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CHAPTER 15

 

Direct stiffness method

 

Unit action states and unit displacement states are defined in the first section followed by an example to show 
how these definitions can be used to find flexibility and stiffness influence coefficients. To introduce the basic 
methods of matrix structural analysis, the analyses of structures modeled with linear elastic springs are presented 
in article 15.2 to article 15.6. The objective is to illustrate the steps in the 

 

direct stiffness method, 

 

which is sum-
marized in

 

 

 

article 15.7. The approach followed here is based on chapters 2, 3, 4, and 6 of Martin (1966).

 

15.1 Physical interpretation of influence coefficients

 

Consider the structural model of a cantilever wing with two degrees of freedom shown in figure. 15.1. The gener-

alized forces are denoted by  and the corresponding generalized displacements by , . Refer to the 

discussion in article 5.2.1 and article 5.2.2 on page 134. The linear elastic response of the wing is determined 
from the matrix relations

.

 

(15.1)

 

Elements  of the stiffness matrix are stiffness influence coefficients, and elements  of the flexibility matrix 

Q1 q1,

Q2 q2,
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z
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L

Fig. 15.1 Two-degree-of-freedom model of the cantilever wing.
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are flexibility influence coefficients. Matrices  and  are symmetric, and they are the inverse of one 

another; i.e., 

.

 

(15.2)

 

The following definition of the stiffness influence coefficients is the basis of the unit displacement state 
(UDS) method:

 

The stiffness influence coefficient 

 

k

 

ij

 

 represents the generalized force at point 

 

i

 

 in the direction 

 

q

 

i

 

 due to a 

unit generalized displacement 

 

q

 

j

 

, all other generalized displacements equal to zero.

 

For UDS 1 take the displacement vector , then the generalized forces from the first of eqs. (15.1) are 

. For UDS 1 the force vector is equal to the first column of the stiffness matrix. For UDS 2 take 

, then the generalized force vector is . For UDS 2 the force vector is equal to the 

second column of the stiffness matrix. For the wing example the generalized force vectors in terms of the ele-
ments of the stiffness matrix are depicted in figure. 15.2.

The following definition of the flexibility influence coefficients is the basis of the unit action state (UAS) 
method:
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Fig. 15.2 Generalized forces for the unit displacement states.
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Physical interpretation of influence coefficients

 

The flexibility influence coefficient 

 

c

 

ij

 

 represents the generalized displacement at point 

 

i

 

 in the direction 

 

Q

 

i

 

 

due to a unit generalized force 

 

Q

 

j

 

, all other generalized forces equal to zero.

 

For UAS 1 take the generalized force vector , then the generalized displacements from the second of 

eq. (15.1) are . For UAS 1 the displacement vector is equal to the first column of the flexibility 

matrix. For UAS 2 take , then the generalized displacement vector is . For UAS 2 

the displacement vector is equal to the second column of the flexibility matrix. For the wing example the general-
ized displacement vectors in terms of the elements of the flexibility matrix are depicted in figure. 15.3.

 

Example 15.1 Two springs in series restrained at one end. 

 

Construct the flexibility influence matrix  by the method of unit action states (UAS), and the stiffness influ-

ence matrix , by the method of unit displacement states (UDS) for the two-degree-of freedom structural 

model shown in figure 15.4. The model consists of two linear elastic springs in series with the left end fixed 
against translation. The left spring has stiffness  and the right spring has stiffness .

The flexibility and stiffness matrix relations are of the form
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Fig. 15.3 Generalized displacements for unit action states.
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. (a)

Solution.  

UAS 1.    and . The free body diagrams of the springs, with the spring forces assumed positive 

in tension, and of joints 1 and 2 are shown in figure. 15.4.

Equilibrium at joints 1 and 2 gives

. (b)

Therefore,

. (c)

The material laws for the linear elastic springs are

. (d)

where  is the elongation of spring a and  is the elongation of spring b. Spring elongations are related to the 

nodal displacements by geometric compatibility, and for this example we have

. (e)

Thus,  and . Solve for the displacements to get

. (f)

ka kb

q1 Q1, q2 Q2,

Fig. 15.4 Two linear elastic springs in series restrained against rigid body translation.
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UAS 2.    and . The free body diagrams are shown in figure. 15.5.

