CHAPTER 15 Direct stiffness method

Unit action states and unit displacement states are defined in the first section followed by an example to show
how these definitions can be used to find flexibility and stiffness influence coefficients. To introduce the basic
methods of matrix structural analysis, the analyses of structures modeled with linear elastic springs are presented
inarticle 15.2 to article 15.6. The objective isto illustrate the steps in the direct stiffness method, which is sum-
marized in article 15.7. The approach followed here is based on chapters 2, 3, 4, and 6 of Martin (1966).

15.1 Physical interpretation of influence coefficients

Consider the structural model of a cantilever wing with two degrees of freedom shown in figure. 15.1. The gener-
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Fig. 15.1 Two-degree-of-freedom model of the cantilever wing.

alized forces are denoted by Q; and the corresponding generalized displacementsby ¢;, i = 1,2 . Refer tothe

discussion in article 5.2.1 and article 5.2.2 on page 134. The linear elastic response of the wing is determined
from the matrix relations
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Elements ,; of the stiffness matrix are stiffness influence coefficients, and elements ¢;; of the flexibility matrix
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Article 15.1

are flexibility influence coefficients. Matrices [k} and [C] are symmetric, and they are the inverse of one

another; i.e.,

W=W = K== (152

The following definition of the stiffness influence coefficients is the basis of the unit displacement state
(UDS) method:

The stiffness influence coefficient k;; represents the generalized force at point i in the direction ¢; dueto a
unit generalized displacement ¢, all other generalized displacements equal to zero.

For UDS 1 take the displacement vector {q‘} = H , then the generalized forces from the first of egs. (15.1) are
92 0

Ql} = [k“} - 1. For UDS 1 theforce vector isequa to thefirst column of the stiffness matrix. For UDS 2 take

¥Q2 k)
q‘} = H , then the generalized force vector is [Ql} = [kn] - 1. For UDS 2 the force vector is equal to the
192 1 2 Ky

second column of the stiffness matrix. For the wing example the generalized force vectorsin terms of the ele-
ments of the stiffness matrix are depicted in figure. 15.2.
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UDS 1 (ql’ qZ) = (17 0) 1

UDS 2 (ql’ qZ) = (07 1)

N—
vl
Fig. 15.2 Generalized forcesfor the unit displacement states.

The following definition of the flexibility influence coefficients isthe basis of the unit action state (UAS)
method:
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Physical interpretation of influence coefficients

The flexibility influence coefficient ¢;; represents the generalized displacement at point i in the direction Q
due to a unit generalized force Q;, all other generalized forces equal to zero.

For UAS 1 take the generalized force vector {Q 1] = H , then the generalized displacements from the second of
0
2

eqg. (15.1) are {qi = [C”} - 1. For UAS 1 the displacement vector is equal to the first column of the flexibility
q, €21

matrix. For UAS 2 take [Ql} = H , then the generalized displacement vector is {ql} = [612} -1.For UAS2
2 1 92 €2

the displacement vector is equal to the second column of the flexibility matrix. For the wing example the general-

ized displacement vectors in terms of the elements of the flexibility matrix are depicted in figure. 15.3.

UAS 1. (0, Q,) = (1,0) ‘n

UAS 2. (0, Qz) = (0,1) e

Cy =€ <0

Fig. 15.3 Generalized displacementsfor unit action states.

Example 15.1 Two springsin seriesrestrained at one end.

Construct the flexibility influence matrix [C] by the method of unit action states (UAS), and the stiffness influ-

ence matrix [K] , by the method of unit displacement states (UDS) for the two-degree-of freedom structural

model shown in figure 15.4. The model consists of two linear elastic springs in series with the left end fixed
against translation. The left spring has stiffness &, and the right spring has stiffness «, .

The flexibility and stiffness matrix relations are of the form
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Fig. 15.4 Twolinear elastic springsin seriesrestrained against rigid body translation.

