CHAPTER 11 Buckling of colunmsand
plates

If buckling occurs before the elastic limit of the material, which isroughly the yield strength of the material, then
itiscalled elastic buckling. If buckling occurs beyond the elastic limit, it is called inelastic buckling, or plastic
buckling if the material exhibits plasticity during buckling (mainly metals). Many thin-walled structural compo-
nents buckle in compression below the elastic limit. Therefore, buckling determines the limit state in compres-
sion rather than material yielding. In fact, about 50 percent of an airplane structureis designed based on buckling
constraints.

11.1 Perfect columns

Consider aperfectly straight, uniform column of length L with cross-sectional area A subject to acentric end load
P asshowninfigure. 11.1. (The column is drawn horizontally for convenience.) The columnislong relativeto its
largest cross-sectional dimension, and the column consists of a homogeneous, linear elastic material whose mod-
ulus of elasticity is denoted by E. Buckling analyses are inherently nonlinear. As the previous structural models
discussed in chapter 10 demonstrate, nonlinear analysis resultsin more than one equilibrium state for a specified
load, whereasin linear analysisthereisonly one equilibrium state for a specified load. A geometrically nonlinear
analysis of acolumnis developed in this article in which the axial strain-displacement relation is nonlinear and
equilibrium is taken on the displaced structure.
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Fig. 11.1 A straight column subject to a centric, compressive axial force.
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Article 11.1

Kinematics. Consider adifferential element dz-by-dy in the initial, undeformed column, where dzis along the
centroidal axis and dy is perpendicular to the centroidal axis as shown in figure. 11.2. In the z-y coordinate sys-
tem, the material point at coordinates (z,0) displacesto coordinates (z*, y*) in the deformed bar, where (z*,y*) is
referenced to the same z-y system. These coordinates are related by

z¥ = z+w(z) y¥ = 0+v(z), (11.1)
where w(z) isthe displacement parallel to the z-axis and v(z) isthe displacement parallel to the y-axis. The
material points along length dz map to the differential length ds* along the centroidal axisin the deformed bar.
By the Pythagorean theorem (ds*)? = (dz*)2 + (dy*)?. The differential lengthsin the deformed bar are

dw

dz* = (1"':{'— dv
z

)dz and dy* = (d

z

) dz. (11.2)

Definethe stretch ratio A by A = ds*/dz . Consequently, the stretch ratio is related to the derivatives of the dis-

Y,V

dy

0 (z,0) (z+dz,0) (b) deformed state
(a) initial state

Fig. 11.2 Differential elementsin theinitial state (a) and in the defor med state (b).

placements by

dw\? _ (dw\?
A= [1+=) +(=) . 3
S (@
The clockwise rotation angle of element ds* with respect to the z-direction is denoted by ¢ (z) . Trigonometric
functions of this rotation angle are given by

sing, = A% and cosd, = dzx
ds* Y ds*

Using the chain rule of differentiation and the definition of the stretch ratio these trigonometric functions can be
written as

(11.4)

sing, = (“22) 42 = 1(=D) andsimilarly cosd, =

dw
1+—). 11.5
dz /ds* M dz 7\.< ) (11.5)

dz

We impose the hypothesis of classical theory that cross sections normal to the centroidal axis in the undeformed
bar remain rigid and normal to the centroidal axisin the deformed bar. Thus, the differential line element dy in
the undeformed bar does not change length in the deformed bar and remains normal to the centroidal axisin the

deformed bar. That is, line element dy also rotates clockwise through angle ¢, . The stretch ratio (11.3) is
expanded in abinomial seriesto get
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0(‘1—“’)3 . (11.6)
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The engineering strainisdefined as ., = A — 1. If cubic powers and higher of the displacement derivativesin
the series expansion of A are neglected, then the strain-displacement relation is

dw | 1/dw?
= — 4+ (=) . .
€z dz 2 (dz) (11.7)

Equilibrium. The free body diagram of the element of the bar in the deformed state is shown in figure. 11.3(a).

1
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Fig. 11.3 Freebody diagram of the differential element in the deformed bar (a), and the
resolution of theresultant force F into components acting on the cross section (b).

Theforce F acting on the cross section of the deformed bar is resolved in two sets of orthogonal components.
ComponentsH and S, act in horizontal direction and the vertical direction, respectively. ComponentsN and 7,

act tangent and normal to the centroidal axis, respectively. Let o denote the angle between the vertical and the
line of action of force F. From figure. 11.3(b) H# = F'sino and S, = Fcosa . ComponentsN and V, are given

by
N = Fsin(o.—¢,) = (Fsina)cos¢, —(Fcosa)sing, = Hcoso, -8, sing,, and (11.8)
V, = Feos(a—¢,) = (Fcosa)cosd, + (Fsina)sing, = S,cos¢, + Hsing, . (11.9)
Equilibrium in the horizontal direction requires dH = 0 and equilibrium in the vertical direction requires
dsS, = 0.Thus, the horizontal component H and the vertical component S, are spatially uniform along the

length of the bar. Since the applied compressive force P isalso horizontal then H = —P . The bending moment is
denoted by A, . Moment equilibrium about the right end of the element in figure. 11.3(a) leads to

M, +dM, —M, —(-dy*)H— (dz*)Sy 0. (11.10)

dM dM
”d +7Z(dzz)+ Then

The differential functions are expanded in a series. For example dM

moment equilibrium becomes

(s v o =0

Division by dz followed by the limit as dz — 0 leads to the differential equation
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Hooke'slaw. The normal force component N is proportional to the axial strain ¢_, of the centroidal axis, and the

bending moment A/, is proportional to the rotation gradient —d(l‘ of the cross section. That is,

z

N = Ede, M, = El(&‘) ,

11.13
7 (11.13)

where the modulus of elasticity is denoted by E, the cross-sectional areaby A, and the second area moment of the
cross section by 1.

11.1.1 Pre-buckling equilibrium

Thetrivial equilibrium configuration of the column is straight and in compression subject to the applied axial
force P. The lateral displacement v(z) = 0, rotation ¢,(z) = 0,and M, = 0 for 0 =z =< L. Fromeqg. (11.8)

N = H = -P.Fromeq. (11.9) S, = V, but overal equilibrium requires S, = 0. Let w,(z) denote the axial

displacement in pre-buckling equilibrium. Then, strain (11.7) and stretch ratio reduceto e,, = %) and
z

A=1+ C%’ , respectively. Hooke's law (11.13) for the axia forceis —P = EA(G%)) . Integrate Hooke's law
z z

and take the axial displacement w,(0) = 0 to get

wy(z) = 7k (11.14)

11.1.2 Buckling

To assess buckling of a dlightly defected column, we introduce a small, dimensionless parameter € such that all

dependent variables equal there pre-buckling equilibrium expressions as € — 0 . The displacements and rotation
are expressed as

w(z) = wy(2) +Ew(2) v(z) = Ev(2) 0.(2) = E¢y(2). (11.15)
The trigonometric functions of the rotation angle are
sing, = £¢,(2) +O(E)  cosd, = 1+O(E?). (11.16)

In the following developments terms of €2 and higher degrees are neglected. The vertical shear force
S, = §S,,. Theaxia strain (11.7) expansion is
_dw, _dw,

= —+cg—. 11.17
€z dz E dz ( )

Thefirst expressionin (11.8) iswritten as N + Pcos¢, + S sing, = 0, where N = E4e,, . The expansion for
this equation containing the force N is
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go[EAddlZO +P} +§[EAC%} +O(82) = 0. (11.18)

To satisfy the last equation for each value of € = 0, the coefficients of €2 and £! must vanish, which leads to

% = i % =0. (11.19)
dz EA dz

On the pre-buckling equilibrium path the stretchratio A = 1 —P/(EA) .

The expansion of the equilibrium equation for bending (11.12) combined with the moment from Hooke's
law (11.13) is

2
do dv P
0. l_p1_(1_+L_ 2y =
0.0 +§{Ezdz2 P (1 EA)SJ +0(E2) = 0. (11.20)
Therefore, the significant result from eq. (11.20) is
d2¢ d
1 — ﬁ — — £ =
> (1 EA) S, = 0. (11.21)

Thefirst expression in eg. (11.5) relating the rotation, the stretch ratio, and the displacement v(z) iswritten as
. dv _
[l -P/(EA)]sing, + i 0. (11.22)
z

The expansion of eq. (11.22) becomes

dv P
0. i | _ L 2y =
£ o+§[dz +(1 EA)¢1}+0(§ )= 0. (11.23)
Therefore,
dv, P _
dz +<1_EA>¢1 = 0. (11.24)

Solve eg. (11.24) for ¢,(z) and substitute the result into eg. (11.21) to get

_El{d;‘;l}_P(l —é)%—(l —E%)zsyl =0. (11.25)

. . . ds . . I .
Now differentiate eq. (11.25) with respect to z and note that —gﬂ = 0 consistent with the equilibrium equation
z

a% = 0.Thefinal resultis
4 2
3721 + 237? =0 vi = v(2) 0<z<L, (11.26)
where
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K? = ﬁ(l —£>. (11.27)
EI EA

The expressions for the bending moment and vertical shear force are

- _E1<‘ﬂ> (1 i )Zsyl = —E{d%‘ +K2@] (11.28)

( = i) M dz? " EA dz> dz

EA x1

The solution of eq. (11.26) for v,(z) is subject to boundary conditionsat z= 0 and z= L. There are four so-
called standard boundary conditions. These are shown in figure. 11.4.

