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CHAPTER 11

 

 Buckling of columns and 
plates

 

If buckling occurs before the elastic limit of the material, which is roughly the yield strength of the material, then 
it is called 

 

elastic buckling

 

. If buckling occurs beyond the elastic limit, it is called 

 

inelastic buckling

 

, or plastic 
buckling if the material exhibits plasticity during buckling (mainly metals). Many thin-walled structural compo-
nents buckle in compression below the elastic limit. Therefore, buckling determines the limit state in compres-
sion rather than material yielding. In fact, about 50 percent of an airplane structure is designed based on buckling 
constraints.

 

11.1 Perfect columns

 

Consider a perfectly straight, uniform column of length 

 

L

 

 with cross-sectional area 

 

A

 

 subject to a centric end load 

 

P

 

 as shown in figure. 11.1. (The column is drawn horizontally for convenience.) The column is long relative to its 
largest cross-sectional dimension, and the column consists of a homogeneous, linear elastic material whose mod-
ulus of elasticity is denoted by 

 

E

 

. Buckling analyses are inherently nonlinear. As the previous structural models 
discussed in chapter 10 demonstrate, nonlinear analysis results in more than one equilibrium state for a specified 
load, whereas in linear analysis there is only one equilibrium state for a specified load. A geometrically nonlinear 
analysis of a column is developed in this article in which the axial strain-displacement relation is nonlinear and 
equilibrium is taken on the displaced structure. 

z,w

y,v

L

PEA EI,

Fig. 11.1 A straight column subject to a centric, compressive axial force.
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Kinematics.  

 

Consider a differential element 

 

dz

 

-by-

 

dy

 

 in the initial, undeformed column, where 

 

dz

 

 is along the 
centroidal axis and 

 

dy

 

 is perpendicular to the centroidal axis as shown in figure. 11.2. In the 

 

z-y

 

 coordinate sys-
tem, the material point at coordinates 

 

(z,0)

 

 displaces to coordinates 

 

(z*, y*)

 

 in the deformed bar, where 

 

(z*,y*) 

 

is 
referenced to the same 

 

z-y

 

 system. These coordinates are related by

,

 

(11.1)

 

where  is the displacement parallel to the 

 

z

 

-axis and  is the displacement parallel to the 

 

y

 

-axis. The 
material points along length 

 

dz

 

 map to the differential length 

 

ds*

 

 along the centroidal axis in the deformed bar. 

By the Pythagorean theorem . The differential lengths in the deformed bar are

  and .

 

(11.2)

 

 Define the stretch ratio 

 

λ

 

 by . Consequently, the stretch ratio is related to the derivatives of the dis-

placements by

.

 

(11.3)

 

The clockwise rotation angle of element 

 

ds

 

* with respect to the 

 

z

 

-direction is denoted by . Trigonometric 

functions of this rotation angle are given by

 and .

 

(11.4)

 

Using the chain rule of differentiation and the definition of the stretch ratio these trigonometric functions can be 
written as

, and similarly .

 

(11.5)

 

We impose the hypothesis of classical theory that cross sections normal to the centroidal axis in the undeformed 
bar remain rigid and normal to the centroidal axis in the deformed bar. Thus, the differential line element 

 

dy

 

 in 
the undeformed bar does not change length in the deformed bar and remains normal to the centroidal axis in the 
deformed bar. That is, line element 

 

dy

 

 also rotates clockwise through angle . The stretch ratio (11.3) is 

expanded in a binomial series to get
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0
(a) initial state

(b) deformed state

Fig. 11.2 Differential elements in the initial state (a) and in the deformed state (b).
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.

 

(11.6)

 

The engineering strain is defined as . If cubic powers and higher of the displacement derivatives in 

the series expansion of  are neglected, then the strain-displacement relation is

.

 

(11.7)

 

Equilibrium.  

 

The free body diagram of the element of the bar in the deformed state is shown in figure. 11.3(a). 

The force 

 

F

 

 acting on the cross section of the deformed bar is resolved in two sets of orthogonal components. 
Components 

 

H

 

 and  act in horizontal direction and the vertical direction, respectively. Components 

 

N

 

 and  

act tangent and normal to the centroidal axis, respectively. Let 

 

α

 

 denote the angle between the vertical and the 
line of action of force 

 

F

 

. From figure. 11.3(b)  and . Components 

 

N and  are given 

by

, and (11.8)

. (11.9)

Equilibrium in the horizontal direction requires  and equilibrium in the vertical direction requires 

. Thus, the horizontal component H and the vertical component  are spatially uniform along the 

length of the bar. Since the applied compressive force P is also horizontal then . The bending moment is 

denoted by . Moment equilibrium about the right end of the element in figure. 11.3(a) leads to

. (11.10)

The differential functions are expanded in a series. For example . Then 

moment equilibrium becomes

. (11.11)

Division by dz followed by the limit as  leads to the differential equation

λ 1 1
2
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dz
------- dw
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------- 
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------ 
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+ + 1
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dz
------- 
  2 dv

dz
------ 
  2

+ +
2

– …+ + 1 dw
dz
------- 1

2
--- dv

dz
------ 
  2

O dw
dz
------- 
  3

+ + += =

εzz λ 1–=

λ

εzz
dw
dz
------- 1

2
--- dv

dz
------ 
  2

+=

dy*–

dz*

φx
H

H dH+
Sy

Sy dSy+

Mx

Mx dMx+

Fig. 11.3 Free body diagram of the differential element in the deformed bar (a), and the 
resolution of the resultant force F into components acting on the cross section (b).
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. (11.12)

Hooke’s law.  The normal force component N is proportional to the axial strain  of the centroidal axis, and the 

bending moment is proportional to the rotation gradient  of the cross section. That is,

, (11.13)

where the modulus of elasticity is denoted by E, the cross-sectional area by A, and the second area moment of the 
cross section by I.

11.1.1 Pre-buckling equilibrium

The trivial equilibrium configuration of the column is straight and in compression subject to the applied axial 
force P. The lateral displacement , rotation , and  for . From eq. (11.8) 

. From eq. (11.9)  but overall equilibrium requires . Let  denote the axial 

displacement in pre-buckling equilibrium. Then, strain (11.7) and stretch ratio reduce to  and 

, respectively. Hooke’s law (11.13) for the axial force is . Integrate Hooke’s law 

and take the axial displacement  to get

. (11.14)

11.1.2 Buckling

To assess buckling of a slightly defected column, we introduce a small, dimensionless parameter  such that all 

dependent variables equal there pre-buckling equilibrium expressions as . The displacements and rotation 
are expressed as

. (11.15)

The trigonometric functions of the rotation angle are

. (11.16)

In the following developments terms of  and higher degrees are neglected. The vertical shear force 

. The axial strain (11.7) expansion is

. (11.17)

The first expression in (11.8) is written as , where . The expansion for 

this equation containing the force N is
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. (11.18)

To satisfy the last equation for each value of , the coefficients of  and  must vanish, which leads to

. (11.19)

On the pre-buckling equilibrium path the stretch ratio .