[‘]1] - {011 C12} {Ql} [Qﬂ - {kn k12] {‘11] ) @)
q> C1 x| |0 0, kyy kx| 9>

UAS1 @O, =1 and O, = 0. Thefree body diagrams of the springs, with the spring forces assumed positive
intension, and of joints 1 and 2 are shown in figure. 15.4.

Solution.

91 = “n g, = ¢y

0, =1 0,=0
Fig. 155 Unit [
action state 1. =—\\\\“—>» o> -— \\\—>» <o

s, S, Saj S, S, S, S, j
node 1 node 2

Equilibrium at joints 1 and 2 gives
S, +8,+1 =0 S, =0. (b)
Therefore,
s, =1 S, =0. ©
The material laws for the linear elastic springs are
S, = k,A, S, = kyA,. ()

where A, isthe elongation of spring aand A, isthe elongation of spring b. Spring elongations are related to the
nodal displacements by geometric compatibility, and for this example we have

A, = qy Ay =q,-q,- (e)

Thus, 1 = k,q, and 0 = k,(q,—q,) . Solvefor the displacements to get

_ 1 _ _ 1 _
f11—k_a—011 ‘12—k_a—c21- ®)
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Physical interpretation of influence coefficients

UAS2. O, = 0 and O, = 1. Thefreebody diagrams are shown in figure. 15.5.

91 = 2

4y = ¢
Ql =0 Q2 =
Fig.15.6 Unit ‘ [ B
alc%ion state 2 “—\\\\—> - “—\\\\—>» <—o
. Sa Sa Saj Sb Sb Sb Sbj
node 1 node 2
Equilibrium at the joints gives
-85, +58, =0 -S,+1=0. @)
Therefore,
S, =1 S, =1 (h)
The material laws for each spring and the elongati on-displacement relations give
L= k4, I = ky(q,-qy)- 0)
Solve for the displacements to get
1 1 1 )
Q1:];;:Clz 42:1;;"']{—[7:022- 0

From the method of unit action states we have determined the flexibility matrix to be

1(1 1>' 0
- (=4 =

The flexibility matrix is symmetric, which it must be for alinear elastic structure by Maxwell’s reciprocal theo-
rem: See article 5.1.2 on page 131.

UDS1 ¢, =1 and g, = 0.Fromthematerial lawsfor each spring and the elongation-displacement relations
we have

« ” Sy = ky(qy—q1) = ky(=1) = —k, . 0]
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Free body diagrams of the two joints are shown in figure. 15.6.

q, =1 q, =0

0y = ky 0y = Ky
Fig. 15.7 Unit B b
displacement state 1. =\ \\\\—> - “—\\\\"—> <o

Sa Sa = ka kaj _kb Sy = _kb Sh _kbj
node 1 node 2
Equilibrium at the joints gives
=8, +85,+0, =0 —S,+0, = 0. (m)

But S, = k, and S, = —k, for UDS 1. Also, weidentify O, = k,, and Q, = k,, for UDS 1. So
ki, = k,+k, ky = —ky. (n)

UDS2. ¢, = 0 and ¢, = 1.Fromthematerial lawsfor each spring and the elongation-displacement relations
we have

Sy = ka(0) =0 Sy = ky(g,—q1) = k,(1-0) = k,. (0)
Free body diagrams of the two joints are shown in figure. 15.7.
9, =0 g, =1
Q1 = Ky 0y = kp
Fig. 15.8 Unit > |-
displacement state2. <+ \\\\\—> o> - \\\\—> <o
s, 5,=0 oj ky S, =k, S, kbj
node 1 node 2
Nodal equilibrium gives
=8, +8,+0, =0 —-8,+0, = 0. (P)

But S, = 0 and S, = k, for UDS 1. Also, weidentify O, = k,, and Q, = k,, for UDS 1. So
ki, = =k, kyy = k. (@

Therefore, the stiffness matrix is

[K] = )

(hy+ k) k|
_kb kb

The stiffness matrix is also symmetric, which was proved based on symmetry of the flexibility matrix. Refer to
article5.2.2.