A. Pinned-pinned
vi(0)=0  v(L)=0 '5 e P
M (0) =0 M (L) =0 —» Z L g |‘
B. Clamped-free P
v(0) =0 M., (L) =0 E -------
0,4(0) =0 S,(L) =0 -z L
C. Clamped-clamped U
v,(0) = 0 vi(L) = 0 a<_ P
D. Clanped-pinned .
v,(0) = 0 vi(L) = 0 S
¢ %

¢,1(0) =0 M (L) =0 LJ

Fig. 11.4 Standard buckling boundary conditions.

One solution to the differential equation (11.26) subject to boundary conditionsA-D is v,(z) = 0 for all
values of theload P. Thisisthetrivial solution. The general solution of eg. (11.26) for K2> 0 is

vi(z) = A4,;sin(Kz) + A,cos(Kz) + Az + A,, (11.29)

where A(, Ay, Az, and A, are arbitrary constants to be determined by boundary conditions.
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Example11.1 Critical load for clamped-free boundary conditionsin figure. 11.4(B)

Consider the clamped-free boundary conditions denoted as (B). Determine the critical load P, for which the
perfect column admits a non-trivial equilibrium state.

Solution. The bending moment and vertical shear force (11.28) vanish at z= L. The four boundary conditionsin
this case are
vi(0) =0 v,"(0) =0 EIv,"(L) =0 [v""+K>v,'].., =0, ()

where the primes denote derivatives with respect to z. Taking derivatives of eg. (11.29) we have

v, = A;sin(Kz) + 4,cos(Kz) + Ayz + A,
v, = 4,Kcos(Kz) —A,Ksin(Kz) + A,
v," = —A4,K?*sin(Kz) —A,K?cos(Kz)

Vl!// - —A1K3COS(KZ) +A2K3sin(KZ) (b)

Substitute these solutions into the four boundary conditions to get

0 1 0 1|4

K 0 104 = ©
—K?sin(KL) —K?cos(KL) 0 0||A4,

0 0 K20]|4,

A non-trivial solution for A; to A4 requires the determinate of coefficients to vanish:

0 1 01
det K 0 Lo~ g, )
—K?sin(KL) —K%cos(KL) 0 0
0 0 K20
After expanding this determinate we get
—K3cos(KL) = 0, (e)

which is called the characteristic equation. The solution K = 0 of the characteristic equation leads to the triv-

ia solutionfor v(z) . Non-trivial solutionsto the characteristic equation occur for cos(KL) = 0, whose positive
roots are

K,L = (2n—1)(n/2) n=123,... ®

For the discrete values of K,L in eq. (f) to satisfy the equation in the fourth row of matrix eqg. (c) requires
Ay = 0. Setting A, = 0 inthe equation in the second row of matrix eq. (c) requires 4, = 0. The equation of
thefirst row of matrix eg. (c) yields 4, = —4, . Note that the equation obtained from the third row of matrix eq.
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(c) isidentically satisfied for 4, = 0 and the discrete values of K, L . For each value of n we have an associated
buckling mode (A; = Az = 0, A, = —Ay):

vi(z) = Ay[1 —cos(K,z)]. (9)

The buckling loads are determined from the expression for K2 in eq. (11.27), which after some manipula-
tioniswritten as

@ = (B)1-H(E) = eo-r

where k2 = P/(EI) and »* = 1/4 . Theradius of gyration of the cross section is denoted by r. At
K = K, = n/(2L) wehave

(ﬁ)2 = K2(1-k2r2), ()

where k2. = P../(EI) . Equation (i) isaquadratic equation for k2, , and the lowest root is

L\? .
(r) - } ' 0
where L/r isthe slenderness ratio of the column. For selected values of the slendernessratio the values of k2
arelisted in table 11.1.

= b = (0 -

o 2L 202\r) | \r

Table 11.1 Buckling coefficient for selected slendernessratios.

k%

L/r k2 m
20 2.48281/L2 1.00625
40 2.47122/L2 1.00153
60 2.46909 /L2 1.00069
80 2.46835/L2 1.00039
100 2.46801/L2 1.00025
% n2/(4L%) = 2.4674/12 1.0

Values of k2 monotonically decrease with increasing slenderness ratios and approach a minimum value of
n?/(4L?) asL/r— o At L/r = 20 thevalue of k2. is0.63 percent higher than the minimum, and at

L/r = 100 thevalueof k2. is0.03 percent higher than the minimum. In design we use the minimum value of
k2. for thecritical load. That is,
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2
[k = Po/(ED) = 52/ (412)] = Py = 221, ®

Theresult for the critical load in eqg. (k) is obtained if the axial strain at the bifurcation point withis
neglected with respect to unity. From egs. (11.17) and (11.19) the strain at the bifurcation point is

¢ :01_%:_<&) :_( i )
odz E4 aL/ry?
For 20 < L/r < 100 therange of the strain at bifurcation point is —0.0062 =< ¢,_ < —0.00025 . For small strain at

the bifurcation point the stretch ratio A = 1 +¢_, = 1. Equation (11.27) yields K2 = k2 A\ = kZ . Hence, the val-
uesof k are

k, = @n-lm _ /ﬂ n=123,.. 0
L 2 EI
Solve eq. (1) for the loads to get
p = [(2;;—1)7—‘}2’5—[ n=1,23 (m)
n 2 L2 Rt e B |

where P,, are the buckling loads. The first three buckling modes and corresponding buckling loads are shown in
figure. 11.5. Remember that in design we use the minimum EI for the cross section. [}

2
1 - P, = W El
0.8 4 12
v /Ay 8-2 n=1
0:2
0.2 0.4 0.6 0.8 1
2
L ,
v/ 4, 1} N7 - P, = In El
0.5 4 12
0.2 0.4 0.6 0.8 1
2
150 _ 5
vi/A, L[ n=3 P3:25n%
0.5 / 4L
0.2 0.4 0.6 0.8 1

Fig.11.5 First three buckling modesfor the clamped-free column.
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11.1.3 Buckling equationsfor negligible strain at the bifurcation point

Neglecting the axial strain with respect to unity meansthe stretchratio A = 1 —P/(EA) =1, and egs. (11.21),

(11.24), and (11.27) simplify to

2
do, _dv, dv,

e _p_g = Diyg, = k==L
dz2 dz S0 =0 dz ¢ =0

From eg. (11.26) the differential equation governing bucklingis

4 2
dvi, k2d 1

—— =0 v, = v(2) 0<z<L k?* = P/(EI).

dz4 dz2

O0<z<lL, (11.30)

(11.31)

The critical loads for boundary conditions A through D and for El = constant are given in figure. 11.6.

|l L »|

- Py
B: clamped-free n_____L_Z

< >

B L

C: clamped-clamped n../___-kﬂ« P
I

n2El
L2

n2E]
412

4An2E]
L2

2.04672E1

LZ

Fig. 11.6 Critical buckling loadsfor the standard boundary conditionsA to D.

11.2 Initial post-buckling of the pinned-pinned column

The objectivein thisanalysisisto seek an approximation for the displacement and load about the bifurcation
point so that the early post-buckling behavior can be estimated. That is, does the load increase or decrease from
its value at the bifurcation point on the post-buckling equilibrium path? The theory was originally due to Koiter
using total potential energy (1945, in Dutch, English translation in 1970). Later Budiansky and Hutchinson
(1964) and Budiansky (1966) employed the principal of virtual work to get results equivalent to Koiter’'s static
post-buckling analysis. In this article the nonlinear equilibrium equations are used to develop the initial post-

buckling behavior.

324
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11.2.1 Summary of the nonlinear equations
The overall free body diagram of the column in a deflected

configuration is shown in figure. 11.7. The shortening of the Fig. 11.7 P 4—\ P
FBD of — LD -
distance between support pointsis denoted by A, where deflected A
- _ : . : pinned- | L
A w(L) . If _tr_le golumn is CL_Jt a some_p0| nt along its pinned - -
length, then equilibrium results in the vertical force compo-  column.
nentS, = 0 for0<z<L.
Therelation of the force N to load P is obtained from eg. (11.8) with # = —P as
EAde, .+ Pcos¢p = 0 (11.32)

In eg. (11.32) force N was replaced by Hooke's law (11.13), and we dropped the subscript x on the rotation ¢,

introduced in article 11.1 for convenience in the following developments. The strain ¢ isrelated to the deriva-

tives of the displacements by the nonlinear relation (11.7). Substitute Hooke's law (11.13) for the bending
moment into eg. (11.12) to get the differential equation for bending as

2
E[(d(p) —P

02 (@> =0 O<z<lL, (11.33)

dz
From eq. (11.5) the trigonometric functions of the rotation are related to the displacements by
. dv dw
+ = = — + —) =
Asind o 0 Acos¢ (1 dz) 0, (11.34)
where the stretch ratiois A = 1 +¢_,. The boundary conditions to be satisfied are

w(©0)=0  v(0)=0 %‘Zz =0 wL)=0 %‘Zz

z=0

=0. (11.35)
z=1L

11.2.2 Theperturbation expansion.
From the expressionsin eg. (11.30) the differential equation governing buckling in terms of the rotation is

2
d
EILY+Po =0 4= 0()  0<z<L, (1130
Z
subject to the boundary conditions
% =0 at z=0,L. (11.37)
dz

The solution to this boundary value problem is

nlE]
L2

0,(z) = —cos(%z) P=P,= (11.38)

The lateral displacement is determined from the second equation in (11.30) as
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vi(z) = isin(”—z) . (11.39)

Consider the rotation and displacement in the differential equation (11.33) to be afunction the dimensionless

parameter £ aswell asindependent variable z (i.e., q)(z €) and v(z, €) ). An approximate solution to the nonlin-
ear differential equation (11.33) and kinematic equation (11.34) isto be determined by perturbation expansions
of the dependent variablesin the parameter € for very small values of & . To effect the procedure, the displace-
ments and rotation are expanded in aseriesin € as

w(z) = wy(2) +Ew(2) + E2w,(2) + E3ws(z2) +
v(z) = Evy(z) +E2vy(2) + E3vs(2) + ... . (11.40)
b = E01(2) +E2y(2) +E3¢5(2) + ...

