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CHAPTER 6

 

Applications of 
Castigliano’s Theorems

 

6.1 Coplanar trusses

 

6.1.1 Castigliano’s first theorem

 

Consider a truss idealized as an assemblage of uniform bars connected by smooth ball-and-socket joints in three-
dimensional trusses, or by smooth hinge joints in a coplanar truss. External forces are assumed to act only at the 
joints. The line connecting the joints at the end of each bar is assumed to coincide with the reference axis of the 
bar. Hence, the axial force and strain in each bar is uniform along its length, and the bar is either in tension or 
compression. 

A coplanar truss consisting of fifteen bars and eight joints is shown in figure  6.1. Each joint in a coplanar 
truss has two degrees of freedom, one horizontal displacement and the one vertical displacement. Hence, there 
are sixteen displacement degrees of freedom for this truss. At joint 

 

i

 

, 

 

i

 

 = 1, 2,..., 8, the horizontal displacement is 
denoted by  and the vertical displacement is denoted by . The positive directions for the displacements 

and corresponding forces in the fifteen bar truss are shown in figure  6.1. The original coordinates of the joints 
and the sixteen displacements completely define the configuration of the truss in the deformed state. 

A typical bar in a truss connecting joints labeled 

 

i

 

 and 

 

j

 

 is shown in figure 6.2(a). The location of the bar in a 

 

X-Y

 

 coordinate system is established by the coordinates of joint 

 

i

 

 (

 

X

 

i

 

, 

 

Y

 

i

 

) and those of joint 

 

j

 

 (

 

X

 

j

 

,

 

Y

 

j

 

). The angle of 
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Fig. 6.1  A fifteen-bar truss.
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the bar with respect to the 

 

X

 

-axis is denoted by 

 

θ

 

. Trigonometric functions of the angle 

 

θ

 

 are related to the coor-
dinates of the joints and length 

 

L

 

 of the bar by

.

 

(6.1)

 

As shown In figure  6.2(a), the axial displacement of the bar at joint 

 

i

 

 is  and that of joint

 

 j

 

 is . Assume the 

axial displacement , . The axial strain , and 

denote the elongation . Also, assume the temperature change is uniform in 

 

z

 

. From eq. (3.79) on 

page 46 the axial force in the bar is

.

 

(6.2)

 

The differential equation of equilibrium  (eq. (3.53) on page 42) is satisfied under assumptions of uni-

form axial strain and uniform axial change in temperature.The strain energy (5.81) on page 145 of the bar 
reduces to

.

 

(6.3)

 

Castigliano’s first theorem determines the force  corresponding to displacement , and force  correspond-

ing to displacement . The results are

 and .

 

(6.4)

 

Note that , which is the condition of equilibrium.
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Fig. 6.2 (a) Truss bar i-j subject to axial displacements. (b) Truss bar i-j subject to horizontal and 
vertical displacements.
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In figure 6.2(b) truss displacements of joint i are  and for joint j are . At joint i the 

truss and axial displacements are related by  and  as shown in figure 6.3. Likewise 

at joint j  and . These relations can be solved for the axial displacement in terms 

of the truss displacements to get 

. (6.5)

The elongation of the truss bar i-j in terms of the joint displacements is

. (6.6)

The elongation (6.6) is the sum of the projections of the relative displacements onto the reference axis of the 
undeformed bar which is depicted in figure 6.4.

 For the m-th bar of the truss shown in figure 6.1, where, m = 1, 2,..., 15, denote its extension stiffness by 
, its elongation by ∆m, and denote the thermal force by . The temperature change is uniform in 

each bar, but can be different from bar to bar. The relation between bar index m and the joints i and j of the bar are 
defined by assignment. For example in figure 6.1, the bar identified by m = 2 may be selected as the bar connect-
ing joint 1 to joint 4, so its elongation (6.6) is

.

The sine and cosine of angle θ2 are determined from eq. (6.1). The strain energy of the assemblage is simply the 
sum of the strain energies in each bar, where (6.3) is the energy for one bar. Hence, the total strain energy is

(6.7)
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Fig. 6.3 Relation between the 
displacements components at joint i.
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Fig. 6.4 Elongation of the bar as the sum of projections of the relative horizontal 
and vertical displacements along the direction of the undeformed bar.
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The displacements  and the corresponding forces , , used in the formulation of Cas-

tigliano’s theorem are the displacements and corresponding forces at the joints. Hence, Castigliano’s first theo-
rem for the truss shown in figure  6.1 is

. (6.8)

Example 6.1 Three-bar coplanar truss

The coplanar truss shown in figure  6.5 consists of three bars (m = 1, 2, 3) and four joints 1, 2, 3, 4. Beginning 
joint i and end joint j for each bar are listed in the figure. Joints 2, 3, and 4 are fixed so their displacements equal 
zero, and joint 1 is movable. The change in the thermal force in each bar is equal to zero. The spring stiffness of 
the bars are denoted by . Determine the 2 x 2 stiffness matrix using Castigliano’s first theorem.

Solution.  The elongation of each bar as determined from eq. (6.6) is

. (a)

Castigliano’s theorem (6.8) applied to this example yields

(b)

(c)

These results are written in the matrix form 

, (d)

where the elements of the stiffness matrix are

. (e)

Note that this example is statically indeterminate, since there are only two equilibrium equations at the movable 
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------- 
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Fig. 6.5  Three-bar truss. 
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joint 1 but three unknown bar forces. For specified nodal forces Q1 and Q2, matrix eq. (d) is solved for the nodal 
displacements q1 and q2. From eq. (a) the elongation of each bar is then computed, and from these elongations 
the bar forces are determined from

(f)

Example 6.2 Three-bar truss with lack of fit

Consider the same three bar-truss of example 6.1, but now assume that bar 1 was too short and had to be 

stretched an amount  in order to connect it to joint 1. This is a case of lack of fit, and lack of fit is common in 

the fabrication of structures. That is, before the external loads are applied ( ), the truss bars experi-

ence initial forces due to the lack of fit of bar 1. Determine the initial forces in the bars using Castigliano’s first 
theorem.

Solution.  Lack of fit can be included in the energy analysis by modifying the specified thermal force term in the 
strain energy (6.7). For uniform material properties and uniform change in temperature, the thermal force in a 
truss bar is . (Refer to eq. (3.75) on page 46.) The factor  is the initial strain due to the 

temperature change. Note  is dimensionless. Now interpret  as the initial strain specified due to lack of fit. 

