured solutions to the

governing equations, source terms can be computed. It does not matter whether the source

terms are physical or not. In literature, both physical solutions [41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51] and non-physical manufactured solutions [52, 53, 54, 55, 56, 57] for Euler/laminar

NS were used. This dissertation will address code verification studies for RANS turbulence

models, especially using two equation models including k − ω SST.

1.2 Outline

This dissertation contains several chapters. In Chapter 2, a 3D buoyancy driven cavity code

is accelerated by multiple modern GPUs using 1D, 2D and 3D domain decomposition. This

code is a finite difference code using an artificial compressibility method. Several performance

optimizations including the pack/unpack strategy, reducing the communication cost based

1.2. Outline 7

on different primitive variable stencils and the use of GPUDirect are applied to improve the

strong and weak scaling efficiency. MPI+OpenACC are used in the GPU code.

In Chapter 3, the performance of a multi-block CFD code called SENSEI [58, 59, 60] is

optimized on multiple GPUs. Various performance optimizations are applied to improve the

compute utilization, reduce the communication overhead and improve the memory band-

width. After the optimizations, a single P100 GPU and a single v100 GPU are more than 30

× and 70 × faster than a single modern CPU core, respectively. For multiple GPUs, both

the strong and weak parallel efficiencies for large enough problems are higher than 70% up

to 16 GPUs for different test cases (the efficiencies can be even higher for single parent-block

cases). The performance optimizations used for the complicated CFD code can be applied

to other codes using MPI+OpenACC.

In Chapter 4, a CPU-GPU heterogeneous computing framework for SENSEI is developed.

Using a GPU or two GPUs and a certain number of CPUs can achieve higher speedups for

various cases. Some suggestions are given to improve the CPU-GPU heterogeneous com-

puting performance. Also, feedback is given for hardware designers of the future generation

CPU-GPU heterogeneous computing system.

In Chapter 5, a machine learning based autotuning technique is used to autotune fourteen

parameters related to GPU kernel scheduling, including the number of thread blocks and

threads in a block. Both the independent training for single type of GPU and combined

training for multiple types of GPU are performed for a single fluid dynamics problem (ac-

celerated by one GPU) on the C2075, P100 and V100 GPU. The training and the testing

results indicate that using an artificial neural network has the potential to autotune a large

number of parameters, while requiring a very small fraction of samples in a large search

space.

8 BIBLIOGRAPHY

In Chapter 6, the code verification for the turbulence modeling in parallel SENSEI is done.

Turbulence verification cases including crossterm sinusoidal manufactured solutions and all

verification cases from the turbulence modeling resources website [61] are used to justify

the proper turbulence modeling implementation of the parallel SENSEI. SENSEI achieves

2nd order accuracy for the crossterm sinusoidal manufactured solutions for the Spalart-

Allmaras [11] and Menter’s Shear Stress Transport [12] model, in both 2D and 3D. Also,

SENSEI matches very well with all the numerical benchmark solutions from CFL3D [62]

and FUN3D [63] for all the variables of interest including the total lift coefficient, total drag

coefficient, pressure drag coefficient and viscous drag coefficient.

In Chapter 7, the code verification is done for unsteady flow cases in SENSEI. For unsteady

flows, a systematic refinement should be performed for both the spatial and temporal spacing

to determine the correct overall observed order of accuracy. Since explicit time marching

schemes typically require smaller time step size compared to implicit time marching schemes

due to stability constraints, multiple implicit schemes such as the Singly-Diagonally Implicit

Runge-Kutta multi-step scheme [64, 65] and three point backward scheme [66] are used to

mitigate the stability constraints.

Bibliography

[1] Wen-Mei W Hwu. GPU computing gems emerald edition. Elsevier, 2011.

[2] NVIDIA. CUDA C++ Programming Guide, 2019. (last accessed on 07/24/20).

[3] Khronos OpenCL Working Group. The OpenCL Specification, 2012. (last accessed on

07/24/20).

BIBLIOGRAPHY 9

[4] OpenACC-Standard.org. The OpenACC Application Programming Interface.

OpenACC-Standard.org, 2018.

[5] Alex Hutcheson and Vincent Natoli. Memory bound vs. compute bound: A quantitative

study of cache and memory bandwidth in high performance applications. In Technical

report, Stone Ridge Technology. 2011.

[6] Denis Foley and John Danskin. Ultra-performance pascal gpu and nvlink interconnect.

IEEE Micro, 37(2):7–17, 2017.

[7] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R Tallent, and

Kevin J Barker. Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch

and gpudirect. IEEE Transactions on Parallel and Distributed Systems, 31(1):94–110,

2019.

[8] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and James C

Phillips. GPU Computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[9] William L Oberkampf and Christopher J Roy. Verification and validation in scientific

computing. Cambridge University Press, 2010.

[10] William L Oberkampf and Timothy G Trucano. Verification and validation in compu-

tational fluid dynamics. Progress in aerospace sciences, 38(3):209–272, 2002.

[11] Steven R Allmaras and Forrester T Johnson. Modifications and clarifications for the

implementation of the spalart-allmaras turbulence model. In Seventh international

conference on computational fluid dynamics (ICCFD7), pages 1–11, 2012.

[12] Florian R Menter. Two-equation eddy-viscosity turbulence models for engineering ap-

plications. AIAA journal, 32(8):1598–1605, 1994.

10 BIBLIOGRAPHY

[13] Florian R Menter, Martin Kuntz, and Robin Langtry. Ten years of industrial experience

with the sst turbulence model. Turbulence, heat and mass transfer, 4(1):625–632, 2003.

[14] Blaise Barney. Introduction to Parallel Computing, 2020. (last accessed on 07/24/20).

[15] Blaise Barney. OpenMP, 2020. (last accessed on 07/24/20).

[16] Blaise Barney. Message Passing Interface (MPI), 2020. (last accessed on 07/24/20).

[17] N Gourdain, L Gicquel, M Montagnac, O Vermorel, M Gazaix, G Staffelbach, M Garcia,

JF Boussuge, and T Poinsot. High performance parallel computing of flows in complex

geometries: I. methods. Computational Science & Discovery, 2(1):015003, 2009.

[18] N Gourdain, L Gicquel, G Staffelbach, O Vermorel, Florent Duchaine, JF Boussuge, and

Thierry Poinsot. High performance parallel computing of flows in complex geometries:

Ii. applications. Computational Science & Discovery, 2(1):015004, 2009.

[19] Zdravko Krpic, Goran Martinovic, and Ivica Crnkovic. Green hpc: Mpi vs. openmp

on a shared memory system. In 2012 Proceedings of the 35th International Convention

MIPRO, pages 246–250. IEEE, 2012.

[20] Pablo D Mininni, Duane Rosenberg, Raghu Reddy, and Annick Pouquet. A hybrid mpi–

openmp scheme for scalable parallel pseudospectral computations for fluid turbulence.

Parallel Computing, 37(6-7):316–326, 2011.

[21] Yu-Yong Jiao, Qiang Zhao, Long Wang, Gang-Hai Huang, and Fei Tan. A hybrid

mpi/openmp parallel computing model for spherical discontinuous deformation analysis.

Computers and Geotechnics, 106:217–227, 2019.

[22] Dana A Jacobsen and Inanc Senocak. Multi-level parallelism for incompressible flow

computations on gpu clusters. Parallel Computing, 39(1):1–20, 2013.

BIBLIOGRAPHY 11

[23] Erich Elsen, Patrick LeGresley, and Eric Darve. Large calculation of the flow over a

hypersonic vehicle using a gpu. Journal of Computational Physics, 227(24):10148–10161,

2008.

[24] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Hous-

ton, and Pat Hanrahan. Brook for gpus: stream computing on graphics hardware. ACM

transactions on graphics (TOG), 23(3):777–786, 2004.

[25] Tobias Brandvik and Graham Pullan. Acceleration of a 3d euler solver using commodity

graphics hardware. In 46th AIAA aerospace sciences meeting and exhibit, page 607, 2008.

[26] Lixiang Luo, Jack R Edwards, Hong Luo, and Frank Mueller. Performance assessment of

a multiblock incompressible navier-stokes solver using directive-based gpu programming

in a cluster environment. In 52nd Aerospace Sciences Meeting, 2013.

[27] Yidong Xia, Jialin Lou, Hong Luo, Jack Edwards, and Frank Mueller. Openacc accel-

eration of an unstructured cfd solver based on a reconstructed discontinuous galerkin

method for compressible flows. International Journal for Numerical Methods in Fluids,

78(3):123–139, 2015.

[28] Jing Gong, Stefano Markidis, Erwin Laure, Matthew Otten, Paul Fischer, and Misun

Min. Nekbone performance on gpus with openacc and cuda fortran implementations.

The Journal of Supercomputing, 72(11):4160–4180, 2016.

[29] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, and Ryoji Takaki. CUDA vs

OpenACC: Performance case studies with kernel benchmarks and a memory-bound CFD

application. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM

International Symposium on, pages 136–143. IEEE, 2013.

[30] Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez. Mpi+

12 BIBLIOGRAPHY

openacc: Accelerating radiation transport mini-application, minisweep, on heteroge-

neous systems. Computer Physics Communications, 2018.

[31] Sparsh Mittal and Jeffrey S Vetter. A survey of cpu-gpu heterogeneous computing

techniques. ACM Computing Surveys (CSUR), 47(4):69, 2015.

[32] Dominic D Chandar, Jayanarayanan Sitaraman, and Dimitri J Mavriplis. A hybrid

multi-gpu/cpu computational framework for rotorcraft flows on unstructured overset

grids. In 21st AIAA Computational Fluid Dynamics Conference, page 2855, 2013.

[33] Luke Domanski, Tomasz Bednarz, Tim E Gureyev, Lawrence Murray, Emma Huang,

and John A Taylor. Applications of heterogeneous computing in computational and

simulation science. In 2011 Fourth IEEE International Conference on Utility and Cloud

Computing, pages 382–389. IEEE, 2011.

[34] L Domanski, T Bednarz, P Vallotton, and J Taylor. Heterogeneous parallel 3d image

deconvolution on a cluster of gpus and cpus. In 19th Int’l Congress on Modelling and

Simulation, Perth, Australia,[Online, cited Aug 1, 2013] http://mssanz. org. au/mod-

sim2011 A, volume 8, 2013.

[35] Xavier Alvarez, Andrey Gorobets, and F Xavier Trias. Strategies for the heteroge-

neous execution of large-scale simulations on hybrid supercomputers. In 7th European

Conference on Computational Fluid Dynamics, 2018.

[36] Brent P Pickering, Charles W Jackson, Thomas RW Scogland, Wu-Chun Feng, and

Christopher J Roy. Directive-based GPU programming for computational fluid dynam-

ics. Computers & Fluids, 114:242–253, 2015.

[37] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. Starchart: Hardware and software

optimization using recursive partitioning regression trees. In Proceedings of the 22nd

BIBLIOGRAPHY 13

international conference on Parallel architectures and compilation techniques, pages

257–267. IEEE, 2013.

[38] Alexander Collins, Christian Fensch, Hugh Leather, and Murray Cole. Masif: Ma-

chine learning guided auto-tuning of parallel skeletons. In 20th Annual International

Conference on High Performance Computing, pages 186–195. IEEE, 2013.

[39] Thomas L Falch and Anne C Elster. Machine learning-based auto-tuning for enhanced

performance portability of opencl applications. Concurrency and Computation: Practice

and Experience, 29(8):e4029, 2017.

[40] Xuewen Cui and Wu-chun Feng. Iterml: Iterative machine learning for intelligent pa-

rameter pruning and tuning in graphics processing units. Journal of Signal Processing

Systems, pages 1–13, 2020.

[41] Abdul-Sattar J Al-Saif and Assma J Harfash. A new approximate analytical solutions

for two-and three-dimensional unsteady viscous incompressible flows by using the ki-

netically reduced local navier-stokes equations. Journal of Applied Mathematics, 2019,

2019.

[42] Seth C Spiegel, HT Huynh, and James R DeBonis. A survey of the isentropic euler vortex

problem using high-order methods. In 22nd AIAA Computational Fluid Dynamics

Conference, page 2444, 2015.

[43] WH Hui. Exact solutions of the unsteady two-dimensional navier-stokes equations.

Zeitschrift für angewandte Mathematik und Physik ZAMP, 38(5):689–702, 1987.

[44] Abdullah Shah, Li Yuan, and Aftab Khan. Upwind compact finite difference scheme

for time-accurate solution of the incompressible navier–stokes equations. Applied Math-

ematics and Computation, 215(9):3201–3213, 2010.

14 BIBLIOGRAPHY

[45] Maurizio Tavelli and Michael Dumbser. A staggered space–time discontinuous galerkin

method for the three-dimensional incompressible navier–stokes equations on unstruc-

tured tetrahedral meshes. Journal of Computational Physics, 319:294–323, 2016.

[46] Ronald L Panton. Incompressible flow. John Wiley & Sons, 2013.

[47] Frank M White and Isla Corfield. Viscous fluid flow, volume 3. McGraw-Hill New York,

2006.

[48] Henrik Tryggeson. Analytical vortex solutions to Navier-Stokes equation. PhD thesis,

Växjö University Press, 2007.

[49] CY Wang. Exact solutions of the unsteady navier-stokes equations. Applied Mechanics

Reviews;(United States), 42(CONF-8901202–), 1989.

[50] Robert G Deissler. Unsteady viscous vortex with flow toward the center. 1965.

[51] Tapan K Sengupta, Nidhi Sharma, and Aditi Sengupta. Non-linear instability analysis of

the two-dimensional navier-stokes equation: The taylor-green vortex problem. Physics

of Fluids, 30(5):054105, 2018.

[52] Subrahmanya Pavan Kumar Veluri. Code verification and numerical accuracy assess-

ment for finite volume CFD codes. PhD thesis, Virginia Tech, 2010.

[53] Kambiz Salari and Patrick Knupp. Code verification by the method of manufactured

solutions. Technical report, Sandia National Labs., Albuquerque, NM (US); Sandia

National Labs …, 2000.

[54] Chris Roy, Curt Ober, and Tom Smith. Verification of a compressible cfd code using

the method of manufactured solutions. In 32nd AIAA Fluid Dynamics Conference and

Exhibit, page 3110, 2002.

BIBLIOGRAPHY 15

[55] Stephane Etienne, Andre Garon, and Dominique Pelletier. Code verification for un-

steady flow simulations with high order time-stepping schemes. In 47th AIAA Aerospace

Sciences Meeting including The New Horizons Forum and Aerospace Exposition, page

169, 2009.

[56] Michael L Minion and RI Saye. Higher-order temporal integration for the incompress-

ible navier–stokes equations in bounded domains. Journal of Computational Physics,

375:797–822, 2018.

[57] Kintak Raymond Yu, Stéphane Étienne, Alexander Hay, and Dominique Pelletier. Code

verification for unsteady 3-d fluid–solid interaction problems. Theoretical and Compu-

tational Fluid Dynamics, 29(5-6):455–471, 2015.

[58] Joseph M Derlaga, Tyrone Phillips, and Christopher J Roy. Sensei computational fluid

dynamics code: a case study in modern fortran software development. In 21st AIAA

Computational Fluid Dynamics Conference, 2013.

[59] Charles W Jackson, William C Tyson, and Christopher J Roy. Turbulence model im-

plementation and verification in the sensei cfd code. In AIAA Scitech 2019 Forum,

2019.

[60] Weicheng Xue, Hongyu Wang, and Christopher J Roy. Code verification for 3d turbu-

lence modeling in parallel sensei accelerated with mpi. In AIAA Scitech 2020 Forum,

page 0347, 2020.

[61] Christopher Rumsey. Turbulence modeling resources, 2019. (last accessed on 12/02/19).

[62] Christopher Lockwood Rumsey, Robert T Biedron, and James Lee Thomas. Cfl3d: Its

history and some recent applications. 1997.

16 BIBLIOGRAPHY

[63] Robert T Biedron, Jan Renee Carlson, Joseph M Derlaga, Peter A Gnoffo, Dana P Ham-

mond, William T Jones, Bil Kleb, Elizabeth M Lee-Rausch, Eric J Nielsen, Michael A

Park, et al. Fun3d manual: 13.6. 2019.

[64] Uri M Ascher, Steven J Ruuth, and Raymond J Spiteri. Implicit-explicit runge-kutta

methods for time-dependent partial differential equations. Applied Numerical Mathe-

matics, 25(2-3):151–167, 1997.

[65] Christopher A Kennedy and Mark H Carpenter. Diagonally implicit runge-kutta meth-

ods for ordinary differential equations. a review. 2016.

[66] JC Wu, LT Fan, and LE Erickson. Three-point backward finite-difference method for

solving a system of mixed hyperbolic—parabolic partial differential equations. Com-

puters & chemical engineering, 14(6):679–685, 1990.

Chapter 2

Multi-GPU Performance

Optimization of a CFD Code using

OpenACC

Weicheng Xue1 and Christopher J. Roy2

Virginia Tech, Blacksburg, Virginia, 24061

Attribution

• Weicheng Xue (first author): The first author served as the main contributor and

primary author of this study. All the performance optimizations were developed and

implemented by the first author. All the results were collected by the first author.

• Christopher J. Roy (second author): The second author provided valuable feedback

for this study and comments for this manuscript.

• This work has been published: Weicheng Xue and Christopher J. Roy, Multi-GPU

Performance Optimization of a CFD Code using OpenACC, Concurrency and Com-
1Graduate Assistant, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall,

RM 315, Virginia Tech, 460 Old Turner St, AIAA Student Member.
2Professor, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall, RM 330,

Virginia Tech, 460 Old Turner St, AIAA Associate Fellow.

17

18 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

putation: Practice and Experience. http://dx.doi.org/10.1002/cpe.6036

Abstract

This paper investigates the multi-GPU performance of a 3D buoyancy driven cavity solver

using MPI and OpenACC directives on multiple platforms. The paper shows that decompos-

ing the total problem in different dimensions affects the strong scaling performance signifi-

cantly for the GPU. Without proper performance optimizations, it is shown that 1D domain

decomposition scales poorly on multiple GPUs due to the noncontiguous memory access.

The performance using whatever decompositions can be benefited from a series of perfor-

mance optimizations in the paper. Since the buoyancy driven cavity code is communication-

bounded on the clusters examined, a series of optimizations both agnostic and tailored to

the platforms are designed to reduce the communication cost and improve memory through-

put between hosts and devices efficiently. First, the parallel message packing/unpacking

strategy developed for noncontiguous data movement between hosts and devices improves

the overall performance by about a factor of 2. Second, transferring different data based on

the stencil sizes for different variables further reduces the communication overhead. These

two optimizations are general enough to be beneficial to stencil computations having ghost

exchanges. Third, GPUDirect is used to improve the communication on clusters which have

the hardware and software support for direct communication between GPUs without stag-

ing the memory on the hosts. Finally, overlapping the communication and computations is

shown to be not efficient on multi-GPUs if only using MPI or MPI+OpenACC. Although we

believe our implementation has revealed enough communication and computation overlap,

the actual running does not utilize the overlap well due to a lack of enough asynchronous

progression.

19

Keywords: Multi-GPU, OpenACC, MPI, Domain Decomposition, Performance Optimiza-

tion, GPUDirect

20 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

2.1. Introduction 21

2.1 Introduction

Computational Fluid Dynamics (CFD) is a method which can be used to solve physical

problems in the field of fluids, usually requiring a lot of computation. In order to obtain more

accurate numerical solutions for challenging problems, researchers are using very fine meshes

or high-order schemes which require much better resources such as a larger memory and faster

processor. However, generally the memory cannot be infinitely large and a processor cannot

hold an infinite number of transistors. These limitations may require codes to be written

in a data parallel way, i.e., decomposing a big problem into small pieces and distributing

these small problems to multi/many-cores or even accelerators such as GPUs. Applying

high performance computing (HPC) in the CFD [1] area is necessary and has aroused CFD

researchers’ interest.

On multicore/manycore CPU systems or equivalent, there are three common paradigms for

HPC: OpenMP, MPI, and hybrid MPI+OpenMP. OpenMP [2] is designed for shared mem-

ory systems so that the data can be shared among all threads but this comes with the risk

of race conditions to exist if multiple threads are modifying the same data. Also, the scaling

performance across multiple nodes or sockets may be poor on distributed memory systems

(more usually used than shared memory systems). MPI [3] is a message passing standard

designed for various platforms including shared and distributed memory architectures. Data

can be moved between processors through sending and receiving messages. However, pro-

gramming with MPI is more complicated than with OpenMP as it requires extra care to

decompose the problem well and implement efficient communications. Usually, communi-

cation may be a significant bottleneck when the codes are scaled up to a lot of processors.

Hybrid MPI+OpenMP methods [4] are therefore proposed to combine the advantages of

MPI and OpenMP. The hybrid model is a good match with modern multicore/manycore ar-

chitectures, as it can be programmed efficiently using two levels of parallelism: MPI for the

22 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

inter-node/socket communication and OpenMP for the intra-node/socket computation and

communication. However, hybrid MPI+OpenMP cannot be easily used on GPUs directly

due to a lack of full support of OpenMP 4.0 (or later) from the compiler development.

In addition to the CPU computing, GPU computing have been gaining a lot of interest [5].

This attention is because of the GPU’s high compute capability and memory bandwidth as

well as their low power consumption. A single GPU have thousands of threads, therefore

numerous threads can execute the same instruction simultaneously on multiple data points,

known as single instruction multiple threads (SIMT). When executing a program on the

GPU, the highly compute-expensive portion of a program is offloaded to the GPU. Then

numerous threads on the GPU execute the code simultaneously to achieve a high speedup.

File I/O, branch controls, printout, etc. remain on the CPU since the CPU has the flexibility

to perform these tasks while GPUs are not as efficient for these complex tasks (even if

they are possible). One important thing to mention here is that although GPUs provides

higher memory bandwidth than CPUs, different memory access patterns such as array of

structures (AOS) or structure of arrays (SOA) may significantly affect the actual memory

throughput [6], which should be considered carefully.

Three language extensions/libraries are widely applied to port codes to GPUs [7]. They

are OpenCL, CUDA and OpenACC. OpenCL and CUDA are C/C++ with some extensions

while OpenACC is a compiler directive-based interface, similar to OpenMP. OpenCL and

CUDA are low level programming models so that they require users to have some background

in computer architecture systems. Also, programming with OpenCL or CUDA is difficult,

as users need to rewrite and tune their codes on various GPUs every time. CUDA gets a

strong support from NVIDIA but it cannot be compatible well with other GPUs such as

AMD. OpenCL is open source and we found that it has not been commonly used in real

world GPU-accelerated CFD codes, possibly due to the high complexity of programming

2.1. Introduction 23

and a lack of good ecosystem support. Different from OpenCL and CUDA, OpenACC is

a high level programming model that enables users to accelerate their CFD codes more

readily on various GPUs without intruding their legacy codes completely. Programmers

using OpenACC [8] can be somewhat agnostic about the GPU architecture compared to

using OpenCL and CUDA because compilers such as those developed by PGI (acquired by

NVIDIA) can hide a lot of details and decide how to optimize the code (although it may not

be optimal). Also, because of its directive-based feature and good support for portability,

OpenACC can be much easier to use on various platforms compared to CUDA. We will also

show this benefit because there is little code modification across platforms. However, to

gain good performance across different platforms, the features of the architecture and some

low level optimizations should be taken into account. Apart from the options mentioned,

OpenMP can be a potential viable choice for the GPU once the development of compilers

catch up in the future. Because OpenACC provides an easy way of programming [9], a

good feature for portability across platforms [10] and good parallel performance if optimized

enough [11], OpenACC was applied to port our CFD code to the GPU.

OpenACC has already been used for various GPU-accelerated CFD codes or related appli-

cations. Gong et al. [12] presented an optimized OpenACC version for NekBone, which is a

core kernel of the incompressible Navier-Stokes solver Nek500, based on their group’s prior

work. They ported the optimized code to multiple GPU systems and obtained a parallel

efficiency of 79.9% on 1024 GPUs. However, the code they worked on is just a kernel, not a

complete CFD code. Hoshino et al. [11] found that although OpenACC is 50% slower than

CUDA for a naive implementation, the gap can be decreased to only 2% after careful manual

optimizations. They also pointed out that there are some intrinsic deficiencies of OpenACC,

such as a lack of interface for shared memory and inter-thread communication. Searles et

al. [13] studied a wavefront based mini-application for a production code for nuclear reactor

24 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

modeling. It is interesting and rare to see in their work that the OpenACC implementation

is even slightly faster than CUDA. Their work mainly focused on exploring complex parallel

patterns in their code and exploring the scalability using MPI across different platforms. In

summary, OpenACC is easy to use and also good for portability across different platforms,

however to obtain good performance, careful pertinent optimizations for an application may

need to be designed.

To assess the performance of a code accelerated by the CPU or GPU, weak scaling and strong

scaling performance are often measured. The major difference between the two scalings is

whether one keeps the total problem size fixed (strong scaling) or the problem size per

processor fixed (weak scaling), while adding more processors. Obviously maintaining the

strong scaling efficiency is more challenging. Commonly both scalings are investigated to

satisfy different situations such as solving a fixed problem as fast as possible (strong scaling)

or solving as big of a problem as possible (weak scaling). In both situations we want to

max out all compute nodes or resources to gain the maximum speedup. In the CFD area,

we are more interested in the weak scaling performance as we hope to solve a larger and

complex problem faster, if more compute resources are available. However, there are a lot of

other occasions in which small problems need to be solved if the requirement for numerical

accuracy is not high. Therefore, both the weak scaling and strong scaling performance are

measured in this paper.

Prior to the work presented in this paper, Pickering et al. [14] examined the process of

applying OpenACC to a 2D CFD code using both single precision and double precision.

They also applied OpenMP’s fork/join execution model to scale the performance up to

4 NVIDIA C2070 GPUs with a strong scaling efficiency of 95%. Instead of using the

OpenMP+OpenACC model, Baghapour et al. [15] switched to the MPI+OpenACC model

and scaled a 3D CFD code well up to both 32 CPUs and 32 GPUs on a distributed cluster.

2.2. CFD Code: Buoyancy Driven Cavity Solver 25

In their work, they used 1D domain decomposition to distribute the workload to different

processors and increased the grid size in only one dimension for their weak scaling per-

formance. Xue et al. [16] compared multi-CPU/GPU performance using 3D, 2D and 1D

decompositions and gave a primitive analysis of their differences. Also, two performance op-

timizations including an pack/unpack method for data exchange between hosts and devices

was designed, and this pack/unpack method was proved to improve the performance using

3D decomposition greatly on a platform using old GPUs (NVIDIA C2070). In the current

paper, the effects of multiple factors such as the platform difference, decomposition methods,

pack/unpack, strong v.s. weak scaling and GPUDirect will be investigated. Also, the limi-

tations of overlapping communication and computation if applying MPI or MPI+OpenACC

are presented.

2.2 CFD Code: Buoyancy Driven Cavity Solver

The 3D Buoyancy Driven Cavity (BDC) problem has a cubic domain, a vertical wall and its

opposing wall have different temperatures, and the horizontal walls are adiabatic. A gravi-

tational force is added to the air in the square cavity. Heat flux caused by the temperature

difference leads to small density changes in the fluid (Boussinesq approximation), and the

buoyancy effect (density change) causes the fluid to convect in the cavity.

The CFD code written with Fortran 2003/2008 in the paper solves the classic 3D BDC

problem [15], which is a system of 3D incompressible Navier-Stokes equations. An artificial

compressibility method developed by Chorin [17] is used. The artificial viscosity term makes

the system of equations to be hyperbolic so that steady state solution can be obtained

through time marching. The CFD code uses a first order Euler explicit scheme for temporal

discretization, and a second-order central-difference scheme with an artificial dissipation

26 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

term for spatial discretization. The artificial dissipation term is applied to the continuity

equation to alleviate odd-even decoupling. The numerical damping term is based on the

fourth-derivative of pressure and is discretized using a second-order central finite difference

scheme. This BDC code is a proxy code of another complicated CFD code called Structured

Euler Navier-Stokes Explicit Implicit solver (SENSEI) [16, 18, 19]. We want to know the

power of leveraging the GPU to accelerate CFD codes, so we first port the BDC code to

the GPU and have some performance optimizations there (Some performance optimizations

such as the pack/unpack method can be generally applied to other codes). SENSEI is a

finite volume code so it only focuses on the 2nd order for the spatial terms. While for this

BDC code, since the spatial order is 2nd using the artifi cial viscosity method, the stencil

size is fixed and cannot be changed. Therefore, only two ghost cells are required for this

BDC code. The discretized form of the system of the governing equations can be written as,

1

β2

∂p

∂t
+ ρ

∂Vi

∂xi

= ϵi
∂4p

∂x4
i

(2.1)

∂Vj

∂t
+ Vi

∂Vj

∂xi

= −1

ρ

∂p

∂xj

+ ν
∂2Vj

∂x2
i

+ σ(T − T∞)gj (2.2)

∂T

∂t
+ Vi

∂Tj

∂xi

= α
∂2Tj

∂x2
i

(2.3)

where β is an artificial compressibility parameter calculated using the local velocity magni-

tude along with a reference velocity defined by the user, ϵ are numerical dissipation coef-

ficients controlling stability, ν is the kinematic viscosity of the fluid, and α is the thermal

dissipation rate.

In this paper, the size of the cavity is 0.05 m in all three dimensions. Pressure is extrapolated

to the ghost cells at adiabatic walls using a one-sided second order scheme. Temperature

is similarly extrapolated to the horizontal wall ghost cells using a second order scheme.

2.3. Implementation 27

Pressure is rescaled at the center point of the cavity in every iteration. The meshes used for

the BDC code are uniform and their size range from 323 to 10243. The Rayleigh number

is set to be 100,000 for the convection problem. Most of the constant settings affecting the

flow do not affect the parallel performance.

2.3 Implementation

2.3.1 Stencil Computation

In the BDC code studied here, since we use the fourth-derivative pressure dissipation term

and a second-order central-difference scheme for all spatial derivatives, the numerical stencil

size in one dimension for the pressure is 5 and for other primitive variables is 3. This can be

utilized to design an optimization to reduce the data exchange across processors (Optimized

V2, will be introduced later). Fig. 2.1 shows the stencils for a node in the computational

domain. The iterative residual calculation in the explicit CFD code is intrinsically one kind

of stencil computation. For each node, it needs the data in its two stencils to compute and

fill in the residual array, which is later used to update the primitive variables. There should

be a nested loop over all nodes in the spatial domain, and a time step loop containing all

stencil computations to iterate in the pseudo time domain. When programming, data locality

should be considered to use cache more efficiently. For a 3D array A(i, j, k) in Fortran, i is

set to be incremented fastest (the innermost loop) and k the slowest (the outermost loop).

This layout is also good for the GPU, as the GPU prefers the coalesced memory access

pattern in which contiguous threads in a thread block operate on the consecutive memory

locations. It should be noted here that the index directions (i, j and k) are aligned with the

spatial directions (x, y and z) in this problem. Therefore, the use of (i, j, k) are mixed with

28 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

the use of (x, y, z) in the paper.

Figure 2.1: Stencil (black+red: velocity and temperature stencil, blue+black+red: pressure
stencil)

This BDC code uses struct of arrays (SOA), instead of arrays of struct (AOS). The rea-

son of using SOA is to allow efficient SIMD loads and stores and avoiding scatter-gather

addressing [14].

2.3.2 Domain Decomposition

Many methods can be used to decompose a computational domain such as structured par-

titioning [20] and graph partitioning [21]. For a CFD problem with single-block structured

grid such as a BDC problem running on pure CPUs or pure GPUs, there are three struc-

tured ways: 1D decomposition, 2D decomposition and 3D decomposition. Which way of

decomposing the domain performs the best greatly depends on the application and com-

puter architecture, i.e., the optimal decomposition can vary under different conditions. On

2.3. Implementation 29

one hand, the surface-area/volume ratio determines the total size of data transferred between

processors and the total size of ghost cells, and 3D decomposition has the lowest area/vol-

ume ratio (least ghost cells). On the other hand, the frequency of data transfers between

processors can greatly affect the performance, especially when the memory bandwidth or la-

tency issue becomes important, and 1D decomposition has the least times of data transfers.

Besides, for stencil computations like ours, 1D or even 2D decomposition may generate too

thin slices that invalidates the spatial discretization scheme if scaling up to a large number of

processors (strong scaling). Thus, it is worthwhile to investigate the effect of various domain

decompositions on different platforms. Xue et al. [16] showed that 2D decomposition scales

better up to 32 CPUs compared to 1D and 3D decomposition on a platform, and 3D de-

composition can outperform 1D decomposition if applying optimizations. However, they did

not show the comparison between 3D decomposition and 2D decomposition. Also, they only

tested the code on a single platform having old GPUs. An example of the 3D decomposition

adopted in this paper is shown in Fig. 2.2. Each processor is given a decomposed block, with

each cutting face contacting a neighbour block. Ghost nodes are used to store decomposed

boundary information transferred from neighbours. 1D and 2D decompositions are similar as

3D decomposition but have fewer decomposed directions and fewer decomposed boundaries.

For a given number of processors, there may be many combinations for either 1D, 2D or 3D

decomposition. For general situations, we try to decompose the domain evenly in all the

available dimensions but decompose more in the slowest stride index direction, to preserve

more contiguous data after decomposition. This method is designed to 1) divide the domain

in the available dimensions as evenly as possible, 2) utilize enough processors, 3) decompose

with a priority along the k dimension first, then j, and finally i, as Fortran is a column-

majored language.

30 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

Figure 2.2: 3D domain decomposition

2.3.3 Hardware Configuration

HokieSpeed Although now decommissioned in June 2017, HokieSpeed [22] was a cluster

at Virginia Tech and was previously in the list of Green500. HokieSpeed [22] had 204 nodes

using a quad data rate InfiniBand interconnect. Each node was outfitted with 24GB memory,

two six-core Xeon E5645 CPUs and two NVIDIA M2015/C2050 GPUs. Every GPU had 14

multiprocessors (MP) and 3GB memory. The peak bandwidth to the 3GB shared memory

was 148.4GB/s. Every MP had 32 CUDA cores, 48KB shared memory and 16KB L1 cache.

All the access to the global memory went through the L2 cache of size 512KB. The peak

double precision performance was 513 GFLOPS. The compilers used on HokieSpeed were

PGI 15.7 and Open MPI 1.10.0. A compiler optimization of -O4 was used.

NewRiver NewRiver [23] is a cluster at Virginia Tech (VT). It has 39 GPU nodes shared

by the whole VT community. On NewRiver [23], each of these nodes is equipped with two

Intel Xeon E5-2680v4 (Broadwell) 2.4GHz CPU (28 cores/node in all), 512 GB memory,

and two NVIDIA P100 GPUs. Each NVIDIA P100 GPU is capable of up to a theoreti-

cal 4.7 TeraFLOPS of double-precision performance. The NVIDIA P100 GPU offers much

2.3. Implementation 31

higher GFLOPS and memory bandwidth compared with the NVIDIA C2050 GPU on Hok-

ieSpeed. The modules used on NewRiver are PGI 17.5, CUDA 8.0.61 and Open MPI 2.0.0

or MVAPICH2-GDR 2.3b. It should be mentioned that MVAPICH2-GDR 2.3b is a CUDA-

aware MPI wrapper compiler which supports GPUDirect (if this feature is turned on). An

compiler optimization of -O4 is used. The maximum number of nodes which can be used

is 12, but only 8 is used in this paper. Thus, the maximum number of GPUs used on the

NewRiver cluster is 16 (when using both Open MPI 2.0.0 or MVAPICH2-GDR 2.3b). If not

specified, Open MPI 2.0.0 is used.

Cascades Cascades [24] is another cluster at VT. It has 40 GPU nodes shared by the

whole VT community. On Cascades [24], each of these nodes is equipped with two Intel

Skylake Xeon Gold 3 Ghz CPUs (24 cores/node in all), 768 GB memory, and two NVIDIA

V100 GPUs. Each NVIDIA V100 GPU is capable of up to 7.8 TeraFLOPS of double preci-

sion performance, which is 66% higher than the P100 GPU on the NewRiver cluster. The

NVIDIA V100 GPU offers the highest GFLOPS and memory bandwidth among the GPUs

we used. The modules used on Cascades are PGI 18.1, CUDA 8.0.61 and Open MPI 3.0.0 or

MVAPICH2-GDR 2.3b. An compiler optimization of -O4 is used. Similarly, the maximum

number of GPUs used on the Cascades cluster is 16 when using Open MPI 3.0.0. However,

when switching to MVAPICH2-GDR 2.3b, since Cascades uses ”srun” to run MPI programs

instead of using ”mpirun_rsh” (as Slurm is used on the Cascades), the maximum number of

GPUs which can be used is only 8 (using more would cause the efficiency to drop to about

1%, which is not reasonable and caused by some unknown issues related to Slurm). If not

specified, Open MPI 3.0.0 is used.

32 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

2.4 Results

2.4.1 BDC Solution

Before presenting any performance results, the first indispensable step for any paralleliza-

tion or optimization is to quantify the solution difference between the serial solution and

the parallel solution. An iteratively converged double precision solution using 8 GPUs on

NewRiver for a 2563 mesh is given in Fig. 2.3. All the residuals for temperature and veloc-

ities components (except for the pressure) have been compared to the relevant CPU serial

residuals until converged. The relative difference of the velocity components between the

serial CPU and the multi-GPU version are withing the round-off range (less than 10−10),

and the relative difference of the temperature is less than 10−9. The difference of the serial

solution and the parallel solution is caused by a accumulation of round-off errors. Note

that since the BDC code uses pressure rescaling at the center of the cavity in every time

step, i.e., the gauge pressure (the cavity center pressure) value is deducted from the pressure

solution for every time step, the reference pressure is difficult to know so that the relative

difference for the pressure is not calculated (the maximum absolute value difference between

the CPU serial pressure and multi-GPU pressure is less than 10−8, which is the final L2

residual norm round-off level for the pressure). The pressure rescaling is needed in this BDC

code, otherwise all boundary conditions are Neumann boundary conditions, which will make

the solution indefinite. For all the optimizations presented in this paper, parallel solution

correctness is always guaranteed.

2.4. Results 33

(a) 3D pressure contour (b) 2D temperature contour at y=0.025 m

Figure 2.3: 3D BDC solution

2.4.2 Scaling Performance Metrics

Two basic metrics used in this paper are parallel speedup and efficiency. Speedup denotes

how much faster the parallel version is compared to the serial version of the code, while

efficiency represents how efficiently the processors are used. They are defined as follows,

speedup =
tserial
tparallel

(2.4)

efficiency =
speedup

np
(2.5)

where np is the number of processors (CPUs or GPUs).

