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The field of wireless communication networks has witnessed a dramatic change over the last decade due to sophisticated
technologies deployed to satisfy various demands peculiar to different data-intensive wireless applications. Consequently, this
has led to the aggressive use of the available propagation channels to fulfill the minimum quality of service (QoS) requirement.
A major barometer used to gauge the performance of a wireless communication system is the spectral efficiency (SE) of its
communication channels. A key technology used to improve SE substantially is the multiple input multiple output (MIMO)
technique. This article presents a detailed survey of MIMO channel models in wireless communication systems. First, we
present the general MIMO channel model and identified three major MIMO channel models, viz., the physical, analytical, and
standardized models. The physical models describe the MIMO channel using physical parameters. The analytical models show
the statistical features of the MIMO channel with respect to the measured data. The standardized models provide a unified
framework for modern radio propagation architecture, advanced signal processing, and cutting-edge multiple access techniques.
Additionally, we examined the strengths and limitations of the existing channel models and discussed model design,
development, parameterization, implementation, and validation. Finally, we present the recent 3GPP-based 3D channel model,
the transitioning from 2D to 3D channel modeling, discuss open issues, and highlight vital lessons learned for future research
exploration in MIMO communication systems.

1. Introduction

Over the last decade, the use of wireless communication
devices and applications has increased exponentially. The
widespread adoption of these devices places a stringent
requirement on the existing wireless network infrastructure
to be strengthened in terms of robustness, capacity, and cov-
erage to meet the rapidly growing mobile services demands.
Currently, wireless network service improvements require
the aggressive deployment of dense access points to increase
the spectral efficiency (SE) and energy efficiency (EE) [1, 2].

To achieve high gains in spectral, energy, and hardware effi-
ciency in wireless communication systems, the deployment
of multiple input multiple output (MIMO) technology pre-
sents enormous potentials as a leading candidate. Toward
this end, the concept of cellular networks and ways to
improve spectral efficiency with practical examples are pro-
posed in [3]. The monograph covers critical areas such as
spatial signal processing, channel estimation, power, and spa-
tial resource allocation. It also emphasized that massive
MIMO can deliver remarkable improvements in spectral
and energy efficiencies. Also, several research works [4–7]
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have proposed the deployment of multiple antennas, also
known as MIMO, as a candidate technology. This is because
MIMO technology has promising capabilities to achieving
the desired high data rates and very high network reliability,
thereby enhancing the quality of service (QoS) for mobile
subscribers to sustain their vast data-hungry applications.

Rappaport [8] presents an overview of the radio propaga-
tion channel, and an introduction to the wireless channel
model and channel statistics is given in [9]. Similarly, a
detailed description of propagation channel modeling is
discussed in [10], and a thorough review of propagation
measurements, parameterization, and model validation is
presented in [11, 12]. In related reports, an overview of
MIMO channel propagation models, including an extensive
description of modern signal processing techniques for
single-user and multiuser systems, is presented in [13, 14].
Also, the fundamentals of massive MIMO have been pre-
sented in [15]. Furthermore, the performance limitations of
wireless networks were outlined, and the various ways of
improving the efficiency of wireless networks were provided
in [15]. Also, the techniques and methods of massive MIMO
channel modeling with practical and analytical examples
were presented. In a related work [16], near field communi-
cation (NFC) system channel models were introduced, and
a modified model was proposed for application in magneto-
inductive communications. The authors demonstrated that
the performance of the modified model showed remarkable
improvements over the models reported in [17–19]. How-
ever, the authors observed that more efficient channel models
are required for real-time near field communications.

In recent surveys [20–22], the focus is specifically on 5G,
and there is no adequate information about how earlier chan-
nel models contributed to the rapid development and deploy-
ment of modern channel models, especially for 5G and
beyond [23]. In particular, 5G channel measurements and
models were reported in [20], the usage scenarios and traffic
models in 5G were surveyed in [21], and MIMO localization
in 5G was explored in [22]. In the literature [20–22], it was
not adequately emphasized how the knowledge of earlier
channel models has influenced the design and development
of the current 5G channel models like the ones reported in
[24–26]. Besides, the authors in [20] seem to have overlooked
the possibility of applying the 5G channel models to other
environments different from the geographical locations for
which they have been designed. Though wireless channel
models provide valuable information required for efficient
network planning, deployment, and optimization [27], but
channel models developed in the past tend to focus only on
the modeling aspects that were of key interests at the time.
Therefore, the need to explore how the earliest wireless chan-
nel models influence the design and development of the
emerging MIMO channel models becomes imperative.