The expansion of the equilibrium equation for bending (11.12) combined with the moment from Hooke’s 
law (11.13) is

. (11.20)

Therefore, the significant result from eq. (11.20) is

. (11.21)

The first expression in eq. (11.5) relating the rotation, the stretch ratio, and the displacement v(z) is written as

. (11.22)

The expansion of eq. (11.22) becomes

. (11.23)

Therefore,

. (11.24)

Solve eq. (11.24) for  and substitute the result into eq. (11.21) to get

. (11.25)

Now differentiate eq. (11.25) with respect to z and note that  consistent with the equilibrium equation 

. The final result is

, (11.26)

where
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. (11.27)

The expressions for the bending moment and vertical shear force are

. (11.28)

The solution of eq. (11.26) for  is subject to boundary conditions at z = 0 and z = L. There are four so-

called standard boundary conditions. These are shown in figure. 11.4.

   

One solution to the differential equation (11.26) subject to boundary conditions A-D is  for all 

values of the load P. This is the trivial solution. The general solution of eq. (11.26) for  is

, (11.29)

where A1, A2, A3, and A4 are arbitrary constants to be determined by boundary conditions.
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B. Clamped-free
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P

C. Clamped-clamped
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z
L

P

D. Clamped-pinned
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φx1 0( ) 0=

v1 L( ) 0=

Mx1 L( ) 0=

Fig. 11.4 Standard buckling boundary conditions.
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Example 11.1 Critical load for clamped-free boundary conditions in figure. 11.4(B)

Consider the clamped-free boundary conditions denoted as (B). Determine the critical load  for which the 

perfect column admits a non-trivial equilibrium state.

Solution.  The bending moment and vertical shear force (11.28) vanish at z = L. The four boundary conditions in 
this case are

, (a)

where the primes denote derivatives with respect to z. Taking derivatives of eq. (11.29) we have

. (b)

Substitute these solutions into the four boundary conditions to get

. (c)

A non-trivial solution for A1 to A4 requires the determinate of coefficients to vanish:

. (d)

After expanding this determinate we get

, (e)

which is called the characteristic equation. The solution  of the characteristic equation leads to the triv-

ial solution for . Non-trivial solutions to the characteristic equation occur for , whose positive 
roots are

. (f)

For the discrete values of  in eq. (f) to satisfy the equation in the fourth row of matrix eq. (c) requires 

. Setting  in the equation in the second row of matrix eq. (c) requires . The equation of 

the first row of matrix eq. (c) yields . Note that the equation obtained from the third row of matrix eq. 
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(c) is identically satisfied for  and the discrete values of . For each value of n we have an associated 

buckling mode (A1 = A3 = 0, A2 = – A4):

. (g)

The buckling loads are determined from the expression for  in eq. (11.27), which after some manipula-
tion is written as

, (h)

where  and . The radius of gyration of the cross section is denoted by r. At 

 we have

, (i)

where . Equation (i) is a quadratic equation for , and the lowest root is

, (j)

where  is the slenderness ratio of the column. For selected values of the slenderness ratio the values of  

are listed in table 11.1.

Values of  monotonically decrease with increasing slenderness ratios and approach a minimum value of 

 as . At  the value of  is 0.63 percent higher than the minimum, and at 

 the value of  is 0.03 percent higher than the minimum. In design we use the minimum value of 

 for the critical load. That is,

Table 11.1 Buckling coefficient for selected slenderness ratios.

20 1.00625

40 1.00153

60 1.00069

80 1.00039

100 1.00025
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. (k)

The result for the critical load in eq. (k) is obtained if the axial strain at the bifurcation point with is 
neglected with respect to unity. From eqs. (11.17) and (11.19) the strain at the bifurcation point is

.

For  the range of the strain at bifurcation point is . For small strain at 

the bifurcation point the stretch ratio . Equation (11.27) yields . Hence, the val-

ues of k are

(l)

Solve eq. (l) for the loads to get

, (m)

where Pn are the buckling loads. The first three buckling modes and corresponding buckling loads are shown in 
figure. 11.5. Remember that in design we use the minimum EI for the cross section. J
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Fig. 11.5 First three buckling modes for the clamped-free column.
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11.1.3 Buckling equations for negligible strain at the bifurcation point

Neglecting the axial strain with respect to unity means the stretch ratio , and eqs. (11.21), 
(11.24), and (11.27) simplify to

, (11.30)

From eq. (11.26) the differential equation governing buckling is

. (11.31)

The critical loads for boundary conditions A through D and for EI = constant are given in figure. 11.6.

11.2 Initial post-buckling of the pinned-pinned column

The objective in this analysis is to seek an approximation for the displacement and load about the bifurcation 
point so that the early post-buckling behavior can be estimated. That is, does the load increase or decrease from 
its value at the bifurcation point on the post-buckling equilibrium path? The theory was originally due to Koiter 
using total potential energy (1945, in Dutch, English translation in 1970). Later Budiansky and Hutchinson 
(1964) and Budiansky (1966) employed the principal of virtual work to get results equivalent to Koiter’s static 
post-buckling analysis. In this article the nonlinear equilibrium equations are used to develop the initial post-
buckling behavior.
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B: clamped-free

C: clamped-clamped

D: clamped-pinned

Fig. 11.6 Critical buckling loads for the standard boundary conditions A to D.
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Initial post-buckling of the pinned-pinned column

11.2.1 Summary of the nonlinear equations

The overall free body diagram of the column in a deflected 
configuration is shown in figure. 11.7. The shortening of the 
distance between support points is denoted by , where 

. If the column is cut at some point along its 
length, then equilibrium results in the vertical force compo-
nent  for .