Functions w(z), ¢,(z), and v,(z) aregiven by egs. (11.14), (11.38), and (11.39), respectively. The remaining
functionsin the expansion (11.40) are to be determined. The expansion of the sine and cosine functions are

Sing, = Sin[E0,(2) + E,(2) +Ey()+ ] = B0y + £, + 80— 2 w0

(11.41)

cosp = cos(§¢(z) +E29,(2) +E3¢s(2) +...) = 1—5224)1(2)—%34)1(2)%(2)+O(E4)

11.2.3 Relations between the expansion functionsfor therotations and lateral displacement
With respect to the discussion in article 11.1.3 wetake A = 1, so the expansion of thefirst equation in (11.34) is
dvl
glot |+ 8 o, L]0+ 22 -Loi] v o = 0. (11.42
The previous series converges to zero for each sufficiently small value of € = 0 requires that the coefficient of

each power of €& must vanish. Hence,

dv, dv2
@ = -0, — = =0,
z

dv 1
d73 = — ¢+ gq)%. (11.43)

11.2.4 Perturbation expansion of theload P
We utilize the relationsin eg. (11.43) to get the expansion of eq. (11.33) as

E(E1d¢‘ +Po ) + EZ(EId% + P¢2) + E3(E1¢3 + Pgs — —¢ ) +0(E4) = 0. (11.44)

To determine how theload P isafunction of & multiply eq. (11.44) by ¢, and integrate with respect to zfrom z
=0toz=L:

<1> o ¢
E[f( Tl +P¢1)¢1dz] +§2L’)‘(E12+P¢2)¢ a’z] +§3L{(El3+P¢3——¢l)¢ldz] +O(EYH = 0.  (11.45)

0
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Integrate twice by parts with respect to z of the O(&2) termin eg. (11.45) to get

fEI

L 2
fEng‘f fElf {,dz + [ ¢2¢1 EI%%J
0

=0 (11.46)

The boundary terms in the expansion functions vanish consistent with the conditionsin eg. (11.35). Also, inte-
grate twice by parts with respect to z of the O(€3) term. After integrating by parts, eg. (11.45) is

L
o o o P
E[{(Eldl + P¢1) ¢1dz] + Ezﬂ(ﬂd] + Pq)l) le} + g{{(nd‘ P¢l) Oy — gq);‘dz] +0(E%) = 0.  (1147)
From the differential equation (11.36) at buckling we have
5174)1 = —P_¢,. (11.48)
de cr
Substitute eg. (11.48) into eg. (11.47) to find
L L L L
P
E(P —Pcr)(j‘q)%dz) +E2(P —Pcr)f¢1¢zdz +83 (P —Pcr)f¢1¢3dz - gfq)‘fdz +0(E*) = 0. (11.49)
0 0 0 0

Thelast step isto impose the orthogonality conditions on the expansion functions, which are

L L
fcplq)zdz =0 f¢1¢3dz =0. (11.50)
0 0
Equation (11.49) reducesto
L L
P
E(P—Pcr)(fq)%dz) —§3gf¢fdz+0(§4) =0. (11.51)
0 0

L
Divide eg. (11.51) by EPcr( f ¢12dz) and rearrange terms to the form Pﬁ = %%

0
where

L L
b = é“ fq)i‘dz)/( fq)%dz” = % (11.52)
0 0

Theseriesof (1 —&2h)~! = 1 +bE2+ O(E*), which leadsto

Loy bE2+ O(E3). (11.53)

cr

In general, the expansion of P/ P, iswritten as

Aerospace Structures 327



Article 11.2

1{: = 1+aE+bE2+.... (11.54)

11.2.5 Solutionsfor therotation and lateral displacement functions

Substitute the expansion of load P from eg. (11.54) into eq. (11.44), and arrange termsin powers of & to get

E{Eldq)l + Pcr(bl} + E{El% + P, + aPcr(bl} + g{ﬂd% + Py +aP by +bP ) — 6 P ¢} |+... = 0. (11.55)

For the series (11.55) to converge to zero for each sufficiently small value of &, the coefficient of each power of
& must vanish. The coefficient of € isthe differential equation for buckling, egs. (11.36) and (11.38). The coef-
ficientsof €2 and €3 lead to differential equations

Idﬁhpaq)k = 0, = §u(2) 0<z<L k=23, (11.56)

subject to boundary conditions

6—191‘ =0 @1‘ =0. (11.57)
dz dz

z=0 z=1L

The non-homogeneous terms in eq. (11.56) depend on previous solutions of the expansion functions. That is,

F, = —aP_¢, Fy = —aP ¢, —bP ¢, + P03 . (11.58)

6 cr
Let k,, = P,/ (EI).Thegeneral solution to differential equation (11.56) consists of a complementary function

¢ rcos(k,,z) + ¢y, sin(k,,z) that satisfies the homogeneous equation plus a particular solution denoted by ¢;(z)
that satisfies the non-homogeneous equation. Then, the general solutionis

du(z) = cypc08(k,,z) + cypsin(k,,z) + ¢ (z). (11.59)

Consider conditions required to solve the boundary value problem presented by egs. (11.56) and (11.57). Multi-
ply eg. (11.56) by ¢,(z) and integrate theresult fromz=0toz=L. Theresultis

L

L
f(Elq)kq)l cr¢k¢1) dz = ka¢1dZ- (11.60)
0

0
Integrate the first term on the left-hand side of eq. (11.60) by parts twice to get

o ¢1E1¢k}

E[—*
[4)1 dz dz

[(PlEl

L
do, d¢1E1¢J f(Elq’l +Pcr¢1) Oz = kaq)ldz_ (11.61)
dz dz L0
0 0

Boundary conditions (11.37) and (11.57) result in the terms on the | eft-hand side of eg. (11.61) evaluated at the
end points of the interval equal to zero. Also, the integrand on the left-hand side vanishes since rotation ¢, satis-

fieseq. (11.36). We are left with the condition for the solution of the boundary value problem for ¢, that
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L

ka(b]dz =0. (11.62)
0
For k = 2 condition (11.62) is
L L
[Fatnde = ~aPy 7z = —apcr@ = 0. (11.63)
0 0

The only way to satisfy the condition in eg. (11.63) is to take the post-buckling coefficient @ = 0. The solution
for ¢, that satisfies the boundary conditions (11.57) is ¢,(z) = c,,cos(k,,z) . The orthogonality condition

(11.50) determines ¢;, = 0. Thus, ¢,(z) = 0. From eg. (11.43) and boundary condition (11.35) we find
v,(z) = 0 for 0 =z =< L. For k=3, condition (11.62) is

L L

1

[Fatndz = f(— bP b, + chrq)f) ¢dz = 0. (11.64)
0 0

Equation (11.64) determines post-buckling coefficient b, and it is the same as given in eg. (11.52).

From eg. (11.56) the governing equation for ¢;(z) witha = 0 andb = 1/8 is

i = (Yot = 2] Yool ) -Heos (] s

Use the trigonometric identity cos®x = (3/4)cosx + (1/4)cos(3x) tofind

2
d ¢3 _Pcr 3T|:Z
El——+P = == == . 11.66
gz et =5 cos (<) (11.66)
The solution to differential equation (11.66) is
_ . 1 3
95(z) = cy5c0s(k,,z) + cyysin(k,,z) + <@> cos(%z) . (11.67)

Boundary conditions (11.57) lead to coefficient ¢,; = 0. Coefficient c¢,, isdetermined from the orthogonality
condition (11.50)

L

—c s L
f¢3¢1dz = % =0. (11.68)
0

Therefore ¢;; = 0 and the solution for function ¢;(z) is

b5(2) = <$> COS(%EZ) : (11.69)

Thefunction v4(z) can now be determined from eqg. (11.43). Theresult that satisfies boundary conditions (11.35)
is
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v4(z) = (g—f) sin<nfz> —(#) sin<3TnZ> . (11.70)

11.2.6 Solutionsfor the axial displacement functions
We make use of eq. (11.43) to find that the expansion of the strain ¢, in (11.7) is

dw
=04

% 2 % l 2 3 (_'Z_Y__V} 4
fz T E dz s [dz +2¢1}+§ [dz +¢1¢2J+0(§ ). (11.72)

Substitute expansions of the strain from eg. (11.71), the load P from eqg. (11.54), and the cosine function from eqg.
(11.41), into eg. (11.32) to find the expansion of the axial equilibrium as

EO[EA% P+ E[EA% +aPy + EZ[EA% +bPy~Pud? +EAZG}| +O(8) = 0. (aL72)
dz dz dz 2

For eq. (11.72) to converge to zero for each sufficiently small value of € ,the coefficient of each power of € must
vanish. Thus, we get to expressions for the derivatives of the expansion functions of displacement w(z) as

dwy _ =Py dw, _ —aP, dwy _ —2bP, + (2P, —EA)$?