This survey attempts to bridge the gap between the con-
ventional and the recently developed channel models by first
classifying them into different categories and exploring their
interrelationships and enormous potentials. Second, we try to
determine why it is quite challenging to develop a generalized
channel model, which accurately predicts the path loss, con-
sidering different environmental conditions. Third, we

explore the literature to examine future channel models with
adaptable features for different wireless propagation environ-
ments, including several dynamic environmental factors
missing in the existing channel models. This survey is set
out to explore whether a single channel model fits well to
all environments’ categorization. The survey also is aimed
at knowing whether adequate knowledge of the existing
channel models would be indispensable to develop emerging
or future learning-based channel models. We also need to
know whether the envisioned artificial intelligence or
machine learning-based models would be independent of
the current channel models.

Further to this, the survey looks at the propagation chan-
nel model’s testing procedures and validation criteria. The
survey also examines the need for actual field measurements
to validate customized channel models and assess the impact
of the measurements equipment on the developed channel
model. The study examines the measurement equipment
reported in earlier literature and assesses their capabilities
and limitations. Furthermore, the investigation takes an
exploratory view of the existing MIMO channel models’
strengths and limitations. Last, we present the open research
issues and highlight vital take-away lessons for informed
decision making by the wireless research community.

The remaining part of this paper is structured as follows.
Section 2 presents the general MIMO channel model and its
core requirements, multilink channel sounding techniques,
MIMO technology classification, and MIMO channel model-
ing. Section 3 focuses on the physical models comprising of
deterministic and stochastic channel models. Analytical
models consisting of the correlation-based, propagation-
motivated models, and channel models based on space-time
coding are reported in Section 4. Section 5 provides an over-
view of the standardized channel models, with particular ref-
erence to the 3GPP spatial channel models, the COST 2100
model, WINNER II/+ channel models, and the IEEE stan-
dards. Section 6 focuses on 3D channel modeling, emphasiz-
ing 3D channel models’ elevation characteristics and the
transitioning from the conventional 2D to 3D channel
modeling. Open issues for future research are covered in Sec-
tion 7, lessons learned are briefly outlined in Section 8, and
Section 9 gives the conclusion to the paper.

2. The General MIMO Channel Model

The basic MIMO channel model and its core requirements,
multilink channel sounding techniques, MIMO technology
classification, and MIMO channel modeling are presented
in this section. First, the generalized MIMO channel model
and MIMO channel modeling techniques are introduced.
Second, the concept of multilink channel sounders is pre-
sented briefly. This section also covers the single-sounder
sequential measurements, single-sounder multinode mea-
surements, and multisounder measurements. Further to this,
we highlight the basic classification of MIMO channel
models, point-to-point, multiuser MIMO, and massive
MIMO, and provided a concise description of the multiuser
MIMO for the uplink and downlink scenarios.
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2.1. Basic MIMO Channel Model. The traditional single
antenna communication system lacks the required spatial
degree of freedom provided by multiple antennas. In MIMO
communication systems, the presence of multiple antennas
can be of great advantage. The spatial degree of freedom pro-
vided by these antennas can be appropriately harnessed to
boost the capacity and expand the system’s coverage through
optimal scheduling of multiple users to simultaneously share
the spatial channel. As illustrated in Figure 1, the channel
gives useful information about transmitting and receiving
antennas in a simple MIMO channel. Considering the case
of an n ×mMIMO channel system, wherem and n represent
the respective numbers of transmitting and receiving anten-
nas, the linear time-variant MIMO channel could be mod-
eled as shown in (1), using an n ×m channel matrix [28].