Equilibrium at the joints gives

. (g)

Therefore,

. (h)

The material laws for each spring and the elongation-displacement relations give

. (i)

Solve for the displacements to get

. (j)

From the method of unit action states we have determined the flexibility matrix to be

. (k)

The flexibility matrix is symmetric, which it must be for a linear elastic structure by Maxwell’s reciprocal theo-
rem: See article 5.1.2 on page 131.

UDS 1.    and . From the material laws for each spring and the elongation-displacement relations 

we have

. (l)

Q1 0= Q2 1=

Sa SaSa

q1 c12=

Sb Sb Sb Sb

node 1  node 2

q2 c22=

Q2 1=Q1 0=

Fig. 15.6 Unit 
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Free body diagrams of the two joints are shown in figure. 15.6. 

Equilibrium at the joints gives

. (m)

But  and  for UDS 1. Also, we identify  and  for UDS 1. So

. (n)

UDS 2.    and . From the material laws for each spring and the elongation-displacement relations 

we have

. (o)

Free body diagrams of the two joints are shown in figure. 15.7. 

Nodal equilibrium gives

. (p)

But  and  for UDS 1. Also, we identify  and  for UDS 1. So

. (q)

Therefore, the stiffness matrix is

. (r)

The stiffness matrix is also symmetric, which was proved based on symmetry of the flexibility matrix. Refer to 
article 5.2.2.

Note that the matrix product
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Fig. 15.7 Unit 
displacement state 1.
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Unrestrained structural stiffness matrix

.

That is, the product of flexibility matrix and the stiffness matrix is the identity matrix. In other words, the inverse 
of the flexibility matrix is the stiffness matrix. J

15.2 Unrestrained structural stiffness matrix

The flexibility influence coefficients  are defined for a structure restrained against rigid body motion. How-

ever, it is not necessary to impose this rigid body constraint when forming the stiffness influence coefficients  

of a structure. Specifying the generalized displacements in the method of unit displacement states encompasses 
both rigid body displacements and those causing deformation. Consider a single, linear elastic spring element 
with two-degrees-of-freedom (DOFs) connected between joints i and j, where integers , as shown in figure 

15.9. Let  denote the stiffness of the spring, which has dimensional units of F/L.

The unrestrained structural stiffness matrix is, in general, given by

, (15.3)

in which . Free body diagrams of the joints and spring are shown in figure 15.10. Equilibrium at the joints 

yields

. (15.4)

The spring force is related to the nodal displacements by the material law
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Fig. 15.9 A two-degree-of-freedom spring element.
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Fig. 15.10 Free body diagram of the two-degree-of-freedom spring element.
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. (15.5)

UDS 1.   and . Therefore eq. (15.5) gives . Nodal equilibrium, eq. (15.4), and the 

matrix relation, eq. (15.3), give

. (15.6)

UDS 2.     and . Therefore eq. (15.5) gives . Nodal equilibrium, eq. (15.4), and the 

matrix relation, eq. (15.3), give

. (15.7)

So that the unrestrained structural stiffness matrix is given by

. (15.8)

Note that the unrestrained structural stiffness matrix (15.8) has the following properties:

1. Matrix  is symmetric (i.e., ).

2. The sum of the column elements equals zero.  for . The vanishing of this sum results 

from  for each UDS.