The relation of the force N to load P is obtained from eq. (11.8) with  as

(11.32)

In eq. (11.32) force N was replaced by Hooke’s law (11.13), and we dropped the subscript x on the rotation  

introduced in article 11.1 for convenience in the following developments. The strain  is related to the deriva-

tives of the displacements by the nonlinear relation (11.7). Substitute Hooke’s law (11.13) for the bending 
moment into eq. (11.12) to get the differential equation for bending as

, (11.33)

From eq. (11.5) the trigonometric functions of the rotation are related to the displacements by

, (11.34)

where the stretch ratio is . The boundary conditions to be satisfied are

. (11.35)

11.2.2 The perturbation expansion.

From the expressions in eq. (11.30) the differential equation governing buckling in terms of the rotation is

, (11.36)

subject to the boundary conditions

. (11.37)

The solution to this boundary value problem is

. (11.38)

The lateral displacement is determined from the second equation in (11.30) as

∆

P P

L

z
Fig. 11.7
FBD of 
deflected 
pinned-
pinned 
column.
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. (11.39)

Consider the rotation and displacement in the differential equation (11.33) to be a function the dimensionless 

parameter  as well as independent variable z (i.e.,  and ). An approximate solution to the nonlin-

ear differential equation (11.33) and kinematic equation (11.34) is to be determined by perturbation expansions 
of the dependent variables in the parameter  for very small values of . To effect the procedure, the displace-

ments and rotation are expanded in a series in  as

. (11.40)

Functions , , and  are given by eqs. (11.14), (11.38), and (11.39), respectively. The remaining 

functions in the expansion (11.40) are to be determined. The expansion of the sine and cosine functions are

. (11.41)

11.2.3 Relations between the expansion functions for the rotations and lateral displacement 

With respect to the discussion in article 11.1.3 we take , so the expansion of the first equation in (11.34) is

. (11.42)

The previous series converges to zero for each sufficiently small value of  requires that the coefficient of 

each power of  must vanish. Hence,

. (11.43)

11.2.4 Perturbation expansion of the load P

We utilize the relations in eq. (11.43) to get the expansion of eq. (11.33) as

. (11.44)

To determine how the load P is a function of  multiply eq. (11.44) by  and integrate with respect to z from z 

= 0 to z = L:

. (11.45)
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Integrate twice by parts with respect to z of the  term in eq. (11.45) to get

. (11.46)

The boundary terms in the expansion functions vanish consistent with the conditions in eq. (11.35). Also, inte-

grate twice by parts with respect to z of the  term. After integrating by parts, eq. (11.45) is

. (11.47)

From the differential equation (11.36) at buckling we have

. (11.48)

Substitute eq. (11.48) into eq. (11.47) to find

. (11.49)

The last step is to impose the orthogonality conditions on the expansion functions, which are

. (11.50)

Equation (11.49) reduces to

. (11.51)

Divide eq. (11.51) by  and rearrange terms to the form ,

where

. (11.52)

The series of , which leads to

. (11.53)

In general, the expansion of  is written as
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. (11.54)

11.2.5 Solutions for the rotation and lateral displacement functions

Substitute the expansion of load P from eq. (11.54) into eq. (11.44), and arrange terms in powers of  to get

. (11.55)

For the series (11.55) to converge to zero for each sufficiently small value of , the coefficient of each power of 

 must vanish. The coefficient of  is the differential equation for buckling, eqs. (11.36) and (11.38). The coef-

ficients of  and  lead to differential equations

, (11.56)

subject to boundary conditions

. (11.57)

The non-homogeneous terms in eq. (11.56) depend on previous solutions of the expansion functions. That is,

. (11.58)

Let . The general solution to differential equation (11.56) consists of a complementary function 

 that satisfies the homogeneous equation plus a particular solution denoted by  

that satisfies the non-homogeneous equation. Then, the general solution is

. (11.59)

Consider conditions required to solve the boundary value problem presented by eqs. (11.56) and (11.57). Multi-
ply eq. (11.56) by  and integrate the result from z = 0 to z = L. The result is

. (11.60)

Integrate the first term on the left-hand side of eq. (11.60) by parts twice to get

. (11.61)

Boundary conditions (11.37) and (11.57) result in the terms on the left-hand side of eq. (11.61) evaluated at the 
end points of the interval equal to zero. Also, the integrand on the left-hand side vanishes since rotation  satis-

fies eq. (11.36). We are left with the condition for the solution of the boundary value problem for  that
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. (11.62)

For k = 2 condition (11.62) is

. (11.63)

The only way to satisfy the condition in eq. (11.63) is to take the post-buckling coefficient . The solution 

for  that satisfies the boundary conditions (11.57) is . The orthogonality condition 

(11.50) determines . Thus, . From eq. (11.43) and boundary condition (11.35) we find 

 for . For k = 3, condition (11.62) is

. (11.64)

Equation (11.64) determines post-buckling coefficient b, and it is the same as given in eq. (11.52).

From eq. (11.56) the governing equation for  with  and  is

. (11.65)

Use the trigonometric identity  to find

. (11.66)

The solution to differential equation (11.66) is

. (11.67)

Boundary conditions (11.57) lead to coefficient . Coefficient  is determined from the orthogonality 

condition (11.50)

. (11.68)

Therefore  and the solution for function  is

. (11.69)

The function  can now be determined from eq. (11.43). The result that satisfies boundary conditions (11.35) 

is
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. (11.70)

11.2.6 Solutions for the axial displacement functions

We make use of eq. (11.43) to find that the expansion of the strain  in (11.7) is

. (11.71)

Substitute expansions of the strain from eq. (11.71), the load P from eq. (11.54), and the cosine function from eq. 
(11.41), into eq. (11.32) to find the expansion of the axial equilibrium as

. (11.72)

For eq. (11.72) to converge to zero for each sufficiently small value of ,the coefficient of each power of  must 

vanish. Thus, we get to expressions for the derivatives of the expansion functions of displacement  as

. (11.73)

Since  and , the displacement function  for . The expression for the 

derivative of displacement function  is integrated with respect to z, and we set  to find

. (11.74)

11.2.7 Summary

From this initial post-buckling analysis the results for the expansions of the load, displacements, and rotation are

. (11.75)

The strain of the centroidal axis is

. (11.76)

Rotation functions  and  are given by eqs. (11.38) and (11.69), respectively. Lateral displacement 

functions  and  are given by eqs. (11.39) and (11.70), respectively, and the axial displacement func-

tion  is given by eq. (11.74).
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Example 11.2 Numerical results for the initial post-buckling of the pinned-pinned column 

Consider the column with a solid, rectangular cross section of height h and width b, where h < b. The radius of 

gyration is . The strain at the bifurcation point is obtained from eq. (11.76) for  is 

, and take this strain equal to . Since , we have

. (a)

Hence, the span-to-thickness ratio 

The restriction on the magnitude of the expansion parameter  in the initial post-buckling analysis is based 

on the strain at the elastic limit of 7075-T6 aluminum alloy, which is about . Let  denote the strain of a 

line element parallel to the centroidal axis. It is the sum of the strain of centroidal axis  plus the strain due to 

bending. That is,

, (b)

where  and  is the curvature of the centroidal axis. The magnitude of the maximum 

compressive strain in post-buckling occurs at midspan, , and . That is,

. (c)

The expansion for the curvature at midspan is determined from eqs. (11.75), (11.38) and (11.69). The result is

. (d)

Substitute  and  in the expansions for the strains. The numerical evaluations of the 

strain in eq. (11.76) and the strain from bending are

. (e)

The axial strain on the concave side of the bar at midspan is set equal to the elastic limit strain of . Thus,

.

