CHAPTER 16 Appl I Catl OnS Of the dl r&t
diffness method

16.1 Coplanar trusses

The member stiffness matrix for atruss bar in the X-Y plane is developed from the analysisin article 6.1.1 on
page 153. A typical bar of length L located between jointsi and j is shown in figure. 16.1. The coordinates of
beginning joint i are (X, ¥;), and coordinates of the end joint j are (X, ¥;) , in the undeformed state. The angle

between the positive X-direction and directed line element i-j is denoted as 6 , and is determined from

X —-X; Y.—-Y.
(cos),_; = —f (sinb),_; = —f L_; = A/(Xj—)(i)z+(Yj—Y[)2. (16.1)
i—j i—j
D2 )
0
Fig.16.1 Trussbar connected to N;_; I—> 92j-1>Dj1
jointsi and j. 7
Pl
92i» Oa;
N,_;
' IL/,
\ 9 921> Qaicy
X 1
The axial force N; j from eq. (6.2) on page 154 is
_ (EA
N;_; = (T) Ai:j—(NT)i_j. (16.2)

i-j

The elongation A, _; isrelated to the joint displacements by eqg. (6.6) on page 155, which is repeated as (16.3)
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Article 16.1

below.

A = (c0s0);_i(qa;_1 —qai—1) + (sinb);_;(q2;,—q5,) , (16.3)

In matrix notation (16.3) is written as

q2i-1

Ay = [—c -5 c s] ZZi = [b} T{q}i—j1 (16.4)
2j

921
where we introduce the shorthand notation for the trigonometric functions
¢ = (cosh),_; s = (sin®),_;. (16.5)

Elements of the 4X1 matrix [b] and the 4X1 displacement vector are

[b]T = [—c = c s] g}l = [512;‘—1 92i 92j-1 6121} : (16.6)

Substitute the elongation-displacement relation (16.4) into Hooke's law (16.2) to get

Ni—j = <E[:4)i_j[b] T{q}i—j_(NT),-_j- (16.7)

Free body diagrams of the bar and jointsi and j are shown figure. 16.1. External forces in the X- and Y-direc-

tionsat joint i aredenoted by O,,_, and Q,,, respectively, and external forcesin the X- and Y-directions at joint
j aredenoted by 0,;_, and Q,;, respectively. Equilibrium at jointsi and j yield

Qs +N;_jcos0 =0, 0y, +N;_;sinb =0, 0,, | —N,;_;cos6 = 0,and Q,,—N,_;sin6 = 0. (16.8)

In matrix notation, equilibrium equations (16.8) are written as

QZ[—I —C
Qi | = |- Ny or {0}y = [p|Niey (16.9)
051 ¢
Q) s

where {Q},_; isthejoint force vector and matrix [b] is defined in eq. (16.6). Substitute eq. (16.7) for the axial
forcein eq. (16.9) to get

(0hy = ()W @by [5] - @510

The latter equation is written in the form
{Q}i—j = [K} {q}i—j+{Q0}i—j: (16.11)

where [K] = (== isthetruss stiffness matrix, and {Q°},_; = —|p|(Ny),_, isthefixed-end force
), = 0,

i-
i-j
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Coplanar trusses

vector. The stiffness matrix for the truss bar is

cs —c? —cs

2 2
[K] - (E_A> cs s —cs —s ' (16.12)
i-j|—c? —cs c¢? cs

c

—cs —s2 cs §?

Properties of the truss stiffness matrix (16.12):
e |tissymmetric since the bar islinear elastic and the displacements are small.
e Thesum of column elementsiszero. Thisresultsfrom equilibrium of the bar for each unit displacement state.

For exampleUDS 1 {¢} = [} ¢, ¢ OJT and the joint forces are

{0} = [QZ;‘—] 0, Os_1 Qz_,}T = (EA/L) [cz cs —c? —cs] T(l)'

Sum forces horizontally Q,; _; + Q,;_; = (EA/L)(c? +(=c?))(1) = 0.

Sum forcesvertically Q,;+ Q,; = (EA/L)(cs +(—cs))(1) = 0.

Sum moments about jointi LcQ,;—LsQ,;_; = L(EA/L)[c(=cs) —s(=c2)](1) = 0.
* Det[K] = 0 sincethebar isnot restrained against rigid body displacements.

* Diagonal elements are positive.

The fixed-end force vector is

Q02[—1 —C
0 . —_
{Qo}i—j = Q 2 = _[b} (NT),'_j = - s (NT),‘_j' (16-13)
02j—1 ¢
0", s

Notethat the nodal force vector isequal to the fixed-end vector when the joints are fixed and cannot displace; i.e.,

{Q}i—_j = {Qo}i—j if {Q}Ti—j = [0 00 O] :
Equation (16.7) is rewritten for bar i-j as
N[—j = [S]{q}i—j_(NT)i_ji (16.14)

where the 1X4 stress matrix [S} is defined as

9=(2) Le~ved = () [ o9
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Example 16.1

A three-bar truss

Each bar in the three-bar truss shown in figure. 16.2 has the same axial stiffness £4 , and the joints are numbered

as shown. The thermal forcesin bar 1-2, 1-3, and 2-3 are denoted by (N;), _,, (Ny), _;,

and (), _, , respec-

tively. Determine the 6X6 unrestrained structural stiffness matrix and the 6X1 fixed-end action vector.

z%y

Fig.16.2 Three
bar truss example.

3

L

2L

6

P

—

ZT L

—>

1
DOF numbering convention

Solution. Thedirection cosines and their products for each bar are listed in table 16.1.

Table 16.1 Direction cosines for the three-bar truss

bar 0 c c? 52 cs
1-2 0° 1 0 1 0 0
1-3 90° 0 1 0 1 0
2-3 135° ~1/.2 1/.2 1/2 1/2 -1/2

The direction cosines from table 16.1 are inserted into egs. (16.12) and (16.13), to get the 4X4 stiffness matrices
and the 4X 1 fixed-end actions for the truss member. The stiffness matrices are expanded to 6X6 by adding two
rows and two columns of zeros, and the column vectors are expanded to 6X 1 by adding two rows of zeros. Refer
to the discussion in article 15.3 on page 425. The 6X 1 vector of forcesfor bar 1-2 is

o
0,
0;
04
Os
Os

10-1000
000000
101000
000000
000000
1000000

q:
9>
q3
q4
qs
96

-1

S O o = O

(NT)|_2- (@)

Rows five and six, and columns five and six, of the stiffness matrix in eq. (a) contain zeros entries since degrees
of freedom five and six do not influence the response of truss bar 1-2. The 6X1 vector of forcesfor bar 1-3is

440
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2, 0000009 [o]
0, 01000-1[[92 |1
0; :(@>000000 G- 0 (v, _,. ®)
0, L7100 000 0[|q, |0
0. 000000]|g |0
o, . o-t000 1], L1]

Rows three and four, and columns three and four, of the stiffness matrix in eg. (b) contain zeros entries since
degrees of freedom three and four do not influence the response of truss bar 1-3. The 6X 1 vector of forcesfor bar
2-3is

Q, 0o 0o o o o || 0
0, 00 0 0 0 0 |4 0
O = (£4y00 172 —1/2-1/2 172 a3 _ VN2 ©
0, L0 00-1/2 172 172 =1/2||q,| |-1/42]  °7°
0s 00-1/2 1/2 1/2 =-1/2 qs -1/2
o4, 00 1/2 =1/2-1/2 1/2] 4 |1/.43)
Rows one and two, and columns one and two, of the stiffness matrix in eg.(c) contain zeros entries since degrees
of freedom one and two do not influence the response of trussbar 1-3. Let a = —Al—[—,sothat
242
2, 000 0 0 o] D 0
0, 000 0 0 0% 0
EA —a - 1/.2
05 - (_) 00 a —a—-a all|9;| _ (Np)y_s- )
on L7100 -a a a —al|q,| |-1/42
0s 00-a a a —al|qg| |-1/.2
¥Q6¥2_3 100 a —a —a a] 94 ¥1/Af2g

Addition of the 6X1 force vectors for each truss member equals the external joint force vector acting on the truss.
This addition of force vectors satisfies equilibrium at the joints assuming the procedure to expand each truss ele-
ment to six degrees of freedom to four degrees of freedom is done correctly. Hence, the condition of equilibrium
is

Ql Ql Ql Q]
QZ QZ Q2 QZ
Os) _ O] |9 4|9 @

0, 0, 0, 0,
Os Os Os Os
;Q@ ;Q(z 1-2 ;Q@ 1-3 ;QQ 2-3

Equations (a), (b), and (d) for the force vectors are substituted into eq. (e) to get the unrestrained stiffness matrix
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of thetruss as

& 10 -1 00 o]7
0, 01 0 00 -1|[%
Qs _ EA|-1 0 1+a—-a—-a a ||,
(on L1o 0 —a a a -a q4
0s 00 —a a a —al||gs
0 10 -1 a —a-al+a e

In compact notation eq. (f) is

(NT)1_2
(NT)1_3

_(NT)1_2 _(]\[T)2_3/’\/2

(NT)2_3/'\/§
(NT)2_3//\/§

¥_(NT)1_3 _(NT)2_3/’\/§4

{0} = [ {a} +{0"),

where the 6X6 unrestrained structural stiffness matrix is

91 49>

N— 1
all
1
—
~|2
S~———
o L
oo o~ o

and the 6X 1 fixed-end action vector is

{0 =

93 494 95 Y¢
-1 0 0 O
0 0 0 -1
l+a—-a—-a a
—-a a a -—a
—-a a a -—a

(NT)l_z
(NT)1_3

~(N7)y_y—(Np),_3/ 2
(Np),_3/ A2 '
(N7)y_3/2

=(Np), 5 =(Vp), /42|

®

()]

(h)

0]

Note that the stiffness matrix in eg. (h) is symmetric; the sum of column elements equal s zero; diagonal elements

are positive; and its determinate vanishes. [
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16.1.1 Assembly algorithm

Consider again the three-bar truss in example 16.1 on page 440. For computer implementation an algorithm is
presented to assemble the 6X 6 unrestrained structural stiffness matrix from the three 4X4 truss stiffness matrices,
and to assemble the 6X1 fixed-end vector from the three 4X 1 fixed-end action vectors. Let a truss member be
denoted by m, wherem= 1 for bar 1-2, m= 2 for bar 1-3, and m = 3 for bar 2-3. A description of symbols used in
the of assembly algorithm is given in table 16.2.

Table 16.2 Nomenclature

Symbol Description

[ K} 6X6 unrestrained stiffness matrix

K(row, col) row and column elements of the unrestrained stiffness
matrix

[K,] 4X 4 stiffness matrix for truss member m

K, (i, ]) matrix elements of the truss member stiffness matrix

{o% 6X 1 fixed-end action vector

0%(row) row elements of the fixed-end action vector

{00} 4X 1 fixed-end action vector of truss member m

00 (i) row elements of the truss member fixed-end action vector

Define the 3X1” spring” stiffness vector [KJ and the 3X 1 thermal force vector [NT] by

T
] = A ELEET g = o, 6 v, as19

Direction cosines for each truss bar are specified in the 4X1 matrices [bl ,i=1,2,3,ineq. (16.17) below:

] =[1010

) =fo-101"  [p) = % ‘ﬁ‘ﬁ% ' ue s

Defined a 3X4 connectivity matrix [C] by

Gri—1 920 92j-1 4o

(T

123 4] memberl
[C] = 125 6| member2

345 6| member3
) (16.18)

Row one of matrix [C] isassigned to member 1 (bar 1-2), row two to member 2 (bar 1-3), and row threeto
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member 3 (bar 2-3).
Column one contains the DOF for horizontal displacement ¢,;_, at the beginning joint i of the member,

column two contains the DOF for the vertical displacement ¢,; of the beginning joint i of the member,
column three contains the DOF of the horizontal displacement ¢,;_, at the end joint j of the member,
and column four contains the DOF for the vertical displacement g,; at the end joint j of the member.

