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CHAPTER 13

 

Fracture of cracked 
members

 

The strength of ductile metals is limited by yielding. However, the presence of a crack in a structure may weaken 
it so that it fails by fracturing in two or more pieces. The study of crack propagation in bodies is the subject of 

 

fracture mechanics

 

. Linear elastic fracture mechanics (

 

LEFM

 

) is the study of crack propagation in linear elas-
tic bodies.

 

Damage tolerant design

 

 allows for the presence of subcritical cracks that will not grow to critical length 
between inspection intervals. Cracks can nucleate and grow in airplane structures under cyclic loading, or 
fatigue. This important structural issue of fatigue crack growth is tragically illustrated by the Comet disasters of 
1954.

 

13.1 Comet disasters of 1954

 

The content of this article is taken from Wikipedia, the free encyclopedia, and Cawthon (2005). 

The de Havilland Comet was the world's first commercial jet airliner to reach production. Developed and 
manufactured by de Havilland, it first flew in 1949 and was considered a landmark British aeronautical design. 
The Comet is an all-metal low-wing cantilever monoplane powered by four jet engines, approximately the length 
of a Boeing 737 but carrying fewer people in greater comfort. The clean, low-drag design featured many unique 
or innovative design elements, including a swept leading edge, integral wing fuel tanks, and four-wheel bogie 
main undercarriage units designed by de Havilland. The Comet was also the first pressurized jet-propelled com-
mercial aircraft. Comet went into commercial service with BOAC on 22 January 1952. In May, the first paying 
passengers flew from Heathrow Airport to Johannesburg, South Africa. The Comet could fly higher and faster 
than any other airliner of the day and passengers loved it. They especially liked the Comet's big, rectangular win-
dows, which allowed a much better view than those on competing planes. See figure. 13.1.



 

Article 13.1

 

376

 

Aerospace Structures

 

   

The structural flaws in the Comet's design caused two fatal accidents in 1954. The first came just after the 
New Year, on January 10. BOAC Comet G-ALYP left Ciampino airport in Rome on its way to London. Less than 
a half-hour after takeoff, a routine radio call was cut off in mid-transmission. The Comet had crashed into the 
Mediterranean Sea about 16 miles from the island of Elba. The investigators determined the cabin failed because 
of metal fatigue. Just three months later, another Comet crashed, this time it was South African Airways G-
ALYY, which was also flying out of Ciampino and also wound up in the Mediterranean, killing all twenty-one 
people on board. Authorities were unable to retrieve much wreckage, but cited the circumstances that caused the 
January incident.

Engineers subjected an identical airframe, G-ALYU (“Yoke Uncle”), to repeated repressurization and over 
pressurization and after 3,057 flight cycles (1,221 actual and 1,836 simulated), Yoke Uncle failed due to metal 
fatigue near the front port-side escape hatch. Investigators began considering fatigue as the most likely cause of 
both accidents, and further research into measurable strain on the skin began. Stress around the window corners 
was found to be much higher than expected, “probably over 40,000 psi,” and stresses on the skin were generally 
more than previously expected or tested. This was due to stress concentration, a consequence of the window's 
square shape. The stresses caused by thousands of takeoffs and landings were causing the plane's aluminum skin 
to begin to crack around the right-angle edges of those nice, big windows that were so popular with the passen-
gers. Eventually the metal would completely fail, causing immediate depressurization of the cabin and cata-
strophic structure failure.

The problem was exacerbated by the punch rivet construction technique employed. The windows had been 
engineered to be glued and riveted, but had been punch riveted only. Unlike drill riveting, the imperfect nature of 
the hole created by punch riveting may cause the start of fatigue cracks around the rivet.

The square windows of the Comet 1 were redesigned as oval for the Comet 2, which first flew in 1953. The 
skin sheeting was thickened slightly. The remaining Comet 1s and 1As were either scrapped or modified with 
oval window rip-stop doublers. All production Comet 2s were modified to alleviate the fatigue problems, and 
most of these served with the Royal Air Force as the Comet C2. The Comet did not resume commercial airline 
service until 1958, when the much-improved Comet 4 was introduced and became the first jet airliner to enter 
transatlantic service. As is often the case in aeronautical engineering, other aircraft manufacturers learned from 
and profited by de Havilland's hard-learned lessons. Representatives from American manufacturers such as Boe-
ing and Douglas “admitted that if it hadn't been for our problems, it would have happened to one of them.”