dz EA dz EA dz 2EA

(11.73)

Sincea = 0 and w,(0) = 0, the displacement function w,(z) = 0 for 0 <z < L. The expression for the
derivative of displacement function w,(z) isintegrated with respect to z, and we set w,(0) = 0 tofind

TP
= _Zylla L (2—“2) (11.74)

R R T e W7
11.2.7 Summary
From thisinitial post-buckling analysis the results for the expansions of the load, displacements, and rotation are
2 P
PL = 1+% w(z) = —E—jz+§2W2(Z) v(z) = By (2) +E3v;(2) 0(2) = E¢,(2) +E%¢5(2) . (11.75)

cr

The strain of the centroidal axisis
P, dw, 1/dv\?
= - +E—=+-(—) |. 11.76
27 TEYg E[dz 2(&” (11.76)

Rotation functions ¢,(z) and ¢;(z) are given by egs. (11.38) and (11.69), respectively. Lateral displacement
functions v(z) and v,4(z) are given by egs. (11.39) and (11.70), respectively, and the axial displacement func-
tion w,(z) isgiven by eqg. (11.74).
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Example 11.2 Numerical resultsfor theinitial post-buckling of the pinned-pinned column

Consider the column with a solid, rectangular cross section of height h and width b, where h < b. The radius of
gyrationis » = J/I/4 = h/./12. The strain at the bifurcation point is obtained from eq. (11.76) for € — 0 is
—P../(EA), and take this strain equal to —0.0006 . Since P, = (n?El)/L?, we have

&_nz_E!<1):n_2<hz

= 1 m" = 0.0006.
EA 12 \E4l T 12 L) @

Hence, the span-to-thicknessratio L/h = 37.

The restriction on the magnitude of the expansion parameter € in theinitial post-buckling analysisis based
on thestrain at the elastic limit of 7075-T6 aluminum alloy, which isabout 0.0068 . Let €., denotethe strain of a
line element parallel to the centroidal axis. It is the sum of the strain of centroidal axis ¢, plusthe strain due to
bending. That is,

E. =€, +y(‘§f) , (b)

where (-h)/2 <y =<h/2 and d¢/dz isthe curvature of the centroidal axis. The magnitude of the maximum
compressive strain in post-buckling occurs at midspan, z = L/2,and y = —h/2.Thatis,

(. = e l(d2)

zz zz 2 dZ (C)

z=L/2

The expansion for the curvature at midspan is determined from egs. (11.75), (11.38) and (11.69). Theresult is

<[ e-[gipn e

z=L/2

do

:31 T3
d- g+ g, (d)

L~ 64L

z=

Substitute # = 0.270L and P,, = 0.0006E4 inthe expansionsfor the strains. The numerical evaluations of the
strain in eg. (11.76) and the strain from bending are

e.. = —0.0006 —0.000075E2 —%(%‘2) = —0.0424264E — 0.000662193E3 . ©
z

The axial strain on the concave side of the bar at midspan is set equal to the elastic limit strain of —0.0068 . Thus,

€., = —0.0006 —0.042464€ —0.000075€2 —0.000662913E3 = —0.0068 .

Thereal root of the previous polynomial is the maximum value of parameter €, whichis

Enax = 0.14605 . ()

For post-buckling coefficientsa=0and b = 1/8,weget P/P,, = 1.0027 at § = ., fromeq. (11.54).

Thereisavery small increasein the load during post-buckling. The lateral displacement of the column is deter-
mined from egs. (11.75), (11.39), and (11.70), and it is a maximum at midspan. Evaluation of the maximum dis-
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placement is

LE TLE?
Viax = V(L/2) = f—%

, (@)

and v, = 0.04638L at & = &

max *

The axial displacement of the column is determined from egs. (11.75) and (11.74). The shortening of dis-
tance between supportsis

A = —w(L) = L(0.0006) +<§ +L 0'2006 )22. )
The shortening at bucklingis A, = A\E _, = L(0.0006), and the normalized shortening is defined by

A/A, = 1+416.792E2. 0}

AtE = g, A/A, = 9.89 onthe post-buckling path. The configuration of the column at €, isshownin
figure. 11.8.

0.0464L
Fig. 11.8 Post-
buckling configuration —
of the pinned-pinned P =1.0027P,
column at the elastic

£ =g, = 0.14605

The pre-buckling equilibrium path is determined from eqg. (11.14) where A = —w,(L) = (PL)/(EA), or
P = (EA/L)A . Divideby thecritical load to get P/P,, = (EA/P_)(A/L).Fromeq. (a) the factor
EA/P, = 1/0.0006. Thus, P/P, = A/(0.0006L) = A/A_ onthe pre-buckling equilibrium path.

The load-deflection response is shown in figure. 11.9(a), and the load-shortening response is shown in fig-
ure. 11.9(b). The post-buckling behavior of the column is stable symmetric bifurcation, which is the same
behavior as model A in article 10.1 on page 289. The load does not decrease in post-buckling. However, the
increasein load isvery small in post-buckling. From apractical point of view, the column is considered neutral in
post-buckling.The structural stiffnessis defined as dP/dA . For post-buckling the structural stiffnessis com-
puted as

P P
dP _ dPdg _ (_crg) 1 - cr = £4(0.0000) _ E4 5003y
dA ~ dEdA 4 °)2(L/4+0.0006(L/8))E ~ L(2+0.0006)  L(2.0006) L

The structural stiffnessin pre-bucklingis (EA)/L . Theratio of the post-buckling stiffness to the pre-buckling
stiffness is 0.0003, which indicates the dramatic loss of structural stiffness due to buckling.Jlil

332 Aerospace Structures



In-plane buckling of trusses

14+

121
L)

0.8}
o0—oO unstable state
m—am stable state

0.6

0.4+

0.2+

A
-0.04 -0.02 0.00 0.02 0.04 L 0 1 2 3 4 Ay

@ (b)

Fig. 11.9 Equilibrium pathsfor the pinned-pinned column subject to axial compression (a) on the
load-deflection plot, and (b) on the load-shortening plot.

From eqg. (11.54) the perturbation expansion of theload ininitial post-bucklingis P/P.. = 1+ a& + bE?2.
The post-buckling coefficients a = 0 and b <0 correspond to unstable symmetric bifurcation behavior illus-

trated by model B in article 10.2 on page 298. Post-buckling coefficient a = 0 corresponds to asymmetric bifur-
cation behavior illustrated by model C in article 10.3 on page 302.

11.3 In-plane buckling of trusses

When atruss has all of itsjoints pinned, then there will be no interaction between the bending deflections of indi-
vidual members. Hence the buckling load of the trusswill be the load at which the weakest compression member
buckles as an Euler column (case A in figure. 11.6). However, when atrussisrigidly jointed, asin aframe, there
will be interaction between bending defl ections of neighboring members through rotation of the common joint. A
rigid-jointed trussis stiffer than a pin-jointed truss, and therefore its buckling load isincreased relative to the pin-
jointed truss.

Example 11.3 Buckling of a two-bar truss

A symmetric truss consisting of two identical bars of length L are connected together by a hinge joint at the cen-
ter of the truss. The opposite end of each bar connects to a separate hinge joint at a fixed support. Both supports
are at adistance H below central joint. The central joint is subject to downward load Q whose corresponding dis-
placement is denoted by g.

We consider alinear analysis and a nonlinear analysis for the stability of the truss, where Hooke's law gov-
erns the material behavior in both analyses. The material of the barsis 7075-T6 aluminum alloy with a modulus

of eladticity £ = 71, 000 N/mm? and yield strength of o, = 469 MPa . The remaining numerical data are
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listed intable 11.2. From the datain table 11.2 theangle p = 5.16° . A small value of § characterizes a shallow
truss configuration.
lQ! q

+ A
b
Section 4 — A4

1}]—[ sinp = H/L

Fig. 11.10 A shallow truss horizontally constrained between fixed points.

Table 11.2 Numerical data for thetrussin figure. 11.10

Length of trussbarsL, mm 300 Width of truss bar b, mm 25
Truss rise above supports H, mm 27 Area of truss bar A, mm? 450
Thickn% Of truss bar h, mm 18 Second area moment |, mm4 12,150

Axial strain-displacement relation. The strain-displacement relation (11.7) for each bar is
dw _ 1/dw\>
= 24 o=

bzz dz 2(dz) ' @
wherethe axial displacement isdenoted by w(z) and thelateral displacement is
denoted by v(z) . Consider the bar on the |eft-hand side of the truss as shown in
figure. 11.11. At the fixed end where z=0, w(0) = v(0) = 0.Attheend of the
bar where z =L the axial displacement and the lateral displacement are related
to the downward displacement q of the movable joint by w(L) = —gsinf3 and

Fig. 11.11 L eft-hand bar i i o T
of thetruss. v(L) = —gcosf, respectively. The axial strain in atruss bar is uniform along
itslength, which means that the displacements are linear in coordinate z. Linear
displacement functions for each displacement satisfying the end conditions are,

w(z) = (—gsinp)(z/L) v(z) = (—gcosP)(z/L). (b)
Substitute eg. (b) for the displacement functions into eg. (a) to get the strain-displacement relation

c.. = (sinp)(%) + Leop)(4) ©

Substitute sinf = H/L,and cosfp = (J/L?2—H?)/L into eq. (c) to get

= 1;] AN L2—H? =’ ? d
e = 7(F) E (#) - @
Numerical evaluation of eqg. (d) is

€, = (—3><10—4/mm)q+(5.51056x10_6/mm2)q2. (e)
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The strain energy of thetrussis

U= 2<%EAL52) , (")

zz

in which the leading factor of 2 accounts for the two bars. Castigliano’s first theorem determines the force Q by

9
0= zopare = @
aq daq

Substitute eqg. (d) for the strain into eg. (f) to get

2, 3HU2=IP) >, (L2 = HP)? 3] .