In order for the performance of the code to be measured and compared well on different

platforms and for different problem sizes, the wall clock time per iteration step is converted

to a ssspnt (scaled size steps per np time) value which is defined in Eq.2.6. This metric has

some advantages. First, GFLOPS requires knowing the number of operations while ssspnt

does not require. In most codes, it is usually difficult to know the number of operations.

34 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

Second, efficiency comparison across different platforms is not intuitive as how fast the

program runs is still unknown, but ssspnt is clearer for knowing the absolute speed. Also,

the benefit applies to strong and weak scaling performance comparison if using ssspnt. For

example, a linear scaling problem has a constant ssspnt value but the values can be different

for the strong and weak scaling. Using ssspnt, different problems, platforms, strong and

weak scaling performance can be compared directly. In this paper, when gaining productive

performance results, unnecessary I/O such as writing out solutions to files are turned off,

which is commonly applied when testing the performance in literature.

ssspnt = s
size× steps

np× time
(2.6)

where s is a scaling factor which scales the smallest platform ssspnt to the range of [0,1]. In

this paper, s is set to be 10−7 for all test cases. size is the problem size, steps is the iteration

steps and time is the program wall clock time for steps iterations.

For every time, it is measured at least three times, consecutively (so the time gap between

different runs is very short, considering that the network traffic may vary a little bit in

different time). Usually the difference is much less than 1% (we also make sure every run is

at least longer than 120 s, but the difference for each time point is usually less than 1 s). We

usually use the median value (if the deviation is very small, e.g., less than 0.5% or so) or the

mean value (if the deviation is larger than 0.5%) as the final time result. Also, every time

when we have a systematic run of the test case, some previously data points are randomly

selected and run again, in order to make sure that all the data is consistent. In this way,

reliable data are acquired as all the data points have been run and verified for more than

three times.

2.4. Results 35

2.4.3 Grid Growth for Weak Scaling

In the weak scaling analysis, the problem size needs to be increased accordingly when the

number of processors increases. However, the way the problem scales can vary. For the

BDC codes, since the problem is a 3D problem, the problem can increase in either 1D,

2D, or 3D. Therefore, we will investigate the effect of how problem size grows on the weak

scaling performance. Two types of grid growth for the weak scaling are applied, seen in

Table 2.1 and Table 2.2. In Table 2.1, it shows that the problem grid growth strategy is

fixed (seen in the column 1 in Table 2.1), no matter whether the domain decomposition is

1D, 2D or 3D (column 2 to column 4, respectively). However, Table 2.2 scales the problem

size in accordance with the way the number of processors grow, i.e., the grid size in each

dimension is different for 1D, 2D and 3D domain decomposition. For example, if using 8

processors, the problem size for 3D decomposition is 512× 512× 512, for 2D decomposition

it is 256× 512× 1024, and for 1D decomposition it is 256× 256× 2048 or 2048× 256× 256

(as the processor dims can be either 1 × 1 × 8 or 8 × 1 × 1). Both methods of grid growth

are applied in this paper. If not specified, the paper uses the grid growth in Table 2.2 for

the weak scaling.

Table 2.1: Grid growth type 1

Problem size 3D decomposition 2D decomposition 1D decomposition
(256,256,256) (1,1,1) (1,1,1) (1,1,1)
(256,256,512) (1,1,2) (1,1,2) (1,1,2) or (2,1,1)
(256,512,512) (1,2,2) (1,2,2) (1,1,4) or (4,1,1)
(512,512,512) (2,2,2) (1,2,4) (1,1,8) or (8,1,1)
(512,512,1024) (2,2,4) (1,4,4) (1,1,16) or (16,1,1)
(512,1024,1024) (2,4,4) (1,4,8) (1,1,32) or (32,1,1)

36 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

Table 2.2: Grid growth type 2

of processors 3D decomposition 2D decomposition 1D decomposition
1 (256,256,256) (256,256,256) (256,256,256)

2 (256,256,512) (256,256,512) (256,256,512) or
(512,256,256)

4 (256,512,512) (256,512,512) (256,256,1024) or
(1024,256,256)

8 (512,512,512) (256,512,1024) (256,256,2048) or
(2048,256,256)

16 (512,512,1024) (256,1024,1024) (256,256,4096) or
(4096,256,256)

32 (512,1024,1024) (256,1024,2048) (256,256,8192) or
(8192,256,256)

2.4.4 Multi-CPU Scaling Performance

A systematic multi-CPU scaling performance test is performed on all the three platforms

mentioned earlier in this paper. CPU strong scaling and weak scaling performance using

1D, 2D and 3D decompositions are shown in Fig. 2.4. Here CPUs are added by sockets, i.e.,

adding a certain number of sockets every time (only using one CPU in each socket, similar

to adding GPUs as every socket only has one GPU), or equivalently setting the processor

per node (ppn) to be 2. Fig. 2.4 highlights a tradeoff that exists for the different domain

decomposition techniques. Choosing a domain decomposition scheme is a balance between

maintaining a small surface to volume ratio of the subdomains and minimizing the number

of neighbors for each subdomain. From Fig.2.4, 1D decomposition generally performs the

worst for both the strong and weak scaling on NewRiver and Cascades. 1D decomposition

has only 2 neighbors but it has the highest surface to volume ratio meaning that there is

a lot of data to transfer between the blocks. 2D and 3D decomposition perform the best

for the strong scaling and weak scaling, respectively. 3D decomposition has the smallest

surface to volume ratio but has 6 neighbors meaning it has to perform 6 communications

each with their own overhead. The weak scaling performance decays more slowly than the

2.4. Results 37

strong scaling performance, which is reasonable as the CPU has more work to do. It is also

found that decomposing in the x dimension should be avoided for the CPU in strong scaling

as the performance deteriorates faster compared to other decompositions, which is especially

obvious on the Cascades cluster.

(a) CPU strong scaling (b) CPU weak scaling

Figure 2.4: Multi-CPU scaling using different decompositions

Also, Fig. 2.4 shows that a super-linear scaling occurs on the NewRiver cluster. To investigate

why there is super-linear phenomenon, the ppn value is changed. Fig. 2.5 shows the effect

of ppn on the performance. For both the strong and weak scaling performance shown in

Fig. 2.4, since the ppn is 2, the number of CPUs is increased along with other resources such

as memory and memory bandwidth increased at the same pace (as the number of sockets

increases), which may reduce the communication overhead and latency cost. To test this

hypothesis, we also tried setting ppn to be higher than 2 (using less nodes) and did not

observe the super-linear scaling. Also, no matter what the ppn is, the Cascades cluster

does not show a super-linear scaling. It can be concluded that the super-linear phenomenon

depends highly on both the platform communication system and the implementation.

Although multi-CPU implementation is not the focus of this paper, we are interested in the

CPU performance comparison between different platforms, which is shown in Fig. 2.6. All

38 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

(a) CPU strong scaling (b) CPU weak scaling

Figure 2.5: The effect of ppn (3D decomposition)

the results here use 3D domain decomposition. It can be found that the platform affects the

performance most, not the number of CPUs or whether the scaling is strong or weak. The

performance on Cascades is about 1.245 times faster as that on NewRiver, which is very close

to the clock rate ratio of 1.25 (3Ghz/2.4Ghz). For the CPU scaling, 3D domain decomposi-

tion maintains the efficiency very well so it is recommended for pure CPU implementations.

Figure 2.6: Multi-CPU performance comparison across platforms (3D domain decomposi-
tion)

2.4. Results 39

2.4.5 Multi-GPU Scaling Performance

The focus of this paper is the multi-GPU implementation and its performance optimizations.

There are multiple optimizations of the GPU-accelerated CFD code in this subsection: the

first version is a baseline code, which can be regarded as a naive GPU implementation based

on the CPU code, and the other versions are incremental optimization versions, with more

optimizations based on the previous version. Actual memory bandwidth can be improved

greatly as well network communication overhead can be reduced by applying these opti-

mizations. When showing results later, the ”1D”, ”2D” and ”3D” in the legend denotes 1D,

2D and 3D decompositions, respectively. For 1D decomposition, the letter in the parenthe-

ses after ”1D” denotes which dimension to decompose. More details about these different

GPU-accelerated versions are given as follows.

Baseline The multi-CPU code is directly ported to GPUs by inserting OpenACC directives

in the parallel CPU code. This baseline GPU code does not use GPUDirect techniques.

Therefore, data on devices need to be updated to/from hosts using !$acc update clauses.

Asynchronization clauses are used to reduce some synchronization overhead between hosts

and devices. The Baseline version uses the MPI_Type_vector function to generate user-

defined type for the boundary data that needs to be communicated between processors.

Optimized V1 This version is to improve the actual memory bandwidth and reduce

communication cost using 3D decomposition, as we found that the actual bandwidth between

the host and the device is very small because of non-contiguous data transfer. As Fortran is a

column-majored language, the first index i of a matrix A(i, j, k) denotes the fastest change. If

any decomposition exists in the i index direction (3D decomposition or 1D decomposition in

i), the decomposition in the i index direction can generate chunks of data (at j − k planes)

40 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

which are highly non-contiguous. Therefore, the optimization is targeted at solving this

issue by converting the non-contiguous data into a temporary contiguous array in parallel

and updating this temporary array between hosts and devices using !$acc update clauses.

For Optimized V1, temporary arrays are created only if decomposition in the direction with

the fastest change (i index direction) exists, as decomposition in other index directions can

still generate chunks of contiguous data. A pseudo code of how to use buffers is given in

Listing. 2.1. The procedure can be summarized as follows:

1. Allocate send/recv buffers only for boundary cells on i planes on devices and hosts

if decomposition happens in the i dimension, as the non-contiguous data on i planes

makes data transfer very slow.

2. Pack the noncontiguous block boundary data to a buffer on the sender device side.

This process can be parallelized using !$acc loop clauses and has little overhead (less

than 3%). The host buffer is then updated using !$acc update clauses.

3. Have hosts transfer the data through MPI_Isend/MPI_Irecv calls (which are one-sided

non-blocking calls), and block these MPI communication calls using the MPI_Waitall

function to finish the data transfer.

4. Update the recv buffer on devices using OpenACC update device clauses and finally

unpack the contiguous data stored in recv buffer back to noncontiguous memory on

devices, which can also be parallelized using !$acc update clauses.

Listing 2.1: A pseudo code of optimization on non-contiguous data transfer between hosts

and devices

! $acc data pre sent (send_buffer (: , :) , s o ln (: , : , : , :))

2.4. Results 41

! Pack send_buffer (: , 1) with back boundary data

! $acc p a r a l l e l loop c o l l a p s e (4) async (1)

do var = 0 , 4

do k= 0 , k_nodes -1

do j= 0 , j_nodes -1

! Pack up two l a y e r s o f c e l l s

do i = 1 , 2

indx = var*k_nodes* j_nodes*2+k* j_nodes*2+ j *2+ i

! I n t e r i o r c e l l index s t a r t s at 3

send_buffer (indx , 1) = so ln (i +2, j +1,k+1, var+1)

! S im i l a r rou t ine to pack send_buffer (: , 2) with f r on t boundary data

async (2)

! Update send_buffer on hos t s

! $acc update host (send_buffer)

! $acc wait

! Send/Recv between hos t s

MPI_IRECV(recv_buf f e r)

MPI_ISEND(send_buffer)

MPI_WAITALL

! Update recv_buf f e r on dev i c e s

! $acc update dev i c e (recv_buf f e r)

! $acc wait

42 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

! $acc data pre sent (recv_buf f e r (: , :) , s o ln (: , : , : , :))

! Unpack the data in recv_buf f e r to so ln ghost l o c a t i o n s

Optimized V2 The use of only one stencil in the Optimized V1 makes the communication

pattern and implementation simpler but may not be efficient. Thus, Optimized V2 is de-

signed to reduce the amount of data exchanged. Since the pressure requires a larger stencil

while other primitive variables do not, We can transfer less (40% for this BDC code) data

based on their own stencil size compared to Optimized V1. What is more, more overlap of

asynchronous communication can be achieved as a big loop is split into two asynchronous

loops. A pseudo code of this optimization is given in Listing. 2.2. It should be noted that

only changes based on the previous optimization are emphasized in a new Listing throughout

this paper.

Listing 2.2: A pseudo code of stencil based communication optimization

! $acc data pre sent (send_buffer (: , :) , s o ln (: , : , : , :))

! Pack send_buffer (: , 1) with back boundary data

!Move pr e s su r e in to send_buffer (: , 1)

! $acc p a r a l l e l loop c o l l a p s e (3) async (1)

do k= 0 , k_nodes -1

do j= 0 , j_nodes -1

do i = 1 , 2

var = 1 ! p r e s su r e only

indx = k* j_nodes*2+ j *2+ i

send_buffer (indx , 1) = so ln (i +2, j +1,k+1, var)

2.4. Results 43

! Update s t a r t i n g index in send_buffer (: , 1)

indx_p = k_nodes* j_nodes *2

!Move v e l o c i t i e s & temperature in to send_buffer (: , 1)

! $acc p a r a l l e l loop c o l l a p s e (3) async (2)

do var = 2 , 5

do k= 0 , k_nodes -1

do j= 1 , j_nodes

indx = (var - 2) *k_nodes* j_nodes+k* j_nodes+j

send_buffer (indx_p+indx) = so ln (3 , j , k+1, var)

! Pack send_buffer (: , 2) with f r on t boundary data

! $acc p a r a l l e l loop c o l l a p s e (3) async (3) & async (4)

! Update send_buffer on hos t s

. . .

! Send/Recv between hos t s

. . .

! Update recv_buf f e r on dev i c e s

. . .

! $acc data pre sent (recv_buf f e r (: , :) , s o ln (: , : , : , :))

! Unpack recv_buf f e r to so ln ghost l o c a t i o n s async (1 : 4)

44 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

Optimized V3 In the Optimized V1 and Optimized V2, contiguous-memory arrays are

created only for the i index direction. However, if a decomposition exists in the j or k index

direction, then we may also need an array in the j and k direction. It should be noted that

although real cell data on k boundary faces do not need to be packed into buffers, using

buffers on k faces may still be helpful considering that there are ghost cells on k boundary

faces which breaks the contiguity. We found that on the HokieSpeed cluster, using such arrays

improves the performance very little, but the performance can be improved significantly on

the NewRiver and Cascades cluster having GPUs which are much faster. The procedure of

creating arrays and parallelizing the pack/unpack process in the j and k direction is very

similar to that in the i direction, so there is no need to show an pseudo code here. Readers

can reference Listing. 2.1.

Based on all the optimizations mentioned above, the final structure of this multi-GPU BDC

code using MPI and OpenACC can be seen in Listing. 2.3. It can been seen that buffering the

boundary data, updating the solution, pressure rescaling, boundary condition enforcement,

dissipation calculation and residual calculation are all parallelized either using !$acc parallel

or !$acc kernel directives.

Listing 2.3: A pseudo code for the BDC code main portion (Optimized V3)

! ! ! ! ! ! ! ! ! ! ! ! ! ! Main rout ine ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

#i f d e f _OPENACC

! get the number o f d ev i c e s and s e t the GPU on each node

ngpus=acc_get_num_devices (acc_device_nvidia)

device_num=mod(id , ngpus)

c a l l acc_set_device_num (device_num , acc_device_nvidia)

#end i f

2.4. Results 45

! $acc data copy (so ln (: , : , : , :) , r e s i d u a l (: , : , : , :) , &

! $acc soln_send_x , soln_recv_x , &

! $acc soln_send_y , soln_recv_y , &

! $acc soln_send_z , soln_recv_z)

!BEGIN MAIN ITERATION LOOP

do whi le (i t e r <= max_iter)

! ze ro the r e s i d u a l norms

#i f d e f _MPI

! pack the data to bu f f e r s

c a l l buf fer_sendx (3 , x_nodes - 3)

c a l l buf fer_sendy (3 , y_nodes - 3)

c a l l buf fer_sendz (3 , z_nodes - 3)

! t r a n s f e r the data between ne ighbour ing b locks

c a l l transfer_bc_data ()

! unpack the data to so ln

c a l l buf f e r_recvx (x_nodes - 1 , 1)

c a l l buf f e r_recvy (y_nodes - 1 , 1)

c a l l bu f f e r_recvz (z_nodes - 1 , 1)

#end i f

! f i l l the r e s i d u a l array

c a l l c a l c_r e s i dua l ()

! $acc p a r a l l e l loop c o l l a p s e (3) pre sent (so ln (: , : , : , :) , &

46 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

! $acc r e s i d u a l (: , : , : , :))

do k = indx_cal (5) , indx_cal (6)

do j = indx_cal (3) , indx_cal (4)

do i = indx_cal (1) , indx_cal (2)

! update so ln (i , j , k , 1 : 5)

! Pres sure r e s c a l i n g at the cente r po int o f the cav i ty

c a l l s e t_center_pressure ()

! $acc k e rn e l s pre sent (so ln (: , : , : , :))

s o ln (: , : , : , 1) = so ln (: , : , : , 1) - Pwe ight factor

! Reduce and pr in t out r e s i d u a l norms

c a l l MPI_REDUCE

c a l l p r i n t_re s i dua l ()

i t e r=i t e r+1

end do

! ! ! ! ! ! ! ! ! ! ! ! ! ! Res idual ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! Boundary cond i t i on enforcement

! Update the data in edges , co rne r s and boundary f a c e s f i r s t

! Then update the d i s s i p a t i o n terms in these boundary c e l l s

! use ! $acc ke rne l or ! $acc p a r a l l e l d i r e c t i v e s

! ! I n t e r na l domain

2.4. Results 47

! Ca l cu l a t i on the d i s s i p a t i o n terms

#i f d e f _OPENACC

! $acc p a r a l l e l loop c o l l a p s e (3) async (queue_id)

#end i f

do k=3, z_nodes -2

do j =3, y_nodes -2

do i =3, x_nodes -2

! c a l c u l a t e d i s s i p a t i o n terms

! ! Res idual c a l c u l a t i o n f o r a l l needed c e l l s

! use ! $acc ke rne l or ! $acc p a r a l l e l d i r e c t i v e s

We will first show the benefits of applying Optimized V1, i.e., creating the contiguous-memory

and parallelizing the process of pack/unpack. Fig. 2.7a shows the weak scaling efficiency of

the different GPU code versions introduced earlier on HokieSpeed and NewRiver. The Base-

line version using 3D decomposition performs poorly, which is very bandwidth limited and

communication bounded due to noncontiguous data transfer when 3D decomposition is used.

Although the baseline GPU version using 3D decomposition performs poorly, its two opti-

mizations scales as well as the baseline using 2D decomposition or even better. This indicates

that memory throughput is improved greatly and communication cost is reduced after opti-

mization, although there is some pack/unpack overhead. Therefore, special attention should

be paid to non-contiguous data movement. Also, Fig. 2.7 shows that Optimized V2 performs

better than Optimized V1 because it transfers less data and overlaps asynchronous data

transfers better.

To figure out how Optimized V1 improves the performance significantly when partitions exist

in the x dimension, profiling result comparisons of Baseline and Optimized V1 are obtained

48 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

(a) Multi-GPU weak scaling performance on
HokieSpeed

(b) Multi-GPU weak scaling performance on
NewRiver

Figure 2.7: Multi-GPU weak scaling of different versions

on both platforms, which can be seen in Fig. 2.8. On both platforms, the communication time

is largely reduced after applying the optimizations in Optimized V1. In fact, the reduction

in the communication time can be divided into two aspects, the CPU-CPU communication

time and the CPU-GPU (including host to device and device to host) communication time.

On Hokiespeed, the CPU-CPU communication time is reduced by more than 6 times and

the host to device time is reduced by more than 10 times. On NewRiver, the CPU-CPU

communication time is reduced by more than 5 times and the host to device time is reduced

by more than 3 times. The overhead of pack/unpack is small compared to other kernel

computations, as the fraction of pack/unpack is only 1.6% of the whole kernel computations

when using 8 GPUs on NewRiver (seen in Fig. 2.9).

It should be mentioned that the performance comparison of Optimized V2 and Optimized V3

on NewRiver and Cascades will be shown in Sec 2.4.6, as there the performance of applying

different MPI compilers and GPUDirect will include such a comparison. The GPU strong

scaling and weak scaling performance (Optimized V3) using 1D, 2D and 3D decompositions

are shown in Fig. 2.10. From Fig. 2.10, 3D decomposition performs the best for the strong

scaling, then 2D decomposition follows. 1D decomposition in the x or z dimension makes the

2.4. Results 49

(a) 2 GPUs on HokieSpeed
(b) 8 GPUs on NewRiver

Figure 2.8: Profiling results

Figure 2.9: The fractions of different compute kernels

performance drop quickly, especially on Cascades, indicating that the surface to volume ratio

is a more important consideration for the strong scaling. Similar to the CPU weak scaling,

the weak scaling performance decays more slowly than strong scaling performance, meaning

more computational work on the GPU can maintain a higher efficiency. This weak scaling

applies the grid growth type 2, which is in Table 2.2. Since the problem size increases in

accordance with the way np grows, 1D decomposition performs the best as every decomposed

block has the least number of neighbours compared to 2D and 3D decomposition.

Fig. 2.11 shows the performance comparison across platforms. Different from Fig. 2.6, mul-

50 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

(a) GPU strong scaling (b) GPU weak scaling

Figure 2.10: Multi-GPU scaling using different decompositions (Optimized V3)

tiple factors can affect the multi-GPU performance significantly, including the number of

processors, platforms, whether a strong or weak scaling. When the number of GPUs in-

creases, the efficiency drops significantly for both the strong and weak scaling, but the weak

scaling efficiency holds a relatively higher value compared to the strong scaling. Cascades

shows an about 2 times faster speedup compared to NewRiver, which is close to their theo-

retical double precision performance ratio, 1.66. It can be concluded that newer generation

GPUs are more difficult to keep high efficiency compared to old generation GPUs, although

the speed of of using newer GPUs is much higher. The reason is that the fraction of the com-

munication time is larger on newer generation GPUs as their compute capability is higher.

This also indicates that more optimizations should be made.

To investigate the effect of different grid growth methods on the weak scaling performance,

some cases are tested on NewRiver and Fig. 2.12 shows such results. Since the two grid

growths are the same if applying 3D decomposition, there is only one curve for 3D decom-

position. It can be found that the performance is better for growth type 2, as the grid grows

in all dimensions instead of only in one dimension. It should be emphasized that which

decomposition should be used for the weak scaling depends on how the grid grows.

2.4. Results 51

Figure 2.11: Multi-GPU performance comparison across platforms (Optimized V3)

2.4.6 CUDA-aware MPI and GPUDirect

The optimizations introduced in Section 2.4.5 have improved the efficiency significantly on

different platforms. However, we are still interested in improving the scaling performance

further on NewRiver and Cascades since they have some modern GPUs with different ar-

chitectures. Thus, it became important to determine ways of reducing this communication

cost by using CUDA-aware MPI and GPUDirect [25]. Later, performance comparisons will

be made between using Open MPI, MVAPICH2 or MVAPICH2-GDR with GPUDirect.

HokieSpeed does not support CUDA-aware MPI. Thus, all inter-node GPU communications

on HokieSpeed had to go through host memory. This staging deteriorates the performance

greatly. Using CUDA-aware MPI, we only need to send GPU buffers instead of CPU buffers.

CUDA-aware MPI has two performance benefits [25]. First, operations which require mes-

sage transfer can be pipelined, which improves the memory throughput. Second, acceleration

techniques such as GPUDirect can be utilized by the MPI library transparently to the user.

GPUDirect is an umbrella word for several GPU communication acceleration technologies. It

provides high bandwidth and low latency communication between NVIDIA GPUs. There are

52 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

Figure 2.12: Weak scaling performance applying different grid growth methods (Optimized
V3)

three levels of GPUDirect [26]. The first level is GPUDirect Shared Access, introduced with

CUDA 3.1. This feature avoids an unnecessary memory copy within host memory between

the intermediate pinned buffers of the CUDA driver and the network fabric buffer. The

second level is GPUDirect Peer-to-Peer transfer (P2P transfer) and Peer-to-Peer memory

access (P2P memory access), introduced with CUDA 4.0. This P2P memory access allows

buffers to be copied directly between two GPUs on the same node. The last is GPU RDMA

(Remote Direct Memory Access), with which buffers can be sent from the GPU memory to a

network adapter without staging through host memory. The last feature is not supported on

NewRiver and Cascades as it pertains to specific versions of the drivers (both from NVIDIA

for the GPU and Mellanox for the Infiniband) which are not installed (other dependencies

exist on NewRiver and Cascades, particularly parallel filesystems). Although GPU RDMA

is not available, the other aspects of GPUDirect can be tested to determine its effect on the

scaling performance using MVAPICH2-GDR.

2.4. Results 53

Intra-Node Scaling Performance Results

In this subsection, we will first show the benefits of applying GPUDirect in a node. Table 2.3

shows the strong scaling performance comparison of different GPU code versions using 2

GPUs (intra-node performance) on NewRiver. The problem size is 2563. The versions

defined here are similar to the versions introduced in Section. 2.4.5, with the Baseline to

be the non-optimized GPU version, Optimized V3 uses the pack/unpack in all the available

dimensions and the stencil-based communication method, and GPUDirect uses the P2P

transfer technology applied to both of these versions of the code. Within a node, we are

using GPUDirect P2P transfer between the memory of two GPUs on the same system/PCIe

bus.

Table 2.3: Strong scaling comparison of different GPU code versions using 2 GPUs (on
NewRiver)

GPU code versions Decompositions ssspnt efficiency
Single GPU (1,1,1) 93.8 100%

Baseline (1,1,2) 145.9 77.8%
Baseline (2,1,1) 22.0 11.7%

Optimized V3 (1,1,2) 167.2 89.2%
Optimized V3 (2,1,1) 169.8 90.5%

Baseline + GPUDirect (1,1,2) 155.8 83.1%
Baseline + GPUDirect (2,1,1) 154.7 82.5%

Optimized V3 + GPUDirect (1,1,2) 177.9 94.9%
Optimized V3 + GPUDirect (2,1,1) 179.4 95.7%

Using MVAPICH2, the baseline code decomposed in the i direction performs poorly, about

1/7 of that decomposed in the k direction. After a series of optimizations the efficiency

changes from 11.7% to 90.5%, indicating again the importance of the coalesced memory

access when doing host-device transfers. GPU direct P2P transfer on the baseline code is

also able to avoid the cost of host-device transfers and is able to maintain an efficiency of

83% even though the data is not contiguous. Combining the performance optimizations with

54 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

the use of GPUDirect can improve the efficiency to approximately 95% on 2 GPUs.

Table. 2.4 shows the weak scaling performance comparison of different GPU code versions

using 2 GPUs in the intra-node mode. The result also shows either the optimizations pro-

posed in this paper or GPUDirect (or both if applicable) should be used, if non-contiguous

data transfers happen. It is also reasonable to see that the weak scaling generally performs

better than the strong scaling, as more work are assigned to the GPU.

Table 2.4: Weak scaling comparison of different GPU code versions using 2 GPUs (on
NewRiver)

GPU code versions Decompositions ssspnt efficiency
Single GPU (1,1,1) 93.8 100%

Baseline (1,1,2) 161.6 86.1%
Baseline (2,1,1) 21.4 11.4%

Optimized V3 (1,1,2) 175.3 93.5%
Optimized V3 (2,1,1) 176.3 94.0%

Baseline + GPUDirect (1,1,2) 167.9 89.5%
Baseline + GPUDirect (2,1,1) 154.9 82.6%

Optimized V3 + GPUDirect (1,1,2) 180.0 96.0%
Optimized V3 + GPUDirect (2,1,1) 180.9 96.5%

Inter-Node Scaling Performance Results

Strong Scaling Performance Results Since there are three different MPI options (Open

MPI, MVAPICH2 and MVAPICH2-GDR with GPUDirect turned on) on NewRiver and

Cascades, scaling performance results using the three different compilers/options are given.

Fig. 2.13 shows the strong scaling performance using different MPI options, respectively.

Considering 3D growth is much more common in CFD such as applying systematic mesh

refinement so the 3D decomposition is of more interest. As mentioned earlier, when apply-

ing MVAPICH2 or MVAPICH2-GDR on Cascades, the performance drops to 1% if using 16

GPUs, so the maximum number of GPUs used in that occasion is 8. Since the results are

2.4. Results 55

for the strong scaling, we cannot expect a very high efficiency if scaling up to a large num-

ber of GPUs. Using MVAPICH2-GDR generally achieves the best performance especially

when combined with Optimized V3. The performance drop of Optimized V2 using 4GPUs

on Cascades is caused by not using buffers in the y and z dimension. The performance

curves using Open MPI on both platforms are much smoother than using MVAPICH2 and

MVAPICH2-GDR. The difference is caused by that MVAPICH2 and Open MPI are differ-

ent MPI compilers which have different focus (Open MPI targets more common uses and

MVAPICH2 can meet special needs).

(a) Open MPI (b) MVAPICH2 (c) MVAPICH2-GDR

Figure 2.13: Strong scaling performance across platforms (3D decomposition)

Weak Scaling Performance Results When measuring the weak scaling performance,

grid growth type 2 is applied here. Fig. 2.14 shows the weak scaling performance using

different MPI options. For each MPI option, results of using different decompositions for

different grid growth are given. MVAPICH2 and Open MPI perform equivalently but there

are still some differences. MVAPICH2 performs better than Open MPI for Optimized V3, and

generally worse for Optimized V2, compared to Open MPI. It is reasonable as MVAPICH2 is

designed to reduce communication overhead for complicated communication patterns. It can

also be seen that GPUDirect (with MVAPICH2-GDR) brings some performance benefits and

performs the best for both Optimized V2 and Optimized V3. Using buffers in all available

56 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

decomposed dimensions (Optimized V3) generates the best performance.

(a) Open MPI (b) MVAPICH2 (c) MVAPICH2-GDR

Figure 2.14: Weak scaling performance across platforms (3D decomposition)

2.4.7 Overlapping Communication and Computation

When overlapping communication and computation, every decomposed block is further sep-

arated into two components: internal and external domains. For large enough problems, the

internal domain will have significantly more grid points than the external domain. These

internal points do not need data from other blocks so they can compute their updates while

the communication is occurring for the external portion of the block. After communication

is finished, the external domain continues to finish the remaining computation. Overlapping

will not reduce latency but it can hide the latency caused by inter-block communication.

In this paper, overlapping communication and computation was applied to both CPUs and

GPUs. Communication is always done on CPUs while computation can be performed on

CPUs or GPUs.

Case studies to compare the overlap and non-overlap versions have been made on different

platforms, using different decompositions and code versions, and for the strong and weak

scaling performance. The overlap version performs more slowly compared to the non-overlap

version. Fig. 2.15 shows the strong and weak scaling performance for both the CPU and

2.4. Results 57

GPU on the NewRiver cluster, with a performance comparison between the overlap version

(extended from Optimized V3) and the non-overlap (Optimized V3) version. For both the

CPU and GPU, overlap performs about 20% to 30% slower than non-overlap up to 16 pro-

cessors, which was out of our initial expectation. The main reason is that the asynchronous

progression is not supported well, potentially caused by the MPI and the communication

system used. To figure out whether the asynchronous progression engine was activated or

not, we used NVIDIA Visual Profiler [27] to trace the program kernel executions on GPUs

and found that the MPI used does not trigger communication until the code runs to a

MPI_Waitall call, although communication is launched as early as possible. Since there is

no actual overlap, and the non-overlap version only needs to setup the residual calculation

kernel once while the overlap version has to do the setup multiple times (as it contains the

internal domain and external domains), this overhead makes the overlap slower than the

non-overlap version.

(a) CPU scaling (b) GPU scaling

Figure 2.15: Overlap of communication and computation on NewRiver (3D decomposition)

In fact, the MPI standard [28] does not guarantee there is an actual overlap, which also

means that the it may or may not be possible for communication to make progress when

control has returned to the application, depending on the communication software and the

underlying hardware. In Ref [29], it is also concluded that the degree of actual overlap for

58 Chapter 2. Multi-GPU Performance Optimization of a CFD Code using OpenACC

an application depends on the overlap potential of both the application and the underlying

communication subsystem. In our case, we tested the overlap on different Virginia Tech

supercomputing platforms using different MPI options and different decompositions, and

none of them improved the performance using multiple GPUs. It should be mentioned that

the MPI standard allows for non-blocking operations to only be progressed to completion if a

proper test/wait call was made. Thus, we tried to add many MPI_Testall (dips into the MPI

progression engine many times) or similar calls for the GPU code right after communication

initialization. This makes overlap slightly better (observed through tracing). However, some

overhead is produced due to adding these wait calls, also the degree of overlap is still not

fully complete. The benefits of the performance enhancements are negligible compared with

the overhead for our BDC code.

Our conclusion is that overlapping communication and computation is not a universal per-

formance improvement for all applications and platforms, including the BDC problem using

only MPI+OpenACC. Only if both the MPI compiler and the architecture supports asyn-

chronous progression can overlap perform well and be used to hide some latency, which is

difficult. An alternative way of improving the overlap is using MPI+OpenACC+OpenMP,

in which OpenMP is used to generate multiple threads. These threads can work on different

tasks such as computation and communication so that the actual degree of overlap can be

increased [30, 31, 32, 33, 34]. In fact, there are more literature discussing how to improve the

overlap performance and almost all of them use multiple threads. Therefore, developers who

have an interest in the overlap version for their own codes may need to do some simple tests

first and should not only depend on overlap to get high performance. Since multi-threading

is not a focus in this paper, no in-depth investigation of multi-threading is applied in this

paper.

2.5. Conclusions 59

2.5 Conclusions

It is shown in the paper that OpenACC directives offer a convenient way to accelerate a CFD

code fast on multiple platforms. All the platforms can generally use the same code with little

code intrusion, which is a big advantage over CUDA and OpenCL. Some general optimiza-

tions are examined to improve the multi-GPU code performance, such as the pack/unpack

method and stencil-based communication method. The optimizations introduced are shown

to be very effective for both strong scaling and weak scaling, greatly reducing communica-

tion overhead on GPUs. Further optimizations such as the overlap of communication and

computation, asynchronous progression, and the use of CUDA-aware MPI and GPUDirect

are also implemented and discussed. Overlapping communication and computation using

only MPI+OpenACC is shown to be not an efficient way to improve the multi-GPU per-

formance. GPUDirect is shown to be effective in a CFD application like the BDC code in

this paper, as GPUDirect enables GPUs to communicate with each other directly and also

increases the bandwidth between host and device. This avoids overhead between host and

device and is important for communication-bound problems. Also, a combination of the use

of GPUDirect and the optimizations proposed in this paper can improve both the strong

and weak scaling performance substantially. 3D domain decomposition generally performs

the best for the strong scaling on different platforms. For weak scaling, which decomposition

performs best depends on how the grid growth is.

Acknowledgements

The authors would like to thank Andrew J. McCall and Behzad Baghapour for creating the

original BDC code as well as giving advice, and thank Charles W. Jackson for reviewing the

60 BIBLIOGRAPHY

paper and participating in various helpful discussions.

2.6 Appendix

Fig. 2.16 shows the L_2 norm residual history of the temperature for different versions of

the code.

(a) L2 norm residual history the temperature
(whole) (b) GPU scaling

Figure 2.16: L2 norm residual history for the temperature

Bibliography

[1] Shamoon Jamshed. Using HPC for Computational Fluid Dynamics: A Guide to High

Performance Computing for CFD Engineers. Academic Press, 2015.

[2] Blaise Barney. OpenMP, 2018.

[3] Blaise Barney. Message Passing Interface (MPI), 2019.

BIBLIOGRAPHY 61

[4] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. Hybrid MPI and OpenMP Parallel

Programming, 2013.

[5] GPUs for Scientific Computing, 2009.

[6] Jiri Kraus, Michael Schlottke, Andrew Adinetz, and Dirk Pleiter. Accelerating a c++ cfd

code with openacc. In 2014 first workshop on accelerator programming using directives,

pages 47–54. IEEE, 2014.

[7] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej, and Christoph Kessler. Bench-

marking OpenCL, OpenACC, OpenMP, and CUDA: programming productivity, per-

formance, and energy consumption. In Proceedings of the 2017 Workshop on Adaptive

Resource Management and Scheduling for Cloud Computing, pages 1–6. ACM, 2017.

[8] OpenACC-Standard.org. The OpenACC Application Programming Interface.

OpenACC-Standard.org, 2018.

[9] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. Openacc—first

experiences with real-world applications. In European Conference on Parallel Processing,

pages 859–870. Springer, 2012.

[10] Amit Sabne, Putt Sakdhnagool, Seyong Lee, and Jeffrey S Vetter. Evaluating perfor-

mance portability of openacc. In International Workshop on Languages and Compilers

for Parallel Computing, pages 51–66. Springer, 2014.

[11] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, and Ryoji Takaki. CUDA vs

OpenACC: Performance case studies with kernel benchmarks and a memory-bound CFD

application. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM

International Symposium on, pages 136–143. IEEE, 2013.

62 BIBLIOGRAPHY

[12] Jing Gong, Stefano Markidis, Erwin Laure, Matthew Otten, Paul Fischer, and Misun

Min. Nekbone performance on gpus with openacc and cuda fortran implementations.

The Journal of Supercomputing, 72(11):4160–4180, 2016.

[13] Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez. Mpi+

openacc: Accelerating radiation transport mini-application, minisweep, on heteroge-

neous systems. Computer Physics Communications, 2018.

[14] Brent P Pickering, Charles W Jackson, Thomas RW Scogland, Wu-Chun Feng, and

Christopher J Roy. Directive-based GPU programming for computational fluid dynam-

ics. Computers & Fluids, 114:242–253, 2015.

[15] Behzad Baghapour, Andrew J McCall, and Christopher J Roy. Multilevel parallelism

for cfd codes on heterogeneous platforms. In 46th AIAA Fluid Dynamics Conference,

page 3329, 2016.

[16] Weicheng Xue, Charles W Jackson, and Christopher J Roy. Multi-cpu/gpu paralleliza-

tion, optimization and machine learning based autotuning of structured grid cfd codes.

In 2018 AIAA Aerospace Sciences Meeting, page 0362, 2018.

[17] Alexandre Joel Chorin. A numerical method for solving incompressible viscous flow

problems. Journal of computational physics, 135(2):118–125, 1997.

[18] Joseph M Derlaga, Tyrone Phillips, and Christopher J Roy. Sensei computational fluid

dynamics code: a case study in modern fortran software development. In 21st AIAA

Computational Fluid Dynamics Conference, 2013.