The initial strain due to the specified displacement  required to connect a bar to a joint is . Let 

. The strain energy is modified to

. (a)

The specified initial strain is only for bar 1, so

. (b)

Castigliano’s theorem (6.8) leads to

. (c)

The matrix form of eq. (c) is

. (d)

Elements of the stiffness matrix are the same as given by eq. (e) of example 6.1. Set  and , since 

no external forces are applied to the joint just after assembly. Then solve the matrix equation (d) for the joint dis-
placements to get
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. (e)

From this solution for the displacements we can calculate the elongation of each bar after assembly from eq. (a) 
in example 6.1. The initial bar forces after assembly are computed from

. (f)

A specific case: , , , and  is the same for each bar. Take , so that 

, and . The solution for the displacements from eq. (b) are  and 

. The elongations are , , and , and the bar forces from 

eq. (f) are

. (g)

6.1.2 Castigliano’s second theorem for a statically determinate truss

Example 6.3 Truss displacements

The truss shown in figure 6.6 consists of three bars labeled 1-2, 1-3, and 2-3. Joint 1 is a fixed pin, and pin joint 3 
is free to move vertically but not horizontally. A downward applied force of a 84,000 N acts at joint 2. The cross-

sectional areas of bars are , , and . Each bar has a mod-

ulus of elasticity E = 70,000 N/mm2. The degree of freedom numbering is shown the figure. Determine displace-
ments q3 and q4 by Castigliano’s second theorem

A note on static determinacy:  Let m = the number of unknown bar forces, r = the number of support reactions, 
and let j = the number of joints. There are two independent equilibrium equations per joint. For a statically deter-
minate truss, the number of unknown forces is equal to number of independent equilibrium equations (i.e., 2j = m 
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Fig. 6.6 A statically determinate three-bar truss.
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+ r). For the truss in this example j = 3, m = 3, and r = 3. So it is statically determinate. For the truss in example 
6.1, j = 3, m = 3, and r = 6, and 6 < 3 + 6. So the truss in example 6.1 is statically indeterminate. 

Solution.  Free body diagrams of joints 2 and 3 are shown figure 6.7. The diagrams are drawn assuming each bar 
is in tension, so the reaction of the bar force acting on a joint is an arrow aligned with the bar and pointing away 
from the joint. The objective is to determine each bar force in terms of external forces Q3 and Q4. Note that Q3 = 
0 and Q4 = –84,000 N, but we will wait to substitute these numerical values after the derivatives are evaluated in 
Castigliano’s second theorem.

The only contribution to the complementary strain energy in (5.84) on page 145 is the axial normal force N, 
which is spatially uniform along the length of the bar. Also, there is no change in temperature from the reference 
state. Hence, the complementary strain energy for the truss is

, ( a)

Castigliano’s second theorem for the displacement q3 is

. ( b)

The terms in eq. (b) are listed in table 6.1. Replace the derivatives of the bar forces with their values listed in the 

table to get

. ( c)

Substitute the equation for bar force N1-2 from the table in the previous equation and note that  and 

Table 6.1 Terms in Castigliano’s theorem for displacements q3 and q4

Bar L, mm A, mm2 L/(EA), mm/N N

1-2 750 900 1 3/4

1-3 1000 300 0 1

2-3 1250 1200 0

N2 3–

N1 3–

Q5 3

4

FBD joint 3

N1 2–

N2 3–

Q3

Q4

3

4

FBD joint 2

Fig. 6.7 Free body diagrams of two joints of the three-bar truss.
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 to get

. ( d)

Castigliano’s second theorem for the displacement q4 is

. ( e)

Replace the bar forces and their derivatives in eq. (e) with their values listed in table 6.1 to get

. ( f)

Substitute numerical values into eq. (f) to get

. ( g)

The final result from eq. (g) is

(h)

6.2 Beam structures

Example 6.4 Cross-sectional properties of a thin-walled tube

The cross section is a thin-walled tube with a circular contour of radius a and wall 
thickness t. as shown in figure 6.8.

Solution.  The x- and y- axes are axes of symmetry in the cross section, so the cen-
troid and shear center coincide with the center of the circular contour. The paramet-
ric coordinates of the circular contour are  and , and the arc 

length along the contour ; . The cross-sectional area and first 
area moments are

. (a)

The first area moments equal zero since the center of thee circle is the centroid. The second area moments are

. (b)

Since the product area moment is zero, then coefficients  and  from eq. (4.4) on page 79. To 
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compute the transverse shear compliances given in eq. (4.30) on page 83, we need to compute the distribution 
functions from eq. (4.19) and eq. (4.26). The distribution functions for the first area moments for a segment of the 
contour from  to  are given by

. (c)

The coordinates normal and tangent to the contour with respect to the shear center are

. (d)

(Refer to eq. (3.10) on page 34.) The area enclosed by the contour is

. (e)

The shear flow distribution functions given by eqs.(4.19) and (4.26) on page 82 for the closed section are

, and (f)

. (g)

Finally, the transverse shear compliances are 

, and (h)

. (i)

For a uniform shear modulus around the contour, the torsion constant is determined from eq. (3.161) on page 70 
as
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6.2.1 Castigliano’s second theorem

Example 6.5 Thin-walled tube subject to radiant heating

A common structural member in orbiting space structures is a 
thin-walled tube. Tubes are used as truss members and for 
satellite booms. Solar heating combined with heat conduction 
results in the distribution of temperature around the perimeter 
and along the length of the tube. The data in this example is 
for an aluminum 6061-T6 tube taken from Thornton (1996, 
pp. 118-121).

A thin-walled tube with a circular contour of radius a, and 
wall thickness t is subjected to radiant heating as shown in 

figure 6.9. The tube is cantilevered, that is, fixed at z = 0 and free at z = L, where L is the length of tube.The 
change in temperature from the reference state is uniform along the length but it varies around the perimeter. and 
is specified by

. (a)

where the average temperature is denoted by  and the perturbation in temperature is denoted by . Data for 

this example are listed in table 6.2.

Determine the displacements q1 and q3, and rotation q5 of the cross section at the free end using Castigliano’s 
second theorem. The degree of freedom numbering is shown in figure 6.10. 

Solution.  From eqs. (5.83) to (5.85) on page 145 the complementary strain energy in this example is

Table 6.2 Numerical data for example 6.5

radius Poisson’s ratio

wall thickness coefficient of thermal expansion

tube length average temperature

modulus of elasticity perturbation temperature 

x

y

θ

a

t

Fig. 6.9
Radiant 
heating of 
a tube.

