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CHAPTER 16

 

Applications of the direct 
stiffness method 

 

16.1 Coplanar trusses

 

The member stiffness matrix for a truss bar in the 

 

X-Y

 

 plane is developed from the analysis in article 6.1.1 on 
page 153. A typical bar of length  located between joints 

 

i

 

 and 

 

j

 

 is shown in figure. 16.1. The coordinates of 

beginning joint 

 

i

 

 are , and coordinates of the end joint 

 

j

 

 are , in the undeformed state. The angle 

between the positive 

 

X

 

-direction and directed line element 

 

i-j

 

 is denoted as , and is determined from

.

 

(16.1)

 

The axial force 

 

N

 

i-j

 

 from eq. (6.2) on page 154 is

.

 

(16.2)

 

The elongation  is related to the joint displacements by eq. (6.6) on page 155, which is repeated as (16.3) 

L

Xi Yi,( ) Xj Yj,( )

θ

θcos( )i j–
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Li j–

----------------= θsin( )i j–
Yj Yi–
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---------------= Li j– Xj Xi–( )2 Yj Yi–( )2+=
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EA
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q2j Q2j,
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X

Y

Fig. 16.1 Truss bar connected to 
joints i and j.
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below.

,

 

(16.3)

 

In matrix notation (16.3) is written as

,

 

(16.4)

 

where we introduce the shorthand notation for the trigonometric functions

.

 

(16.5)

 

Elements of the 4X1 matrix  and the 4X1 displacement vector are

.

 

(16.6)

 

Substitute the elongation-displacement relation (16.4) into Hooke’s law (16.2) to get

.

 

(16.7)

 

Free body diagrams of the bar and joints 

 

i

 

 and 

 

j

 

 are shown figure. 16.1. External forces in the 

 

X

 

- and 

 

Y

 

-direc-
tions at joint 

 

i

 

 are denoted by  and , respectively, and external forces in the 

 

X

 

- and 

 

Y

 

-directions at joint 

 

j

 

 are denoted by  and , respectively. Equilibrium at joints 

 

i

 

 and 

 

j

 

 yield

, , , and .

 

(16.8)

 

In matrix notation, equilibrium equations (16.8) are written as

 or ,

 

(16.9)

 

where  is the joint force vector and matrix  is defined in eq. (16.6). Substitute eq. (16.7) for the axial 

force in eq. (16.9) to get

.

 

(16.10)

 

The latter equation is written in the form

,

 

(16.11)

 

where  is the truss stiffness matrix, and  is the fixed-end force 
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vector. The stiffness matrix for the truss bar is

. (16.12)

Properties of the truss stiffness matrix (16.12):

• It is symmetric since the bar is linear elastic and the displacements are small.

• The sum of column elements is zero. This results from equilibrium of the bar for each unit displacement state. 

For example UDS 1  and the joint forces are 

.

Sum forces horizontally .

Sum forces vertically .

Sum moments about joint i .

•  since the bar is not restrained against rigid body displacements.

• Diagonal elements are positive.

The fixed-end force vector is

. (16.13)

Note that the nodal force vector is equal to the fixed-end vector when the joints are fixed and cannot displace; i.e., 

 if .

Equation (16.7) is rewritten for bar i-j as

, (16.14)

where the 1X4 stress matrix  is defined as

. (16.15)
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Example 16.1 A three-bar truss

Each bar in the three-bar truss shown in figure. 16.2 has the same axial stiffness , and the joints are numbered 

as shown. The thermal forces in bar 1-2, 1-3, and 2-3 are denoted by , , and , respec-

tively. Determine the 6X6 unrestrained structural stiffness matrix and the 6X1 fixed-end action vector.

Solution.   The direction cosines and their products for each bar are listed in table 16.1.

The direction cosines from table 16.1 are inserted into eqs. (16.12) and (16.13), to get the 4X4 stiffness matrices 
and the 4X1 fixed-end actions for the truss member. The stiffness matrices are expanded to 6X6 by adding two 
rows and two columns of zeros, and the column vectors are expanded to 6X1 by adding two rows of zeros. Refer 
to the discussion in article 15.3 on page 425. The 6X1 vector of forces for bar 1-2 is

. (a)

Rows five and six, and columns five and six, of the stiffness matrix in eq. (a) contain zeros entries since degrees 
of freedom five and six do not influence the response of truss bar 1-2. The 6X1 vector of forces for bar 1-3 is

Table 16.1 Direction cosines for the three-bar truss

bar

1-2 1 0 1 0 0

1-3 0 1 0 1 0

2-3

EA

NT( )1 2– NT( )1 3– NT( )2 3–

1

2
3

4

5

6

1 2

3

45°

2L

L

L

y

x

DOF numbering convention

Fig. 16.2 Three-
bar truss example. 
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0 0 0 0 0 0
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. (b)

Rows three and four, and columns three and four, of the stiffness matrix in eq. (b) contain zeros entries since 
degrees of freedom three and four do not influence the response of truss bar 1-3. The 6X1 vector of forces for bar 
2-3 is

. (c)

Rows one and two, and columns one and two, of the stiffness matrix in eq.(c) contain zeros entries since degrees 

of freedom one and two do not influence the response of truss bar 1-3. Let , so that

. (d)

Addition of the 6X1 force vectors for each truss member equals the external joint force vector acting on the truss. 
This addition of force vectors satisfies equilibrium at the joints assuming the procedure to expand each truss ele-
ment to six degrees of freedom to four degrees of freedom is done correctly. Hence, the condition of equilibrium 
is 

. (e)

Equations (a), (b), and (d) for the force vectors are substituted into eq. (e) to get the unrestrained stiffness matrix 
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of the truss as

. (f)

In compact notation eq. (f) is

, (g)

where the 6X6 unrestrained structural stiffness matrix is

, (h)

and the 6X1 fixed-end action vector is

. (i)

Note that the stiffness matrix in eq. (h) is symmetric; the sum of column elements equals zero; diagonal elements 
are positive; and its determinate vanishes. J
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16.1.1 Assembly algorithm

Consider again the three-bar truss in example 16.1 on page 440. For computer implementation an algorithm is 
presented to assemble the 6X6 unrestrained structural stiffness matrix from the three 4X4 truss stiffness matrices, 
and to assemble the 6X1 fixed-end vector from the three 4X1 fixed-end action vectors. Let a truss member be 
denoted by m, where m = 1 for bar 1-2, m = 2 for bar 1-3, and m = 3 for bar 2-3. A description of symbols used in 
the of assembly algorithm is given in table 16.2. 

Define the 3X1”spring” stiffness vector  and the 3X1 thermal force vector  by

. (16.16)

Direction cosines for each truss bar are specified in the 4X1 matrices , , in eq. (16.17) below:

. (16.17)

Defined a 3X4 connectivity matrix  by

 . (16.18)

Row one of matrix  is assigned to member 1 (bar 1-2), row two to member 2 (bar 1-3), and row three to 

Table 16.2 Nomenclature

Symbol Description

6X6 unrestrained stiffness matrix

row and column elements of the unrestrained stiffness 
matrix

4X4 stiffness matrix for truss member m

matrix elements of the truss member stiffness matrix

6X1 fixed-end action vector

row elements of the fixed-end action vector

4X1 fixed-end action vector of truss member m

row elements of the truss member fixed-end action vector

K

K row col,( )

Km[ ]
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Q0{ }

Q0 row( )

Qm
0( ){ }

Qm
0 i( )

Kt NT

Kt
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L

------- EA
L

------- EA

2L
----------

T

= NT NT( )1 2– NT( )1 3– NT( )2 3–

T
=

bi
i 1 2 3, ,=

b1 1– 0 1 0
T= b2 0 1– 0 1

T= b3
1

2
------- 1

2
-------– 1

2
-------– 1

2
-------

T

=

C[ ]

C[ ]
1 2 3 4
1 2 5 6
3 4 5 6

=

q2i 1– q2i q2j 1– q2j

member 1
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member 3 (bar 2-3).
Column one contains the DOF for horizontal displacement  at the beginning joint i of the member,

column two contains the DOF for the vertical displacement  of the beginning joint i of the member,

column three contains the DOF of the horizontal displacement  at the end joint j of the member,

and column four contains the DOF for the vertical displacement  at the end joint j of the member.

Refer to the nomenclature in table 16.2, and to matrices defined in eqs. (16.16), (16.17), and (16.18), to 
understand the flow chart for the assembly algorithm in figure. 16.3.

Example 16.2 Restrained three-bar truss of example 16.1

Consider the truss of example 16.1 supported in such a manner that joint displacements 
 as is shown in figure. 16.4. The unknown displacements are q3 and q6, and take the 

corresponding joint forces . The thermal forces in bars 1-2, 1-3, and 2-3 are specified as 

, , and , respectively.

a) Determine the restrained structural stiffness matrix , and submatrices .

q2i 1–

q2i

q2j 1–

q2j

Km
Kt m( ) bm bm

T
=

F

Qm
0{ } bm

NT m( )–=

start K 06X6= T
end

Q0{ } 06X1=

create null

matrices

Print

K Q0{ }&

i = 1

i > 4?

i = i + 1

Q0 row( ) Q0 row( ) Qm
0 i( )+=row C m i,( )=

T

j = 1

j > 4?

j = j + 1

F

col C m j,( )=K row, col( ) K row, col( ) Km i j,( )+=

F

T

m = 1

m > 3?

m = m + 1

Fig. 16.3 Flow chart of the assembly algorithm.

q1 q2 q4 q5 0= = = =

Q3 Q6 0= =

NT( )1 2– 0= NT( )1 3– 0≠ NT( )2 3– 0=

Kαα Kαβ Kβα
and Kββ

, ,
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b) Determine the unknown joint displacements .

c) Determine the unknown support reactions .

d) Determine the bar forces .

Solution to part (a).   Rearrange the unrestrained stiffness matrix in eq. (h) of example 16.1 so that the order of 
the rows and columns correspond to degrees of freedom 3, 6, 1, 2, 4, and 5.