[19] Weicheng Xue, Hongyu Wang, and Christopher J Roy. Code verification for 3d turbu-

lence modeling in parallel sensei accelerated with mpi. In AIAA Scitech 2020 Forum,

page 0347, 2020.

BIBLIOGRAPHY 63

[20] Anders Ytterström. A tool for partitioning structured multiblock meshes for parallel

computational mechanics. The International Journal of Supercomputer Applications

and High Performance Computing, 11(4):336–343, 1997.

[21] Jarmo Rantakokko. Partitioning strategies for structured multiblock grids. Parallel

Computing, 26(12):1661–1680, 2000.

[22] Hokiespeed, 2017.

[23] Newriver, 2019.

[24] Cascades, 2020.

[25] Jiri Kraus. An Introduction to CUDA-Aware MPI, 2013.

[26] NVIDIA. NVIDIA GPUDirect, 2019.

[27] NVIDIA Corporation. Profiler User’s Guide, 2019.

[28] MPI: A message-passing interface standard, 2015.

[29] David E Bernholdt, Jarek Nieplocha, P Sadayappan, Aniruddha G Shet, and Vinod

Tipparaju. Characterizing Computation-Communication Overlap in Message-Passing

Systems. Technical report, The Ohio State University, 2008.

[30] Mao Jiayin, Song Bo, Wu Yongwei, and Yang Guangwen. Overlapping communication

and computation in mpi by multithreading. In Proc. of International Conference on

Parallel and Distributed Processing Techniques and Applications, 2006.

[31] Karthikeyan Vaidyanathan, Dhiraj D Kalamkar, Kiran Pamnany, Jeff R Hammond, Pa-

van Balaji, Dipankar Das, Jongsoo Park, and Bálint Joó. Improving concurrency and

64 BIBLIOGRAPHY

asynchrony in multithreaded mpi applications using software offloading. In SC’15: Pro-

ceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 1–12. IEEE, 2015.

[32] Huiwei Lu, Sangmin Seo, and Pavan Balaji. Mpi+ ult: Overlapping communication

and computation with user-level threads. In 2015 IEEE 17th International Conference

on High Performance Computing and Communications, 2015 IEEE 7th International

Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Con-

ference on Embedded Software and Systems, pages 444–454. IEEE, 2015.

[33] Alexandre Denis and François Trahay. Mpi overlap: Benchmark and analysis. In 2016

45th International Conference on Parallel Processing (ICPP), pages 258–267. IEEE,

2016.

[34] Emilio Castillo, Nikhil Jain, Marc Casas, Miquel Moreto, Martin Schulz, Ramon Bei-

vide, Mateo Valero, and Abhinav Bhatele. Optimizing computation-communication

overlap in asynchronous task-based programs. In Proceedings of the ACM International

Conference on Supercomputing, pages 380–391, 2019.

Chapter 3

An Improved Framework of GPU

Computing for CFD Applications on

Structured Grids using OpenACC

Weicheng Xue1, Charles W. Jackson2 and Christopher J. Roy3

Virginia Tech, Blacksburg, Virginia, 24061

Attribution

• Weicheng Xue (first author): The first author served as the main contributor and

primary author of this study. All the performance optimizations were developed and

implemented by the first author. All the results were collected by the first author.

• Charles W. Jackson (second author): The second author provided a lot of useful sug-

gestions when porting the CFD code called SENSEI to multiple CPUs. Also, the

second author provided valuable comments for this manuscript.
1Graduate Assistant, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall,

RM 315, Virginia Tech, 460 Old Turner St, AIAA Student Member.
2Graduate Assistant, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall,

RM 315, Virginia Tech, 460 Old Turner St, AIAA Student Member.
3Professor, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall, RM 330,

Virginia Tech, 460 Old Turner St, AIAA Associate Fellow.

65

66
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

• Christopher J. Roy (final author): The final author provided valuable feedback for this

study and comments for this manuscript.

Abstract

This paper is focused on improving multi-GPU performance of a research CFD code on

structured grids. MPI and OpenACC directives are used to scale the code up to 16 GPUs.

This paper shows that using 16 P100 GPUs and 16 V100 GPUs can be 30× and 70× faster

than 16 Xeon CPU E5-2680v4 cores for three different test cases, respectively. A series

of performance issues related to the scaling for the multi-block CFD code are addressed

by applying various optimizations. Performance optimizations such as the pack/unpack

message method, removing temporary arrays as arguments to procedure calls, allocating

global memory for limiters and connected boundary data, reordering non-blocking MPI

I_send/I_recv and Wait calls, reducing unnecessary implicit derived type member data

movement between the host and the device and the use of GPUDirect can improve the

compute utilization, memory throughput, and asynchronous progression in the multi-block

CFD code using modern programming features.

Keywords: MPI, OpenACC, Multi-GPU, CFD, Performance Optimization, Structured Grid

3.1. Introduction 67

3.1 Introduction

Computational Fluid Dynamics (CFD) is a method to solve problems related to fluids nu-

merically. There are numerous studies applying a variety of CFD solvers to solve different

fluid problems. Usually these problems require the CFD results to be generated quickly as

well as precisely. However, due to some restrictions of the CPU compute capability, system

memory size or bandwidth, highly refined meshes or computationally expensive numerical

methods may not be feasible. For example, it may take thousands of CPU hours to con-

verge a 3D Navier-Stokes flow case with more than millions of degrees of freedoms. In such

a circumstance, high performance parallel computing [1] enables us to solve the problem

much faster. Also, parallel computing can provide more memory space (either shared or

distributed) so that large problems can be solved.

Parallel computing differs from serial computing in many aspects. On the hardware side, a

parallel system commonly has multi/many-core processors or even accelerators such as GPUs,

which enable programs to run in parallel. Memory in a parallel system is either shared or dis-

tributed [1], with unified memory address [2] and non-unified memory address usually being

used, respectively. On the software side, there are various programming models for paral-

lel computing including OpenMP [3], MPI [4], CUDA [5], OpenCL [6] and OpenACC [7].

Different parallel applications can utilize different parallel paradigms based on a pure par-

allel model or even a hybrid model such as MPI+OpenMP, MPI+CUDA, MPI+OpenACC,

OpenMP+OpenACC, etc.

For multi/many-core computing, OpenMP, MPI and hybrid MPI+OpenMP have been widely

used and their performance has also been frequently analyzed in various areas, including

CFD. Gourdain et al. [8, 9] investigated the effect of load balancing, mesh partitioning and

communication overhead in their MPI implementation of a CFD code, on both structured

68
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

and unstructured meshes. They achieved good speedups for various cases up to thousands of

cores. Amritkar et al. [10] pointed out that OpenMP can improve data locality on a shared

memory platform compared to MPI in a fluid-material application. However, Krpic et al. [11]

showed that OpenMP performs worse when running large scale matrix multiplication even

on shared-memory computer system when compared to MPI. Similarly, Mininni et al. [12]

compared the performance of the pure MPI implementation and the hybrid MPI+OpenMP

implementation of an incompressible Navier-Stokes solver, and found that the hybrid ap-

proach does not outperform the pure MPI implementation when scaling up to about 20,000

cores, which in their opinion may be caused by cache contention and memory bandwidth. In

summary, it can be concluded that MPI is more suitable for massively parallel applications

as it can help achieve better performance compared to OpenMP.

In addition to accelerating a code on the CPU, accelerators such as GPU [13] are becoming

popular in the area of scientific computing. CUDA [5], OpenCL [6], and OpenACC [7] are

the three commonly used programming models for the GPU. CUDA and OpenCL are mainly

C/C++ extensions (CUDA has also been extended to Fortran) while OpenACC is a compiler

directive based interface, therefore CUDA and OpenCL are more troublesome in terms of

programming, requiring a lot of user intervention. CUDA is proprietary to NVIDIA and thus

can only run on NVIDIA GPUs. OpenCL supports various architectures but it is a very

low level API, which is not easy for domain scientists to adapt to. Also, although OpenCL

has a good portability across platforms, a code may not run efficiently on various platforms

without specific performance optimizations and tuning. OpenACC has some advantages

over CUDA and OpenCL. Users only need to add directives in their codes to expose enough

parallelisms to the compiler which determines how to accelerate the code. In such a way,

a lot of low level implementation can be avoided, which provides a relatively easy way for

domain scientists to accelerate their codes on the GPU. Additionally, OpenACC can perform

3.1. Introduction 69

fairly well across different platforms even without significant performance tuning. However,

OpenACC may not reveal some parallelisms if there is a lack of performance optimizations.

Therefore, OpenACC is usually assumed to be slower than CUDA and OpenCL, but it is still

fairly fast. Even for some occasions, OpenACC can be the fastest [14], which is surprising.

To program on multiple GPUs, MPI may be needed, i.e., the MPI+OpenACC hybrid model

may be required. CPUs are set as hosts and GPUs are set as accelerator devices, which is

referred to as the offload model, in which the most computational expensive portion of the

code is offloaded to the GPU, while the CPU handles instructions of controls and file I/O.

A lot of work has been done to leverage GPUs for CFD applications. Jacobsen et al. [15]

investigated multi-level parallelisms for the classic incompressible lid driven cavity problem

on GPU clusters using MPI+CUDA and hybrid MPI+OpenMP+CUDA implementations.

They found that the MPI+CUDA implementation performs much better than the pure

CPU implementation but the hybrid performs worse than the MPI+CUDA implementation.

Elsen et al. [16] ported a complex CFD code to a single GPU using BrookGPU [17] and

achieved a speedup of 40× for simple geometries and 20× for complex geometries. Brandvik

et al. [18] applied CUDA to accelerate a 3D Euler problem using a single GPU and got

a speedup of 16×. Luo et al. [19] applied MPI+OpenACC to port a 2D incompressible

Navier-Stokes solver to 32 NVIDIA C2050 GPUs and achieved a speedup of 4× over 32

CPUs. They mentioned that OpenACC can increase the re-usability of the code due to

OpenACC’s similarity to OpenMP. Xia et al. [20] applied OpenACC to accelerate an un-

structured CFD solver based on a Discontinuous Galerkin method. Their work achieved a

speedup of up to 24× on one GPU compared to one CPU core. They also pointed out that

using OpenACC requires the minimum code intrusion and algorithm alteration to leverage

the computational power of GPU. Chandar et al. [21] developed a hybrid multi-CPU/GPU

framework on unstructured overset grids using CUDA. Xue et al. [22] applied multiple GPUs

70
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

for a complicated CFD code on two different platforms but the speedup was not satisfactory

(only up to 4× on a NVIDIA P100 GPU), even with some performance optimizations. Also,

Xue et al. [23] investigated the multi-GPU performance and its performance optimization of

a 3D buoyancy-driven cavity solver using MPI and OpenACC directives. They showed that

decomposing the total problem in different dimensions affects the strong scaling performance

significantly when using multiple GPUs. Xue et al. [24] further applied the heterogeneous

computing to accelerate a complicated CFD code on a CPU/GPU platform using MPI and

OpenACC. They achieved some performance improvements for some of their test cases, and

pointed out the communication and synchronization overhead between the CPU and GPU

may be the performance bottleneck. Both of the works in Ref [21, 24] showed that the hybrid

CPU/GPU framework can outperform the pure GPU framework to some degree, but the

performance gain depends on the platform and application.

3.2 Description of the CFD code: SENSEI

SENSEI (Structured, Euler/Navier-Stokes Explicit-Implicit Solver) is our in-house 2D/3D

flow solver initially developed by Derlaga et al [25], and later extended to a turbulence

modeling code base through an object-oriented programming manner by Jackson et al. [26]

and Xue et al. [27]. SENSEI is written in modern Fortran and is a multi-block finite volume

CFD code. An important reason of why SENSEI uses structured grid is that the quality

of mesh is better using a multi-block structured grid than using an unstructured grid. In

addition, memory can be used more efficiently to obtain better performance since the data

are stored in a structured way in memory. The governing equations can be written in weak

form as
∂

∂t

∫
Ω

Q⃗dΩ +

∮
∂Ω

(F⃗i,n − F⃗ν,n)ds =
∫
Ω

S⃗dΩ (3.1)

3.2. Description of the CFD code: SENSEI 71

where Q⃗ is the vector of conversed variable, F⃗i,n and F⃗ν,n are the inviscid and viscous flux

normal components (the dot product of the 2nd order flux tensor and the unit face normal

vector), respectively, given as,

Q⃗ =

ρ

ρu

ρv

ρw

ρet

, F⃗i,n =

ρVn

ρuVn + nxp

ρvVn + nyp

ρwVn + nzp

ρhtVn

, F⃗ν,n =

0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz

(3.2)

S⃗ is the source term from either body forces, chemistry source terms, or the method of

manufactured solutions [28]. ρ is the density, u, v, w are the Cartesian velocity components,

et is the total energy, ht is the total enthalpy, Vn = nxu+nyv+nzw and the ni terms are the

components of the outward-facing unit normal vector. τij are the viscous stress components

based on Stokes’s hypothesis. Θi represents the heat conduction and work from the viscous

stresses. In this paper, both the Euler and laminar Navier-Stokes solvers of SENSEI are

ported to the GPU, but not for the turbulence models as the turbulence implementation

involves a lot of object-oriented programming features such as overloading, polymorphism,

type-bound procedures, etc. These newer features of the language are not supported well by

the PGI compiler used, as they may require the GPU to jump from an address to a different

address in runtime, which should be avoided when programming on GPUs.

In SENSEI, ghost cells are used for multiple purposes. First, boundary conditions can be

enforced in a very straightforward way. There are different kinds of boundaries in SENSEI,

such as slip wall, non-slip wall, supersonic/subsonic for inflow/outflow, farfield, etc. Second,

from the perspective of parallel computing, ghost cells for connected boundaries contain

data from the neighboring block used during a syncing routine so that every block can

72
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

be solved independently. SENSEI uses pointers of a derived type to store the neighboring

block information easily. Unless otherwise noted, all of the results presented here will be

using a second-order accurate scheme. Second order accuracy is achieved using the MUSCL

scheme [29], which calculates the left and right state for the primitive variables on each

face of all cells. Time marching can be accomplished using an explicit M-step Runge-Kutta

scheme [30] and an implicit time stepping scheme [31, 32, 33]. In this paper, only the explicit

M-step Runge-Kutta scheme is used as the implicit scheme uses a completely objected-

oriented way of programming which includes overloading of type-bound procedures.

Even though derived types are used frequently in SENSEI, to promote coalesced memory

access and improve cache reuse, struct-of-array (SOA) instead of array-of-struct (AOS) is

chosen for SENSEI. This means that, for example, the densities in each cell are stored in

contiguous memory locations instead of all of the degrees of freedom for a cell being stored

together. Using SOA produces a coalesced memory access pattern which performs well on

GPUs and is recommended by NVIDIA [5].

SENSEI has the ability to approximate the inviscid flux with a number of different inviscid

flux functions. Roe’s flux difference splitting [34], Steger-Warming flux vector splitting [35],

and Van Leer’s flux vector splitting [36] are available. The viscous flux is calculated using

a Green’s theorem approach and requires more cells to be added to the inviscid stencil. For

more details on the theory and background see Derlaga et at. [25], Jackson et al. [26] and

Xue et al. [27].

3.3. Overview of CPU/GPU Heterogeneous System, MPI and OpenACC 73

3.3 Overview of CPU/GPU Heterogeneous System, MPI

and OpenACC

3.3.1 CPU/GPU Heterogeneous System

As can be seen in Fig. 3.1, the NVIDIA GPU has more lightweight cores than the CPU,

so the compute capability of the GPU is much higher than the CPU. Also, the GPU has

higher memory bandwidth and lower latency to its memory. The CPU and the GPU have

discrete memories so there are data movements between them, which can be realized through

the PCI-E or NVLink. The offload model is commonly used for the pure GPU computing,

which can be seen in Fig. 3.2. In CFD, the CPU deals with the geometry input, domain

decomposition and some general settings. Then, the CPU offloads the intensive computa-

tions to the GPU. The boundary data exchange can happen either on the CPU or the GPU,

depending on whether the GPUDirect is used or not. After the GPU finishes the computa-

tion, it moves the solution to the CPU. The CPU finally outputs the solution to files. To

obtain good performance, there should be enough GPU threads running concurrently. Using

CUDA [5] or OpenACC [7], there are three levels of tasks: grid, thread block and thread.

Thread blocks can be run asynchronously in multiple streaming multiprocessors (SMs) and

the communication between thread blocks is expensive. Each thread block has a number

of threads. There is only lightweighted synchronization overhead for all threads in a block.

All threads in a thread block can run in parallel in the Single Instruction Multiple Threads

(SIMT) mode [37]. A kernel is launched as a grid of thread blocks. Several thread blocks

can share a same SMs but all the resources need to be shared. Each thread block contains

multiple 32 thread warps. Threads in a warp can be executed concurrently on a multiproces-

sor. In comparison to the CPU, which is often optimized for instruction controls and for low

74
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

latency access to cached data, the GPU is optimized for data parallel and high throughput

computations.

Figure 3.1: CPU and GPU

Figure 3.2: The offload model

3.3.2 MPI

MPI (Message Passing Interface) is a programming model for parallel computing [38] which

enables data to be exchanged between processors via messages. It can be used on both

distributed and shared systems. MPI supports point-to-point communication patterns as

well as group communications. MPI also supports the customization of derived data type so

3.4. Domain Decomposition 75

transferring data between different processors is easier. It should be noted that a customized

derived type may not guarantee fast data transfers. MPI supports the use of C/C++ and

Fortran. There are many implementations of MPI including Open MPI [39] and MVA-

PICH2 [40].

3.3.3 OpenACC

OpenACC is a standard for parallel programming on heterogeneous CPU/GPU systems [7].

Very similar to OpenMP [3], OpenACC is also directive based, so it requires less code

intrusion to the original code base compared with CUDA [5] or OpenCL [6]. OpenACC

usually does not provide competitive performance compared to CUDA [41, 42, 43], however

the performance it provides can still satisfy many needs. Compilers such as PGI [44] and

GCC can support OpenACC in a way that the compiler detects the directives in a program

and decides how to parallelize loops by default. The compiler also handles moving the data

between discrete memory locations, but it is the users’ duty to inform the compiler to do so.

Users can provide more information through the OpenACC directives to attempt to optimize

performance. These optimizations will be the focus of this paper.

3.4 Domain Decomposition

There are many strategies to decompose a domain, such as using Cartesian [45, 46] or graph

topology [47]. Because SENSEI is a structured multi-block code, Cartesian block splitting

will be used. With Cartesian block splitting, there is a tradeoff between decomposing the

domain in more dimensions (e.g. 3D or 2D domain decomposition) and fewer dimensions

(e.g. 1D domain decomposition). The surface area-volume ratio is larger if decomposing

76
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

the domain in fewer dimensions, which means more data needs to be transferred between

different processors. Also, decomposing the domain in 1D can generate slices that are too

thin to support the entire stencil when decomposing the domain into many sub-blocks.

However, the fewer number of dimensions being composed means that each block needs to

communicate with a fewer number of neighbors, reducing the number of transfers and their

corresponding latency.

By default, SENSEI uses a general 3D or 2D domain decomposition (depending on whether

the problem is 3D or 2D) but can switch to 1D domain decomposition if specified. An

example of the 3D decomposition is shown in Fig. 3.3. The whole domain is decomposed into

a number of blocks. Each block connects to 6 neighboring blocks, one on each face. For each

sub-iteration step (as the RK multi-step scheme is used), neighboring decomposed blocks

need to exchange data with each other, in order to fill their own connected boundaries. Since

data layout of multi-dimensional arrays in Fortran is column-majored, we always decompose

the domain starting form the most non-contiguous memory dimension. For example, since

the unit stride direction of a three-dimensional array A(i, j, k) is the first index (i), i is the

last decomposed dimension and k is the first decomposed dimension.

The 3D domain decomposition method shown in Fig. 3.3 is a processor clustered method.

This method is designed for the scenarios in which the number of processors (np) is greater

than the number of parent blocks (npb), i.e., the number of blocks before the domain decom-

position. There are several advantages with this decomposition strategy. First, this method

is an ”on the fly” approach, which is convenient to use and requires no manual operation

or preprocessing of the domain decomposition. Second, it is very robust that it can handle

most situations if np is greater than or equal to npb. Third, the communication overhead

is small due to the simple connectivity, making the MPI communication implementation

easy. The load can be balanced well if np is significantly larger than npb. Finally, some do-

3.4. Domain Decomposition 77

Figure 3.3: A 3D domain decomposition

main decomposition work can be done in parallel, although the degree may vary for various

scenarios.

This domain decomposition method may have load imbalance issue if np is not obviously

greater than npb, which can be addressed using a domain aggregation technique, similar

to building blocks. A simple 2D example of how the domain aggregation works is given

in Fig. 3.4. In this example, the first parent block has twice as many cells as the second

parent block. If only two processors are used, the workload cannot be balanced well without

over-decomposition and aggregation. With over-decomposition, the first parent block is

decomposed into 4 blocks, and one of these decomposed blocks is assigned to the second

processor so both processor have the same amount of work to do. It should be noted that

the processor boundary length becomes longer due to the processor boundary deflection

increasing the amount of communication required. Using the domain aggregation approach,

any decomposed block is required to exchange data with its neighbours on the same processor

but this does not require MPI communications. Only the new connected boundaries (e.g.

78
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

the red solid lines in Fig. 3.4) between neighboring processors need to be updated using MPI

routines at each sub-iteration step.

Figure 3.4: An example showing the domain aggregation

3.5 Boundary Decomposition in Parallel and Boundary

Reordering

Boundaries also need to be decomposed and updated on individual processors. Initially, only

the root processor has all the boundary information for all parent blocks, since root reads in

the grid and boundaries. After domain decomposition, each parent block is decomposed into

a number of child blocks. These child blocks need to update all the boundaries for themselves.

For non-connected boundaries this update is very straightforward as each processor just

needs to compare their individual block index range with the boundary index range. For

interior boundaries caused by domain decomposition, a family of Cartesian MPI topology

routines are used to setup communicators and make communication much less troublesome.

3.5. Boundary Decomposition in Parallel and Boundary Reordering 79

However, for connected parent block boundaries, the update (decomposing and re-linking

these boundaries) is more difficult, as the update is completed in parallel on individual

processors in SENSEI, instead of on the root processor. The parallel process can be beneficial

if numerous connected boundaries exist. For every parent block connected boundary, the

root processor first broadcasts the boundary to all processors within that parent block and

its neighbour parent block, and then returns to deal with the next parent block connected

boundary. The processors within that parent block or its neighbour parent block compare

the boundary received to their block index ranges. If a processor does not contain any

index range of the parent boundary, it moves forward to compare the next parent boundary.

Processors in the parent block having this boundary or processors in the neighbour parent

block matching part of the neighbour index range are colored but differently. These colored

processors will need to update their index range for the connected boundary. To illustrate

how we use MPI topology routines and inter-communicators to setup connectivity between

neighbour blocks, a 2D example having 3 parent blocks and more than 3 CPUs is given in

Fig. 3.5. Processors which match a parent connected boundary are included in an inter-

communicator. The processor in a parent block first sends its index ranges to processors

residing in the neighbour communicator. Then a processor in the neighbour communicator

matching part of the index range is a neighbour while others in the neighbour communicator

not matching the index range are not neighbour processors. Through looping over all the

neighbour processors in the neighbour communicator, one processor sets up connectivity

with all its connected neighbours. This process is performed in parallel as the root processor

does not need to participate in this process except for broadcasting the parent boundary to

all processors in the parent block and its neighbour parent block at the beginning. There

may be special cases. The first special case is that the root is located at a parent block or

its neighbour parent block. The root needs to participate in the boundary decomposition

and re-linking process, as shown in Fig. 3.5. The second special case is given in the lower

80
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

right square in Fig.3.5, in which a parent block partly connects to itself, which may make a

decomposed block partially connect to itself.

Figure 3.5: An example of using MPI inter-communicator

In SENSEI, nonblocking MPI calls instead of blocking calls are used to improve the per-

formance. However, nonblocking MPI calls requires a blocking call such as MPI_WAIT to

finish the communication, and it may cause a deadlock issue for some multi-block cases. An

example of the deadlock issue is shown in Fig. 3.6. In this example, there are four processors

(PA∼PD), each with two connected boundaries (bc1 and bc2). For every processor, it needs

to block a MPI_WAIT call for its bc1 to finish first and then for its bc2. However, the initial

order of boundaries creates a circular dependency issue for all of the processors, and thus no

communication can be completed (deadlock). This deadlock issue may happen for both the

parent block connections and the child block connections after decomposition. Fig. 3.6 shows

a solution to the deadlock issue, i.e. reordering boundaries. Therefore, boundary reordering

is implemented in SENSEI to automatically deal with such deadlock issues.

3.6. Platforms and Metrics 81

Figure 3.6: An example of deadlock

3.6 Platforms and Metrics

3.6.1 Platforms

Thermisto Thermisto is a workstation in our research lab. It has two NVIDIA Tesla C2075

GPUs and 32 CPU cores. The peak double precision performance is 515 GFLOPS. The

compilers used on Thermisto are PGI 16.5 and Open MPI 1.10.0. An compiler optimization

of -O4 is used. The GPUs on Thermisto are used mainly for testing and comparison with

current generation GPUs.

NewRiver NewRiver [48] is a cluster at Virginia Tech. Each GPU node on NewRiver is

equipped with two Intel Xeon E5-2680v4 (Broadwell) 2.4GHz CPUs, 512 GB memory, and

two NVIDIA P100 GPUs. Each NVIDIA P100 GPU is capable of up to 4.7 TeraFLOPS

of double-precision performance. The NVIDIA P100 GPU offers much higher GFLOPS

82
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

compared to the NVIDIA C2075 GPU on Thermisto. The compilers used on NewRiver

are PGI 17.5 and Open MPI 2.0.0 or MVAPICH2-GDR 2.3b. MVAPICH2-GDR 2.3b is a

CUDA-aware MPI wrapper compiler which supports GPUDirect, also available on NewRiver.

An compiler optimization of -O4 is used.

Cascades Cascades [49] is another cluster at Virginia Tech. Each GPU node on Cascades

is equipped with two Intel Skylake Xeon Gold 3 GHz CPUs, 768 GB memory, and two

NVIDIA V100 GPUs. Each NVIDIA V100 GPU is capable of up to 7.8 TeraFLOPS of

double-precision performance. The NVIDIA V100 GPU offers the highest GFLOPS among

the GPUs we used. The compilers used on Cascades are PGI 18.1 and Open MPI 3.0.0. An

compiler optimization of -O4 is used.

3.6.2 Performance Metrics

To evaluate the performance of the parallel code, weak scaling and strong scaling are used.

Strong scaling measures how the execution time varies when the number of processors changes

for a fixed total problem size, while weak scalability measures how the execution time varies

with the number of processors when the problem size on each processor is fixed. Commonly,

these two scalings are valuable to be investigated together, as we care more about the weak

scaling when we have enough compute resources available to run large problems, while more

about the strong scaling when we only need to run small problems. In this paper, since

our focus is on the acceleration of the computation and data movement in the iterative

solver portion, when measuring productive performance, the timing contribution from the

I/O portion (reading in grid, writing out solution) and the one-time domain decomposition

is not taken into account.

Two basic metrics used in this paper are parallel speedup and efficiency. Speedup denotes

3.6. Platforms and Metrics 83

how much faster the parallel version is compared with the serial version of the code, while

efficiency represents how efficiently the processors are used. They are defined as follows,

speedup =
tserial
tparallel

(3.3)

efficiency =
speedup

np
(3.4)

where np is the number of processors (CPUs or GPUs).

In order for the performance of the code to be compared well on different platforms and for

different problem sizes, the wall clock time per iteration step is converted to a metric called

ssspnt (scaled size steps per np time) which is defined in Eq.3.5.

ssspnt = s
size× steps

np× time
(3.5)

where s is a scaling factor which scales the smallest platform ssspnt to the range of [0,1]. In

this paper, s is set to be 10−6 for all test cases. size is the problem size, steps is the total

iteration steps and time is the program solver wall clock time for steps iterations.

Using ssspnt has some advantages. First, GFLOPS requires knowing the number of opera-

tions while ssspnt does not. In most codes, especially complicated codes, it is usually difficult

to know the total number of operations. The metric ssspnt is a better way of measuring the

performance of a problem than the variable time as time may change if conditions (such

as the number of iterations, problem size, etc.) change. Second, using ssspnt is clearer in

terms of knowing the relative speed difference under different situations than the metric ”ef-

ficiency”. It is easy to know whether the performance is super-linear or linear or sub-linear,

which is shown in Fig. 3.7a, as well as know the relative performance comparison between

different scenarios, which is shown in Fig. 3.7b. Using ssspnt, different problems, platforms

84
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

and different scalings can be compared more easily.

(a) ssspnt for super-linear/linear/sub-linear
scaling (b) ssspnt for different cases

Figure 3.7: An explanation of ssspn

Similar to Ref [23], every time in this paper is measured consecutively for at least three

instances. The difference for each time point is smaller than 1% (usually less than 1 s out

of more than 120 s). We also selected a handful of cases to run again to verify the timings

were consistent day to day.

3.7 OpenACC Parallelization and Optimization

There is some general guidance for improving the performance of a program on a GPU. First,

sufficient parallelism should be exposed to saturate the GPU with enough computational

work, that is, the speedup for the parallel portion should compensate for the overhead of

data transfers and the parallel setup. Second, the memory bandwidth between the host and

the device should be improved to reduce the communication cost, which is affected by the

message size and frequency (if using MPI), memory access patterns, etc. It should be noted

that all performance optimizations should guarantee the correctness of the implementation.

Therefore, this paper proposes and adopts various modifications to increase the speed of

3.7. OpenACC Parallelization and Optimization 85

various CFD kernels and reduce the communication overhead while always ensuring the

correct result is obtained, i.e., the results do not deviate from the serial implementation.

Load balancing, communication overhead, latency, synchronization overhead and data lo-

cality are important factors which may affect the performance. The domain decomposition

and aggregation methods used in this paper can help solve the load imbalancing issue well;

however, the number of dimensions that need to be decomposed may require tuning, es-

pecially when given a large number of processors. To reduce the communication overhead

of data transfers between the CPU and the GPU, the data should be kept on the GPU

as long as possible without being frequently moved to the CPU. Also, non-contiguous data

transfer between the CPU and the GPU (large stride memory access) should be avoided to

improve the memory bandwidth. To hide latency, kernel execution and data transfer should

be overlapped as much as possible, which may require reordering of some portions in the pro-

gram. To reduce the synchronization overhead, the number of tasks running asynchronously

should be maximized. To improve data locality and increase the use of coalesced fetches,

data should be loaded into cache as chunks before needed, which can make read and write

more efficiently. This paper addresses some of these issues based on profiling outputs.

We should keep in mind that there are some inherent bottlenecks limiting the actual perfor-

mance of a CFD code on GPUs. Some CFD codes require data exchange to communicate

between partitions, which incurs some communication and synchronization overhead. Data

fetching in discrete memory may cost more clock cycles than expected due to low actual

memory throughput, system latency, etc. Therefore, the actual compute utilization is diffi-

cult to increase sometimes and is application dependent. Another limiter of the performance

is the need for branching statements in the code. For instance, certain flux functions might

execute different branches depending on the local Mach number. This causes threads in a

warp to diverge reducing the peak performance possible. The actual speedup after enough

86
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

performance optimization should still be smaller than the theoretical compute power the

GPU can provide. The relation of the actual and theoretical speedup the GPU can provide

is not covered in this paper.

3.7.1 V0: Baseline

The baseline GPU version of SENSEI was implemented by McCall [50], [51]. McCall pointed

out that there are some restrictions of the PGI compiler. These restrictions mean the fol-

lowing features cannot be used.

1. Procedure optional arguments

2. Array-valued functions

3. Multi-dimensional array assignments

4. Temporary arrays as parameters to a procedure call

5. Reduction operations on derived type members

6. Procedure pointers within OpenACC kernels

As can be seen in [50] and [51], the 1st and 3rd restrictions do not have adverse effects on

the performance. The 2nd restriction can be easily resolved by using Fortran subroutines

instead of functions. The 5th restriction can be resolved by using scalar variables or arrays

instead of derived type members, which has negligible effect on the performance. The 6th

restriction can be easily overcome by using the select case or if statements. The 4th restriction

indicates that either the compiler needs to automatically generate the temporary arrays or

the user should manually create them. However, the temporary arrays deteriorate the code

3.7. OpenACC Parallelization and Optimization 87

performance significantly. More details about these restrictions can be found in Ref [50] and

[51].

Although the work in Ref [50] and [51] overcame many restrictions to port the code to the

GPU, the GPU performance was not satisfactory. A NVIDIA P100 GPU was only 1.3x∼3.4x

faster than a single Intel Xeon E5-2680v4 CPU core. which indicates that the GPU was not

utilized efficiently. Some performance bottlenecks were fixed in Ref [22]. Profiling-driven

optimizations were applied to overcome some performance bottlenecks. First, loops with

small sizes were not parallelized as the launch overhead is more expensive than the benefits.

As the warp size for NVIDIA GPUs is 32, the compiler may select a thread length of 128 or

256 to parallelize small loops but the loop iteration number for these small loops is less than

10. Second, the kernel of extrapolation to ghost cells was moved from the CPU to the GPU

in order to improve the performance, by passing the whole array with indices as arguments.

Finally, the kernel of updating corners and edges was parallelized. The eventual speedup of

using a single GPU compared to a single CPU was raised to 4.1x for a 3D case on a NVIDIA

P100 GPU, but no multi-GPU performance results were shown as the parallel efficiency was

not satisfactory.

It should be mentioned that the relative solution differences between the CPU and the

GPU code in Ref [22, 50, 51] are much larger than the round-off error mainly due to an

incorrect implementation of connected boundary condition and its relevant parallelization.

The solution bugs have been fixed in this paper so that the OpenACC framework is extended

correctly to multi-block cases. In fact, solution debugging is troublesome using OpenACC,

as intermediate results are difficult to check directly on the device. If the data on the GPU

side needs to be printed outside of the parallel region, then update of the data on the host

side should be made before printing. If the data needs to be known in the parallel region

(when a kernel is running), a probe routine which is !$acc routine type should be inserted

88
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

into the parallel region to print out the desired data. Keep in mind that both the GPU and

CPU have a copy of the data with the same name but in discrete memories.

In addition, it should be mentioned that there is a caveat when updating the boundary data

between the host and the device using the !$acc update directive since the ghost cells and

interior cells in SENSEI are stored and addressed together, which means that the boundary

data are non-contiguous in the memory. Much higher memory throughput can be obtained

if the whole piece of data (including the interior cells and boundary cells) instead of array

slicing is included. A 2D example can be seen in Fig. 3.8. As Fortran uses column-major

storage, the memory stores the array elements by column first. However, the interior cell

columns split the ghost cells in memory. For 3D or multi-dimensional arrays, the data layout

is more complicated but the principle is similar. If using the method in Listing 3.1 to update

the boundary data on the device, OpenACC updates the data slice by slice and there are

many more invocations. The memory throughput can be about 1/100 to 1/8 of using the

method in Listing 3.2, based on the profiling outputs from the NVIDIA visual profiler. In

fact, the only implementation difference between the two methods is whether slicing is used

or not (in Fortran, array slicing is commonly used), but the performance difference is huge.

However, some applications or schemes may require avoiding updating the ghost cell values

(due to concerns for solution correctness) at some temporal points when iterating the solver,

then a manual data rearrangement, i.e., the pack/unpack optimization, should be applied to

overcome the performance deterioration issue.

Listing 3.1: Using slicing to update

! IMIN fa c e update

start_indx = 1 - n_ghost_cel l s (1)

end_indx = 2

! $acc update dev i c e (

3.7. OpenACC Parallelization and Optimization 89

Figure 3.8: An example of showing ghost cells breaking the non-contiguity of the interior
cell

! $acc so ln%sb lock (b lck)%rho (start_indx : end_indx , 1 : jmax , 1 : kmax))

! $acc async (1)

Listing 3.2: Update including ghost cells

! IMIN fa c e update

start_indx = 1 - n_ghost_cel l s (1)

end_indx = 2

! $acc update dev i c e (

! $acc so ln%sb lock (b lck)%rho (start_indx : end_indx , : , :))

! $acc async (1)

Table 3.1 shows the performance of some metrics for the V 00 (using Listing 3.1) and V 0

(using Listing 3.2) comparison on the Cascades platform. Using slicing for the !$acc update

directive reduces the memory throughput greatly to about 1% for the device to host band-

width and about 8% for the host to device bandwidth, compared to not using slicing (with

ghost cell data included). Also, the total invocations of using slicing is more than 10 times

higher than not using slicing. The last row in Table 3.1 is a reference (NVIDIA profiler

90
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

reports different fractions of low memory throughput data transfers for different code ver-

sions) to show the more serious low memory throughput issue in V 00. We will show some

performance optimizations based on the V 0 version next, even though V 0 has larger solution

errors than the round-off errors for some cases.

Table 3.1: Comparison of V00 and V0 performance metrics

Metrics V00 V0
Device to Host bandwidth, GB/s 0.132 10.43
Host to Device bandwidth, GB/s 0.9 7.21

Total invocations, times 262144 20876
Compute Utilization, % 4.2 29.6

Low memory throughput 124 MB/s for 96.4%
data transfers

83.88 MB/s for 11.1%
data transfers

3.7.2 GPU Optimization using OpenACC

Although parallelized using the GPU in Ref [50, 51] and optimized in Ref [22], the speedup for

SENSEI is still not satisfactory due to some performance issues. The NVIDIA Visual Profiler

is used to detect various performance bottlenecks. The bottlenecks include low memory

throughput, low GPU occupancy, inefficient data transfers, etc. Different architectures and

problems may show different behaviours, which is one of our interests. Second, previously

the boundary data needed to be transferred to the CPU first in order to exchange data. We

will apply GPUDirect to enable data transfers directly between GPUs.

V1: Pack/Unpack The goal of this optimization is to improve the memory throughput

and reduce the communication cost if the required data are not located sequentially in

memory [23]. As Fortran is a column-majored language, the first index i of a matrix A(i, j, k)

denotes the fastest change. A decomposition in the i index direction can generate chunks of

data (at j−k planes) which are highly non-contiguous. Decomposing in the j index direction

3.7. OpenACC Parallelization and Optimization 91

can also cause non-contiguous data transfers. Therefore, the optimization is targeted at

solving this issue by converting the non-contiguous data into a temporary contiguous array

in parallel using loop for directives and then updating this temporary array between hosts

and devices using update directives. Performance gains will be obtained as the threads in

a warp can access a contiguous aligned memory region, that is, coalesced memory access is

deployed instead of strided memory access. The procedure can be summarized as follows:

1. Allocate send/recv buffers for boundary cells on j − k planes on devices and hosts

if decomposition happens in the i dimension, as the non-contiguous data on i planes

make data transfer very slow.