∆T θ( ) T Tm θcos+= θ 0 2π,[ ]∈

T Tm

a 0.03812 m= ν 0.33=

t 7.14 4–×10 m= α 23 6–×10 °K=

L 0.8 m= T 462°K=

E 68.3 GPa= Tm 34°K=

1

2

3 4

5

6

x

y

z
z 0=

z L=

Fig. 6.10 Degree of freedom 
numbering at the free end of the 
cantilevered tube.
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. (b)

The cross-sectional properties were determined in example 6.4, and they are

, (c)

, and . (d)

The shear modulus is given by the isotropic formula , so the transverse shear 
compliances are

. (e)

The thermal axial force is given by eq. (3.75) on page 46, and thermal moments are given in eq. (3.78). Material 
properties are uniform along the contour and , and  in the thermal action formulas. The 
results for these thermal actions are

, (f)

, and (g)

. (h)

The free body diagram of the tube in the x-z plane is shown in figure 6.11. Generalized forces Q1, Q3, and Q5 are 
introduced at the free end to facilitate computing the corresponding displacements via Castigliano’s theorem, and 
they are set equal to zero at the end of the procedure (i.e., they are fictitious actions). 

Equilibrium of the free body diagram in the x-z plane yields

. (i)

Since generalized forces , equilibrium in the y-z plane yields  for . The 

complementary strain energy reduces to
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. (j)

Displacement q1 is determined from

, (k)

where we interchanged the derivative and integral since our functions are continuous. Performing the derivative 
inside the integral we get

. (l)

Now set Q1 and Q5 equal to zero and find

. (m)

Axial displacement q3 is given by

. (n)

Since Q3 = 0, the latter equation reduces to

. (o)

Finally, the rotation in radians about the y-axis is given by

,

. (p)

U* 1
2
---

Q3 NT+( )2

EA
--------------------------

Q5 Q1 L z–( )– MyT+[ ]2

EIyy

-----------------------------------------------------------
Q1

2

πatG
-------------+ + zd

0

L

∫=

q1
∂U*

∂Q1
----------

Q3 NT+( )

EA
------------------------

∂ Q3 NT+( )

∂Q1
----------------------------

Q5 Q1 L z–( )– MyT+[ ]

EIyy
----------------------------------------------------------

∂ Q5 Q1 L z–( )– MyT+[ ]

∂Q1
-------------------------------------------------------------

Q1

πatG
-------------

∂Q1

∂Q1
---------- 
 + + zd

0

L

∫= =

q1
1

EIyy

---------- Q5 Q1 L z–( )– MyT+[ ] L z–( )–[ ] zd

0

L

∫
1

πatG
------------- Q1 1( ) zd

0

L

∫+=

q1
1

EIyy

---------- 
  MyT L z–( )–[ ] zd

0

L

∫
L2MyT–

2EIyy

------------------- 0.8 m( )2 174.10 N-m( )–

2 68.3 9×10  N/m2( ) 124.25 9–×10 m4( )
---------------------------------------------------------------------------------------- 6.565– 3–×10 m= = = =

q3
∂U*

∂Q3
----------

Q3 NT+( )

EA
------------------------

∂ Q3 NT+( )

∂Q3
----------------------------

Q5 Q1 L z–( )– MyT+[ ]

EIyy
----------------------------------------------------------

∂ Q5 Q1 L z–( )– MyT+[ ]

∂Q3
-------------------------------------------------------------

Q1

πatG
-------------

∂Q1

∂Q3
---------- 
 + + zd

0

L

∫= =

q3
1

EA
------- 
  Q3 NT+( ) 1( ) zd

0

L

∫
Q3 0=

L
EA
-------NT

0.8m( ) 124.11 3×10 N( )

68.3 9×10 N/m2( ) 171.014 6–×10 m2( )
-------------------------------------------------------------------------------------- 8.5 3–×10 m= = = =

q5
1

EIyy

---------- 
  Q5 Q1 L z–( )– MyT+[ ] 1[ ] zd

0

L

∫
Q1 Q5 0= =

=

q5
LMyT

EIyy

------------- 0.8 m( ) 174.10 N-m( )

68.3 9×10  N/m2( ) 124.25 9–×10 m4( )
------------------------------------------------------------------------------------- 16.41 3–×10  rad= = =



Aerospace Structures 165

Beam structures

Example 6.6 Wing spar subject to a distributed spanwise air load

A light airplane experiences a total lift L = 12,000 lb. in a certain symmetric maneuver. Thus, the lift acting on 
each wing is L/2. Assume the airload is distributed elliptically over the wing, so that the airload intensity  per 

unit span is given as

, ( a)

where z is the spanwise coordinate, z = 0 at the root, and  at the tip of the wing. See figure 6.12 (a). The 

spar of the wing is a uniform, longitudinal, thin-walled beam with a closed section stiffened by four longitudinal 
stringers as shown in figure 6.12 (b). This cross-section is the same one shown in figure 3.24 and analyzed in 
example 3.4 on page 71. Assume the spar is clamped at the root and free at the tip (i.e., a cantilever spar). At the 
tip of the spar we will use Castigliano’s second theorem to find the vertical displacement of the shear center 
denoted by q2, and to find the torsional rotation of the cross section denoted by q6. To use the theorem, we intro-
duce a fictitious force Q2 corresponding to displacement q2, and a fictitious torque Q6 corresponding to rotation 
q6. A typical cross section of the spar with the locations of the centroid (XC), the shear center (XSC), and the line 
of action of the airload (XL) with respect to the vertical web are shown in the left-hand sketch of figure 6.13. The 
right-hand sketch in figure 6.13 illustrates that the airload is statically equivalent to the external line load inten-
sity  and line moment intensity  resolved at the shear center. 

Numerical data for the cross-sectional dimensions are listed in table 6.3. The material is an aluminium alloy with 

a Young’s modulus , a shear modulus , and with a yield strength 

. Additional cross-sectional properties computed from example 3.4 on page 71 are listed in 

Table 6.3 Cross-sectional data for the wing spar

Dimensional data of the cross section 

, stringer 1 flange area 0.30 in.2 b, length horizontal web 7.0 in.

, stringer 2 flange area 0.70 in.2 t, wall thickness 0.030 in.

a, nose web radius 6.0 in XL, location of the airload 10.0 in.

fL

fL
2L

πzmax

------------- 1 z
zmax

---------- 
  2

–= 0 z zmax≤ ≤

z zmax=

fy mz

fL

z zmax

Q2

Q6

(a) Wing loading (b) z = zmax

Fig. 6.12 : (a) Wing spanwise airload intensity and fictitious actions Q2 and Q6 of example 6.6. 
(b) Wing tip cross section and the corresponding generalized displacements q2 and q6.
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table 6.4.

a) Determine the statically admissible bar resultants in the spar for .

b) Determine the generalized displacements q2 and q6 of the shear center at 

c) Tabulate the displacement q2, percentage of the displacement q2 due to transverse shear, and the rotation 

q6 of part (b) for the following spar lengths:  Also, tabu-

late the ratio of the maximum von Mises effective stress (eq. (4.31) on p. 84 ) to the yield strength in the 
semi-circular web, or branch 1, at z = 0 for the same set of spar lengths.