Refer to the nomenclature in table 16.2, and to matrices defined in egs. (16.16), (16.17), and (16.18), to
understand the flow chart for the assembly algorithm in figure. 16.3.

create null [K} = Ogye m=1
matrices [

{0% = Ogx, m> 3?

Print
K] & (2"

m=m-+1

! = 11e—{10%) = =] | NT(m)\ad[k,| = Kem)[5, ] [5,]"

i >4?

O%row) = Q%row) + 0} (i)

K(row, col) = K(row, col) + K,, (i, /)

Fig. 16.3 Flow chart of the assembly algorithm.

Example 16.2 Restrained three-bar truss of example 16.1

Consider the truss of example 16.1 supported in such a manner that joint displacements
g, = g, = q4 = g5 = 0 asisshown infigure. 16.4. The unknown displacements are g3 and g, and take the

corresponding joint forces O, = O, = 0. Thethermal forcesin bars 1-2, 1-3, and 2-3 are specified as
(Np)y_, =0, (Np),_3=0,and (N7),_, = 0, respectively.

a) Determinethe restrained structural stiffness matrix [KMJ , and submatrices [Kufl’ [Kﬁa} and [KB B} .
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J2L

Fig. 16.4 Statically indeterminate I
three-bar truss.

45°

—_— 3
b) Determine the unknown joint displacements ¢, and ¢ .
c) Determine the unknown support reactions Q,, Q,, Q,, and Qs .

d) Determinethebar forces N, _,, N;_3, and N, _5.

Solution to part (a). Rearrange the unrestrained stiffness matrix in eg. (h) of example 16.1 so that the order of
the rows and columns correspond to degrees of freedom 3, 6, 1, 2, 4, and 5.

q3 de 491 92 494 45

k1+a a =1 0 —a —aﬁ

La_1ta)0 -l —a—a

_ (EA| <1 011 0 0O
[K] “\ L !

0O —-1,0 1 00

—-a —a :O 0 a a

l—a —a'0 0 a a

- @
Compare the matrix in eqg. (a) to the general form (15.27) on page 428 to identify

=) = 52

a —a —a

and

-1 0 1000
K = (B0 Ikl = (B0
—a —a 00aa

Therestrained structural stiffness matrix [Kw} is symmetric, and the sum of its column elements is not zero.

Also note that the restrained stiffness structural matrix can be obtained from the unrestrained structural stiffness
matrix in eg. (h) by merely crossing out rows and columns 1, 2, 4, and 5:
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R
Y
R

Vol yal
€ €

-1 a —qa-al+ada

N . (d)
The fixed-end action vector in eqg. (i) of example 16.1 for the unrestrained truss reduces to

{0 = [0V, 000 Np), ) ©

Elementsin rows 3 and 6 constitute {QF } while the remaining rows constitute { O§ } . Thus,

0

01 — 0 or = |(No)y 5| ®
{00} ) {08} .
0

Solution to part (b). Equation (15.31) on page 429 with the addition of the fixed-end action vector is

{0u} = [Koo {aa} + [k, {ap} + {00} ©

The fixed-end action vector is subtracted from each side of this equation, sinceit is a known vector determined
from the specified temperature changes in the bars. That is, eq. (g) iswritten in the form

{0+ (M) = [KoJtaa} + [K ot}

equivalent joint force vector

(h)
The vector —{Q°} iscalled the equivalent joint force vector. In this example the prescribed joint displacement

vector is {gq,} = [ql 4y qs}T =looo OJT,and the prescribed joint force vector is

{07 = [Qs Qs} = [0 0] . The solution for the unknown joint displacement vector is

{9,} = [Kw}_l{—Qg},Wheretheinversematrixis[Km]—l = (adj[KwD/(det[KwD. @

The adjoint of the restrained structural stiffness matrix and its determinate are®

1. The det(k[4)) , where k isascaar and [ 4] isann-by-n matrix, isequal to k"det [ 4] .
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oafid = (B0 ]l - (B e - (o,

So the inverse of the restrained structural stiffness matrix is

[Kuol™ = (EL—A)(ﬁ) P ta l_fa] ®)

—a

Perform a check of thisinverse. Is [ij [Koca} = 17

A B T G

—a —a

T 1424 1+2a

_;{ (1+a)?+(=d?) (1+a)(—a)+a(1+a)}: 1 {1+2a 0 }:{10}
a a

(1+a)+(1+a)(-a) —a?+(1+a)? 0 1+2 0 0
Hence, the inverse satisfies [KWJ [Kot(x} = [4] - The solution for the unknown nodal displacement vector is
_—ﬁ
q3 = <A) 4"’2“/5 (NT)1_3' (m)
96 £4 4+ﬁ
4+2./2

Solution to part (c). The support reactions are determined from eg. (15.32) on page 429, which is repeated
below as eg. (n).

{Q[s} = [K[su]{qq}"'[K[sﬁ]{Q[s}+{Q8}- ()
The prescribed joint displacement vector {gy} = 0,4y, , and submatrix [Kﬁa} was determined in part (a).
Hence,
0, -1 0 0
Q2 = (%4) 0 —1|(93 + (NT)]_3 . (0)
on —a —a||qs 0
05 ~a 0

Substitute eg. (m) for the displacement vector into eq. (o) to get
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0, -1 0 -1 0
O = (E4) |0 \(LYy 20220 gy oy | (VD)) o
Q4 L a —a EA 4+ﬁ 0
05 —a —a 4+2.2 0
After matrix algebrathe reactive joint forces are
R
2+2.2
0, 1
QZ - 2+2ﬁ (NT)1_3' @
0, 1_1
of |? 2
1_1
2 ﬁ;
05 =0 A free body diagram of all the joint forces is shown in figure.
T 0 Fig. 16.5 Joint 16.5.
3= {ﬁgﬁ?uasgmg on The condition for horizontal equilibriumis O, + Q5 = 0. Substi-
tute the results for these reactive forces from eqg. (g) into condition
L J2L for horizontal equilibrium to get
4 111
0 +Q0; = +=——)(Np), 4. )
QZT 1 45 TL 0, +0; <2+2ﬁ 5 ﬁ>( i_3
E L 0;=0 Extract acommon denominator in eq. (r):
_ 1 2+2.2
0,+0; = a2 -G vy, ©
0= () 2oy,
Combinetermsin eqg. (s) to get the final result
0,+0;5 = (=) 2+ 2= (L2+2)INp), 5 = (=) [01(Ny), 5 = 0. ©
2422 2+2.2

Hence, the matrix solution for reactive forces Q; and Qs satisfy horizontal equilibrium. The condition for vertical
equilibriumis O, + O, = 0. Substitute the results for these reactive forces from eqg. (q) into the condition for
vertical equilibrium to get

- [—1 1_1 =
0,+0, = [2+2,\/§+2 ,\/é}(NT)l_S 0. (u)

Note that the algebrain eg. (u) isthe same asthe algebra detailed in eg. (r) to eg. (t). So the condition for vertical
equilibrium is satisfied. Vanishing of the moment about joint 1 requires LO, —LQ5 = 0. Substitute the results
for these reactive forces from eg. (q) into the condition for moment equilibrium to get
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10,-10s = L5-—=—(3-) [ s = 0. o

Hence, the matrix solution for the reactive forces plus the applied forces satisfies equilibrium of the free body
diagram for the entire truss.

Solution to part (d). The axial normal force in the bar between jointsi and j from eq. (16.14) is

N;_; = [Si_J{q}i—_/_(Nr)i_jr (w)

where the stress matrix (16.15) is

[Si—} E(%) [—c —s C s] - x)

i—j

The direction cosines for each bar are listed in table 16.1.

For bar 1-2, the axial normal forceis

q1 0
Vo= (B Lo g Zj - = (o1 :3 -0 = (E)q,. )
94 0

From eg. (m) the solution for the displacement is ¢ = (EL—A) <_—“€[> (N7), _5 » Substitute the result for g into
4+2.J2

eg. (y) tofind

s = EE) )00 - (o,

For bar 1-3, the axial normal forceis

0
EA 0 EA
Vi = () o -1 0 ] g =093 = () a6= s @
96
From eg. (m) the solution for the displacement is ¢, = (ELZ) 4+“{;(NT)1_3 . Substitute the result for gg into
4422
€g. (z) tofind
_ (E4 4+.2 -
Mo = ()| (F)35 20|00 = (555 s @)

For bar 2-3, the axial normal forceis
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q3 93

Ny = (%) L1/ 3173 -1/31/.) Z4 ~(Np), 5 = (%) 1173 1/43 1/4) 8 0 @
5
qe 9

Expand eg. (ab) to get

N = (B ] Zj -0, s = e a9 -0 = S (E) (2R 0o+ () 2B v )

- (1)[_—ﬁ+ﬂ}(m)l_3 _ (1){ 4 }(NT)I—Cs

2 4+2.2 4+22 24422 (ac)
The final result for the forcein bar 2-3 is
N
2.3 = % (ad)
2+ .2

Note that for this statically indeterminate truss all three bar forces are proportional to the change in temperature
of bar 1-3H

16.1.2 Sdlf-strained truss

Strain of the barsin atruss can occur due to temperature changes and a so due to the lack of fit during assembly,
even in the absence of applied nodal forces. The analysisfor lack of fit of bar 1-3 in example 16.2 is achieved by
replacing the thermal force by

(NT)1_3 g EA(K/L)1—3 ’

where A isthe specified displacement of the bar to connect it to joints 1 and 3. For a gap between joints A > 0
and for an overlap A < 0 . Hence, the solution for the bar forces in example 16.2 can be interpreted for the prob-
lem of lack of fit of bar 1-3 by replacing (N7), _, with EA(A/L) 5.

Example 16.3 Self-strained configuration of the trussin example 16.2

Now consider a statically determinate configuration of the trussin figure. 16.2, which is shown in figure. 16.6.
Support conditions impose displacements ¢, = ¢, = g5 = 0. The applied external forces are specified as

0,=0;=0, = 0,andonly bar 1-3 is subject to athermal force (N;), _, = EA(aAT).

a) Determine the unknown joint displacements.
b) Determine the unknown joint forces.

c) Determine the elongation of each bar.