2. Pack the noncontiguous block boundary data to the send buffer, which can be explicitly

parallelized using !$acc loop directives, then update the send buffer on hosts using !$acc

update directives.

3. Have hosts transfer the data through nonblocking MPI_Isend/MPI_Irecv calls and

blocking MPI_Wait calls.

4. Update the recv buffer on devices using OpenACC update device directives and finally

unpack the contiguous data stored in recv buffer back to noncontiguous memory on

devices, which can also be parallelized.

We will show that although extra memory is required for buffers, the memory throughput can

be improved to a level similar to that in V 0 (but V 0 has larger simulation errors due to the

incorrect use of !$acc update, especially for cases having connected boundaries). Using V 1,

only the boundary data on the i boundary faces are packed/unpacked as such data are highly

noncontiguous. The boundary data on the j and k plane are not buffered. The pack/unpack

can be parallelized using !$acc loop directives so that the computational overhead is very

small, which can be seen in Listing 3.3.

92
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

Listing 3.3: A pseudo code of showing how to pack/unpack

! IMIN fa c e update

start_indx = 1 - n_ghost_cel l s (1)

end_indx = i n t e r i o r_ c e l l s

! $acc p a r a l l e l p re sent (so ln , s o ln%sblock , &

! $acc so ln%sb lock (b lck)%rho , &

! $acc so ln%sb lock (b lck)%vel , &

! $acc so ln%sb lock (b lck)%p , &

! $acc so ln%sb lock (b lck)%temp , &

! $acc rho_buffer , ve l_buf fe r , &

! $acc p_buffer , temp_buffer)

! $acc loop c o l l a p s e (3)

do k = k_low , k_high

do j = j_low , j_high

do i = start_indx , end_indx

n = n_old + (i - start_indx) + (j - j_low) * i_count + &

(k - k_low) * j_count * i_count

rho_buf fer (n) = so ln%sb lock (b lck)%rho (i , j , k)

ve l_bu f f e r (: , n) = so ln%sb lock (b lck)%ve l (: , i , j , k)

p_buffer (n) = so ln%sb lock (b lck)%p(i , j , k)

temp_buffer (n) = so ln%sb lock (b lck)%temp(i , j , k)

end do

end do

end do

! $acc end p a r a l l e l

n = n_old + i_count * j_count * k_count

! $acc update host (rho_buf fer (n_old : n - 1)) async (1)

3.7. OpenACC Parallelization and Optimization 93

! $acc update host (ve l_bu f f e r (: , n_old : n - 1)) async (2)

! $acc update host (p_buffer (n_old : n - 1)) async (3)

! $acc update host (temp_buffer (n_old : n - 1)) async (4)

However, when updating the buffer arrays on either side (device or host), since the host

only transfers the derived type arrays such as soln%sblock%array not the buffer arrays

array_buffer, there is an extra step on the host side to pack/unpack the buffer to/from the

derived type array, which can be seen in Listing 3.4. This step may not be needed for some

other codes but necessary for SENSEI, as SENSEI uses derived type arrays to store primitive

variables. The step adds some overhead to the host side, which will be addressed in V 5.

Listing 3.4: An extra step to pack/unpack data to the derived type array

start_indx = 1 - n_ghost_cel l s (1)

end_indx = i n t e r i o r_ c e l l s

do k = k_low , k_high

do j = j_low , j_high

do i = start_indx , end_indx

so ln%sb lock (b lck)%rho (i , j , k) = rho_buf fer (n)

so ln%sb lock (b lck)%ve l (: , i , j , k) = ve l_bu f f e r (: , n)

so ln%sb lock (b lck)%p(i , j , k) = p_buffer (n)

so ln%sb lock (b lck)%temp(i , j , k) = temp_buffer (n)

n = n + 1

end do

end do

end do

94
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

V2: Extrapolating to ghost cells on the GPU The V 1 version executes the kernel of ex-

trapolating to ghost cells on the CPU. However, leaving the extrapolation on the CPU may

impede further performance improvement as this portion will be the performance bottleneck

for the GPU code. Therefore, V 2 moves the kernel of extrapolating to ghost cells to the

GPU. When passing an intent(out) reshaped array which is located in non-contiguous mem-

ory locations to a procedure call, the PGI compiler creates a temporary array that can be

passed into the subroutine. The temporary array can reduce the performance significantly

and poses a threat of cache contention if it is shared among CUDA threads. In fact, whether

to support passing slices of array to a procedure call is a discussion for the NVIDIA PGI com-

piler group internally. To resolve this issue, manually created private temporary arrays are

used to enable the GPU to parallelize the extrapolation kernel. An example of how the ex-

trapolation works in SENSEI can be found in Listing 3.5. The data present directive notifies

the compiler that the needed data are located in the GPU memory, the data copyin directive

copies in the boundary information to the GPU, and the parallel loop directives parallelize

the boundary loop iterations. The subroutine set_bc is a device routine which is called in

the parallel region. It is difficult for the compiler to automatically know whether there are

loops inside the routine, and whether there are dependencies among the loop iterations in

the parallel region. The use of !$acc routine seq directive in set_bc informs the compiler

such information. After using the temporary arrays such as rho and vel, each CUDA thread

needs to have a copy of the arrays, which occupies a lot of SM registers and thus reduces

the concurrency. As can been seen, these temporary arrays are used to store the data in the

derived type in the beginning. Then they are used as arguments when invoking the set_bc

subroutine. Finally the extrapolated data are copied back to the ghost cells in the original

derived type soln.

Listing 3.5: Using temporary array to do the ghost cell data extrapolation

3.7. OpenACC Parallelization and Optimization 95

! $acc data pre sent (so ln , s o ln%rho , so ln%vel , s o ln%p , &

! $acc so ln%temp , so ln%molecular_weight , &

! $acc g r id%grid_vars%volume , &

! $acc g r id%grid_vars%xi_n , gr id , g r id%grid_vars) &

! $acc copyin (bound , bclow , bchigh , n_mmtm)

! $acc p a r a l l e l

! $acc loop independent

do k = bound%indx_min (3) , bound%indx_max (3)

! $acc loop independent vec to r p r i va t e (rho , ve l , p , temp , vo l)

do j = bound%indx_min (2) , bound%indx_max (2)

rho (1 : l ength) = so ln%rho (high+1: low : order , j , k)

v e l (1 :n_mmtm, 1 : l ength) = so ln%ve l (: , high+1: low : order , j , k)

p (1 : l ength) = so ln%p(high+1: low : order , j , k)

temp (1 : l ength) = so ln%temp(high+1: low : order , j , k)

vo l = gr id%grid_vars%volume (high : low : order , j , k)

c a l l set_bc (bound%bc_label , &

rho , &

vel , &

p , &

temp , &

molweight , &

vol , &

gr id%grid_vars%xi_n (: , i , j , k) , &

bclow , &

bchigh , &

96
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

n_mmtm)

so ln%rho (high+1: low : order , j , k) = rho (1 : l ength)

so ln%ve l (1 :n_mmtm, high+1: low : order , j , k) = ve l (: , 1 : l ength)

so ln%p(high+1: low : order , j , k) = p (1 : l ength)

so ln%temp(high+1: low : order , j , k) = temp (1 : l ength)

end do

end do

! $acc end p a r a l l e l

! $acc end data

V3: Removal of Temporary Variables Either the automatic or the manual use of tempo-

rary arrays in V 2 can greatly deteriorate the GPU performance. Instead of passing array

slices to a subroutine, the entire array was passed with the indicies of the desired slice as

shown in Listing 3.6, which avoids the use of temporary arrays. This method requires many

subroutines to be modified in SENSEI. However, it saves the use of shared resources and

improves the concurrency.

Listing 3.6: Passing derived type data and index range

! $acc data pre sent (so ln , s o ln%rho , so ln%vel , s o ln%p , &

! $acc so ln%temp , so ln%molecular_weight , &

! $acc g r id%grid_vars%volume , &

! $acc g r id%grid_vars%xi_n , gr id , g r id%grid_vars) &

! $acc copyin (bound , bclow , bchigh , n_mmtm)

! $acc p a r a l l e l

3.7. OpenACC Parallelization and Optimization 97

! $acc loop independent

do k = bound%indx_min (3) , bound%indx_max (3)

! $acc loop independent vec to r

do j = bound%indx_min (2) , bound%indx_max (2)

c a l l set_bc (bound%bc_label , &

gr id , &

soln , &

so ln%rho , &

so ln%vel , &

so ln%p , &

so ln%temp , &

molweight , &

gr id%grid_vars%volume , &

gr id%grid_vars%xi_n (: , i , j , k) , &

bclow , &

bchigh , &

j , &

k , &

n_mmtm, &

boundary_lbl , &

normal_lbl)

end do

end do

! $acc end p a r a l l e l

! $acc end data

98
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

V4: Splitting flux calculation and limiter calculation For cases which require the use of

limiters, the CPU calculates the left and right limiters on a face once, as the next loop

iteration can reuse two limiter values without computing them again, which can be seen in

Eq. 3.6.

Q⃗L
i+1/2 =Q⃗i +

ϵ

4
[(1− κ)Ψ+

i−1/2(Q⃗i − Q⃗i−1) + (1 + κ)Ψ−
i+1/2(Q⃗i+1 − Q⃗i)] (3.6)

Q⃗R
i+1/2 =Q⃗i+1 −

ϵ

4
[(1 + κ)Ψ+

i+1/2(Q⃗i+1 − Q⃗i) + (1− κ)Ψ−
i+3/2(Q⃗i+2 − Q⃗i+1)] (3.7)

where ϵ and κ are MUSCL extrapolation parameters, Ψ are limiter function values. L and

R denote the left and right states, respectively.

After porting the code to the GPU, since SENSEI calculates the limiters locally for each

solution state (in V 0 through V 3), the limiter cannot be reused as different CUDA threads

have their own copies of four limiter values, otherwise thread contention may occur. To fix

this issue, the total cost of the limiter calculation on the GPU is twice of that on the CPU.

Also, storing the limiter locally requires the limiter calculation and flux extrapolation to be

together, which is highly compute intensive. V 4 uses global arrays to store these limiters so

that the flux calculation and limiter calculation can be separated, which is given in listing 3.7.

This approach will leave more room for kernel concurrency and asynchronization and also

avoid thread contention.

Listing 3.7: Splitting MUSCL extrapolation and limiter calculation

! x i l im i t e r

! $acc p a r a l l e l

! $acc loop independent c o l l a p s e (3)

do k = 1 , k_ce l l s

3.7. OpenACC Parallelization and Optimization 99

do j = 1 , j_ c e l l s

do i = 1 , imax -1

c a l l l imiter_subrout ine_x (sblock , gblock , i , j , k , &

sb lock%l im i t e r_x i%l e f t , &

sb lock%l im i t e r_x i%r i gh t)

end do

end do

end do

! $acc end p a r a l l e l

! x i f l u x

! $acc p a r a l l e l

! $acc loop independent c o l l a p s e (3) p r i va t e (qL , qR)

do k = 1 , k_ce l l s

do j = 1 , j_ c e l l s

do i = 2 , imax -1

c a l l musc l_extrapolat ion_xi (sblock , i , j , k , &

sb lock%l im i t e r_x i%l e f t (1 : neq , i - 1 , j , k) , &

sb lock%l im i t e r_x i%l e f t (1 : neq , i , j , k) , &

sb lock%l im i t e r_x i%r i gh t (1 : neq , i , j , k) , &

sb lock%l im i t e r_x i%r i gh t (1 : neq , i +1, j , k) , &

qL , qR)

c a l l f lux_funct ion (qL , qR, &

gblock%grid_vars%xi_n (: , i , j , k) , &

100
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

sb lock%xi_f lux (1 : neq , i , j , k))

end do

end do

end do

! $acc end p a r a l l e l

V5: Derived type for connected boundaries on the GPU The previous versions update the

connected boundaries between the host and the device through using local dynamic arrays.

Therefore, it is worthwhile to investigate the effect of using global derived type arrays to store

the connected boundary data. It removes the extra data copies on the host side mentioned

in V 1. An example of using the global derived type is given in Listing 3.8. If there is no

communication required among different CPU processors, the MPI functions are not called.

Listing 3.8: Derived type for connected boundary data

! $acc update host (g r id%gblock (b lck)%bcs_acc (nc)%rho_send (&

! $acc 1 : idx_max_nbor (1) - idx_min_nbor (1)+1, &

! $acc 1 : idx_max_nbor (2) - idx_min_nbor (2)+1, &

! $acc 1 : idx_max_nbor (3) - idx_min_nbor (3)+1))

! SEND and RECV der ived type boundary data

c a l l MPI_IRECV(gr id%gblock (b lck)%bcs_acc (nc)%rho_recv , &

scalar_count , MPI_DOUBLE_PRECISION, &

bound%bound_nbor%process_id , RHO_TAG, &

world_comm , req (req_count+1) , i e r r)

3.7. OpenACC Parallelization and Optimization 101

c a l l MPI_ISEND(gr id%gblock (b lck)%bcs_acc (nc)%rho_send , &

scalar_count , MPI_DOUBLE_PRECISION, &

bound%bound_nbor%process_id , RHO_TAG, &

world_comm , req (req_count+5) , i e r r)

c a l l MPI_WAITALL(req_count , req (1 : req_count) , &

s t a t (: , 1 : req_count) , i e r r)

! $acc update dev i c e (g r id%gblock (b lck)%bcs_acc (nc)%rho_recv (&

! $acc bu f f_ s i z e_s e l f (1) * bu f f_ s i z e_s e l f (2) * &

! $acc bu f f_ s i z e_s e l f (3)))

V6: Change of blocking call locations Since SENSEI is a multi-block CFD code, a processor

may hold multiple blocks and many connected boundaries. Using MPI non-blocking routines,

there should be a place to execute the blocking call such as MPI_WAIT to complete the

communications. Each Isend/Irecv call needs one MPI_WAIT, or multiple MPI_WAIT can

be wrapped up into one MPI_WAITALL. The previous versions block the MPI_WAITALL

call for every decomposed block. A newer way of achieving the function is moving the

MPI_WAITALL calls to a new loop, so that these MPI_WAITALL calls are executed after

all Isend & Irecv are executed. An example is given in Fig. 3.9. In this example, there are two

blocks, each having two connected boundaries. However, V 6 only improves the performance

when multiple connected boundaries exist.

For platforms in which the asynchronous progression is supported completely (from both

the software and hardware sides), this optimization may work much better. However, for

102
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

Figure 3.9: Change of blocking call position

common platforms in which the asynchronous progression is not supported fully, OpenMP

may need to be used to promote the asynchronous progression [52, 53, 54, 55, 56]. Full

asynchronous progression is a very complicated issue and is not covered in this paper. This

paper will only apply MPI+OpenACC to accelerate the CFD code.

V7: Boundary flux optimization In SENSEI, the fluxes for the wall and farfield boundaries

need to be overwritten to get more accurate estimate for the solution. These overwritten

flux calculations are done after the boundary enforcement. For these two kinds of fluxes,

the previous versions do not compute them very efficiently. A lot of temporary variables are

allocated for each thread, which deteriorates the concurrency of using OpenACC, as registers

are limited. The principle of this optimization is similar to that in V 3. An example of the

optimization is given in Listing 3.9.

Listing 3.9: Optimization of the overwritten boundary flux kernel

3.7. OpenACC Parallelization and Optimization 103

! V0 ~ V6

! $acc p a r a l l e l copyin (i , bound) async (1)

! $acc loop independent

do k = bound%indx_min (3) , bound%indx_max (3)

! $acc loop independent vec to r p r i va t e (&

! $acc soln_L2 , soln_L1 , soln_R1 , &

! $acc soln_R2 , qL , qR, modf , &

! $acc lim_L2 , lim_L1 , lim_R1 , lim_R2 , &

! $acc vel_xi , rho_xi , p_xi , temp_xi)

do j = bound%indx_min (2) , bound%indx_max (2)

! V7

! $acc p a r a l l e l copyin (i , bound) async (1)

! $acc loop independent

do k = bound%indx_min (3) , bound%indx_max (3)

! $acc loop independent vec to r p r i va t e (&

! $acc qL , qR, modf)

do j = bound%indx_min (2) , bound%indx_max (2)

V8: Asynchronicity improvement Kernels from different streams can be overlapped so that

the performance can be improved. The version is exactly the same as that in V 7 but the

environment variable ”PGI_ACC_SYNCHRONOUS” is set to 0 when executing SENSEI,

that is, asynchronization among some independent kernels is promoted. The !$acc wait

directive makes the host wait until asynchronous accelerator activities finish, i.e., it is the

104
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

synchronization on the host side.

V9: Removal of implicit data copies between the host and device The last performance

optimization is essentially manual tuning work. It requires the user to modify the code

through profiling. The compiler sometimes does not know what variables are to be updated

between the host and the device, so for the reason of safety the compiler may update variables

frequently, which may be unnecessary. Different architectures and compilers may deal with

the update differently, therefore the user can optimize it based on the profiler outputs. The

compiler may transfer some scalar variables, arrays with small size and even derived type

data in every iteration, but they only need to be copied once. There are multiple places

in SENSEI where the PGI compiler makes unnecessary copies. These extra unnecessary

data transfers are usually small in size and deteriorate the memory throughput. The effect

of these copies can be significant for small size problems. However, for compute-intensive

computations, this optimization may not be very useful. This performance optimization is

only applied for the P100 GPU and V100 GPU, with the newer version of PGI compiler.

Running with V 9 on the C2075 returns some linker errors due to the old PGI compiler.

V10: GPUDirect GPUDirect is an umbrella word for several GPU communication accel-

eration technologies. It provides high bandwidth and low latency communication between

NVIDIA GPUs. There are three levels of GPUDirect [57]. The first level is GPUDirect

Shared Access, introduced with CUDA 3.1. This feature avoids an unnecessary memory

copy within host memory between the intermediate pinned buffers of the CUDA driver and

the network fabric buffer. The second level is GPUDirect Peer-to-Peer transfer (P2P trans-

fer) and Peer-to-Peer memory access (P2P memory access), introduced with CUDA 4.0.

This P2P memory access allows buffers to be copied directly between two GPUs on the

same node. The last is GPU RDMA (Remote Direct Memory Access), with which buffers

3.8. Solution and Scaling Performance 105

can be sent from the GPU memory to a network adapter without staging through host mem-

ory. The last feature is not supported on NewRiver as it pertains to specific versions of the

drivers (from NVIDIA and Mellanox for the GPU and the Infiniband, respectively) which

are not installed (other dependencies exist, particularly parallel filesystems). Although GPU

RDMA is not available, the other aspects of GPUDirect can be utilized to further improve

the scaling performance on multiple GPUs.

3.8 Solution and Scaling Performance

3.8.1 Supersonic Flow Through a 2D Inlet

The first test case is a simplified 2D 30 degree supersonic inlet, which has only one parent

block without having connected boundaries. The inflow conditions are given in Table 3.2.

There are multiple levels of grid for strong and weak scaling analysis, of which the total

amount of cells range from 50k to 7 million. The parallel solution and the serial solution

have been compared from the beginning to the converged state during the iterations, and the

relative errors for all the primitive variables based on the inflow boundary values is within

round-off error range (10−12).

Table 3.2: Inlet case inflow boundary conditions

Mach number 4.0

Pressure 12270 Pa

Temperature 217 K

A very coarse level of grid for the 2D inlet flow is shown in Fig. 3.10a. The decomposition of

using 16 GPUs (which is the highest number of GPUs available) on a 416x128 grid is shown

106
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

in Fig. 3.10b. The decomposition is 2D, creating multiple connected boundaries between

processors. Ghost cells on the face of connected boundaries are used to exchange data

between neighboring processors. The device needs to communicate with the host if multiple

processors are used.

(a) A coarse (52x16) grid for the 2D inlet Euler
flow

(b) A domain decomposition for the 2D inlet
Euler flow (using 16 GPUs)

Figure 3.10: 2D Euler supersonic inlet

The relative residual L2 norm history is shown in Fig. 3.11. It can be seen that the iterative

errors have been driven down small enough for all the primitive variables when converged.

The Mach number and density solutions are shown in Fig. 3.12. There are multiple flow

deflections when the flow goes through the reflected oblique shocks.

Fig. 3.13 shows the performance comparison of different optimizations using different flux

options on different platforms. The grid size used in Fig. 3.13 is 416×128. The goal of making

such a comparison is to investigate the effect of using various flux options, time marching

schemes and various generation GPUs when applying the optimizations introduced earlier

in this paper. For such a small problem which does not have any connected boundary

conditions, a single P100 GPU is about 3 times faster than the a single C2075 GPU. We

expect that the speedup would be higher if the problem size was larger. Another observation

3.8. Solution and Scaling Performance 107

Figure 3.11: The relative iterative residual history for the inlet case

is that using the Roe flux is slightly slower than using the van Leer flux, which is reasonable

as the Roe flux is a bit more expensive than the van Leer flux. It should be kept in mind

that the ssspnt metric does not take the number of double precision operations for each step

into account so ssspnt is not equivalent to GFLOPS. Also, the speed of RK2 and RK4 is

comparable, so this paper will stick to the use of RK2 unless otherwise specified.

If comparing the performance of different versions in Fig. 3.13, there are two performance

leaps including from V 2 to V 3 and from V 8 to V 9. Since the extrapolation to ghost cells

on the GPU runs inefficiently in V 2 due to the low compute utilization, removing the use

of temporary arrays in the parallel regions reduces the overhead from CUDA threads. More

concurrency in the code can therefore be utilized by the GPU. From V 8 to V 9, since the

problem size is small (the compute fraction is not very high), removing unnecessary data

movement improves the overall performance by more than 52%. For larger problems, the

performance gain is not that significant, as we will show later. In the meantime, there is

108
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

(a) The Mach number and streamlines for the
2D inlet Euler flow

(b) The density solution for the 2D inlet Euler
flow

Figure 3.12: 2D Euler supersonic inlet

a gradual performance improvement from V 3 to V 4 and V 6 to V 8. These optimizations

should not be overlooked as the issues related to the optimizations will eventually become

bottlenecks. Since this case does not have connected boundaries, there is no obvious perfor-

mance change from V 4 to V 6. It should be mentioned that the performance optimizations

proposed earlier are not for only a specific case, but for general cases with multiple blocks

and connected boundaries.

Figure 3.13: Performance comparison for the 2D inlet Euler flow

3.8. Solution and Scaling Performance 109

Fig. 3.14a and Fig. 3.14b show the strong and weak scaling performance for the 2D inlet

Euler flow, respectively. The CPU scaling performance is also given for reference. A single

P100 GPU is more than 32× faster than a single CPU, on a grid level of 416x256, which

displays the compute power of the GPU. The strong scaling efficiency decays quickly for small

problem sizes but not for the largest problem size in Fig. 3.14a. The parallel efficiency using

16 P100 GPUs on the 3328×2048 grid is still kept higher than 90%. While for the weak

scaling, the parallel efficiency is higher (95.2% above) than the strong scaling efficiency,

as there is more work to saturate the GPU. The V100 GPU shows higher speedups but

lower efficiency, because the V100 GPU needs more computational work as it is faster.

The boundary connections for this inlet flow case after the domain decomposition are not

complicated, which is one important reason why the performance is very good.

(a) Strong scaling (b) Weak scaling

Figure 3.14: The scaling performance for the 2D inlet case

3.8.2 2D Subsonic Flow past a NACA 0012 Airfoil

The second test case in this paper is the 2D subsonic flow (M∞ = 0.25) past a NACA 0012

airfoil, at an angle of attack of 5 degrees. The flow field for all the simulation runs of this

case is initialized using the farfield boundary conditions which are given in Table 3.3. This

110
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

case will be solved by both the Euler and laminar NS solvers in SENSEI.

Table 3.3: NACA 0012 airfoil farfield boundary conditions

Mach number 0.25
Static pressure 84307 Pa
Temperature 300 K

Angle of attack, α 5 degrees

Although the airfoil case contains only one parent block, the grid is a C-grid, which means

that the only one block connects to itself on a face through a connected boundary, which

makes the airfoil case different from the 2D inlet flow case. One coarse grid of this airfoil

case is shown in Fig. 3.15a. For the scaling analysis, the grid size ranges from 400k to 6

million. Also, the domain decomposition of using 16 GPUs is shown in Fig. 3.15b. Near the

airfoil surface, the grid is refined locally so processors near the wall take smaller blocks, but

the load is balanced.

(a) A coarse (128x48) grid for the flow past a
NACA 0012 airfoil

(b) The domain decomposition for the airfoil
case (using 16 GPUs)

Figure 3.15: 2D NS NACA 0012 airfoil

Fig. 3.16a shows the relative iterative residual L2 norm history for the laminar NS subsonic

flow past a NACA 0012 airfoil. This case requires the most iteration steps to be converged

among all the test cases considered. Leveraging the compute power of the GPU saves a lot

3.8. Solution and Scaling Performance 111

of time. To enable the iterative residual to further go down instead of oscillation, limiter

freezing is adopted at around 600k steps. After freezing the limiter, the iterative residual

norms continue to reduce smoothly. The iterative errors are driven down small enough to

obtain the steady state solution.

The parallel solution and the serial solution have been compared on coarse levels of grid and

the relative errors for all the primitive variables based on the reference values are within

round-off error range (10−12). Fig.3.16b shows the pressure coefficient solution and the

streamlines for the laminar NS subsonic flow past the NACA 0012 airfoil.

(a) The relative iterative residual L2 norm his-
tory for the laminar NS subsonic flow past a
NACA airfoil

(b) The pressure coefficient contour for the lam-
inar NS subsonic flow past a NACA airfoil

Figure 3.16: 2D Laminar NS NACA 0012 airfoil

Fig. 3.17 shows the comparison of different versions for the flow past a NACA 0012 airfoil

using a single P100 GPU. Laminar NS has a smaller ssspnt (about 70%) compared to using

the Euler solver. From V 2 to V 3, the speedup is more than 2 times on different levels of grid,

for both the Euler and laminar NS solver. To use globally allocated derived types to store

the connected boundary data cannot improve the performance, which can be seen from the

comparison of V 4 and V 5, if only using one processor, as there are no MPI communication

112
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

calls. Although the airfoil case has a connected boundary, the data in the ghost cells for that

boundary are filled directly through copying. This case only has one connected boundary,

so there is no need to reorder the non-blocking MPI I_send/I_recv calls and the MPI_Wait

call. Similarly to the 2D inlet case, on coarse levels of grid, there is noticeable performance

improvement if applying the optimization in V 9. On fine levels of grid, the benefit is limited.

Figure 3.17: The performance of different versions for the NACA 0012 airfoil case (P100
GPU)

Since we cannot see any performance gain from V 5 to V 6 using single GPU, multiple GPUs

are used to show the benefits. For all the runs shown in Fig. 3.18, V 6 (the red bars)

outperforms V 5 (the blue bars) by 4% to 50%, depending on the solver type, grid level

and number of GPUs used. After applying multiple GPUs, multiple connected boundaries

are created, which creates margin for the reordering of I_send/I_recv and Wait to work.

Intrinsically, this ordering is to propel more asynchronous progression on the implementation

side. The actual overlap degree still highly depends on the communication system, which

is out of the scope of this paper. Readers who are interested in more overlap and better

asynchronous progression may try the combination of MPI+OpenACC+OpenMP.

Fig. 3.19 and Fig. 3.20 show the strong and weak scaling performance of this subsonic flow

3.8. Solution and Scaling Performance 113

Figure 3.18: Performance comparison between V 5 and V 6 for the NACA 0012 airfoil case
(P100 GPU)

past a NACA 0012 airfoil solved by the Euler and laminar NS solver on P100 and V100

GPUs, respectively. They show very similar behaviours with the only difference in the

scales. Overall, the laminar ssspnt is about 0.7 of the Euler ssspnt using multiple GPUs.

The strong parallel efficiency on the 4096×1536 grid using 16 P100 GPUs for the Euler

and laminar NS solver is about 87% and 90%, respectively. The weak scaling efficiency is

generally higher as there is more work to do for the GPU. The efficiencies using V100 GPUs

are lower than those using P100 GPUs, which indicates that faster GPUs may need more

computational work to hold high efficiency.

3.8.3 3D Transonic Flow Past an ONERA M6 Wing

The final case tested in this paper is the 3D transonic flow (M∞ = 0.839) past an ONERA

M6 wing, at an angle of attack of 3.06 degrees [58]. The flow field is initialized using the

farfield boundary conditions which are given in Table 3.4. Both the Euler and laminar

NS solvers in SENSEI are used to solve this problem. Different from the previous two 2D

114
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

(a) Strong scaling (Euler) (b) Weak scaling (Euler)

Figure 3.19: The scaling performance for the 2D Euler flow past a NACA 0012 airfoil

(a) Strong scaling (Laminar NS) (b) Weak scaling (Laminar NS)

Figure 3.20: The scaling performance for the 2D laminar NS flow past a NACA 0012 airfoil

problems, this 3D case has 4 parent blocks with various sizes. Under some conditions (when

using 2 and 4 processors in this paper), domain aggregation is needed to balance the load on

different processors. This 3D wing case has a total grid size ranging from 300k to 5 million.

The parallel solution and the serial solution of the wing case have been compared to each

other on a coarse mesh and the relative errors for primitive variables based on the farfield

boundary values is within round-off error (10−12).A coarse level of grid and the domain

decomposition of using 16 GPUs are given in Fig. 3.21a and Fig. 3.21b, respectively. The

relative iterative residual L2 norm history and the pressure coefficient (Cp) contour using

3.8. Solution and Scaling Performance 115

Table 3.4: ONERA M6 wing farfield boundary conditions

Mach number, M∞ 0.8395
Temperature, T∞ 255.556 K

Pressure, p∞ 315979.763 Pa
Angle of attack, α 3.06 degrees

the laminar NS solver in SENSEI are given in Fig. 3.22a and Fig.3.22b, respectively. From

Fig. 3.22a, it can be seen that the iterative errors have been driven down small enough.

(a) A grid for the ONERA M6 wing
(b) The domain decomposition for the ONERA
M6 wing case using 16 GPUs

Figure 3.21: Grid and domain decomposition for ONERA M6 wing

Since this wing case is 3D and has multiple parent blocks, we are interested in whether the

performance optimizations introduced earlier can improve the performance of this wing case.

Fig. 3.23 shows the performance of different versions for the ONERA M6 wing case. From

the grid level of h5 to h1, the grid refinement factor is 2 (refined in z, y and x cyclically).

V 2 runs slower than V 1 for all levels of grid, indicating that the extrapolation to ghost cells

on the GPU is not as efficient as that on the CPU, although it is parallelized. With proper

optimization, V 3 is about 3 to 4 times faster than V 2, which is similar to the previous two

2D cases. From V 3 to V 4, there is a performance drop for almost all runs, no matter what

the grid level and the solver is. Splitting one kernel into two kernels for this case incurs

116
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

(a) The relative residual norm history for ON-
ERA M6 wing

(b) The Laminar NS pressure coefficient contour
for ONERA M6 wing

Figure 3.22: Residual history and solution for ONERA M6 wing

some overhead and reduces the compute utilization a bit. There is a slight performance

improvement from V 4 to V 5 when using the derived type to buffer the boundary data for

connected boundaries. The data will be allocated in the main memory of the GPU before

needed, which outperforms the use of dynamic data to buffer the boundary data. For a

single GPU, V 5 and V 6 perform equivalently fast. Further performance optimization on

the boundary flux calculation can improve the performance significantly, which can be seen

from V 6 to V 7. Carefully moving the data between the host and the device can improve the

performance on coarse levels of grid, but not on very fine levels of grid, as the computation

becomes more dominant when refining the grid.

Although the wing case has multiple parent blocks, there is no MPI communication if using

only a single GPU. Therefore, there is only negligible difference between V 5 and V 6. Similar

to the NACA 0012 airfoil case, multiple GPUs are used to show the effect of reordering

the non-blocking MPI I_send/I_recv calls and the MPI_Wait calls. Fig. 3.24 shows that

there are some performance gains for some runs but not all. V 6 accelerates the code by

14% to 18% when np is equal to 8. If using 16 GPUs, more connected boundaries are

3.8. Solution and Scaling Performance 117

Figure 3.23: The single P100 GPU performance of different versions for ONERA M6 wing

created, and it impedes the performance improvement. A possible reason for this may be

that although the implementation from V 5 to V 6 exposes more asynchronous progression

on the implementation side, the platform communication system does not support that very

well when too many communication calls are invoked. This issue may be resolved if switching

to the MPI+OpenACC+OpenMP model, which is not covered in this paper. However, it

can be seen that the performance degradation using 16 GPUs is only 0.8% to 3%, which is

small.

Fig. 3.25 and Fig. 3.26 show the strong and weak scaling performance using Euler and laminar

NS solvers, respectively. Some different behaviours show as in this case some processors need

to hold multiple blocks, which is different from the 2D inlet and 2D NACA 0012 case. A

single GPU is about 33 times faster than a single CPU on the h5 level grid. The weak

scaling of the GPU keeps good efficiency over the whole np range shown in Fig. 3.25b and

Fig. 3.26b.

118
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

Figure 3.24: Performance comparison between V 5 and V 6 for ONERA M6 wing

3.8.4 GPUDirect

Since GPUDirect is not a general performance optimization, as it requires some support

from both the compiler side and the communication system side, a comparison of V 9 and

V 10 is made at the end to give readers more insights of the effect of GPUDirect. GPUDirect

was applied to the 2D Euler/laminar flow past the NACA 0012 airfoil and the transonic flow

over the 3D ONERA M6 wing. It should be noted that there is no guarantee that using

GPUDirect can improve the performance substantially without the hardware support like

using NVLink (however both the NewRiver and the Cascades cluster does not have NVLink

so the memory bandwidth is still not high enough). It can be found that the two cases show

different behaviours when applying GPUDirect, seen in Fig. 3.27. For the NACA 0012 case,

generally V 10 is slower than V 9, which means that GPUDirect makes the code to run slower.

However, for the ONERA wing case, using GPUDirect improves the performance by 4% to

14%. Whether there is a performance gain or not depends on the problem and number of

communications. Commonly if high memory bandwidth NVLink is available, GPUDirect

3.9. Conclusions & Future Work 119

(a) Strong scaling (Euler) (b) Weak scaling (Euler)

Figure 3.25: The scaling performance for the 3D Euler ONERA M6 wing case

(a) Strong scaling (Laminar NS) (b) Weak scaling (Laminar NS)

Figure 3.26: The scaling performance for the 3D Laminar NS ONERA M6 wing case

should be more beneficial to the performance.

3.9 Conclusions & Future Work

An improved framework using MPI+OpenACC is developed to accelerate a CFD code on

multi-block structured grids. OpenACC has some advantages in terms of the ease of pro-

gramming, the good portability and the fair performance. A processor-clustered domain

decomposition and a block-clustered domain aggregation method are used to balance the

120
Chapter 3. An Improved Framework of GPU Computing for CFD Applications on

Structured Grids using OpenACC

(a) Subsonic flow past a NACA 0012 airfoil (b) Transonic flow past an ONERA M6 wing

Figure 3.27: Performance comparison between V 9 and V 10

workload among processors. Also, the communication overhead is not high using the do-

main decomposition and aggregation methods. A parallel boundary decomposition method

is also proposed with the use of the MPI inter-communicator functions. The boundary re-

ordering for multi-block cases is addressed to avoid the dead lock issue when sending and

receiving messages. A number of performance optimizations are examined, such as using the

global derived type to buffer the connected boundary data, removing temporary arrays when

making procedure calls, reordering of blocking calls for non-blocking MPI communications

for multi-block cases, using GPUDirect, etc. These performance optimizations have been

demonstrated to improve single GPU performance more than up to 5 times compared to

the baseline GPU version. More importantly, all the three test cases show good strong and

weak scaling up to 16 GPUs, with a good parallel efficiency if the problem is large enough.

For the future work, more complicated 3D multi-block cases on more GPUs can be tested.

Also, CPU can be assigned some computational work (instead of just I/O and some control

instructions) so that SENSEI can be accelerated further.

BIBLIOGRAPHY 121

Bibliography

[1] Blaise Barney. Introduction to Parallel Computing, 2020. (last accessed on 07/24/20).

[2] Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin Herbordt. An

Investigation of Unified Memory Access Performance in CUDA. In 2014 IEEE High

Performance Extreme Computing Conference (HPEC), pages 1–6, Waltham, MA, US,

2014. IEEE.

[3] Blaise Barney. OpenMP, 2020. (last accessed on 07/24/20).

[4] Blaise Barney. Message Passing Interface (MPI), 2020. (last accessed on 07/24/20).

[5] NVIDIA. CUDA C++ Programming Guide, 2019. (last accessed on 07/24/20).

[6] Khronos OpenCL Working Group. The OpenCL Specification, 2012. (last accessed on

07/24/20).

[7] OpenACC-Standard.org. The OpenACC Application Programming Interface.

OpenACC-Standard.org, 2018.

[8] N Gourdain, L Gicquel, M Montagnac, O Vermorel, M Gazaix, G Staffelbach, M Garcia,

JF Boussuge, and T Poinsot. High performance parallel computing of flows in complex

geometries: I. methods. Computational Science & Discovery, 2(1):015003, 2009.

[9] N Gourdain, L Gicquel, G Staffelbach, O Vermorel, Florent Duchaine, JF Boussuge, and

Thierry Poinsot. High performance parallel computing of flows in complex geometries:

Ii. applications. Computational Science & Discovery, 2(1):015004, 2009.

[10] Amit Amritkar, Surya Deb, and Danesh Tafti. Efficient parallel cfd-dem simulations

using openmp. Journal of Computational Physics, 256:501–519, 2014.

122 BIBLIOGRAPHY

[11] Zdravko Krpic, Goran Martinovic, and Ivica Crnkovic. Green hpc: Mpi vs. openmp

on a shared memory system. In 2012 Proceedings of the 35th International Convention

MIPRO, pages 246–250. IEEE, 2012.

[12] Pablo D Mininni, Duane Rosenberg, Raghu Reddy, and Annick Pouquet. A hybrid mpi–

openmp scheme for scalable parallel pseudospectral computations for fluid turbulence.

Parallel Computing, 37(6-7):316–326, 2011.