Solution to part (a).  The external distributed line load intensities resolved at the shear center are shown figure  
6.13. In terms of the specified airload  and , where . The differential equation for 

Table 6.4  Data from example 3.4 

A, area of the cross section 3.3455 in.2

XC, horizontal location of the 
centroid

3.52367 in. cyy, compliance coefficient in 

transverse sheara

a. Note: from eq. (5.65) on page 143 , where the shear flow distribution functions  

are given by eqs. (d) to (g) in part c of example 3.4.

XSC, horizontal location of the 
shear center

6.39638 in. czz, compliance coefficient in 

torsionb

b. Note: , and from eq. (3.160) on page 70 the torsion constant .

Ixx, second area moment about 
the x-axis

101.619 in.4 Ac, area enclosed by the contour 140.549 in.2

a

b

t
Af1
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C S.C.
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XSC

b

Af1
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Af2
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XL
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Fig. 6.13 example 6.6: Typical cross section of the uniform spar.
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the transverse shear force Vy is given by eq. (3.54) on page 43. Substitute the expression for the airload to get the 
shear force as

. (a)

Note that the integration is facilitated by the substitution , and using trigonometric identities. 

The constant of integration c1 is determined by the boundary condition . Hence , and 

the final result for the shear force is

. (b)

The shear force at the root for Q2 = 0 is .

The bending moment Mx is determined by eq. (3.55) on page 43. Substitute the result for the shear force Vy 
into eq. (3.55) to find

.

Again, the integration for Mx is facilitated by the substitution , and using trigonometric identities 

to get

. (c)

The constant of integration c2 is determined by the boundary condition . Hence , 

and the final result for the bending moment is

. (d)

The bending moment at the root of the spar for Q2 = 0 is .

From eq. (3.61) on page 43, and that , we can express the torque Mz as

. (e)

Hence,

. (f)
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The constant of integration c3 is determined from the boundary condition , which yields 

. The final result for the torque is

. (g)

The torque at the root of the spar for Q6 = 0 is .We have determined the statically admissi-

ble shear force Vy, bending moment Mx, and torque Mz in the wing spar in terms of the distributed airload, exter-
nal force Q2, and external torque Q6.

Solution to part (b).  From eqs. (5.84) and (5.85) on page 145, the total complementary strain energy for the bar 
in this example is

. (h)

Castigliano’s second theorem for the vertical displacement of the shear center is

. (i)

Note that the torque is independent of force Q2, so that . Let , where  is the 

portion of the displacement due to bending moment Mx and  is the portion due to transverse shear force Vy.

. (j)

Substitute eq. (d) for Mx with Q2 = 0 into eq. (j), and perform the integration to get

. (k)

The portion of the displacement due to transverse shear force Vy is

. (l)

Add eqs. (k) and (l) to get the total vertical displacement at the shear center as

. (m)
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Castigliano’s second theorem for the rotation of the cross-section at z = zmax about the shear center is

. (n)

The bending moment Mx and transverse shear force Vy are independent of the external torque Q6. Hence,

. (o)

The integration of eq. (o) yields

. (p)

Solution to part (c).   Numerical evaluation of the displacements yields

. (q)

The expression for the shear flow is given by eq. (3.163) on page 70. At the root cross section the equation 
for the shear flow reduces to

. (r)

The torque results in a spatially uniform component to the shear flow around the contour equal to

. (s)

(Refer to eq. (3.165) on p. 70 ).The total shear flow in each branch is

, (t)

where the contour coordinates si are shown in figure  3.24(b) on page 71, and the shear flow distribution func-

tions  are given by eqs. (ab) to (ae) in part c of example 3.4. The shear stress distribution along the con-

tour in each branch is given by

. (u)

In this example  and  in the axial normal stress given by eq. (4.6) on page 79. For no 

change in temperature and , the axial normal stress eq. (4.6) at the root cross section in each 

branch reduces to

. (v)

The parametric equations for the y-coordinates of the contour in each branch are
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. (w)

(Refer to figure 3.24 on page 71.) From eq. (4.31) the von Mises effective stress is

. (x)

The von Mises effective stress normalized by the yield strength is plotted with respect to the contour coordinate 
for zmax = 60 inches in figure 6.14. As shown in the figure the maximum normalized effective stress is 0.383 at s 
=    4.696 inches in branch 1. In terms of an angular measurement in the semi-circular branch 1, we note the loca-
tion as . For the other values of zmax, the maximum value of the von 

Mises stress also occurs in branch 1 but at different angular locations. Discontinuities in the von Mises stress 
with respect to the contour coordinate are a result of the jumps in the shear flow across the stringers. (Refer to eq. 
(3.135) on p. 65 ).

Numerical results are listed in table 6.5.

Note that as the length of the spar increases the percentage of the vertical displacement at the tip due to trans-
verse shear decreases and the von Mises effective stress increases. At zmax = 300 in. the von Mises stress exceeds 
the yield strength of the material indicating failure by material yielding.

Table 6.5 Wing tip displacements and wing root stresses as a function of the span

Wing tip Wing root

,% , deg.

12. 0.0135 93.1 0.0298 0.379 90.0

24. 0.0327 77.0 0.0597 0.379 90.0

60. 0.180 34.9 0.149 0.383 44.8

120. 1.066 11.8 0.298 0.509 8.82

180. 3.360 5.62 0.448 0.683 3.81

240. 7.77 3.29 0.597 0.872 2.13

300. 15.0 2.10 0.746 1.07 1.36

y1 s1( ) a s1 a⁄( )cos–= y2 a= y3 s3( ) a s3–= y4 a–=

σMises ( )i σzi si 0,( )[ ]2 3 σzsi si 0,( )[ ]2+= i 1 2 3 4, , ,=

s1 a⁄ 4.696 6⁄( ) 180° π⁄( ) 44.8°= =

10 20 30 40

0.1

0.2

0.3

0.4

4.696 in.

0.383

σMises

σyield
-------------

s, in.

branch 1 2 3 4

zmax 60in.=

0

Fig. 6.14 Normalized 
von Mises effective 
stress plotted with 
respect to the contour 
coordinate s at the root 
cross section of the 
spar.

zmax, in. q2  in., q2v q2⁄ q6, deg. σMises σyield⁄ s1 a⁄
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6.3 Coplanar Frames

Frames are also skeletal structures composed of slender bars that can transmit axial, bending, and transverse 
shear loads. The bars act as beams with a superimposed axial load. Joints in a frame are usually assumed rigid, 
which means that the rotation of all bars connected to the joint are the same. Moments can be transferred through 
a rigid joint, but not a hinge joint, nor ball-and-socket joint. A frame structure may also contain some hinge 
joints.