Note that the matrix product
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Unrestrained structural stiffness matrix

1 1 ((ka+kb)_’27> <__b+’z)
e kl lkal [(ka_;kb) _’ﬂ ] (k +kb;€a 1ka 1 k - 1’% 1 ) Ll) ﬂ
et T Pl n)) e )

That is, the product of flexibility matrix and the stiffness matrix is the identity matrix. In other words, the inverse
of the flexibility matrix is the stiffness matrix. |||

15.2 Unrestrained structural stiffness matrix

The flexibility influence coefficients ¢;; are defined for a structure restrained against rigid body motion. How-

ever, it is not necessary to impose thisrigid body constraint when forming the stiffness influence coefficients «;;

of astructure. Specifying the generalized displacementsin the method of unit displacement states encompasses
both rigid body displacements and those causing deformation. Consider asingle, linear elastic spring element

with two-degrees-of-freedom (DOFs) connected between jointsi and j, where integers i = j , as shown in figure
15.9. Let k& denote the stiffness of the spring, which has dimensional units of F/L.

k
s aaa\a\a\\\\\ve
I I—» j

Fig. 15.9 A two-degree-of-freedom spring element.

The unrestrained structural stiffness matrix is, in general, given by

O _ ki kyl |4 , (15.3)
9; kii k) 14;

inwhich i = j . Free body diagrams of the joints and spring are shown in figure 15.10. Equilibrium at the joints

0, p g k S S 9
—e > < AN\ — e
l J

Fig. 15.10 Free body diagram of the two-degree-of-freedom spring element.
yields

Qi+S: 0 Q],_S: 0. (15.4)
The spring force is related to the nodal displacements by the material law
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S = k(g;—q;)- (15.5)
UDS1. ¢, = 1 and g; = 0. Therefore eq. (15.5) gives § = —k - 1. Nodal equilibrium, eq. (15.4), and the
matrix relation, eg. (15.3), give
0, = ~-k-1) = k; 0, =—k1=k;. (15.6)
UDS2. ¢; = 0 and g; = 1. Thereforeeq. (15.5) gives S = k- 1. Noda equilibrium, eq. (15.4), and the
matrix relation, eg. (15.3), give
0, =~k-1=k; 0, =k 1=k;. (15.7)
So that the unrestrained structural stiffness matrix is given by

[K] = |k =k = x| 1 -1} (15.8)
—k k -1 1
Note that the unrestrained structural stiffness matrix (15.8) has the following properties:

1. Matrix [K] is symmetric (i.e., [K]T = [K] ).
2

2. The sum of the column elements equals zero. Ek,—j = 0 forj = 1,2.Thevanishing of this sum results
i=1

from 0, +Q, = 0 for each UDS.

3. The det [K} = k2—(=k)? = 0.Thatis, the unrestrained structural stiffness matrix issingular. This occurs

because the structure is not restrained against rigid body translation in the horizontal direction.

Under the action of no external loads (i.e., O, = 0 and Q; = 0), the structure can translate horizontally at a
constant speed. Rigid body motion can be used to establish constraints between elements of the unrestrained
structural stiffness matrix. For example, let v denote the horizontal speed and let ¢ denote time, then

q; = q; = vt. (15.9)
Equation (15.3) gives
b
0 ki k| vt
or
(kii+kij)g =0 (kj;+k;)g =0 qg =vt=0. (15.11)

Therefore, the constraints between elements of the unrestrained stiffness matrix are

ki +ky; =0 ki +k; = 0. (15.12)

4. Diagona elements of [K} are positive. This must be true based on physical grounds. If 0;>0 and ¢; = 0,

then we expect ¢, > 0. Thus, intherelation Q; = k;;4,, the stiffness influence coefficient &, > 0.
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Assembly of unrestrained structural stiffness matrices

15.3 Assembly of unrestrained structural stiffness matrices

Consider the construction of the 3X3 stiffness matrix for the unrestrained structure shown in figure. 15.11 given
the generic stiffness matrix of the spring element from eqg. (15.8).