[13] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and James C

Phillips. GPU Computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[14] JA Herdman, WP Gaudin, Simon McIntosh-Smith, Michael Boulton, David A Beck-

ingsale, AC Mallinson, and Stephen A Jarvis. Accelerating hydrocodes with openacc,

opencl and cuda. In 2012 SC Companion: High Performance Computing, Networking

Storage and Analysis, pages 465–471. IEEE, 2012.

[15] Dana A Jacobsen and Inanc Senocak. Multi-level parallelism for incompressible flow

computations on gpu clusters. Parallel Computing, 39(1):1–20, 2013.

[16] Erich Elsen, Patrick LeGresley, and Eric Darve. Large calculation of the flow over a

hypersonic vehicle using a gpu. Journal of Computational Physics, 227(24):10148–10161,

2008.

[17] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Hous-

ton, and Pat Hanrahan. Brook for gpus: stream computing on graphics hardware. ACM

transactions on graphics (TOG), 23(3):777–786, 2004.

[18] Tobias Brandvik and Graham Pullan. Acceleration of a 3d euler solver using commodity

graphics hardware. In 46th AIAA aerospace sciences meeting and exhibit, page 607, 2008.

BIBLIOGRAPHY 123

[19] Lixiang Luo, Jack R Edwards, Hong Luo, and Frank Mueller. Performance assessment of

a multiblock incompressible navier-stokes solver using directive-based gpu programming

in a cluster environment. In 52nd Aerospace Sciences Meeting, 2013.

[20] Yidong Xia, Jialin Lou, Hong Luo, Jack Edwards, and Frank Mueller. Openacc accel-

eration of an unstructured cfd solver based on a reconstructed discontinuous galerkin

method for compressible flows. International Journal for Numerical Methods in Fluids,

78(3):123–139, 2015.

[21] Dominic D Chandar, Jayanarayanan Sitaraman, and Dimitri J Mavriplis. A hybrid

multi-gpu/cpu computational framework for rotorcraft flows on unstructured overset

grids. In 21st AIAA Computational Fluid Dynamics Conference, page 2855, 2013.

[22] Weicheng Xue, Charles W Jackson, and Christopher J Roy. Multi-cpu/gpu paralleliza-

tion, optimization and machine learning based autotuning of structured grid cfd codes.

In 2018 AIAA Aerospace Sciences Meeting, page 0362, 2018.

[23] Weicheng Xue and Christopher J Roy. Multi-gpu performance optimization of a cfd

code using openacc on different platforms. arXiv preprint arXiv:2006.02602, 2020.

[24] Weicheng Xue and Christopher J Roy. Heterogeneous computing of cfd applications on

cpu-gpu platforms using openacc directives. In AIAA Scitech 2020 Forum, page 1046,

2020.

[25] Joseph M Derlaga, Tyrone Phillips, and Christopher J Roy. Sensei computational fluid

dynamics code: a case study in modern fortran software development. In 21st AIAA

Computational Fluid Dynamics Conference, 2013.

[26] Charles W Jackson, William C Tyson, and Christopher J Roy. Turbulence model im-

124 BIBLIOGRAPHY

plementation and verification in the sensei cfd code. In AIAA Scitech 2019 Forum,

2019.

[27] Weicheng Xue, Hongyu Wang, and Christopher J Roy. Code verification for 3d turbu-

lence modeling in parallel sensei accelerated with mpi. In AIAA Scitech 2020 Forum,

page 0347, 2020.

[28] William L Oberkampf and Christopher J Roy. Verification and validation in scientific

computing. Cambridge University Press, 2010.

[29] Bram Van Leer. Towards the ultimate conservative difference scheme. v. a second-order

sequel to godunov’s method. Journal of computational Physics, 32(1):101–136, 1979.

[30] Antony Jameson, Wolfgang Schmidt, and Eli Turkel. Numerical solution of the euler

equations by finite volume methods using runge kutta time stepping schemes. In 14th

fluid and plasma dynamics conference, page 1259, 1981.

[31] Uri M Ascher, Steven J Ruuth, and Raymond J Spiteri. Implicit-explicit runge-kutta

methods for time-dependent partial differential equations. Applied Numerical Mathe-

matics, 25(2-3):151–167, 1997.

[32] Christopher A Kennedy and Mark H Carpenter. Diagonally implicit runge-kutta meth-

ods for ordinary differential equations. a review. 2016.

[33] JC Wu, LT Fan, and LE Erickson. Three-point backward finite-difference method for

solving a system of mixed hyperbolic—parabolic partial differential equations. Com-

puters & chemical engineering, 14(6):679–685, 1990.

[34] Philip L Roe. Approximate riemann solvers, parameter vectors, and difference schemes.

Journal of computational physics, 43(2):357–372, 1981.

BIBLIOGRAPHY 125

[35] Joseph L Steger and RF Warming. Flux vector splitting of the inviscid gasdynamic equa-

tions with application to finite-difference methods. Journal of computational physics,

40(2):263–293, 1981.

[36] Bram Van Leer. Flux-vector splitting for the euler equation. In Upwind and High-

Resolution Schemes, pages 80–89. Springer, 1997.

[37] Single instruction, multiple threads, 2020. (last accessed on 05/10/20).

[38] Blaise Barney. Message Passing Interface (MPI), 2019.

[39] Open mpi documentation, 2020. (last accessed on 05/10/20).

[40] Mvapich: Mpi over infiniband, omni-path, ethernet/iwarp, and roce, 2020. (last accessed

on 05/10/20).

[41] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, and Ryoji Takaki. CUDA vs

OpenACC: Performance case studies with kernel benchmarks and a memory-bound CFD

application. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM

International Symposium on, pages 136–143. IEEE, 2013.

[42] Furqan Baig, Chao Gao, Dejun Teng, Jun Kong, and Fusheng Wang. Accelerating

spatial cross-matching on cpu-gpu hybrid platform with cuda and openacc. Frontiers

Big Data, 3:14, 2020.

[43] Victor Artigues, Katharina Kormann, Markus Rampp, and Klaus Reuter. Evaluation

of performance portability frameworks for the implementation of a particle-in-cell code.

Concurrency and Computation: Practice and Experience, 32(11):e5640, 2020.

[44] Pgi compiler user’s guide, 2019. (last accessed on 05/10/20).

126 BIBLIOGRAPHY

[45] Georg Hager and Gerhard Wellein. Introduction to high performance computing for

scientists and engineers. CRC Press, 2010.

[46] Rob Farber. Parallel programming with OpenACC. Newnes, 2016.

[47] Bruce Hendrickson and Tamara G Kolda. Graph partitioning models for parallel com-

puting. Parallel computing, 26(12):1519–1534, 2000.

[48] Newriver, 2019.

[49] Cascades, 2020.

[50] Andrew James McCall. Multi-level Parallelism with MPI and OpenACC for CFD Ap-

plications. PhD thesis, Virginia Tech, 2017.

[51] Andrew J McCall and Christopher J Roy. A multilevel parallelism approach with mpi

and openacc for complex cfd codes. In 23rd AIAA Computational Fluid Dynamics

Conference, page 3293, 2017.

[52] Mao Jiayin, Song Bo, Wu Yongwei, and Yang Guangwen. Overlapping communication

and computation in mpi by multithreading. In Proc. of International Conference on

Parallel and Distributed Processing Techniques and Applications, 2006.

[53] Karthikeyan Vaidyanathan, Dhiraj D Kalamkar, Kiran Pamnany, Jeff R Hammond, Pa-

van Balaji, Dipankar Das, Jongsoo Park, and Bálint Joó. Improving concurrency and

asynchrony in multithreaded mpi applications using software offloading. In SC’15: Pro-

ceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 1–12. IEEE, 2015.

[54] Huiwei Lu, Sangmin Seo, and Pavan Balaji. Mpi+ ult: Overlapping communication

and computation with user-level threads. In 2015 IEEE 17th International Conference

BIBLIOGRAPHY 127

on High Performance Computing and Communications, 2015 IEEE 7th International

Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Con-

ference on Embedded Software and Systems, pages 444–454. IEEE, 2015.

[55] Alexandre Denis and François Trahay. Mpi overlap: Benchmark and analysis. In 2016

45th International Conference on Parallel Processing (ICPP), pages 258–267. IEEE,

2016.

[56] Emilio Castillo, Nikhil Jain, Marc Casas, Miquel Moreto, Martin Schulz, Ramon Bei-

vide, Mateo Valero, and Abhinav Bhatele. Optimizing computation-communication

overlap in asynchronous task-based programs. In Proceedings of the ACM International

Conference on Supercomputing, pages 380–391, 2019.

[57] NVIDIA. NVIDIA GPUDirect, 2019.

[58] M Mani, J Ladd, A Cain, R Bush, M Mani, J Ladd, A Cain, and R Bush. An assessment

of one-and two-equation turbulence models for internal and external flows. In 28th Fluid

Dynamics Conference, page 2010, 1997.

Chapter 4

Heterogeneous Computing of CFD

Applications on a CPU-GPU

Platform using MPI and OpenACC

Weicheng Xue1 and Christopher J. Roy2

Virginia Tech, Blacksburg, Virginia, 24061

Attribution

• Weicheng Xue (first author): The first author served as the main contributor and

primary author of this study. The heterogeneous CPU/GPU framework in SENSEI

was implemented by the first author. All the results were collected and analyzed by

the first author.

• Christopher J. Roy (second author): The second author provided valuable feedback

for this study and comments for this manuscript.

1Graduate Assistant, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall,
RM 315, Virginia Tech, 460 Old Turner St, AIAA Student Member.

2Professor, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall, RM 330,
Virginia Tech, 460 Old Turner St, AIAA Associate Fellow.

128

129

Abstract

This paper deals with the CPU-GPU heterogeneous computing of a multi-block structured

grid CFD code using multiple CPUs and GPUs. First, a brief description on how the

heterogeneous computing framework is implemented using MPI and OpenACC is given.

OpenACC directives are added for GPUs so most of the CFD code base is the same for

CPUs and GPUs except for some specific performance optimizations for the GPU which

have no significant effect on the CPU performance. Then, different domain decomposition

strategies and a domain aggregation method along with their advantages tailored for our

research CFD code, our applications, and the accelerator used are presented. The speedup

and scaling performance of the CPU-GPU heterogeneous computing and the comparison

with multi-CPU/GPU performance for several test cases including a supersonic inlet, a

NACA 0012 airfoil and an ONERA M6 wing are given. Using a GPU or two GPUs and

a certain number of CPUs together, the program solver time can be reduced compared

with using pure CPUs or GPUs. Finally, conclusions are drawn to provide 1) suggestions

for programmers who have an interest in developing their own CPU-GPU heterogeneous

computing framework and 2) feedback for hardware researchers who are working on the

design of the future CPU-GPU heterogeneous systems.

Keywords: Multi-GPU, OpenACC, MPI, Domain Decomposition, Performance Optimiza-

tion, GPUDirect

130
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

4.1. Introduction 131

4.1 Introduction

Heterogeneous computing has been receiving a lot of attention in recent years. As of Novem-

ber 2019 (the latest release), a majority of the top 10 supercomputers in the Green500 list

[1] use heterogeneous processing units (CPU & accelerators). Similarly, most of the top 10

in the Top500 list [2] use accelerators (specifically GPUs), including Summit and Sierra,

both of which went online in 2018. This displays the popularity of heterogeneous systems

in the High Performance Computing world. There are several reasons behind their popu-

larity. The first reason is heterogeneous systems are more energy-efficient compared with

conventional pure-CPU systems. Power is not the leading factor considered in this paper

but it is among the most important ones when designing a supercomputer. The second

reason is that heterogeneous systems can provide heterogeneity for different needs in various

applications. To simplify, one application such as Computational Fluid Dynamics (CFD) is

highly compute-intensive when using a lot of cells or nodes, and it has the feature of Single

Instruction Multiple Data (SIMD). In the CPU-GPU heterogeneous model, the compute-

intensive components can be offloaded to the GPUs, which are suitable for SIMD. A modern

GPU usually has thousands of processing units (PUs) so one instruction on the data can be

executed in parallel, thus reducing about an order of magnitude of execution time or more.

However, the model just described is not a pure heterogeneous model, as when GPUs are

doing computation work, CPUs may just idle, although many researchers have been using

the word ”heterogeneous” frequently even if their applications are not purely heterogeneous

in this sense. In a more rigorous heterogeneous mode which is the focus of this paper, part of

the computation is done on CPUs and the rest is done on GPUs. In this way, we can make

full use of the computational resources in nodes and in the meantime get better performance

compared with using single type PUs to do the computation work. Mittal et al. [3] sur-

veyed a lot of heterogeneous computing techniques at the runtime, algorithm, programming,

132
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

and application level. Heterogeneous systems can have CPUs, GPUs, MICs, FPGAs, etc.

They reviewed both discrete and fused CPU-GPU systems carefully as CPU-GPU systems

are the most popular system. In discrete systems, hosts and devices have different memory

addresses so data transfer happens over the PCIe bus, which may incur large overhead and

serious latency issues. They pointed out that matching algorithmic requirements to features

of PUs is very important.

Running applications on heterogeneous systems may bring some performance benefits and

this technique has aroused a lot of interest in different fields, not just limited to the CFD

area. Domanski et al. [4, 5] concluded that the CPU-GPU heterogeneous approach can

provide performance benefits over either pure-CPU or pure GPU system alone, and the het-

erogeneous implementation produces even better performance when the ratio of CPU cores

over GPUs in a node is higher. Alvarez et al. [6] presented an algebra-based framework

with a heterogeneous MPI+OpenMP+OpenCL implementation. The heterogeneous imple-

mentation shows a gain of 32% compared to the GPU-only implementation. Sometimes in

a heterogeneous system, different PUs can do different kinds of tasks to display their ad-

vantages, because of the fact that GPUs are rich in compute capacity but poor in memory

capacity and the CPUs do the opposite. In [7], the branch instruction task such as boundary

condition enforcement and data transfer are done on the CPU, while the compute-intensive

part such as flux calculation are done on the GPU. Their work was only for one CPU-

GPU pair and they also did not compare pure GPU performance with their heterogeneous

CPU-GPU performance, so there are limitations in their conclusions. There are other het-

erogeneous systems tailored for other needs or constraints besides just using a CPU-GPU

system. Wang et al. [8] implemented an “MPI+OpenMP+offload” heterogeneous framework

for large-scale CFD flow field simulations on heterogeneous CPU-MIC system, with lots of

CPUs and MIC coprocessors being employed. In this framework, each process can offload

4.1. Introduction 133

some share of its work to the corresponding MIC devices and it scales up to half of the

Tianhe-2 supercomputer system. Because the GPU usually has a high latency when com-

municating to the global memory, and the specific application requires an ultra-low latency,

Liu et al. [9] used an FPGA-based approach. The characteristics of FPGAs enables them

to optimize the heterogeneous nature of their implementation. However, there are some re-

searchers who hold the view that the heterogeneous implementations are slower. Nikolic [10]

evaluated general systems of differential and algebraic equations on different architecture

systems and found that the heterogeneous approach dose not provide performance benefits

compared with one single GPU. They attributed this contradictory result to the fact that

the code being used was not optimized very well.

Also, since the heterogeneous systems have different PUs with different architectures, mem-

ory hierarchy, compute capabilities, memory access preference, execution models (SIMD,

MIMD, etc.), programming models, different bandwidth requirement, load imbalance issue,

extra imported communication overhead due to the use of heterogeneity etc., programming

on heterogeneous systems is troublesome. Therefore, specifically for the CPU-GPU hetero-

geneous system, which is also an emphasis in this paper, the characteristics of CPU and

GPU need to be considered carefully.

The two key issues for heterogeneous computing investigated in this paper are load imbal-

ance and communication overhead. They are non-trivial issues for heterogeneous computing

and require careful attention and suitable optimizations. Domanski et al. [4] used GPUs

and multi-core CPUs ranging from a single workstation to large GPU clusters for solving

some computational problems. They suggested that it was good to keep all data on GPUs,

thus reducing the communication overhead between CPUs and GPUs. Since their applica-

tion does not require communication between CPUs and CPUs, or GPUs and GPUs, it is

infeasible to extend the work to other areas, especially for CFD applications which usually

134
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

require communication when iterating. Kovac et al. [11] found that fully utilizing the re-

sources of both CPUs and GPUs requires a carefully balanced heterogeneous approach. The

heterogeneous and asynchronous approach in their work achieves a higher speedup compared

with pure GPUs. Liu et al. [12] used a hybrid linear solver for a CFD application which

is the classical Lid Driven Cavity on CPU-GPU heterogeneous platforms, and proposed a

method of using functional performance models to distribute work between heterogeneous

processors units. In [8], an efficient parallelization and optimization method is investigated.

The communication between CPUs and MICs is implemented using directive statements

and good load balancing is obtained by adjusting the ratio of the workload of CPUs/MICs.

In [6], it is found that the scalability drops faster for the heterogeneous system than the

GPU-only implementation. The reason for this is the computational load over communica-

tion cost ratio drops on the heterogeneous system. Therefore, to obtain high efficiency, the

load on devices should be sufficiently high. For multi CPU-GPU systems, load balancing

and communication overhead should be balanced well. For example, a good conventional

dynamic decomposition algorithm may schedule the workload very well but generate large

communication overhead due to inter-block boundaries created. It is valuable to assess which

one of the two factors is the more important bottleneck, on different systems, for different

applications, etc. For some problems in which the communication overhead is difficult to re-

duce, GPUDirect [13] may be a viable option as it allows peer-to-peer GPU communication.

However, the communication overhead between CPUs may also be an important bottleneck

to the performance.

Apart from the difficulties mentioned above, a good metric for heterogeneous computing

performance should also be investigated. For homogeneous system, scalability analysis is

usually adopted to assess whether an implementation scales well or not by adding more

homogeneous cores. However, for the CPU-GPU heterogeneous system specifically, how the

4.2. Description of the CFD Code: SENSEI 135

scalability should be measured when adding more CPUs, or GPUs, or using a different task

ratio between different PUs remains a question. Moreover, the scaling performance depends

on the domain decomposition strategies. Overall, the scalability analysis becomes more

complicated due to the heterogeneity of the system.

As with the programming model used in this paper, OpenACC and MPI are selected. Ope-

nACC is a high-level programming standard which enables users to program readily on

heterogeneous systems, including multicore/manycore CPU or GPU accelerators. It pro-

vides three different levels of parallelism for loops: gang, worker and vector, which is very

similar to the relevant parallelism provided by CUDA or OpenCL. Since OpenACC cannot

automatically divide loops across CPUs and GPUs at the same time due to the difficulty of

managing the data between discrete memories [14], we need to build up two versions of rou-

tines, most part of which are the same except for that the GPU version has some OpenACC

directives the CPU version does not have. The PGI company whose compiler supports the

OpenACC standard is working on making it automatic. Maybe in the future it is much easier

to use OpenACC to implement on the heterogeneous systems. MPI is a message passing

library standard based on the consensus of the MPI Forum [15]. MPI is used to port our

research CFD code to multiple CPUs. Combining MPI with OpenACC can enable us to run

our code on the CPU-GPU heterogeneous system and port the code to different platforms

readily.

4.2 Description of the CFD Code: SENSEI

SENSEI (Structured, Euler/Navier-Stokes Explicit-Implicit Solver) is our in-house 2D/3D

flow solver originally developed by Derlaga et al. [16], and later extended to a turbulence

modeling code base through an object-oriented programming manner by Jackson et al. [17].

136
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

SENSEI is written in modern Fortran and is a multi-block finite volume CFD code. The

governing equations of a general Navier-Stokes CFD problem are given in Eq. 4.1.

∂

∂t

∫
Ω

Q⃗dΩ +

∮
∂Ω

(F⃗i,n − F⃗ν,n)ds =
∫
Ω

S⃗dΩ (4.1)

where Q⃗ is the vector of conversed variable, F⃗i,n and F⃗ν,n are the inviscid and viscid flux

normal components (the dot product of the 2nd order flux tensor and the unit face normal

vector), respectively, given as,

Q⃗ =

ρ

ρu

ρv

ρw

ρet

, F⃗i =

ρVn

ρuVn + nxp

ρvVn + nyp

ρwVn + nzp

ρhtVn

, F⃗i =

0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz

(4.2)

S⃗ is the source term from either body forces, chemistry source terms, or the method of

manufactured solutions. ρ is density, u, v, w are the Cartesian velocity components, et is

the total energy, ht is the total enthalpy, Vn = nxu + nyv + nzw and the ni terms are the

components of the outward-facing normal unit vector. τij are the viscous stress components

based on Stokes’s hypothesis. Θi represents the heat conduction and work from the viscous

stresses. In this paper, only the Euler solver of SENSEI is used as a lot of GPU optimizations

are finished for it, but not for the viscous flux calculation (the viscous flux calculation and

turbulence modeling portion uses a lot of type-bound procedures and overloading, which are

not supported well by OpenACC). This simplicity should not basically affect the conclusion

of applying heterogeneous computing in a CFD code, as Laminar NS solver or turbulence

modeling just requires more computation and communication.

4.2. Description of the CFD Code: SENSEI 137

In SENSEI, ghost cells are used for multiple purposes. First, boundary conditions can be

enforced in a very straitforward way using ghost cells. There are different kinds of boundaries

in SENSEI, such as slip wall, non-slip wall, supersonic/subsonic for inflow/outflow, farfield,

etc. Second, from the view of parallel computing, ghost cells on a face of a block can hold

data exchanged from its neighbour blocks, which makes parallel implementation easier. Users

can readily set the number of ghost cells in SENSEI for different accuracy requirements. In

most of our work, second order accuracy is used, and it is achieved using the MUSCL scheme,

which calculates the left and right state for the primitive variables on each face of all cells.

The stencil size is 13 for 3D Euler cases and 9 for 2D Euler cases. This also shows how much

data need to be exchanged when running SENSEI on multiple PUs. Time marching can be

accomplished using an explicit M-step Runge-Kutta scheme and an implicit time stepping

scheme. In this paper, only the explicit M-step Runge-Kutta scheme is used as the implicit

scheme uses a completely objected-oriented way of programming which includes overloading

of type-bound procedures. Using a lot of objected-oriented programming may deteriorate

the GPU performance greatly as it may require the GPU to jump from an address to a

different address (trampoline), which should be avoided when programming on GPUs.

Provisions are made to approximate the inviscid flux with a number of different inviscid

flux functions. Roe’s flux difference splitting [18], Steger-Warming flux vector splitting [19],

and Van Leer’s flux vector splitting [20] are available. The viscous flux is calculated using a

Green’s theorem approach. The viscous fluxes requires more cells to be added to the inviscid

stencil, but it is not considered in this paper as all the cases in this paper are inviscid. For

more details on the implementation, see Derlag et at. [16]

138
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

4.3 Domain Decomposition and Aggregation Methods

A processor-cluster based domain decomposition method is used in this paper to deal with

situations in which the number of processors (np) is significantly greater (> 2 times) than

or equal to the number of subgrids (nsg). Note that a subgrid is a parent block before

domain decomposition. A subgrid can be decomposed into multiple blocks after domain

decomposition. Thus, the word ”subgrid” is different from ”block” in this paper to avoid

any misunderstanding. There are several advantages and disadvantages for this decompo-

sition strategy. In terms of the advantages, firstly it is an ”on the fly” approach, which is

convenient and requires no manual operation or preprocessing of the domain decomposition.

Second, it is very robust in that it can handle any cases if np is greater than or equal to nsg.

Third, the communication overhead is small and load imbalance is good as each processor

holds only one block in a given subgrid. Finally, Processors in subgrids have the structured

topology, which has less intra-subgrid communication overhead and makes communication

easier if using MPI topology functions. In this way, the overhead of decomposing and linking

boundaries can be reduced as this work can be done partly in parallel. However there are

some disadvantages. First, this processor-cluster based approach may have load imbalance

issue if np is not obviously greater than nsg, although the communication overhead still

remains small. Second, it is a static method which requires enough inputs related to archi-

tectures, applications, etc. to be effective. For this issue, we devised a grid-cluster based

aggregation method which will be introduced later.

For the CPU-GPU heterogeneous system, it is not good to use the processor-cluster domain

decomposition method directly for multi-subgrid cases, potentially due to serious load im-

balancing issues. However, 1D domain decomposition is feasible for single subgrid cases as

we can use a variable to control the load ratio between the GPU and CPU. Moreover, the

4.3. Domain Decomposition and Aggregation Methods 139

process of updating connected boundaries and the communication pattern are simple. We

can decompose the grid only in one dimension of a grid and thus get many chunks of blocks

in that dimension. Considering that the CPU and GPU have different compute capability,

we assign more cells to GPU, by defining a variable ratio_gc to represent the disparity of the

compute capabilities for one GPU and one CPU. The definition of ratio_gc is defined as a

single GPU workload over a single CPU workload in a CPU+GPU heterogeneous computing

case. This variable is used to make CPUs/GPUs run at approximately the same pace and

thus reduce the synchronization overhead. The variable ratio_gc can be defined by calculat-

ing the speedup of one GPU over one CPU in the serial mode, although it is different from

the actual speedup of the GPU over the CPU in the heterogeneous mode, as there are other

factors such as synchronization, communication, etc. which are not considered beforehand.

Although the 1D domain decomposition is very convenient to use, we want to use a general 3D

domain decomposition for general multi-subgrid cases to improve the scope and scalability of

our code. A grid-cluster based domain aggregation method is also implemented in SENSEI

to deal with situation in which the number of processors (np) is less than or equal to the

number of subgrids (nsg), or the number of decomposed blocks generated using the processor-

cluster based domain decomposition. The grid-cluster based domain aggregation method

can only be used after applying the processor-cluster based domain decomposition, because

we are applying a partially parallel domain decomposition method as mentioned earlier,

which means that some domain decomposition tasks are done on different processors instead

of only on the ROOT processor. The grid-cluster based domain aggregation method is

fully parallel. The aggregation step is not necessary if there is no serious load balancing

issue at the decomposition step. The aim of the aggregation step is to provide a way to

aggregate blocks to balance loads on different processors, such as building blocks. Users can

assign a certain number of blocks from the domain decomposition step to a processor and

140
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

thus keep the load approximately balanced for general multi-grid cases. For the CPU-GPU

heterogeneous computing, obviously the GPU should take more blocks or larger blocks in

order to run at the same pace as the CPU does. One issue of applying the aggregation step

is that the GPU still needs to exchange data with its host (the CPU) if there are connections

among the blocks residing on the same processor. The extra communication overhead may

make the heterogeneous computing slower than not considering the overhead (however the

communication overhead exists).

4.4 Results

4.4.1 Hardware Configuration

Thermisto Thermisto is a workstation in our research lab. It has two Nvidia Tesla C2075

GPUs and 32 CPU cores. Every GPU has 14 MPs, each with 32 CUDA cores. The peak

bandwidth is 144GB/s and the peak double precision performance is 515 GFLOPS. The

compilers used on Thermisto are PGI 16.5 and OpenMPI/1.10.0. An compiler optimization

of -O4 is used.

4.4.2 Performance Metrics

Two important metrics used in this paper are parallel speedup and efficiency. Speedup

denotes how much faster the parallel version is compared with the serial version of the

code, while efficiency represents how efficiently the processors are used. They are defined as

follows,

speedup =
tserial
tparallel

(4.3)

4.4. Results 141

efficiency =
speedup

np
(4.4)

where tserial and tparallel are the serial execution time and parallel execution time, respectively,

and np is the number of processors (CPUs or GPUs).

4.4.3 Supersonic Inlet Case

The first case tested in this paper is a simplified 2D 30 degree supersonic inlet, which has

only one subgrid. The inflow conditions are given in Table 4.1. There are two grid sizes for

this inlet case tested including a 417x129 grid and a 833x257 grid, having a total number of

53,248 and 106,496 cells, respectively. Different problem sizes are chosen to investigate the

effect of problem size on the GPU performance in both the pure GPU and the heterogeneous

CPU-GPU computing mode. The problem sizes tested are small so that it does not take long

to get the converged solution using an explicit scheme on single GPU. A 1D decomposition

for the inlet case is shown in Fig. 4.1a if using 1GPU+5CPUs with the ratio_gc being 5. The

density contour obtained using this decomposition is shown in Fig. 4.1b. The solution has

been checked with the serial (single CPU) solution and the relative errors for all primitive

variables based on the reference values is within round-off error range (10−14).

Table 4.1: Inlet case inflow boundary conditions

Mach number 4.0
Pressure 12270 Pa

Temperature 217 K

Fig. 4.2a shows the scaling performance of using pure CPUs and pure GPUs on Thermisto.

A speedup of 11.75 (based on the single CPU performance) with a parallel efficiency of

73.44% can be obtained using 16 CPUs for this case. The efficiency drop when adding more

processors is due to more communication overhead. For this case, the efficiency when using

142
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

(a) 1D Decomposition (b) Pressure Coefficient

Figure 4.1: Inlet case using 1GPU+5CPUs

8 CPUs is about 86.74% which is fairly good. A single GPU has a speedup of 4.79 over a

single CPU and two GPUs is about 6.52 (with an efficiency of 68.35%) as fast as the single

CPU performance. One reason of why the efficiency drops faster on the GPU than the CPU

is that the GPU needs more work to be saturated, otherwise the communication dominates

the whole runtime. When using 2 GPUs, the parallel efficiency is 68.35% for the inlet case.

From Fig. 4.2b, it can be seen that the CPU-GPU heterogeneous computing performance

is better than the pure CPU or the pure GPU performance when given a good task ratio

between GPU and CPU. All the curves with symbols shown use 1 GPU plus a certain

number of CPUs (1, 3, 5 or 7). The best workload ratio ratio_gc is between 4 and 5, which

is consistent with single GPU over single CPU speedup shown in Fig. 4.2a. Also, using more

CPUs gives better performance as the workload on each processor is reduced. Therefore, we

can conclude that the performance is better on the heterogeneous system than that on pure

GPU or pure CPU systems. Moreover, the effect of the single GPU/CPU workload ratio

ratio_gc is more obvious when using a higher number of CPUs, because when the task ratio

is greater than the optimal value the performance becomes flatter and better for the case of

4.4. Results 143

using only one CPU. It is interesting to see that all the four curves reach an asymptotic solver

time of about 21.6 s if the ratio ratio_gc is large enough, which is the single GPU solver time

shown in Fig. 4.2a. The reason is that if we use a very large ratio_gc, which means GPU

takes a large portion of the total work, the solver time is dominated by the execution on

GPU, although there is some communication overhead due to more ranks. Similarly, CPUs

become dominant if ratio_gc is very small. Also, both 1GPU+5CPUs and 1GPU+7CPUs

can outperform 2GPUs for this small size problem.

(a) Pure CPU or GPU performance (b) CPU-GPU heterogeneous performance

Figure 4.2: Grid size: 417x129 (on Thermisto)

Fig. 4.3a shows the pure CPU and GPU performance of the 833x257 grid case on Thermisto.

Since the task size is 4 times larger than the earlier grid, the larger problem should take more

iterations. The efficiencies of the pure CPU and pure GPU are higher than the 417x129 case.

For example, the efficiency is 77.2% using on 16 CPUs and 76.2% on 2 GPUs, which indicates

that saturating the GPU with enough work is important to the efficiency. Using 2 GPUs is

faster than using 8 CPUs for this case. Similarly, the CPU-GPU heterogeneous performance

is better than that on the coarser grid, which is given in Fig. 4.3b. The bottoms of the

curves with symbols (1GPU plus a certain number of CPUs) inf Fig. 4.3b become flatter

than the 417x129 case, which means that the optimal ratio ratio_gc range is wider. Also,

1GPU+7CPUs can surpass the 2GPU performance but not for 1GPU+5CPUs.

144
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

(a) Pure CPU or GPU performance (b) CPU-GPU heterogeneous performance

Figure 4.3: Grid size: 833x257 (on Thermisto)

Table 4.2 shows the effect of using 2GPUs in the CPU-GPU heterogeneous mode for the

833x257 grid case. Recall that the single GPU and 2GPUs take 16.2 s and 10.63 s to

finish, respectively. Obviously using 2GPUs plus enough CPUs outperform the pure GPU

performance. The 2GPU+10CPUs is about 16.6% faster than the 2GPU performance.

Table 4.2: The performance comparison between using 1GPU and 2GPUs for the inlet case
in the CPU-GPU heterogeneous mode

ratio_gc 1GPU+5CPUs 1GPU+7CPUs 2GPUs+2CPUs 2GPUs+6CPUs 2GPUs+10CPUs
4 13.5 s 11.75 s 12.55 s 10.14 s 9.15 s
5 12.27 s 10.92 s 11.47 s 10.05 s 9.12 s

4.4.4 NACA 0012 Airfoil

The second case tested in this paper is a subsonic flow (M∞ = 0.25) past a NACA 0012 airfoil,

at an angle of attack of 5 degrees. The farfield conditions are given in Table. 4.3. The case has

a subgrid with a size of 897x257 nodes, or a total number of 229,376 cells. The grid for this

NACA 0012 airfoil in this paper is a C-type grid, which means the grid connects to itself at

the same face. Thus, we are interested in knowing whether the heterogeneous implementation

in SENSEI can be used to accelerate such a case having connected boundaries.

4.4. Results 145

Table 4.3: NACA 0012 airfoil farfield boundary conditions

Mach number 0.25
Static pressure 84307 Pa
Temperature 300 K

Angle of attack, α 5 degrees

Fig. 4.4a gives the 1D domain decomposition (using 1GPU+7CPUs) for heterogeneous CPU-

GPU computing of the NACA 0012 case. It is clearly seen that the GPU (with an id of 0)

takes more cells (about 8 times) than a single CPU, due to its higher compute capability.

Fig. 4.4b shows the steady state pressure coefficient contour calculated by 1GPU+7CPUs

near the airfoil under the boundary conditions mentioned above. The solution has been

checked with the serial (single CPU) solution and the relative errors for all primitive variables

based on the reference values is within round-off error range (10−14).

(a) 1D Decomposition (b) Pressure Coefficient

Figure 4.4: NACA 0012 case using 1GPU+7CPUs

Fig. 4.5a shows the scaling performance of using multiple CPUs and up to 2 GPUs for the

NACA 0012 case on Thermisto. A speedup of 12.27 with a parallel efficiency of 76.68% can

be obtained using 16 CPUs, which is slightly lower than the inlet 833x257 grid case speedup.

Single GPU and 2GPUs have a speedup of 5.48 and 8.67 over single CPU, respectively. The

146
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

speedup and efficiency are higher than the inlet 833x257 grid case, as this airfoil case has

a connected boundary (although to itself). Even using a single processor, there is some

overhead associated with this connected boundary enforcement, so that decomposing this

grid and running the case in parallel brings less extra overhead compared with the inlet case.

The airfoil case is more general than the single subgrid inlet case as it contains a connected

boundary, which is more often seen in a structured grid CFD code.

Similar to Fig. 4.3b, Fig. 4.5b shows the change of solver time as a function of ratio_gc

of using the CPU-GPU heterogeneous computing on the NACA 0012 airfoil case with an

connected boundary. When ratio_gc is small, the performance is very close to the pure

CPU performance. If ratio_gc is increased to about 6 or 7, the CPU-GPU heterogeneous

performance using different number of CPUs reaches its maximum. The optimal ratio_gc

is greater than the single GPU over single CPU speedup, i.e., 5.48. Actually it is very

difficult to get the optimal ratio_gc very accurately as the solver time changes slowly near

the optimal regions. Also, it is good to have a range of optimal ratio_gc because it is easy

for us to obtain the approximately optimal performance (there is no need to get the exactly

best performance in this paper, otherwise requiring some manual tuning). For this airfoil

case, an optimal ratio_gc should be around 6. If ratio_gc is greater than 8, the performance

is slightly weakened as the GPU takes more work than the optimal, and CPUs may be idling

during the parallel execution.

Table 4.4 shows the effect of using 2GPUs in the CPU-GPU heterogeneous mode for the

airfoil case. Recall that the single GPU and 2GPUs take 36.7 s and 23.3 s to finish, re-

spectively. The 2GPU+10CPUs (at ratio_gc = 5) is about 29.8% faster than the 2GPU

performance. This also indicates that the CPU-GPU heterogeneous computing is faster than

the pure GPU performance given a good ratio_gc.

4.4. Results 147

(a) Pure CPU or GPU performance (b) CPU-GPU heterogeneous performance

Figure 4.5: Grid size: 897x257 (on Thermisto)

Table 4.4: The performance comparison between using 1GPU and 2GPUs for the NACA
0012 airfoil case in the CPU-GPU heterogeneous mode

ratio_gc 1GPU+7CPUs 2GPUs+2CPUs 2GPUs+6CPUs 2GPUs+10CPUs
4 23.35 24.53 19.66 18.12
5 21.46 21.89 18.83 17.95
6 21.28 22.82 19.85 19.11

4.4.5 ONERA M6 Wing

The third case tested in this paper is a flow over a transonic wing, at an angle of attack of

3.06 degrees. The farfield boundary conditions are given in Table. 4.5.

Table 4.5: ONERA M6 wing farfield boundary conditions

Mach number 0.8395
Temperature 255.556 K

Pressure 315979.763 Pa
Angle of attack, α 3.06 degrees

Fig. 4.6a shows the grid of the ONERA M6 wing case. The grid has 4 subgrids (having

25x49x33, 73x49x33, 73x49x33 and 25x49x33 nodes, respectively), or equivalently a total

number of 294,912 cells. Fig. 4.6b shows the 3D domain decomposition (using 2GPUs+6CPUs)

of the ONERA M6 wing case for the CPU-GPU heterogeneous computing. The two GPUs

148
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

(with the id of 0 and 1) have 5 times more cells than a single CPU (with the id from 2 to 7).

(a) ONERA M6 wing grid (with 2 subgrids not
shown)

(b) 3D Domain Decomposition

Figure 4.6: ONERA M6 wing case using 2GPUs+6CPUs

Fig. 4.7 shows the converged surface pressure coefficient contour of the ONERA M6 wing

using 16 CPUs on Termisto. Fig. 4.8a shows the scaling performance of multiple CPUs and

up to 2 GPUs of the ONERA wing case. Curves labeled with ”_16blocks” mean that the

performance is for the decomposed blocks, that is, the original 4 subgrids are decomposed

into 16 blocks with an equal size. The reason for doing so is that we want to test the hetero-

geneous implementation on a case with more grid blocks. It is noted that the performance

drops significantly for the pure GPU after domain decomposition, as there is more commu-

nication overhead. After combining the domain decomposition step and domain aggregation

step, we can balance loads well on all the processors for this case, although bringing some

communication overhead. Before domain decomposition, the speedup and parallel efficiency

of using 16 CPUs (based on the single CPU performance) are 10.63 and 66.45%, respectively.