The real root of the previous polynomial is the maximum value of parameter , which is 

. (f)

For post-buckling coefficients a = 0 and , we get  at  from eq. (11.54). 

There is a very small increase in the load during post-buckling. The lateral displacement of the column is deter-
mined from eqs. (11.75), (11.39), and (11.70), and it is a maximum at midspan. Evaluation of the maximum dis-
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placement is

, (g)

and  at .

The axial displacement of the column is determined from eqs. (11.75) and (11.74). The shortening of dis-
tance between supports is

. (h)

The shortening at buckling is , and the normalized shortening is defined by

. (i)

At ,  on the post-buckling path. The configuration of the column at  is shown in 

figure. 11.8.

The pre-buckling equilibrium path is determined from eq. (11.14) where , or 

. Divide by the critical load to get . From eq. (a) the factor 

. Thus,  on the pre-buckling equilibrium path.

 The load-deflection response is shown in figure. 11.9(a), and the load-shortening response is shown in fig-
ure. 11.9(b). The post-buckling behavior of the column is stable symmetric bifurcation, which is the same 
behavior as model A in article 10.1 on page 289. The load does not decrease in post-buckling. However, the 
increase in load is very small in post-buckling. From a practical point of view, the column is considered neutral in 
post-buckling.The structural stiffness is defined as . For post-buckling the structural stiffness is com-
puted as

.

The structural stiffness in pre-buckling is . The ratio of the post-buckling stiffness to the pre-buckling 
stiffness is 0.0003, which indicates the dramatic loss of structural stiffness due to buckling.J
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Fig. 11.8 Post-
buckling configuration 
of the pinned-pinned 
column at the elastic 
limit strain.
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From eq. (11.54) the perturbation expansion of the load in initial post-buckling is . 

The post-buckling coefficients  and  correspond to unstable symmetric bifurcation behavior illus-

trated by model B in article 10.2 on page 298. Post-buckling coefficient  corresponds to asymmetric bifur-
cation behavior illustrated by model C in article 10.3 on page 302.

11.3 In-plane buckling of trusses

When a truss has all of its joints pinned, then there will be no interaction between the bending deflections of indi-
vidual members. Hence the buckling load of the truss will be the load at which the weakest compression member 
buckles as an Euler column (case A in figure. 11.6). However, when a truss is rigidly jointed, as in a frame, there 
will be interaction between bending deflections of neighboring members through rotation of the common joint. A 
rigid-jointed truss is stiffer than a pin-jointed truss, and therefore its buckling load is increased relative to the pin-
jointed truss.

Example 11.3 Buckling of a two-bar truss

A symmetric truss consisting of two identical bars of length L are connected together by a hinge joint at the cen-
ter of the truss. The opposite end of each bar connects to a separate hinge joint at a fixed support. Both supports 
are at a distance H below central joint. The central joint is subject to downward load Q whose corresponding dis-
placement is denoted by q. 

We consider a linear analysis and a nonlinear analysis for the stability of the truss, where Hooke’s law gov-
erns the material behavior in both analyses. The material of the bars is 7075-T6 aluminum alloy with a modulus 

of elasticity  and yield strength of . The remaining numerical data are 
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Fig. 11.9 Equilibrium paths for the pinned-pinned column subject to axial compression (a) on the 
load-deflection plot, and (b) on the load-shortening plot.
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listed in table 11.2. From the data in table 11.2 the angle . A small value of β characterizes a shallow 
truss configuration.    

Axial strain-displacement relation.  The strain-displacement relation (11.7) for each bar is

, (a)

where the axial displacement is denoted by  and the lateral displacement is 

denoted by . Consider the bar on the left-hand side of the truss as shown in 

figure. 11.11. At the fixed end where z =0, . At the end of the 
bar where z = L the axial displacement and the lateral displacement are related 
to the downward displacement q of the movable joint by  and 

, respectively. The axial strain in a truss bar is uniform along 
its length, which means that the displacements are linear in coordinate z. Linear 

displacement functions for each displacement satisfying the end conditions are, 

. (b)

Substitute eq. (b) for the displacement functions into eq. (a) to get the strain-displacement relation

. (c)

Substitute , and  into eq. (c) to get

. (d)

Numerical evaluation of eq. (d) is

. (e)

Table 11.2 Numerical data for the truss in figure. 11.10

Length of truss bars L, mm 300 Width of truss bar b, mm 25

Truss rise above supports H, mm 27 Area of truss bar A, mm2 450

Thickness of truss bar h, mm 18 Second area moment I, mm4 12,150

β 5.16°=

Q q,

L H
βA

Ah

b
Section A A–

βsin H L⁄=

Fig. 11.10 A shallow truss horizontally constrained between fixed points.
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The strain energy of the truss is

, (f)

in which the leading factor of 2 accounts for the two bars. Castigliano’s first theorem determines the force Q by

. (g)

Substitute eq. (d) for the strain into eq. (f) to get

. (h)

Numerical evaluation of eq. (h) is

. (i)

In-plane buckling of the truss bars based on linear analysis.  The expressions for the axial strain (e) and 
applied load (h) reduce to

, and   . (j)

The axial force in each bar is given by

. (k)

The Euler buckling force . Set  to find the displacement for in-plane 

buckling of the truss bars . The corresponding load .

Equations (i) and (j) are plotted on the graph of load Q versus displacement q in figure. 11.12. As the load is 
increased from zero on the nonlinear path (i) a limit point load of 9.038 kN at a displacement of 11.5 mm is 
encountered. As discussed in article 10.5 a dynamic snap-through motion occurs at the limit load that eventually 
(with damping) settles to a displacement of 58.65 mm. The linear response path (j) is the straight line in figure. 
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11.12, and the load causing in-plane buckling of the truss bars is 17.028 kN. Thus, the critical load for this struc-
ture is at the limit point.J

11.4 Geometrically imperfect column

Consider a uniform, pinned-pinned column that is slightly 
crooked under no load. The initial shape under no load is 
described by the function . The column is subject to a 

centric, axial compressive load P. The lateral displacement of 
the column is denoted by , so that  when 

P = 0. Moment equilibrium of the free body diagram for a 
segment of the column shown in figure. 11.13 is

. (11.77)

The bending moment in the column is zero under no load, so we write the material law for bending as

, (11.78)

where  is the rotation of the initial shape of the column. For small slopes of the slightly deflected column 

the rotations are related to the lateral displacements by

 . (11.79)

Hence, the bending moment becomes
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q mm,

9.87 mm 17.028 kN,( )

11.5 mm 9.038 kN,( )

58.65 mm 9.038 kN,( )

dynamic snap through →

Fig. 11.12 Load-displacement responses of the two-bar truss from linear and nonlinear analyses.
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. (11.80)

Substitute the bending moment from eq. (11.80) into the moment equilibrium equation (11.77) to get

. (11.81)

Equation (11.81) is arranged to the form

, (11.82)

where . Take the initial shape of the column , where a1 is the amplitude of 

the initial shape at midspan. Then the differential equation for  is

. (11.83)

The boundary conditions are . The solution of the differential equation (11.83) subject to 
boundary conditions is

. (11.84)

The term  where the critical load of the perfect structure is . It is conve-

nient to measure the deflection of the imperfect column under load with respect to its original unloaded state. 
That is, let δ define the additional displacement at midspan by . Hence,

. (11.85)

The load-displacement response is sketched in figure. 11.14. Note that  as  for . That is, 

for a non-zero value of the imperfection amplitude, the displacement gets very large as the axial force approaches 
the buckling load of the perfect column. Also, the imperfect column deflects in the direction of imperfection 
(e.g., if , then ).