Example 6.7 A frame of two tubular bars

The tubular post shown in figure 6.15 supports a load of 250 N at 
the free end. The diameter of the cross-sectional contour is 100 
mm and the wall thickness is 3 mm. The material is steel with 

modulus of elasticity of 206,000 N/mm2 and a Poisson’s ratio of 
0.3. Each bar of the frame has the same uniform geometric cross 
section along its length. Find the vertical and horizontal displace-
ment of the free end.

Solution.  We use Castigliano’s second theorem to determine the 
displacements of the free end for this statically determinate struc-
ture. A horizontal force Q is introduced at the free end so that the horizontal displacement can be computed from 
the theorem. Also, let P = 250 N. The complementary strain energy is determined from eqs. (5.84) and (5.85). 
Since there is no change in temperature nor torsion, the complementary strain energy is

. (a)

Let  denote the displacement corresponding to force P, and let  denote the displacement corresponding to 

force Q. These displacements are given by

. (b)

The coordinate system in each bar is shown in figure 6.16 (a), the free body diagram for the vertical bar in figure 
6.16 (b), and the free body diagram of the horizontal bar is shown in figure 6.16 (c) The partial derivatives of the 
complementary strain energy for the frame with respect to the external loads are

, and (c)

, (d)

where  and . Equilibrium determines the internal actions  in each bar. 

The results are

, and (e)

3000 mm

250 N
6000 mm

rigid joint

Fig. 6.15 Tubular 
post. 
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. (f)

Evaluating the partial derivatives based on equilibrium conditions we get

, and (g)

. (h)

The displacements can now be computed from the expressions for the partial derivatives as

(i)

. (j)

P

L2 z2–

QN2

V2

M2
P

z2

L2
y2

L1 z1–

Q

N1

V1

M1

P

z2

L2
y2

y1

z1

L1

Q

FBD 1 FBD 2

(a) (b) (c)

Fig. 6.16 (a) Coordinates in each bar. (b) FBD of vertical bar. (c) FBD of horizontal bar.
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The formulas for the section properties are given in example 6.4 on page 160. For  and  
we get

. (k)

For an isotropic material the shear modulus is computed from , which evaluates to 

. Numerical evaluation of the displacements gives

, (l)

, and (m)

. (n)

Note that the contribution to the displacement  due to bending is , 

which is  of the total displacement. As a general rule the deflections of 

frames composed of slender bars is dominated by bending, and the contributions due to axial stretching 
and transverse shear deformations to the deflections can be neglected. 

6.4 Castigliano’s second theorem and statically indeterminate 
structures 

A statically indeterminate structure is one in which the number of unknown forces exceeds the number of inde-
pendent equations of static equilibrium. The excess forces are called redundants. By removing supports and/or 
members in a statically indeterminate structure equal to the number of redundants, a stable statically base struc-
ture can be obtained. To determine the redundants, we can imposed displacement compatibility using Cas-
tigliano’s second theorem. A stable statically determinate base structure is capable of resisting the external loads. 
Removing a support reaction or a member in statically determinate structure renders it unstable – it is not capable 
of resisting external loads and it is classified as moving mechanical system (i.e., either a mechanism or linkage).

Consider a coplanar truss which consists of straight bars connected by smooth hinge joints with the external 
loads applied only to the joints. As discussed in example 6.3 on page 158, a truss is statically determinate if 

 and statically indeterminate if , where m denotes the number of bars or members, j the 
number of joints, and r denotes the number of reaction forces at the supports. Even statically determinate trusses 
can be unstable if the members are not arranged properly. Statical determinacy is a necessary condition for stabil-
ity, not a sufficient condition. Each truss must be examined individually to determine stability. For the truss 
shown in part (a) of figure 6.17, m = 9, r = 4, and j = 6, so it is statically indeterminate. If the upper left support is 
removed and replaced with a horizontal force Q, then a statically determinate base structure results as shown in 
part (b) of figure 6.17. The force Q is the redundant and it is treated as an external load on the base structure. 
Equilibrium of the base structure determines the internal bar forces in terms of external forces P and Q. The solu-
tion to the truss in part (a) is effected by imposing the displacement corresponding to force Q to vanish via Cas-

tigliano’s second theorem (i.e., ). This displacement compatibility condition determines the 
redundant Q.

a 50 mm= t 3 mm=

A 300π mm2= cyy
1

G 150π mm2( )
-----------------------------------= Ixx 375000π mm4=

G E 2 1 ν+( )[ ]⁄=

G 79231 N/mm2=

uP
6000( )250

206000( ) 300π( )
---------------------------------------- 6000( ) 3000( )2250

206000( ) 375000π( )
------------------------------------------------- 3000( )3250

3 206000( ) 375000π( )
----------------------------------------------------- 3000( )250

79231( ) 150π( )
-------------------------------------+ + +=

uP 0.0077259681 55.62697 9.2711617 0.020087459+ + + 64.925946 mm= =

uQ
6000( )2 3000( )250

2 206000( ) 375000π( )
----------------------------------------------------- 55.62697 mm= =

up 55.62697 9.2711617+ 64.898132 mm=

64.898132
64.925946
------------------------- 
  100 99.957161 %=

m 2j r–= m 2j r–>

q ∂U* ∂Q⁄ 0= =
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Example 6.8    Statically indeterminate truss 

Consider the truss shown in part (a) of figure 6.18. The horizontal bars and the vertical bars have a length denoted 
by L, and each bar has the same elastic modulus E and same cross-sectional area A. For this truss m = 6, r = 3, 
and j = 4. So the truss is statically indeterminate. Note that this truss is statically determinate externally, but is 
statically indeterminate internally. Determine the bar forces in terms of the external applied load P.

Solution.  Consider a statically determinate truss with bar 2-4 removed, and a force F1 acting at joint 2 and a 
force F2 acting at joint 4 as shown in figure 6.18 (b). These forces are oppositely directed along a line action 
coinciding with the removed bar 2-4. Let the complementary strain energy for this statically determinate, five-bar 

truss be denoted by . We employ Castigliano’s second theorem to determine the displacement u1 correspond-
ing to force F1 and displacement u2 corresponding to F2. That is,

. (a)

The bar forces are determined by joint equilibrium, and the results are shown in table 6.6. Bar forces are assumed 

P P
Q

Fig. 6.17 A singly redundant truss (a), and its stable statically determinate base structure (b).

(b)(a)

P

F2

P

Fig. 6.18 (a) Statically indeterminate truss. (b) Statically determinant base structure with bar 
2-4 replaced by forces F1 and F2. (c) Bar 2-4 subject to equal and opposite forces.