Fig. 13.1 BOAC De Havilland DH106 Comet 1G-ALYX on tarmac. (c) British Airways 
Speedbird Heritage Centre. Released under CC BY NC SA license 4.0
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The Comet 4 not only had a stronger airframe and rounded windows, it was also longer, carried more pas-
sengers, and had four new Rolls-Royce Avon engines, which produced twice the thrust of the original de Havil-
land Ghosts. BOAC had ordered nineteen of the new Comets in 1955, before the redesign was completed. The 
Comet 4 made its maiden flight on 27 April 1958 and de Havilland began delivering planes to BOAC in Septem-
ber. BOAC started Comet passenger service with London to New York on 4 October 1958, beating Pan Am's 
inaugural 707 Clipper Service by three weeks.

But it was too late. The Comet, unbeatable in 1954, was an also-ran in 1958. In addition to its early prob-
lems, the Comet's dated design and smaller size convinced most carriers to select the newer 707 or Douglas DC-
8. Only seventy-six Comet 4s were built from 1958 to 1964, and it was America, not Great Britain, that owned 
the commercial jetliner market for the rest of the twentieth century.

 

13.2 Cracks as stress raisers

 

Some of the discussion in this article paraphrases that given by Dowling (1993, p.279). Consider the linear elastic 
response of a rectangular plate containing a centrally located elliptical hole that is subject to a remote tensile 

stress 

 

.

 

 See figure. 13.2. The major axis of the through hole is denoted by 

 

a

 

 and the minor axis by 

 

d

 

. The radius 

of curvature  at the tip of the major axis is given by . 

The stress concentration factor, , at the edge of the hole is defined by

.

 

(13.1)

 

From linear elasticity for a plate half width , this stress concentration factor for an isotropic material is 
given by
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Fig. 13.2 Stresses at the tip of an elliptical through hole in a rectangular plate subject to remote tension.
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(13.2)

 

For selected values of the ratio 

 

a/d, 

 

the stress concentration factors are listed in table 13.1.

As , or , . This limiting geometry is a crack-like slit. Consequently the plate experi-

ences a strength failure at no load. Clearly, this is a theoretical result from linear elasticity. Real materials cannot 
support infinite stress. In ductile metals, large plastic deformation exists in the vicinity of the crack tip. The stress 
is not infinite and the sharp crack tip is blunted.

There are generally three modes of loading, which involve different crack surface displacements as depicted 
in the sketches of figure. 13.3. The three modes are:

 Mode I: opening or tensile mode (the crack faces are pulled apart)

 Mode II: sliding or in-plane shear (the crack surfaces slide over each other)

 Mode III: tearing or anti-plane shear (the crack surfaces move parallel to the leading edge of the crack 
and relative to each other)

 

13.3 LEFM stress field in the vicinity of the crack tip for mode I

 

A center-cracked plate subject to remote tension, or mode I loading, is shown in figure. 13.4. This loading is sym-
metric with respect to the crack surface. The crack length is 2

 

a

 

, plate width 2

 

b

 

, and the plate thickness 

 

t

 

. The two 
free surface areas of the crack are 2

 

a

 

-by-

 

t

 

. The remote tensile stress is denoted by . Let 

 

r

 

 and  denote the 

 

Table 13.1 

 

Stress concentration factors
 for selected elliptical hole sizes

 

1 (circular hole) 3

2 5

3 7

Kt 1 2a
d
---+ 1 2 a

ρ
---+= =

a d⁄ Kt

d 0→ ρ 0→ Kt ∞→

Mode I Mode IIIMode II

Fig. 13.3 Basic displacement modes of a cracked body.
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LEFM stress field in the vicinity of the crack tip for mode I

 

polar coordinates in the 

 

x-y

 

 plane measured from the crack tip. From linear elastic fracture mechanics (Anderson, 
1995, pp. 31-96), LEFM, the dominant terms in the stress field near the crack tip are as follows:

,

 

(13.3)

 

,

 

(13.4)

 

,

 

(13.5)

 

,

 

(13.6)

 

.

 

(13.7)

 

Poisson’s ratio is denoted by . The plane stress solution is more appropriate if the thickness 

 

t

 

 is relatively small, 

and the plane strain solution is more appropriate if the thickness is relatively large. At , stress components 

 near . So  as . For small values of 

 

r, 

 

stress components  and  

are proportional to . 

The magnitude of the stress field in the vicinity of the crack tip is characterized by . Hence,  is a mea-

sure of the severity of the crack. 

 

The parameter  is called the mode I stress intensity factor

 

. For an infinite 

plate, where  with , LEFM yields the result that

.