. (a)

Compare the matrix in eq. (a) to the general form (15.27) on page 428 to identify

, (b)

and

. (c)

The restrained structural stiffness matrix  is symmetric, and the sum of its column elements is not zero. 

Also note that the restrained stiffness structural matrix can be obtained from the unrestrained structural stiffness 
matrix in eq. (h) by merely crossing out rows and columns 1, 2, 4, and 5:

45°

2L

L

L

3

Fig. 16.4 Statically indeterminate 
three-bar truss.
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. (d)

The fixed-end action vector in eq. (i) of example 16.1 for the unrestrained truss reduces to

. (e)

Elements in rows 3 and 6 constitute  while the remaining rows constitute . Thus,

. (f)

Solution to part (b).  Equation (15.31) on page 429 with the addition of the fixed-end action vector is

. (g)

The fixed-end action vector is subtracted from each side of this equation, since it is a known vector determined 
from the specified temperature changes in the bars. That is, eq. (g) is written in the form

. (h)

The vector  is called the equivalent joint force vector. In this example the prescribed joint displacement 

vector is , and the prescribed joint force vector is 

. The solution for the unknown joint displacement vector is

, where the inverse matrix is . (i)

The adjoint of the restrained structural stiffness matrix and its determinate are1

1. The , where  is a scalar and  is an n-by-n matrix, is equal to .
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. (j)

So the inverse of the restrained structural stiffness matrix is

. (k)

Perform a check of this inverse. Is ?

. (l)

Hence, the inverse satisfies . The solution for the unknown nodal displacement vector is

. (m)

Solution to part (c).  The support reactions are determined from eq. (15.32) on page 429, which is repeated 
below as eq. (n).

 . (n)

The prescribed joint displacement vector , and submatrix  was determined in part (a). 

Hence,

. (o)

Substitute eq. (m) for the displacement vector into eq. (o) to get
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. (p)

After matrix algebra the reactive joint forces are

. (q)

A free body diagram of all the joint forces is shown in figure. 
16.5. 
The condition for horizontal equilibrium is . Substi-

tute the results for these reactive forces from eq. (q) into condition 
for horizontal equilibrium to get 

. (r)

Extract a common denominator in eq. (r):

. (s)

Combine terms in eq. (s) to get the final result

. (t)

Hence, the matrix solution for reactive forces Q1 and Q5 satisfy horizontal equilibrium. The condition for vertical 

equilibrium is . Substitute the results for these reactive forces from eq. (q) into the condition for 

vertical equilibrium to get

. (u)

Note that the algebra in eq. (u) is the same as the algebra detailed in eq. (r) to eq. (t). So the condition for vertical 
equilibrium is satisfied. Vanishing of the moment about joint 1 requires . Substitute the results 

for these reactive forces from eq. (q) into the condition for moment equilibrium to get
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2 2 2+
------------------- 
  2 2 2 2+( )–+[ ] NT( )1 3–

1

2 2 2+
------------------- 
  0[ ] NT( )1 3– 0= = =

Q2 Q4+ 0=

Q2 Q4+ 1

2 2 2+
------------------- 1

2
--- 1

2
-------–+ NT( )1 3– 0= =

LQ4 LQ5– 0=
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. (v)

Hence, the matrix solution for the reactive forces plus the applied forces satisfies equilibrium of the free body 
diagram for the entire truss.

Solution to part (d).  The axial normal force in the bar between joints i and j from eq. (16.14) is

, (w)

where the stress matrix (16.15) is

. (x)

The direction cosines for each bar are listed in table 16.1.

For bar 1-2, the axial normal force is

. (y)

From eq. (m) the solution for the displacement is , Substitute the result for q3 into 

eq. (y) to find

.

For bar 1-3, the axial normal force is

. (z)

From eq. (m) the solution for the displacement is . Substitute the result for q6 into 

eq. (z) to find

. (aa)

For bar 2-3, the axial normal force is

LQ4 LQ5– L 1
2
--- 1

2
-------– 1

2
--- 1

2
-------– 

 – NT( )1 3– 0= =

Ni j– Si j–
q{ }i j– NT( )i j––=

Si j–

EA
L

------- 
 

i j–
c– s– c s i j–

≡

N1 2–
EA
L

------- 
 

1– 0 1 0

q1

q2

q3

q4

NT( )1 2–– EA
L

------- 
 

1– 0 1 0

0
0
q3

0

0– EA
L

------- 
  q3= = =

q3
L

EA
------- 
  2–

4 2 2+
------------------- 
  NT( )1 3–=

N1 2–
EA
L

------- 
  L

EA
------- 
  2–

4 2 2+
------------------- 
  NT( )1 3–

2–

4 2 2+
------------------- 
  NT( )1 3–= =

N1 3–
EA
L

------- 
 

0 1– 0 1

0
0
0
q6

NT( )1 3–– EA
L

------- 
  q6 NT( )1 3––= =

q6
L

EA
------- 
  4 2+

4 2 2+
------------------- NT( )1 3–=

N1 3–
EA
L

------- 
  L

EA
------- 
  4 2+

4 2 2+
------------------- NT( )1 3– NT( )1 3–– 1–

2 2 2+
------------------- 
  NT( )1 3–= =
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. (ab)

Expand eq. (ab) to get

. (ac)

The final result for the force in bar 2-3 is

. (ad)

Note that for this statically indeterminate truss all three bar forces are proportional to the change in temperature 
of bar 1-3.J

16.1.2 Self-strained truss

Strain of the bars in a truss can occur due to temperature changes and also due to the lack of fit during assembly, 
even in the absence of applied nodal forces. The analysis for lack of fit of bar 1-3 in example 16.2 is achieved by 
replacing the thermal force by

 ,

where  is the specified displacement of the bar to connect it to joints 1 and 3. For a gap between joints  

and for an overlap . Hence, the solution for the bar forces in example 16.2 can be interpreted for the prob-

lem of lack of fit of bar 1-3 by replacing  with . 

Example 16.3 Self-strained configuration of the truss in example 16.2

Now consider a statically determinate configuration of the truss in figure. 16.2, which is shown in figure. 16.6. 
Support conditions impose displacements . The applied external forces are specified as 

, and only bar 1-3 is subject to a thermal force .

a) Determine the unknown joint displacements.

b) Determine the unknown joint forces.

c) Determine the elongation of each bar.

Solution to part (a).  The matrix equation to determine the unknown joint displacements is

N2 3–
EA

2L
---------- 
 

1 2⁄ 1 2⁄– 1 2⁄– 1 2⁄

q3

q4

q5

q6

NT( )
2 3–

– EA

2L
---------- 
 

1 2⁄ 1 2⁄– 1 2⁄– 1 2⁄

q3

0
0
q6

0–= =

N2 3–
EA
2L
------- 
 

1 1
q3

q6

NT( )
2 3–

– EA
2L
------- q3 q6+( ) 0– EA

2L
------- L

EA
------- 
  2–

4 2 2+
------------------- 
  NT( )

1 3–
L

EA
------- 
  4 2+

4 2 2+
------------------- NT( )

1 3–
+= = =

1
2
--- 
  2–

4 2 2+
------------------- 4 2+

4 2 2+
-------------------+ NT( )

1 3–
= 1

2
--- 
  4

4 2 2+
------------------- NT( )

1 3–
=

N2 3–

NT( )1 3–

2 2+
--------------------=

NT( )1 3– EA ∆ L⁄( )1 3–→

∆ ∆ 0>

∆ 0<

NT( )1 3– EA ∆ L⁄( )1 3–

q2 q4 q5 0= = =

Q1 Q3 Q= = 6 0= NT( )1 3– EA α∆T( )=
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. (a)

Refer to the stiffness matrix in eq.(h) and the fixed-end vector in eq. (i) of example 16.1. Then the matrices in eq. 
(a) are

, , , , (b)

, and . (c)

The solution to eq. (a) for the joint displacements is

. (d)

Solution to part (b).  The matrix equation to determine the unknown joint forces is

. (e)

The matrices in eq. (e) are

, , , and . (f)

The solution of eq. (e) for the unknown joint forces, or the reactive forces, is

. (g)

There no external forces acting on the truss since both the applied and reactive forces are zero. Consequently, it is 
reasonable to surmise that the internal forces in the bars vanish. That is,

, (h)

45°

2L

L

L

1
3

6

Fig. 16.6 Statically determinate 
three-bar truss. 

Qα{ } Kαα
qα{ } Kαβ

qβ{ } Qα
0{ }+ +=

Qα{ }
Q1

Q3

Q6

0
0
0

= = Kαα
EA
L

-------
1 1– 0
1– 1 a+ a

0 a 1 a+

= qα{ }
q1

q3

q6

= Kαβ
EA
L

-------
0 0 0
0 a– a–

1– a– a–

=

qβ{ }
q2

q4

q5

0
0
0

= = Qα
0{ }

Q1
0

Q3
0

Q6
0

0
0

NT( )1 3––

= =

q1 L– α∆T( )= q3 L– α∆T( )= q6 L α∆T( )=

Qβ{ } Kβα
qα{ } Kββ

qβ{ } Qβ
0{ }+ +=

Qβ{ }
Q2

Q4

Q5

= Kβα
EA
L

-------
0 0 1–

0 a– a–

0 a– a–

= Kββ
EA
L

-------
1 0 0
0 a a

0 a a

= Qβ
0{ }

Q2
0

Q4
0

Q5
0

NT( )1 3–

0
0

= =

Q2 Q4 Q5 0= = =

N1 2– N1 3– N2 3– 0= = =
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which can be verified using eq. (16.14).

Solution to part (c).  The elongation of a truss is determined from eq. (16.4). Using the direction cosines listed 
in table 16.1, the elongation of each bar is given by

. (i)

Hence, bars 1-2 and 2-3 do not change in length, and the new length of bar 1-3 is . Assuming 

, the displaced truss is shown with respect to initial configuration in figure. 16.7.J 

Example 16.4 Five-bar truss

The five-bar truss shown in figure. 16.8 is restrained against rigid body motion, since joints 1 and 4 are fixed. pins 

All bars have the same extensional stiffness . Determine the restrained structural stiffness matrix . 