1 2 3

RN R

A\ ——ANX\X\X\\\\\——»

Fig. 15.11 Unrestrained structure composed of two springsin series.

Using the results from eg. (15.8) for each separate spring element, we can write the following results

ST
—O\\\\\\'—eo Of |k kafl4; (15.13)
k [ r
: ol
——\\\\\\—e Qf |k ko flal] (15.14)

Assembly of theindividual spring element stiffness matrices is accomplished by displacement continuity at the
joints and equilibrium at the joints. Displacement continuity requires

q;, = 4 4, = 9 = 49> q; = 45 - (15.15)
A free body diagram of the structure is shown below.

k, 0 k
O)—o<— —O\\\\"—> <—-|:>— BN <—-—>Q3
Qi Qi Qj Qj Qk Qk Ql Ql

Fig. 15.12 Free body diagram of thetwo springsin series.

Equilibrium at the three joints requires

0, =0, 0, = 0,0, 05 = 0. (15.16)

Substitute for the displacements of theindividual spring elementsin egs. (15.13) and (15.14) the structural dis-
placementsin egs. (15.15). Then substitute, in turn, these results into the nodal equilibrium eq. (15.16) to elimi-

nate individual spring forces Q,, O, 0,, and Q,. We get

0, = k,q,— k.9,
0, = —k,q, +k,q, *+ kyg, — k95, (15.17)
05 = —kyq, + kyqs
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Write eg. (15.17) in matrix form

Ql ka _ka 0 91
O = | ko (kyt k) —ky| | g - (15.18)
0; 0 —ky, ky |43

Hence, the unrestrained structural stiffness matrixis

k, -k, 0
(k] = |k, (k,+ky) =Ky - (15.19)
0 -k, Kk

Note the following properties of the unrestrained structural stiffness matrix in eg. (15.19):
1. The matrix is symmetric, or [K] T [K] .

2. Using a co-factor expansion by the third column, the determinate of the matrix is computed as follows:

det[] = (O)det[_k“ ("a““kb)] —(—k,,)de{k“ "‘a] +(kb)de{k" ha }
0 0 _kb _ka (ka + kb)

b
det[g] = 0=k + (e, )Lk, (k, + k) =k2] = =k J3 + k J =

Since the determinate is zero, the matrix is singular. The unrestrained structural stiffness matrix is singular
because rigid body translation is not restrained.

3
3. The sum of the column elementsis zero. Ekij =0forj=1,2,3.
i=1

4. Diagonal elements are positive k;; > 0.

Of course, we could have used the method of unit displacement states to determine the unrestrained struc-
tural stiffness matrix (15.19) for the two springs in series rather than the assembly procedure given above.

Another way to obtain the unrestrained structural stiffness matrix isto first expand the element unrestrained
stiffness matrices to size 3X3 by adding rows and columns of zeros, and then add the 3X3 element stiffness
matrices. For spring element stiffness matrix given by eg. (15.13), displacement compatibility, eg. (15.15), iden-

tifiesq; = ¢, and g; = ¢, . That is, columns one and two of the element stiffness matrix are associated with
global degrees of freedom one and two. We write the element stiffness matrix as

91 492 43
k, —k, 0

a

K] = |, &, 0

0 00 (15.20)

The global degrees of freedom are written above the appropriate columns of the expanded element stiffness
matrix in eg. (15.20) to aid in keeping the order of the element columns consistent with the ordering of the global

426 Aerospace Sructures



Prescribed nodal displacements and forces

displacements. For the spring element stiffness matrix given by eq. (15.14), displacement compatibility, eg.
(15.15), identifies g, = ¢, and ¢; = ¢4 . That is, columns one and two of the element stiffness matrix are asso-
ciated with global degrees of freedom two and three. We write the element stiffness matrix as