 

(13.8)
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For finite plate geometries

, (13.9)

where F is a dimensionless width-correction factor that is a function of the geometry and the ratio of a/b. For the 
center-cracked plate, the quantity F is given by

, and (13.10)

. (13.11)

In general the correction factor is a function of the loading configuration as well as the geometry and ratio of a/b. 
The reader is referred to Dowling (1999) and the references cited there for additional relations for F.

The following facts are noted:

• The mode I stress intensity factor  depends on the remote stress , and  is the stress  if no crack is 

present.

• The mode I stress intensity factor  depends on the square root of the half crack length.

• The dimensional units of  are stress times the square root of length (e.g.,  in U.S. customary units, 

or  in SI units.)

The crack opening displacement  along the crack surface is also of interest, where the origin of the x-
axis is located at the center of the crack as is shown in figure. 13.7. For the infinite plate geometry under mode I 

loading, the displacement at the upper and lower crack faces are symmetrical, so only the displacement on the 
upper crack surface needs to be described. The expression for  as given by Sun (1998, p. 162) is

, (13.12)

where

. (13.13)
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Fig. 13.5 Opening displacement of the crack under mode I loading of the center-cracked plate.
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The critical mode I stress intensity factor is denoted by , and it is assumed to be a material param-

eter. 

• . There is no crack growth, and the material resists the crack without brittle fracture.

• . The crack begins to propagate and brittle fracture occurs.

The critical mode I stress intensity factor is also called the fracture toughness. A tough material has a large 
value of , which means it is effective in resisting crack growth. At crack growth, the remote stress is denoted 

by  and is given by 

. (13.14)

A representative graph of eq. (13.14) is shown in figure. 13.6. The value of the half crack length when , 

is called the transition crack length , where  denotes the yield strength of the material. Set  in eq. 

(13.14) to find

. (13.15)

The transition crack length is the approximate length above which strength is limited by fracture. If  then 

fracture limits strength. If  then yielding dominates strength. Materials with

a.  high  and low  imply a long  and small cracks are no problem, and

b.  low  and high  imply a short  and small cracks can be a problem.
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Typical values of the fracture toughness at room temperature are listed in table 13.2.

Example 13.1 ASTM compact tension configuration

The configuration shown in figure. 13.7 is subject to a tensile load P, has a crack length 
denoted by a, and a thickness denoted by t. It is the configuration of the ASTM standard 
compact specimen. The mode I stress intensity factor is given by (Dowling, p. 295)

, (a)

where . The nondimensional function Fp is

. (b)

For , b = 50 mm, and t = 25 mm, determine the critical crack length for brittle fracture of 2024-
T351 aluminum alloy. The numerical factor multiplying Fp is

. (c)

A graph of the stress intensity factor as a function of the crack length in the range from 15 mm to 35 mm is 

shown in figure. 13.8. The critical mode I stress intensity factor is 34 MPa  from table 13.2, and it plots as 
horizontal line in the graph. Using a root finding procedure, or a trial and error method, the intersection of the 

Table 13.2 Fracture toughness and corresponding tensile properties for selected metals at room 
temperature (Dowling, 1999).

Material

Toughness Yield strength Ultimate Strength 

MPa ksi MPa ksi

Steels

AISI 1144 66 60 540 78 840 122

AISI 4130 110 100 1090 158 1150 167

Aluminum and titanium alloys (L-T Orientation)

2014-T651 24 22 415 60 485 70

2024-T351 34 31 325 47 470 68

2219-T851 36 33 350 51 455 66

7075-T651 29 26 505 73 570 83

7475-T7351 52 47 435 63 505 73

Ti-6Al-4V 
annealed

66 60 925 134 1000 145
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two lines in the graph occurs at 23.1 mm. Thus, the critical crack length for brittle fracture is 23.1 mm. J

The example that follows illustrates how the methods of strength of materials and fracture mechanics are 
employed to analyze the strength of a cantilever beam.

Example 13.2 Strength of a cantilever beam.

This example is adapted from Kanninen and Popelar (1985, pp. 10-12). Determine the maximum value of the tip 
load Q acting on a cantilever beam depicted in figure. 13.9 by the strength of materials method and the fracture 
mechanics method. The beam has a length , height , and rectangular cross section 

with width . Assume a factor of safety (FS) of 1.5. The material is aluminum alloy 2014-T651 with 
properties listed in table 13.2. Plot the maximum value of Q versus the crack length a. 