3. The . That is, the unrestrained structural stiffness matrix is singular. This occurs 

because the structure is not restrained against rigid body translation in the horizontal direction.
Under the action of no external loads (i.e.,  and ), the structure can translate horizontally at a 

constant speed. Rigid body motion can be used to establish constraints between elements of the unrestrained 
structural stiffness matrix. For example, let  denote the horizontal speed and let  denote time, then

. (15.9)

Equation (15.3) gives

, (15.10)

or

. (15.11)

Therefore, the constraints between elements of the unrestrained stiffness matrix are

. (15.12)

4. Diagonal elements of  are positive. This must be true based on physical grounds. If  and , 

then we expect . Thus, in the relation , the stiffness influence coefficient .
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Assembly of unrestrained structural stiffness matrices

15.3 Assembly of unrestrained structural stiffness matrices

Consider the construction of the 3X3 stiffness matrix for the unrestrained structure shown in figure. 15.11 given 
the generic stiffness matrix of the spring element from eq. (15.8).

Using the results from eq. (15.8) for each separate spring element, we can write the following results

(15.13)

. (15.14)

Assembly of the individual spring element stiffness matrices is accomplished by displacement continuity at the 
joints and equilibrium at the joints. Displacement continuity requires

. (15.15)

A free body diagram of the structure is shown below.

Equilibrium at the three joints requires

. (15.16)

Substitute for the displacements of the individual spring elements in eqs. (15.13) and (15.14) the structural dis-
placements in eqs. (15.15). Then substitute, in turn, these results into the nodal equilibrium eq. (15.16) to elimi-
nate individual spring forces . We get

, (15.17)
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Fig. 15.11 Unrestrained structure composed of two springs in series.
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Fig. 15.12 Free body diagram of the two springs in series.
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Write eq. (15.17) in matrix form

. (15.18)

Hence, the unrestrained structural stiffness matrix is 

. (15.19)

Note the following properties of the unrestrained structural stiffness matrix in eq. (15.19):

1. The matrix is symmetric, or .

2. Using a co-factor expansion by the third column, the determinate of the matrix is computed as follows:

.

Since the determinate is zero, the matrix is singular. The unrestrained structural stiffness matrix is singular 
because rigid body translation is not restrained.

3. The sum of the column elements is zero.  for .

4. Diagonal elements are positive .

Of course, we could have used the method of unit displacement states to determine the unrestrained struc-
tural stiffness matrix (15.19) for the two springs in series rather than the assembly procedure given above.

Another way to obtain the unrestrained structural stiffness matrix is to first expand the element unrestrained 
stiffness matrices to size 3X3 by adding rows and columns of zeros, and then add the 3X3 element stiffness 
matrices. For spring element stiffness matrix given by eq. (15.13), displacement compatibility, eq. (15.15), iden-
tifies  and . That is, columns one and two of the element stiffness matrix are associated with 

global degrees of freedom one and two. We write the element stiffness matrix as

. (15.20)

The global degrees of freedom are written above the appropriate columns of the expanded element stiffness 
matrix in eq. (15.20) to aid in keeping the order of the element columns consistent with the ordering of the global 
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Prescribed nodal displacements and forces

displacements. For the spring element stiffness matrix given by eq. (15.14), displacement compatibility, eq. 
(15.15), identifies  and . That is, columns one and two of the element stiffness matrix are asso-

ciated with global degrees of freedom two and three. We write the element stiffness matrix as

. (15.21)

Note that the only non-zero elements in the expanded element stiffness matrix (15.21) are in rows and columns 
two and three. Since matrices (15.20) and (15.21) are of the same dimensions we can add them to get the unre-
strained stiffness matrix of the structure; i.e.,

. (15.22)

The unrestrained structural stiffness matrix in eq. (15.22) is the same as the matrix in eq. (15.19). Thus, the 
superposition of individual element stiffness matrices to obtain the unrestrained structural stiffness matrix is 
equivalent to imposing displacement compatibility and equilibrium at the joints.