(a) (b) (c)
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positive in tension.

The sum of elements in column five divided by the product EA determines displacement u1, and the sum of col-
umn six divided by EA determines u2. Simplifying the results leads to

 and . (b)

The relative inward displacement between joints 2 and joint 4 is given by the sum . For equal and oppo-

site forces we set , and then the relative inward displacement reduces to

. (c)

The seventh column in the table is obtained by setting . The sum of elements in the seventh col-

umn divided by EA is derivative of  with respect to Q; i.e.,

. (d)

We conclude that the relative inward displacement between joints 2 and joint 4 is given by

. (e)

The elongation of bar 2-4 is denoted by  and its complementary strain energy is denoted by . 

Hooke’s law for bar 2-4 is given by eq. (6.2) on page 154, which for  and  is solved for its elon-
gation. The complementary strain energy is given by eq. (5.84) on page 145. These relations are

Table 6.6  Terms in eq. (a) for Castigliano’s second theorem

Bar Length L Axial force N

1-2 L 0

1-3 1 0

1-4 L 0 0

2-3 L 0

3-4 L 0

∂N ∂F1⁄
LN ∂N

∂F1
--------- LN ∂N

∂F2
---------

F1 F2 Q= =

LN∂N
∂Q
-------

F1– 2⁄ 1– 2⁄ LF1 2⁄ LQ 2⁄

2L F1 2P+ 2LF1 2LP+ 2LQ 2LP+

F2– 2⁄ LF2( ) 2⁄ LQ( ) 2⁄

F1– 2⁄ 1– 2⁄ LF1 2⁄ LQ 2⁄

F1– 2⁄ P– 1– 2⁄ LF1 2⁄ LP 2⁄+ LQ 2⁄ LP 2⁄+

u1
L

EA
------- 3 2 2+

2
------------------- F1

L
EA
------- 4 2+

2
---------------- P+= u2

L
2EA
-----------F2=

u1 u2+

F1 F2 Q= =

∆1 2⁄ u1 u2+
F1 F2 Q= =

L
EA
------- 2 2+[ ]Q L

EA
------- 4 2+

2
---------------- P+= =

F1 F2 Q= =

Û
*

∂Û
*
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2
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∆1 2⁄
∂Û

*

∂Q
----------=

∆24 U*
24

N Q→ L 2L→
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 and . (f)

Castigliano’s second theorem is , which is equal to the elongation. Thus, .

Geometric compatibility of the statically indeterminate, six-bar truss requires the relative inward displace-
ment between joints 2 and 4 equals the negative of the elongation of bar 2-4. In other words, the sum 

. Hence,

, (g)

where the total complementary strain energy of the statically indeterminate six-bar truss is . 

Hence, Castigliano’s second theorem applied to the six-bar truss is

. (h)

From eq. (h) we determine the redundant as

 . (i)

Finally, the bar forces are

. (j)

The condition that  is interpreted as the relative displacement between the faces of an imagi-
nary cut in bar 2-4 is equal to zero.

If the solution of the truss in example 6.8 was undertaken using Castigliano’s first theorem, it would lead to 
five simultaneous linear equations for the unknown joint displacements  in terms of the 

applied load P. (Refer to “Coplanar trusses” on page 153 for the displacement numbering convention.) After 
solving for these simultaneous equations for the joints displacements, the elongations of each bar, , would 

be computed from eq. (6.6) on page 155. Lastly, the bar forces are determined from . 

Using Castigliano’s second theorem for this singly redundant truss, we only had to solve one equation for the 
unknown redundant Q. The number of simultaneous equations to be solved in a statically indeterminate structure 
by Castigliano’s second theorem is equal to the number of redundants.
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Example 6.9 King Post truss

In this example we paraphrase the problem 
statement given in the text by Bruhn (1973, p. 
A8.42). The structure shown in figure 6.19 con-
sists of members ADC, AB, BC, and BD. Con-
tinuous member ADC is simply supported at 

ends A and C, has an area of 9.25 in2, and a sec-

ond area moment of 216 in4. Members AB, BC 

and BD have areas of 2 in2. The modulus of 
elasticity is the same for all members. Deter-
mine the internal actions in each member using 
Castigliano’s second theorem.

Solution.  This structure is statically determinant externally. Also, the structure, its support conditions, and the 

external loading are symmetric about the vertical line of action of the 5,000 lb. force. The support reactions of the 
truss removed from its supports at A and C are shown in figure 6.20(a). Consideration of the free body diagrams 
of members AD, AB, and BD in figure 6.20(b) leads to the conclusion that this structure is statically indetermi-
nate internally. The redundant Q is taken as the axial force in member AB. If Q is known, then the forces and 
moments in the other members are determined by equilibrium. Neglecting the energy due to transverse shear in 
member ADC, the complementary strain energy is

. (a)

Note that the complementary strain energy in members AD and AB are multiplied by two to account for the 
energy in members DC and BC, respectively. The compatibility condition that the relative displacement of an 
imaginary cut in member AB vanishes is that the derivative of the complementary energy with respect to Q 
equals zero. Thus,

. (b)

A D C

B

5000 lb

60 in

120 in120 in

Fig. 6.19
King Post 
Truss.
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ββ

Q

Q Q

NBD

Vz

N

y

M

A

B
Q

Q

0 z L<≤
A D C

B

P

L
2
---

LL

P
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---P

2
---

β β

(a) The structure removed from its supports 

Fig. 6.20 Free body diagrams of the King Post truss.

(b) Members AD, AB, and BD
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Equilibrium equations of member AD are

. (c)

The axial equilibrium equation for member BD is

. (d)

Substitute member axial forces and moment from the equilibrium eq. (c) into the compatibility condition (b) to 
get

. (e)

Perform the integration in eq. (e) followed by the substitutions , , and 

 to find

. (f)

Solve. (f) for the redundant Q:

. (g)

Substitute the numerical values for the quantities on the right-hand side of eq. (g) to find the redundant:

. (h)

The axial force in member BD from eq. (d) is

. (i)

The negative value of  means member BD is in compression. The axial force and bending moment in mem-

ber AD is

(j)

6.4.1 Function of a Turnbuckle

A turnbuckle is a metal coupling device consisting of an oblong piece, or barrel, internally threaded at both ends 
into which the corresponding sections of two threaded rods are screwed in order to form a unit that can be 
adjusted for tension or length. A right-hand thread is used at one end and a left-hand thread at the other end. The 
device either lengthens or shortens when the barrel is rotated. Each full turn of the barrel causes it to travel a dis-
tance p along each screw, where p is the pitch of the threads. Tightening the turnbuckle by one turn causes the 
rods to be drawn closer together by a distance 2p. That is, one turn to tighten causes the device to shorten by 2p. 
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For n turns the shortening distance is 2np, where n need not be an integer. Turnbuckles are widely used in air-
craft. Biplanes may use turnbuckles to adjust the tension on structural wires bracing their wings as discussed in 
example 6.10 below. Turnbuckles are also widely used with flexible cables in flight control systems.