Solution to part (a). The matrix equation to determine the unknown joint displacementsis
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Fig. 16.6 Statically determinate V2L
three-bar truss. L
1 45°
e —3
L
[0a} = [Koo {0a} + [k Lap} + {00} @

Refer to the stiffness matrix in eq.(h) and the fixed-end vector in eqg. (i) of example 16.1. Then the matricesin eg.
(a) are

Oy 1 -1 0 ‘a 000
— _ EA _ _ EA
{03 =10y = 0]+ [Kue] = 5|1 140 @ |+ {4} = |g3| [Ku] =550 e ) ®
O 0 10 a 1+a 96 -1 —a —a
p) ﬁO o [ 0
{ag; = |q,| = |o| - and {00} = |g| = 0 ©)
qs ¥O Qg ¥_(NT)1 -3
The solution to eg. (a) for the joint displacementsis
g, = —L(aAT) g5 = —L(aAT) 46 = L(aAT). (d)
Solution to part (b). The matrix equation to determine the unknown joint forcesis
(04} = [y 1aa} * [kl {0} + {OR)- ©
Thematricesin eg. (e) are
0, 00 -1 100 5 {(vp)
_ _E4 _ E4 _ _ =3
{0} = o, [k = T |0 -a | [Ky = T |oaa] ad {08} = o9 =) o |- O
0s 0—a—a 0Oaa 0 0

The solution of eq. (e) for the unknown joint forces, or the reactive forces, is

0, =0,=0s=0. (9)

There no external forces acting on the truss since both the applied and reactive forces are zero. Consequently, it is
reasonable to surmise that the internal forcesin the bars vanish. That is,
Ni_, =N _3=N,_3=0, (h)
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which can be verified using eq. (16.14).

Solution to part (c). The elongation of atrussis determined from eq. (16.4). Using the direction cosines listed

in table 16.1, the elongation of each bar is given by

Ay = (1)(g3—q,))+(0)(qs—q,) =0
A3 = (0)(q5—q1)+(1)(q6—q2) = L(aAT)
-1 1 1
A = [ = — + ( — — = [ + =
2-3 (ﬁ)(‘is 93) <ﬁ>(Q6 ‘14) (ﬁ>(Q6 ‘13) 0
Hence, bars 1-2 and 2-3 do not change in length, and the new length of bar 1-3is L(1 + aAT) . Assuming
aAT > 0, the displaced truss is shown with respect to initial configuration in figure. 16.7 i}

Fig. 16.7 Initial configuration (dashed lines) and
the displaced configuration (solid lines) of the

oAT>0
self-strained trussin figure. 16.6.

Example 16.4 Five-bar truss

0]

Thefive-bar truss shown in figure. 16.8 isrestrained against rigid body motion, sincejoints 1 and 4 are fixed. pins

All bars have the same extensional stiffness £4 . Determine the restrained structural stiffness matrix [K(mc} .

96
Fig. 16.8 Five-bar truss. 4 3 T
— 5 L
cosa = > h2
L2 +
h

! 9 sinat = h
o t =
X A 45 /LZ + hZ

| 2
I

Solution. Thedimensions of the restrained structural stiffness matrix is4X4 in displacement degrees of freedom

q5, 94, 45, and g . The direction cosines for the truss bars are listed in table 16.3.
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Table 16.3 Direction cosinesfor thefive-bar truss

Bar 0 c S c? 52 cs

1-2 0° 1 0 1 0 0

1-3 o cosa sina cos?a sin?a cosasino
2-3 90° 0 1 0 1 0

2-4 180°—a  —cosa sino cos?a sin?a —cosa.sino
34 180° -1 0 1 0 0

From eg. (16.12) the following member stiffness matrices are constructed using the direction cosinesin
table 16.3. Only elements contributing to rows and columns 3, 4, 5, and 6 of the restrained structural stiffness
matrix are extracted from the individual element stiffness matrices. These member stiffness matrices follow:

[K } - {EA/L 0} [K } _ __EA4 cos?a.  cosasina| — EA| cosPa  costasina
a2 0 0 od1=3  L/(cos®)|cosgsing  sinta L | cos2asina cosasin?or

@

93 44 495 dg

0000 0O 0 0 O q e

[K} :<EA>010—1 :<@>0c0ta0—cota ’
aofy -3 Ltana/ [ o0 0 0 L/lo0 0o o o [K } _ |EA/L O
0-101 0 —coto. 0 cota adl3-4 0 0

. (b)
q3 qy4
[K } :< E4 ) cos?a  —cosasina| - E4| cos*a  —cos?asina
“dz-4 L/(cosa) | _cosasing sin?or L _costasina cosasinta

. (c)
Assemblage of the restrained structural stiffness matrix isaccomplished by adding like row and column elements
from the stiffness matrices of each truss bar. The result for the restrained structural stiffness matrix is

q3 q4 s 96
(1 +cos’*a) —cos?asina 0 0
[K } - (@) —cos?asina (coto + cososin?ol) 0 —coto.
“e L 0 0 (cos’a+1) cosZasina
0 —cota cos?asina (cosasin?o + cota)

(d)
Note that the matrix is symmetric and the sum of the column elements do not add to zero. If wetake o = 30°,
then the restrained structural stiffness matrix reduces to
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q; q4 qs q6

1+(3./3)/8 =3/8 0 0

[K } _ (@) -3/8  /3(9/8) 0 -3

o L 0 0  1+(3J3)/8 3/8
0 -3 3/8 J3(9/8)

| (e

Example 16.5 Using symmetry to reduce problem size

Consider the five-bar truss problem of example 16.4 with oo = 30° that is subject to prescribed nodal forces
05, 0,4, Os, and Q, . Use symmetry to reduce the problem size to solve for the unknown joint displacements.

Qs
Os
Fig. 16.9 Five-bar trussof
example 16.5.
zﬁ Y on
X 30° LQ3
|
|

»
- -

Solution. We note that the structure and boundary conditions are symmetric about a horizontal axis through the
center of the truss. The joint displacements and corresponding forces can be decomposed into a symmetric and
antisymmetric sets about this horizontal axis of symmetry as shown in figure. 16.10. Thejoint displacements and

O¢ 95 Y, v, Yy, vy
05 g5 t»Xa, X, LXb’ Xp
Os 44 = + Vi Y
hQs’ q3 —»Xa’ Ya *<_Xb’ Xp
(a) o, (b)

Fig. 16.10 (a) Symmetric truss. (b) Antisymmetric truss.

the corresponding forces are related to the symmetric and antisymmetric counterparts by

qs Xg || 10 —10[[% 0, Xa| | 10 —10||%
a| = |Val 4| Vo | = |01 0 1 Val gng |94 = |Ya| | Yo | = |01 0 1| |¥a] @
qs X, X, 1 0 1 0f|x, [0F X, X, 1 0 1 0/|X,
96 Ya Vb 01 Olyb s Y, Y, 0101 Y

The expressionsin eg. (a) are written in compact form as
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{ga} = [4{x} and {0} = [ X},

(b)

where the elements of the 4X4 matrix [ A] areeither -1, 0, or 1.The force vector is related to the displacement

vector by {Q,} = [K,,]{q,} , where matrix [K(m} isgiven by eq. (e) in example 16.4. Substitute eg. (b) into

the matrix equation relating the force vector to the displacement vector to get

(A%} = [k, [a] {2}

Pre-multiply eqg. (c) by the inverse of matrix M to find

0 = [ k[ 6

Define stiffness matrix by [I}m} = [ A] -1 [KMJ [A] . The the matrices to compute []}a; are
1010 1+(3./3)/8 —3/8 0 0 |l1o-10
[;(MJ =% 0-101 (QL/_l) -3/8  3(9/8) 0 -J3 [[o-10 1|
-1 010 0 0 1+(3.3)78 3/8 [|1 0 10
0101 0 _f 1/8 Sosgllo 1 01
The result of the matrix multiplicationsin eg. (e) is
1+(3./3)/8 3/8 0 0 3
ha} _ E_‘L4 3/8  (17.3)/8 0 0 |- [K} 1021 .
0 0 1+(3./3)/8 3/8 [Om} [Iﬂ
0 0 3/8 (J/3)/8

Note that the partitioned form of [IEGJ isdiagonal, and the 2X 2 sub-matrices on the diagonal are

1+ﬂ3 § 1+§.’\_/§§

_ 1 _ E4 8 8 d[=] = £4 8 8
k=T g =T -
3 1743 3 .3

8 8 8 8

Theinverses of the matricesin eqg. (g) are

WL AL(17-6.3) —=(18-17.3) o[y = L

E4| 1
— (18 =1 —_ + 82
181( 8—17./3) 543(9 82./3)

(©)

(d)

()]

(h)
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Then theinverse of eq. (f) is given by

g |[&] [0
= 02 [k~

Hence, the solution for the displacement vector {x} interms of the force vector {X} is

0]

o) = [k (1) 0

Fromeg. (b) {x} = [A]_l{qa} and {X} = [A]_I{Qa} Substitute the latter relationsinto eq. (j) to get

] Maad = [k [ 724 ®)

Pre-multiply eqg. (k) by matrix [A} to write the result for the unknown displacements as

{a.} = [c, {0} 0)

where the compliance matrix is

0.810306 0.897641 —0.189694 0.83441
[Ca J = 4 [f T[Aj_l _ L | 0897641 3.94847 —0.83441 3.67033 |
ac EA1_0.189694 —0.83441 0.810306 —0.897641
0.83441 3.67033 —0.897641 3.94847

(m)

The compliance matrix in eg. (m) was obtained by inverting two 2X2 sub-matrices, rather than directly inverting

the 4X4 stiffness matrix [Km} . Exploiting the symmetry conditions asillustrated in figure. 16.10, reduces the

number of computations to find the inverse of matrix [Kw} n

16.2 Sructures containing beam members

Consider aprismatic, homogeneous beam that is referenced to the Cartesian system x-y-z. The z-coordinate isthe
longitudinal axis, and the coordinates x and y define cross-sectional axes with the origin at the centroid. Assume

at least one axis x and/or y is an axis of symmetry so that the product areamoment /,, = 0. External loads are
specified as a transverse distributed load 1 (z) as shown in figure. 3.8 on page 41, and we assume a change in
temperature inthe form A7(y, z) = 7,(z)y(s) . For thisform of the prescribed change in temperature the ther-
mal axial force N, = 0 ineq. (3.75), and thermal bending moment A7, = 0 in eqg. (3.78). The plane of loading

f,(z) coincides with the locus of shear centers. Hence, the beam bendsin the y-z plane. Assume the Euler-Ber -
noulli theory in which the transverse shearsin eg. (4.28) on page 82 equal zero. That is,
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Y, = %pr =90. (16.19)

(Refer to the discussion about the Euler-Bernoulli theory following table 4.4 on page 102.) Equilibrium differen-
tial equations (3.54) and (3.55) are

drv dm
y = Y =
Sreh=0 v =0, (16.20

Hooke's law (3.79) on page 46 for bending is

do,

M. +M.,=EIl —",
p A dZ

where the thermal bending moment is given by eg. (3.78) on page 46. The change in temperature on the contour

isAT = 7,(z)y(s) and eq. (3.78) simplifiesto

(16.21)

M, = El ot,(z). (16.22)

Combine egs. (16.20), (16.21), and (16.22) to get the governing differential equation for the deflection of the
beam as
4 dz
dv _ T,
El it (2) _E]xxad7£ 0<z<L. (16.23)

X

Let ¢, denote the y-direction displacement of the neutral axisat z=0, 92 therotation of the cross section about
the x-axisat z= 0, ¢, they-direction displacement of the neutral axisat z=L, and ¢, therotation of the cross
section about the x-axis at z = L. Then the boundary conditions at the ends of the beam are

v(0) = ¢, $,(0) = g, V(L) = g5 0.(L) = q4- (16.24)
The governing boundary value problem defined by (16.23) and (16.24) is depicted in figure. 16.11(a). Actions

5
ap b MY BTEY e TQI Vyr) 0;