91 92 43
00 O

0 —k, k
A (15.21)
Note that the only non-zero elementsin the expanded element stiffness matrix (15.21) are in rows and columns
two and three. Since matrices (15.20) and (15.21) are of the same dimensions we can add them to get the unre-
strained stiffness matrix of the structure; i.e.,

q1 %5 q3
k, —k, 0O
[K] = [KJ+ K] = |k, (k,+ k) —k,
0 -k, Kk

(15.22)

The unrestrained structural stiffness matrix in eg. (15.22) is the same as the matrix in eg. (15.19). Thus, the
superposition of individual element stiffness matrices to obtain the unrestrained structural stiffness matrix is
equivalent to imposing displacement compatibility and equilibrium at the joints.

15.4 Prescribed nodal displacements and forces

At ajoint we can prescribe either the displacement or the corresponding force, but not both. Consider the unre-
strained structure of the last section in which we prescribe the values of the displacement ¢, , force Q, , and force

0, . That is, nodal valuesof ¢, O,, and O are known, and nodal values of Q,, ¢,, and g, are unknown. Nodal
forces O,, and Q4 arethe applied loads, and nodal force Q, isareactive force, or support reaction. Nodal dis-

placements ¢,, and ¢, are the unknown, or active, displacement degrees of freedom. We partition the unre-

strained stiffness matrix given in eq. (15.22) by drawing lines between rows and columns to separate active and
reactive nodal variables. In this example, we partition row 1 and column 1 as

O I R 7
O, = |k, (k,+ky) =kl |q5)| - (15.23)
0; 0 —ky, ky |43

Now rearrange the order of the equations and the order of the displacementsin eq. (15.23). The equations for the
applied loads Q,, and Q5 are moved to correspond with rows one and two, and the reactive force equation for

0, isputinrow three. Simultaneously, the unknown displacements ¢,, and ¢ are ordered such that they appear

in columns one and two, and the prescribed displacement ¢, appearsin column three. The equationsin matrix
form now read as
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Q2 (ka + kb) _kbi_ka P

Os| = | —ky Ky 0]gs| (15.24)
Ql _ka 0 : ka q1
The rearranged stiffness matrix is
q, 93 4
(ka + kb) _kbs_ka
K = | o k0
—k, 0 .k,
: (15.25)

In terms of matrix algebra, the unrestrained stiffness matrix in eq. (15.22) was rearranged to the matrix in eg.
(15.25) by the following four-step sequence: First interchange elementsin rows 1 and 3. Second, interchange ele-
mentsin columns 1 and 3. Third, interchange elementsin rows 1 and 2. Fourth, interchange elementsin columns
land?2.

Let the vector of unknown displacement degrees of freedom be denoted by {¢,,} , the vector of prescribed

displacementsby {¢;} , the vector of applied forcesby {Q,} , and the vector of reactiveforcesby {Q;} . Inthe
example of this and the last section these vectors are

{44} = {qz o} = [q] {2} =

q3 3

Qﬁ {04} = [QJ' (15.26)

The unrestrained structural stiffness matrix is rearranged to separate unknown and known nodal variables. In
general, this partitioned matrix iswritten in the form

[
97 | I

For the examplein this and the last section, acomparison to the matrix in eg. (15.25) gives the submatricesin eq.
(15.27) as

x = [”‘“_ Y ‘,f] k) = m k] = [0 [k, =[] as

The matrix equations for the structure in partitioned form are now written as

{{Qﬂ _ |[Ked (K {{qa}}

O ] (sl K

Submatrix [K ] iscalled therestrained structural stiffness matrix. It isasquare, symmetric matrix. For the
example of this section it is seen from eq. (15.28) that the restrained stiffness matrix is 2X 2, and its determinate
ispositive (i.e., det[K,,] = k,k;,>0). Therestrained structural stiffness matrix is nonsingular if the prescribed

(I(X]

(15.29)
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nodal displacements are sufficient to prevent rigid body motion of the structure. Therestrained structural stiffness
matrix for this example was determined by the method of unit displacement states in example 15.1. See eq.(r).