H t, τð Þ =

h11 t, τð Þ h12 t, τð Þ h13 t, τð Þ ⋯ h1m t, τð Þ
h21 t, τð Þ h22 t, τð Þ h23 t, τð Þ ⋯ h2m t, τð Þ

⋮ ⋮ ⋮ ⋱ ⋮

hn1 t, τð Þ hn2 t, τð Þ hn3 t, τð Þ ⋯ hnm t, τð Þ

2
666664

3
777775,

ð1Þ

where hnmðt, τÞ is the time-variant channel impulse response
between the mth transmit antenna and the nth receive
antenna.

The channel matrix in (1) includes antenna-type effects,
configuration, orientation, and frequency filtering. This
knowledge could be instrumental in formulating a general
multiple input multiple output relationship between the
length-m transmit signal vector sðtÞ and the length- n receive
signal vector yðtÞ given in (2).

y tð Þ =H t, τð Þs t − τð Þdτ + n tð Þ, ð2Þ

where nðtÞ gives the accompanying noise plus interference.
For a time-invariant channel, the dependency of the channel

matrix t reduces to zero. Therefore, Hðτ =ÞHðt, τÞ. For
instance, if the channel has a flat frequency, meaning there
will be one single tap denoted by H, then (2) reduces to (3).

y tð Þ =Hs tð Þ + n tð Þ: ð3Þ

2.2. Channel Model Requirements. In simple terms, mobile
radio propagation models have diverging requirements to
meet. On the one hand, the models should be very robust
to provide adequate information about the propagation
channels’ properties. Here, the models’ deficiencies should
be stated such that there is no ambiguity in applying the
models to the desired propagation environments. On the
other hand, the models should be designed with simplicity
for easy application, rapid implementation, and less compu-
tational complexities. Channel models developed in the past
focused only on the aspects of key interests at the time. Such
models might not give an accurate prediction of the radio
channels if other environmental characteristics are consid-
ered. Given this, some existing models tend to present data
on the received signal level and other key performance indi-
cators (KPIs) [29, 30]. Typical examples of such models are
the popular Okumura-Hata model [31], Lee’s model [32,
33], and the COST 231 Walfisch-Ikegami model [34–36],
which are most relevant to narrowband systems. Similarly,
the COST 207-GSM [37], the International Telecommunica-
tion Union (ITU-R) [38–41], and the IEEE 802.11a/b models
are most suitable for application in the 2G digital wideband
systems [42]. For the 3G wireless systems, such as the UMTS
[43–45], and IEEE 802.11n [46], and 4G systems such as LTE
and LTE-A [27, 47–49], requiring smart antenna technolo-
gies, channel models that deal with directions of arrival
and departure are inevitable for fast simulation, to reduce
computational time, simplify system testing, and ease imple-
mentation. To this end, quality channel sounders are key
requirements for developing more robust and efficient chan-
nel models for an environment of interest.
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Figure 1: A basic MIMO channel showing multiple transmit and receive antennas.
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2.3. Multilink Channel Sounding Techniques. In the past, the
capabilities of most channel sounders are limited to single-
link measurements. As the number of links increases, there
arises a need to design innovative solutions to characterize
multilink propagation experimentally. In recent years, some
techniques have been developed to measure multiple links.
These include single-sounder sequential measurements,
single-sounder multinode measurements, and multisounder
measurements.

2.3.1. Single-Sounder Sequential Measurements. This tech-
nique focuses entirely on sequentially applying a single chan-
nel sounder. This means every connection is classically
measured [50]. However, this method has some limitations
because the propagation domain can change between runs
[51]. The sounder calibration might not be stable, depending
on each run’s time difference relative to the clock’s drift time.
If the environment is maintained constant in the unlikely
event, it is still challenging to achieve phase synchronism
when considering multiuser measurements. However, if the
environment is well controlled, this technique could be accu-
rate and relatively cheap to implement [52].

2.3.2. Single-Sounder Multinode Measurements. In this tech-
nique, long RF cables can connect the equipment ports to dis-
tributed nodes [53]. It is worthy of note that the length of
cables and the available signal-to-noise ratio (SNR) could
pose severe limitations in using this technique. The measure-
ment is only in the range of outdoor-to-indoor and indoor-
only conditions. Also, the cable movement may introduce
phase jitter in mobile scenarios. Fiber optic cables are used
to mitigate these limitations when a long distance is covered,
but the cost of fiber and separately calibrating every cable is
quite huge. However, this technique guarantees phase syn-
chronization relative to the phase stability of the sounder.
Sounders and their various architectures for MIMO channel
measurements are discussed in [54].