(a) Strength of materials approach.  The maximum load is determined such that the maximum stress in the 
beam is less than the yield strength of the material. The maximum tensile normal stress occurs at the bottom of 
the beam at its built-in end. The bending moment at the built-in end is , and the flexure formula for the 
maximum normal stress is

, (a)

where the second area moment of the rectangular cross section is . Hence,
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K MPa m,

a mm,

Fig. 13.8 Stress intensity 
factor as a function of crack 
length.
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(a) Unflawed cantilever beam (b) Cracked beam

Fig. 13.9 Basis for the comparison of strength of materials and fracture mechanics approaches.
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. (b)

Solve the inequality for the load in eq. (b) to get

. (c)

Hence, .

(b) Fracture mechanics approach.  Consider that the beam, instead of being defect free, contains an edge crack 
of length a normal to the free edge. Further suppose that, as shown in figure. 13.9(b), the crack is located where 
the maximum tensile stress is anticipated. This geometry and loading configuration is not the center-cracked 
plate. However, for a relatively small crack, an LEFM-based analysis of the flawed beam shown in figure. 13.9(b) 
would give a reasonable approximation in the following expression for the stress intensity factor:

, (d)

where  is the stress that would occur at the crack location in the absence of the crack. The beam is safe 

from fracture if . Further assurance can be obtained by having , where, just as in the 

strength of materials approach, the number FS is the factor of safety. Using eq. (b) to replace  in eq. (d) 
then leads to (e)

. (f)

Solve eq. (e) for the load to get

. (g)

Substitute numerical values into eq. (f) to get

. (h)

Hence, , which is the fracture mechanics estimate of the safe operating load. A graph of the 

failure load is shown in figure. 13.10. From the plots in the graph, yielding governs failure for 
, whereas fracture governs failure for . The transition crack length, 

, determines the crack length for which it can be expected that fracture rather than yielding gov-

erns the mode of failure. In this example the transition crack length is only 2.8 percent of the height, h, of the 
beam.
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A comparison between eq. (c) and eq. (g) is instructive. It can be seen that the structural geometry and the 
factor of safety enter both relations in exactly the same way – that is, through the multiplicative parameter 

. Also, both relations contain a basic, albeit different, material property. The essential differ-
ence is that the fracture mechanics approach explicitly introduces a new physical parameter: the size of a (real or 
postulated) crack-like flaw. In fracture mechanics the size of the crack is the dominant structural parameter. It is 
the specification of this parameter that distinguishes fracture mechanics from conventional failure analyses.J

13.4 LEFM stress field in the vicinity of the crack tip for mode II

Mode II fracture is associated with loading that is antisymmetric with respect to the crack surface. Shear loading 
is shown in figure. 13.11 and is a mode II fracture problem. 

From the linear elastic fracture mechanics analysis, the singular stress field near the crack tip in terms of the 
polar coordinates shown in figure. 13.4 is 
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Fig. 13.10 Failure load versus crack length for the cantilever beam of example 13.2.
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Fig. 13.11 Antisymmetric shear loading.
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, (13.16)

, (13.17)

, (13.18)

where  is the mode II stress intensity factor, and  at the crack tip. Along the x-axis where , the 

stresses near the crack tip are

. (13.19)

Hence, the linear elastic analysis gives  as . For an infinite plate subject to a uniform shear  as 

shown in figure. 13.11, 

. (13.20)

The critical mode II stress intensity factor is denoted by , and it is assumed to be a material 

parameter. 

• . There is no crack growth, and the material resists the crack without brittle fracture.

• . The crack begins to propagate and brittle fracture occurs.

The critical mode II stress intensity factor is also called the mode II fracture toughness.

The displacements on the two crack surfaces are antisymmetric with respect to the x-axis. Let u denote the 
displacement component in the x-direction, and let v denote the displacement component in the y-direction. The 
expression for the upper surface displacement  as given by Sun (1998, p. 163) is

 and , . (13.21)

The origin of the x-axis is located at the center of the crack as is shown in figure. 13.5, and  depends on Pois-
son’s ratio, which is given by eq. (13.13). Under antisymmetric loading the crack surfaces are in sliding contact 
with each other and do not open as they do in mode I.
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13.5 Energy criterion for crack growth

The text that follows is taken from Gordon (1978).

The paradox that a material with a sharp crack has infinite stress at the tip, so that it fails at 
infinitesimal load, motivated Griffith to develop a fracture theory based on energy.

From chemistry, the surface energy needed to break chemical bonds on any one plane is 
from 0.1 to 1.0 J/m2 for most structural solids. For brittle materials – stone, brick, concrete – 1 

J/m2 is nearly all the energy, or work, required to produce a new fracture surface. Ductile 
materials – many metals – yield before fracture, so much work goes into plastic deformation 
ahead of the crack tip. Some approximate values of the work of fracture are listed in the table 
[table 13.3] that follows.