€Y (b)
Fig. 16.11 (a) The boundary value problem for the beam. (b) Joint equilibrium.
corresponding to the generalized displacements g4, 0o, g3, and g, are denoted by Q, Qo, Q3, and Q4, respec-

tively. Free body diagrams at the beginning joint (z=0) and the end joint (z= L) are shown in figure. 16.11(b).
Equilibrium at the joints leads to

0,+V,0) =0 0, +M(0) =0 O;-V,(L) =0 Q,—M(L) = 0. (16.25)
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The solution to the governing boundary value problem is sought by the method of superposition. Let the lat-
eral displacement be represented by the sum of displacementsin the form

v(z) = vy(z) +vi(z) . (16.26)

The boundary value problem for v, (z) is selected as

Elvy'"" = f,(z)-Elaz” 0<z<L
. (16.27)
vo(0) =0 -v,'(0) =0 vo(L) =0 v, (L) =0
As a consequence the boundary value problem for v, (z) is
Elv"" =0 O0<z<L
/ , ) (16.28)
vi(0) = ¢q4 —v'(0) = ¢, vo(L) = g3 =o' (L) = q4

Inegs. (16.27) and (16.28) ordinary derivatives with respect to z are denoted by primes (e.g., v’ = % ). Also, we
Z

let E1.. = EI. The boundary value problem (16.27) for displacement function v,(z) consists of an inhomoge-
neous differential equation with homogeneous boundary conditions, while the boundary value problem (16.28)
for displacement function v, (z) consists of a homogeneous differential equation with inhomogeneous boundary
conditions. Since the displacements and rotations vanish at the end points of the beam in the boundary value
problemfor v (z) , the solution for it will lead to fixed-end actionsin the matrix structural analysis method. That

is, the fixed-end action problem accounts for distributed load intensity f,(z) , and the distributed temperature gra-
dient t,(z) . By superposition the total bending moment is
M(z) = =EI(vy"+v|")—Elat, = M} +M], (16.29)
where the bending moments from the separate boundary value problems are
MY = —Elvy"-Elar, M} = —ElIv,". (16.30)
The shear force is the sum
Vi(z) = 7P+ 7}, (16.31)
where the shear forces from the separate boundary value problems are

0 = d 0 1 = d 1
16.2.1 Boundary value problem (16.28). Generalized displacementsat the boundaries

The general solution for v, (z) satisfying the differential equation in boundary value problem (16.28) isacubic
polynomial in the longitudinal coordinate, which iswritten as

_ .z z?
vi(z) = ey +C25 +cizt ¢, (16.33)

where the constants c;, ¢,, ¢, and ¢,, areto be determined by the four boundary conditions specified in eqg.
(16.28). Substitute the general solution (16.33) into these four boundary conditions and write result as
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0 0 0 1/|¢ q1

0 0 -10je EEI (16.34)
136 12/2 L 1||e,| g5
—212/2 =L -1 0||c,| g

Solve eq. (16.34) for the constants c;, ¢, ¢;, and ¢, to get

G| 12703 —6/L2 —12/13 —6/L2| |91
& - |-6/L2 4/L  6/L> 2/L ||4| (16.35)
¢ 0o -1 0 0 ||as
¢ 10 0 0 J|qg,

Substituting eg. (16.35) for the constants ¢, ¢,, ¢, and ¢, into eq. (16.33) leads to

1/12 6 12 6 1 6 4 6 2
vi(z) = E(E% _E% _E% _L_ZCI4)Z3 + 5(_ L_2ql + 242 + L_2q3 + Z%)Zz +(=qy)z+4q, . (16.36)

Rearrange eg. (16.36) to the form

3 2 3 2 3 2 3 2
= (2 -3 4+ 1)g, + (- 425 ) g, + (25 435 gy + (- +E) g, . 16.37
"2 < FENRR )ql < 2L Z>qz ( L3 L2>q3 ( 12 L)q4 (16.37)
Equation (16.37) is further written in the matrix form
q,
vi(z) = [ D - 1
| () Ma(2) M3(2) M (2)) (2)]{q}- (16.38)
q3
q4
The shape functions, or interpolation functions, are defined as
o,z 22 3z oz 22 oz 72
T]I(Z)=ZE—3I7+1 n2(2)=—l7+2z—2 T]3(Z)=—2E+3l7 1’]4(2):—[74'2. (16.39)
From eg. (16.19) the rotation associated with the lateral displacement function v,(z) is given by
q1
= — ! = i ! ! ! qz
0.(2) = '(2) = |,'(2) =,/ (2) 3 (2) ' (2)] |2 (16.40)
q3
q4
where
(z) = QZZ_(,i (z) = _3£+4E_1 "(z) = —6é+6i "(z) = _3é+25 (16.41)
i L3 L2 2 L2 L 3 L3 L2 N4 L2 L’ '

These interpolation functions have the following properties at the end points, or joints, of the beam member:
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n(0) =1 n,(0) =0 n;(0) =0 M4(0) =0
n,'(0) =0 n,'(0) = —1 n;'(0) =0 n,'(0) =0
, (16.42)
(L) =0 my(L) =0 ns(L) =1 ng(L) =0
n,/(L) =0 n,' (L) =0 n;'(L) =0 ny' (L) = -1

The distributions of the shear force (16.32) and the bending moment (16.30) for the boundary value problem
(16.28) are

q1
1 _ e _ e _ rre _ e _ 1
Vy(Z = EI Vi = EI i Up) N3 My %) i (16.43)
M(z) " S TR (PR | PR PR 7
n
Substitute for the shape functions from eg. (16.39) into eq. (16.43) to find
120 06 0 12 6 ||T
1
@ gy L ke (16.44)
M(z) 6 1220 4,621 6 1221 2 62||q;

L 12012 13 L 12

Since eg. (16.44) relates the internal actions consisting of the shear force and the bending moment to the joint
displacement vector, it defines the 2X4 stress matrix as

|
|
[SI(Z)]EE[ Ly (16.45)
6 1224 4 6z 6+12z' 2+6z

2 13 L 12 12 I3 L I?

2 1 6
|

such that
q,
1
Vy(z) = [S‘(z)] 92 O<z=<L. (16.46)
Mi(z) s
94

Equilibrium at the jointsz=0and z=L in (16.25) leads to

q1 q1
O = | O < Loy | 93] = | WD) < g (y| ). (16.47)
0} ~-M1(0) 93 0i MI(L) 93

94 q4

Combine these results into one matrix equation to get
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(o q:
3 - [—Sl(O)} 9 or {0'} = [K]{‘I}
1
s [s1)] || AX1  4X4 4X1
0l q4
(16.48)
The beam element stiffness matrix is defined by
12 =612
L3 L2 [3 2
[ ] % 4 6 2
—qQ1
[Kﬂ = |[=5(0) ,which evaluates to [K] =g P L 2L (16.49)
[s1(0) Z126 12 6
SH(L) L3 L% [3 2
% 2 6 4
|12 L 1> L]

The stiffness matrix of the beam member (16.49) has the following properties:

e Itissymmetric, because the material islinear elastic and the displacements and rotations of the beam are
assumed small.

e The column elements satisfy equilibrium for each unit displacement state.

For example consider unit displacement state onewith {¢} = [1 ¢ ¢ OJT.

T
The corresponding generalized joint forcesare {Q'} = [Qll 0! 0! QﬂT = El{l_z5 :g :l} :_i (1).
L3 L+ L L

The sum of the vertical forcesis O + Q1 = EIB% + <_L—132>}(1) =0.

The sum of moments about the center of the beam clockwise positive are:

Lot oi-toivol = #f5)+ (K o =

Asresult of the four unit displacement states the elements of the beam stiffness matrix satisfy the following
relationships.
4
The sum of rows one and three equals zero. E kij+ks; = 0.
J=1

The sum of L/2 times row one plus row two minus L/2 times row three plus row four is equal to zero.
4

E (L/2)ky;+ ky = (L/2)ky; + kyy = 0.

j=1

Since the stiffness matrix is symmetric, the column elements satisfy the same rel ationships as do the row ele-
ments

* Det[K] = 0, since the beam member is not restrained against rigid body displacement.
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e Itsdiagonal elements are positive.

16.2.2 Boundary value problem (16.27). Fixed-end actions

The fixed-end action vector is computed from the boundary value problem (16.27) to account for the distributed
load and the temperature distribution in the direct stiffness method. Many practical problems can be analyzed
with alinear distribution of the load intensity and alinear distribution of the cross-sectional temperature gradient.
These linear distributions are specified as

f(z) = fi(1=z/L) + f,(z/L) and T (z) = v, (1 —z/L) +7,(z/L). (16.50)

The values of the distributed load and temperature gradient at z=0are f,; and t,,, ,

respectively. At z=L, the
distributed load intensity is /,, and the temperature gradient is t,, . The boundary value problem (16.27) reduces
to

E[VO//// - yl(l_Z/L)+f}V2(Z/L) O0<z<L
i ) (16.51)
v(0) =0 ='(0) =0  v(L) =0  —v/(L) =0
The solution for displacement v(z) is
= (L—z)2(3L—z)zz}/ +[(L—z)2(2L+z)z2}/ 16.52
vo(2) [ 120E1L vl 120EIL 2 tes2

The distribution of the transverse shear force (16.32) and the bending moment (16.30) and are

POl L | 2112—60Lz + 3022 9123022 ||/ _Ql_o_{ -1 1} Tl ess
M| O0L|_373421122-30L22+1023 =203 +9L22-1023] |f,o] L [(L-2) 2] |7,

X

Substitute the resultsin (16.53) into joint equilibrium (16.25) to find the fixed-end actions

Ot |-7L/20 32,20 -1 1
0
(o0} = |93 = | L2720 L12/30 || _Elo| L 0||Ty| (16.54)
09 |-3L/20 =TL/20||f,o] L |1 -1f|xy,
09 —L2/30 —-L?/20 0 L
In the case of uniform distributionswhere f,, = 1, = f,, andt,; = 7, = 7,,, the bending moment and
shear force simplify to
0
| = (L=22)/2 fro—Ela|t,, (16.55)
M? (—L*+6Lz—62%)/12 1

and the fixed-end actions are
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0y —L/2 0
0 2 _
{00 = 03 _ | L2/12 10— Ela 1%_ (16.56)
9 -L/2 0
0! -12/12 1

16.2.3 Results of the combined superposition solutions for the beam
Joint equilibrium (16.25) leads to the sum

ol |- [l o ot
0| _ |-M20)| , |-Mi0)| _ |09 , |0}
of || |rw | |o3 o
0, | mL)| |miw)| |0y o}

, (16.57)

where {Q%} isthe 4X1 joint force vector from the fixed-end action boundary value problem (16.27), and {Q!}
isthe 4X1 joint force vector from the boundary value problem (16.28). That is, the total joint force vector is

{0} = {0} +{Q'} . From eg. (16.48) we have
{0'} = [k]{d4}. (16.58)

where the 4X4 beam stiffness matrix is given by eq. (16.49) and {¢} isthe 4X1 joint displacement vector.
Hence, the total joint force vector is given by

{0} = {0} + [k]{q}- (16.59)

Equation (16.59) iswritten in the form
{0} + ({0 = [k]{d}. (16.60)

where the vector —{ 0%} iscalled the equivalent joint force vector. It isthe negative of the fixed-end action vec-
tor.