Example 6.10 Rigging biplane landing and flying wires

An acrobatic biplane has a maximum gross weight of 1,700 lbs. and a wing span of 25 feet. The cross sections of 
the lower and upper wings are thin, so the wing structure is strengthened by external bracing. As shown in figure 
6.21 the bracing consists of landing and flying wires connecting the fuselage to the wings at the interplane strut. 
Turnbuckles inserted in the landing and flying wires are used to pre-tension the wires by changing their length. 

We will model the structural unit consisting of the lower wing, upper wing, interplane strut, landing wires, 
and flying wires as shown in figure 6.22 (a). The left-hand wings are modeled as a pin-jointed truss. Bars 1-2 and 
3-4 represent the spars in the lower wing and upper wing, respectively, and are of length L = 10 ft. The spars are 

made of Sitka spruce with a Young’s modulus parallel to the grain of  lb./in.2, and a cross-sectional area 

of 1.25 in.2. Bar 1-3 represents the landing wire, bar 2-4 the flying wire, and the wires are made of stainless steel 

with a modulus of  lb./in.2 Each wire has a diameter of 0.125 in. Bar 1-4 is the interplane strut of length 

h equal to 4.3 ft., and it is assumed to be very stiff. The wings are specified to have a dihedral angle . 

Determine the number of turns in the flying wire turnbuckle , and the number of turns in the landing wire 

turnbuckle , such that the flying wire tension is 400 lb., and the dihedral is maintained at four degrees. The 

pitch of the turnbuckle threads is .

Solution.  The structural model of the left-hand wing and bracing shown in figure 6.22 (a) consists of five truss 
bars. The turnbuckle displacements are determined from the horizontal position of the wing. Free body diagrams 
of joints 1 and 4 are shown in figure 6.22 (b). A vertical external force Q2 is introduced at joint 1 so that its corre-
sponding displacement q2 can be determined in the application of Castigliano’s theorem. Displacement q2 is 

specified from the wing’s required dihedral. That is , and after its determination external force  is 

set to zero. 

From eq. (5.84) on page 145 the complementary energy for a homogenous truss bar subject to a uniform 
change in temperature is

. (a)

To account for the displacements of the turnbuckles in Castigliano’s second theorem we modify the axial temper-

landing wires

flying wires

interplane struts

cabane strut

lower wing

upper wing

Fig. 6.21 Aerobatic biplane.
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ature term in the complementary strain energy. The thermal axial force in the truss bar is obtained from eq. (3.75) 
on page 46:

. (b)

Let the thermal strain  be replaced by the initial strain induced by the turnbuckle displacement  

divided by the length of the bar containing the turnbuckle. That is, . Then the complementary 

strain energy in eq. (a) that includes the displacement caused by the turnbuckle is

, (c)

where the flexibility influence coefficient .

The interplane strut subject to force  is assumed to be rigid. Its flexibility influence coefficients van-

ishes and it does not contribute the elastic complementary strain energy. The complementary strain energy is

. (d)

The flexibility influence coefficients for the two wing spars is

, (e)

and the flexibility influence coefficients for the two wires is

. (f)

Equilibrium equations at joint 1 in figure 6.22(b) are

, (g)

and equilibrium equations at joint 4 are

NT β∆T s z,( )t s( ) sd
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1 2

34
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(a)
Q2

∆L

∆F

Fig. 6.22 (a) Structural model of the left-hand wing and bracing. (b) Free body diagrams.
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. (h)

The trigonometric functions of the angle θ are

. (i)

Now eliminate the bar force  between the four equilibrium equations to get the three equations

. (j)

The force  in the flying wire is taken as the redundant. Solve the remaining bar forces from eq. (j) in terms 

of the redundant and force Q2 to get

. (k)

Substitute the results for , , and  from eq. (k) into the complementary strain energy (d) to 

find the energy in the form  with turnbuckle displacements ∆L and ∆F appearing in  as param-

eters.

. (l)

. (m)

Set  in eq. (l) and solve for the landing wire turnbuckle displacement, followed by solving eq. (m) 

for the to find flying wire turnbuckle displacement. The results are

 and . (n)

Set  to obtain the numerical results for the turnbuckle displacements and their number of turns 

as

. (o)

The landing wire turnbuckle decreases the length between joints 1 and 3, and the flying wire turnbuckle increases 
the length between joints 2 and 4. The bar forces are

. (p)
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6.6 Practice exercises

1. Each bar in the truss shown in figure 6.23 has a 

cross-sectional area of 1.0 in.2, and a modulus of elas-

ticity of 107 psi. There is no change in temperature. 
Use Castigliano’s first theorem to find

a)the horizontal and vertical displacements of joint 1,

b)the stress in psi in each bar, and

c)the horizontal and vertical support reactions at joint 
5.

2.The bars in the truss shown in figure 6.24 have the 

following cross-sectional areas: , 

, , 

. The modulus of elasticity of 

each bar is 107 psi. Compute the vertical displacement 
of the right-hand joint using Castigliano’s second theo-
rem. Note this truss is statically determinate and all bar 
forces can be determined in terms of external load Q.

3.Use Castigliano’s’ second theorem to compute the 
horizontal displacement of the right-hand joint of exer-
cise 2.

4.The truss shown figure 6.25 consists of three bars: 1-
4, 2-4, and 3-4. Each bar has the same cross-sectional area A, modulus of elasticity E, and the same coefficient of 
thermal expansion α. Bar 1-4 is subjected to a change in temperature ∆T from ambient temperature (the 
unstressed state), while bars 2-4 and 3-4 remain at ambient temperature. Use Castigliano’s first theorem to deter-

12

3

4

5

100 in.

10,000 lb.45°

60°
45°

30°

x

y

Fig. 6.23 Four-bar truss of exercise 1.

30 in. 30 in.

40 in.

1

2 3 4

5 6

Q 30 000 lb.,=
Fig. 6.24 Six-bar 
truss for exercises 
2 and 3.

A1 1.0 in.2=

A2 A4 2.0 in.2= = A3 1 2⁄  in.2=

A5 A6 3 2⁄  in.2= =
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mine the horizontal displacement q7 and the vertical displacement q8 of joint 4. 