= 2EA[—
Q JEEEYE 207 7
Numerical evaluation of eq. (h) is
0 = (1,725.3 N/mm)g —(95.0736 N/mm?2)g2 + (1.16424 N/mm?3)q3 . 0

In-plane buckling of the truss barsbased on linear analysis. The expressions for the axial strain (e) and
applied load (h) reduce to

e = 1%(:5) = (3x10” mm-)g,and Q = 2EA[ILi3zq} = (1,725.3 N/mm)q . 0
The axial forcein each bar is given by
N = Ede_. = (=9, 585 N/mm)g . ®)

The Euler buckling force P, = (w2El)/L? = 94.60 kN . Set —N = P, to find the displacement for in-plane
buckling of thetrussbars ¢ = 9.87 mm . The corresponding load Q = 17.028 kN .

Equations (i) and (j) are plotted on the graph of load Q versus displacement g in figure. 11.12. Astheload is
increased from zero on the nonlinear path (i) alimit point load of 9.038 kN at a displacement of 11.5 mmis
encountered. As discussed in article 10.5 a dynamic snap-through motion occurs at the limit load that eventually
(with damping) settles to a displacement of 58.65 mm. The linear response path (j) is the straight line in figure.

Aerospace Structures 335



Article 11.4

11.12, and the load causing in-plane buckling of the truss barsis 17.028 kN. Thus, the critical load for this struc-
tureis at the limit point. i

(9.87 mm, 17.028 kN)
15~ (58.65 mm, 9.038 kN)
[ (11.5 mm, 9.038 kN) x
O kN 1O/ oy N
I dynamic snap through —
50
Ll NG, mm
r 10 20 0 40 50 60
_5:,
-10L

Fig. 11.12 L oad-displacement responses of the two-bar trussfrom linear and nonlinear analyses.

11.4 Geometrically imperfect column

, P Consider a uniform, pinned-pinned column that is slightly
Elgbléflt%e C—» crooked under no load. The initial shape under no load is
right-hand M, v(z) described by the function v(z) . The column is subject to a
part of a 00— ----- P centric, axial compressive load P. The lateral displacement of
pinned-pinned 1. the column isdenoted by v(z) , sothat v(z) = vy(z) when

P = 0. Moment equilibrium of the free body diagram for a
segment of the column shown in figure. 11.13is

M,—vP = 0. (11.77)

The bending moment in the column is zero under no load, so we write the material law for bending as

M, = El(‘@—@—(’) , (11.78)
dz dz

where ¢,(z) istherotation of theinitial shape of the column. For small slopes of the slightly deflected column
the rotations are related to the lateral displacements by

0 = L) a2 = (29, 1179

Hence, the bending moment becomes
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2 d2
_ dv Vo
M, =-EIll-———-_"|. 11.80
* (dz2 dz? ) ( )
Substitute the bending moment from eg. (11.80) into the moment equilibrium equation (11.77) to get
2 d2
_eif4v Y| _p =g (11.81)
dz2  dz?
Equation (11.81) is arranged to the form
2 2
dv 42y = d Yo (11.82)
dz2 dz2

where k2 = P/(EI) . Taketheinitial shape of the column v(z) = a,sin(mz/L), where a is the amplitude of
theinitial shape at midspan. Then the differential equation for v(z) is
£+k2v = —a (E>zsin(nz/L) 0<z<L. (11.83)
dz2 v’

The boundary conditionsare v(0) = v(L) = 0. The solution of the differential equation (11.83) subject to
boundary conditionsis

v(z) = Lsin(TE—Z) O<z=<L. (11.84)
-
T
Theterm k%L%/n? = P/P_ wherethecritical load of the perfect structureis P, = (w?EIl)/L?. Itisconve-

nient to measure the deflection of the imperfect column under load with respect to its original unloaded state.
That is, let § define the additional displacement at midspan by & = v(L/2)—v,(L/2) . Hence,

(7

C

0 = a——. (11.85)

()

C

The |oad-displacement response is sketched in figure. 11.14. Note that [§| — « as P — P, for a, = 0. That s,

for anon-zero val ue of the imperfection amplitude, the displacement gets very large as the axial force approaches
the buckling load of the perfect column. Also, the imperfect column deflects in the direction of imperfection

(e.g., ifa;>0,thend>0).
An arbitrary initial shape isrepresented by a Fourier Sine series as

. Tz . 2mz
vo(z) = asin”~ +a;sin=~ + ... (11.86)

Timoshenko and Gere (1961) show the solution for 8(z) = v(z) —v,(z) is
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P/Pcr = ZE;]

10f-~-c===zcc==-—-

Fig. 11.14 L oad-deflection responseplots
for geometrically imperfect columns

increasing a,

0° -0
d(z) = i[Lsin@—z) + Lsin(z—m> + J (11.87)
pl1-pP/P.\L) 22-p/P~ \L
For P< P, as P — P, thefirst term dominates the solution for 8(z) . Thus, for P near P,
P/P
o, = 6(5) ~———aq. (11.88)
2/ 1-P/P,,

The buckling behavior of along, straight column subject to centric axial compression (the perfect column) is
classified as stable symmetric bifurcation. As such it isimperfection insensitive. Refer to the discussionsin arti-
cle 10.1.5 on page 297 and article 10.2.1 on page 300. Even for awell manufactured column whose geometric
imperfections are small, and with the load eccentricity small, the displacements become excessive as the axial

compressive force P approaches the critical load P, of the perfect column. Hence, the critical load deter mined
from the analysis of the perfect column is meaningful in practice.

11.4.1 Southwell plot

Rearrange eg. (11.88) asfollows: 8.(1 -P/P,) = (P/P,)a,,thend, —(P/P_)d. = (P/P,)a, .Dividethe
last by P to get

(11.89)

Weplot 6,/ P versus §, fromeq. (11.89) infigure. 11.15, which is called the Southwell plot (Southwell, 1932).1
The Southwell plot isvery useful for determining P, from test datain the elasticrange. AsP - P, P<P,,, d

becomes large and the data ((6/P) vs. &) tendsto plot on a straight line. Extrapolating this straight line back to
toward the ordinate axis (8/P) one can estimate a; and P,. It is more difficult to determine P, by the [oad-
deflection curve obtained in experiments asillustrated in figure. 11.16.

1. Richard V. Southwell (1888 -1970), British mathematician specializing in applied mechanics. In his article “On the Anal-
ysis of Experimental Observationsin Problems of Elastic Stability”, he discussed the coordinates used in the plot to corre-
late the experimental data on elastic column buckling with linear theory.
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9, A fo)
P o
_ straight line
Fig. 11.15 Southwell plot. a o experimental data
P
“ PCV
J,
_al O » ¢
Fig.11.16 ©
L oad- s
deflection range of P~
plot from
test data.
0 9

11.5 Column design curve

Consider the pinned-pinned uniform column whose critical load isgivenby P,, = nz(EI/LZ ) . Let A denote the
cross-sectional area of the column. At the onset of buckling the critical stressis defined as

o, = P,/A = (R?El)/(AL?). (11.90)

The second areamoment is I = 24 , wherer denotes the minimum radius of s S
gyration of the cross section. For the rectangular section shown in figure. 11.17, Fig.11.17. i

I, = (bh3)/12 and 4 = bh,sothat r = h/./12,where 0 <h < b. Thus, b
the critical stress becomes

o, = m? £ .
cr (L/r)?

(11.91)

and L/r iscalled the dendernessratio. The slenderness ratio is the column length divided by a cross-sectional
dimension significant to bending.

For any set of boundary conditions define the effective length KL by the formula

_ o EL

PC}” *
(KL)?

(11.92)
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The effective lengths for the four standard boundary conditions are as follows:

A:  pinned-pinned p = Bl _ o EI KL =L K=1
< L2 (KL)?

B:  clamped-free p = n2El -2 EI KL = 2L K =2
42 (KL)?

C.  clamped-clamped p = JEI _ , EI KL = L/2 K=1/2

) T =T
er L2 (KL)?

D:  clamped-pinned p. = 202El = 2 EL KL =069L K=07
L? (KL)?
The definition of effective length uses case A boundary conditions as areference. The concept of effective length
accounts for boundary conditions other than simple support, or pinned-pinned end conditions.

The column curveisaplot of the critical stress versusthe effective slendernessratio (i.e., o, versus KL/r).
For elastic column buckling under all boundary conditions

2
_ wE
o, = , (11.93)

KL\?
)
which is a hyperbola that depends only on the modulus of elasticity E of the material. This equation governing

elastic buckling is called the Euler curve, and columns that buckle in the elastic range are called long columns.
Seefigure. 11.18.

/ Euler curve, depends only on E

l—> long columns

P

Fig. 11.18 Column curvefor elastic
buckling.