The submatrix [Kgg] is, in general, square and symmetric. For the example in this section, eg. (15.28) shows
[Kﬁﬁ] is1X1. The off-diagonal submatrices are, in general, rectangular, but they satisfy the relationship

[Kﬁu} = [K(x } T (15.30)

15.5 Solution for the unknown nodal variables

Multiply out the matrix equations (15.29) following the ordinary matrix product formulato get
{04} = [Kool{ga)t +[Kugl{gg} (15.31)
{0} = [Kpol{aat +[Kppl{gp}- (15.32)

Since the applied load vector {Q,,} and the prescribed displacement vector {g,} areknown, solve eq. (15.31)
for the unknown nodal displacement vector to get

{60} = [Kuo 10a) = [Kue " [Kug] (a6 - (15.33)

Continuing with the example of the last two sections, the restrained structural stiffness matrix isgivenin first
of egs. (15.28). Itsinverse can be computed from
adj [KCLOJ

-1 = )
[Kaal - [Km}

where adj [Kom} is the adjoint matrix. The adjoint matrix® is the transpose of the matrix of co-factors of matrix

[K(w} . For the 2X2 restrained structural stiffness matrix (15.28); in this example, the adjoint matrix issimpleto

compute. It is

T
adj [K } = K = k| (15.34)
“ ky (k, + k) ky (k, + k)

Hence, the inverse matrix is

1. Many determinates must be evaluated to compute the adjoint matrix. For large matrices, evaluating many determinatesis
computationally inefficient. Other, more efficient methods to solve large linear systems of equations are used in numerical
algorithms.
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?\T‘I»—a
el

Q

a . (15.35)

(k' %)

a a

. R ——— T
(ko + kyp)ky =k |k (K, + k)

;=

Of course, the inverse of the restrained structural stiffness matrix is recognized as the flexibility matrix. Equation
(15.35) was also obtained by the method of unit action state in example 15.1 eqg. (k). Continuing with the compu-
tations indicated in eq. (15.33) for this example, we have

awl’_‘
—
|i—‘
+ a"\'
—
SN——
|
S =
8
B
= 1

==

(0, +05)

— tq,

1} [q J = Ky . (15.36)
: gz*‘(%}*'kla)Qﬂ"h

-

Equation (15.36) is the solution for the unknown nodal displacements.

:.P‘Nl’_‘
ID—‘
+ &
—
SN———
1
1Q
w [\
|
[

&

a a b

?\“l»—t

To find the reactive nodal force vector, substitute the solution for the active nodal displacement vector from
eg. (15.33) into eg. (15.32) to get

10} = [k, { K] 10 - [k " K {qﬁ}}+ (K] (957 asa)
Multiply the matrix products and collect terms in the prescribed nodal displacement vector to get
(03} = [k, [k 101 + { Kog] = [Kod [€ud] ' [Ku }{qﬁ b 539

Let's evaluate eg. (15.38) for the example problem. From egs. (15.28) and (15.35)

1l 1 1l 1
ka ktl ku a _k

0, = |, 0| % 1 L, - EX) al lg, (15.39)
l <L + l) Q3 l ( 1 + l) 0
ka ka kb ka ka kb

Performing some of the matrix products, we get
0, = [—1 —1} {52] +{k,—k.}q, . (15.40)
3

Thislast matrix expression is equivalent to the scalar equation
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Stress matrix

0, =-0,-0;. (15.41)

Theresult (15.41) for the reactive nodal force is as expected from overall equilibrium of the structure shown in
figure. 15.11.