An arbitrary initial shape is represented by a Fourier Sine series as

. (11.86)

Timoshenko and Gere (1961) show the solution for  is
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. (11.87)

For  as , the first term dominates the solution for . Thus, for P near Pcr

. (11.88)

The buckling behavior of a long, straight column subject to centric axial compression (the perfect column) is 
classified as stable symmetric bifurcation. As such it is imperfection insensitive. Refer to the discussions in arti-
cle 10.1.5 on page 297 and article 10.2.1 on page 300. Even for a well manufactured column whose geometric 
imperfections are small, and with the load eccentricity small, the displacements become excessive as the axial 
compressive force P approaches the critical load  of the perfect column. Hence, the critical load determined 

from the analysis of the perfect column is meaningful in practice.

11.4.1 Southwell plot

Rearrange eq. (11.88) as follows: , then . Divide the 

last by P to get

 . (11.89)

We plot  versus  from eq. (11.89) in figure. 11.15, which is called the Southwell plot (Southwell, 1932).1 

The Southwell plot is very useful for determining Pcr from test data in the elastic range. As , ,  

becomes large and the data ( ) tends to plot on a straight line. Extrapolating this straight line back to 

toward the ordinate axis ( ) one can estimate a1 and Pcr. It is more difficult to determine Pcr by the load-
deflection curve obtained in experiments as illustrated in figure. 11.16. 

1. Richard V. Southwell (1888 -1970), British mathematician specializing in applied mechanics. In his article “On the Anal-
ysis of Experimental Observations in Problems of Elastic Stability”, he discussed the coordinates used in the plot to corre-
late the experimental data on elastic column buckling with linear theory. 
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11.5 Column design curve

Consider the pinned-pinned uniform column whose critical load is given by . Let A denote the 

cross-sectional area of the column. At the onset of buckling the critical stress is defined as

. (11.90)

The second area moment is , where r denotes the minimum radius of 
gyration of the cross section. For the rectangular section shown in figure. 11.17, 

 and , so that , where . Thus, 

the critical stress becomes

. (11.91)

and  is called the slenderness ratio. The slenderness ratio is the column length divided by a cross-sectional 
dimension significant to bending. 

For any set of boundary conditions define the effective length  by the formula

. (11.92)
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The effective lengths for the four standard boundary conditions are as follows:

The definition of effective length uses case A boundary conditions as a reference. The concept of effective length 
accounts for boundary conditions other than simple support, or pinned-pinned end conditions.

The column curve is a plot of the critical stress versus the effective slenderness ratio (i.e., ). 

For elastic column buckling under all boundary conditions

, (11.93)

which is a hyperbola that depends only on the modulus of elasticity E of the material. This equation governing 
elastic buckling is called the Euler curve, and columns that buckle in the elastic range are called long columns. 
See figure. 11.18. 

11.5.1 Inelastic buckling

The column curve equation, eq. (11.93), is valid up to the proportional limit of the material, denoted by . The 

proportional limit is defined as the stress where the compressive stress-strain curve of the material deviates from 
a straight line. If the stress at the onset of buckling is greater than the proportional limit, then the column is said 
to be of intermediate length, and the Euler formula, eq. (11.93), cannot be used. The proportional limit is difficult 
to measure from test data because its definition is based on the deviation from linearity. In particular, the com-
pressive stress-strain curves for aluminum alloys typically used in aircraft construction do not exhibit a very pro-
nounced linear range. For aluminum alloys a material law developed by Ramberg and Osgood (1943) is often 
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used to describe the nonlinear compressive stress-strain curve. The Ramberg-Osgood equation is a three-parame-
ter fit to the compressive stress-strain curves of aluminum alloys. From the experimental compressive stress-
strain curve the slope near the origin is the modulus of elasticity E. The stress where the secant line drawn from 
the origin with slope 0.85 E intersects the stress-strain curve is denoted .The stress where a second secant 

line drawn from the origin with slope 0.7E intersects the stress-strain curve is denoted by . These data are 

depicted in figure. 11.19. Note that the compressive normal strain corresponding to the stress  is usually 

about the 0.2 percent offset yield strain for the material. Hence, stress  is close to the 0.2 percent offset yield 

stress of the aluminum alloy. The Ramberg-Osgood equation is

, (11.94)

where the shape parameter n is given by

. (11.95)

Equation (11.94) is re-written as

, (11.96)

and is plotted as  versus  for various values of the shape parameter n, This plot is shown in fig-

ure. 11.20. Some approximate values for common aluminum alloys are listed in table 11.3. 

Table 11.3 Ramberg-Osgood parameters for selected aluminum alloys

AL E in106 psi  in 103psi n

2014-T6 10.6 60 20

2024-T4 10.6 48 10

6061-T6 10.0 40 30

7075-T6 10.4 73 20
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Fig. 11.19  Data used to fit the compression 
stress-strain curve of aluminum alloys.
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From the Ramberg-Osgood equation, eq. (11.94), the local slope of the compressive stress-strain curve is 
determined as a function of the stress. This slope of the compressive stress-strain curve is called the tangent mod-

ulus (i.e.,  where Et is the tangent modulus). Differentiate eq. (11.94) to get

. (11.97)

Thus, the tangent modulus is

. (11.98)

For intermediate length columns it has been demonstrated by extensive testing that the critical stress is rea-
sonably well predicted using the Euler curve, eq. (11.93), with the modulus of elasticity replaced by the tangent 
modulus. This inelastic buckling analysis is called the tangent modulus theory. That is,

. (11.99)

Now substitute eq. (11.98) for the tangent modulus in the latter equation, noting that , to get

. (11.100)
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After division by , eq. (11.100) can be written as

. (11.101)

A plot of the column curve given by eq. (11.101) is shown in figure. 11.21. 