15.4 Prescribed nodal displacements and forces

At a joint we can prescribe either the displacement or the corresponding force, but not both. Consider the unre-
strained structure of the last section in which we prescribe the values of the displacement , force , and force 

. That is, nodal values of  are known, and nodal values of  are unknown. Nodal 

forces  are the applied loads, and nodal force  is a reactive force, or support reaction. Nodal dis-

placements  are the unknown, or active, displacement degrees of freedom. We partition the unre-

strained stiffness matrix given in eq. (15.22) by drawing lines between rows and columns to separate active and 
reactive nodal variables. In this example, we partition row 1 and column 1 as

. (15.23)

Now rearrange the order of the equations and the order of the displacements in eq. (15.23). The equations for the 
applied loads  are moved to correspond with rows one and two, and the reactive force equation for 

 is put in row three. Simultaneously, the unknown displacements  are ordered such that they appear 

in columns one and two, and the prescribed displacement  appears in column three. The equations in matrix 

form now read as
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. (15.24)

The rearranged stiffness matrix is

. (15.25)

In terms of matrix algebra, the unrestrained stiffness matrix in eq. (15.22) was rearranged to the matrix in eq. 
(15.25) by the following four-step sequence: First interchange elements in rows 1 and 3. Second, interchange ele-
ments in columns 1 and 3. Third, interchange elements in rows 1 and 2. Fourth, interchange elements in columns 
1 and 2.

Let the vector of unknown displacement degrees of freedom be denoted by , the vector of prescribed 

displacements by , the vector of applied forces by , and the vector of reactive forces by . In the 

example of this and the last section these vectors are

. (15.26)

The unrestrained structural stiffness matrix is rearranged to separate unknown and known nodal variables. In 
general, this partitioned matrix is written in the form

. (15.27)

For the example in this and the last section, a comparison to the matrix in eq. (15.25) gives the submatrices in eq. 
(15.27) as

. (15.28)

The matrix equations for the structure in partitioned form are now written as

. (15.29)

Submatrix  is called the restrained structural stiffness matrix. It is a square, symmetric matrix. For the 

example of this section it is seen from eq. (15.28) that the restrained stiffness matrix is 2X2, and its determinate 
is positive (i.e., ). The restrained structural stiffness matrix is nonsingular if the prescribed 
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Solution for the unknown nodal variables

nodal displacements are sufficient to prevent rigid body motion of the structure. The restrained structural stiffness 
matrix for this example was determined by the method of unit displacement states in example 15.1. See eq.(r). 
The submatrix  is, in general, square and symmetric. For the example in this section, eq. (15.28) shows 

 is 1X1. The off-diagonal submatrices are, in general, rectangular, but they satisfy the relationship

. (15.30)

15.5 Solution for the unknown nodal variables

Multiply out the matrix equations (15.29) following the ordinary matrix product formula to get

(15.31)

. (15.32)

Since the applied load vector  and the prescribed displacement vector  are known, solve eq. (15.31) 

for the unknown nodal displacement vector to get

. (15.33)

Continuing with the example of the last two sections, the restrained structural stiffness matrix is given in first 
of eqs. (15.28). Its inverse can be computed from

.

where  is the adjoint matrix. The adjoint matrix1 is the transpose of the matrix of co-factors of matrix 

. For the 2X2 restrained structural stiffness matrix (15.28)1 in this example, the adjoint matrix is simple to 

compute. It is

. (15.34)

Hence, the inverse matrix is

1. Many determinates must be evaluated to compute the adjoint matrix. For large matrices, evaluating many determinates is 
computationally inefficient. Other, more efficient methods to solve large linear systems of equations are used in numerical 
algorithms.
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. (15.35)

Of course, the inverse of the restrained structural stiffness matrix is recognized as the flexibility matrix. Equation 
(15.35) was also obtained by the method of unit action state in example 15.1 eq. (k). Continuing with the compu-
tations indicated in eq. (15.33) for this example, we have

. (15.36)

Equation (15.36) is the solution for the unknown nodal displacements.

To find the reactive nodal force vector, substitute the solution for the active nodal displacement vector from 
eq. (15.33) into eq. (15.32) to get

. (15.37)

Multiply the matrix products and collect terms in the prescribed nodal displacement vector to get

. (15.38)

Let’s evaluate eq. (15.38) for the example problem. From eqs. (15.28) and (15.35)

. (15.39)

Performing some of the matrix products, we get

. (15.40)

This last matrix expression is equivalent to the scalar equation
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. (15.41)

The result (15.41) for the reactive nodal force is as expected from overall equilibrium of the structure shown in 
figure. 15.11.