5. The plane truss shown in figure 6.26 represents a single bay of a wing spar truss. For all bars:  

and . The cross-sectional areas of the bars are: 2580 mm2 for the horizontal bars, 387 mm2 

for the vertical bars, and 2690 mm2 for the diagonal bars. The upper horizontal bar is heated to  above the 
zero stress temperature, and all other bars remain at the zero stress temperature. Two 45 kN lift forces act at joints 
1 and 2. 

Use Castigliano’s first theorem to find

a) stiffness matrix in kN/mm,

b) displacement of all joints in mm,

c) all boundary reactions in kN, and

d) the stresses in MPa in each bar.

6. The truss shown in figure 6.27 consists of five bars: 1-2, 1-3, 1-4, 2-4, and 3-4. Each bar has the same cross-
sectional area A and same modulus of elasticity E. The lengths of bars 1-2, 1-4, and 3-4 are the same, and are 
denoted by L. A horizontal force of magnitude P is applied to joint 1. Use Castigliano’s second theorem to deter-
mine the horizontal displacement q5 of joint 3.

7. A simply supported, uniform beam of length L is subjected to a moment  at its left end as shown in figure 

6.28. The material is homogeneous and linear elastic, the cross section is symmetric ( ), and there are no 

thermal strains. The bending stiffness is EI. Use Castigliano’s second theorem to determine the rotation at (a) the 
left end, and (b) the right end. Neglect energy due to transverse shear deformation.

3L

4L 2.25L

q7

q8

∆T

1 2 3

4
A E α, ,

x

y
Fig. 6.25 Three-bar 
truss of exercise 4.

E 75 GPa=

α 23.0 6–×10 °C⁄=

250°C

810 mm

1080 mm

250°C
45kN

45kN
13

24

Fig. 6.26 Six-bar truss in a 
single bay of a wing spar.
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8.A coplanar frame is subjected to an end force  as 

shown in figure 6.29. The bars of the frame are uniform 
with axial stiffness EA and bending stiffness EI. Use 
Castigliano’s second theorem to find

a) the end rotation , and

b) the vertical displacement  at the joint.

9. Consider the statically indeterminate, uniform beam shown in figure 6.30 that is subjected to a uniform, 
downward distributed load of intensity p. For small displacements assume that only the complementary strain 

energy in bending is significant. If the center support moves downward by the amount  and 

remains attached to the beam, use Castigliano’s second theorem to find the reactions at the left and right supports.

10. The frame consists of three slender, uniform bars of length L, and two right angle bends. Assume the bends 
are rigid joints. Each member has a solid circular cross section of diameter d. A force P acts in the global X-direc-
tion at point A. Find the three displacement components  of point A in terms of P, L, d, and E using 

1

2 3

4

L L

L
P

q5

A E,Fig. 6.27 Five-bar 
truss of exercise 6.

zQ1 q1, q2

L

EI
Fig. 6.28 Simply 
supported beam of 
exercise 7.
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Fig. 6.29 Coplanar frame.
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Fig. 6.30 Uniform 
beam of exercise 9
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Castigliano’s second theorem. Assume . Neglect deformations due to transverse shear.

11. The rectangular space truss shown in the sketch consists of six bars: 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4. The 

cross-sectional area of each bar is 200 mm2. The temperature of bar 2-3 is increased by  above the stress 
free temperature, while the other five bars remain at the stress free temperature. Calculate the forces in all six 

bars. The coefficient of thermal expansion , and the modulus of elasticity 

.

Note that , , and . Hence, , and this truss cannot support an external load without 
accelerating. However, under the self-straining caused by the temperature change, it is statically indeterminate 
internally.

12.  Sketch the bending moment diagrams of bars 1-2 and 2-3 in the singly redundant frame shown in figure 
6.33. Each bar has the same length L and flexural stiffness EI. Since the bars are slender, neglect deformations 
due to extension and transverse shear. Take the reaction moment at support point 1 as the redundant.

G 0.4E=

L

L

L

X u,

Y v,

Z w,

A

B

C
D

P

Fig. 6.31 Space frame of 
exercise 10.

30°C

α 7 6–×10 °C⁄=

E 200 3×10  N/mm2=

1 2

34

4000 mm

3000 mm
Fig. 6.32 Space truss of 
exercise 11

m 6= j 4= r 0= m 2j r–<

P L

L

1

2 3

Fig. 6.33 Two-bar frame of 
exercise 12.
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13. The aerodynamic advantages of high aspect-ratio (AR) wings are well-known—long span reduces lift-
induced drag and narrow chord promotes laminar flow to reduce skin-friction drag. However, a long wing span 
significantly increases the structural loads at the wing root requiring heaver components to safely transmit the 
loading to the fuselage. The truss-braced wing (TWB) is a method to reduce the load at the wing root. (It is the 
subject of research in AOE at Virginia Tech under a NASA program to achieve significant fuel savings for 737 
type airplanes (Warwick, 2011)). A simplified model of TWB in this exercise is a single truss bar supporting a 
wing spar.

A wing spar is clamped at its root and supported by a truss bar that is pinned to the support at one end and 
pinned to the spar at the other end. Refer to figure 6.34. The spar is subjected to a span-wise distributed air load 

 approximated by

. (a)

where the lift on the wing is denoted by L and the wing span is denoted by b. The pin connection of the truss bar 
to the spar is at the span-wise distance  from the root, where the range of nondimensional parameter s is 

. 

The assemblage is statically indeterminate, and the statically determinate base structure is obtained by 
removing the lower pin support of the truss bar and replacing it by the redundant force Q which is also the tensile 
force in the truss bar. Refer to the right-hand sketch in figure 6.34. The condition of compatibility is the displace-
ment corresponding to the redundant is equal to zero. Enforce compatibility by Castigliano’s second theorem 
given by

. (b)

where  is the length of the strut. Numerical data are listed in table 6.7.

 

a) Plot the normalized bending moment at the wing root  versus s for , where 

 is the root bending moment of the cantilever wing; i.e., 

b) Plot the tensile normal stress  in the strut versus s for .

c) If the allowable tensile stress in the strut is 30 ksi, what is the value of s to yield the smallest value of the 
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Fig. 6.34 Truss braced wing.
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ratio ? What is the value of  for this particular s?

Table 6.7 Numerical data for the strut-braced wing

b, wing span 390 in.

h, vertical distance from the spar centroid to lower strut support 72 in.

A, cross-sectional area of the spar 23.88 in.2

Ixx, second area moment of the cross section of the spar 872.716 in.4

As, cross-sectional area of the strut (1.75 in. diameter) 2.40528 in.2

L, wing lift 50,000. lb.

E, modulus of elasticity for the spar and strut material

Mx 0( )( ) M0⁄ Mx 0( )( ) M0⁄

10 6×10  lb./in.2
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