15.6 Sress matrix

The stress matrix isamatrix that directly yieldsthe internal forces or stressesin an element in terms of the nodal
displacements. Consider atypical spring element between jointsi and j as shown in figure. 15.13. From the over-

. k .
l J
— 00— =— O\ \\+—>» ——o—>

o Sy Sy Sy Sy 9

Fig. 15.13 Typical spring element and equivalent joint forces.

all solution for the structural response, the nodal displacement vector {g,,} isdetermined. Hence, the actual

nodal displacements ¢, and ¢, for the typical spring element are known. Define a vector of equivalent nodal
forces as the element stiffness matrix times the known nodal displacement vector, or

{Qﬂ _ {k —ﬂ {ﬂ _ (15.42)
9 —k k] |q

These equivalent nodal forces are not the actual forces at the joints, so they arefictitious. From this equation, the
equivalent nodal forces at thejoint are

e — qi e = qi
Q¢ = [k —k] { } Of = [—k k][ ] . (15.43)
q; q;
From the free body diagram shown in figure. 15.13, the spring force ;; isrelated to the equivalent nodal forces
by
¢ ==S; ¢ =S, (15.44)

Substitute egs. (15.43) into (15.44) to eliminate the equivalent nodal forces to find that both of egs. (15.44) lead
to the same expression for the spring element force. The result is

9; 9;

where [S] is the stress matrix for the spring element given by

[S} = [—k ] (15.46)
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For the example problem, the stress matrix for the spring between joints 1 and 2 is [_ka k‘j . Then, forcein

the spring element is

S, = [—ka ka} H .

From eq. (15.36), the displacement at joint 2 is

= ()

a a

Hence, the force in the spring element between joints 1 and 2 is
_ _ 0, 0O _
S = —k,q, kg, = —k,q, +ka[<k_2 +k_3> +q1} = 0,+05.

The stress matrix for the spring between joints 2 and 3 is [_kb kb] . Then the forcein this spring element is

Sy = [_kb kb} H .

q3

Substitute the solution for the nodal displacements from eqg. (15.36) into previous equation to get

el = o)-fa e

L)

a a

Perform the matrix productsin thislast equation to find the force in the element between joints 2 and 3 is

Sy = {—kb(% + %) +k,,<%2"‘Q3<kl +klb>>} - [0]611 = 0;.

a

15.7 Summary of the direct stiffness method

We have completed all the steps of the direct stiffness method for the structure shown in figure. 15.11 in the dis-
cussions beginning in article 15.2 through article 15.6. The method is summarized as follows:

1. Formulate the member stiffness matrix, and expand it to the overall structural degrees of freedom by adding
rows and columns of zeros.

2. Assemble of the member stiffness matrices to form the unrestrained structural stiffness matrix.

[Kﬂ = E [Kﬂ clement (15.47)

elements

3. Prescribe boundary displacement restraints {g,,} and applied nodal forces {Q,, } :
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K K
0 q
" (Koo |Kpl| 117
4. Solve for the unknown nodal displacements.
{90} = (Koo 10ad = [Kua " [Kug] {06} - (15.49)
5. Solvefor the unknown support reactions.
{0} = [Kpo{aot +[Kppl{gp}- (15.50)
6. Determine the member forces/stresses:
Sy = [S] {q}. (15.51)

Example 15.2 Partitioning an unrestrained structural stiffness matrix

A spring model with four degrees of freedom is shown in figure. 15.14.

400 Ib/in.
BB
Fig. 15.14 Spring model 100 Ibfin. 200 Ib/in.
of example 15.2. —XXXXXI—8—XXXXXI+—o ®
I_> 1 I—> 4
400 Ib/in.
A A

o2 >3

The unrestrained structural stiffness matrix is given as

a1 q; q3 4
100 =100 O 0
[K] = |—100 1,100 =800 —200| 1, /i

0 -800 800 O

0 =200 0 200
(@)

It is prescribed that the displacement g, = 1in., force Q, = 0, force Q3 = —400 Ib., and that the displacement g, =
0.

@ Determine the nodal displacement vectors {q, } and {¢;} , and the nodal force vectors {Q,, } and
{01
b) Determine the submatrices [K,, . [Kp) [Kp, ], and [Kpyg].

c) Solvefor the unknown nodal displacements and forces.
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Solution to part (a). The known and unknown quantities are listed in table 15.1.