To summarize, the analysis of a structure composed of beam members, with some members subject to dis-
tributed loads and temperature gradients, is as follows:

1. Lock every joint of the structure against translation and rotation, and cal culate the fixed-end actions.
2. Apply the fixed-end actions with the opposite sign.
3. Analyze the structure with the specified joint forces and the negative of the fixed-end actions;
{0} +(—{Q"}) . Note that the joint displacements computed in this step are the actual joint displacements.

4. Obtain the internal actions consisting of the shear force and bending moment by superposition.

{Vy(z)] _ {V;’(z)] N {V},(z)] _ {V}?(Z)} + [Sl(z)}{q}‘ (16.61)

M.(z MO(z) Ml(z) MO(z)

For the linear distributions of the specified external loads, the shear force V;)(z) and bending moment M?(z) are
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given by (16.53). The 2X4 stress matrix [51( ﬂ isgiven by (16.46), and {¢} isthe4X1 joint displacement vec-

z

tor of the beam member obtained from the solution of the assembly of the structural members.

Example 16.6 Multispan beam

Consider the multispan uniform beam in figure. 16.12. It is subject to equal and opposite couplesin the y-z plane
at z=0and z= L. The magnitude of the moment of these couplesis denoted by M, . The bending stiffness E7 is
the same constant in each span.

a) Determine the unknown joint displacements using symmetry to reduce problem size.

b) Draw the shear force and bending moment diagrams.

c) Determine the support reactions.

By
Fig. 16.12 Multi-span 3, ‘ )M
beam. 4 f—— I ¢
2 e 2 A

Solution for the unknown joint displacements. Thejoints are taken at the support locations and are numbered
oneto five from left to right. Hence, there are ten degrees of freedom (DOFs) asis shown in the top sketch in fig-
ure. 16.13. The support conditions mean the vertical displacements vanish; i.e.,

—_— T f—
{ap} = 41 a5 45 47 45 = Osxr- @

The geometry, boundary conditions, and material properties of the structure are symmetric about the vertical cen-
terline. If the top sketch of the beam and its DOFs are rotated 180° about this vertical centerline, the bottom

sketch is obtained. See figure. 16.13. The displacements and rotations at the joints in the top and bottom sketch
must be the same. Hence, symmetry implies the joint rotations must satisfy

Fig. 16.13 Symmetry about
midspan. @ 180°
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di0 = 92 43 = —4q4 96 = 46 - (b)

Clearly, the last symmetry condition on the rotations means rotation of the center joint vanishes; ¢, = 0. Then,

the analysis for the response of the beam reduces to a two-span beam, clamped at itsright end asis shown in fig-
ure. 16.14. The two active degrees of freedom are rotations ¢, and ¢, . The stiffness matrices (16.49) for beam

1 3 5

model.

/
/T’\ 2 /T'\ 4 X6
Fig. 16.14 Equivalent two-span beam M, C

members 1-2 and 2-3 are

94 9, q3 94 q3 qy4 qs 96
12/L3 —6/L2 —12/L3 —6/L2 12/L3 —6/L2 —12/L3 —6/L2
(k,)| = Ei| /L 4L /L 2L K, )| = Ei| /L 4L /L 2L
1-2 —12/L3 6/L? 12/L3 6/L? 2-3 —12/L3 6/L? 12/L3 6/L?

—6/L* 2/L 6/L*> 4/L —6/L* 2/L 6/L* 4/L ©

The 6X6 unrestrained structural stiffness matrix is the sum [Kl B 2} + [Kz ) 3} with each member stiffness matrix

expanded to 6X6 by adding two rows and two columns of zeros for degrees of freedom not contained in the
member. Theresult is

q, q, q3 d4 qs de
12/L3 —6/L% =12/L3 —6/L? 0 0
—-6/L?> 4/L 6/L%> 2/L 0 0

[K] = EJ -12/L3 6/L%* 24/L3 0 —12/L3—-6/L?

—6/L* 2/L 0 8/L 6/L> 2/L
0 0 =12/L% 6/L* 12/L% 6/L?
0 0 —6/L% 2/L 6/L* 4/L |

. (d)
Partition the unrestrained structural stiffness matrix in terms of unknowns and knowns to get

4, 44 , 4 q3 4qs 96
] ! ;
4/L 2/L1-6/L> 6/1> 0 0
1
(/L 8/La6/Lr 0 6/L7 2/
d = &5/ —6/1212/13 —12/1> 0 0 | = |[Kual [Kop]
6/L3 0 -12/L3 24/13 —12/13 —6/1%  |[Kp,] [Kpp]

0 6/L2
0 2/L

0 —12/L% 12/L3 6/L2
0 —6/1> 6/L> 4/L |

(e)
The restrained structural stiffness matrix is
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%8 qy4
_ 4/L 2/L
K = EI

[ ““} L/L S/J

. )
The unknown rotations are determined from
Q2 = Ma = EI 4/L 2/L q2 . (g)
4 0 2/L 8/L||q,4

Solve eqg. (g) for the nodal rotationsto find

G - L__ 1 |8 =2[|M,| - ML|a| ")
q4 EI(32-4)|_2 4 0 14E1| 4
By symmetry the joint rotations for the entire structure are

q 4
q -1
' = ML 0]
95| ~ 1a£1| 0
qs 1
1910 4

Solution for the shear force and bending moment distributions. The shear force and bending moment distri-
bution in beam members 1-2 and 2-3 are determined from eq. (16.44). For member 1-2, we have

26 12 6 |
Vi(z) - 57 L3 L? L3 L? ‘i i)
M(2)], _, (é_l_zz) (_‘_‘+6_Z> <_£+1_22) (_2+6_Z) 93
L* L3 L 12 Lr L3 L L2
q4
Butg, = ¢g; =0,s0
12 72
N oy L L || )
MI(Z) 1=2 (_i+6_2> (_g+6_2) 94
L 12 L 12

Substitute the solution for the rotations from eqg. (h) into eq. (k) to get
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6 6 18 M,
V](Z) —_ EI L2 L2 MaL 4 —_ MaL L2 — 7_L
= — = == = : 0}
My(2)], <_4_1+6_z> (_z+6_z) WEN 1] 14 ] 14, oz v+ M
L 2 L 2 L L? ~MaT T

Note that the coordinate z islocal to the member in the formulas for the shear force and bending moment. For
member 2-3, we have

6 12 6 ||%
Vi(z2) gl L L2 L3 L2 | |44 )
M(2)], 6 _12z_4,6z_ 6,12z 2 6z||q;s
L2 3 L L2 [2 [3 L [?
96
Butg; = ¢s = ¢ =0,
6
V 2
G =g g, Q)
Ml(z) 2-3 _i + 6_Z
L L2
Substitute the solution for rotation ¢, from eg. (h) into eg. (n) to get
6 3M,
5 V1 _
@ gyl L2 (_ a ) _ L | ©)
M (2)],_, _4 ., 6z|N BED oM, 3M,
AE 7 L

Again, note that the z -coordinate in these formulas for the shear force and bending moment in member 2-3is
local to the member and runs from zero to L. However, the beginning joint 2 corresponds to the global longitudi-
nal coordinate L, and end joint 3 corresponds to the global longitudinal coordinate 2L. The relationship between
the member local coordinate and the global structural coordinate has to be taken into account when drawing the
shear force and bending moment diagrams. The shear force and bending moment diagrams are shown in figure.
16.15. In this example, the shear force diagram in antisymmetric, and the moment diagram is symmetric, about
the center of the multispan beam.

Solution for the support reactions. The support reactions are [QB} = [KBJ {q4} . since {gg} = 0,4y, -

Hence,
0, —6/L% —6/12 —6/L% —6/L2 -9/(7L)
M,L
Os| _ g7l 6702 0 ||92| = gl 672> 0 e 4| =y [12/070)] ©
0Os 0 6/L%||qy 0 6/L2 -1 —3/(7L)
0y 0 2/L 0 2/L -1/7

Note that these are the support reactions for the left half of the beam. By symmetry the support reactions on the

Aerospace Structures 467



Article 16.2

L L L L
vV
9 M
7 + T )
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M, 3
7
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7
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2/17
0 >
-1/7 4L
-1

Fig. 16.15 Shear force and bending moment diagramsfor the multispan beam.

right half of the beam are obtained by arotation of the left half by 180° as shown in figure. 16.16.
Joining the left half and right half we get the support reactions for the overall free body diagram of the multispan
beam as shown in figure. 16.17. |l

. ( ] L L D Aé C L L ' DMa
9*4 12t\4a 3}@ jMa 12L 9&

a

L 7L 7L @ 7L 7L

Fig. 16.16 Support reactions from the half models of the multispan beam.
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DR
Youm $12Ma ¢6M } 12M, Youm,

7L 7L 7L 7L 7L

Fig. 16.17 Support reactionsof theintact multispan beam.

Example 16.7 Clamped-clamped, stepped beam restrained by a spring

The beam structure shown in figure. 16.18(a) has a step change in thickness at midspan, and is clamped at each
end. Theleft half of has a uniform flexural stiffness 2E7, and the right half has a uniform flexural stiffness E7.

Each half has alength denoted by a . A vertical linear elastic spring of stiffness k = 6E£1/a3 isconnected at
midspan. The structure is subject to a vertical distributed load and a vertical point force P applied at midspan.
The distributed load is uniform on the left half with intensity £, , and decreases linearly from £, to zero on the

right half. Model the response of the beam with two beam members, one in each half, and a spring member.
Determine

a) Therestrained structural stiffness matrix.
b) The fixed-end action vector.

¢) Theunknown joint displacements.

d) The support reactions.

€) The shear force and bending moment in the left half of the beam.

*P

fyO i A i 1 3

Iﬁ\ >
z 2EI || ET z /I‘ ’ A‘ : /1‘ °

|< | >|

— r
% @ %f (6)

Fig. 16.18 (a) Beam with a step change in thickness. (b) Degree of freedom numbering.

Solution to part (a). Theunrestrained structure has four joints and seven degrees of freedom as shown in figure.
16.18(b). The size of the unrestrained structural stiffness matrix is 7X7. The support conditions impose the van-

ishing of the following generalized displacement vector: {g,} = [ql 4, ds e qJT = 05y, . Theactive, or

unknown, displacement vector is {g,,} = [613 qJT.

The stiffness matrices for the two beam members are obtained from eq. (16.49) as
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q, q; q3 q4 43 q4 qs de
24/a3 —12/a? =24/ a3 —12/ 4> 12/a3 —6/a? -12/a3 —6/4a?