Solution.  The dimensions of the restrained structural stiffness matrix is 4X4 in displacement degrees of freedom 
. The direction cosines for the truss bars are listed in table 16.3.

∆1 2– 1( ) q3 q1–( ) 0( ) q4 q2–( )+ 0= =

∆1 3– 0( ) q5 q1–( ) 1( ) q6 q2–( )+ L α∆T( )= =

∆2 3–
1–

2
------- 
  q5 q3–( ) 1

2
------- 
  q6 q4–( )+ 1

2
------- 
  q6 q3+( ) 0= = =

L 1 α∆T+( )

α∆T 0>

1*
1 2* 2

3*

3Fig. 16.7 Initial configuration (dashed lines) and 
the displaced configuration (solid lines) of the 
self-strained truss in figure. 16.6.

α∆T 0>

EA Kαα

α

h

L

X

Y

1 2

34

αcos L

L2 h2+
---------------------=

αsin h

L2 h2+
---------------------=

q3

q4

q5

q6
Fig. 16.8 Five-bar truss.

q3 q4 q5 and q6, , ,
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From eq. (16.12) the following member stiffness matrices are constructed using the direction cosines in 
table 16.3. Only elements contributing to rows and columns 3, 4, 5, and 6 of the restrained structural stiffness 
matrix are extracted from the individual element stiffness matrices. These member stiffness matrices follow:

. (a)

           . (b)

. (c)

Assemblage of the restrained structural stiffness matrix is accomplished by adding like row and column elements 
from the stiffness matrices of each truss bar. The result for the restrained structural stiffness matrix is

. (d)

Note that the matrix is symmetric and the sum of the column elements do not add to zero. If we take , 
then the restrained structural stiffness matrix reduces to

Table 16.3 Direction cosines for the five-bar truss

Bar

1-2 1 0 1 0 0

1-3

2-3 0 1 0 1 0

2-4

3-4 –1 0 1 0 0

θ c s c2 s2 cs

0°

α αcos αsin αcos2 αsin2 αcos αsin

90°

180° α– αcos– αsin αcos2 αsin2 αcos αsin–

180°

Kαα 1 2–

EA L⁄ 0
0 0

= Kαα 1 3–

EA
L αcos( )⁄
------------------------ αcos2 α αsincos

α αsincos αsin2

EA
L

------- αcos3 αcos2 αsin

αcos2 αsin α αsin2cos
= =

q3 q4
q5 q6 q5 q6

Kαα 2 3–

EA
L αtan
--------------- 
 

0 0 0 0
0 1 0 1–

0 0 0 0
0 1– 0 1

EA
L

------- 
 

0 0 0 0
0 αcot 0 αcot–

0 0 0 0
0 αcot– 0 αcot

= =

q3 q4 q5 q6

Kαα 3 4–

EA L⁄ 0
0 0

=

q5 q6

Kαα 2 4–

EA
L αcos( )⁄
------------------------ 
  αcos2 α αsincos–

α αsincos– αsin2

EA
L

------- αcos3 αcos2– αsin

αcos2– αsin αcos αsin2
= =

q3 q4

Kαα
EA
L

------- 
 

1 αcos3+( ) αcos2– αsin 0 0

αcos2– αsin αcot αcos αsin2+( ) 0 αcot–

0 0 αcos3 1+( ) αcos2 αsin

0 αcot– αcos2 αsin α αsin2cos αcot+( )

=

q3 q4 q5 q6

α 30°=
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.J (e)

Example 16.5 Using symmetry to reduce problem size

Consider the five-bar truss problem of example 16.4 with  that is subject to prescribed nodal forces 

. Use symmetry to reduce the problem size to solve for the unknown joint displacements.

Solution.  We note that the structure and boundary conditions are symmetric about a horizontal axis through the 
center of the truss. The joint displacements and corresponding forces can be decomposed into a symmetric and 
antisymmetric sets about this horizontal axis of symmetry as shown in figure. 16.10. The joint displacements and 

the corresponding forces are related to the symmetric and antisymmetric counterparts by

, and . (a)

The expressions in eq. (a) are written in compact form as

Kαα
EA
L

------- 
 

1 3 3( ) 8⁄+ 3 8⁄– 0 0

3 8⁄– 3 9 8⁄( ) 0 3–

0 0 1 3 3( ) 8⁄+ 3 8⁄

0 3– 3 8⁄ 3 9 8⁄( )

=

q3 q4 q5 q6

α 30°=

Q3 Q4 Q5 and Q6, , ,

30°

L

X

Y
Q3

Q4

Q5

Q6

Fig. 16.9 Five-bar truss of 
example 16.5.

Q3 q3,

Q4 q4,

Q5 q5,
Q6 q6,

Xa xa,

Ya ya,

Xa xa,

Ya ya,

Xb xb,
Yb yb,

Xb xb,

Yb yb,

= +

(a) (b)

Fig. 16.10 (a) Symmetric truss. (b) Antisymmetric truss.

q3

q4

q5

q6

xa

ya–

xa

ya

x– b

yb

xb

yb

+

1 0 1– 0
0 1– 0 1
1 0 1 0
0 1 0 1

xa

ya

xb

yb

= =

Q3

Q4

Q5

Q6

Xa

Ya–

Xa

Ya

Xb–

Yb

Xb

Yb

+

1 0 1– 0
0 1– 0 1
1 0 1 0
0 1 0 1

Xa

Ya

Xb

Yb

= =
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, and , (b)

where the elements of the 4X4 matrix  are either –1, 0, or 1.The force vector is related to the displacement 

vector by , where matrix  is given by eq. (e) in example 16.4. Substitute eq. (b) into 

the matrix equation relating the force vector to the displacement vector to get 

. (c)

Pre-multiply eq. (c) by the inverse of matrix  to find

. (d)

Define stiffness matrix by . The the matrices to compute  are

. (e)

The result of the matrix multiplications in eq. (e) is

. (f)

Note that the partitioned form of  is diagonal, and the 2X2 sub-matrices on the diagonal are

, and . (g)

The inverses of the matrices in eq. (g) are

, and . (h)

qα{ } A x{ }= Qα{ } A X{ }=

A

Qα{ } Kαα[ ] qα{ }= Kαα

A X{ } Kαα A x{ }=

A

X{ } A
1–

Kαα A x{ }=

Kαα A
1–

Kαα A= Kαα

Kαα

1
2
---

1 0 1 0
0 1– 0 1
1– 0 1 0

0 1 0 1

EA
L

------- 
 

1 3 3( ) 8⁄+ 3 8⁄– 0 0

3 8⁄– 3 9 8⁄( ) 0 3–

0 0 1 3 3( ) 8⁄+ 3 8⁄

0 3– 3 8⁄ 3 9 8⁄( )

1 0 1– 0
0 1– 0 1
1 0 1 0
0 1 0 1

=

Kαα

EA
L

-------

1 3 3( ) 8⁄+ 3 8⁄ 0 0

3 8⁄ 17 3( ) 8⁄ 0 0

0 0 1 3 3( ) 8⁄+ 3 8⁄

0 0 3 8⁄ 3( ) 8⁄

Ka 02X2

02X2 Kb

= =

Kαα

Ka

EA
L

-------
1 3 3

8
----------+ 3

8
---

3
8
--- 17 3

8
-------------

= Kb

EA
L

-------
1 3 3

8
----------+ 3

8
---

3
8
--- 3

8
-------

=

Ka

1– L
EA
-------

17
181
--------- 17 6 3–( ) 1

181
--------- 18 17 3–( )

1
181
--------- 18 17 3–( ) 1

543
--------- 9 82 3+( )

= Kb

1– L
EA
------- 1 3–

3– 3 8 3⁄+( )
=
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Then the inverse of eq. (f) is given by

. (i)

Hence, the solution for the displacement vector  in terms of the force vector  is

. (j)

From eq. (b)  and  Substitute the latter relations into eq. (j) to get

 . (k)

Pre-multiply eq. (k) by matrix  to write the result for the unknown displacements as

, (l)

where the compliance matrix is

. (m)

The compliance matrix in eq. (m) was obtained by inverting two 2X2 sub-matrices, rather than directly inverting 

the 4X4 stiffness matrix . Exploiting the symmetry conditions as illustrated in figure. 16.10, reduces the 

number of computations to find the inverse of matrix .J

16.2 Structures containing beam members

Consider a prismatic, homogeneous beam that is referenced to the Cartesian system x-y-z. The z-coordinate is the 
longitudinal axis, and the coordinates x and y define cross-sectional axes with the origin at the centroid. Assume 
at least one axis x and/or y is an axis of symmetry so that the product area moment . External loads are 

specified as a transverse distributed load  as shown in figure. 3.8 on page 41, and we assume a change in 

temperature in the form . For this form of the prescribed change in temperature the ther-

mal axial force  in eq. (3.75), and thermal bending moment  in eq. (3.78). The plane of loading 

 coincides with the locus of shear centers. Hence, the beam bends in the y-z plane. Assume the Euler-Ber-

noulli theory in which the transverse shears in eq. (4.28) on page 82 equal zero. That is,

Kαα

1– Ka

1–
02X2

02X2 Kb

1–
=

x{ } X{ }

x{ } Kαα

1–
X{ }=

x{ } A
1– qα{ }= X{ } A

1– Qα{ }=

A
1– qα{ } Kαα

1–

A
1– Qα{ }=

A

qα{ } Cαα
Qα{ }=

Cαα A Kαα

1–

A
1– L

EA
-------

0.810306 0.897641 0.189694– 0.83441
0.897641 3.94847 0.83441– 3.67033
0.189694– 0.83441– 0.810306 0.897641–

0.83441 3.67033 0.897641– 3.94847

= =

Kαα

Kαα

Ixy 0=

fy z( )

∆T y z,( ) τy z( )y s( )=

NT 0= MxT 0≠

fy z( )
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. (16.19)

(Refer to the discussion about the Euler-Bernoulli theory following table 4.4 on page 102.) Equilibrium differen-
tial equations (3.54) and (3.55) are