A tough material has a work of fracture between 103 – 106 J/m2.

13.5.1 Griffith criterion

The rationale for the Griffith energy criterion is the first law of thermodynamics and the theorem of minimum 
potential energy for an elastic body. The critical condition for equilibrium crack growth is that there is no net 
change in the total energy (Anderson, 1995, p. 36). Consider a cracked plate of thickness t with a through crack 
of length a as shown in figure. 13.12. Then the infinitesimal increase in the crack area is . 

Let E denote the total energy,  the total strain energy contained in the plate,  the work performed by the 

Table 13.3 Work of fracture for selected materials from Gordon (1978)

Material
Approximate work 
of fracture J/m2

Approximate tensile 
strength MPa

glass, pottery 1 – 10 170

cement, brick 3 – 40 4

epoxy resins 100 50

wood 10,000 100

mild steel 104 – 106 4,000

high tensile steel 104 1,000

dA tda=

Fig. 13.12 Mode I loading 
of a cracked plate.

a da

t

P v 2⁄,

P v 2⁄,

U We
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external force, and  the work to create new surfaces. Then,  and the critical condition for 

crack growth in the plate is given by 

. (13.22)

Rearrange the previous equation to

. (13.23)

In the latter equation  denotes the material resistance to crack growth, and  denotes the energy release rate. 
The energy release rate is a measure of the energy available for an increment of crack extension, and since it is 
obtained from the derivative of a potential, it is also called the crack extension force or crack driving force.

 (13.24)

When  there is sufficient energy in the system to form an additional crack size dA. For the plate under the 
action of the load P, the load application points undergo a relative displacement v. When the crack length 
increases by da, the displacement will increase by dv. The work done by the external load is Pdv. Hence, for 
mode I loading

. (13.25)

Prior to crack growth , where  is the compliance of the plate, and the strain energy . 

as is shown in figure. 13.13. 

Hence,

. (13.26)

Performing the differentiations in eq. (13.26) we get

. (13.27)
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Therefore, the strain energy release rate is independent of whether the load changes or not during crack growth, 
and we get

. (13.28)

Consider two types of loading as shown in figure. 13.14.

a. Load P = constant during crack growth

The strain energy and its differential with respect to the compliance at a fixed value of the load is

,

or

. (13.29)

Comparing eq. (13.28) and eq. (13.29), we find

. (13.30)

That is,  for , and for P fixed in value.

b. Fixed grips with v = constant

In this case  since . Hence, the differential of the strain 

energy with fixed grips is

. (13.31)
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Fig. 13.14 Two types of loading under mode I crack growth.
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Substitute  for v in eq. (13.31) to get

. (13.32)

Comparing eq. (13.28) and eq. (13.32), we find

. (13.33)

So  for , and for v fixed in value, and no external work is done by load P.

Equations (13.30) and (13.33) show that the strain energy release rate is always equal to the derivative of the 
strain energy apart from the sign. Crack extension occurs when  where R is the work of fracture, or the 

material resistance to crack extension. For an ideally brittle material, like glass, , which is twice the 
surface energy to create two new surfaces. For ductile metals, the work of fracture is much larger than the surface 
energy to create new free surfaces because of plastic deformation occurring in front of the crack tip. During crack 
extension energy is expended by deformation of a new plastic zone at the tip of the advancing crack. Note that 
the Griffith energy criterion is based on linear elastic material behavior, so the formation of a nonlinear effect 
such as plasticity seems to negate the analysis. However, if the plastic zone ahead of the crack tip is very small 
compared to the bulk material remaining elastic, then the criterion is applicable. If the increase in energy required 
for plastic deformation is independent of the increase in crack area, then . From fracture tests of a 
material, the value of G at crack growth, which equals R, is called the critical strain energy release rate, 
denoted by , and is assumed to be a material parameter.

. (13.34)

13.6 Relation between K and G

Consider the through-the-thickness crack in a infinite plate of unit thickness subject to uniform tension, or mode 
I loading.as shown in figure. 13.4. The through-crack opening displacement for a crack length of 2a is shown in 
figure. 13.5 and given by eq. (13.12). The relation between K and G is established by computing the work done to 
close a crack of length 2a, and restore the uniform stress σ in the plate to its pre-cracked value. This crack closure 
method is presented in several texts on fracture mechanics (e.g., Broek (1986, p. 126), Anderson (1995, p. 70), 
and Sun (1998, p. 164)). The analysis for the crack closure method that follows is from Sun. Denote the work 
done to close the crack as  where

. (13.35)