The single GPU and 2GPUs have a speedup of 4.51 and 6.94 over single CPU, respectively.

The speedup drop compared with the earlier cases (the inlet and NACA 0012 case) is mainly

4.4. Results 149

caused by connected boundary enforcement (communication) between processors. After do-

main decomposition (now the total number of blocks is 16), the single GPU and 2GPUs

are only 3.25 and 4.76 times faster than the single CPU performance. Having connected

boundaries is general for multi-block cases so that the speedup here is closer to the practical

applications. Boundary enforcement is intrinsically irregular computation which requires

special treatments and it also requires inter-processor and host-to-device communication.

This case has multiple connections on each processor so it is a good general case to test the

performance of the CPU-GPU heterogeneous computing.

Fig. 4.8b shows the performance comparison of using different numbers of CPUs and GPUs.

The heterogeneous performance is better than the pure GPU performance if using a small

number of CPUs. However, the performance is out of our expectation if there are a higher

number of ranks, which is equal to the total number of CPUs and GPUs. More ranks means

more communication and synchronization overhead, which are not considered well although

the load is balanced well. Also, the communication overhead may make the performance de-

teriorate when increasing the ratio ratio_gc when using 1GPU+7CPUs and 2GPUs+6CPUs.

These issues will be investigated in the future.

Figure 4.7: Pressure contour of the ONERA M6 wing

150
Chapter 4. Heterogeneous Computing of CFD Applications on a CPU-GPU Platform

using MPI and OpenACC

(a) Pure CPU/GPU scaling performance
(Thermisto)

(b) CPU-GPU heterogeneous performance
(Thermisto)

Figure 4.8: The ONERA M6 wing case performance

4.5 Conclusions

From the inlet case and airfoil case presented in this paper, it is obvious that the CPU-GPU

heterogeneous computing brings some performance gain if the task assigned to CPUs and

GPUs is balanced well. For the inlet case, 1GPU+5CPU has an about 1.3 to 1.5 speedup

over the single GPU performance, based on the grid size. This is good as more computational

resources are used to maximize the power of parallel computing, since many CPUs may just

idle in the homogeneous GPU computing mode. Using 2 GPUs in the heterogeneous mode

can generate more speedup than only using 1 GPU. Similar conclusions can be drawn from

the airfoil case. 1GPU+7CPU is as 1.52 times faster than the single GPU performance. 2

GPUs + 10 CPUs (at ratio_gc = 5) is about 30% faster than the 2 GPU performance.

For the 16-block (the original 4 subgrids are decomposed into 16 blocks) ONERA M6 wing

case, the heterogeneous performance is still better than the pure GPU performance, but

not very much if using more ranks. However, more ranks also means more communication

and synchronization overhead, which are not considered well enough in this paper as the

focus in this paper is load balancing. The effect of ratio_gc is also out of our expectation

4.6. Future Work 151

if more CPUs are added in the heterogeneous mode, possibly caused by the communication

overhead.

Different domain decompositions (1D & 3D) are applied in the paper. We developed a

processor-cluster based decomposition step which can handle the situations in which the

number of processors is obviously larger than the number of subgrids. Also, we implemented

a grid-cluster based aggregation step so that we can deal with the situations in which the

number of processors is less than the number of subgrids. After combining the decomposition

and aggregation step, a processor may hold several blocks so that the load can be balanced

on all the processors. However, the inter-block communication overhead on a GPU would

still be expensive as the GPU needs to exchange the data frequently with its host (the CPU).

In terms of what can be improved for applying the CPU-GPU heterogeneous computing in

the CFD area, we think the communication subsystem and the memory bandwidth between

the CPU-CPU, CPU-GPU, and even GPU-GPU if applicable, should be considered carefully

when designing a heterogeneous system for various scenarios (e.g., single or multi-subgrid

cases), in order to reduce the communication and synchronization overhead. The reason is

the communication is usually an important bottleneck for memory-bounded problems such

as in CFD. Users can balance load easily through using a variable such as ratio_gc in this

paper, but accounting for communication overhead is more difficult.

4.6 Future Work

Test cases with more subgrids will be tested in the future. At present, only strong scaling

performance results are given. We are also interested in the weak scaling performance as

running a very large problem on many processors is more meaningful.

152 BIBLIOGRAPHY

Also, more advanced GPUs should be used. At present, we just test our implementation on

a workstation with a total number of 32 CPU cores (with hyper-threading) and 2 GPUs.

We are interested in testing the heterogeneous implementation on a cluster with more cores

and GPUs, and with different architectures. The communication systems on different sys-

tems are different, so investigating the heterogeneous computing implementation on different

platforms should be meaningful.

Finally, we will investigate ways to reduce the communication overhead when adding more

processors. Most of our applications are communication bounded so that reducing commu-

nication overhead and synchronization is very important for the overall performance.

Bibliography

[1] Green500 list for november 2019, 2019. (last accessed on 12/02/19).

[2] TOP500.org. Top 10 sites for november 2019, 2019. (last accessed on 12/02/19).

[3] Sparsh Mittal and Jeffrey S Vetter. A survey of cpu-gpu heterogeneous computing

techniques. ACM Computing Surveys (CSUR), 47(4):69, 2015.

[4] Luke Domanski, Tomasz Bednarz, Tim E Gureyev, Lawrence Murray, Emma Huang,

and John A Taylor. Applications of heterogeneous computing in computational and

simulation science. In 2011 Fourth IEEE International Conference on Utility and Cloud

Computing, pages 382–389. IEEE, 2011.

[5] L Domanski, T Bednarz, P Vallotton, and J Taylor. Heterogeneous parallel 3d image

deconvolution on a cluster of gpus and cpus. In 19th Int’l Congress on Modelling and

Simulation, Perth, Australia,[Online, cited Aug 1, 2013] http://mssanz. org. au/mod-

sim2011 A, volume 8, 2013.

BIBLIOGRAPHY 153

[6] Xavier Alvarez, Andrey Gorobets, and F Xavier Trias. Strategies for the heteroge-

neous execution of large-scale simulations on hybrid supercomputers. In 7th European

Conference on Computational Fluid Dynamics, 2018.

[7] Jianqi Lai, Zhengyu Tian, Hua Li, and Sha Pan. A cfd heterogeneous parallel solver

based on collaborating cpu and gpu. In IOP Conference Series: Materials Science and

Engineering, volume 326, page 012012. IOP Publishing, 2018.

[8] Yong-Xian Wang, Li-Lun Zhang, Wei Liu, Xing-Hua Cheng, Yu Zhuang, and Anthony T

Chronopoulos. Performance optimizations for scalable cfd applications on hybrid cpu+

mic heterogeneous computing system with millions of cores. Computers & Fluids, 2018.

[9] Isaac Liu, Edward A Lee, Matthew Viele, Guoqiang Wang, and Hugo Andrade. A

heterogeneous architecture for evaluating real-time one-dimensional computational fluid

dynamics on fpgas. In Field-Programmable Custom Computing Machines (FCCM), 2012

IEEE 20th Annual International Symposium on, pages 125–132. IEEE, 2012.

[10] Dragan D Nikolić. Parallelisation of equation-based simulation programs on heteroge-

neous computing systems. PeerJ Computer Science, 4:e160, 2018.

[11] Thomas Kovac, Tom Haber, Frank Van Reeth, and Niel Hens. Heterogeneous computing

for epidemiological model fitting and simulation. BMC bioinformatics, 19(1):101, 2018.

[12] Xiaocheng Liu, Ziming Zhong, and Kai Xu. A hybrid solution method for cfd applica-

tions on gpu-accelerated hybrid hpc platforms. Future Generation Computer Systems,

56:759–765, 2016.

[13] NVIDIA. NVIDIA GPUDirect, 2019.

[14] Openacccourse, 2019. (last accessed on 12/02/19).

154 BIBLIOGRAPHY

[15] Blaise Barney. Message Passing Interface (MPI), 2019.

[16] Joseph M Derlaga, Tyrone Phillips, and Christopher J Roy. Sensei computational fluid

dynamics code: a case study in modern fortran software development. In 21st AIAA

Computational Fluid Dynamics Conference, 2013.

[17] Charles W Jackson, William C Tyson, and Christopher J Roy. Turbulence model im-

plementation and verification in the sensei cfd code. In AIAA Scitech 2019 Forum,

2019.

[18] Philip L Roe. Approximate riemann solvers, parameter vectors, and difference schemes.

Journal of computational physics, 43(2):357–372, 1981.

[19] Joseph L Steger and RF Warming. Flux vector splitting of the inviscid gasdynamic equa-

tions with application to finite-difference methods. Journal of computational physics,

40(2):263–293, 1981.

[20] Bram Van Leer. Flux-vector splitting for the euler equation. In Upwind and High-

Resolution Schemes, pages 80–89. Springer, 1997.

Chapter 5

Machine Learning based Autotuning

of a GPU-accelerated Computational

Fluid Dynamics Code

Virginia Tech, Blacksburg, Virginia, 24061

Attribution

• Weicheng Xue (first author): The first author served as the main contributor and

primary author of this study. The machine learning based autotuning work was im-

plemented by the first author. All the results were collected and analyzed by the first

author.

• Christopher J. Roy (second author): The second author provided valuable feedback

for this study and comments for this manuscript.

155

156
Chapter 5. Machine Learning based Autotuning of a GPU-accelerated Computational

Fluid Dynamics Code

Abstract

A machine learning based autotuning technique is used to autotune fourteen parameters

related to GPU kernel scheduling, including the number of thread blocks and threads in

a block. Both the independent training for single type of GPU and combined training for

multiple types of GPU are performed for a single fluid dynamics problem (accelerated by one

GPU) on the C2075, P100 and V100 GPU. The training and the testing results indicate that

using an artificial neural network has the potential to autotune a large number of parameters,

while requiring a very small fraction of samples in a large search space.

Keywords: OpenACC, Machine Learning, Autotuning

5.1. Introduction 157

5.1 Introduction

General purpose graphic processing unit (GPGPU) [1] has been gaining interests in the area

of scientific computing due to its higher compute capability and higher memory throughput

compared to central processing unit (CPU). CPUs are usually used as hosts which deal

with general settings and controls, while GPGPUs are used as accelerator devices which run

intensive computations. Since the GPU has thousands of lighweight cores so the computation

can run faster and in parallel on the device. After the device finishes the computations, the

device moves the solution back to the the host. Therefore, data movements exist between

the host and device as the host and the device have discrete memories. The host and device

can be connected through the PCI-E or NVLink [2].

GPGPU has multi-level parallelisms including block level and thread level, which can be

seen in Fig. 5.1. It should be noted that different GPU parallel standards such as CUDA [3],

OpenCL [4] or OpenACC [5] has different names for the scheduling structures but they are

basically similar. In order to obtain high performance across different platforms or for other

different environments such as different problem sizes, numerical schemes, etc., users may

need to tune their GPU-accelerated code frequently. A program may have more than 10

or even 100 kernels, with each kernel having multiple tuning parameters, and with each

parameter having a possible range, so the whole search space can be extremely large. It can

be difficult for domain scientists to tune the parameters properly as they may not have such

an expertise. In addition, even though a compiler may set the tuning parameters by default

but the default setting is usually not the optimal configuration.

In this work, OpenACC is used for a computational fluid dynamics code acceleration on the

GPU. OpenACC is a library specification for GPU programming. It was initially created to

extend OpenMP to support GPUs. Since the realization of OpenMP 4.0 [6] or higher has

158
Chapter 5. Machine Learning based Autotuning of a GPU-accelerated Computational

Fluid Dynamics Code

Figure 5.1: Multilevel parallelisms for GPU.

been too slow, the development of OpenACC has become quite independent. OpenACC can

be used to simplify the programming on heterogeneous CPU/GPU computing systems, and

it is an important reason why OpenACC is used in this work.

Using OpenACC, there are many parameters which need to be tuned to obtain good per-

formance, such as gang size and thread length. On one hand, enough threads and gangs

need to be used to saturate the GPGPU with enough work so that the utilization and con-

currency is higher. On the other hand, since GPU streaming multiprocessor registers are

shared by all the threads, the number of threads running concurrently cannot be unlimited

large. Fig. 5.2 shows a two-parameter manual tuning of the thread-block size for a lid-driven

cavity code. The compiler can decide how to map the loop iterations to different levels of

parallelism on the device automatically, but the scheduling work can be done better through

a well designed autotuning. In addition, a good autotuning method may have the potential

to improve the performance of a code on next generation GPGPUs. Also, the performance

tuning greatly depends on the application. For example, A high latency problem may require

higher occupation to hide the latency and also to increase the concurrent accesses, and a low

latency problem may not have the same requirement. The compiler is very likely to choose

5.1. Introduction 159

very similar settings for quite different problems, which is not ideal.

Figure 5.2: Two-parameter manual tuning for a lid-driven cavity code

Artificial neural network may be a promising method for autotuning. An artificial neural

network has a number of layers of neurons, with each neuron to be a set of arithmetic

operations. The arithmetic operations mainly contain a dot product of weights and inputs.

Activation functions are used to add non-linearity to each layer. The output of each layer

is propagated to the next layer, which is called forward propagation. The loss function

is calculated by comparing the predicted data and the ground truth. Usually a penalty

function is added to the loss function to make trained model more generalized. Based on the

jacobians of the loss with respect to the weights for each layer, these weights can be updated

using different types of optimizer schemes, which is called backward propagation. The whole

procedures can be seen in Fig. 5.3.

In this work, tuning parameters such as gang sizes and vector lengths for different kernels are

used as features. The program solver runtime of our GPU-accelerated computational fluid

dynamics code is used as the target. Since the execution time is continuous, this problem is

supervised regression learning. A moderate number of samples are generated by running the

160
Chapter 5. Machine Learning based Autotuning of a GPU-accelerated Computational

Fluid Dynamics Code

Figure 5.3: Artificial Neural Network

computational fluid dynamics code. After the input layer, there are several hidden layers,

each with a number of neurons. ReLU is used as the activation function for each layer. The

number of layers, number of neurons for each layer, learning rated, etc. are hyperparameters

which need to be tuned to obtain a well trained model. Finally the model is evaluated

through testing on some unseen data.

5.2 Related Work

There are different approaches in dealing with the autotuning of a code. Pickering et al. [7]

exhaustively searched the entire space of 2D thread-block dimensions for a GPU-accelerated

code and they found that the compiler default was non-optimal. Manual tuning requires

a lot of experience and time, and is also error-prone. Jia et al. [8] used a statistic tree-

based approach to cluster the data according to their importance, which may require a large

number of samples to achieve satisfactory accuracy. Collins et al. [9] applied a machine

learning based method embedded with principal components analysis to reduce the search

5.3. Data Collection 161

space greatly. However, the accuracy may not be very good due to dimension collapsing.

Falch et al. [10] used neural networks to autotune some OpenCL kernel applications. They

can obtain good prediction for some benchmark codes. However their autotuning framework

was not very robust as the optimal configuration can vary greatly if running for several times.

Cui et al. [11] developed an iterative machine learning method looking for potentially better

samples in subsequent iterations based on samples from one iteration. However, all the

results shown only focus on the GPU thread-block size of one single kernel, which contains

only two parameters.

5.3 Data Collection

5.3.1 Platforms

C2075 GPU The peak float precision performance is 1028 GFLOPS, which is used as a

feature in the combined training (all the data on different GPUs are combined and trained

together). There are other factors affecting the performance of a GPU, including memory

bandwidth, number of streaming multiprocessors, etc. This work only uses the theoretical

performance as a feature, due to the fact that not too many types of GPUs are available.

P100 GPU The peak float precision performance is 9526 GFLOPS, which is used as a

feature in the combined training.

V100 GPU The peak float precision performance is 14130 GFLOPS, which is used as a

feature in the combined training, similar to 2075 and P100 GPUs.

162
Chapter 5. Machine Learning based Autotuning of a GPU-accelerated Computational

Fluid Dynamics Code

5.3.2 The Computational Fluid Dynamics Code Base: SENSEI

SENSEI (Structured, Euler/Navier-Stokes Explicit-Implicit Solver) is our in-house 2D/3D

flow solver [12, 13, 14]. SENSEI is written in modern Fortran and is a multi-block finite

volume computational fluid dynamics code. SENSEI can be accelerated on multiple GPUs

and can achieve a speedup of up to 70× on 16 V100 GPUs over 16 Xeon CPU E5-2680v4

cores [15]. SENSEI has not yet been tuned well due to the fact that there are a lot of

kernels inside, each with multiple tuning parameters, including gangs and vectors which can

be set as features. The search space constructed by multiple parameters can be very large,

and there may be inter-dependency between discrete parameters [16]. A random sampling

method will be used to generate the samples in this work. 75% of the samples will be used

for training, and the remaining 25% samples which are unseen will be for used for testing.

5.3.3 A Test Case

A test case used in this work is a simplified 2D 30 degree supersonic inlet. the problem size

is also fixed to have 3328×1024 cells, for simplicity. The parallel solution using 16 P100

GPUs is shown in Fig. 5.4.

5.3.4 Settings for Neural Network

The Scikit-learn [17] framework is used in this work. Scikit-learn provides a metric R2 to

evaluate the trained model, which is defined in Eq. 5.1. It can be seen that the model is

more accurate if R2 is closer to 1. The adaptive moment estimation (Adam) optimization

algorithm is chosen. After conducting a number of tests, the parameters for the neural

network are determined and given in Table 5.1.

5.3. Data Collection 163

Figure 5.4: The Mach number and streamlines for 2D inlet Euler flow.

R2 = 1− ΣN
i=1(yactual,i − ypred,i)

2

ΣN
i=1(yactual,i − yactual,mean)2

(5.1)

Table 5.1: Parameter settings for the neural network

Parameters Settings
L2 regularization coefficient, α 0.0001

The 1st moment exponential decay factor, β1 0.95
The 2nd moment exponential decay factor, β2 0.90

Activation function solver Relu
Learning rate Adaptive

Initial learning rate 0.0009
Maximum epoch number 200

Batch size 200
Tolerance 10−6

Numerical stability factor 10−9

164
Chapter 5. Machine Learning based Autotuning of a GPU-accelerated Computational

Fluid Dynamics Code

5.3.5 Tuning Parameters

Seven kernels which are the most time consuming in SENSEI are chosen to be tuned. Each

kernel can have two tuning parameters including the gang size and vector length. Therefore,

a total number of 14 parameters are used as features, which can be seen in Table 5.2. The

whole search space has 107 × 127 = 3.58 × 1014 configurations. In this work, only 7500

samples are used for training.

Table 5.2: Tuning Parameters

Kernels Range
xi limiter gang 100, 200, ..., 1000
xi limier vector 32, 64, ..., 384
eta limiter gang 100, 200, ..., 1000
eta limiter vector 32, 64, ..., 384
xi flux gang 100, 200, ..., 1000
xi flux vector 32, 64, ..., 384
eta flux gang 100, 200, ..., 1000
eta flux vector 32, 64, ..., 384
source term gang 100, 200, ..., 1000
source term vector 32, 64, ..., 384
right hand side gang 100, 200, ..., 1000
right hand side vector 32, 64, ..., 384
update solution gang 100, 200, ..., 1000
update solution vector 32, 64, ..., 384

5.3.6 Feature Centering and Scaling

Feature centering and scaling (also called mean removal and variance scaling) is usually

applied in machine learning based applications. One advantage of applying centering and

scaling is to make different features equivalently important so that different weights have the

same order of magnitude. Without centering and scaling, the training may perform poorly.

Scikit-learn provides different kinds of scaling including standardscaler, minmaxscaler, max-

5.4. Results 165

absscaler, etc. The standardscalar is used in this work as it is one of the most straightforward

scalers. Although the standard scaler is designed to be appropriate for Gaussian distribu-

tion. However, in a lot of occasions, the distribution of the data is unknown but the standard

scaling still helps improve the accuracy.

5.4 Results

In this work, the data on each type of GPU can be trained independently, or they can be

combined and trained together. The latter may be more promising as including the GPU

type as a feature may enable the trained model to predict the performance on unseen GPUs.

One drawback of the combined training is that the number of GPU types is still small so

the accuracy on unseen GPUs may not be satisfactory. Since the three GPUs have different

compute capabilities, the program solver execution time on different GPUs are scaled to

approximately the same range. In other words, the inlet case runs for 1 iteration step on the

C2075 GPU, 5 iteration steps on the P100 GPU and 15 iteration steps on the V100 GPU.

The solver time of all samples is in the range of [0.8 s, 2.0 s]. Considering that there is

some time spent in the launch of code and initial and final data movement (which should

not be considered since more iteration steps can compensate the cost in real running), 10000

samples actually cost about 24 hours to finish.

5.4.1 Training on Single Platform

Firstly, training is performed on one single GPU, including C2075, P100 and V100 GPU. The

reason why training on single platform first is to see whether the artificial neural network

technique can be applied to auto-tune a real application, instead of some simple kernels or

166
Chapter 5. Machine Learning based Autotuning of a GPU-accelerated Computational

Fluid Dynamics Code

benchmarks.

Fig. 5.5, Fig. 5.6 and Fig. 5.7 show the training and testing results on a C2075, V100 and

P100 GPU, respectively. Each GPU has 10,000 samples, with 7,500 samples used for training

and the remaining 2,500 unseen samples for testing. The horizontal axis denotes the actual

runtime and the vertical axis denotes the predicted runtime. The red line with a slope of

1 denotes the perfect prediction for all samples. It can be seen that for all GPUs tested,

this neural network works well (especially on slower GPUs), as most data points cluster near

the perfect prediction line. In addition, the predicted sample having the lowest runtime is

very close to the actual sample having the lowest runtime, which means that using the best

predicted sample is a good option. It should be noted that finding the global optimal is not

required as long as a sub-optimal does not cost far more time than the global optimal. There

are some large prediction errors for configurations having longer actual runtime. The model

tends to under-predict the runtime for these cases, which may suggest that the machine

learning code has some unknown bias errors inherently due to not being well designed, or

the data itself are biased. However, this work cares more about finding configurations having

shorter actual runtime correctly.

(a) Training (b) Test samples

Figure 5.5: Training and testing on C2075 GPU

5.4. Results 167

(a) Training (b) Test samples

Figure 5.6: Training and testing on V100 GPU

(a) Training (b) Test samples

Figure 5.7: Training and testing on P100 GPU

5.4.2 Combined Training

Now, all the data on different GPUs are combined and trained together. The GPU type is

used as a feature to include the impact of different types, especially their compute capability

difference. The trained model can be used to predict the performance on unseen GPUs.

Different problems, problem sizes, domain decompositions and numerical scheme are not

considered in this work.

Fig. 5.8 shows the comparison of loss history using independent training and combined

168
Chapter 5. Machine Learning based Autotuning of a GPU-accelerated Computational

Fluid Dynamics Code

training. It can be seen that the combined training loss drops faster than the independent

training in the beginning, possibly due to a better centering and scaling (since more data are

used for data preprocessing). Also, it should be noted that the combined training has 22,500

samples for training (each independent GPU has 7,500 samples) so the training may be

more stable and accurate. Fig. 5.9 shows the comparison of the R2 score using independent

training and combined training. It is interesting to see that a slower GPU has higher R2

score than a faster GPU. However, after combining all the GPU data, the scores for the

training and testing can be improved.

Figure 5.8: Loss history.

Figure 5.9: R2 score.

Fig. 5.10 shows the combined training and testing results for the 2D inlet case. After

5.5. Conclusions 169

combining all the data points from three different types of GPUs, a good model can still be

obtained. This model can be used to predict the performance on unseen GPUs.

(a) Training (b) Test samples

Figure 5.10: Training and testing on combined dataset

5.5 Conclusions

In this work, the approach of artificial neural network is used to auto-tune fourteen GPU

kernel scheduling parameters in a GPU-accelerated research computational fluid dynamics

code. Both the independent and combined training show the potential of applying the

machine learning technique to auto-tune a code. Although there is only one problem and

the size is fixed, data on different types of GPU may be utilized to predict the performance

on unseen GPUs.

Broader Impact

General programs which require tuning but have a large search space may benefit from this

work. Also, compiler development can be designed to be smarter by including a similar

170 BIBLIOGRAPHY

machine learning based toolkit on the backend, so that users do not need to manually tune

a lot of parameters, which require expertises. To make this research more meaningful and

practical, multiple factors including different types of problems, problem sizes, numerical

schemes, etc. should be considered in the future. In addition, this work can be more useful

if extended to multiple GPUs. Other methods such as reinforcement learning is worthwhile

to be tried.

Bibliography

[1] Wen-Mei W Hwu. GPU computing gems emerald edition. Elsevier, 2011.

[2] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R Tallent, and

Kevin J Barker. Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch

and gpudirect. IEEE Transactions on Parallel and Distributed Systems, 31(1):94–110,

2019.

[3] NVIDIA. CUDA C++ Programming Guide, 2019. (last accessed on 07/24/20).

[4] Khronos OpenCL Working Group. The OpenCL Specification, 2012. (last accessed on

07/24/20).

[5] OpenACC-Standard.org. The OpenACC Application Programming Interface.

OpenACC-Standard.org, 2018.

[6] Nawrin Sultana, Alexander Calvert, Jeffrey L Overbey, and Galen Arnold. From ope-

nacc to openmp 4: toward automatic translation. In Proceedings of the XSEDE16

Conference on Diversity, Big Data, and Science at Scale, pages 1–8, 2016.

[7] Brent P Pickering, Charles W Jackson, Thomas RW Scogland, Wu-Chun Feng, and

BIBLIOGRAPHY 171

Christopher J Roy. Directive-based GPU programming for computational fluid dynam-

ics. Computers & Fluids, 114:242–253, 2015.

[8] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. Starchart: Hardware and software

optimization using recursive partitioning regression trees. In Proceedings of the 22nd

international conference on Parallel architectures and compilation techniques, pages

257–267. IEEE, 2013.

[9] Alexander Collins, Christian Fensch, Hugh Leather, and Murray Cole. Masif: Ma-

chine learning guided auto-tuning of parallel skeletons. In 20th Annual International

Conference on High Performance Computing, pages 186–195. IEEE, 2013.

[10] Thomas L Falch and Anne C Elster. Machine learning-based auto-tuning for enhanced

performance portability of opencl applications. Concurrency and Computation: Practice

and Experience, 29(8):e4029, 2017.

[11] Xuewen Cui and Wu-chun Feng. Iterml: Iterative machine learning for intelligent pa-

rameter pruning and tuning in graphics processing units. Journal of Signal Processing

Systems, pages 1–13, 2020.

[12] Joseph M Derlaga, Tyrone Phillips, and Christopher J Roy. Sensei computational fluid

dynamics code: a case study in modern fortran software development. In 21st AIAA

Computational Fluid Dynamics Conference, 2013.

[13] Charles W Jackson, William C Tyson, and Christopher J Roy. Turbulence model im-

plementation and verification in the sensei cfd code. In AIAA Scitech 2019 Forum,

2019.

[14] Weicheng Xue, Hongyu Wang, and Christopher J Roy. Code verification for 3d turbu-

172 BIBLIOGRAPHY

lence modeling in parallel sensei accelerated with mpi. In AIAA Scitech 2020 Forum,

page 0347, 2020.

[15] Weicheng Xue, Charles W Jackson, and Christoper J Roy. An improved framework of

gpu computing for cfd applications on structured grids using openacc. arXiv preprint

arXiv:2012.02925, 2020.

[16] Wu-Chun Feng. A deep learning approach towards auto tuning cfd codes. Technical

report, Virginia Polytechnic Institute And State University Blacksburg United States,

2018.

[17] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine

Learning research, 12:2825–2830, 2011.

Chapter 6

Code Verification for Turbulence

Modeling in Parallel SENSEI

Accelerated with MPI

Weicheng Xue1, Hongyu Wang2 and Christopher J. Roy3

Virginia Tech, Blacksburg, Virginia, 24061

Attribution

• Weicheng Xue (first author): The first author served as the main contributor and

primary author of this study. The first author implemented half of the Jacobians for

the 3D implicit solver, half of the Spalart-Allmaras and k − ω SST turbulence models

in SENSEI. In addition, all the results were collected by the first author.

• Hongyu Wang (second author): The second author contributed equally as the first

author to the implementation of the Jacobians for the 3D implicit solver, the Spalart-
1Graduate Assistant, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall,

RM 315, Virginia Tech, 460 Old Turner St, AIAA Student Member.
2Graduate Assistant, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall,

RM 315, Virginia Tech, 460 Old Turner St, AIAA Student Member.
3Professor, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall, RM 330,

Virginia Tech, 460 Old Turner St, AIAA Associate Fellow.

173

174
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

Allmaras and k − ω SST turbulence models in SENSEI. Also, the second author pro-

vided a lot of useful advice when implementing the turbulence models in SENSEI.

• Christopher J. Roy (final author): The final author provided valuable feedback for this

study and comments for this manuscript. For the turbulence modeling implementation

in SENSEI and stability issues, the final author offered a lot of useful insights and

guidance.

Abstract

This paper mainly deals with code verification for turbulence modeling in our parallel re-

search CFD code SENSEI. SENSEI is now being accelerated with the use of MPI. Some

turbulence modeling verification cases including cross term sinusoidal manufactured solu-

tions and all verification cases from the turbulence modeling resources website are used to

justify the proper turbulence modeling implementation of the parallel SENSEI. For the cross

term sinusoidal manufactured solutions, the observed order of accuracy is close to two for

the SA and k − ω SST model, in both 2D and 3D. Also, SENSEI matches very well with

all the numerical benchmark solutions from both CFL3D and FUN3D for all the quantities

of interest including the total lift coefficient, total drag coefficient, pressure drag coefficient

and viscous drag coefficient if the flux limiters are turned off.

6.1 Introduction

To model turbulent flows such as flow past an object (a vehicle, building, etc.), jet flow,

and atmospheric motion, researchers have proposed methods including Reynolds-Averaged

Navier-Stokes (RANS) models, Large Eddy Simulation (LES) and Direct Numerical Simu-

6.2. The CFD Code Base: SENSEI 175

lation (DNS) [1]. LES and DNS are not the focus of this paper as RANS is the cheapest

in terms of computational cost but still has a reasonable accuracy for a variety of turbulent

flow problems. RANS models can be categorized as zero equation models (Prandtl’s mixing

length model for an example), one equation models (.eg, Spalart-Allmaras [2]), two equation

model (k− ϵ [3], k−ω [4], k−ω SST [5], etc.), etc. Since there is no analytic expression for

the Reynolds Stresses which are introduced by ensemble averaging over the Navier-Stokes

equations, the Boussinesq approximation is introduced to close the RANS equations. The

Boussinesq approximation relates the Reynolds stresses with mean flow velocities through

the use of eddy viscosity. Different RANS models solve the eddy viscosity in different ways.

The Spalart-Allmaras (SA) model solves eddy viscosity through a working variable, and other

models calculate it by solving additional transport equations. The SA model is cheaper in

terms of computational cost so it is good for problems with large grid size, and it is often

used in flows with just slight separation such as transonic flow past airfoils, etc. The k − ϵ

model which is a two equation model performs well for free shear flows. The k − ω model

(two equation model) is a good option for wall-bounded flows. The k − ω SST model (also

known as the Menter’s SST) is aimed at combining the advantages of k− ϵ and k−ω model.

It is devised in a way so that in the inner region of the boundary layer k− ω is used, and in

the free shear flow k − ϵ is used.

6.2 The CFD Code Base: SENSEI

6.2.1 Overview of SENSEI

SENSEI (Structured, Euler/Navier-Stokes Explicit-Implicit Solver) is our in-house flow solver

originally developed by Derlaga et al. [6]. The original code was written in a very structured

176
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

programming style, although with many modern Fortran features such as derived types,

pointers, PASS attributes, implied shape array, etc. being used. Jackson et al. [7] followed

up their work by implementing the negative Spalart-Allmaras turbulence model into SEN-

SEI and doing tests on four 2D verification test cases (2D Zero pressure gradient flat plate

case, 2D Coflowing jet case, 2D Bump-in-channel case, and 2D Airfoil near-wake case [8]).

They also refactored SENSEI into an object-oriented programming style so that new ca-

pabilities including new turbulence models, solvers, and boundary conditions can be easily

added due to the improvement of SENSEI’s modularity. SENSEI is a multi-block structured

finite volume code and is embedded with several flux options. An important reason for why

SENSEI uses structured grid is that the quality of grid is usually better using a multi-block

structured grid than that provided on an unstructured grid. Also, memory can be used more

efficiently, since data are ordered in a structured way located in the memory, which is fit for

cache reuse when running SENSEI in parallel. It also saves some memory as no connectivity

information needs to be stored for every cell.

Second order spatial accuracy for the inviscid flux is achieved by using MUSCL extrapolation,

which uses a thirteen point stencil per cell for a 3D problem and a nine point stencil per

cell for a 2D problem. Provisions are made to approximate the inviscid flux with a number

of different inviscid flux options. Roe’s flux difference splitting [9], Steger-Warming flux

vector splitting [10], and Van Leer’s flux vector splitting [11] are available. The viscous flux

and the turbulence flux are calculated through a central flux scheme using the Green-Gauss

theorem. The viscous flux and the turbulence flux require more cells to be added to the

inviscid stencil, especially for 3D cases.

Time marching can be accomplished using an explicit M-step Runge-Kutta scheme and a

backward Euler implicit time stepping scheme with preconditioning (mainly for steady-state

flow problems). Ghost cells are used to transfer interblock boundary data between neighbour

6.2. The CFD Code Base: SENSEI 177

blocks explicitly (for both explicit and implicit solvers) and SENSEI requires point matching

between neighbour blocks. The default number of ghost cells is 2, but it can be changed

accordingly if different order of accuracy is required in the future.

Different kinds of boundary conditions including slip wall, non-slip wall, farfield, pressure

inflow, supersonic inflow/outflow, subsonic inflow/outflow, symmetry and interblock bound-

aries are implemented in SENSEI using an object-oriented programming approach. A derived

type is used to store all information of a block such as grid locations, cell volumes, bound-

aries, etc. An interblock boundary includes a neighbour derived type storing its neighbour

information containing block id, index range, face label, etc. Ghost cells on interblock

boundaries contain data from the adjoining block during a syncing routine so that every

block can be solved independently. Different boundaries are allocated when reading from

the boundary file, and are re-allocated and updated when decomposing domain if running

SENSEI on multiple processors.

The SA-neg turbulence model and its linearization for 2D cases are implemented through

the use of object-oriented programming [7]. Multiple 2D turbulence verification cases have

been used to compare results from CFL3D and FUN3D to verify that the SA-neg turbulence

model in SENSEI is implemented correctly for 2D cases. Some differences in the results

are attributed to differences in implementation and discretization order of boundary condi-

tions and turbulence models. However, these differences do not have a significant effect on

quantifies of interest such as pressure coefficient, viscous drag coefficient, etc. for all the

2D turbulence cases te. For more details on the theory, background and 2D case tests see

Derlag et al. [6] and Jackson et al. [7].

178
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

6.2.2 Turbulence Models into the FANS Equations in SENSEI

The governing equations used in the code can be generalized into a weak form as

∂

∂t

∫
Ω

U⃗dΩ +

∮
∂Ω

(F⃗i,n − F⃗ν,n)ds =
∫
Ω

S⃗dΩ, (6.1)

where U⃗ is the vector of conversed variables, F⃗i,n and F⃗ν,n are the inviscid and viscous flux

normal components respectively (can be understood as the dot product of the second order

flux tensor and the normal vector of the surface) and S⃗ is the source term from either

body forces, chemistry source terms, or the method of manufactured solutions. The Favre-

Averaged Navier-Stokes equations (FANS) can be given in the framework shown in Eq. 6.1

as

U⃗ =

ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄et

, F⃗i,n =

ρ̄Ṽn

ρ̄ũṼn + n̂xp

ρ̄ṽṼn + n̂yp

ρ̄w̃Ṽn + n̂zp

ρ̄htṼn

, F⃗ν,n =

0

n̂xτ̃xx + n̂y τ̃xy + n̂z τ̃xz

n̂xτ̃yx + n̂y τ̃yy + n̂z τ̃yz

n̂xτ̃zx + n̂y τ̃zy + n̂z τ̃zz

n̂xΘ̃x + n̂yΘ̃y + n̂zΘ̃z

, S⃗ = 0⃗ (6.2)

where ρ̄ is density, ũ, ṽ, w̃ are the Cartesian velocity components, et is the total energy, ht

is the total enthalpy, Ṽn = n̂xũ + n̂yṽ + n̂zw̃ and the n̂i terms are the components of the

outward-facing normal unit vector. The laminar and turbulent effects are combined in the

6.2. The CFD Code Base: SENSEI 179

definition for the viscous stresses which gives

τ̃xx = 2µeff

(
Sxx −

1

3

(
∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z

))
− 2

3
ρ̄k,

τ̃yy = 2µeff

(
Syy −

1

3

(
∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z

))
− 2

3
ρ̄k,

τ̃zz = 2µeff

(
Szz −

1

3

(
∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z

))
− 2

3
ρ̄k,

τ̃xy = 2µeffSxy,

τ̃yz = 2µeffSyz,

τ̃zx = 2µeffSzx,

(6.3)

where Sxx, Sxy, …, etc. are the mean strain rates, k is the turbulent kinetic energy and the

effective viscosity µeff is defined as

µeff = µ+ µT , (6.4)

where µ is the dynamic viscosity and µT is the turbulent eddy viscosity. �̃ represents the

heat conduction, work from the viscous stresses and contribution from turbulent effects. Its

components are given as

Θ̃x = ũτ̃xx + ṽτ̃xy + w̃τ̃xz + keff
∂T̃

∂x
+MDTTx,

Θ̃y = ũτ̃xy + ṽτ̃yy + w̃τ̃yz + keff
∂T̃

∂y
+MDTTy,

Θ̃z = ũτ̃xz + ṽτ̃yz + w̃τ̃zz + keff
∂T̃

∂z
+MDTTz,

(6.5)

where MDTT is the lumped term associated with molecular diffusion and turbulent trans-

port in the energy equation of a given turbulence model and keff is effective thermal con-

180
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

ductivity which is given by

keff = Cp

(
µ

PrL
+

µT

PrT

)
. (6.6)

In Eq. 6.6, PrL is the (laminar) Prandtl number and PrT is the turbulent Prandtl number.

In order to close the system, a turbulence model is needed to model the turbulent eddy

viscosity µT and the turbulent kinetic energy k.