. (16.20)

Hooke’s law (3.79) on page 46 for bending is

, (16.21)

where the thermal bending moment is given by eq. (3.78) on page 46. The change in temperature on the contour 
is  and eq. (3.78) simplifies to

 . (16.22)

Combine eqs. (16.20), (16.21), and (16.22) to get the governing differential equation for the deflection of the 
beam as 

. (16.23)

Let  denote the y-direction displacement of the neutral axis at z = 0,  the rotation of the cross section about 

the x-axis at z = 0,  the y-direction displacement of the neutral axis at z = L, and  the rotation of the cross 

section about the x-axis at z = L. Then the boundary conditions at the ends of the beam are 

. (16.24)

The governing boundary value problem defined by (16.23) and (16.24) is depicted in figure. 16.11(a). Actions 

corresponding to the generalized displacements q1, q2, q3, and q4 are denoted by Q1, Q2, Q3, and Q4, respec-
tively. Free body diagrams at the beginning joint (z = 0) and the end joint (z = L) are shown in figure. 16.11(b). 
Equilibrium at the joints leads to

. (16.25)

ψy zd
dv φx+ 0= =

zd

dVy fy+ 0=
zd

dMx Vy– 0=

Mx MxT+ EIxx zd

dφx=

∆T τy z( )y s( )=

MxT EIxxατy z( )=

EIxx z4

4

d
d v fy z( ) EIxxα z2

2

d

d τy–= 0 z L< <

q1
q2

q3 q4

v 0( ) q1= φx 0( ) q2= v L( ) q3= φx L( ) q4=

fy τy

z

y v,q1

q2

q3

q4

L
Vy 0( )

Mx 0( )

Vy 0( )

Vy L( )

Vy L( )

Mx L( )

Q1

Q4

Q3

Q2

(a) (b)

Fig. 16.11 (a) The boundary value problem for the beam. (b) Joint equilibrium.

Q1 Vy 0( )+ 0= Q2 Mx 0( )+ 0= Q3 Vy L( )– 0= Q4 Mx L( )– 0=
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The solution to the governing boundary value problem is sought by the method of superposition. Let the lat-
eral displacement be represented by the sum of displacements in the form

. (16.26)

The boundary value problem for  is selected as

. (16.27)

As a consequence the boundary value problem for  is

. (16.28)

In eqs. (16.27) and (16.28) ordinary derivatives with respect to z are denoted by primes (e.g., ). Also, we 

let . The boundary value problem (16.27) for displacement function  consists of an inhomoge-

neous differential equation with homogeneous boundary conditions, while the boundary value problem (16.28) 
for displacement function  consists of a homogeneous differential equation with inhomogeneous boundary 

conditions. Since the displacements and rotations vanish at the end points of the beam in the boundary value 
problem for , the solution for it will lead to fixed-end actions in the matrix structural analysis method. That 

is, the fixed-end action problem accounts for distributed load intensity , and the distributed temperature gra-

dient . By superposition the total bending moment is

, (16.29)

where the bending moments from the separate boundary value problems are

. (16.30)

The shear force is the sum

, (16.31)

where the shear forces from the separate boundary value problems are

. (16.32)

16.2.1  Boundary value problem (16.28). Generalized displacements at the boundaries

The general solution for  satisfying the differential equation in boundary value problem (16.28) is a cubic 

polynomial in the longitudinal coordinate, which is written as

, (16.33)

where the constants  are to be determined by the four boundary conditions specified in eq. 

(16.28). Substitute the general solution (16.33) into these four boundary conditions and write result as

v z( ) v0 z( ) v1 z( )+=

v0 z( )

EIv0′′′′ fy z( ) EIατy''–= 0 z L< <

v0 0( ) 0= v0′ 0( )– 0= v0 L( ) 0= v0′ L( )– 0=

v1 z( )

EIv1′′′′ 0= 0 z L< <

v1 0( ) q1= v0′ 0( )– q2= v0 L( ) q3= v0′ L( )– q4=

v′
zd

dv=

EIxx EI= v0 z( )

v1 z( )

v0 z( )

fy z( )

τy z( )

Mx z( ) EI v0'' v1''+( )– EIατy– Mx
0 Mx

1+= =

Mx
0 EIv0''– EIατy–= Mx

1 EIv1''–=

Vy z( ) Vy
0 Vy

1+=

Vy
0

zd
d Mx

0( )= Vy
1

zd
d Mx

1( )=

v1 z( )

v1 z( ) c3
z3

6
---- c2

z2

2
---- c1z c0+ + +=

c3 c2 c1 and c0, , ,
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. (16.34)

Solve eq. (16.34) for the constants  to get

. (16.35)

Substituting eq. (16.35) for the constants  into eq. (16.33) leads to

. (16.36)

Rearrange eq. (16.36) to the form

. (16.37)

Equation (16.37) is further written in the matrix form

. (16.38)

The shape functions, or interpolation functions, are defined as

. (16.39)

From eq. (16.19) the rotation associated with the lateral displacement function  is given by

, (16.40)

where

. (16.41)

These interpolation functions have the following properties at the end points, or joints, of the beam member:

0 0 0 1
0 0 1– 0

L3 6⁄ L2 2⁄ L 1

L2– 2⁄ L– 1– 0

c3

c2

c1

c0

q1

q2

q3

q4

=

c3 c2 c1 and c0, , ,

c3

c2

c1

c0

12 L3⁄ 6 L2⁄– 12 L3⁄– 6 L2⁄–

6 L2⁄– 4 L⁄ 6 L2⁄ 2 L⁄
0 1– 0 0
1 0 0 0
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. (16.42)

The distributions of the shear force (16.32) and the bending moment (16.30) for the boundary value problem 
(16.28) are

. (16.43)

Substitute for the shape functions from eq. (16.39) into eq. (16.43) to find

. (16.44)

Since eq. (16.44) relates the internal actions consisting of the shear force and the bending moment to the joint 
displacement vector, it defines the 2X4 stress matrix as

, (16.45)

such that

. (16.46)

Equilibrium at the joints z = 0 and z = L in (16.25) leads to

. (16.47)

Combine these results into one matrix equation to get
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. (16.48)

The beam element stiffness matrix is defined by 

. (16.49)

The stiffness matrix of the beam member (16.49) has the following properties:

• It is symmetric, because the material is linear elastic and the displacements and rotations of the beam are 
assumed small.

• The column elements satisfy equilibrium for each unit displacement state.

For example consider unit displacement state one with .

The corresponding generalized joint forces are .

The sum of the vertical forces is .

The sum of moments about the center of the beam clockwise positive are: 

.

As result of the four unit displacement states the elements of the beam stiffness matrix satisfy the following 
relationships.

The sum of rows one and three equals zero. .

The sum of L/2 times row one plus row two minus L/2 times row three plus row four is equal to zero.   

.

Since the stiffness matrix is symmetric, the column elements satisfy the same relationships as do the row ele-
ments 

• , since the beam member is not restrained against rigid body displacement.
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• Its diagonal elements are positive.

16.2.2  Boundary value problem (16.27). Fixed-end actions

The fixed-end action vector is computed from the boundary value problem (16.27) to account for the distributed 
load and the temperature distribution in the direct stiffness method. Many practical problems can be analyzed 
with a linear distribution of the load intensity and a linear distribution of the cross-sectional temperature gradient. 
These linear distributions are specified as

  and . (16.50)

The values of the distributed load and temperature gradient at z = 0 are  and , respectively. At z = L, the 

distributed load intensity is  and the temperature gradient is . The boundary value problem (16.27) reduces 

to

. (16.51)

The solution for displacement  is

. (16.52)

The distribution of the transverse shear force (16.32) and the bending moment (16.30) and are

. (16.53)

Substitute the results in (16.53) into joint equilibrium (16.25) to find the fixed-end actions

. (16.54)

In the case of uniform distributions where  and , the bending moment and 

shear force simplify to

, (16.55)

and the fixed-end actions are
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. . (16.56)

16.2.3 Results of the combined superposition solutions for the beam

Joint equilibrium (16.25) leads to the sum

, (16.57)

where  is the 4X1 joint force vector from the fixed-end action boundary value problem (16.27), and  
is the 4X1 joint force vector from the boundary value problem (16.28). That is, the total joint force vector is 

. From eq. (16.48) we have

, (16.58)

where the 4X4 beam stiffness matrix is given by eq. (16.49) and  is the 4X1 joint displacement vector. 
Hence, the total joint force vector is given by

. (16.59)

Equation (16.59) is written in the form

, (16.60)

where the vector  is called the equivalent joint force vector. It is the negative of the fixed-end action vec-
tor.

To summarize, the analysis of a structure composed of beam members, with some members subject to dis-
tributed loads and temperature gradients, is as follows:

1. Lock every joint of the structure against translation and rotation, and calculate the fixed-end actions.

2. Apply the fixed-end actions with the opposite sign.

3. Analyze the structure with the specified joint forces and the negative of the fixed-end actions; 

. Note that the joint displacements computed in this step are the actual joint displacements.

4. Obtain the internal actions consisting of the shear force and bending moment by superposition.

. (16.61)

For the linear distributions of the specified external loads, the shear force  and bending moment  are 
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given by (16.53). The 2X4 stress matrix  is given by (16.46), and  is the 4X1 joint displacement vec-

tor of the beam member obtained from the solution of the assembly of the structural members.

Example 16.6 Multispan beam

Consider the multispan uniform beam in figure. 16.12. It is subject to equal and opposite couples in the y-z plane 
at z = 0 and z = L. The magnitude of the moment of these couples is denoted by . The bending stiffness  is 

the same constant in each span.

a) Determine the unknown joint displacements using symmetry to reduce problem size.

b) Draw the shear force and bending moment diagrams.

c) Determine the support reactions.