15.6 Stress matrix

The stress matrix is a matrix that directly yields the internal forces or stresses in an element in terms of the nodal 
displacements. Consider a typical spring element between joints i and j as shown in figure. 15.13. From the over-

all solution for the structural response, the nodal displacement vector  is determined. Hence, the actual 

nodal displacements  and  for the typical spring element are known. Define a vector of equivalent nodal 

forces as the element stiffness matrix times the known nodal displacement vector, or

. (15.42)

These equivalent nodal forces are not the actual forces at the joints, so they are fictitious. From this equation, the 
equivalent nodal forces at the joint are

. (15.43)

From the free body diagram shown in figure. 15.13, the spring force  is related to the equivalent nodal forces 

by

. (15.44)

Substitute eqs. (15.43) into (15.44) to eliminate the equivalent nodal forces to find that both of eqs. (15.44) lead 
to the same expression for the spring element force. The result is

, (15.45)

where  is the stress matrix for the spring element given by

. (15.46)

Q1 Q2– Q3–=

Sij SijSij Qj
eSij

k

Qi
e

i j

Fig. 15.13 Typical spring element and equivalent joint forces.
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S

S k– k=



Article 15.7

432 Aerospace Structures

For the example problem, the stress matrix for the spring between joints 1 and 2 is . Then, force in 

the spring element is

.

From eq. (15.36), the displacement at joint 2 is

.

Hence, the force in the spring element between joints 1 and 2 is

.

The stress matrix for the spring between joints 2 and 3 is . Then the force in this spring element is

.

Substitute the solution for the nodal displacements from eq. (15.36) into previous equation to get

.

Perform the matrix products in this last equation to find the force in the element between joints 2 and 3 is

.

15.7 Summary of the direct stiffness method

We have completed all the steps of the direct stiffness method for the structure shown in figure. 15.11 in the dis-
cussions beginning in article 15.2 through article 15.6. The method is summarized as follows:

1. Formulate the member stiffness matrix, and expand it to the overall structural degrees of freedom by adding 
rows and columns of zeros.

2. Assemble of the member stiffness matrices to form the unrestrained structural stiffness matrix.

. (15.47)

3. Prescribe boundary displacement restraints  and applied nodal forces :

ka– ka

S12 ka– ka

q1

q2

=

q2
Q2

ka

------
Q3

ka

------+ 
  q1+=

S12 kaq1– kaq2+ ka– q1 ka
Q2

ka

------
Q3

ka

------+ 
  q1++ Q2 Q3+= = =

kb– kb

S23 kb– kb

q2

q3

=

S23 kb– kb

1
ka

---- 1
ka

----

1
ka

---- 1
ka

---- 1
kb

----+ 
 

Q2

Q3

kb– kb
1–

1–
q1

–=

S23 kb
Q2

ka

------
Q3

ka

------+ 
 – kb

Q2

ka

------ Q3
1
ka

---- 1
kb

----+ 
 + 

 + 0 q1– Q3= =

K K element
elements
∑=

qβ{ } Qα{ }



Aerospace Structures 433

Summary of the direct stiffness method

. (15.48)

4. Solve for the unknown nodal displacements.

. (15.49)

5. Solve for the unknown support reactions.

. (15.50)

6. Determine the member forces/stresses:

. (15.51)

Example 15.2 Partitioning an unrestrained structural stiffness matrix

A spring model with four degrees of freedom is shown in figure. 15.14. 

 The unrestrained structural stiffness matrix is given as

. (a)

It is prescribed that the displacement q1 = 1 in., force Q2 = 0, force Q3 = –400 lb., and that the displacement q4 = 
0.    

a) Determine the nodal displacement vectors  and , and the nodal force vectors  and 

.

b) Determine the submatrices , and .

c) Solve for the unknown nodal displacements and forces.