_ —12/a?> 8/a 12/a*> 4/a _ —-6/a*> 4/a 6/a* 2/a

[KI—ZJ = EI 5 2 [KZ—J = Bl 2 2
24/a3 12/a? 24/a3 12/a —12/a3 6/a% 12/a® 6/a

—12/a?> 4/a 12/a*> 8/a —-6/a*> 2/a 6/a* 4/a @

The spring stiffness matrix is obtained from eq. (15.8) on page 424 as

q7 93
[K } = E[ 6/a3 —6/(13
-2 —6/d3 6/a3

. (b)
Assembly of the element stiffness matrices is by summation of the element stiffness matrices with attention to
the location of the matrix elements in the 7X7 unrestrained structural stiffness matrix. Theresult is

q, q, q3 q4 qs de q7

24/a3 —12/a2 24/a3 12/ 0 0 0
“12/a> 8/a 12/a> 4/a O 0 0
=24/a3 12/a%> 42/a® 6/a® 12/a3 —-6/a* —6/a>
k] = El|_12/a> 4/a  6/a> 12/a 6/a® 2/a 0

0 0 -12/a®> 6/a®> 12/a3 6/a®> 0
0 0 —6/a* 2/a 6/a®> 4/a 0

0 0 —6/a3 0 0 0 6/d°
T (©)

Partition the unrestrained structural stiffness matrix in eq. (c) so that rows and columns arein the order 3, 4, 1, 2,
56,7

q; 94 9 q, qs 96 q7
42/a3 6/a 1 =24/a3 12/a® —12/a3 —6/a% —6/a3
1
6/a> 12/a-12/a®> 4/a 6/a*> 2/a 0
24743 Z12/a% 24743 Z12742° 0 0 0 TR
= EI ) ! 2 = [HPaal LRap
K 12/a2 4/a |-12/a> 8/a 0 0 0 K] (K]
~12/a> 6/a®! 0 0 12/a&% 6/a> 0 pad LRP
~6/a> 2/a' 0 0 6/a> 4/a 0
|—6/a®> 0 ' 0 0 0 0 6/d]

(d)
From the partitioned form of eq. (d) the restrained structural stiffness matrix is

3 2
[Kuc’] = EI 42/61 6/a . (e)
6/a* 12/a

Solution to part (b). From egs. (16.54) and (16.56) fixed-end actions of the beam member are
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09 —af,y/2 09 ~Taf,/ 20
08 _|a¥,/12 09 _ | a¥,/20 o
09 —~af,y/2 09 —3af,y/20
0y, |-a/12 0, , |-a*/30

The assembled 7X1 fixed-end action vector in the natural order 1, 2, 3,4, 5, 6, 7 is

T
{0} = |z & Z17a —a®> Ba —a’ (| r
2 12 20 30 20 30 !

Partitioning the fixed-end action vector in the order 3, 4, 1, 2, 5, 6, 7 we get

' T
{@F{%ﬁg?gggg@m=wmwﬁh

where

T T
ww%ﬂﬁpo{%=Pﬁﬁ£@m ©
20 30 2 12 20 30

Solution to part (c). The matrix equation to determine the unknown joint displacement {¢,} is

{0u} = [Kyof {90} +[Kupdlap} + {00} Q)

-8

The specified displacement vector {qﬁ} = 05y, - Thematrix equation for the solution of the displacement vector

The prescribed joint force vector {Q,,} is

{q,} reducesto

(Kool {96} = {03+ ({02, 0)

where (—{Q0}) isthe equivalent joint force vector. Seefigure. 16.19. The explicit form of the matrix equation to
determine the unknown displacementsis

42/a> 6/a| (05| = |P| , [17a/20],
6/a2 12/a||qs| 0] |a2/30["

The solution for the generalized displacementsis

El
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P 5
@ Jyo
O ———
. |
[~ a ; . a
4
a’(P+5af,/ 18)

M _ 1 {a3/39 —a2/78} [P+17afyo/2ﬂ _ 1 "

1 S _
q.  Ell-a2/78 7a/78]| a*,y/30 39E1 —-;—(P+37q;;0/60)

Solution to part (d). The governing matrix equation for the unknown joint forces, or the support reactions, is
= 0
{0} [Kﬁa} {gat+ [Kﬁﬁ}{CIﬁ}*'{Q[s}- 0)
The matrix 5X2 [K[ﬁq} is obtained from the partitioned form eq. (d). Writing eg. (1) in detail we have

0, —24/43 -12/a? —a/2
0, 12/a> 4/a | | | @*P+5af,)/18 a’/12
=El_12/a3 6/a® |3977|-a2 +1=34/20}/10- (m)
s @ 39BN p 1 3741 /60 B
oF —6/a*> 2/a 2 Y —a?/30
0, | —6/a> 0 | 0

After performing the matrix algebrain eg.(m) the result for the support reactionsis

9, —6/13 —179/195

0, 10a/39 721a/2,340| [ |,

Os| = |=5/13 —=59/130 L} )
0, |7a/39 -83as468 |L7°

0, 2/13  =5/39

Solution to part e. Referring to eq. (16.61) on page 463, the shear force and bending moment in beam member
1-2 is given by the superposition of the fixed-end solution and the displacement solution as

VV(Z) _ V‘(})(Z) + V)l)(Z) _ VJ(/)(Z) .\
V Y - Si(z), aki-z- ©)
{Mx(z)]pz {M?(Zjl_z {M;(z)]_z {Mo(z) L [ ( )]1_2 1-2

X

From the fixed-end action solution (16.55) the vector of the shear force and bending moment is
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Vi(z) - (a—22)/2 f0 O<z=<a. P
Mz)|, _, (—a?+6az—622)/12

Equations (16.45) and (16.46) combine to determine the shear and moment from the displacements of the mem-
ber. That is,

7 2 6 12 6 |[°

V(2 3 2! 3 2 0
(2) - [Sl(z)}l_z 92| = g1 az | a ’, a | a ) @

M), ¢ |6 12z 4,62 6,122 2, 6z|4s

9 a2 a! a & & & a & 4,

Perform the matrix algebrain eg. (q) to find

2 6 ) I3 163a
160 I 2 | “2P+5"fy0/18 _ 13 390 Pl
M), _6 1222 6z3% |2 p i 3741 /60 <—10a . % <—263a2 . 163az> /,
@ @ a a 2 : 39 13 1170 390

Finally, substitute egs. (p) and (r) into (o) to get

6 17%9a _,
Vy(2) = 13 195 P O0<z=a ]}
M(2)],_, (—10a+6_z> (—721a2+ 179az_z_2) /0
39 13/ \ 2,340 195 2

16.3 Coplanar frame structures

Frame membersin a skeletal structure resist applied |oads both by axial deformation and bending deformation.
Frames are often modeled by assuming thejoints are rigid, which means that members meeting at ajoint have the
samerotation. That is, instead of frictionless pins or ball and socket joints used to model trusses, the connections
at ajoint under the rigid joint assumption implies that bending moments in the members at the joint do not van-
ish. When distributed lateral loads act on the member, frame elements may be required even if the joints at the
end of the member are modeled as frictionless pins. In atruss the loads are assumed to only act on the joints, and
the members are not subject to lateral distributed loads. The stiffness matrix for a frame member is the superpo-
sition of the stiffness matrix for a truss member and the stiffness matrix for a beam member. There are three
degrees of freedom at each joint in a coplanar frame member: two displacements and a rotation as shown in fig-
ure. 16.20. In thisfigure, degrees of freedom labeled one and four account for axial deformation, degrees of free-
dom two and five account for lateral deformation in bending, and degrees of freedom three and six account for
rotations in bending. These degrees of freedom are referred to Cartesian coordinate directions along the longitu-
dinal axisand the axis perpendicular to the member. Let the coordinate along the longitudinal, centroidal axis be

denoted by z, 0 <z < L, and let y be the coordinate perpendicular to the member.
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¥, 2
A3

EA, EI
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] —» 4
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l—» /%=
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»

Fig. 16.20 Frame member with six degrees of freedom.

Consider atypical plane frame member between jointsi and j in astructure. Joint i isthe beginning joint and
joint j isthe end joint, so that the z-axisis directed from joint i to joint j. Then, the 6X1 generalized displacement
vector for the frame member in local coordinate directions is uniquely numbered by

{a} = |,

q3i-2 —p- @

e }T (16.62)
q3i-2 q3i-1 43i 43j-2 43j-1 (3j
These displacement components are shown in figure. 16.21. The 6X6 frame stiffness matrix in local coordinate
;131'—1 ;13/'—1
q3i a3
@ —» {3j-2
i — >z J

Fig. 16.21 Generalized displacementsfor a frame element between jointsi and j.

directionsis the sum of the truss stiffness matrix and the beam stiffness matrix, where

q3i-2  q3j-2

EA/L

Kins =

—EA/L

| il -

—FEA/L EA/L

q3i-1

q3i q3j—1 q3j

12EI/L3 —6EI/L* —12EI/L3 —6EI/L?

—6EI/L?> 4EI/L 6EI/L*> 2EI/L
—12EI1/L3 6EI/L? 12EI/L3® 6EIl/L?
—6EI/L?> 2EI/L 6EI/L> A4EI/L

(16.63)

Now add the stiffness matrices in eq. (16.63) with due regard to the element locations in the 6X6 frame member

stiffness matrix to get
éSi—2

EA/L
0
0
—-EA/L
0
0

g3i-1 g3i
0 0
12E1/L3 —6EI/L?
—6EI/L*> 4EI/L
0 0
—12E1/L3 6EI/L?
—6EI/L> 2EI/L

q3j-2

—FEA/L
0
0
EA/L
0
0

q3j-1 q3j

0 0
—12E1/L3 —6EI/L?
6EI/L> 2EI/L
0 0
12E1/L} 6EI/L?

6EI/L*> 4EI/L |

(16.64)
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The frame member stiffness matrix (16.64) is symmetric, singular, and its diagonal elements are positive. Let the
6X1 generalized joint force vector corresponding to the generalized displacement vector for the member in local
coordinates be denoted by

N o= [— — _ _ AT
{or = [Qﬁ—z 03i-1 03i O3j-2 03j-1 Q3J ' (16.65)
Then, the matrix relationship between the generalized force and displacement vectorsis
{o} = [gta}

6X1 6X6 6X1 , (16.66)

where the frame member stiffness matrix in local coordinate directionsis given by eg. (16.64).

16.3.1 Transformation of Cartesian coordinates

L et a coplanar frame assembly be defined with respect to global Cartesian coordinate directions (X,Y,Z). The
local Cartesian coordinates of aframe member are (z, y, x) with the z-coordinate al ong the reference axis of the
member. The z-axisliesin the X-Y plane at an angle 6 with respect to the positive X-direction as shown in figure.
16.22. To effect the assembly of member stiffness matricesit is necessary to transform the stiffness matrix
(16.64) of amember from local coordinate directions (z, y, x) to the global coordinate directions (X,Y,2). The
transformation from one Cartesian system (X,Y,2) to another Cartesian system (z,y,X) at joint i is effected by the
direction cosines of the latter with respect to the former. For example, denote the cosine of the angle of the z-
direction with respect to the Z-direction as cos(z, Z) , the cosine of the angle of the z-direction with respect to the

?qSi—l

q3i-1 \

Fig. 16.22 Local and global
direction at nodei.