Solution for the unknown joint displacements.  The joints are taken at the support locations and are numbered 
one to five from left to right. Hence, there are ten degrees of freedom (DOFs) as is shown in the top sketch in fig-
ure. 16.13. The support conditions mean the vertical displacements vanish; i.e.,

. (a)

The geometry, boundary conditions, and material properties of the structure are symmetric about the vertical cen-
terline. If the top sketch of the beam and its DOFs are rotated  about this vertical centerline, the bottom 
sketch is obtained. See figure. 16.13. The displacements and rotations at the joints in the top and bottom sketch 
must be the same. Hence, symmetry implies the joint rotations must satisfy
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beam.
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. (b)

Clearly, the last symmetry condition on the rotations means rotation of the center joint vanishes; . Then, 

the analysis for the response of the beam reduces to a two-span beam, clamped at its right end as is shown in fig-
ure. 16.14. The two active degrees of freedom are rotations  and . The stiffness matrices (16.49) for beam 

members 1-2 and 2-3 are

. (c)

The 6X6 unrestrained structural stiffness matrix is the sum  with each member stiffness matrix 

expanded to 6X6 by adding two rows and two columns of zeros for degrees of freedom not contained in the 
member. The result is

. (d)

Partition the unrestrained structural stiffness matrix in terms of unknowns and knowns to get

. (e)

The restrained structural stiffness matrix is
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. (f)

The unknown rotations are determined from

. (g)

Solve eq. (g) for the nodal rotations to find

. (h)

By symmetry the joint rotations for the entire structure are

. (i)

Solution for the shear force and bending moment distributions.  The shear force and bending moment distri-
bution in beam members 1-2 and 2-3 are determined from eq. (16.44). For member 1-2, we have

. (j)

But , so

. (k)

Substitute the solution for the rotations from eq. (h) into eq. (k) to get
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. (l)

Note that the coordinate z is local to the member in the formulas for the shear force and bending moment. For 
member 2-3, we have

. (m)

But , so

. (n)

Substitute the solution for rotation  from eq. (h) into eq. (n) to get

. (o)

Again, note that the -coordinate in these formulas for the shear force and bending moment in member 2-3 is 
local to the member and runs from zero to L. However, the beginning joint 2 corresponds to the global longitudi-
nal coordinate L, and end joint 3 corresponds to the global longitudinal coordinate 2L. The relationship between 
the member local coordinate and the global structural coordinate has to be taken into account when drawing the 
shear force and bending moment diagrams. The shear force and bending moment diagrams are shown in figure. 
16.15. In this example, the shear force diagram in antisymmetric, and the moment diagram is symmetric, about 
the center of the multispan beam.

Solution for the support reactions.  The support reactions are , since . 

Hence,

. (p)

Note that these are the support reactions for the left half of the beam. By symmetry the support reactions on the 
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right half of the beam are obtained by a rotation of the left half by  as shown in figure. 16.16. 
Joining the left half and right half we get the support reactions for the overall free body diagram of the multispan 
beam as shown in figure. 16.17. J   
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Fig. 16.15 Shear force and bending moment diagrams for the multispan beam.
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Example 16.7 Clamped-clamped, stepped beam restrained by a spring

The beam structure shown in figure. 16.18(a) has a step change in thickness at midspan, and is clamped at each 
end. The left half of has a uniform flexural stiffness , and the right half has a uniform flexural stiffness . 

Each half has a length denoted by . A vertical linear elastic spring of stiffness  is connected at 

midspan. The structure is subject to a vertical distributed load and a vertical point force  applied at midspan. 

The distributed load is uniform on the left half with intensity , and decreases linearly from  to zero on the 

right half. Model the response of the beam with two beam members, one in each half, and a spring member. 
Determine

a) The restrained structural stiffness matrix.

b) The fixed-end action vector.

c) The unknown joint displacements.

d) The support reactions.

e) The shear force and bending moment in the left half of the beam.

Solution to part (a).  The unrestrained structure has four joints and seven degrees of freedom as shown in figure. 
16.18(b). The size of the unrestrained structural stiffness matrix is 7X7. The support conditions impose the van-

ishing of the following generalized displacement vector: .   The active, or 

unknown, displacement vector is .

The stiffness matrices for the two beam members are obtained from eq. (16.49) as
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Fig. 16.17 Support reactions of the intact multispan beam.    

2EI EI

a k 6EI a3⁄=

P

fy0 fy0

2EI EI

a a
k

P
fy0 1

2

3

4

5

7

6

Fig. 16.18 (a) Beam with a step change in thickness. (b) Degree of freedom numbering.

(a) (b)

qβ{ } q1 q2 q5 q6 q7

T
05X1= =

qα{ } q3 q4

T
=



Article 16.2

470 Aerospace Structures

. (a)

The spring stiffness matrix is obtained from eq. (15.8) on page 424 as

. (b)

Assembly of the element stiffness matrices is by summation of the element stiffness matrices with attention to 
the location of the matrix elements in the 7X7 unrestrained structural stiffness matrix. The result is 

. (c)

Partition the unrestrained structural stiffness matrix in eq. (c) so that rows and columns are in the order 3, 4, 1, 2, 
5, 6, 7: 

. (d)

From the partitioned form of eq. (d) the restrained structural stiffness matrix is 

. (e)

Solution to part (b).  From eqs. (16.54) and (16.56) fixed-end actions of the beam member are

K1 2–
EI

24 a3⁄ 12– a2⁄ 24– a3⁄ 12– a2⁄

12– a2⁄ 8 a⁄ 12 a2⁄ 4 a⁄

24– a3⁄ 12 a2⁄ 24 a3⁄ 12 a2⁄

12– a2⁄ 4 a⁄ 12 a2⁄ 8 a⁄

= K2 3–
EI

12 a3⁄ 6– a2⁄ 12– a3⁄ 6– a2⁄

6– a2⁄ 4 a⁄ 6 a2⁄ 2 a⁄

12– a3⁄ 6 a2⁄ 12 a3⁄ 6 a2⁄

6– a2⁄ 2 a⁄ 6 a2⁄ 4 a⁄

=

q1 q2 q3 q4
q3 q4 q5 q6

K4 2–
EI 6 a3⁄ 6– a3⁄

6– a3⁄ 6 a3⁄
=

q7 q3

K EI

24 a3⁄ 12– a2⁄ 24 a3⁄– 12– a2⁄ 0 0 0

12– a2⁄ 8 a⁄ 12 a2⁄ 4 a⁄ 0 0 0

24 a3⁄– 12 a2⁄ 42 a3⁄ 6 a2⁄ 12 a3⁄ 6– a2⁄ 6– a3⁄

12– a2⁄ 4 a⁄ 6 a2⁄ 12 a⁄ 6 a2⁄ 2 a⁄ 0

0 0 12– a3⁄ 6 a2⁄ 12 a3⁄ 6 a2⁄ 0

0 0 6– a2⁄ 2 a⁄ 6 a2⁄ 4 a⁄ 0

0 0 6– a3⁄ 0 0 0 6 a3⁄

=

q1 q2 q3 q4 q5 q6 q7

K EI

42 a3⁄ 6 a2⁄ 24 a3⁄– 12 a2⁄ 12– a3⁄ 6– a2⁄ 6– a3⁄

6 a2⁄ 12 a⁄ 12– a2⁄ 4 a⁄ 6 a2⁄ 2 a⁄ 0

24 a3⁄– 12– a2⁄ 24 a3⁄ 12– a2⁄ 0 0 0

12 a2⁄ 4 a⁄ 12– a2⁄ 8 a⁄ 0 0 0

12– a3⁄ 6 a2⁄ 0 0 12 a3⁄ 6 a2⁄ 0

6– a2⁄ 2 a⁄ 0 0 6 a2⁄ 4 a⁄ 0

6– a3⁄ 0 0 0 0 0 6 a3⁄

Kαα[ ] Kαβ[ ]

Kβα[ ] Kββ[ ]
= =

q3 q4 q1 q2 q5 q6 q7

Kαα
EI 42 a3⁄ 6 a2⁄

6 a2⁄ 12 a⁄
=
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. (f)

The assembled 7X1 fixed-end action vector in the natural order 1, 2, 3, 4, 5, 6, 7 is

.

Partitioning the fixed-end action vector in the order 3, 4, 1, 2, 5, 6, 7 we get

,

where

. (g)

Solution to part (c).  The matrix equation to determine the unknown joint displacement  is

. (h)

The prescribed joint force vector  is

. (i)

The specified displacement vector . The matrix equation for the solution of the displacement vector 

 reduces to

, (j)

where  is the equivalent joint force vector. See figure. 16.19. The explicit form of the matrix equation to 

determine the unknown displacements is

.

The solution for the generalized displacements is

Q1
0

Q2
0

Q3
0

Q4
0

1 2–

a– fy0 2⁄

a2fy0 12⁄

a– fy0 2⁄

a2– fy0 12⁄

=

Q3
0

Q4
0

Q5
0

Q6
0

2 3–

7a– fy0 20⁄

a2fy0 20⁄

3a– fy0 20⁄

a2– fy0 30⁄

=

Q0{ } a–
2

------ a2

12
------ 17a–

20
------------ a2–

30
-------- 3a–

20
--------- a2–

30
-------- 0

T

fy0=

Q0{ } 17a–
20
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30
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2
------ a2

12
------ 3a–

20
--------- a2–

30
-------- 0

T

fy0 Qα
0{ } Qβ

0{ }+= =

Qα
0{ } 17a–

20
------------ a2–

30
--------

T

fy0= Qβ
0{ } a–

2
------ a2

12
------ 3a–

20
--------- a2–

30
-------- 0

T

fy0=

qα{ }

Qα{ } Kαα
qα{ } Kαβ[ ] qβ{ } Qα

0{ }+ +=

Qα{ }

Q3

Q4 α

P

0
=

qβ{ } 05X1=

qα{ }

Kαα
qα{ } Qα{ } Qα

0{ }–( )+=

Qα
0{ }–( )

EI 42 a3⁄ 6 a2⁄

6 a2⁄ 12 a⁄

q3

q4

P

0

17a 20⁄

a2 30⁄
fy0+=
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. (k)

Solution to part (d).  The governing matrix equation for the unknown joint forces, or the support reactions, is

. (l)