6.2.3 The Negative Spalart-Allmaras Turbulent Model

The implementation of the original Spalart-Allmaras (SA) turbulence model can be given in

the form shown in Eq. 6.1 as

U⃗ = [ρ̄ν̃], F⃗i,n = [ρ̄ν̃Ṽn], F⃗ν,n = [n̂xΥ̃x + n̂yΥ̃y + n̂zΥ̃z], (6.7)

where ν̃ is the turbulence working variable which is related to the kinematic eddy viscosity

νT by

νT = ν̃fν1, fν1 =
χ3

χ3 + c3ν1
, χ =

ν̃

ν
, (6.8)

and

Υ̃x =
ρ̄

σ
(ν + ν̃)

∂ν̃

∂x
, Υ̃y =

ρ̄

σ
(ν + ν̃)

∂ν̃

∂y
, Υ̃z =

ρ̄

σ
(ν + ν̃)

∂ν̃

∂z
, (6.9)

where ν is the kinematic viscosity. The source term for the SA model is given as

S⃗ = [ρ̄(P−D)+
cb2
σ
ρ̄

[(∂ν̃
∂x

)2

+
(∂ν̃
∂y

)2

+
(∂ν̃
∂z

)2
]
− 1

σ
(ν+ν̃)

[∂ρ̄
∂x

∂ν̃

∂x
+
∂ρ̄

∂y

∂ν̃

∂y
+
∂ρ̄

∂z

∂ν̃

∂z

]
], (6.10)

where P is a production term and D is a destruction term given by

P = cb1(1− ft2)S̃ν̃, D = (cw1fw − cb1
κ2

ft2)

[
ν̃

d

]2
. (6.11)

6.2. The CFD Code Base: SENSEI 181

The term d, defined as the distance to the nearest wall, and the modified vorticity S̃, are

given by

S̃ = Ω+
ν̃

κ2d2
fν2, fν2 = 1− χ

1 + χfν1
, (6.12)

where Ω is the magnitude of vorticity. The remaining terms are given as

ft2 = ct3exp(−ct4χ
2), fw = g

[
1 + c6w3

g6 + c6w3

]1/6
, g = r+cw2(r

6−r), r = min

(
ν̃

S̃κ2d2
, rlim

)
.

(6.13)

The coefficients used in the model are given as

cb1 = 0.1355 σ = 2/3 cb2 = 0.622 κ = 0.41

cw1 =
cb1
κ2

+
1 + cb2

σ
cw2 = 0.3 cw3 = 2 cν1 = 7.1

ct1 = 1 ct2 = 2 ct3 = 1.2 ct4 = 0.5

rlim = 10

The MDTT term for the SA model is zero. Since the model does not model the turbulent

kinetic energy, k, all terms related to k in Eq. 6.2 are dropped for the SA model.

In the original SA model, the working variable, ν̃, is not allowed to be negative. The initial

transients in the solution can drive ν̃ to negative especially near the edge of a wake. The

SA model ran into many such issues in our initial testing. The negative Spalart-Allmaras

(SA-neg) model [2] is a modified version of the SA model which allows ν̃ to be negative.

The SA-neg model is the same as the SA model when ν̃ is greater than or equal to zero.

The modification is only applied when ν̃ is negative. µT is set to zero for negative ν̃ and the

definitions for Υx, Υy and Υz are modified to be

Υ̃x =
ρ̄

σ
(ν + fnν̃)

∂ν̃

∂x
, Υ̃y =

ρ̄

σ
(ν + fnν̃)

∂ν̃

∂y
, Υ̃z =

ρ̄

σ
(ν + fnν̃)

∂ν̃

∂z
. (6.14)

182
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

The source term is also modified is given by

S⃗ = [ρ̄(Pn−Dn)+
cb2
σ
ρ̄

[(∂ν̃
∂x

)2

+
(∂ν̃
∂y

)2

+
(∂ν̃
∂z

)2
]
− 1

σ
(ν+ fnν̃)

[∂ρ̄
∂x

∂ν̃

∂x
+

∂ρ̄

∂y

∂ν̃

∂y
+

∂ρ̄

∂z

∂ν̃

∂z

]
],

(6.15)

where the modified production and destruction term Pn and Dn are given as

Pn = cb1(1− ct3)Sν̃, Dn = −cw1

(ν̃
d

)2

. (6.16)

The coefficient fn that is introduced in the modification is given by

fn =
cn1 + χ3

cn1 − χ3
, cn1 = 16. (6.17)

6.2.4 The Menter’s Shear Stress Transport Turbulence Model

The governing equations for the Menter’s Shear Stress Transport turbulence (k − ω SST)

model can also be cast into the form given in Eq. 6.1 as

U⃗ =

ρ̄k
ρ̄ω

 , F⃗i,n =

ρ̄kṼn

ρ̄ωṼn

 , F⃗ν,n = n̂xΞ⃗x + n̂yΞ⃗y + n̂zΞ⃗z, (6.18)

where ω is the specific rate of dissipation and

Ξ⃗x =

(µ+ σkµT)
∂k

∂x

(µ+ σωµT)
∂ω

∂x

 , Ξ⃗y =

(µ+ σkµT)
∂k

∂y

(µ+ σωµT)
∂ω

∂y

 , Ξ⃗z =

(µ+ σkµT)
∂k

∂z

(µ+ σωµT)
∂ω

∂z

 . (6.19)

6.2. The CFD Code Base: SENSEI 183

For the Menter’s SST model, the source term is given by

S⃗ =

 Ps − β∗ρ̄ωk

γ

νT
Ps − βρ̄ω2 + 2(1− F1)

ρ̄σω2

ω

(
∂k

∂x

∂ω

∂x
+

∂k

∂y

∂ω

∂y
+

∂k

∂z

∂ω

∂z

)
 , (6.20)

where νT = µT/ρ̄ and the term Ps is a production term which is given by

Ps = τ̃xx
∂ũ

∂x
+ τ̃xy

∂ũ

∂y
+ τ̃xz

∂ũ

∂z
+ τ̃xy

∂ṽ

∂x
+ τ̃yy

∂ṽ

∂y
+ τ̃yz

∂ṽ

∂z
+ τ̃xz

∂w̃

∂x
+ τ̃yz

∂w̃

∂y
+ τ̃zz

∂w̃

∂z
(6.21)

Here the τ̃ terms do not take the dynamic viscosity into consideration, i.e., they only include

the effect of the turbulent eddy viscosity, which is calculated as

µT =
ρ̄a1k

max(a1ω,ΩF2)
. (6.22)

where Ω is the vorticity magnitude. The terms F1 and F2 are used to blend an inner

(expressed with subscript 1) and outer (expressed with subscript 2) coefficients, which are

given as

F1 = tanh(arg41), arg1 = min

[
max

(√
k

β∗ωd
,
500ν

d2ω

)
,
4ρ̄σω2k

CDkωd2

]
, (6.23)

where

CDkω = max

[
2ρ̄σω2

1

ω

(
∂k

∂x

∂ω

∂x
+

∂k

∂y

∂ω

∂y
+

∂k

∂z

∂ω

∂z

)
, 10−20

]
, (6.24)

and

F2 = tanh(arg22), arg2 = max

(
2

√
k

β∗ωd
,
500ν

d2ω

)
. (6.25)

The blending process is performed by

ϕ = F1ϕ1 + (1− F1)ϕ2, (6.26)

184
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

where ϕ can be any of the coefficients. A production limiter [12] is applied, which replaces

the Ps term in the k-equation by min(Ps, 20β
∗ρ̄ωk). The coefficients in the model are given

as

γ1 =
β1

β∗ − σω1κ
2

√
β∗ γ2 =

β2

β∗ − σω2κ
2

√
β∗

σk1 = 0.85 σω1 = 0.5 β1 = 0.075

σk2 = 1.0 σω2 = 0.856 β2 = 0.0828

β∗ = 0.09 κ = 0.41 a1 = 0.31

The MDTT terms for the Menter’s SST model is computed as

MDTTx =

(
µ+

µT

σk

)
∂k

∂x
, MDTTy =

(
µ+

µT

σk

)
∂k

∂y
, MDTTz =

(
µ+

µT

σk

)
∂k

∂z
, (6.27)

6.2.5 The Menter’s Shear Stress Transport Turbulence Model with

Vorticity Source Term

There are many variants of the Menter’s SST model, such as the Menter’s SST model with

vorticity source term (SST-V). The SST-V model is slightly different from the standard

SST model shown earlier in that the SST-V uses the vorticity magnitude to compute the

production term instead of using the shear stresses. The production term given in Eq. 6.21

is replaced with

Ps = µTΩ
2 − 2

3
ρ̄k

(
∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z

)
(6.28)

The production limiter used in the standard Menter’s SST model is still employed in the

k-equation.

6.2. The CFD Code Base: SENSEI 185

6.2.6 Finite-Volume Discretization

For finite-volume discretization, the domain of interest, Ω, is partitioned into a sequence of

non-overlapping control volumes, Ωi, such that Ω =
⋃Nν

i=1Ωi. The weak form in Eq. 6.1 can

be rewritten for each control volume as

∂

∂t

∫
Ωi

U⃗dΩ +

∮
∂Ωi

(F⃗i,n − F⃗ν,n)ds =
∫
Ωi

S⃗dΩ. (6.29)

Denote the discrete solution of finite-volume method as U⃗h which is assumed to be constant

in each control volume and approximates the control volume average of the exact solution.

With the discrete steady state residual given as R⃗h, the discrete version of Eq. 6.29 can be

given in a semi-discrete form as

|Ωi|
∂

∂t
U⃗h + R⃗h = 0⃗, (6.30)

where |Ωi| is the volume of Ωi. Any time marching scheme can be applied to this semi-discrete

form given a reasonable initial condition.

6.2.7 Focus of this Paper

Based on the prior work by Derlaga et al. [6] and Jackson et al. [7], this paper is mainly

focused on the following aspects. First, we extended the SA-neg turbulence model imple-

mentation and its linearization into 3D. We compared the results of a 3D turbulence case

with those computed using CFL3D and FUN3D. Second, we included the k − ω SST tur-

bulence model into SENSEI and finished implementing the nondimensional form and the

linearization of k − ω SST. We ran all the 2D and 3D verification cases in Ref [13] and also

compared them with published results using CFL3D and FUN3D. Third, we applied cross

186
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

term sinusoidal (CTS) manufactured solutions and did order of accuracy tests, and verified

that SENSEI is 2nd order accurate for the SA and k − ω SST models, both in 2D and 3D.

Finally, we finished parallelizing SENSEI through the use of MPI, so that a lot of tasks

including wall distance calculation, solving a linear system of equations, and part of domain

decomposition work can be done in parallel on multiple processors. This brings significant

speedup when solving large problems either implicitly or explicitly.

6.3 MPI Implementation into SENSEI

6.3.1 An Introduction of Message Passing Interface (MPI)

Message Passing Interface (MPI) is a message passing library standard based on the consen-

sus of the MPI Forum [14]. The goal of MPI is to establish a portable, efficient, and flexible

standard for message passing that will be widely used for writing message passing programs.

MPI is the ”industry standard” for writing message passing programs on HPC platforms. It

defines a lot of specifications for C and Fortran language bindings. MPI can run on shared

memory, distributed memory or hybrid platforms. There are multiple MPI implementations

such as MVAPICH, OpenMPI (used in this paper), Intel MPI, etc. All of them offer various

point-to-point communication routines as well as a lot of group communication routines,

which satisfy different purposes.

6.3.2 Domain Decomposition in SENSEI

A processor-clustered decomposition method is implemented into SENSEI. This decompo-

sition method is proper when the number of processors (NP) is greater than or equal to

the number of parent blocks (PB) given a grid. The method has two modules, the block

6.3. MPI Implementation into SENSEI 187

decomposition module dealing with decomposition for parent blocks and the number decom-

position module dealing with decomposition within a block which may have different number

of cells in different dimensions. The algorithms of the two modules are detailed in Fig. 6.1

and Fig. 6.2. It is an ”on the fly” approach which requires no preprocessing of the grid or

boundaries. The communication overhead is also small with loads on different processors

balanced well, because the grid is decomposed in a structured way. The structured de-

composition makes programming and communication much easier as there are some built-in

topology routines in MPI which have good supports for point-to-point or group communica-

tion. Although this decomposition method is in a manager-slave mode, some tasks such as

linking interblock boundaries after domain decomposition can be done partly in parallel. It

helps to reduce some decomposition overhead, especially when NP becomes very large. For

all the cases running in parallel in this paper, the decomposition can be performed in a short

amount of time. The processor-clustered approach may have load imbalance issue if NP is

not obviously greater than PB and PB is greater than 1. We may devise a grid-clustered

decomposition method in the future, however this is not a focus in this paper.

Figure 6.1: Block decomposition module Figure 6.2: Integer Factorization module

Boundaries also need to be decomposed and updated after domain decomposition. Initially,

only the ROOT processor has all the boundary information for all parent blocks, since

ROOT reads the grid and boundaries. After domain decomposition, each parent block

188
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

is decomposed into a number of child blocks. These child blocks need to update all the

boundaries for themselves, synchronously in SENSEI. For non-connected boundaries this

update is very straightforward as each processor just needs to compare their individual

block global index range with the boundary global range. For interior boundaries caused

by domain decomposition, a family of Cartesian MPI topology routines are used to setup

communicators and make communication much less troublesome. However for connected

parent block boundaries, the updates (decomposing and re-linking these boundaries) are

more difficult as this process is mainly completed on individual processors, instead of on

the ROOT processor. In this way, this procedure can be done in parallel so it is much

faster, and the ROOT processor does not need to do the entire domain decomposition work

for all other blocks. For every parent block connected boundary, the ROOT processor first

broadcasts the boundary to all processors within that parent and its neighbour parent block,

and then returns to deal with the next parent block connected boundary. The processors

within that parent block or its neighbour parent block compare the boundary received and

their block index ranges. If a processor does not contain any index range of the parent

boundary, it moves forward to compare the next parent boundary. Also, processors in the

parent block having this boundary or processors in the neighbour parent block matching part

of the neighbour index range are colored valid but differently. To illustrate how we use MPI

topology routines and inter-communicators to setup connectivity between neighbour blocks,

a 2D example having 3 parent blocks and more than 3 CPUs is given in Fig. 6.3. Processors

which match a parent connected boundary are included in an inter-communicator. One

processor in a parent block then sends its index ranges to processors residing in the neighbour

communicator. Then a processor in the neighbour communicator matching part of the index

range is a neighbour while others in the neighbour communicator not matching the index

range are not neighbour processors. Through looping over all the neighbour processors

in the neighbour communicator, one processor sets up connectivity with all its connected

6.3. MPI Implementation into SENSEI 189

neighbours. This process is in parallel as the ROOT processor does not need to participate

in this process except for broadcasting the parent boundary to all processors in the parent

block and its neighbour parent block at the beginning. There may be special cases. The first

special case is that the ROOT is located at a parent block or its neighbour parent block.

The ROOT needs to participate in the boundary decomposition and re-linking process, as

shown in Fig. 6.3. The second special case is given in the lower right square in Fig.6.3, in

which a parent block connects to itself completely. For this case, an inter-communicator is

not needed as this processor knows all the information to setup the boundary. However, if a

parent block connected boundary is decomposed in a way that some processors connects to

themselves partly but also connects to other processors partly on this same parent connected

boundary, then it becomes complicated. However, the use of the inter-communicator can

still get rid of a lot difficulties for the communication setup for special cases like this.

Figure 6.3: An example of using MPI inter-communicator

6.3.3 Wall Distance Calculation in SENSEI

For a case with a moderate grid size (number of cells below 1 million), wall distances for

most cases can be computed on one processor in just seconds. However, for a large problem

190
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

with many cells near walls, the wall distance calculation can take a very long time. For

example, for a wind tunnel bump case (this is an application case having four face wall

boundaries and 3.5 million cells in total, not shown in the paper), it took the serial SENSEI

3.5 days to finish the wall distance calculation on a workstation. If running the same case

using the parallel SENSEI and distributing the wall distance calculation to 24 processors

(every processor needs to store all the wall node coordinates for all parent blocks), then

this one-time processing is reduced to 3.5 hours, which is a linear speedup. To get a higher

speedup or to run larger problems, more processors should be used.

6.4 Order of Accuracy Test Results for the CTS Man-

ufactured Solutions

Since the most rigorous way of verifying a code is the order of accuracy test, this paper

uses manufactured solutions which are non-physical but spatially smooth. It should be

emphasized that physical solutions are not required as the verification process only deals

with the mathematics of a problem and thus can be used to determine the correctness of

the implementation. After applying the governing equations to the manufactured solutions,

SENSEI calculates the manufactured source terms numerically. The source terms have the

wall distance variable inside so we need to specify the wall distance for different cells. For

the source terms computed in this paper, we set the wall distance to be a very large value,

i.e., 1000 m (we also tried a very small value 10−6 m and the results are very similar, which

can be seen in [15] but not shown in this paper due to the limit of scope). The manufactured

solutions are three sinusoidals in each direction and cross term ones as well. The equation

6.4. Order of Accuracy Test Results for the CTS Manufactured Solutions 191

takes the general form

f = a1 + a2sin(a3πx/l + a4π) + a5sin(a6πy/l + a7π) + a8sin(a9πz/l + a10π)

+ a11sin(a12πxy/l
2 + a13π) + a14sin(a15πyz/l

2 + a16π) + a17sin(a18πxz/l
2 + a19π)

(6.31)

where ai are the coefficients and can be found in [15] and l is a reference length which is

set to be 1.

There are nmean + nturb equations for the mean flow and turbulence flow equations in total.

For different equations, the coefficients are set differently. The 3D manufactured solutions

for some of the primitive variables in the Menter’s SST model are shown in Fig. 6.4. The

Reynolds number for this CTS MMS case is about 78 million (low Reynolds numbers range

from 5000 to 7000 are also tried and the results can be seen in [15]). If a lower dimension

problem is solved then the relevant coefficients are set to 0. The grid size in the paper ranges

from 4d to 256d (d is the dimension, i.e., 2 for 2D and 3 for 3D).

192
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

(a) Density (b) Pressure

(c) Turbulent kinetic energy (d) Eddy dissipation rate

Figure 6.4: 3D cross term sinusoidal manufactured solutions (Re = 78 million)

Through applying the CTS manufactured solutions, we te both the 2D and 3D SA imple-

mentation in SENSEI and found that the observed order of accuracy is close to two if the

grid is refined enough. The CTS manufactured solutions using the SA model are not shown

in the paper but can be found in [15]. The observed order of accuracy results for the 2D and

3D Menter’s SST models are given in Fig. 6.5. For both the 2D and 3D CTS MMS cases,

the values for the turbulent kinetic energy and turbulent eddy dissipation rate are chosen

6.4. Order of Accuracy Test Results for the CTS Manufactured Solutions 193

carefully so that the turbulent eddy viscosity has the same order O(1) as the viscous kinetic

viscosity. Although the chosen value of the turbulent eddy viscosity and the viscous kinetic

viscosity is 0.01m2/s, which is much higher than the actual value (about 1.8 × 10−5m2/s),

the purpose here is to make the importance of the viscous and turbulence approximately

equal so that both the mean flow and turbulent flow systems can be verified together. Note

that it is only for the code verification purpose. Actually, it is easier to converge the MMS

cases using a physical value (e.g. 1.8×10−5m2/s) for the viscosity than using a non-physical

value (e.g. 0.01m2/s). Also, the observed order of accuracy using the physical value for the

viscosity is still near 2 on the 2D and 3D CTS MMS cases. The Reynolds number for the 2D

case and the 3D case shown are about 5600 and 7000, respectively. For the 3D Menter’s SST,

the grid size of 2563 is not applicable as the computer cannot allocate such a big memory on

the ROOT processor. The MMS solution case cannot currently be run in parallel but efforts

are underway to add this capability.

(a) 2D curvilinear CTS (Re=5600) (b) 3D curvilinear CTS (Re=7000)

Figure 6.5: CTS MMS: Observed order of accuracy

194
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

6.5 Grid Convergence Test Results for the Turbulence

Modeling Verification Cases

6.5.1 Some Considerations

Before running any turbulence modeling verification test cases in Ref [13], we ran unit tests

for all the cases by comparing the residuals and Jacobians with a finite difference approach.

All the verification test cases in this paper passed the unit test.

All the 2D and 3D verification cases in Ref [13], including the 2D zero pressure gradient

flat plate, 2D coflowing jet, 2D bump-in-channel, 2D airfoil near-wake (2DANW) and 3D

bump-in-channel (3DB) are test using the SA and Menter’s SST models in SENSEI. To avoid

including all the results and making similar analysis in the paper, only the results of the SA

model for 3D bump, Menter’s SST model for 2DANW and the SST-V model for 3D bump

are shown in this paper. Other verification tests can be found in [15] due to the limit of the

scope.

For all the verification cases in Ref [13], we turned off the limiters for the mean flow equations.

As we found that using limiters for the mean flow equations makes the converged primitive

variables less than 1% different from not using limiters which can be seen in Fig. 6.6, but

the pressure drag is much higher when limiters are used. For example, for the 2DANW

SA model, on the second coarsest grid (85x113), the comparison of forces between using a

Michalak/Olivier-Gooch limiter [16] and no limiter is seen in Table 6.1. The differences exist

and are not negligible even if the grid is refined, although smaller. Also, this happens to

other verification cases and the Menter’s SST model. Usually the pressure drag is off the

most and then the total drag. The reason for the difference is that the dissipation caused by

using the limiters causes some difference in the pressure, which cannot be neglected when

6.5. Grid Convergence Test Results for the Turbulence Modeling Verification Cases195

computing the total drag coefficient and the pressure drag coefficient. This also happened

in Ref [17] and the difference between using a limiter and no limiter can be more than 2.5

times in the total drag (the example shown in Fig. 6.6 is about 2 times). Moreover, Ref [13]

turns off the limiters for all the verification cases so limiters are turned off in this paper to

provide a better comparison.

Figure 6.6: Pressure difference around the LE of the airfoil between turning on and turning
off a flux limiter

Table 6.1: Comparison of forces between using a limiter and no limiter

No limiter using a limiter
Axial Normal Axial Normal

Pressure force, N 1.799 56.01 6.292 55.10
Viscous force, N 2.851 2.996× 10−2 3.035 2.663× 10−2

Total force, N 4.65 56.03 9.327 55.13

6.5.2 Non-physical Check and Update

For some cases such as the 3D bump, it is normal to encounter non-physical (negative)

values for the density, pressure, k and ω during the initial transients in the Menter’s SST

196
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

model (not for the turbulence variable in the SA model since we use the SA-negative model).

Sometimes this would make the program crash immediately, especially using a second order

primal solver. Flux limiters are necessary for problems with large gradients for the turbulence

variables, however using flux limiters may have an adverse effect on the verification tests,

as shown above. In the early stage of running the verification cases, we had some issues

converging some cases and tried different techniques in Ref [18, 19, 20] but none of them

worked well for SENSEI. Although previously SENSEI has a technique to alleviate the effect

of the issue, through reducing the CFL number if non-physical values encountered but it

is very easy to hit the minimum CFL tolerance in some occasions. We later used a simple

technique to stabilize SENSEI. SENSEI now checks whether there is any non-physical value

for some primitive variables at each step. If SENSEI detects one non-physical value in a cell

at one step, there is no update for that variable in that cell (only at that step), i.e, freezing

the relevant variable for that cell if a non-physical value emerges at that step. For the next

step, SENSEI will still update the values if there is no non-physical phenomenon. Although

this technique seems very simple but it is very useful as it makes all of our tests stable.

6.5.3 SA model for 3D Bump

This is a 3D bump (3DB) case which has been numerically solved using CFL3D and FUN3D

in Ref [13]. For SENSEI in this paper, 36 CPUs are used in parallel for the finest grid

(65x705x321) with more than 14 million cells. To be consistent with CFL3D and FUN3D,

SENSEI uses Roe’s flux difference splitting, MUSCL extrapolation with kappa=0.3333, and

first order upwinding for the advective terms of the SA model. All the absolute iterative

residuals including the mean flow and turbulence equations are driven down below 10−12 on

all grids except for the finest grid (for the finest grid, the iterative residual norms for the

mean flow equations are below 10−12 while the turbulence variable equation residual norm

6.5. Grid Convergence Test Results for the Turbulence Modeling Verification Cases197

is only under 10−10). The residual history plot can be found in [15].

There are four quantities of interest for the 3D bump case including the total drag coefficient

CD, total lift coefficient CL, pressure drag coefficient CD,p and viscous drag coefficient CD,ν .

Their values on different levels of grid are shown in Fig. 6.7 and the observed order of

accuracy is given in Table 6.2. SENSEI matches very well with CFL3D and FUN3D for all

quantities of interest if the grid is refined enough (especially with CFL3D, possibly because

CFL3D and SENSEI are both cell centered structured codes). Contour such as surface

pressure coefficient and eddy viscosity are very similar to the CFL3D and FUN3D results so

that there are not presented here.

198
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

(a) Total drag coefficient (b) Total lift coefficient

(c) Pressure drag coefficient (d) Viscous drag coefficient

Figure 6.7: 3DB SA: Grid convergence of various quantities

Table 6.2: Observed order of accuracy on the three finest grid for the 3DB SA

Quantity CFL3D FUN3D SENSEI
CL 1.34 1.45 oscillatory
CD 2.76 3.25 2.71
CDp 2.75 2.74 2.55
CDv 2.45 0.93 1.20

6.5. Grid Convergence Test Results for the Turbulence Modeling Verification Cases199

6.5.4 Menter’s SST model for 2DANW

This DSMA661(MODEL A) airfoil case can be found in Ref [13]. Since this case is only 2D,

2 CPUs are used for all levels of grid. Roe’s flux difference splitting, MUSCL extrapolation

with kappa=0.3333, and first order upwinding for the advective terms of the Menter’s SST

model are used in SENSEI. All the absolute iterative residuals including the mean flow and

turbulence variables are driven down below 10−11. The residual history plot can be found in

[15].

The grid convergence study for the total lift coefficient, total drag coefficient, pressure drag

coefficient and viscous drag coefficient are shown in Fig. 6.8 and the observed order of

accuracy for these quantities is given in Table 6.3. Similar to the 3DB using the SA model,

all the quantities of interest from SENSEI show indiscernible difference compared to CFL3D

and FUN3D if the grid is refined enough. A major difference between SENSEI and the other

two codes is that the viscous drag coefficient is monotonic on all levels of grid, even on a

coarse grid, while CFL3D and FUN3D are not.

200
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

(a) Total drag coefficient (b) Total lift coefficient

(c) Pressure drag coefficient (d) Viscous drag coefficient

Figure 6.8: 2DANW Menter’s SST: Grid convergence of various quantities

Table 6.3: Observed order of accuracy on the three finest grid for the 2DANW Menter’s SST

Quantity CFL3D FUN3D SENSEI
CL 0.83 1.99 0.82
CD oscillatory 3.57 oscillatory
CDp 3.46 3.22 3.41
CDv 1.92 2.71 1.77

6.5. Grid Convergence Test Results for the Turbulence Modeling Verification Cases201

6.5.5 SST-V model for 3DB

Since Ref [13] provides results for the 3DB case only using the SST-V model, SENSEI also

uses the SST-V model here. Similar to the two cases shown earlier, SENSEI uses Roe’s flux

difference splitting, MUSCL extrapolation with kappa=0.3333, and first order upwinding

for the advective terms of the SST-V model. Similar to the SA model, 36 CPUs are used

in SENSEI for the finest grid (65x705x321) but this case runs more slowly than the SA

model. All the absolute iterative residuals including the mean flow and turbulence variables

are driven down below 10−12, which can be seen in Fig. 6.9. Note that the absolute iterative

residuals are given to be consistent with those in Ref [13].

Figure 6.9: Absolute iterative residual history for the 3DB case using the SST-V model

The values for quantities of interest including the total lift coefficient, total drag coefficient,

pressure drag coefficient and viscous drag coefficient are shown in Fig. 6.10 and the observed

order of accuracy for these quantities is given in Table 6.4. All the codes show simliar total

drag coefficient, total lift coefficient and pressure drag coefficient values if the grid is refined

enough. For the viscous drag coefficient, SENSEI is slightly lower than the CFL3D and

202
Chapter 6. Code Verification for Turbulence Modeling in Parallel SENSEI

Accelerated with MPI

FUN3D results on the finest grid. The reason for the difference may be that the grid is still

not fine enough for the viscous drag coefficient.

(a) Total drag coefficient (b) Total lift coefficient

(c) Pressure drag coefficient (d) Viscous drag coefficient

Figure 6.10: 3DB Menter’s SST: Grid convergence of various quantities

6.6. Conclusions 203

Table 6.4: Observed order of accuracy on the three finest grid for the 3DB Menter’s SST-V

Quantity CFL3D FUN3D SENSEI
CL 2.13 oscillatory oscillatory
CD 3.49 oscillatory 3.41
CDp 2.86 4.00 2.81
CDv 1.37 0.94 1.48

6.6 Conclusions

In this paper, the 3D linearization for the SA model and 2D and & 3D Menter’s k− ω SST

model were implemented. Also, some verification tests for the CTS manufactured solutions

and all the turbulence verification cases in Ref [13] were performed. Moreover, SENSEI

were accelerated using MPI so that SENSEI can be run in parallel on multiple processors.

This is very important for large turbulent flow problems (more than several million cells)

to obtain results in an efficient manner. For all the CTS manufactured solution verification

cases, an order of accuracy of about 2 was obtained for the discretization error. Also, all the

cases from the NASA turbulence modeling website were used to provide further verification

evidence for the turbulence model implementation and the MPI implementation in SENSEI.

For all the 2D and 3D turbulence modeling verification cases, all the quantities of interest

matched well with the CFL3D and FUN3D results when the grids were sufficiently refined.

6.7 Future Work

In the future, the SA and k−ω SST models in SENSEI will be applied to run some practical

cases and the results will be validated with experiments. The speedup performance results

will be obtained by comparing the serial SENSEI and parallel SENSEI with MPI. Also,

in our present implementation, an issue of ”zero diagonal element encountered” may occur

sometimes if the CFL is ramped up to a large value. Thus, a better preconditioning may be

204 BIBLIOGRAPHY

investigated to make the iterating in SENSEI more robust.

Acknowledgement

This material is partially based on research sponsored by the U.S. Air Force under agreement

number FA865019-2-2204. The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any copyright notation thereon.

Bibliography

[1] Turbulence modeling, 2013. (last accessed on 12/02/19).

[2] Steven R Allmaras and Forrester T Johnson. Modifications and clarifications for the

implementation of the spalart-allmaras turbulence model. In Seventh international

conference on computational fluid dynamics (ICCFD7), pages 1–11, 2012.

[3] Kuei-Yuan Chien. Predictions of channel and boundary-layer flows with a low-reynolds-

number turbulence model. AIAA journal, 20(1):33–38, 1982.

[4] David C Wilcox. Formulation of the k-w turbulence model revisited. AIAA journal,

46(11):2823–2838, 2008.

[5] Florian R Menter. Two-equation eddy-viscosity turbulence models for engineering ap-

plications. AIAA journal, 32(8):1598–1605, 1994.

[6] Joseph M Derlaga, Tyrone Phillips, and Christopher J Roy. Sensei computational fluid

dynamics code: a case study in modern fortran software development. In 21st AIAA

Computational Fluid Dynamics Conference, 2013.

BIBLIOGRAPHY 205

[7] Charles W Jackson, William C Tyson, and Christopher J Roy. Turbulence model im-

plementation and verification in the sensei cfd code. In AIAA Scitech 2019 Forum,

2019.

[8] Chris Rumsey, Brian Smith, and George Huang. Description of a website resource for

turbulence modeling verification and validation. In 40th Fluid Dynamics Conference

and Exhibit, 2010.

[9] Philip L Roe. Approximate riemann solvers, parameter vectors, and difference schemes.

Journal of computational physics, 43(2):357–372, 1981.

[10] Joseph L Steger and RF Warming. Flux vector splitting of the inviscid gasdynamic equa-

tions with application to finite-difference methods. Journal of computational physics,

40(2):263–293, 1981.

[11] Bram Van Leer. Flux-vector splitting for the euler equation. In Upwind and High-

Resolution Schemes, pages 80–89. Springer, 1997.

[12] FLORIANR Menter. Zonal two equation k-w turbulence models for aerodynamic flows.

In 23rd fluid dynamics, plasmadynamics, and lasers conference, 1993.

[13] Christopher Rumsey. Turbulence modeling resources, 2019. (last accessed on 12/02/19).

[14] Blaise Barney. Message Passing Interface (MPI), 2019.

[15] Weicheng Xue, Hongyu Wang, and Christopher Roy. Turbulence verification case results

for sensei, 2019. (last accessed on 12/02/19).

[16] Krzysztof Michalak and Carl Ollivier-Gooch. Limiters for unstructured higher-order

accurate solutions of the euler equations. In 46th AIAA Aerospace Sciences Meeting

and Exhibit, page 776, 2008.

206 BIBLIOGRAPHY

[17] Marsha Berger, Michael Aftosmis, and Scott Muman. Analysis of slope limiters on

irregular grids. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.

[18] Chang Hwan Park and Seung O Park. On the limiters of two-equation turbulence

models. International Journal of Computational Fluid Dynamics, 19(1):79–86, 2005.

[19] Soo Hyung Park and Jang Hyuk Kwon. Implementation of k-w turbulence models in

an implicit multigrid method. AIAA journal, 42(7):1348–1357, 2004.

[20] Xiaoqing Zheng and Feng Liu. Staggered upwind method for solving navier-stokes and

k-omega turbulence model equations. AIAA journal, 33(6):991–998, 1995.

Chapter 7

Code Verification for Unsteady Flows

in SENSEI

Weicheng Xue1, Hongyu Wang2 and Christopher J. Roy3

Virginia Tech, Blacksburg, Virginia, 24061

Attribution

• Weicheng Xue (first author): The first author served as the main contributor and

primary author of this study. The first author implemented unsteady flow verification

cases in SENSEI. In addition, all the results were collected by the first author.

• Hongyu Wang (second author): The second author implemented various implicit tem-

poral schemes including the singly diagonally implicit Runge Kutta multi-step and

three point backward in SENSEI. Also, the second author provided a lot of useful

advice for debugging test cases.

• Christopher J. Roy (final author): The final author provided valuable feedback for this
1Graduate Assistant, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall,

RM 315, Virginia Tech, 460 Old Turner St, AIAA Student Member.
2Graduate Assistant, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall,

RM 315, Virginia Tech, 460 Old Turner St, AIAA Student Member.
3Professor, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Randolph Hall, RM 330,

Virginia Tech, 460 Old Turner St, AIAA Associate Fellow.

207

208 Chapter 7. Code Verification for Unsteady Flows in SENSEI

study and comments for this manuscript.

Abstract

Code verification for unsteady flows in a compressible CFD code usually requires the use

of manufactured solutions or exact incompressible solutions with source terms added. For

combined spatial and temporal order analysis, the spatial discretization error should be a

similar order of magnitude as the temporal error to avoid erroneous analysis. For unsteady

flows, a systematic refinement should be performed for both the spatial and temporal spacing

to determine the correct overall observed order of accuracy. Since explicit time marching

schemes typically require smaller time step size compared to implicit time marching schemes

due to stability constraints, multiple implicit schemes such as the Singly-Diagonally Implicit

Runge-Kutta multi-stage scheme and three point backward scheme are used in our work to

mitigate the stability constraints.

7.1 Introduction

CFD is a numerical method to solve fluid flow problems. There are a variety of problems gov-

erned by different types of equations which can be solved to satisfactory accuracy. Unsteady

Euler/Navier-Stokes equations are used to solve problems in which unsteadiness exists (time

dependent).

Code verification [1, 2] is a process to ensure that the implementation of a code is numer-

ically correct so that the code can achieve expected accuracy. For steady flows, the final

converged solution should not change any more after convergence, as the spatial residuals

have been driven to machine zero and also there is no temporal error. The iteratively con-

7.1. Introduction 209

verged result is compared to the exact steady state solution to obtain the discretization error

on different levels of meshes. For unsteady flows, the procedure is similar but the temporal

discretization error exists and should be accounted for, that is, the overall discretization

error is comprised of the spatial and temporal discretization error. For unsteady flows, there

are multiple sources of error affecting the code verification analysis [1], such as poor mesh

quality, improper time step size, large sub-iterative errors, round-off error accumulation, and

even implementation errors (which cannot be overlooked).

Since very few exact solutions exist for the unsteady compressible Euler/Navier-Stokes equa-

tions, the method of manufactured solution (MMS) is a rigorous method for code verification

analysis [1]. It should be noted that MMS can be applied to any codes using any numerical

scheme. After plugging the unsteady manufactured solution into the unsteady compressible

Euler/Navier-Stokes equations, manufactured source terms can be obtained. These source

terms are manufactured, which means that we change the unsteady compressible equations

by adding the manufactured source terms. It does not matter whether the manufactured

solution is physical or not, as the aim is to verify the correctness of the code implementation,

and to ensure that mesh quality is good enough, the time step size is chosen properly, etc.

In fact, there are a lot studies on solving 2D and 3D physical exact problems to the unsteady

incompressible Euler/Navier-Stokes equations. Al-Saif et al. [3] proposed a reduced differen-

tial transform method which is an iterative procedure to obtain some Taylor series solutions

to the kinetically reduced local incompressible Navier-Stokes equations. Different isentropic

Euler vortex problems were tested in Ref. [4], with characteristic and periodic boundaries

being compared to obtain improved observed order of accuracy (OOA) for high order flux

reconstructions. In Ref. [5], 2D steady and unsteady incompressible viscous flows in which

the vorticity is proportional to the stream function transported by a uniform stream were

studied. Shah et al. [6] presented a time-accurate numerical method using high order accu-

210 Chapter 7. Code Verification for Unsteady Flows in SENSEI

rate compact finite difference to solve some incompressible Navier-Stokes problems. Dirich-

let boundary condition was applied for general cases and periodic boundary condition was

applied for periodic cases. Tavelli et al. [7] proposed an arbitrary high order accurate dis-

continuous Galerkin method for solving the three-dimensional incompressible Navier-Stokes

equations on staggered unstructured grid. More analytical solutions to the incompressible

Euler/Navier-Stokes equations can be also found in Refs. [8, 9, 10, 11, 12, 13]. Plugging

any of these solutions into the unsteady compressible Euler/Navier-Stokes equations only

requires a source term to be added to the energy equation [14, 15], that is, the exact solution

still satisfies the continuity and momentum equations. If the flow Mach number is small

(0.1 or so), the magnitude of the source term is also very small, but it cannot be neglected

when an OOA test is performed. For an incompressible flow for which only the exact initial

solution exists, such as the 3D Taylor-Green vortex flow [16], an often-used approach is using

an incompressible flow solver [7, 17, 18] or using a high order approximate process [19] to

obtain a reference solution, and use the compressible solver solution to compare to the in-

compressible reference solution. Non-physical MMS are also widely used for code verification

of steady [20, 21, 22] and unsteady [23, 24, 25] problems in the CFD community. In Ref. [20],

a thorough code verification study using non-physical MMS was performed on an unstruc-

tured finite volume CFD code. Different options including the governing equations, different

boundary conditions and different solvers (steady and unsteady) were verified. Minion et

al. [24] applied various high order temporal time marching schemes for the incompressible

Navier-Stokes equations and found that order reduction for the temporal accuracy can oc-

cur if applying time-dependent boundary conditions. Yu et al. [25] used MMS to verify a

fluid-structure-interaction solver for both 2D and 3D cases. Instead of using a simultaneous

refinement for the spatial and temporal spacing, a recursive Richardson extrapolation ap-

proach was used to subtract the spatial error from the total error, allowing separation of the

temporal error for unsteady problems.