The factor of 2 preceding the integral in the expression for  accounts for two crack surfaces. The crack 

opening displacement  given by eq. (13.12) is symmetric with respect to x, and σ is independent of the dis-
placement. Perform the integration to get the work done to close the crack as
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. (13.36)

The mode I strain energy release rate per crack tip is

. (13.37)

Substitute  from (13.8), and substitute eq. (13.13) for , in the previous equation to get

, (13.38)

where

   and . (13.39)

For mode II fracture the relation between KII and GII is

. (13.40)

 Equations (13.38) to (13.40) are also valid for finite dimensions and arbitrary loading, however, KI and KII 
depend on the configuration and loading of the plate. Thin plates that are closer to the ideal plane stress condition 
have higher fracture toughness than thick plates that are closer to the state of plane strain. Most standard fracture 
tests are performed using thick specimens, and thus they give fracture toughness under the plane strain condition. 
Fracture toughness of a material can be given by either  or .

13.6.1 Mixed mode fracture

Generally, crack growth occurs under mixed mode loading. Under this type of loading, crack growth might occur 
before any of the energy release rate components attain their individual critical value. Failure interaction criteria 
are established from mixed mode fracture test configurations. The following criterion has been shown to fit test 
data for many materials quite well:

, (13.41)

where GIc and GIIc are the single mode critical energy release rates for modes I and II, respectively. From the 
relations between G and K in eqs. (13.38) and (13.40), the previous criterion (13.41) in terms of the stress inten-
sity factors is

. (13.42)
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13.7 Interlaminar failure in composites: delamination 

The main failure modes of fiber-reinforced polymer (FRP) composites were discussed in article 9.1 on page 271. 
Laminated composite structures can fail within lamina, which is intralaminar failure; between lamina, which is 
interlaminar failure; or by interacting together in a complex manner. Interlaminar failure refers to debonding of 
adjacent lamina, or delamination, which can initiate from an interfacial crack.

Delamination is the chief vulnerability of composites. However, Boeing’s Chief Technology 
Officer states: “We designed [composite parts] so they carry loads even if delaminated. We 
know how to inspect and we know how to repair.” (Canaday, 2015) 

In this section delamination is analyzed with the concepts from fracture mechanics. An initial delamination 
crack is postulated and fracture mechanics principles are used to determine if the crack will propagate in a self-
similar manner. The examples analyzed here are standard fracture test configurations. The tests are performed on 
unidirectional composites with the fibers oriented such that they are parallel to the length of the initial delamina-
tion. Consequently, the fracture configurations are modeled as laminated beams. The material is carbon fiber-
reinforced epoxy with the properties listed in table 13.4.

Note that the critical mode I strain energy release rate GIc for interface fracture is the order of the work of frac-
ture listed for epoxy resins in article 13.5 on page 387.

Example 13.3 Double cantilever beam (DCB) fracture test specimen

Consider a cantilever, laminated beam subject to equal and oppositely directed forces of magnitude P applied at 
the free end. Under the action of the forces there is a crack at the free end perpendicular to the forces of length a 
and centered with respect to the depth of the beam. The length of the beam is L, depth is 2h, and its thickness is t. 
This is a case of mode I loading, and the initial crack length  when P = 0. See figure. 13.15. The 

following data is specified: , , and . Material properties are listed in table 13.4. 
Let v denote the relative vertical displacement of the load points. Determine static response of the beam and plot 

Table 13.4 T300/977-2 carbon fiber composite

E1 E2 ν21 G12 GIc GIIc

150 GPa 11.0 GPa 0.25 6.0 GPa 352 J/m2 1,450 J/m2

a0 50 mm=

P

P

h

h

a b

L

x

2h

t

A

A

Section A-A

Fig. 13.15 Double cantilever beam configuration of example 13.3.

h 1.98 mm= t 20 mm= L 2h»
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it on the P-v plane. Analytical and numerical solutions for this example were originally given by Mi, et al., 
(1998).

Solution.  We use Castigliano’s second theorem to determine the relative displacement v. Complementary strain 
energy is stored in each arm of the beam for , and not in the un-stressed section of the beam from 

. The complementary strain energy is

, (a)

where the bending moment in the upper arm is , the bending moment in the lower arm is , and the second 

area moment of each arm is

. (b)

Note that the modulus of elasticity . The distribution of the bending moment in each arm is determined 

from equilibrium. The results are

. (c)

Hence,

. (d)

Performing the integration in eq. (d) we get

. (e)

From this last equation, the compliance of the beam is given by . The strain energy release 
rate is determined from eq. (13.28), which yields

. (f)

At the initiation of crack growth , so

. (g)

Solve eq. (g) for the crack length a to get

. (h)

Substitute eq. (h) for crack length a into eq. (e) to get
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. (i)

Prior to crack growth eq. (e) determines the response as

. (j)

For the propagating crack eq. (h) evaluates to

. (k)

For the initial crack length  eq. (k) determines the maximum load, and then either eq. (e) or eq. (j) 

determines the corresponding displacement; i.e., 

 and  at the initiation of crack growth.