The matrix 5X2  is obtained from the partitioned form eq. (d). Writing eq. (l) in detail we have

. (m)

After performing the matrix algebra in eq.(m) the result for the support reactions is

. (n)

Solution to part e.  Referring to eq. (16.61) on page 463, the shear force and bending moment in beam member 
1-2 is given by the superposition of the fixed-end solution and the displacement solution as

. (o)

From the fixed-end action solution (16.55) the vector of the shear force and bending moment is

2EI EI

a a
k

P 7a
20
------fy0+

a2fy0

30
-----------

Fig. 16.19 Applied load P and the 
equivalent joint forces from the 
distributed loading.
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12– a3⁄ 6 a2⁄

6– a2⁄ 2 a⁄

6– a3⁄ 0

1
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a2 12⁄
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0

fy0+=
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=
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Mx z( )
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Vy
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. (p)

Equations (16.45) and (16.46) combine to determine the shear and moment from the displacements of the mem-
ber. That is,

. (q)

Perform the matrix algebra in eq. (q) to find

. (r)

Finally, substitute eqs. (p) and (r) into (o) to get

.J

16.3 Coplanar frame structures

Frame members in a skeletal structure resist applied loads both by axial deformation and bending deformation. 
Frames are often modeled by assuming the joints are rigid, which means that members meeting at a joint have the 
same rotation. That is, instead of frictionless pins or ball and socket joints used to model trusses, the connections 
at a joint under the rigid joint assumption implies that bending moments in the members at the joint do not van-
ish. When distributed lateral loads act on the member, frame elements may be required even if the joints at the 
end of the member are modeled as frictionless pins. In a truss the loads are assumed to only act on the joints, and 
the members are not subject to lateral distributed loads. The stiffness matrix for a frame member is the superpo-
sition of the stiffness matrix for a truss member and the stiffness matrix for a beam member. There are three 
degrees of freedom at each joint in a coplanar frame member: two displacements and a rotation as shown in fig-
ure. 16.20. In this figure, degrees of freedom labeled one and four account for axial deformation, degrees of free-
dom two and five account for lateral deformation in bending, and degrees of freedom three and six account for 
rotations in bending. These degrees of freedom are referred to Cartesian coordinate directions along the longitu-
dinal axis and the axis perpendicular to the member. Let the coordinate along the longitudinal, centroidal axis be 
denoted by z, , and let y be the coordinate perpendicular to the member.

Vy
0 z( )
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0 z( )

1 2–
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Consider a typical plane frame member between joints i and j in a structure. Joint i is the beginning joint and 
joint j is the end joint, so that the z-axis is directed from joint i to joint j. Then, the 6X1 generalized displacement 
vector for the frame member in local coordinate directions is uniquely numbered by

. (16.62)

These displacement components are shown in figure. 16.21. The 6X6 frame stiffness matrix in local coordinate 

directions is the sum of the truss stiffness matrix and the beam stiffness matrix, where

. (16.63)

Now add the stiffness matrices in eq. (16.63) with due regard to the element locations in the 6X6 frame member 
stiffness matrix to get

. (16.64)

1

y 2,

4

3

5

6

L
z

EA EI,

Fig. 16.20  Frame member with six degrees of freedom.

q{ } q3i 2– q3i 1– q3i q3j 2– q3j 1– q3j

T
=

i j
q3i 2–

q3i 1–

q3i

q3j 2–

q3j 1–

q3j

z

Fig. 16.21 Generalized displacements for a frame element between joints i and j.

Ktruss
EA L⁄ EA L⁄–

EA L⁄– EA L⁄
= Kbeam

12EI L3⁄ 6EI L2⁄– 12EI L3⁄– 6EI L2⁄–

6EI L2⁄– 4EI L⁄ 6EI L2⁄ 2EI L⁄

12EI L3⁄– 6EI L2⁄ 12EI L3⁄ 6EI L2⁄

6EI L2⁄– 2EI L⁄ 6EI L2⁄ 4EI L⁄

=

q3i 2– q3j 2–

q3i 1– q3i q3j 1– q3j

K

EA L⁄ 0 0 EA L⁄– 0 0

0 12EI L3⁄ 6EI L2⁄– 0 12EI L3⁄– 6EI L2⁄–

0 6EI L2⁄– 4EI L⁄ 0 6EI L2⁄ 2EI L⁄
EA L⁄– 0 0 EA L⁄ 0 0

0 12EI L3⁄– 6EI L2⁄ 0 12EI L3⁄ 6EI L2⁄

0 6EI L2⁄– 2EI L⁄ 0 6EI L2⁄ 4EI L⁄

=

q3i 2– q3i 1– q3i q3j 2– q3j 1– q3j
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The frame member stiffness matrix (16.64) is symmetric, singular, and its diagonal elements are positive. Let the 
6X1 generalized joint force vector corresponding to the generalized displacement vector for the member in local 
coordinates be denoted by

. (16.65)

Then, the matrix relationship between the generalized force and displacement vectors is

, (16.66)

where the frame member stiffness matrix in local coordinate directions is given by eq. (16.64).

16.3.1 Transformation of Cartesian coordinates

Let a coplanar frame assembly be defined with respect to global Cartesian coordinate directions (X,Y,Z). The 
local Cartesian coordinates of a frame member are  with the z-coordinate along the reference axis of the 
member. The z-axis lies in the X-Y plane at an angle θ with respect to the positive X-direction as shown in figure. 
16.22. To effect the assembly of member stiffness matrices it is necessary to transform the stiffness matrix 
(16.64) of a member from local coordinate directions  to the global coordinate directions (X,Y,Z). The 
transformation from one Cartesian system (X,Y,Z) to another Cartesian system (z,y,x) at joint i is effected by the 
direction cosines of the latter with respect to the former. For example, denote the cosine of the angle of the z-
direction with respect to the Z-direction as , the cosine of the angle of the z-direction with respect to the 

Y-direction as , etc. Then the Cartesian coordinate transformation from global to local directions in 
terms of the direction cosines is

. (16.67)

From figure. 16.22 the directions cosines in terms of angle θ are as follows. 

, , (16.68)

, , , (16.69)

, , . (16.70)

Q{ } Q3i 2– Q3i 1– Q3i Q3j 2– Q3j 1– Q3j

T
=

Q{ } K q{ }=

6X1 6X6 6X1

z y x, ,( )

z y x, ,( )

z Z,( )cos

Xθ

θ

Z q3i–,

z
y

Y

x q3i,
i

q3i 2–

q3i 2–

q3i 1–

q3i 1–

Fig. 16.22 Local and global 
direction at node i.

z Y,( )cos

z z X,( )cos X z Y,( )cos Y z Z,( )cos Z+ +=

y y X,( )cos X y Y,( )cos Y y Z,( )cos Z+ +=

x x X,( )cos X x Y,( )cos Y x Z,( )cos Z+ +=

z X,( )cos θcos= z Y,( )cos θ– 90°+( )cos θsin= = z Z,( )cos 90°cos 0= =

y X,( )cos θ 90°+( )cos θsin–= = y Y,( )cos θcos= y Z,( )cos 90°cos 0= =

x X,( )cos 90°cos 0= = x Y,( )cos 90°cos 0= = x Z,( )cos 180°cos 1–= =
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Combine the direction cosines from eqs. (16.68) to (16.70) (b) into (16.67) to get the matrix transformation

. (16.71)

The inverse Cartesian coordinate transformation from local to global directions is determined from the reverse 
direction cosines as

. (16.72)

The direction cosines of the global directions with respect to the local directions as functions of θ are

, , , (16.73)

, , , and (16.74)

, , . (16.75)

Substitute the direction cosines from eqs. (16.73) to (16.75) into eq. (16.72) to get the inverse matrix transforma-
tion as

. (16.76)

The generalized displacements corresponding to local coordinates (z,y,x) at joint i are 

, and the generalized displacements corresponding to global coordinates (X,Y,Z) at 

joint i are . The directions of the generalized displacements coincide with the coordi-

nate directions as is shown in figure. 16.22. It follows from the coordinate transformation eq. (16.71) that the 
transformation of the generalized displacements from local to global directions is

. (16.77)

In matrix notation transformation eq. (16.77) is written as

, (16.78)

where

 . (16.79)

z

y

x

θcos θsin 0
θsin– θcos 0

0 0 1–

X

Y

Z

=

X X z,( )cos z⋅ X y,( )cos y⋅ X x,( )cos x⋅+ +=

Y Y z,( )cos z⋅ Y y,( )cos y⋅ Y x,( )cos x⋅+ +=

Z Z z,( )cos z⋅ Z y,( )cos y⋅ Z x,( )cos x⋅+ +=

X z,( )cos θcos= X y,( )cos θ 90°+( )cos θsin–= = X x,( )cos 90°cos 0= =

Y z,( )cos θ– 90°+( )cos θsin= = Y y,( )cos θcos= Y x,( )cos 90°cos 0= =

Z z,( )cos 90°cos 0= = Z y,( )cos 90°cos 0= = Z x,( )cos 180°cos 1–= =

X

Y

Z

θcos θsin– 0
θsin θcos 0

0 0 1–

z

y

x

=

qi{ } q3i 2– q3i 1– q3i

T
=

qi{ } q3i 2– q3i 1– q3i

T
=

q31 2–

q3i 1–

q3i

θcos θsin 0
θsin– θcos 0

0 0 1–

q3i 2–

q3i 1–

q3i–

θcos θsin 0
θsin– θcos 0

0 0 1

q3i 2–

q3i 1–

q3i

= =

qi{ } τ qi{ }=

τ
θcos θsin 0
θsin– θcos 0

0 0 1

=
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It follows from the coordinate transformation in eq. (16.76) that the transformation of the generalized displace-
ments from global to local directions is

. (16.80)

In matrix notation the transformation in eq. (16.80) is written as

. (16.81)

The matrix of direction cosines has the following properties:

, (16.82)

and . Hence, the inverse of matrix  is equal to its transpose. Matrix  is said to be an orthogo-

nal matrix.