_ ('i 32

X, q3i Za —q3;

Y-direction as cos(z, Y), €tc. Then the Cartesian coordinate transformation from global to local directionsin
terms of the direction cosinesis
z = cos(z, X)X+ cos(z, Y)Y + cos(z, Z)Z
y = cos(y, X)X + cos(y, Y)Y + cos(y, 2)Z . (16.67)
x = cos(x, X)X+ cos(x, Y)Y+ cos(x, Z)Z

From figure. 16.22 the directions cosinesin terms of angle 6 are asfollows.

cos(z, X) = cosB, cos(z, Y) = cos(—0+90°) = sinB, cos(z, Z) = c0s90° = 0 (16.68)
cos(y, X) = cos(0+90°) = —sin6O, cos(y, ¥Y) = cosO,cos(y, Z) = c0s90° = 0, (16.69)
cos(x, X) = cos90° = 0, cos(x, ¥Y) = c0s90° = 0, cos(x,Z) = cos180° = —1. (16.70)
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Combine the direction cosines from egs. (16.68) to (16.70) (b) into (16.67) to get the matrix transformation

z cosO sin6 0
y| = |-sin® cos® 0||Y|- (16.71)
X 0 0 -1||Z

Theinverse Cartesian coordinate transformation from local to global directionsis determined from the reverse
direction cosines as
X = cos(X,z)-z+cos(X,y) y+cos(X,x) x
Y = cos(Y,z) - z+cos(Y,y) y+cos(Y,x) x- (16.72)
Z = cos(Z,z) z+cos(Z,y) y+cos(Z,x) x
The direction cosines of the global directions with respect to the local directions as functions of 6 are

cos(X,z) = cosO, cos(X,y) = cos(B+90°) = —sinB, cos(X,x) = cos90° = 0, (16.73)
cos(Y,z) = cos(—0+90°) = sinf, cos(Y,y) = cosO, cos(¥,x) = cos90° = 0, and (16.74)
cos(Z,z) = ¢c0s90° = 0, cos(Z,y) = c0s90° = 0, cos(Z,x) = cos180° = —1. (16.75)

Substitute the direction cosines from egs. (16.73) to (16.75) into eg. (16.72) to get the inverse matrix transforma-
tion as

X cosO —sinf 0 ||z

Y| = |sin® cos® 0|yl (16.76)
Z 0 0 -1f|x
The generalized displacements corresponding to local coordinates (zy,X) at joint i are
{;]i} = [{}3._2 ;]3‘_1 ;]3} T, and the generalized displacements corresponding to global coordinates (X,Y,2) at

jointi are {q;} = [431-_2 Gy, qJT.Thedirectionsof the generalized displacements coincide with the coordi-

nate directions asis shown in figure. 16.22. It follows from the coordinate transformation eqg. (16.71) that the
transformation of the generalized displacements from local to global directionsis

q31-2 cosO sin® 0 ||493i-2 cosO sin® 0f [93i-2
gsi_1| — |—sin® cosB 0 ||gs;_1| = |—sin6 cosb 0| [q3,_y| - 16.77)
;13[ 0 0 -1 —q3; 0 0 1 qs;
In matrix notation transformation eq. (16.77) is written as
{ai} = [«[{a:}, (16.78)
where
cosB sinB 0
[1:] = |—sin6® cos6 0| - (16.79)

0 0 1
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It follows from the coordinate transformation in eq. (16.76) that the transformation of the generalized displace-
ments from global to local directionsis

q3i-2 cosO —sin® 0 ||g31-2

G3i-1| = |sin® cosO O |gs | (16.80)
—qs; o o -1 -
q3i q3i

In matrix notation the transformation in eq. (16.80) iswritten as

{g:} = M T{;Ii}- (16.81)

The matrix of direction cosines has the following properties:

, cosO —sin0O 0| | cos® sinO 0 co0s20 + sinZ0 0 0 100
m [‘c} = |sin® cos® 0||—sin® cos® 0O = 0 sin20 + cos20 0| = |01 0| = [I] » (16.82)
0 0 1 0 0 1 0 0 1 001

and det[] = 1.Hence, theinverse of matrix || isequal toitstranspose. Matrix || issaid to be an orthogo-

nal matrix.

Let ¢ = cosB and s = sin6 . The transformation of the displacements at joint j is the same matrix equa-
tion asat joint i except that the components of the vectors are those corresponding to joint j. Hence, the transfor-
mation of the generalized displacement vector from global to local coordinate directions for frame member i-j
can be written in matrix form as

B2 e 5000 00|92
g3i-1 —s ¢ 010 00[|93i-1
- |
il =1001:0 00 i
| = |00 1000y 95 (16.83)
oy (S0 D o
- S C .
q3j-1 : B3j-1
~ 000,001
- - | 435
L 93/ | - -
Equation (16.83) iswritten in compact form as
{q} = [7{4}
6X1  6X6 6X1 (16.84)

where the 6X6 transformation matrix is
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¢ 50000
. —scO:OOO
7 = [ 1Osm| _ |0 011000
- — 4 - - - - - _— - .
|H 000ic s0
T |
000—=cO
10 00:0 0 1]

(16.85)

Transformation matrix [T] is also an orthogonal matrix. That is, its determinate is equal to one and itsinverseis

equal to its transpose.

16.3.2 Frame stiffness matrix in global coordinate directions

The generalized joint force vector for frame member i-j transforms from global coordinate directions to local
coordinate directions in the same manner as the generalized displacement vector does for the member. Hence,
from eg. (16.84) the transformation of the 6X1 generalized force vector for element i-j is

{0} = [f{o}. (16.86)

where the 6X 1 generalized force vector in global directionsis {Q} = [Q”_z Os_1 O3, O3y 05y Q3JT.

Since the 6X6 transformation matrix is orthogonal, the inverse transformation from local to global directionsis
{0} = [0} (16.87)

To obtain the 6X6 frame element stiffness matrix in global coordinate directions, substitute (16.84) for the
generalized displacement vector, and substitute (16.86) for the generalized force vector, into eg. (16.66) to get

[7{o} = [1}} (714} (16.88)

Pre-multiply this equation by [T}T , recognizing that [T}T[T] =[] toget

{0} = [1"[x][A e} = [{a}- (16.89)

The 6X6 matrix [K] = [T] T@ [T] isthe frame member stiffness matrix in global coordinate directions, and is
given by
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EA »  12EI 5 (EA 12E1) 6E] (EA 24, 12E1 '2) (EA 12E]> 6E1
—c"t—= ———cs —§ —|\——c"t+t——=s —|————cs —=s
L L3 L 3 L? L L3 L 3 L?
(EA 12E]) EA 5 12EI , —6EI < E4 12E1> (EA 2, 12E1 2) —6E]
— ——]cs —s‘t———c" —]c (——+——)cs —|—/s°t+t——c°) ——c¢
L L3 L L3 L? L L3 L L3 L?
6EI 6], 4E] —6E] 61, 2E]
2 2 2 2
(K] = L L L L L Ll (1690
(EA 2 12E1 2) < EA 12EI> —6El  EA 5, 12EI » <EA 12EI> —6L/
—| ="t —s ——t—cs —s —F/—c"t—/—s — ——cs —s
L L3 L3 L? L L3 L3 L?
<EA 12E1> (EA 2 12E1 2) 6L1 <EA 12E1> EA » 12E1 , 6FI
—\————cs A —s“t—c°) —c — ——cs —sct —c —cC
L3 L L3 L? L3 L L3 L?
6L —6EI, 2E1 —6EI 6EI, 4El
I L2 L? L L? 12 L |

The frame member i-j referenced to global coordinate directionsis shown in figure. 16.23.

3—1

A\‘ 3j 032 43i-2

— 3j-2 O34 93;-1

3i—1 05, — [K} q3;
y Y Q3j—2 q3;—2

z Q31 931

0s; 93

3i-2 e - -

i

Fig. 16.23 Frame member with an arbitrary orientation referenced to global coordinate directions.

Theframe stiffness matrix (16.90) is symmetric and singular, and the diagonal elements are positive. Equilibrium
of the frame member shown in figure. 16.23 for each of the six unit displacement states leads to the following
relations for the elements of the stiffness matrix.

e Horizontal equilibrium: k1_,-+k4_; =0,j=1,2,...,6,whichimpliesrow 1 plusrow 4 = Q.
* Vertical equilibrium: k,; +ks; = 0,/ = 1,2, ..., 6, whichleads to row 2 plusrow 5= 0.

*  Moment equilibrium about joint it k3, + (Lsin®)k,; —(LcosO)ks; + kg; = 0, j = 1,2,...,6,whichleads
torow 3 plus (L sing()) times row 4 minus (L cosing(0)) times row 5 plusrow 6 = 0.

16.3.3 Frame stress matrix

The stress matrix for the frame member i-j relates the internal axial force N, the transverse shear force V', and

the bending moment M to the generalized joint displacement vector. We can combine the stress matrix for the
truss member, eg. (16.14), and the stress matrix for the beam member, eq. (16.44), if local coordinate direction
displacements are employed. With due regard for the joint numbering convention for the frame member relative
to the numbering convention of the truss and beam members, the following relationship can be obtained from the
stress matrices of the truss and beam members:

Aerospace Structures 479



Article 16.3

g3i-2

N —EA/L 0 0 EA/L 0 0 q3i-1
y - 0 -12E1/L3 6EI1/L? 0 12E1/L3 6E1/L? q3i
6 12z 4 6z 6 , 12z 2, 6z P

Mo |0 B ) 0 Bl ) Bl ) (e
i—j|q3i-1

[g(z)}i—j L 4% |

(16.91)

Recall that the axial coordinate z isalocal coordinate in the frame element, which is zero at the beginning joint

(16.91) isrefer-
i-j
enced to the generalized displacement vector inlocal coordinate directions. The stress matrix in terms of the gen-
eralized displacement vector in global coordinate directionsis obtained by substituting (16.84) for the
displacement vector in eq. (16.91) to get

i and equal to the length L of the frame element at end joint j. The 3X6 stress matrix [5,(2)}

q3i-2 q3i-2
q3i-1 q3i-1
N q q
= |- 3i | = 3i
14 [S(Z)l—j m,»__,- s [S(z)l_j » O<sz=<L, (16.92)
Ml_j 3j-2 3j-2
q3j-1 q3j-1
| 4935 | | 435 |
where
(¢ 50000
—-EA/L 0 0 EA/L 0 0 —=5¢0000
[S( } - 0 —-12E1/L3 6EI/L? 0 12E1/L3 6EI/L? 001000
i)
0 El(i—iz> E1<—‘—‘+@> 0 E1<—i+£2) El(-2+6_z) 000¢s0
L? I3 L [2 L2 13 L 1Z7{|000—=scO
1000001
Perform the matrix multiplication in the last equation to find
—cEA/L —SEA/L 0 cEA/L SEA/L 0
[S( ﬂ - | sIREI/L3 —c12E1/L3 6EI/L? —s12E1/L3 cI2EI/L3 6EI/L?
Z)]i—j
_EIS(E_QZ) E1c<£—1—22) E1<_‘_‘+6_Z) _E[S<_£+£Z> Elc(_£+1_22> E1<_2+Q>
2 13 L2 I3 L 2 L2 I3 Lz 3 L ¥,
(16.93)

The 3X6 stress matrix [S( 7 ﬂ -, 0=z=<L,fortheframe member relatesthe internal actionsinlocal coordinate
i—j

directions zand y to the generalized displacement vector in global coordinate directions.
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Example 16.8 Portal frame

The coplanar rectangular frame shown in figure. 16.24 consists of three members: 1-2, 2-3, and 3-4. Jointsl and
4 are restrained against displacement and rotation. At joint 2 thereis arigid connection between members 1-2
and 2-3, and at joint 3 thereisarigid connection between members 2-3 and 3-4. Joints 2 and 3 are moveabl e, and

the generalized displacement vector for these jointsis {¢,} = [q“ qs 4 97 43 qg}T. Each member has a cross-

sectional area 4 = 1, 500 mm?, second areamoment / = 2.8 x10°mms* , and the same modulus of elasticity
E = 70x10° N//mm? . The direction cosines for member 1-2 are (¢, s) = (0,1), for member 2-3
(¢,s) = (1,0), andfor member 3-4 (¢, s) = (0,—1). Determine the generalized displacements of the movable
joints 2 and 3, and the bending moment in each member.
boo b
9

18kN . 2 3 6
h =2,000mm
h L =1,600mm

(@)
1 4
4 F4

|

Fig. 16.24 (a) Portal frame. (b Degree of freedom numbering.