11.6 Bending of thin plates

Recall that bars and beams are structural elements characterized by having two orthogonal dimensions, say the 
thickness and width, that are small compared to the third orthogonal dimension, the length. Thin plates, both flat 
and curved, are common structural elements in flight vehicle structures, and they are characterized by one dimen-
sion being small, say the thickness, with respect to the other two orthogonal dimensions, say the width and 
length. A thin, rectangular, flat plate shown in figure. 11.22 is referenced to Cartesian axes x, y, and z, where the 
x-direction is parallel to the length, the y-direction is parallel to the width, and the z-axis is parallel to the thick-
ness of the plate. We denote the length of the plate by a, the width by b, and the thickness by t, and , 

, and . The plane with z = 0 is the midsurface, or reference surface, of the plate. 

A beam resists the transverse loads, or lateral loads, primarily by the longitudinal normal stress σx, and the 
so-called lateral stresses σy, σz, τyx, and τyz are assumed to be negligible. Transverse loads, acting in the z-direc-
tion applied to the plate are primarily resisted by the in-plane stress components σx, σy, and τxy. Transverse shear 
stresses τxz and τyz are necessary for force equilibrium in the z-direction under transverse loads, but are smaller 
in magnitude with respect to the in-plane stresses. In plate theory, the transverse normal stress σz is very small 
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with respect to the in-plane normal stresses and, hence, is neglected. Bending of thin plates is discussed in many 
texts on plate theory; for example, see Ugural and Fenster (2003). Only some elements of the plate bending the-
ory are discussed here. The assumptions of the linear theory for thin plates are as follows:

1. The deflection of the midsurface is small with respect to the thickness of the plate, and the slope of the 
deflected midsurface is much less than unity.

2. Straight lines normal to the midsurface in the undeformed plate remain straight and normal to the midsurface 
in the deformed plate, and do not change length.

3. The normal stress component σz is negligible with respect to the in-plane normal stresses and is neglected in 
Hooke’s law.

Now consider the deformation, or strains, caused by the normal stresses. Hooke’s law for the normal stresses 
and strains in a three-dimensional state of stress is 

, (11.102)

where E is the modulus of elasticity and  is Poisson’s ratio. From assumption 3 the thickness normal stress σz 

is assumed negligible and is set to zero in Hooke’s law. From assumption 2 the thickness normal strain , 

because the line element normal to the midsurface does not change length. Since the normal stress  is also 

assumed to vanish, the third of eq. (11.102) leads to a contradiction. Hence, the third equation of Hooke’s law is 
neglected. The material law for the in-plane normal strains and stresses for thin plates is

. (11.103)

Consider two cases of pure bending of a plate or a beam subject to moment M. In the first case the cross sec-
tion is compact with dimension b nearly equal to thickness t, and in the second case dimension b is much larger 
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Fig. 11.22  Illustration of the nomenclature and primary stresses for a flat, rectangular plate.

τxy τyx σyσx

3-D stress state

primary stresses in plate theory

εx
1
E
--- σx νσy– νσz–( )=

εy
1
E
--- νσ– x σy νσz–+( )=

εz
1
E
--- νσ– x νσy– σz+( )=

ν

εz 0=

σz

εx
1
E
--- σx νσy–( )=

εy
1
E
--- νσ– x σy+( )=



Aerospace Structures 345

Bending of thin plates

than thickness t. In the first case the structure is a beam, and in the second case it is a plate.   In pure bending the 

neutral axis of the beam deforms into an arc of a circle with radius , and the normal strain in the x-direction is 

. Note that we assumed that the x-axis coincided with the neutral axis in the undeformed beam. Hence, 

longitudinal line elements above the neutral axis, z > 0, are stretched, and line elements below the neutral axis, z 
< 0, are compressed. In the case of a beam, the normal stress in the y-direction, , is also very small and is 

neglected with respect to the longitudinal normal stress . That is, the beam resists the applied bending moment 

by the longitudinal normal stress . Since , we get from Hooke’s law, eq. (11.103), that 

. (11.104)

Hence, the longitudinal normal stress is the modulus of elasticity times the longitudinal normal strain, and the 
normal strain in the y-direction is just Poisson’s ratio times the longitudinal normal strain. The form of the last 
expression for εy in eq. (11.104) shows that the line elements in the cross section parallel to the y-axis before 
deformation also bend into circular arcs. The line element parallel to the y-direction at z = 0 in the undeformed 

beam has a radius of curvature of  in the deformed beam. This transverse curvature is called anticlastic curva-

ture, and is illustrated in figure. 11.23. 

Now consider pure bending of a plate under the same moment M, where now the dimension b is much larger 
than thickness t. In this case experiments show that the transverse line elements remain straight over the central 
section of the plate, so that the anticlastic curvature is suppressed. In this central section of the plate the trans-
verse normal stress σy is non-zero. However, the transverse normal stress must vanish at the free edges at y = 0 
and y = b, so that anticlastic curvature develops only in narrow zones near the free edges to adjust to vanishing of 
the normal stress  at the free edges. In the central portion of the plate, the associated normal strain is zero. The 

suppression of anticlastic curvature is characterized by the vanishing of the normal strain εy. Hence from Hooke’s 
law, eq. (11.103), for εy = 0 we get
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cross section.
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. (11.105)

Since the denominator in the expression for σx is positive but less than unity, the plate is stiffer than the beam 

owing to the presence of the non-zero transverse normal stress  to help in resisting the applied moment. Com-

pare eqs. (11.104) and (11.105) for the normal stress σx. The quantity  is an effective modulus of the 
plate.

11.7 Compression buckling of thin rectangular plates

Consider the perfectly flat plate subject to a longitudinal compressive force of magnitude  applied in a spa-

tially uniform manner along edges x = 0 and x = a, as shown in figure. 11.24. The equilibrium response of the 

plate in linear theory is that of pure compression in the x-y plane with no out-of-plane deflection of the midsur-
face. That is, in the pre-buckling equilibrium state the plate remains flat. The normal stress  in the plate is spa-

tially uniform, and we write it as , where  is the applied compressive stress.

At a critical value of the compressive force  the plate will buckle, or deflect out of the flat pre-buckling 

equilibrium state. To determine this critical force we have to consider a slightly deflected equilibrium configura-
tion of the plate, similar to the analysis of the perfect column presented in article 11.1. Refer to Brush and Alm-
roth (1975) for the details of this adjacent equilibrium analysis for the critical force.