 Let  and . The transformation of the displacements at joint j is the same matrix equa-
tion as at joint i except that the components of the vectors are those corresponding to joint j. Hence, the transfor-
mation of the generalized displacement vector from global to local coordinate directions for frame member i-j 
can be written in matrix form as

. (16.83)

Equation (16.83) is written in compact form as 

 , (16.84)

where the 6X6 transformation matrix is

q3i 2–

q3i 1–

q3i–

θcos θsin– 0
θsin θcos 0

0 0 1–

q31 2–

q3i 1–

q3i

=

qi{ } τ
T qi{ }=

τ
T
τ

θcos θsin– 0
θsin θcos 0

0 0 1

θcos θsin 0
θsin– θcos 0

0 0 1

θcos2 θsin2+ 0 0

0 θsin2 θcos2+ 0
0 0 1

1 0 0
0 1 0
0 0 1

I= = = =

det τ 1= τ τ

c θcos= s θsin=

q3i 2–

q3i 1–

q3i

q3j 2–

q3j 1–

q3j

c s 0 0 0 0
s– c 0 0 0 0

0 0 1 0 0 0
0 0 0 c s 0
0 0 0 s– c 0
0 0 0 0 0 1

q3i 2–

q3i 1–

q3i

q3j 2–

q3j 1–

q3j

=

q{ } T q{ }=

6X1 6X6 6X1
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. (16.85)

Transformation matrix  is also an orthogonal matrix. That is, its determinate is equal to one and its inverse is 

equal to its transpose. 

16.3.2 Frame stiffness matrix in global coordinate directions

The generalized joint force vector for frame member i-j transforms from global coordinate directions to local 
coordinate directions in the same manner as the generalized displacement vector does for the member. Hence, 
from eq. (16.84) the transformation of the 6X1 generalized force vector for element i-j is

, (16.86)

where the 6X1 generalized force vector in global directions is . 

Since the 6X6 transformation matrix is orthogonal, the inverse transformation from local to global directions is

. (16.87)

To obtain the 6X6 frame element stiffness matrix in global coordinate directions, substitute (16.84) for the 
generalized displacement vector, and substitute (16.86) for the generalized force vector, into eq. (16.66) to get

. (16.88)

Pre-multiply this equation by , recognizing that , to get

. (16.89)

The 6X6 matrix  is the frame member stiffness matrix in global coordinate directions, and is 

given by 

T
τ 03X3

03X3 τ

c s 0 0 0 0
s– c 0 0 0 0

0 0 1 0 0 0
0 0 0 c s 0
0 0 0 s– c 0
0 0 0 0 0 1

= =

T

Q{ } T Q{ }=

Q{ } Q3i 2– Q3i 1– Q3i Q3j 2– Q3j 1– Q3j

T
=

Q{ } T
T Q{ }=

T Q{ } K T q{ }=

T
T

T
T

T I=

Q{ } T
T

K T q{ } K q{ }= =

K T
T

K T=
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. (16.90)

The frame member i-j referenced to global coordinate directions is shown in figure. 16.23.

The frame stiffness matrix (16.90) is symmetric and singular, and the diagonal elements are positive. Equilibrium 
of the frame member shown in figure. 16.23 for each of the six unit displacement states leads to the following 
relations for the elements of the stiffness matrix.

• Horizontal equilibrium: , , which implies row 1 plus row 4 = 0.

• Vertical equilibrium: , , which leads to row 2 plus row 5 = 0.

• Moment equilibrium about joint i: ,   , which leads 

to row 3 plus (L sine(θ)) times row 4 minus (L cosine(θ)) times row 5 plus row 6 = 0.

16.3.3 Frame stress matrix

The stress matrix for the frame member i-j relates the internal axial force , the transverse shear force , and 

the bending moment  to the generalized joint displacement vector. We can combine the stress matrix for the 
truss member, eq. (16.14), and the stress matrix for the beam member, eq. (16.44), if local coordinate direction 
displacements are employed. With due regard for the joint numbering convention for the frame member relative 
to the numbering convention of the truss and beam members, the following relationship can be obtained from the 
stress matrices of the truss and beam members:
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Fig. 16.23 Frame member with an arbitrary orientation referenced to global coordinate directions.
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. (16.91)

Recall that the axial coordinate  is a local coordinate in the frame element, which is zero at the beginning joint 

i and equal to the length L of the frame element at end joint j. The 3X6 stress matrix  (16.91) is refer-

enced to the generalized displacement vector in local coordinate directions. The stress matrix in terms of the gen-
eralized displacement vector in global coordinate directions is obtained by substituting (16.84) for the 
displacement vector in eq. (16.91) to get

, (16.92)

where

.

Perform the matrix multiplication in the last equation to find

. (16.93)

The 3X6 stress matrix , , for the frame member relates the internal actions in local coordinate 

directions z and y to the generalized displacement vector in global coordinate directions.

N

V

M i j–

EA L⁄– 0 0 EA L⁄ 0 0

0 12EI L3⁄– 6EI L2⁄ 0 12EI L3⁄ 6EI L2⁄

0 EI 6
L2
----- 12z

L3
--------– 

  EI 4
L
---– 6z

L2
-----+ 

  0 EI 6
L2
-----– 12z

L3
--------+ 

  EI 2
L
---– 6z

L2
-----+ 

 

i j–

q3i 2–

q3i 1–

q3i

q3j 2–

q3j 1–

q3j

=

                              

S z( ) i j–

z

S z( ) i j–

N

V

M i j–

S z( ) i j–
T i j–

q3i 2–

q3i 1–

q3i

q3j 2–

q3j 1–

q3j

S z( ) i j–

q3i 2–

q3i 1–

q3i

q3j 2–

q3j 1–

q3j

= = 0 z L≤ ≤

S z( ) i j–

EA L⁄– 0 0 EA L⁄ 0 0

0 12EI L3⁄– 6EI L2⁄ 0 12EI L3⁄ 6EI L2⁄

0 EI 6
L2
----- 12z

L3
--------– 

  EI 4
L
---– 6z

L2
-----+ 

  0 EI 6
L2
-----– 12z

L3
--------+ 

  EI 2
L
---– 6z

L2
-----+ 

 

c s 0 0 0 0
s– c 0 0 0 0

0 0 1 0 0 0
0 0 0 c s 0
0 0 0 s– c 0
0 0 0 0 0 1

=

S z( ) i j–

cEA L⁄– sEA L⁄– 0 cEA L⁄ sEA L⁄ 0

s12EI L3⁄ c12EI L3⁄– 6EI L2⁄ s12EI L3⁄– c12EI L3⁄ 6EI L2⁄

EIs 6
L2
----- 12z

L3
--------– 

 – EIc 6
L2
----- 12z

L3
--------– 

  EI 4
L
---– 6z

L2
-----+ 

  EIs 6
L2
-----– 12z

L3
--------+ 

 – EIc 6
L2
-----– 12z

L3
--------+ 

  EI 2
L
---– 6z

L2
-----+ 

 

i j–

=

S z( ) i j–
0 z L≤ ≤
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Example 16.8 Portal frame

The coplanar rectangular frame shown in figure. 16.24 consists of three members: 1-2, 2-3, and 3-4. Joints1 and 
4 are restrained against displacement and rotation. At joint 2 there is a rigid connection between members 1-2 
and 2-3, and at joint 3 there is a rigid connection between members 2-3 and 3-4. Joints 2 and 3 are moveable, and 

the generalized displacement vector for these joints is . Each member has a cross-

sectional area , second area moment , and the same modulus of elasticity 

. The direction cosines for member 1-2 are , for member 2-3 

, and for member 3-4 . Determine the generalized displacements of the movable 
joints 2 and 3, and the bending moment in each member. 

The stiffness matrix (16.90) for each member including only the generalized displacements of joints 2 and 3 
are as follows:

, (a)

,

qα{ } q4 q5 q6 q7 q8 q9
T

=

A 1 500 mm2,= I 2.8 6×10 mm4=

E 70 3×10  N//mm2= c s,( ) 0 1,( )=

c s,( ) 1 0,( )= c s,( ) 0 1–,( )=

1

2 3

4

L

h

18kN

1

2

3

4

5

6
7

8

9

10

11

12
DOFs

h = 2,000mm

L = 1,600mm

Fig. 16.24 (a) Portal frame. (b Degree of freedom numbering.

(a) (b)

K1 2–[ ]
12EI( ) h3⁄ 0 6EI–( ) h2⁄

0 EA( ) h⁄ 0

6EI–( ) h2⁄ 0 4EI( ) h⁄

294. 0 294 000,–

0 52 500, 0

294 000,– 0 3.92 8×10

= =

q4 q5 q6 q4 q q6

K2 3–

EA( ) L⁄ 0 0 E– A( ) L⁄ 0 0

0 12EI( ) L3⁄ 6EI–( ) L2⁄ 0 12– EI( ) L3⁄ 6EI–( ) L2⁄

0 6EI–( ) L2⁄ 4EI( ) L⁄ 0 6EI( ) L2⁄ 2EI( ) L⁄
E– A( ) L⁄ 0 0 EA( ) L⁄ 0 0

0 12– EI( ) L3⁄ 6EI( ) L2⁄ 0 12EI( ) L3⁄ 6EI( ) L2⁄

0 6EI–( ) L2⁄ 2EI( ) L⁄ 0 6EI( ) L2⁄ 4EI( ) L⁄

=

q4 q5 q6 q7 q8 q9
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, and (b)

. (c)

The restrained structural stiffness matrix is obtained by the sum of the member stiffness matrices in eqs.(a), (b), 
and (c) with due regard to the location of the matrix elements from the individual members to their place in the 
restrained stiffness matrix. The result is

. (d)

The prescribed external load vector is , and the matrix 

equation to determine the generalized displacements is . The solution for the generalized dis-

placements from the latter equation is

. (e)

The bending moment in member 1-2 is determined from its stress matrix (16.93) and the generalized dis-
placement vector for the member. Reading the third row of the stress matrix determines the bending moment as

, (f)

where . Numerical evaluation results in

.