For the propagating crack eq. (i) evaluates to

. (l)

Equations (j) and (l) are used to plot the load-displacement response shown in figure. 13.16. 

In load control, where P is specified and increased slowly from zero, a sudden dynamic increase in crack growth 
occurs at  since there is no stable adjacent equilibrium state. In displacement control, where v is 

specified and is increased slowly from zero to 3.17 mm, the load P increases to 73.92 N. For  the 
load decreases as the crack increases in length. 
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0
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Fig. 13.16 Static response of the DCB 
configuration. Crack growth begins 
at 73.92 N and 3.17 mm.

P 73.9238 N=

v 3.17 mm>



Aerospace Structures 395

Interlaminar failure in composites: delamination

Example 13.4 End load split (ELS) configuration

The end load split (ELS) configuration shown in figure. 13.17 has an initial crack length denoted by , 

length by , height by , and thickness normal to the x-y plane by . The lower arm at the tip is subject to ver-

tical force . Both arms below and above the crack are identical and are subject to the same load as shown in the 

free body diagrams of figure. 13.18. Hence, both arms have the same lateral displacement  and rotation 

. The x-direction displacement at the crack tip of the upper arm is , and the x-direction displace-

ment of the lower arm at the crack tip is , Thus, the relative axial displacement between the lower sur-

face of the upper arm and the upper surface of the lower arm is , which is a mode II displacement 
loading. Determine the strain energy release rate GII. Analytical and numerical solutions for this example were 
originally given by Chen et al. (1999). 

Solution.   The strain energy is

, (a)

where M1 denotes the bending moment in the arm below the crack, M2 the bending moment in the arm above the 
crack, and M3 the bending moment in the segment not containing the crack. The second area moment of each 

arm is denoted by I, and . From the free body diagrams shown in figure. 13.18, equilibrium deter-
mines the bending moments as

, and (b)

. (c)

Substitute eqs. (b) and (c) for the bending moments in eq. (a), and perform the integrations to get
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t

A

A

Section A-A

Fig. 13.17 End load split configuration of example 13.4.
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. (d)

The mode II strain energy release rate is

.J (e)

13.7.1 Mixed mode fracture

Consider a cantilever beam of length L containing a through crack of length a centered at its free end. This con-
figuration subject to load P shown in part (a) of figure. 13.19 is labeled FRMM, which means fixed ratio mixed 
mode. By the method of superposition FRMM is equivalent to the DCB test configuration shown in part (b) of 
the figure plus the ELS test configuration shown in part (c) of the figure. Hence, the FRMM configuration is a 
mixed mode I and II fracture test.

From eq. (f) in example 13.3 the mode I strain energy release rate for the configuration in part (b) of figure. 
13.19 is

. (13.43)

P

P 2⁄

P 2⁄ P 2⁄

P 2⁄

x

x

M1 x( )

M2 x( )

a

P

P

M1 a( ) M2 a( )+ M3 x( )

x

Fig. 13.18 Free body diagrams of the three segments of the ELS configuration.
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Fig. 13.19 Mixed mode I and II loading: (a) fixed ratio mixed mode, (b) double cantilever beam, 
and (c) end load split.
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From eq.(e) in example 13.4 the mode II strain energy release rate for the configuration in part (c) of figure. 
13.19 is

. (13.44)

Therefore, the mixed mode ratio for the FRMM configuration is .

Example 13.5 Response of the FRMM configuration shown in figure. 13.19

Take the height of the arms , thickness , length , so that 

. The initial crack length . From table 13.4 where , 

 and . Determine the load-displacement response, and the crack-

length-displacement response.