Instead of a detailed adjacent equilibrium analysis of the plate, we can make a comparison to the critical 
force determined for the pinned-pinned column in figure. 11.6. The configuration of the plate comparable to the 
pinned-pinned column has simply supported, or hinged, edges at  and , and has free edges at 

 and . The compressively loaded plate for these boundary conditions is called a wide column. The 
critical force for the pinned-pinned column is

σx
E

1 ν2–
--------------εx= σy νσx=

σy

E 1 ν2–( )⁄

Px

PxPx

x

y

a

b

Fig. 11.24 Uniformly applied compressive forces applied to opposite longitudinal edges of a 
rectangular plate.
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. (11.106)

For the plate, replace the modulus of elasticity  in the column formula by , since the plate is stiffer 

than the column. Also set  for the plate. The formula for the second area moment of a rectangular cross 

section is . Hence, eq. (11.106) transforms to

. (11.107)

For the wide column configuration of the plate, the critical load is written in the form

, (11.108)

where the bending stiffness, or flexural rigidity, of the plate is defined as

. (11.109)

The critical compressive stress at buckling is simply . Divide eq. (11.107) by area bt to get

.

By convention, this critical compressive stress is written in the form

(11.110)

where  is a nondimensional buckling coefficient for compressive loading, which is a function of the plate 

aspect ratio . For the unloaded edges free and the loaded edges simply supported, this buckling coefficient is

. (11.111)

For other support conditions on the edges , , , and , the critical compressive 
stress is also given by eq. (11.110) but the compressive bucking coefficient is a different function of the plate 
aspect ratio. The transition from column to plate as supports are added along the unloaded edges (  and 

) are depicted in figure. 11.25 on page 349. The compressive buckling coefficient is plotted for various 
support conditions as shown in figure. 11.26 on page 350. Note that some of the curves for the buckling coeffi-
cient exhibit cusps, or discontinuous slopes, at selected values of the plate aspect ratio. The cusps correspond to 
changes in the half wave length of the buckle pattern along the x-direction. In particular, for the plate with simple 
support on all four edges, case C in figure. 11.26 on page 350, note that  for integer aspect ratios.
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11.7.1 Simply supported rectangular plate

Consider a plate simply supported on all four edges and subject to uniform compressive on edges x = 0 and x = a. 
In the pre-buckling equilibrium configuration the plate remains flat, , with a spatially uniform com-

pressive stress equal to the applied compressive stress . From the method of adjacent equilibrium, the out-of-
plane displacement of the plate at the onset of buckling is

, (11.112)

where m and n are positive integers and  is an arbitrary amplitude. Integer m corresponds to the number of half 

waves in the x-direction and integer n corresponds to the number of half waves in the y-direction. Thus, specific 
values of integers m and n in eq. (11.112) characterize a buckling mode, and for each buckling mode there is a 
corresponding buckling stress. Equation (11.110) is the formula for the compressive stress at buckling, with the 
compressive buckling coefficient given by

. (11.113)

The critical stress is the lowest buckling stress, which occurs for a certain choice of m and n. Since  is directly 

proportional to powers of integer n, the minimum value of  occurs for n = 1. Then minimum values of  are 

related to a/b and integer m by

. (11.114)
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Fig. 11.25  Transition form column to plate as supports are added along unloaded edges. Note changes in 
buckle configurations (NACA TN 3781, figure 1).



Article 11.7

350 Aerospace Structures

Fig. 11.26  Compression buckling coefficient for flat rectangular plates (NACA TN 3781, figure 14).
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Critical values of the compressive buckling coefficient as a function of a few aspect ratios are listed in table 11.4.

These critical values of the compression buckling coefficient are plotted as case C in figure. 11.26 on page 350. 
The buckling modes for three integer values of the aspect ratio are depicted in figure. 11.27. There is one half 
wave across the width (n = 1) and the number of half waves across the length, m, increases with increasing aspect 
ratio. For integer values of the aspect ratio the critical value of the compressive buckling coefficient , and 

it follows that the critical compressive stress is

. (11.115)

From eq. (11.112) the length of a half wave in the x-direction is , and the length of a half wave in the y-

direction is the plate width b for n = 1. These half wave lengths are the same when , or . 
That is, the half wave lengths in the x- and y-directions are the same for integer values of the aspect ratio. Hence, 
for integer values of the plate aspect ratio the buckling mode consists of a sequence of square buckles. 

Table 11.4 Compression buckling coefficient for selected plate aspect ratios

Plate aspect ratio
Number of half waves in the x-
direction

Critical compressive 
buckling coefficient 
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Fig. 11.27 Compression buckling modes for integer aspect ratios of a simply supported 
rectangular plate. 
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Example 11.4 Critical load for simply supported rectangular plate in compression

Let a = 20 in., b = 10 in., t = 0.10 in., , and . From eq. (11.110) the critical com-
pressive stress

. (a)

From eq. (11.114) the compression buckling coefficient is

. (b)

For m = 1, 2, 3, , respectively. For larger values of m, coefficient  is larger. The minimum 

value of  is 4 corresponding to m = 2. Hence, the critical stress is

. (c)

The critical compressive load . Hence,

. (d)

The buckling mode for  has one half sine wave in the transverse direction and two half 

waves in the longitudinal direction. The load  is the lowest load at which such a plate can lose 

its stability.J

11.8 Buckling of flat rectangular plates under shear loads

Consider a thin, rectangular plate with a thickness denoted by t, and the in-plane dimensions denoted by a and b, 
where . Note that a denotes the long dimension of the plate and b denotes the short dimension. It is 

subject to uniformly distributed shear stress  as illustrated in figure. 11.28. From Mohr’s circle for plane stress, 

E 10 6×10  lb./in.2= ν 0.3=

σcr kc 903.81 lb./in.2( )=

kc
m
2
---- 2

m
----+ 

  2
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kc 6.25 4.0 4.694, ,= kc
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σcr 3 615.24 lb./in.2,=

Pcr σcrbt=

Pcr 3 615 lb.,=

m n,( ) 2 1,( )=

Pcr 3 615 lb.,=

0 t b a≤«<

τ

Fig. 11.28 Plate subject to in-plane shear loading.
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the state of pure shear is equivalent to tensile and compressive normal stresses at forty-five degrees to the direc-
tion of pure shear. It is this compressive normal stress that leads to buckling of the thin plate subjected to shear.

The critical value of the shear stress per unit length, , is given by the formula

, (11.116)

where  is a nondimensional buckling coefficient for shear loading. This buckling coefficient is a function of the 

plate aspect ratio  and the boundary conditions applied to the plate. Values of the shear buckling coefficient 
are given in figure. 11.30 on page 354. The buckling mode labeled the symmetric mode in the figure pertains to a 
buckled form that is symmetric with respect to a diagonal across the plate at the node line slope. For a narrow 
range of aspect ratios the plate buckles in an antisymmetric mode. For an infinitely long strip, or , 

 for simply supported, or hinged, edges at , and  for clamped edges. 

A least squares fit of the shear buckling coefficient as a function of the plate aspect ratio is convenient in 
problem solving. For the simply supported plate, or the plate with hinged edges, the data listed in table 11.5 was 
read from the graph in figure. 11.30. 