K2 3–

65 625, 0 0 65 625,– 0 0
0 574.219 459 375,– 0 574.219– 459 375,–

0 459 375,– 4.9 8×10 0 459 375, 2.45 8×10

65 625,– 0 0 65 625, 0 0
0 574.219– 459 375, 0 574.219 459 375,

0 459 375,– 2.45 8×10 0 459 375, 4.9 8×10

=

q4 q5 q6 q7 q8 q9

K3 4–

12EI( ) h3⁄ 0 6EI( ) h2⁄
0 EA( ) h⁄ 0

6EI( ) h2⁄ 0 4EI( ) h⁄

294. 0 294 000,
0 52 500, 0

294 000, 0 3.92
8

×10

= =

q7 q8 q9 q7 q8 q9

Kαα

65 919, 0 294 000,– 65 625,– 0 0
0 53 074.2, 459 375,– 0 574.219– 459 375,–

294 000,– 459 375,– 8.82
8

×10 0 459 375, 2.45
8

×10

65 625,– 0 0 65 919, 0 294 000,–

0 574.219– 459 375, 0 53 074.2, 459 375,

0 459 375,– 2.45
8

×10 294 000,– 459 375, 8.82
8

×10

=

q4 q5 q6 q7 q8 q9

Qα{ } Q4 Q5 Q6 Q7 Q8 Q9
T

18 000 N, 0 0 0 0 0
T= =

Qα{ } Kαα
qα{ }=

q4 41.6931 mm= q5 0.18859 mm= q6 0.0110439 rad.=

q7 41.5561 mm= q8 0.18859 mm–= q9 0.0109807 rad=

Mx( )
1 2– EI 6 h2⁄ 12z h3⁄–( )– 0 EI 4– h⁄ 6z h2⁄+( ) EI 6– h2⁄ 12z h3⁄+( )– 0 EI 2– h⁄ 6z h2⁄+( ) q1 2–{ }=

q1 2–{ } 0 0 0 q4 q5 q6
T

=

Mx( )
1 2–

294 000, 294.z–( )q4 1.96–
8

×10 294 000z,+( )q6+ 1.00931
7

×10 9 010.84z,–= =

0 z 2 000 mm  ,≤ ≤
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. (g)

Following the same procedure for members 2-3 and 3-4 we find

, and (h)

, . (i)

The bending moment in each member is plotted with respect to the axial coordinate in figure. 16.25. The bending 
moment distribution is linear in each member and it passes through zero as it changes sign.J 

16.4  Practice exercises

1. Consider the plane truss restrained against rigid body motion and subject to the loads shown in figure. 
16.26(a). Use the degree of freedom numbering convention based on the joint numbering as shown in figure. 

16.26(b). All four bars have the same modulus of elasticity , and the same  where the cross-

Mx( )
2 3–

459 375, 574.219 z–( )q5 4.9
8

×10– 459 375 z,+( )q6 459 375,– 574.219 z+( )q8+ + +=

2.45–
8

×10 459 375 z,+( )q9 7.92854–
6

×10 9 900.99 z,+= 0 z 1 600 mm,≤ ≤

Mx( )
3 4–

294 000, 294 z–( )q7 3.92–
8

×10 294 000 z,+( )q9+ 7.91305
6

×10 8 989.16 z,–= = 0 z 2 000 mm,≤ ≤

z

z

z

1

2 2

3

3

4
10.1 MNm

1 120.1 mm,

7.93–  MNm

7.93–  MNm

800.8 mm

7.91 MNm

7.91 MNm

880.3 mm

10.1–  MNm

Fig. 16.25  Bending moments in the members of the portal frame: (a) member 1-2, (b) member 2-3, 
(c) member 3-4.

(a)

(b)

(c)

45° 30°5 kips

10 kips

1 2

3

4
100 in.

1

2
3

4

5
6

7

8Fig. 16.26
(a) Truss with 
four joints and 
four members.
(b) Degree of 
freedom 
numbering.

(a) (b)

E 10 6×10 psi= A L⁄
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sectional area for bar 1-2 is  Solve by hand the computations for the

a) unrestrained structural stiffness matrix,

b) restrained structural stiffness matrix, and

c) unknown joint displacements.

2. Consider the plane truss consisting of five bars shown in figure. 16.27(a). Each bar has the same extensional 
stiffness . Use the degree of freedom numbering convention based on the joint numbers labeled in the figure.

a) Determine the unrestrained structural stiffness matrix.

b) Joints 1 and 3 are restrained such that , and it is assumed the loads are applied in the 

remaining degrees of freedom. Determine the submatrix .

3. For the seven-bar truss shown in figure. 16.27(b) all bars have the same value for . The horizontal dis-

placement of joint 5 is prescribed as . All applied forces are zero. Use symmetry to reduce the order of 

the restrained structural stiffness matrix  and then determine the unknown nodal displacements 

.

4. In the three-bar truss shown in figure. 16.27(c) the temperature of bar 1-2 is increased  above ambient 
temperature, while bars 1-3 and 1-4 remain at ambient temperature. The bars are made of aluminum alloy with a 

modulus of elasticity  and coefficient of thermal expansion . The length of 

each bar , and the cross-sectional area of each bar .
Determine

a) the 8X1 fixed-end action vector,

b) the 8X8 unrestrained structural stiffness matrix,

c) the joint displacements  and  of movable joint 1,

d) the support reactions, and

e) the bar forces. State if they are in tension or compression.

0.5 in.2

EA

q1 q2 q6 0= = =

Kβα

EA L⁄

q9 1=

Kαα

q3 q4 q5  and q6, , ,

100°C

E 69 GPa= α 23.6 6–×10 °C⁄=

L 250 mm= A 400 mm2=

q1 q2

L

LL
45° 45°

1

23

4

q1

q2

45°

15°15°

45°

h

1 2

34

X
Y

1
L

30° 60°

2

34

5

Fig. 16.27 Truss configurations. (a) Exercise 2. (b) Exercise 3. (c) Exercise 4.

(a) (b) (c)
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5. The uniform, multispan beam shown in figure. 16.28 is clamped at each end and subject to vertical point 
loads at joints 2 and 4. Use the joint numbers indicated in the figure, and the degree of freedom numbering con-
vention associated with the joint numbers.

a) Use symmetry to reduce the problem size and compute the joint displacement vector in terms of P, L, 
and EI.

b) Determine the shear force and bending moment distributions in each span in terms of P and L. Sketch 
the shear force and bending moment diagrams.

c) Determine the support reactions.

6.  The flexural stiffness of the uniform beam shown in figure. 16.29 is , and it has a of length 2L. It is sup-

ported by linear elastic springs at each end, each with a stiffness . It is subject to the linearly vary-

ing distributed load whose intensity is  at midspan. 

Use two members to model the beam, and use the degrees of freedom (DOFs) numbering shown in the fig-
ure.

a) Use symmetry about the vertical centerline and determine the restrained structural stiffness matrix in 
DOFs 1, 2, and 3, and in terms of parameters  and .

b) Determine the 6X1 fixed-end action vector  in terms of  and .

c) Solve for the unknown joint displacement vector  in terms of , , and .

7. Consider the frame shown in figure. 16.30(a) consisting of a vertical bar 1-2 and a horizontal bar 2-3, which 
are joined together by a rigid connection at joint 2. The ends of the bars opposite to their common joint are 

P P

LLLL

1 2

3

4 5

Fig. 16.28 Multispan beam.

EI

k 6EI L3⁄=

fy1

1

2

3

4

5

6

EI L, EI L,

LL

fy1

k k
EI

Fig. 16.29 (a) Beam with spring supports. 
(b) Degree of freedom numbering.(a)

(b)

EI L

Q0{ } fy1 L

q1 q2 q3 q4 q5 q6

T
EI L fy1
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clamped. The horizontal bar 1-2 is subject to a linearly distributed load. The degree of freedom numbering con-
vention is shown in figure. 16.30(b).

a) Determine the restrained structural stiffness matrix .

b) Determine the 9X1 fixed-end action vector .

8. Consider the model of a strut-braced wing spar shown in figure. 16.31 subject to the span-wise air load 
approximated as a linearly varying distributed line load. The intensity of the distributed load at the root 

 and the resultant lift acting on the spar is .

The spar is clamped at the root and free at the tip, and the strut is pinned-connected to the spar and the support. 
The matrix structural model consists of three members as shown in figure. 16.32(a). Since the air load bends the 
spar which in turn stretches the strut, the structure is modeled with a frame member between joints 1 and 2, a 
beam member between joints 2 and 3. and a truss bar between joints 2 and 4. The degree of freedom numbering 
convention is shown in figure. 16.32(b).

a)  Determine the fixed-end action vector  and its partitions  and . The -indices are 4, 

1

32

fy1

L1 EA1 EI1, , L2 EA2 EI2, ,

1

3

2

4

5

6
7

8

9

Fig. 16.30 (a) Frame configuration. (b) Degree of freedom numbering.

(a) (b)

Kαα

Q0{ }

fy1 130.2083 lb./in.= 1
2
---fy1 32 12×( ) 25 000 lb,=

h

a

L

fy1

Wengine 2 000 lb.,=

b

a 120 in.=
b 264in.=
L 384 in.=

Fig. 16.31
Strut-braced wing spar.

1

2

3
4

5

6
7

8

9

10

1 2 3

4

frame beam

truss

Fig. 16.32 (a) Joint numbers for a three-member model. (b) Degrees of freedom.

(a) (b)

Q0{ } Qα
0{ } Qβ

0{ } α
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5, 6, 7, and 8, and the -indices are 1, 2, 3, 9, and 10.

b) Additional numerical data are listed in table 16.7. Determine the unknown nodal displacements.

Table 16.7 Additional numerical data for the strut-braced wing

h, vertical distance from the spar centroid to lower strut support 60 in.

A, cross-sectional area of the spar 23.88 in.2

Ixx, second area moment of the cross section of the spar 872.716 in.4

As, cross-sectional area of the strut (1.75 in. diameter) 2.40528 in.2

L, wing lift 25,000 lb.

E, modulus of elasticity for the spar and strut material

β

10 6×10  lb./in.2
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