Qα{ }

Qβ{ }

Kαα Kαβ

Kβα Kββ

qα{ }

qβ{ }
=

qα{ } Kαα

1–
Qα{ } Kαα

1–
Kαβ

qβ{ }–=

Qβ{ } Kβα[ ] qα{ } Kββ[ ] qβ{ }+=

Sij S q{ }=

1

2 3

4

100 lb/in. 200 lb/in.

400 lb/in.

400 lb/in.

Fig. 15.14 Spring model 
of example 15.2.
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Qβ{ }
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Solution to part (a).  The known and unknown quantities are listed in table 15.1.

Therefore, the α-indices are 2 and 3, and the β-indices are 1 and 4. The unknown nodal displacement vector and 
the corresponding known nodal force vector are

. (d)

The known displacement vector and the corresponding unknown force vector are

. (e)

Solution to part (b).  We change the order of the columns in the unrestrained structural stiffness matrix to corre-
spond to displacements q2, q3, q1, and q4. Simultaneously we change the order of the rows to correspond to 
forces Q2, Q3, Q1, and Q4. The re-ordered unrestrained structural stiffness matrix is

. (f)

Compare the partition form of the previous matrix to the general partitioned form given by eq. (15.27) to find

. (g)

Solution to part (c).  The general form for the solution to the unknown nodal displacement vector is given by eq. 
(15.33). For this example the general form of the solution becomes

. (h)

Since the nodal displacement vector  has been determined, we use eq. (15.32) to find the unknown nodal 

force vector; i.e.,

Table 15.1 Classification of the nodal quantities

Known q1 Q2 Q3 q4

Unknown Q1 q2 q3 Q4
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q2

q3

= Qα{ }
Q2
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= =

qβ{ }
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1
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Q1

Q4

=
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100– 0 100 0
200– 0 0 200

Q2:

Q3:

Q1:

Q4:

q2 q3 q1 q4
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=
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=
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0 0
=
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0 200
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1–
0
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1 100, 800–
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0 0
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15.9  Practice exercises

1. For the spring assembly shown in figure. 15.15, determine the 2X2 flexibility influence matrix  by the 
method of unit action states.

2. Consider a three-degree-of-freedom model of the string in tension shown in figure. 15.16. Let  denote the 
horizontal component of the tension force. The three degrees of freedom are the vertical displacements and cor-
responding forces at the quarter points. The analysis of this structure is different from the analyses we have been 
using in that we have to take equilibrium on a slightly deflected configuration rather than on the undeformed con-
figuration even though the displacements are small. A typical free body diagram to be used in the analysis is 
shown in the figure. Note that it is the horizontal component of the string tension that is equal to .

a) Use unit action states and the physical definition of flexibility influence coefficients to calculate the 3X3 
flexibility matrix . Write the elements of the matrix in terms of tension  and dimension . Recall 

the vertical displacements are assumed small compared to length . Partial answer: .

Q1

Q4

100– 0
200– 0

1–

1.5–

100 0
0 200

1
0

+ 200
200

 lb.= =

C[ ]

ka

kb

kc

1 2

Fig. 15.15  Spring 
assembly of exercise 1.
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Fig. 15.16  (a) String in tension. (b) Typical free body diagram
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b) Use unit displacement states and the physical definition of stiffness matrix elements to calculate the 3X3 

stiffness matrix . Partial answer: .

c) Check the plausibility of the matrices determined in parts a and b. Are they symmetric? Are diagonal 
elements positive? Does ? 

3.  Derive by the method of unit displacement states the 3X3 stiffness matrix  for the structure shown in 

figure. 15.17. Assume small displacements and rotations of the horizontal rigid bar. Partial answer: .

4. For the spring model in example 15.2, use eq. (15.45) and determine the stress matrix and spring force in 
spring elements 1-2, 2-3, and 2-4. State if the spring element is in tension or compression. Note: the spring force 
2-3 is the force in the upper and lower spring between joints 2 and 3.

K[ ] k11 2 T
a
--- 
 =

K[ ] C[ ] I[ ]=

K[ ]

2k 2k

L 3⁄ 2L 3⁄

k1
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Fig. 15.17 Exercise 3.
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