Solution.  The bending moment in the FRMM configuration is , . The strain energy is

, (a)

where . The displacement corresponding to load P is given by

. (b)

The displacement prior to crack growth

 . (c)

The mode I (13.43) and mode II (13.44) strain energy release rates are

. (d)

Evaluate the mixed mode fracture criterion (13.41) to get

. (e)

Solve eq. (e) for a to find

. (f)

Substitute the crack length from eq. (f) into eq. (b) to get the displacement for the propagating crack

. (g)

The transition from the initial crack to the propagating crack is obtained by equating eq. (c) to eq. (g). The result 
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is

. (h)

For the crack length , eq. (f) yields . Hence, at completed separation

 . (i)

The response plots for the FRMM fracture specimen are shown in figure. 13.20. J
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13.9 Practice exercises

1. A monococque fuselage consists of a circular cylindrical shell with a mean radius R = 50.0 in. and wall 
thickness denoted by t, where . It is subject to internal pressure p, with the design ultimate pressure speci-
fied as p = 18.2 psi. A damage tolerance philosophy allows for the presence of a subcritical crack that will not 
grow to critical length between periodic inspections. Assume an axial crack through the thickness of the wall of 
the shell with a length 2a = 2.0 in. Determine the minimum thickness of the shell such that crack growth 
does not occur at the design ultimate pressure. The material is 2024-T351 aluminum alloy with a fracture 

toughness , and a yield strength of 47 ksi.

 The mode I stress intensity factor for an axial crack through the thickness of a cylindrical shell subject to 
internal pressure is (Anderson, p. 636)

, (a)

where the dimensionless parameter . The circumferential normal stress, or hoop stress, is 

.

2. Consider the cross section at the root of the wing spar in example 6.6 on page 165 as shown in figure. 13.21. 

During an inspection a one-inch crack (2a = 1.0) is detected that is parallel to the chord in the center of the lower 
web at the root section. (This web is labeled branch 4 in Fig. 3.24 on page 71.) At the root cross section the trans-
verse shear force Vy, bending moment Mx, and torque Mz are given by

R t»

KIc 31 ksi in.=

KI σθ πa 1 0.52χ 1.29χ2 0.074χ3–+ +=

χ a Rt( )⁄=

σθ pR( ) t⁄=

r

b

t
Af1

Af2

Af2

C

S.C.

Af1

2a

Vy

Mz

MxFig. 13.21 Cross section at the root of the 
wing spar in Exercise 8.2. 
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. (b)

The total lift force acting on the airplane is denoted by L, the span of the wing spar by zmax, and e denotes the dis-
tance from the shear center to the line of action of the lift force acting on the wing. Take zmax = 120. in.
Pertinent data are listed in table 13.5.

To aid in computing the shear stress, the shear flow in the lower web is given by

. (c)

Repeating eq. (ae) in example 3.4 on page 71, the shear flow distribution function is

(d)

The critical mode I stress intensity factor , and the critical mode II stress intensity factor 

. Determine the lift force L to initiate crack growth using a factor of safety FS = 1.5.

3. Consider the end load split (ELS) fracture configuration in example 13.4 on page 395. It is modeled as a 
laminated beam made of unidirectional plies of the carbon-epoxy listed in table 13.4. Take E1 for the modulus of 

elasticity. For , , , and , complete the following steps:

a) Use Castigliano’s second theorem to determine the tip displacement  at the point of load application. 

b) Determine the crack length a for .

c) Determine the displacement v for the crack length in part (b).

d) Plot the load P versus displacement v for . Comment on the P-v plot for the propagating 

crack as compared to the same plot for the DCB configuration shown in figure. 13.16.

Partial answer: The maximum load is 571.183 N.

Table 13.5  Data from example 6.6

r, nose web radius 6.0 in Ixx, second area moment about 
the x-axis

101.619 in.4

b, length horizontal web 7.0 in. Ac, area enclosed by the contour 140.549 in.2

t, wall thickness 0.030 in. e = XL — XSC 3.604 in.

Vy L
2
---= Mx

2Lzmax–

3π
--------------------= Mz

eL
2

------=

q4 s4( )
Mz

2Ac

--------- Fy4 s4( )Vy–=

Fy4 s4( ) 0.00542827 0.00177133s4–= 0 s4 7 in.≤ ≤

KIc 31 ksi in.=

KIIc 23.5 ksi in=

a0 30 mm= L 100 mm= t 30 mm= h 1.5 mm=

v

GII GIIc=

a0 a L≤ ≤
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4. Consider the fixed ratio mixed mode (FRMM) fracture configuration in article 13.7.1. It is modeled as a lam-
inated beam of made of unidirectional plies of the carbon-epoxy listed in table 13.4. Take E1 for the modulus of 

elasticity. For , , , and , complete the following steps:

a) Use Castigliano’s second theorem to determine the tip displacement  at the point of load application. 

b) Determine the crack length a from eq. (13.41).

c) Determine the displacement v for the crack length in part (b).

d) Plot the load P versus displacement v for .

Partial answer: The maximum load is 56.04 N.

a0 40 mm= L 100 mm= t 10 mm= h 1.5 mm=

v

a0 a L≤ ≤
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