~ KL

r

11.5.1 Inelastic buckling

The column curve equation, eg. (11.93), is valid up to the proportional limit of the material, denoted by o, . The

proportional limit is defined as the stress where the compressive stress-strain curve of the material deviates from
astraight line. If the stress at the onset of buckling is greater than the proportional limit, then the column is said
to be of intermediate length, and the Euler formula, eg. (11.93), cannot be used. The proportional limit is difficult
to measure from test data because its definition is based on the deviation from linearity. In particular, the com-
pressive stress-strain curves for aluminum alloys typically used in aircraft construction do not exhibit a very pro-
nounced linear range. For aluminum alloys a material law developed by Ramberg and Osgood (1943) is often
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used to describe the nonlinear compressive stress-strain curve. The Ramberg-Osgood equation is a three-parame-
ter fit to the compressive stress-strain curves of aluminum alloys. From the experimental compressive stress-
strain curve the slope near the origin is the modulus of elasticity E. The stress where the secant line drawn from

the origin with slope 0.85 E intersects the stress-strain curve is denoted o, 55 . The stress where a second secant
line drawn from the origin with slope 0.7E intersects the stress-strain curve is denoted by o, . These data are

depicted in figure. 11.19. Note that the compressive normal strain corresponding to the stress o, ; isusually

A
o7 — — — experimental compressive
S R /) stress-strain curve
Fig. 11.19 Dataused tofit thecompression 08 /AO.‘IIE
stress-strain curve of aluminum alloys. ST
0.85E :
& |
/E :
il . ~ ¢
0 ~0.002

about the 0.2 percent offset yield strain for the material. Hence, stress o, ; is close to the 0.2 percent offset yield
stress of the aluminum alloy. The Ramberg-Osgood equation is

o 3/ o \""1
=91+3(<2 .
‘ E[ 7<00'7) } (199

where the shape parameter nis given by

n=1+ ln<ﬂ)/ln(%). (11.95)
7 0085
Equation (11.94) isre-written as
Ee o ,3/ 0\"
- = —+=(—=) , 11.96
Op7  Opz 7(00.7) ( )

andisplotted as /0, versus (Ee)/o,, for various values of the shape parameter n, Thisplot isshowninfig-
ure. 11.20. Some approximate values for common aluminum alloys are listed in table 11.3.

Table 11.3 Ramberg-Osgood parametersfor selected aluminum alloys

AL E in10° psi 0y7 in10%s

2014-T6 10.6 60 20
2024-T4 10.6 48 10
6061-T6 10.0 40 30
7075-T6 10.4 73 20
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n=22
1.2} n=>5
n =10
L 50— n =20
0.8' l’l:50
o
0-0'7 0.6¢t n =2
0.4
0.2
0.5 1 1.5 2
Ee
OCo.7

Fig. 11.20 A normalized plot of the Ramberg-Osgood material law for various values of
the shape parameter n.

From the Ramberg-Osgood equation, eg. (11.94), the local slope of the compressive stress-strain curveis
determined as afunction of the stress. This slope of the compressive stress-strain curve is called the tangent mod-

ulus (i.e, %g = E, where E; isthe tangent modulus). Differentiate eq. (11.94) to get

n—1 n—1
de = @+§_...__n0 EJ_E = .1_ = l+§ﬁ<_.g_> . (11.97)
E  TEoys;! do E, E 7E\o,,
Thus, the tangent modulusis
_ E

Ef = ﬁ . (11.98)

REE

7 \0y7

For intermediate length columns it has been demonstrated by extensive testing that the critical stressis rea-
sonably well predicted using the Euler curve, eg. (11.93), with the modulus of elasticity replaced by the tangent
modulus. Thisinelastic buckling analysisis called the tangent modulus theory. That is,

Et
(11.99)

(&

Now substitute eg. (11.98) for the tangent modulusin the latter equation, noting that o = o, , to get

o, = m?

2
o, = —— £ — |. (11.100)
(1_@) 1+§n<9_c_'£>
r 7 \0g4
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After division by o, , €g. (11.100) can be written as

O
(11.101)

Ccr 3 OCV " - 1
+2p(—L) = ———
o 7”(00‘) [ (KL/7) T
n,JE/0Oy4

A plot of the column curve given by eq. (11.101) is shown in figure. 11.21.

Fig. 11.21 Column curvesfor a Ramberg-Osgood material law with different shape factors.

11.6 Bending of thin plates

Recall that bars and beams are structural elements characterized by having two orthogonal dimensions, say the
thickness and width, that are small compared to the third orthogonal dimension, the length. Thin plates, both flat
and curved, are common structural elementsin flight vehicle structures, and they are characterized by one dimen-
sion being small, say the thickness, with respect to the other two orthogonal dimensions, say the width and
length. A thin, rectangular, flat plate shown in figure. 11.22 isreferenced to Cartesian axes x, y, and z, where the
x-direction is parallel to the length, the y-direction is parallel to the width, and the z-axisis paralel to the thick-

ness of the plate. We denote the length of the plate by a, the width by b, and the thicknessby t,and 0 < x < a,
O<ys=<b,and—-t/2 <z=<1t/2.Theplanewith z= 0isthe midsurface, or reference surface, of the plate.

A beam resists the transverse loads, or lateral loads, primarily by the longitudinal normal stress o, and the
so-celled lateral stresses oy, 0, Tyy, and Ty, are assumed to be negligible. Transverse loads, acting in the z-direc-
tion applied to the plate are primarily resisted by the in-plane stress components oy, oy, and ty,. Transverse shear
stresses T, and ty,, are necessary for force equilibrium in the z-direction under transverse loads, but are smaller
in magnitude with respect to the in-plane stresses. In plate theory, the transverse normal stress o, is very small
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a»t>0

primary stressesin plate theory b»t>0

Fig. 11.22 Illustration of the nomenclatureand primary stressesfor aflat, rectangular plate.

with respect to the in-plane normal stresses and, hence, is neglected. Bending of thin platesis discussed in many
texts on plate theory; for example, see Ugural and Fenster (2003). Only some elements of the plate bending the-
ory are discussed here. The assumptions of the linear theory for thin plates are as follows:

1. The deflection of the midsurface is small with respect to the thickness of the plate, and the slope of the
deflected midsurface is much less than unity.

2. Straight lines normal to the midsurface in the undeformed plate remain straight and normal to the midsurface
in the deformed plate, and do not change length.

3. Thenormal stress component o, is negligible with respect to the in-plane normal stresses and is neglected in
Hooke's law.

Now consider the deformation, or strains, caused by the normal stresses. Hooke'slaw for the normal stresses
and strainsin athree-dimensional state of stressis

g, = ll;(ox —-Vv0,-V0,)

g, = ]ll_(—vojﬁ 0,—V0,), (11.102)

€,

1
Z«“(_VO" -vo,+0,)

where E is the modulus of elasticity and v is Poisson’s ratio. From assumption 3 the thickness normal stress o,
is assumed negligible and is set to zero in Hooke's law. From assumption 2 the thickness normal strain e, = 0,

because the line element normal to the midsurface does not change length. Since the normal stress o isalso

assumed to vanish, the third of eg. (11.102) leads to a contradiction. Hence, the third equation of Hooke's law is
neglected. The material law for the in-plane normal strains and stresses for thin platesis
_ 1
g, = E(ox—voy)
: (11.103)
g, = E(—vcx +0,)
Consider two cases of pure bending of a plate or abeam subject to moment M. In thefirst case the cross sec-
tion is compact with dimension b nearly equal to thicknesst, and in the second case dimension b is much larger
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than thicknesst. In thefirst case the structure is abeam, and in the second case itisaplate. In pure bending the

N

A

A
SOp.
M( b M

Fig. 11.23 Purebending of a beam in the x-z plane and the associated anticlastic curvature of its
Cross section.

neutral axis of the beam deformsinto an arc of acircle with radius p , and the normal strain in the x-direction is
e, = z/p . Notethat we assumed that the x-axis coincided with the neutral axisin the undeformed beam. Hence,
longitudinal line elements above the neutral axis, z> 0, are stretched, and line elements below the neutral axis, z
< 0, are compressed. In the case of a beam, the normal stressin the y-direction, ¢, isalso very small andis

neglected with respect to the longitudinal normal stress o, . That is, the beam resists the applied bending moment

by the longitudinal normal stress o, . Since o, = 0, we get from Hooke's law, eq. (11.103), that
o, = Ee,

e = —veg. = —Yy; = 2, (11.104)

Hence, the longitudinal normal stress is the modulus of elasticity times the longitudinal normal strain, and the
normal strain in the y-direction isjust Poisson’s ratio times the longitudinal normal strain. The form of the last
expression for ¢y in eq. (11.104) shows that the line elements in the cross section parallel to the y-axis before

deformation also bend into circular arcs. The line element parallel to the y-direction at z= 0 in the undeformed

beam has aradius of curvature of £ in the deformed beam. This transverse curvature is called anticlastic curva-
v

ture, and isillustrated in figure. 11.23.

Now consider pure bending of a plate under the same moment M, where now the dimension b is much larger
than thickness t. In this case experiments show that the transverse line elements remain straight over the central
section of the plate, so that the anticlastic curvature is suppressed. In this central section of the plate the trans-
verse normal stress oy, is non-zero. However, the transverse normal stress must vanish at the freeedgesaty = 0

and y = b, so that anticlastic curvature devel ops only in narrow zones near the free edges to adjust to vanishing of
the normal stress o, at the free edges. In the central portion of the plate, the associated normal strain is zero. The
suppression of anticlastic curvature is characterized by the vanishing of the normal strain e,. Hence from Hooke's
law, eq. (11.103), for &, = 0 we get
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) -
o, = 1—_—;E£x 0, = vo,. (11.105)

Since the denominator in the expression for oy is positive but less than unity, the plate is stiffer than the beam
owing to the presence of the non-zero transverse normal stress o, to help in resisting the applied moment. Com-

pare egs. (11.104) and (11.105) for the normal stress o,. The quantity £/ (1 —v?) isan effective modulus of the
plate.