These data are fit to the functions 1 and . The result of the least squares fit to these data is

. (11.117)

The least squares fit and the input data are plotted in figure. 11.29.

Table 11.5 Shear buckling coefficient
 for selected plate aspect ratios

a/b ks

1 9.6

2 6.4

3 5.8

4 5.7

5 5.5
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Fig. 11.29 Graph of eq. 
(11.117) compared to 
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table 11.5.
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Fig. 11.30 Shear-buckling-stress coefficient of plates as a function of a/b for clamped and hinged edges 
(NACA TN 3781, figure 22). 
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11.9 Buckling of flat rectangular plates under combined compression 
and shear

A plate subject to uniformly applied longitudinal compression and shear is shown in figure. 11.31. The critical 

combination of shear and compression stresses under different boundary conditions and different aspect ratios of 
the plate can be approximated to a sufficient accuracy by

, (11.118)

where  and  are the critical values of the separately acting shear stress and the compression normal stress, 

respectively (NACA TN 3781, pp. 38, 39). Equation (11.118) is plotted in figure. 11.32.
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Fig. 11.31 Plate subject to longitudinal compression and in-plane shear loading.
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Example 11.5 Wing rib spacing based on a buckling constraint

The stringer stiffened box beam that is the main spar in a wing is shown in figure. 11.33. For a pull-up maneuver, 

the calculated transverse shear force  and the bending moment  at the 

wing root. The thickness and width of the upper and lower cover skins are  and , respec-

tively. The thickness and height of the left and right webs are  and , respectively, and 

the flange area of the stringers . The material is isotropic with properties  and 

. For , the upper skin is in compression. Determine the rib spacing, denoted by a, such that the 

margin of safety for buckling of the upper skin is slightly positive.

Solution.  The centroid and the shear center of the cross section coincide with the center of the box beam due to 
symmetry. The normal stress due to bending in the upper skin is calculated from the flexure formula; i.e.,

, (a)

where the second area moment of the cross section about the x-axis is

(b)

Hence, the bending normal stress in the upper skin is

. (c)

Vy 25 000 lb.,= Mx 4.14 6×10–  lb-in.=
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tw 0.30 in.= bw 13 in.=
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ν 0.3= Mx 0<

x
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Fig. 11.33 Wing box beam of example 11.5.
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The shear stress in the upper skin is determined from the analysis of the shear flow distribution around the 
contour of the cross section, which is shown in figure. 11.34. 

The shear flow in the upper skin is

. (d)

The shear stress , and its evaluation is

. (e)

Computing the maximum magnitude and the average value of this shear stress results in

. (f)

The maximum magnitude of the shear stress in the upper skin is 7.25 percent of the magnitude of the bending 
normal stress. Moreover, the average value of the shear stress is zero in the upper skin. Hence, it is reasonable to 
neglect the effect of the shear stress on the buckling of the upper skin.

Assume the upper skin is a simply supported rectangular plate between the stringers and ribs. Actually, the 
stringer and ribs provide rotational constraint to the upper skin, but the assumption of no rotational constraint is 
conservative with respect to design. The critical compressive stress for simple support on all four edges of the 
upper skin underestimates its actual value. Equation (11.110) for the top cover skin is

, (g)

and eq. (11.114) for the compression buckling coefficient is

. (a)

The margin of safety is defined by
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branch 1 2 3 4Fig. 11.34 Shear flow distribution for the box beam of 
example 11.5.
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. (11.119)

The margin of safety (11.119) is positive for a feasible design, otherwise the design is infeasible. It should be a 
small positive value for a design of least weight. The computations for the margin of safety are listed in 
table 11.6.

A rib spacing of 16 in. is a feasible design with a slightly positive margin of safety.J
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Table 11.6 Margin of safety for selected rib spacings

a, in. a/bf kc , lb./in.2 Margin of safety Design

14 0.583 5.27905 20,708.6 0.12497 feasible

15 0.625 4.95063 19,420.2 0.05498 feasible

16 0.667 4.69444 18,415.3 0.000387 feasible

17 0.708 4.49482 17,632.20 – 0.04215 infeasible

18 0.750 4.34028 17,026.0 – 0.07509 infeasible

19 0.792 4.2223 16,563.2 – 0.1002 infeasible
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11.11 Practice exercises

1. An ideal column of length L is pinned at one end and fixed to a rigid bar of length a at the other end. The sec-
ond end of the rigid bar is pinned on rollers. Refer to figure. 11.35 Find the critical load  and discuss the 

extreme cases of  and .

2. The column shown in figure. 11.36 is pinned at the left end and supported by an extensional spring of stiff-
ness  at the loaded right end.

a) Use the adjacent equilibrium method to show that the characteristic equation is

.

b) Plot the critical load  as a function of , . For 

what values of  will the column buckle in the Euler 
mode? (i.e., case A in figure. 11.6).

3. The statically indeterminate truss shown in figure. 11.37 
consists of six bars, labeled 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4. It is 
subject to a vertical force F at joint number 2. The cross-sec-

tional area of each bar is 2,000 mm2, the second area moment of 

each bar is 160,000 mm4, and the modulus of elasticity of each 

bar is 75,000 N/mm2.

a) Take bar force 1-4 as the redundant (i.e., ). 

Using Castigliano’s second theorem to determine the 
redundant Q in terms of the external load F. 

b) Determine the value of F in kN to initiate buckling of 
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the truss.

c) If the yield strength of the material is 400 MPa in tension, determine the value of F in kN to initiate 
yielding of the truss.

4. Bars 1-2, 2-3, and 2-4 of the truss shown figure. 11.38 are unstressed at the ambient temperature. Only bar 1-
2 is heated above the ambient temperature. Determine the increase in temperature, denoted by , of bar 1-2 to 

cause buckling of the truss. The cross section of each bar is a thin-walled tube with radius  and wall 

thickness . Take length . All three bars are made of the same material with properties 

 and .

5. Consider the wing spar in example 11.5. A counterclockwise torque  is specified to act at 
the root cross section in addition to the specified transverse shear force and bending moment. Determine the rib 
spacing, denoted by a, such that the margin of safety with respect to buckling of the upper skin is slightly posi-
tive. Report the value of a to two significant figures and the associated margin of safety. The margin of safety is 
defined by the formula

.

Use the average value of the shear stress over the width of the upper skin for the shear stress  in the margin of 
safety formula. Remember that dimension b is smaller than dimension a in the formula for the critical value of 
the shear stress, and that b is the width of the plate/skin on which the compressive normal stress acts in the for-
mula for .
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Fig. 11.38 Exercise 4. (a) three-bar truss, (b) base structure. (c) cross section of the bars.
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