7.2. The CFD Code Base: SENSEI 211

For the CFD code used in this paper, code verification for steady state solutions has been

done in Ref. [26] by applying the code-to-code comparison with CFL3D [27] and FUN3D [28]

and a sinusoidal MMS with cross terms in the spatial domain, but no work has been done

for unsteady flows. Following up the work in Ref. [26], this paper is focused on the unsteady

Euler/Navier-Stokes solver code verification in a CFD code which is called SENSEI [26, 29,

30]. SENSEI has the functionality to estimate the truncation error, which can be used to

obtain high order discretization error estimates using error transport equations [31]. In this

paper, both exact solutions and manufactured solutions will be applied for code verification

of the unsteady Euler/Navier-Stokes solvers in SENSEI.

7.2 The CFD Code Base: SENSEI

7.2.1 Overview of SENSEI

SENSEI is an acronym for Structured, Euler/Navier-Stokes Explicit-Implicit Solver, which is

our in-house flow solver initially developed by Derlaga et al. [29]. The initial code was written

in a very structured programming style which contained a lot of similar subroutines, with

some modern Fortran features such as derived type data and pointers being used. Jackson

et al. [30] rewrote the SENSEI code completely using an object-oriented programming style

and implemented the negative Spalart-Allmaras turbulence model into SENSEI for some

2D problems [32]. Turning SENSEI to an object-oriented code enables users to add new

capabilities to SENSEI more easily due to the improvement of SENSEI’s modularity. Xue et

al. [26] followed up the work of Jackson et al. [30] by implementing the 3D turbulence models

including the negative Spalart-Allmaras [33] and Menter’s Shear stress transport [34, 35] and

parallelized SENSEI using domain decomposition and Message Passing Interface [36]. Xue et

212 Chapter 7. Code Verification for Unsteady Flows in SENSEI

al. [26] did a systematic code verification study on the turbulence modeling code in SENSEI

by code-to-code comparison with CFL3D [27, 32] and FUN3D [28, 32], and using MMS.

SENSEI is a multi-block structured finite volume code and is embedded with several in-

viscid flux options including Roe’s flux difference splitting [37], Steger-Warming flux vector

splitting [38], and Van Leer’s flux vector splitting [39]. MUSCL extrapolation and k-exact

reconstruction are provided to achieve second- and high-order inviscid flux, respectively.

The viscous and turbulent flux is second-order accurate using a central flux scheme af-

ter applying the Green-Gauss theorem. Various time marching schemes including explic-

it/implicit Runge-Kutta [40, 41, 42] and explicit/implicit Euler are offered. SENSEI has

various boundary conditions such as slip/non-slip wall, supersonic/subsonic inflow/outflow,

interblock boundaries, etc. Ghost cells as well as boundary face flux options are offered in

SENSEI to enforce boundaries accurately, depending on the boundary type.

7.2.2 Governing Equations in Spatially Integral Form

Applying the divergence theorem to calculate the flux, the Favre-averaged Navier-Stokes

equations in integral form can be seen in Eq. 7.1:

∂

∂t

∫
Ωj

U⃗dΩ +

∮
∂Ωj

(F⃗i,n − F⃗ν,n)ds =
∫
Ωj

S⃗dΩ, (7.1)

where Ωj is a control volume (mesh cell), U⃗ is the vector of conserved variables, F⃗i,n and

F⃗ν,n are the inviscid and viscous flux normal components respectively (the dot product of

the second-order flux tensor and the outward-pointing normal vector of the cell face) and

S⃗ is the source term from body forces, chemistry source terms, or MMS source terms. It

should be noted that the source terms are likely to be nonzero if the method of manufactured

7.2. The CFD Code Base: SENSEI 213

solutions are plugged into Eq. 7.1. The variables in Eq. 7.1 are given in Eq. 7.2:

U⃗ =

ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄et

, F⃗i,n =

ρ̄Ṽn

ρ̄ũṼn + n̂xp

ρ̄ṽṼn + n̂yp

ρ̄w̃Ṽn + n̂zp

ρ̄htṼn

, F⃗ν,n =

0

n̂xτ̃xx + n̂y τ̃xy + n̂z τ̃xz

n̂xτ̃yx + n̂y τ̃yy + n̂z τ̃yz

n̂xτ̃zx + n̂y τ̃zy + n̂z τ̃zz

n̂xΘ̃x + n̂yΘ̃y + n̂zΘ̃z

, (7.2)

where ρ̄ is density, ũ, ṽ, w̃ are the Cartesian velocity components, et is the total energy, ht is

the total enthalpy, Ṽn = n̂xũ+n̂yṽ+n̂zw̃ and the n̂i terms are the components of the outward-

facing normal unit vector, τij are the components of Reynolds stress terms. �̃ represents the

heat conduction, work from the viscous stresses and contribution from turbulent effects. If

applying an incompressible solution, a nonzero source term can be generated from the �̃

terms. The components of �̃ are given as

Θ̃x = ũτ̃xx + ṽτ̃xy + w̃τ̃xz + keff
∂T̃

∂x
+MDTTx,

Θ̃y = ũτ̃xy + ṽτ̃yy + w̃τ̃yz + keff
∂T̃

∂y
+MDTTy,

Θ̃z = ũτ̃xz + ṽτ̃yz + w̃τ̃zz + keff
∂T̃

∂z
+MDTTz,

(7.3)

where MDTT is the lumped term associated with molecular diffusion and turbulent trans-

port in the energy equation of a given turbulence model and keff4 is effective thermal con-

ductivity which is given by

keff = Cp

(
µ

PrL
+

µT

PrT

)
. (7.4)

In Eq. 7.4, PrL is the laminar Prandtl number and PrT is the turbulent Prandtl number.

For laminar flow problems, all the turbulence terms are neglected.

We can simplify Eq. 7.1 further by combining the spatial flux and source terms and doing

214 Chapter 7. Code Verification for Unsteady Flows in SENSEI

an integration over the control volume:

|Ωj|
∂

∂t
U⃗h + R⃗h = 0⃗, (7.5)

where |Ωi| is the volume of Ωi, U⃗h is the cell averaged solution vector, R⃗h is the spatial

residual vector, which is given in Eq.7.6.

R⃗h =

f∑
1

(F⃗i,n − F⃗ν,n)�s− |Ωj|S⃗h, (7.6)

where f is the cell face number (there are six faces for each hexahedral cell), ∆s is the face

area, and Sh is the cell averaged source term vector. It should be noted that we have not

yet discretized the temporal term, which will be covered next.

7.2.3 Temporal Discretization

In this paper, explicit/implicit Runge-Kutta [40, 41, 42] and three point backward [43] tem-

poral schemes are used. The temporal discretization deals with the numerical approximation

of the ∂

∂t
U⃗h term in Eq. 7.5. Runge-Kutta is a family of time marching schemes, and SEN-

SEI has explicit Runge-Kutta 2/4 stage schemes and singly-diagonal implicit Runge-Kutta

(SDIRK) 1/2/3 stage schemes implemented. A general form of the Runge-Kutta schemes

can be seen in Eq. 7.7:

U⃗n+1
h =U⃗n

h −∆t
s∑

i=1

biR⃗
i
h,

U⃗ i
h =U⃗n

h −∆t
s∑

j=1

aijR⃗
j
h,

(7.7)

7.2. The CFD Code Base: SENSEI 215

where s is the number of stages, bi and aij are constants, which can be found in Ref. [44].

For explicit Runge-Kutta schemes, all aij = 0 when i ⩽ j, and for SDIRK, all aij = 0 when

i < j. Many Runge-Kutta schemes can achieve high order accuracy for the temporal terms,

but this paper mainly uses second-order unless otherwise specified.

A general form of the three point backward scheme used in this paper is given in Eq. 7.8:

3U⃗n+1
h − 4U⃗n

h + U⃗n−1
h

2
= R⃗n+1

h . (7.8)

As can be seen, three point backward requires the solutions from the previous two steps (no

intermediate substep required) and it can achieve second-order accuracy for the temporal

terms. SDIRK is used for the first step in SENSEI so that the three point backward can be

initiated.

7.2.4 Non-dimensionalization

In SENSEI, the governing equations are non-dimensionalized so that the convergence of the

implicit solver performs better. Reference quantities for the density, temperature, length,

speed of sound and time are used. Turbulence variables can also be non-dimensionalized

based off these reference quantities. The reference variables are given in Eq. 7.9:

length :lref

time :
lref
aref

density: ρref

velocity: aref

pressure: ρa2ref

temperature: tref

dynamic viscosity: µref

turbulence working variable: µref

ρref

turbulence kinetic energy: a2ref

turbulence eddy dissipation ratio: µref

ρrefa2ref

(7.9)

216 Chapter 7. Code Verification for Unsteady Flows in SENSEI

7.3 Observed Order of Accuracy Test

For steady flows, the observed order of accuracy can be obtained from performing a system-

atic refinement over a series of spatial meshes. The process of performing code verification

for unsteady flow and steady flow is similar but still different in some aspects. First, the

steady flow does not have any temporal discretization error, while the unsteady flow does

and the temporal discretization error should be considered. Second, the order of the spa-

tial discretization error can be different from the order of the temporal discretization error;

therefore, attention should be paid to ensure the two errors are at the same order if possible.

For some explicit schemes, it is difficult to use a large time step size due to the numerical

stability constraints. Due to this reason, implicit time marching schemes may be required.

Also, usually different primitive variables for the Euler/Navier-Stokes equations may have

different frequencies in time, a common time step size may not guarantee the spatial dis-

cretization errors to be close to the temporal discretization errors for all variables. The

sub-iterative error and round-off error need to be driven down small enough compared to

the discretization error, in order to obtain convincing results. Newton’s iteration is used for

implicit Runge-Kutta schemes in this work.

7.3.1 Spatial Discretization Error

For high-dimensional problems, refinement should be performed on all spatial dimensions.

Using a 1D problem as an example for simplicity, for a general pth order accurate numerical

scheme, the spatial discretization error can be written in Eq. 7.10.

ϵh = gx∆xp +O(∆xp+1), (7.10)

7.3. Observed Order of Accuracy Test 217

where h stands for the grid size in computational coordinates. When the spatial mesh is

refined enough to be in the asymptotic range, the difference of the error magnitude on two

consecutively refined meshes (refined by a factor of 2) is 2p times. In fact, the ”consecutive”

condition is not required to compute the observed order of accuracy (OOA). A more general

way of computing the OOA is shown in Eq. 7.11.

p̂ =
ln(∥ϵrh∥∥ϵh∥

)

ln(r)
, (7.11)

where r represents the mesh refinement factor of one mesh over the other. Note that this

refinement factor r is assumed to be the same in all spatial directions (as well as in time for

unsteady flows).

7.3.2 Temporal Discretization Error

The verification procedure for a temporal scheme with no spatial discretization is almost

the same as that for the spatial scheme. The only difference is that the time step is refined

instead of the mesh spacing. The temporal discretization is given in Eq. 7.12. For explicit

time marching schemes, the time step size can be much smaller than using implicit time

marching schemes.

ϵh = gt∆tq +O(∆tq+1), (7.12)

where q is the formal order of accuracy for the temporal discretization error.

7.3.3 Spatial and Temporal Discretization Error

Based on the spatial discretization error and temporal discretization error aforementioned,

a simple form of the overall discretization error should combine both [45] and can be written

218 Chapter 7. Code Verification for Unsteady Flows in SENSEI

in Eq. 7.13:

ϵh = gx∆xp + gt∆tq +O(∆xp+1) +O(∆tq+1). (7.13)

A more complicated form of the overall discretization error can have spatial-temporal mixed

terms [46], which is not considered in this paper, as that feature only exists for some specific

schemes.

It should be mentioned that the temporal discretization error may be much smaller compared

to the spatial discretization error for some unsteady problems, so attention should be paid

to ensure that it does not adversely affect the final observed order of accuracy [1]. The

temporal domain can be regarded as one extra dimension to the spatial domain, requiring

a reasonable time step size so that the temporal discretization error is of a similar order to

the spatial discretization error.

7.4. OOA Test Results 219

7.4 OOA Test Results

7.4.1 2D Euler Convecting vortex flow

The first test case is a 2D Euler convecting vortex flow [47], of which the non-dimensional

solution is given in Eq.7.14:

u =u∞ − β

2π
exp

{
1− r2

2

}
(y − y0),

v =v∞ +
β

2π
exp

{
1− r2

2

}
(x− x0),

T =1− (γ − 1)β2

8γπ2
exp

{
(1− r2)

}
,

ρ =T
1

γ−1 ,

p =ργ,

(7.14)

where (x0, y0) is the vortex center, r =
√

((x− x0)2 + (y − y0)2), β is the vortex strength,

and γ is the ratio of specific heats. For this Euler case, β = 5, γ = 1.4, u∞ = 3, v∞ = 0,

with lref = 1 m, aref = 1 m/s, tref = 1 K, ρref = 1 kg/m3. Therefore, this problem has a

Mach number of 2.54. The reference values are unrealistic but it does not matter as the

OOA test does not require realistic solutions. The purpose of applying OOA tests is to help

locate implementation errors in the code. The domain of interest is [0, 10 m] × [−5 m, 5 m].

The initial vortex center is at (5,0). Periodic boundaries are applied for the four faces.

As discussed earlier, proper time step sizes should be determined so that the temporal

discretization errors are of similar orders as the spatial discretization errors. Considering that

different primitive variables are likely to have different magnitudes of discretization errors, a

global consideration should be taken. For this 2D Euler convecting vortex flow, a systematic

separate OOA study is performed before a combined OOA study. The discretization errors

220 Chapter 7. Code Verification for Unsteady Flows in SENSEI

of the density and u velocity component are given in Fig. 7.1. It can be seen that a good

non-dimensional time step size on the 128 × 128 mesh is about 0.025 (since lref/aref = 1,

the dimensional time step size is 0.025 s), since similar orders of magnitude reductions can

be achieved as the time step is coarsened (moving to the right on the 128× 128 curve) and

as the mesh is coarsened (moving from the 128× 128 curve to the 64× 64 curve at the same

dt=0.025). However, due to the fact that the Newton’s iteration requires the time step size

to be not too large to be stable, a non-dimensional time step size of 0.0125 is used, which

will make the temporal discretization error smaller than the spatial discretization error, but

they still have the same order of magnitude. When refining systematically in the combined

order analysis, time step sizes on other levels of meshes can be easily derived. Fig. 7.2

shows the non-dimensional error contours at t = 2 s with a prescribed ∆t = 0.0125 s on the

128×128 mesh. The largest errors occur near the convecting vortex center (x = 1 m), which

is reasonable.

(a) Discretization analysis (ρ) (b) Discretization analysis (u)

Figure 7.1: 2D Euler vortex flow separate order analysis

Fig. 7.3 and Fig. 7.4 show the combined OOA results of applying the implicit RK 2 scheme

and the three point backward scheme, respectively. For both schemes, an observed order

7.4. OOA Test Results 221

(a) density (b) u velocity

Figure 7.2: Error contours of 2D Euler vortex flow (M∞ = 2.54)

of around 2 is achieved for all primitive variables if the refinement is enough. However,

there are some differences. First, the implicit RK 2 scheme has lower discretization errors

compared to the three point backward scheme, because implicit RK 2 has more sub-steps

than the three point backward so it is more accurate. Second, their behaviours for the OOA

plots are different on coarse meshes, which suggests that implicit RK 2 enables larger time

step size to balance the spatial and temporal discretization error, since the OOA is higher

than 2 using implicit RK 2 on coarse level meshes.

222 Chapter 7. Code Verification for Unsteady Flows in SENSEI

(a) DE (b) OOA

Figure 7.3: 2D Euler vortex flow (M∞ = 2.54): SDIRK 2

7.4.2 2D Taylor-Green Vortex

The 2D Taylor-Green vortex is a classic incompressible solution to the 2D laminar Navier-

Stokes equations. A non-dimensional solution can be found in Eq. 7.15.

ρ =ρ0,

u =Mcos(x)sin(y) exp{−2tM/Re},

v =−Msin(x)cos(y) exp{−2tM/Re},

p =p0 −
ρ

4
M2(cos(2x) + cos(2y)) exp{−4tM/Re},

T =
p

ρR
,

(7.15)

where ρ0 = 1, p0 = 0.713, Re is the Reynolds number, M is the Mach number and R is the

gas constant. For this laminar flow case, lref = 1 m, aref = 374.17 m/s , ρref = 1 kg/m3. A

case using Reynolds number of 1 and Mach number of 0.027 is tested. The domain of interest

is [−π m, π m]× [−π m, π m], which is one period spatially. Dirichlet boundaries are applied

7.4. OOA Test Results 223

(a) DE (b) OOA

Figure 7.4: 2D Euler vortex flow (M∞ = 2.54): three point backward

for the four faces. Note that the pressure term decays faster compared to the velocity terms,

so attention may be needed when choosing the time step size.

Fig. 7.1 shows the separate order analysis results for the pressure and density (Re = 1).

It can be seen that a good non-dimensional time step size on the 256 × 256 is around 0.7.

However, still being subject to the stability constraints of the Newton’s iterative method, a

non-dimensional time step size of 0.375 is used. This implies that the temporal discretization

error is smaller than the spatial discretization error but their difference is not large (still the

same order). Similarly, when refining or coarsening systematically, time step sizes on other

levels of meshes can be easily calculated.

224 Chapter 7. Code Verification for Unsteady Flows in SENSEI

(a) Discretization analysis (p) (b) Discretization analysis (u

Figure 7.5: 2D Taylor Green vortex flow separate order analysis (Re=1)

Fig. 7.6 shows the dimensional solution contours solved at t∗ = 12. The decaying factors

for the pressure and u velocity component at t∗ = 12 are 0.28 and 0.53, respectively, where

t∗ is the non-dimensional time (dimensional time t over lref/aref). Fig. 7.7 shows the non-

dimensional error contours for the pressure and u velocity component at t∗ = 12. For the

pressure, as it damps out 72% of its initial amplitude, larger errors only exist near the

boundaries. In contrast, the u velocity has larger regions with large errors. It should be

noted that on the coarsest mesh (8× 8), only 1 time step is used to iterate to the final time

step, since there is enough viscosity (Re = 1) to guarantee a stable iterating process.

7.4. OOA Test Results 225

(a) pressure (b) u velocity

Figure 7.6: Solution contours of 2D Taylor Green decaying vortex

(a) pressure (b) u velocity

Figure 7.7: Error contours of 2D Taylor Green decaying vortex

Fig. 7.8 shows the OOA results of applying the implicit RK 2 scheme. It is surprising to see

that the discretization errors drop faster than 2nd order on some intermediate levels of mesh,

and it causes the OOA to reduce on fine meshes. The reason of this order reduction may be

226 Chapter 7. Code Verification for Unsteady Flows in SENSEI

that the temporal discretization errors are still smaller than the spatial discretization errors

on the meshes of 64× 64 and 128× 128, and then return to comparable order of magnitude

when refining further. It can be seen from Fig. 7.8 in which the line connecting the 32× 32

and 256 × 256 points are close to 2nd order slope. It is likely that this decaying vortex

case is not a good test for the unsteady code verification purposes, as neither small time

step size nor large time step size can be used. Small time step size may make the temporal

discretization error to be much smaller compared to the spatial discretization error, which is

not good for the code verification purposes, while large time step size may make the solution

damp out most of its initial magnitude and at the same time make the Newton’s iteration

unstable.

(a) DE (b) OOA

Figure 7.8: 2D Taylor Green vortex flow (Re = 1): SDIRK 2

7.4.3 2D Cross-term Sinusoidal MMS

The last test case is a 2D cross-term sinusodial MMS. The form of a general unsteady MMS

which is given in Eq. 7.16 will be used. It should be noted that this MMS can be Euler,

7.4. OOA Test Results 227

laminar NS or turbulent.

f =a1 + a2sin(a3π
x

lref
+ a4π) + a5sin(a6π

y

lref
+ a7π)+

a8sin(a9π
xy

l2ref
+ a10π) + a11sin(a12π

taref
lref

+ a13π),

(7.16)

where ai are coefficients (mean flow and turbulence equations use different coefficients). For

this solution, lref = 1 m, aref = 340 m/s. This case has a Reynolds number of 500 and

a Mach number of 0.15. We run all cases to a final time of 0.01 s so that we can have

enough variations in time. In our tests, the coarsest mesh has 8 cells in each dimension of a

curvilinear domain of about [0, 1 m]× [0, 1 m]. We choose the coefficients a12 intentionally so

that a12π
taref
lref

is the same order as a3π
x

lref
or a4π

y
lref

, or equivalently a12π
∆taref
lref

is the same

order as a3π
∆x
lref

. Our choice ensures that the variations in space and time are similar. We

will apply a separate order analysis to further show the discretization errors are similar in

space and time.

As different primitive variables have different periodic frequencies (their largest difference

may be 5 times, still less than an order of magnitude), different primitive variables have

different magnitudes of temporal discretization errors. We need to find a proper time step

size for all variables on a given mesh and then coarsen or refine to get time step sizes on other

meshes. Fig. 7.9 shows a systematic separate order analysis for the pressure variable and u

velocity component using the k− ω SST model. It can be seen that on the 256× 256 mesh,

a dimensional time step size of 3.125×10−5 s is reasonable to guarantee that the temporal

discretization errors are of the same order of magnitude as the temporal discretization errors

for both variables. Coarsening the mesh to the 8× 8 level, we can obtain the coarsest time

step size to be 0.001 s.

We tested Euler, laminar NS and turbulence cases. However, in this paper, only results for

228 Chapter 7. Code Verification for Unsteady Flows in SENSEI

(a) Discretization analysis (p) (b) Discretization analysis (u

Figure 7.9: 2D CTS MMS separate order analysis

turbulence cases using the k − ω SST models and SA are shown for simplicity. Fig. 7.10

shows the OOA results using the k − ω SST model. After an enough refinement, the OOA

is close to 2nd order for all the primitive variables. It is not surprising to see that the ω

variable performs poorly on some intermediate meshes, but eventually turns to 2nd order

accurate on finer meshes.

For the SA model, since the 1024×1024 mesh cannot be converged in the Newton’s iteration

when using the same time step size as the k − ω SST model, we reduced the time step sizes

by 37.5% (now using 0.625 of the time step size for the k − ω SST model), which will make

the temporal discretization errors smaller but still comparable to the spatial discretization

errors. Fig. 7.11 shows the OOA results using the SA model. For all the variables, the OOA

is close to 2nd order when sufficiently refined.

7.4. OOA Test Results 229

(a) DE (b) OOA

Figure 7.10: 2D CTS MMS combined order analysis (k − ω SST)

(a) DE (b) OOA

Figure 7.11: 2D CTS MMS combined order analysis (SA)

Fig. 7.12 shows the non-dimensional error contours using the SA model at t = 0.01 s with

a prescribed ∆t = 1.953×10−5 s on the 256 × 256 mesh. It can be seen that the errors

are uniformly distributed in the whole domain for both the u velocity component and the

turbulence variable.

230 Chapter 7. Code Verification for Unsteady Flows in SENSEI

(a) u velocity (b) Turbulence variable ν

Figure 7.12: Error contours of 2D CTS MMS (SA)

7.5 Conclusions

Based on the results for the three test cases in this paper, we believe that both the temporal

and spatial terms for the Navier-Stokes equations (laminar or turbulent) have been imple-

mented correctly in SENSEI. When performing a systematic OOA test, special attention

should be paid so that the temporal discretization errors are of the same order as the spatial

discretization errors. Otherwise, some implementation errors for the temporal terms may

be hidden because the temporal discretization errors are smaller for general cases. Even in

some of our cases, the temporal time step size is still not very good for the purpose of code

verification due to the stability issue of the implicit solver.

7.6. Future Work 231

7.6 Future Work

In the future, this work will be extended to 3D, since this paper only covers 2D unsteady

flow cases at present. Another potential work is to improve the newton’s iteration so that

larger time step size can be used. Finally, based on this code verification work, we also want

to apply the error transport equation to accurately estimate the discretization error for cases

which do not have exact solutions.

Acknowledgement

This material is partially based on research sponsored by the U.S. Air Force under agreement

number FA865019-2-2204. The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any copyright notation thereon.

Bibliography

[1] William L Oberkampf and Christopher J Roy. Verification and validation in scientific

computing. Cambridge University Press, 2010.

[2] William L Oberkampf and Timothy G Trucano. Verification and validation in compu-

tational fluid dynamics. Progress in aerospace sciences, 38(3):209–272, 2002.

[3] Abdul-Sattar J Al-Saif and Assma J Harfash. A new approximate analytical solutions

for two-and three-dimensional unsteady viscous incompressible flows by using the ki-

netically reduced local navier-stokes equations. Journal of Applied Mathematics, 2019,

2019.

232 BIBLIOGRAPHY

[4] Seth C Spiegel, HT Huynh, and James R DeBonis. A survey of the isentropic euler vortex

problem using high-order methods. In 22nd AIAA Computational Fluid Dynamics

Conference, page 2444, 2015.

[5] WH Hui. Exact solutions of the unsteady two-dimensional navier-stokes equations.

Zeitschrift für angewandte Mathematik und Physik ZAMP, 38(5):689–702, 1987.

[6] Abdullah Shah, Li Yuan, and Aftab Khan. Upwind compact finite difference scheme

for time-accurate solution of the incompressible navier–stokes equations. Applied Math-

ematics and Computation, 215(9):3201–3213, 2010.

[7] Maurizio Tavelli and Michael Dumbser. A staggered space–time discontinuous galerkin

method for the three-dimensional incompressible navier–stokes equations on unstruc-

tured tetrahedral meshes. Journal of Computational Physics, 319:294–323, 2016.

[8] Ronald L Panton. Incompressible flow. John Wiley & Sons, 2013.

[9] Frank M White and Isla Corfield. Viscous fluid flow, volume 3. McGraw-Hill New York,

2006.

[10] Henrik Tryggeson. Analytical vortex solutions to Navier-Stokes equation. PhD thesis,

Växjö University Press, 2007.

[11] CY Wang. Exact solutions of the unsteady navier-stokes equations. Applied Mechanics

Reviews;(United States), 42(CONF-8901202–), 1989.

[12] Robert G Deissler. Unsteady viscous vortex with flow toward the center. 1965.

[13] Tapan K Sengupta, Nidhi Sharma, and Aditi Sengupta. Non-linear instability analysis of

the two-dimensional navier-stokes equation: The taylor-green vortex problem. Physics

of Fluids, 30(5):054105, 2018.

BIBLIOGRAPHY 233

[14] Hongyu Wang, William C Tyson, and Christopher J Roy. Discretization error estimation

for discontinuous galerkin methods using error transport equations. In AIAA Scitech

2019 Forum, page 2173, 2019.

[15] William C Tyson, Gary K Yan, Christopher J Roy, and Carl F Ollivier-Gooch. Re-

linearization of the error transport equations for arbitrarily high-order error estimates.

Journal of Computational Physics, 397:108867, 2019.

[16] Geoffrey Ingram Taylor and Albert Edward Green. Mechanism of the production of

small eddies from large ones. Proceedings of the Royal Society of London. Series A-

Mathematical and Physical Sciences, 158(895):499–521, 1937.

[17] James DeBonis. Solutions of the taylor-green vortex problem using high-resolution

explicit finite difference methods. In 51st AIAA Aerospace Sciences Meeting including

the New Horizons Forum and Aerospace Exposition, page 382, 2013.

[18] Zhijian J Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni,

Andrew Cary, Herman Deconinck, Ralf Hartmann, Koen Hillewaert, Hung T Huynh,

et al. High-order cfd methods: current status and perspective. International Journal

for Numerical Methods in Fluids, 72(8):811–845, 2013.

[19] Yuntian Bo, Peng Wang, Zhaoli Guo, and Lian-Ping Wang. Dugks simulations of three-

dimensional taylor–green vortex flow and turbulent channel flow. Computers & Fluids,

155:9–21, 2017.

[20] Subrahmanya Pavan Kumar Veluri. Code verification and numerical accuracy assess-

ment for finite volume CFD codes. PhD thesis, Virginia Tech, 2010.

[21] Kambiz Salari and Patrick Knupp. Code verification by the method of manufactured

234 BIBLIOGRAPHY

solutions. Technical report, Sandia National Labs., Albuquerque, NM (US); Sandia

National Labs …, 2000.

[22] Chris Roy, Curt Ober, and Tom Smith. Verification of a compressible cfd code using

the method of manufactured solutions. In 32nd AIAA Fluid Dynamics Conference and

Exhibit, page 3110, 2002.

[23] Stephane Etienne, Andre Garon, and Dominique Pelletier. Code verification for un-

steady flow simulations with high order time-stepping schemes. In 47th AIAA Aerospace

Sciences Meeting including The New Horizons Forum and Aerospace Exposition, page

169, 2009.

[24] Michael L Minion and RI Saye. Higher-order temporal integration for the incompress-

ible navier–stokes equations in bounded domains. Journal of Computational Physics,

375:797–822, 2018.

[25] Kintak Raymond Yu, Stéphane Étienne, Alexander Hay, and Dominique Pelletier. Code

verification for unsteady 3-d fluid–solid interaction problems. Theoretical and Compu-

tational Fluid Dynamics, 29(5-6):455–471, 2015.

[26] Weicheng Xue, Hongyu Wang, and Christopher J Roy. Code verification for 3d turbu-

lence modeling in parallel sensei accelerated with mpi. In AIAA Scitech 2020 Forum,

page 0347, 2020.

[27] Sherrie L Krist. CFL3D user’s manual (version 5.0). National Aeronautics and Space

Administration, Langley Research Center, 1998.

[28] Robert T Biedron, Jan Renee Carlson, Joseph M Derlaga, Peter A Gnoffo, Dana P Ham-

mond, William T Jones, Bil Kleb, Elizabeth M Lee-Rausch, Eric J Nielsen, Michael A

Park, et al. Fun3d manual: 13.6. 2019.

BIBLIOGRAPHY 235

[29] Joseph M Derlaga, Tyrone Phillips, and Christopher J Roy. Sensei computational fluid

dynamics code: a case study in modern fortran software development. In 21st AIAA

Computational Fluid Dynamics Conference, 2013.

[30] Charles W Jackson, William C Tyson, and Christopher J Roy. Turbulence model im-

plementation and verification in the sensei cfd code. In AIAA Scitech 2019 Forum,

2019.

[31] Hongyu Wang, Weicheng Xue, and Christopher J Roy. Error transport equation imple-

mentation in the sensei cfd code. In AIAA Scitech 2020 Forum, page 1047, 2020.

[32] Chris Rumsey, Brian Smith, and George Huang. Description of a website resource for

turbulence modeling verification and validation. In 40th Fluid Dynamics Conference

and Exhibit, 2010.

[33] Steven R Allmaras and Forrester T Johnson. Modifications and clarifications for the

implementation of the spalart-allmaras turbulence model. In Seventh international

conference on computational fluid dynamics (ICCFD7), pages 1–11, 2012.

[34] Florian R Menter. Two-equation eddy-viscosity turbulence models for engineering ap-

plications. AIAA journal, 32(8):1598–1605, 1994.

[35] Florian R Menter, Martin Kuntz, and Robin Langtry. Ten years of industrial experience

with the sst turbulence model. Turbulence, heat and mass transfer, 4(1):625–632, 2003.

[36] William Gropp, William D Gropp, Ewing Lusk, Anthony Skjellum, and Argonne Dis-

tinguished Fellow Emeritus Ewing Lusk. Using MPI: portable parallel programming with

the message-passing interface, volume 1. MIT press, 1999.

[37] Philip L Roe. Approximate riemann solvers, parameter vectors, and difference schemes.

Journal of computational physics, 43(2):357–372, 1981.

236 BIBLIOGRAPHY

[38] Joseph L Steger and RF Warming. Flux vector splitting of the inviscid gasdynamic equa-

tions with application to finite-difference methods. Journal of computational physics,

40(2):263–293, 1981.

[39] Bram Van Leer. Flux-vector splitting for the euler equation. In Upwind and High-

Resolution Schemes, pages 80–89. Springer, 1997.

[40] Uri M Ascher, Steven J Ruuth, and Raymond J Spiteri. Implicit-explicit runge-kutta

methods for time-dependent partial differential equations. Applied Numerical Mathe-

matics, 25(2-3):151–167, 1997.

[41] Christopher A Kennedy and Mark H Carpenter. Diagonally implicit runge-kutta meth-

ods for ordinary differential equations. a review. 2016.

[42] Antony Jameson, Wolfgang Schmidt, and Eli Turkel. Numerical solution of the euler

equations by finite volume methods using runge kutta time stepping schemes. In 14th

fluid and plasma dynamics conference, page 1259, 1981.

[43] JC Wu, LT Fan, and LE Erickson. Three-point backward finite-difference method for

solving a system of mixed hyperbolic—parabolic partial differential equations. Com-

puters & chemical engineering, 14(6):679–685, 1990.

[44] Luca Ferracina and MN Spijker. Strong stability of singly-diagonally-implicit runge–

kutta methods. Applied Numerical Mathematics, 58(11):1675–1686, 2008.

[45] Shane A Richards. Completed richardson extrapolation in space and time. Communi-

cations in numerical methods in engineering, 13(7):573–582, 1997.

[46] James Kamm, William Rider, and Jerry Brock. Combined space and time convergence

analysis of a compressible flow algorithm. In 16th AIAA Computational Fluid Dynamics

Conference, page 4241, 2003.

BIBLIOGRAPHY 237

[47] Helen C Yee, Neil D Sandham, and M Jahed Djomehri. Low-dissipative high-order

shock-capturing methods using characteristic-based filters. Journal of computational

physics, 150(1):199–238, 1999.

	Titlepage
	Abstract
	General Audience Abstract
	Grant Information
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Related Work
	Code Acceleration
	Code Verification

	Outline
	Bibliography

	Multi-GPU Performance Optimization of a CFD Code using OpenACC
	Introduction
	CFD Code: Buoyancy Driven Cavity Solver
	Implementation
	Stencil Computation
	Domain Decomposition
	Hardware Configuration

	Results
	BDC Solution
	Scaling Performance Metrics
	Grid Growth for Weak Scaling
	Multi-CPU Scaling Performance
	Multi-GPU Scaling Performance
	CUDA-aware MPI and GPUDirect
	Overlapping Communication and Computation

	Conclusions
	Appendix
	Bibliography

	An Improved Framework of GPU Computing for CFD Applications on Structured Grids using OpenACC
	Introduction
	Description of the CFD code: SENSEI
	Overview of CPU/GPU Heterogeneous System, MPI and OpenACC
	CPU/GPU Heterogeneous System
	MPI
	OpenACC

	Domain Decomposition
	Boundary Decomposition in Parallel and Boundary Reordering
	Platforms and Metrics
	Platforms
	Performance Metrics

	OpenACC Parallelization and Optimization
	V0: Baseline
	GPU Optimization using OpenACC

	Solution and Scaling Performance
	Supersonic Flow Through a 2D Inlet
	2D Subsonic Flow past a NACA 0012 Airfoil
	3D Transonic Flow Past an ONERA M6 Wing
	GPUDirect

	Conclusions & Future Work
	Bibliography

	Heterogeneous Computing of CFD Applications on a CPU-GPU Platform using MPI and OpenACC
	Introduction
	Description of the CFD Code: SENSEI
	Domain Decomposition and Aggregation Methods
	Results
	Hardware Configuration
	Performance Metrics
	Supersonic Inlet Case
	NACA 0012 Airfoil
	ONERA M6 Wing

	Conclusions
	Future Work
	Bibliography

	Machine Learning based Autotuning of a GPU-accelerated Computational Fluid Dynamics Code
	Introduction
	Related Work
	Data Collection
	Platforms
	The Computational Fluid Dynamics Code Base: SENSEI
	A Test Case
	Settings for Neural Network
	Tuning Parameters
	Feature Centering and Scaling

	Results
	Training on Single Platform
	Combined Training

	Conclusions
	Bibliography

	Code Verification for Turbulence Modeling in Parallel SENSEI Accelerated with MPI
	Introduction
	The CFD Code Base: SENSEI
	Overview of SENSEI
	Turbulence Models into the FANS Equations in SENSEI
	The Negative Spalart-Allmaras Turbulent Model
	The Menter's Shear Stress Transport Turbulence Model
	The Menter's Shear Stress Transport Turbulence Model with Vorticity Source Term
	Finite-Volume Discretization
	Focus of this Paper

	MPI Implementation into SENSEI
	An Introduction of Message Passing Interface (MPI)
	Domain Decomposition in SENSEI
	Wall Distance Calculation in SENSEI

	Order of Accuracy Test Results for the CTS Manufactured Solutions
	Grid Convergence Test Results for the Turbulence Modeling Verification Cases
	Some Considerations
	Non-physical Check and Update
	SA model for 3D Bump
	Menter's SST model for 2DANW
	SST-V model for 3DB

	Conclusions
	Future Work
	Bibliography

	Code Verification for Unsteady Flows in SENSEI
	Introduction
	The CFD Code Base: SENSEI
	Overview of SENSEI
	Governing Equations in Spatially Integral Form
	Temporal Discretization
	Non-dimensionalization

	Observed Order of Accuracy Test
	Spatial Discretization Error
	Temporal Discretization Error
	Spatial and Temporal Discretization Error

	OOA Test Results
	2D Euler Convecting vortex flow
	2D Taylor-Green Vortex
	2D Cross-term Sinusoidal MMS

	Conclusions
	Future Work
	Bibliography