11.7 Compression buckling of thin rectangular plates

Consider the perfectly flat plate subject to alongitudina compressive force of magnitude P, applied in a spa-
tially uniform manner along edges x = 0 and x = a, as shown in figure. 11.24. The equilibrium response of the

— -
— -
p — <—Px b
X I .
— -
—> - X
a
¢ |
s Y
b
P — T ] a— P,
A * a

Fig. 11.24 Uniformly applied compressive forces applied to opposite longitudinal edges of a
rectangular plate.

platein linear theory isthat of pure compression in the x-y plane with no out-of-plane deflection of the midsur-
face. That is, in the pre-buckling equilibrium state the plate remains flat. The normal stress o, in the plateis spa-

tially uniform, and wewriteit as o, = —o, where o = P, /(bt) isthe applied compressive stress.

At acritical value of the compressive force P, the plate will buckle, or deflect out of the flat pre-buckling

equilibrium state. To determine this critical force we have to consider a slightly deflected equilibrium configura-
tion of the plate, similar to the analysis of the perfect column presented in article 11.1. Refer to Brush and Alm-
roth (1975) for the details of this adjacent equilibrium analysis for the critical force.

Instead of a detailed adjacent equilibrium analysis of the plate, we can make a comparison to the critical
force determined for the pinned-pinned column in figure. 11.6. The configuration of the plate comparable to the

pinned-pinned column has simply supported, or hinged, edgesat x = 0 and x = «, and has free edges at
y =0 and y = b.Thecompressively loaded plate for these boundary conditions is called awide column. The
critical force for the pinned-pinned column is
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p, =

o T (11.106)

For the plate, replace the modulus of elasticity £ in the column formulaby E/(1 —v2), sincethe plateis stiffer
than the column. Also set L = a for the plate. The formulafor the second area moment of arectangular cross
sectionis 7 = (b£3)/12 . Hence, eg. (11.106) transforms to

P = n2<1—L\/2) (i) <b1_t23) = n%ﬁ)i. (11.107)

For the wide column configuration of the plate, the critical load iswritten in the form

_ nw?Db

P = , (11.108)
a?
where the bending stiffness, or flexural rigidity, of the plate is defined as
Ef
D= ———. 11.109
12(1 =v2) ( )

The critical compressive stress at buckling issimply o, = P ../ (bt) . Divide eq. (11.107) by areabt to get

2 2
o, = ﬂ2(1‘2(TEt_3‘;7)>5551} = i) (a)

By convention, this critical compressive stress iswritten in the form

E 1?2
= fnlt——m—|- 11.110
Oer = Kel 12(1—v2)<b> (11.110)

where k. isanondimensional buckling coefficient for compressive loading, which is afunction of the plate
aspect ratio a/ b . For the unloaded edges free and the loaded edges simply supported, this buckling coefficient is

k, = 1 wide column . (11.111)
(a/b)?
For other support conditionsontheedgesx = 0,x = a,y = 0,and y = b, thecritical compressive
stressis also given by eg. (11.110) but the compressive bucking coefficient is a different function of the plate
aspect ratio. The transition from column to plate as supports are added along the unloaded edges (y = 0 and

y = b) aredepicted in figure. 11.25 on page 349. The compressive buckling coefficient is plotted for various
support conditions as shown in figure. 11.26 on page 350. Note that some of the curves for the buckling coeffi-
cient exhibit cusps, or discontinuous slopes, at selected values of the plate aspect ratio. The cusps correspond to
changesin the half wave length of the buckle pattern along the x-direction. In particular, for the plate with simple

support on all four edges, case C in figure. 11.26 on page 350, note that k. = 4 for integer aspect ratios.
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11.7.1 Simply supported rectangular plate

Consider aplate simply supported on all four edges and subject to uniform compressive on edgesx=0and x = a.
In the pre-buckling equilibrium configuration the plate remainsflat, w(x, y) = 0, with aspatially uniform com-

pressive stress equal to the applied compressive stress o . From the method of adjacent equilibrium, the out-of-
plane displacement of the plate at the onset of buckling is

wi(x,y) = Aﬁin("—%w-c) sin(n—zz) , (11.112)

wheremand n are positive integersand 4, isan arbitrary amplitude. Integer m corresponds to the number of half

wavesin the x-direction and integer n corresponds to the number of half wavesin the y-direction. Thus, specific
values of integers mand nin eg. (11.112) characterize a buckling mode, and for each buckling mode thereisa
corresponding buckling stress. Equation (11.110) is the formulafor the compressive stress at buckling, with the
compressive buckling coefficient given by

2
k. = (—';’[;+n2M> mon=1,2,.... (11.113)
a m

Thecritical stressis the lowest buckling stress, which occurs for a certain choice of mand n. Since k, isdirectly

proportional to powers of integer n, the minimum value of &, occursfor n = 1. Then minimum values of k. are
related to a/b and integer mby

) 2
kc = (ﬂ. + M) . (11.114)
a/b m
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Fig. 11.25 Transition form column to plate as supports are added along unloaded edges. Note changesin
buckle configurations (NACA TN 3781, figure 1).
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Fig. 11.26 Compression buckling coefficient for flat rectangular plates (NACA TN 3781, figure 14).
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Critical values of the compressive buckling coefficient as afunction of afew aspect ratios are listed in table 11.4.

Table 11.4 Compression buckling coefficient for selected plate aspect ratios

Number of half wavesin the x- Critical compressive

Plate aspect ratio direction buckling coefficient

0<a/b<.2 m=1 k. :(_1_+cilz>2
r a/b 1

S2sa/bs 6 m=2 o = (2 +42)°
“r a/b 2

J6<a/bs 12 m=3 k =(i+cLb)2
e a/b 3

These critical values of the compression buckling coefficient are plotted as case C in figure. 11.26 on page 350.
The buckling modes for three integer values of the aspect ratio are depicted in figure. 11.27. Thereis one half
wave across the width (n = 1) and the number of half waves across the length, m, increases with increasing aspect

ratio. For integer values of the aspect ratio the critical value of the compressive buckling coefficient £, = 4, and
it follows that the critical compressive stressis
E > a
= 4p——|- = =m=123,... =1. 11.115
o, = 4n 12(1—v2)(b) m =123 n (11.115)
From eq. (11.112) the length of a half wavein the x-direction is a/m , and the length of ahalf wave in the y-
direction isthe plate width b for n = 1. These half wave lengths are the ssmewhen a/m = b,or a/b = m.

That is, the half wave lengths in the x- and y-directions are the same for integer values of the aspect ratio. Hence,
for integer values of the plate aspect ratio the buckling mode consists of a sequence of square buckles.

cr/'

a/b =1

Fig. 11.27 Compression buckling modes for integer aspect ratios of a simply supported
rectangular plate.
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Example11.4 Critical load for simply supported rectangular platein compression

Leta=20in,b=10in,t=0.10in, £ = 10x10° Ib./in.2,and v = 0.3 . From eg. (11.110) the critical com-
pressive stress

O = k,(903.81 Ib./in.2). @

From eg. (11.114) the compression buckling coefficient is

Form=1,23 k, = 6.25,4.0,4.694, respectively. For larger values of m, coefficient &, islarger. The minimum
value of k_ is4 corresponding to m= 2. Hence, the critical stressis

O, = 3,615.24 1b./in.2. (c)
The critical compressiveload P, = o_,bt. Hence,

P, =3,6151b.. (d)

The buckling mode for (m, n) = (2, 1) hasone haf sine wave in the transverse direction and two half
wavesin the longitudinal direction. Theload P, = 3, 615 Ib. isthe lowest load at which such a plate can lose
its stability i}

11.8 Buckling of flat rectangular plates under shear loads

Consider athin, rectangular plate with athickness denoted by t, and the in-plane dimensions denoted by a and b,
where 0 <7 « b < a . Note that a denotes the long dimension of the plate and b denotes the short dimension. It is
subject to uniformly distributed shear stress t asillustrated in figure. 11.28. From Mohr’s circle for plane stress,

Y
T + + b
V

- € € 4 4L =

= x

a
¢ L

Fig. 11.28 Plate subject to in-plane shear loading.
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the state of pure shear is equivalent to tensile and compressive normal stresses at forty-five degrees to the direc-
tion of pure shear. It isthis compressive normal stress that leads to buckling of the thin plate subjected to shear.

The critical value of the shear stress per unit length, t...., is given by the formula

cr?

E £\?
= fmal——m——(-) , 11.116
Tor = AT 12(1—v2)(b) (11.116)

where &, isanondimensional buckling coefficient for shear loading. This buckling coefficient isafunction of the

plate aspect ratio a/b and the boundary conditions applied to the plate. Values of the shear buckling coefficient
aregivenin figure. 11.30 on page 354. The buckling mode labeled the symmetric modein the figure pertainsto a
buckled form that is symmetric with respect to adiagonal across the plate at the node line slope. For a narrow

range of aspect ratios the plate bucklesin an antisymmetric mode. For an infinitely long strip, or a/b — «,
k, = 5.35 for simply supported, or hinged, edgesat y = 0,5, and k, = 8.98 for clamped edges.