®) |,2 11
g_, 1 %.» 10
3 2

DOFs

The stiffness matrix (16.90) for each member including only the generalized displacements of joints 2 and 3

areasfollows:
q4 qs 96 qy q q6
(12ED)/h3> 0 (—6EI)/h? 294, 0 —294,000
[K)_»] = 0  (EA)/h 0 = 0 52,500 0
(=6ED/K: 0 (4ED/h 294,000 0  3.92x10° @
94 qs 96 q7 qg q9
[(EA)/L 0 0 (=EA)/L 0 0o |
0  (12EI)/L3 (=6EI)/L> 0  (=12EI)/L3 (—=6EI)/L?
[K }: 0  (=6EI/L> (4ED)/L 0 (6EI)/L2 (2ED/L
2-3 (=EA)/L 0 0 (EA)/L 0 0
0 (-12EN/L3 (6EN/L> 0  (12E/L3 (6EI)/L?
0 (-6EI)/L?* (2EI)/L 0 (6EI)/L?> (4EI)/L |
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q4 qs qe q7 qg q9
(65,625 0 0  —65.625 0 0o |
0 574219 —459,375 0  —574.219 —459, 375
[K } _ 0 459,375 4.9x10° 0 459,375 2.45x10°
2-3 —65,625 0 0 65, 625 0 0

0 —574.219 459,375 0

574219 459,375
0  —459,375 2.45x10° 0

459,375 4.9x10° |

, and (b)
97 qs 99 q7 qg q9
(12ED/h3 0 (6EI)/h? 294. 0 294,000
[K3_4 = 0 (EA)/h 0 = 0 52,500 0

(6EI)/K2 0 (4ED/h 294,000 0  3.92x10° ©
The restrained structural stiffness matrix is obtained by the sum of the member stiffness matricesin egs.(a), (b),

and (c) with due regard to the location of the matrix elements from the individual members to their placein the
restrained stiffness matrix. Theresult is

q4 qs 96 q7 qg q9

[ 65,919 0 —294,000 —65,625 0 1

0
0 53,074.2 459, 375 0 —574.219 459, 375

[K } _ 294,000 459,375 8.82x10° 0 459,375 2.45x10°

o —65, 625 0 0 65,919 0 —294, 000
0 —574219 459,375 0 53,0742 459,375
0

459,375 2.45x10° —294, 000 459,375 8.82x10° | "
The prescribed external load vector is {Q,,} = [Q4 05 0 05 O Q(JT = [18,000N 00 0 0 0]+ and the matrix

equation to determine the generalized displacementsis {0} = [Kw} {q,} - Thesolution for the generalized dis-
placements from the latter equation is

qs = 41.6931 mm
q; = 41.5561 mm

qs = 0.18859 mm
qg = —0.18859 mm

q¢ = 0.0110439 rad.
. (e)
qo = 0.0109807 rad

The bending moment in member 1-2 is determined from its stress matrix (16.93) and the generalized dis-
placement vector for the member. Reading the third row of the stress matrix determines the bending moment as

(M), ) = [ZEI(6/h2 = 122/h3) 0 EI(=4/h + 62/h2) EI(=6/h? +122/h%) 0 EI(=2/h + 6z/h2)| {41 -2} »

®
where {q,_,} = [0 004q,959

JT. Numerical evaluation resultsin

(M), _, = (294,000 —294.2)q, + (~1.96x10° + 294, 000z) ¢ = 1.00931x10" 9, 010.84z
0=<z<2,000 mm

482
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. (@)
Following the same procedure for members 2-3 and 3-4 we find

(M), . = (459,375 574219 z)qs + (—4.9x10° + 459, 375 2)q, + (—459, 375 + 574.219 z)g +

2-3

(—2.45 x10° + 459,375 z)qq = ~7.92854x10° + 9,900.99 z 0=z=<1, 600 mm and ")

(M,);_, = (294,000 -294 z)q; + (=3.92x10" + 294, 000 z)g, = 7.91305x10°—8,989.16 z, 0 <z = 2, 000 mm . ()

The bending moment in each member is plotted with respect to the axial coordinatein figure. 16.25. The bending
moment distribution is linear in each member and it passes through zero asit changes sign.Jii

7.91 MNm
~7.93 MNm z
2o 2 A TOIMNm_ o 3

o — 8008 mm 3 + $ .
—7.93 MNm
1,120.1 mm
’ 880.3 mm
(b)
? z
+ 4 —10.1 MNm
— o1
10.1 MNm
@ (©

Fig. 16.25 Bending momentsin the membersof the portal frame: (a) member 1-2, (b) member 2-3,
(c) member 3-4.

16.4 Practice exercises

1. Consider the plane truss restrained against rigid body motion and subject to the loads shown in figure.
16.26(a). Use the degree of freedom numbering convention based on the joint numbering as shown in figure.

X s
Fig. 16.26

(@) Trusswith 4 ?8
four jointsand 100 in !
four members. | ’

(b) Degree of !

freedom ! 2 4
numbering. 5kips_ ' /45° 30° T 3

él 2 -
@ l 10 kips (b)

16.26(b). All four bars have the same modulus of elasticity £ = 10><106psi , and the same 4 /L where the cross-

—

Aerospace Structures 483



Article 16.4

sectional areafor bar 1-2is 0.5 in.2 Solve by hand the computations for the
a) unrestrained structural stiffness matrix,
b) restrained structural stiffness matrix, and
¢) unknown joint displacements.

2. Consider the plane truss consisting of five bars shown in figure. 16.27(a). Each bar has the same extensional
stiffness E4 . Use the degree of freedom numbering convention based on the joint numbers labeled in the figure.

a) Determinethe unrestrained structural stiffness matrix.

b) Joints1and 3arerestrained suchthat ¢, = ¢, = g, = 0, anditisassumed theloads are applied in the

remaining degrees of freedom. Determine the submatrix [KBJ :

3. For the seven-bar truss shown in figure. 16.27(b) all bars have the sasme valuefor £4/L . The horizontal dis-
placement of joint 5 is prescribed as g, = 1. All applied forces are zero. Use symmetry to reduce the order of

the restrained structural stiffness matrix [Ka(x} and then determine the unknown nodal displacements
93, 94 95, and g .
4. Inthethree-bar truss showninfigure. 16.27(c) the temperature of bar 1-2 isincreased 100°C above ambient

temperature, while bars 1-3 and 1-4 remain at ambient temperature. The bars are made of aluminum alloy with a

modulus of elasticity £ = 69 GPa and coefficient of thermal expansion o = 23.6x10°/°C. The length of

each bar L = 250 mm , and the cross-sectional areaof eachbar 4 = 400 mm? .
Determine

a) the8X1 fixed-end action vector,

b) the 8X8 unrestrained structural stiffness matrix,

c) thejoint displacements ¢, and ¢, of movablejoint 1,
d) the support reactions, and

€) thebar forces. Stateif they are in tension or compression.

4 3 Y4

| 30° 60

|

X L

|

I 5 92

| 1

I 91
! L L

! 45°|45°

]E
o
w
\9)

@ (b) ()

Fig. 16.27 Truss configurations. (a) Exercise 2. (b) Exercise 3. (C) Exercise 4.
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5. Theuniform, multispan beam shown in figure. 16.28 is clamped at each end and subject to vertical point
loads at joints 2 and 4. Use the joint numbers indicated in the figure, and the degree of freedom numbering con-
vention associated with the joint numbers.

o — Ny

V/ /4

L

Fig. 16.28 Multispan beam. §
\
I

T8
|

a) Usesymmetry to reduce the problem size and compute the joint displacement vector intermsof P, L,
and El.

b) Determine the shear force and bending moment distributions in each span in terms of P and L. Sketch
the shear force and bending moment diagrams.

c) Determine the support reactions.

6. Theflexura stiffness of the uniform beam shown in figure. 16.29is E7, and it hasa of length 2L. It is sup-
ported by linear elastic springs at each end, each with a stiffness k = 6E1/L3 . It is subject to the linearly vary-
ing distributed load whose intensity is /,,; at midspan.

I 1 3 5
oA
[ ] [ ) ®
ELL ELL
(b)

Fig. 16.29 (a) Beam with spring supports.
(@ (b) Degree of freedom numbering.

Use two members to model the beam, and use the degrees of freedom (DOFs) numbering shown in the fig-
ure.

a) Usesymmetry about the vertical centerline and determine the restrained structural stiffness matrix in
DOFs 1, 2, and 3, and in terms of parameters E/ and L .

b) Determine the 6X1 fixed-end action vector {Q°} intermsof f,; and L.
c) Solve for the unknown joint displacement vector [‘11 G 93 94 qs qJT intermsof £/, L,and f,, .

7. Consider the frame shown in figure. 16.30(a) consisting of avertical bar 1-2 and a horizontal bar 2-3, which
are joined together by arigid connection at joint 2. The ends of the bars opposite to their common joint are

Aerospace Structures 485



Article 16.4

clamped. The horizontal bar 1-2 is subject to alinearly distributed load. The degree of freedom numbering con-
vention is shown in figure. 16.30(b).

fyl 5 8
6
¥ @ 4 g_,7
4
2 3 9
Ll,EAl,E[1 — L,, EA,, ET,

2

1

'Y ] (a) g—’l (b)
3

Fig. 16.30 (a) Frame configuration. (b) Degree of freedom numbering.

a) Determinetherestrained structural stiffnessmatrix |g | .
ao

b) Determine the 9X1 fixed-end action vector {Q°} .

8. Consider the model of astrut-braced wing spar shown in figure. 16.31 subject to the span-wise air load
approximated as alinearly varying distributed line load. The intensity of the distributed load at the root

fy1 = 130.2083 Ib./in. and the resultant lift acting on the spar is lf’y1(32 x 12) = 25,000 1b.

Fig. 16.31

Strut-braced wing spar. o
hI Wengine = 2,000 Ib. b = 264in.
b L = 384 in.

a
I: >
L
o

The spar is clamped at the root and free at the tip, and the strut is pinned-connected to the spar and the support.
The matrix structural model consists of three members as shown in figure. 16.32(a). Since the air load bends the
spar which in turn stretches the strut, the structure is modeled with a frame member between joints 1 and 2, a

beam member between joints 2 and 3. and atruss bar between joints 2 and 4. The degree of freedom numbering
convention is shown in figure. 16.32(b).

2 5
7
1 frame > beam 3 /Bi 1 Eﬁ 4 A\S
/ ’ 10 f./ ~
truss @ Z 9 (b)

Fig. 16.32 (@) Joint numbersfor athree-member model. (b) Degrees of freedom.

a) Determine the fixed-end action vector { QO} and its partitions { Q9 } and {Qf} . The a.-indices are 4,
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5,6,7,and 8, and the B -indicesare 1, 2, 3, 9, and 10.

b) Additional numerical dataare listed in table 16.7. Determine the unknown nodal displacements.

Table 16.7 Additional numerical data for the strut-braced wing

h, vertical distance from the spar centroid to lower strut support
A, cross-sectional area of the spar

I, Second area moment of the cross section of the spar
A, cross-sectional area of the strut (1.75 in. diameter)
L, wing lift

E, modulus of elasticity for the spar and strut material

60in.
23.88in.?
872.716in4
2.40528in.2
25,000 Ib.

10x10° 1b./in.2
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