Table 15.1 Classification of the nodal quantities
Known 01 Q2 Q3 04
Unknown Q1 02 a3 Q4

Therefore, the a-indices are 2 and 3, and the p-indices are 1 and 4. The unknown nodal displacement vector and
the corresponding known nodal force vector are

{0} = H (0.} = H - { 0 } @
qs3 0, —400

The known displacement vector and the corresponding unknown force vector are

(g5} = H - H TAE H. ©
q4 0 o

Solution to part (b). We change the order of the columnsin the unrestrained structural stiffness matrix to corre-
spond to displacements gy, 0z, 07, and 0. Simultaneously we change the order of the rows to correspond to

forces Q,, Qg, Qq, and Q4. The re-ordered unrestrained structural stiffness matrix is

9> q; q, 44

0,: |1, 100 —800; =100 —200
0;: | 800 800, 0__ 0

Q;: | =100 0 1100 O

Qs =200 0. 0 200
)

Compare the partition form of the previous matrix to the general partitioned form given by eq. (15.27) to find

(K] = {1, 100 —800} Kol = {—100 —200}
0

—-800 800 0

(@)
[Ky,] = [7100 0 [Kyp] = [100 0
200 0 0 200

Solution to part (c). Thegeneral form for the solution to the unknown nodal displacement vector isgiven by eq.
(15.33). For this example the general form of the solution becomes

-1 -1
9> - |1,100 =800 0 | _|1,100 =800 =100 =200(|1| = | =1 |, )
q5 —800 800 —400 —800 800 0 0 ][0 -1.5
Since the nodal displacement vector {g,} has been determined, we use eq. (15.32) to find the unknown nodal
force vector; i.e.,
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15.9 Practice exercises

1. For the spring assembly shown in figure. 15.15, determine the 2X2 flexibility influence matrix [ C] by the
method of unit action states.

SIS S SS
Fig.15.15 Spring
assembly of exercise 1. LSS S

'/////

l_.

2. Consider athree-degree-of-freedom model of the string in tension shown in figure. 15.16. Let 7' denote the
horizontal component of the tension force. The three degrees of freedom are the vertical displacements and cor-
responding forces at the quarter points. The analysis of this structure is different from the analyses we have been
using in that we have to take equilibrium on a slightly deflected configuration rather than on the undeformed con-
figuration even though the displacements are small. A typical free body diagram to be used in the analysisis
shown in the figure. Note that it is the horizontal component of the string tension that is equal to 7.

1 2 3
T<+—Y N—T
<—>|<—>|<—>|<—>I T
cos0,
@

Fig. 15.16 (a) Stringin tension. (b) Typical free body diagram
a) Useunit action states and the physical definition of flexibility influence coefficients to calculate the 3X3
flexibility matrix [ C]. Write the elements of the matrix in terms of tension 7' and dimension « . Recall

the vertical displacements are assumed small compared to length « . Partial answer: ¢, = %(5}) .
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b) Useunit displacement states and the physical definition of stiffness matrix elementsto calculate the 3X3
stiffness matrix [K]. Partial answer: k;, = 2<Z> .
a
c) Check the plausibility of the matrices determined in parts a and b. Are they symmetric? Are diagonal
elements positive? Does [K][C] = [I]?

3. Derive by the method of unit displacement states the 3X3 stiffness matrix [ K] for the structure shown in
figure. 15.17. Assume small displacements and rotations of the horizontal rigid bar. Partial answer: k,, = 2k/9.

r- 5
2k 2k

L/3 2L/3

\ rigid bar
k
E

4. For the spring model in example 15.2, use eg. (15.45) and determine the stress matrix and spring forcein

spring elements 1-2, 2-3, and 2-4. State if the spring element isin tension or compression. Note: the spring force
2-3istheforce in the upper and lower spring between joints 2 and 3.

Fig. 15.17 Exercise 3.

—t— —/ 7/
/S S——D
Ng—eo— s/
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