A least squaresfit of the shear buckling coefficient as a function of the plate aspect ratio is convenient in
problem solving. For the simply supported plate, or the plate with hinged edges, the data listed in table 11.5 was
read from the graph in figure. 11.30.

Table 11.5 Shear buckling coefficient
for selected plate aspect ratios

alb Ks

9.6
6.4
5.8
5.7
5.5

a b~ W N B

These data arefit to the functions 1 and % . Theresult of the least squaresfit to these datais
a

5.19931
a

k, = 4.22565 + lsa/bs5. (11.117)

The least squares fit and the input data are plotted in figure. 11.29.

10

0 least squares fit
Fig. 11.29 Graph of eq.
(11.117) compared to 8
discretedatalisted in ke 7 )
table 11.5. . data
5
a/b
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Fig. 11.30 Shear-buckling-stress coefficient of platesasa function of a/b for clamped and hinged edges
(NACA TN 3781, figure 22).
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11.9 Buckling of flat rectangular plates under combined compression
and shear

A plate subject to uniformly applied longitudinal compression and shear is shown in figure. 11.31. The critical

s r

— — - —p —p —p —Pp —P —P

EERAN

— —p —p

Y
Ty
'

b

- -— -— - -E— -LE—-— =

a
¢ L

Fig. 11.31 Plate subject to longitudinal compression and in-plane shear loading.

combination of shear and compression stresses under different boundary conditions and different aspect ratios of
the plate can be approximated to a sufficient accuracy by

<T%,)2+<0%) =1, (11.118)

where T, and o, arethecritical values of the separately acting shear stress and the compression normal stress,
respectively (NACA TN 3781, pp. 38, 39). Equation (11.118) is plotted in figure. 11.32.

Buckling

No buckling

-1 -0.5 0 0.5 1 Ter

Fig. 11.32 Buckling interaction relationship for critical combinations of shear and compression.
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Example 11.5 Wingrib spacing based on a buckling constraint

The stringer stiffened box beam that isthe main spar in awing is shown in figure. 11.33. For a pull-up maneuver,
the calculated transverse shear force ¥, = 25, 000 Ib. and the bending moment M, = —4.14 x10° Ib-in. at the
wing root. The thickness and width of the upper and lower cover skinsare 7, = 0.5 in. and b, = 24 in. , respec-
tively. The thickness and height of the left and right websare ¢, = 0.30 in. and b,, = 13 in., respectively, and

the flange area of the stringers 4, = 2.0 in.2. The material isisotropic with properties £ = 10x10° Ib/in.2 and

v = 0.3.For M, <0, the upper skinisin compression. Determine the rib spacing, denoted by a, such that the
margin of safety for buckling of the upper skin isdlightly positive.

o ®
A Ay, Af
- B, >
a Fig. 11.33 Wing box beam of example 11.5.
b
f

Solution. The centroid and the shear center of the cross section coincide with the center of the box beam due to
symmetry. The normal stress due to bending in the upper skin is calculated from the flexure formulg; i.e.,

M.(b,,/2)
o, = —, @
Ixx
where the second area moment of the cross section about the x-axisis
_ 1 1 _ .
I, = biA,+ Eb,bg,;f+ gbfvtw = 1,461.85 in.* (b)
Hence, the bending normal stressin the upper skinis

o, = —18,408.2 Ib./in.2. (c)
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The shear stressin the upper skin is determined from the analysis of the shear flow distribution around the
contour of the cross section, which is shown in figure. 11.34.

¢, 1b/in.
1000 P

V.
Y S35 43
? 500 / \
Yy Y .
X — x s, in.
— S4 44 S5 45 20 30 40 5 60 70
: -500

S 9

-1000

N
Fig. 11.34 Shear flow distribution for the box beam of branch 1 | 2 3 ‘ 4 ‘
example 11.5. ‘ il

The shear flow in the upper skinis

_ b t(b—2s5)

q; = v, 0<s3<b,. (d)

41 Y

XX

The shear stress Ty = ¢5/1;, anditsevaluationis

Ty = 55.5803(24 —2s5) 1b./in.2 0=<sy=<24in.. (e)

Computing the maximum magnitude and the average value of this shear stress resultsin

by

e, = 1,333.93 Ib/in.? (Ty),., = +[tydsy = 0. )

1
b

0
The maximum magnitude of the shear stressin the upper skin is 7.25 percent of the magnitude of the bending

normal stress. Moreover, the average value of the shear stressis zero in the upper skin. Hence, it is reasonable to
neglect the effect of the shear stress on the buckling of the upper skin.

Assume the upper skin is asimply supported rectangular plate between the stringers and ribs. Actually, the
stringer and ribs provide rotational constraint to the upper skin, but the assumption of no rotational constraint is
conservative with respect to design. The critical compressive stress for simple support on all four edges of the
upper skin underestimates its actual value. Equation (11.110) for the top cover skinis

E I 2
o. = k,n2—<-1 ,
cr c 12(1—\/2) b) (9)
and eqg. (11.114) for the compression buckling coefficient is
/b2
k, = <i + a_[> m a positive integer to minimize &, . (@)
a/bf m

The margin of safety is defined by
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Mms = Excessstrength _ Oy —|0]

, (11.119)
Required strength o]

The margin of safety (11.119) is positive for afeasible design, otherwise the design isinfeasible. It should be a
small positive value for adesign of least weight. The computations for the margin of safety are listed in
table 11.6.

Table 11.6 Margin of safety for selected rib spacings

ain. by Ke O I/in 2 Margin of safety Design
14 0.583 5.27905 20,708.6 0.12497 feasible
15 0.625 4.95063 19,420.2 0.05498 feasible
16 0.667 4.69444 18,415.3 0.000387 feasible
17 0.708 4.49482 17,632.20 —0.04215 infeasible
18 0.750 4.34028 17,026.0 —0.07509 infeasible
19 0.792 4.2223 16,563.2 —0.1002 infeasible

A rib spacing of 16 in. is afeasible design with aslightly positive margin of safety. i
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Ugura A. C., and S. K. Fenster. Advanced Strength and Applied Elasticity, 4th ed.,Upper Saddle River, NJ.
Pearson Education, Inc., Publishing as Prentice Hall Professional Technical Reference, 2003, pp. 472-490.

11.11 Practice exercises

1. Anidea column of length L is pinned at one end and fixed to arigid bar of length a at the other end. The sec-
ond end of therigid bar is pinned on rollers. Refer to figure. 11.35 Find the critical load P, and discussthe

extremecasesof a =0 and a — .
EI rigid P

& ,

Fig. 11.35 Exercise 1. L NN\

2. Thecolumn shown in figure. 11.36 is pinned at the left end and supported by an extensional spring of stiff-
ness o at the loaded right end.

Fig. 11.36 Exercise 2. Ay, v oL
: P
o z )
X o
1
a) Usethe adjacent equilibrium method to show that the characteristic equation is
—kzsinkL[—kz + 0—‘4} = 0.
El
b) Plotthecritical load P, asafunctionof o, 0 < o . For F
what values of o will the column buckle in the Euler 4 f 5
mode? (i.e., case A infigure. 11.6).
3. Thestatically indeterminate truss shown in figure. 11.37
consists of six bars, labeled 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4. It is
subject to avertical force F at joint number 2. The cross-sec- 810 mm
tional areaof each bar is 2,000 mm?, the second area moment of
each bar is 160,000 mm?, and the modulus of elasticity of each
bar is 75,000 N/mm?. 3 1
a) Take bar force 1-4 asthe redundant (i.e., N, _, = Q). 1,080 mm
Using Castigliano’s second theorem to determine the Fig. 11.37 Trussfor exercise 3.

redundant Q in terms of the external load F.
b) Determinethe value of F in kN to initiate buckling of
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the truss.
c) If theyield strength of the material is 400 MPain tension, determine the value of F in kN to initiate
yielding of the truss.
4. Bars1-2, 2-3, and 2-4 of the truss shown figure. 11.38 are unstressed at the ambient temperature. Only bar 1-
2 is heated above the ambient temperature. Determine the increase in temperature, denoted by AT, of bar 1-2 to
cause buckling of the truss. The cross section of each bar isathin-walled tube with radius R = 13 mm and wall
thickness r = 1.5 mm. Takelength L = 762 mm . All three bars are made of the same material with properties

E = 75,000 N/mm? and a = 23x10° /°C.

¥
Cross section
A = 2nRt
1 I = R3¢t
0,9
(@ (b) (©

Fig. 11.38 Exercise 4. (a) three-bar truss, (b) base structure. (c) cross section of the bars.

5. Consider the wing spar in example 11.5. A counterclockwisetorque 7' = 6x10° Ib.-in. is specified to act at
the root cross section in addition to the specified transverse shear force and bending moment. Determine the rib
spacing, denoted by a, such that the margin of safety with respect to buckling of the upper skin is dlightly posi-

tive. Report the value of a to two significant figures and the associated margin of safety. The margin of safety is

defined by the formula

1- 2
MS = Lt/ where Iy = (1-) +2.
b Te O

Use the average value of the shear stress over the width of the upper skin for the shear stress t in the margin of
safety formula. Remember that dimension b is smaller than dimension a in the formulafor the critical value of
the shear stress, and that b is the width of the plate/skin on which the compressive normal stress actsin the for-

mulafor o, .
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