2.3.3. Multisounder Measurements. The use of multiple
MIMO channel sounders has proven to be the best option.
Propagation measurements involving a single transmitter
with multiple receivers are used in this technique. This tech-
nique is closely related to the real-world scenario. Still, the
operation of two compatible sounders and maintaining mul-
tiple clocks’ synchronization are essential requirements that
come at a price. Further information on the multisounder
measurement technique is provided in [55]. Last, MIMO
channel sounders have been used to obtain measured data
for model parameterization and validation [11, 56, 57] and
recently for modeling 5G and beyond 5G channels [58, 59].

2.4. MIMO Technology Classification.MIMO technology can
be classified as point-to-point, multiuser, and massive
MIMO. These are briefly described as follows.

2.4.1. Point-to-Point. This MIMO technology is the simplest
of the three [15, 60]. The BS is installed with an antenna array
communicating with other terminals that are having an
antenna array. The various terminals are multiplexed in an
orthogonal manner, using time- and frequency-division mul-

tiplexing techniques. Practically, point-to-point MIMO’s
usefulness can be limited even with massive arrays at the link
terminals due to three key factors. First, the terminal equip-
ment is quite complex, and it requires independent RF chains
per antenna and the use of advanced digital signal processing
techniques to separate the data streams. Second, the propaga-
tion environment should support minimum base stations
and terminal antennas’ independent streams. In a real-life
scenario, this is difficult to achieve, mainly when compact
arrays are used. Last, the spectral efficiency scales slowly with
the minimum base station and terminal antennas near the
cell edge, where ordinarily many of the terminals are located
and where SNR is practically low due to severe path loss in
the propagation paths [6, 61, 62].

2.4.2. Multiuser MIMO. In multiuser MIMO (MU-MIMO),
an antenna can provide network services to several UEs uti-
lizing the same frequency resources [6, 63]. MU-MIMO has
some advantages over the point-to-point MIMO (P2P-
MIMO). MU-MIMO can use only single-antenna termi-
nals. It is practically less affected by the propagation envi-
ronment’s dynamics, unlike point-to-point MIMO, which
is easily affected by the conditions of line of sight (LoS).
However, the practicality of MU-MIMO is limited by two
factors [64, 65]. The base station and the terminals must
know the channel state information (CSI) on the downlink
[66, 67]. This can be very expensive, as enormous resources
are required to transmit pilots in both directions efficiently.
Second, advanced signal processing is highly needed for the
BS and UEs for high spectral efficiency. Several wireless
communication-related companies like Nokia Siemens,
Eurecom, Intel, and Agilent Technologies, among others,
treat multiuser MIMO as an adoptable candidate technol-
ogy given by the Samurai project report [68]. The system
is more feasible for mobile devices with low complexity
and few reception antennas. To this end, an introduction
to the multiuser MIMO downlink is given in [69]. Here,
two algorithms comprising a signal processing with various
types of transmitter beamforming and dirty paper coding
[70] to solve the problem of signal interference from other
users are well explained in simple terms. Multiuser MIMO
description for the uplink and downlink scenarios is illus-
trated in Figure 2 [15].

2.4.3. Massive MIMO. A useful and scalable version of mul-
tiuser MIMO is referred to as massive MIMO (mMIMO)
[6, 71]. Massive MIMO is different from MU-MIMO in
three instances. First, massive MIMO requires that only
the BS needs to know about the channel state information.
Second, the number of base stations is typically more sig-
nificant than the number of terminal antennas. Last, there
is no stringent requirement for complex signal processing
techniques. This is because simple linear signal processing
can be done on the uplink and downlink as indicated in
several works [5, 7, 72–77].

2.5. MIMO Channel Modeling.MIMO is presently a hot topic
in modern wireless communication. Good models of the
MIMO channel are ideal candidates required to compare
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various coding, modulation, and transmission schemes.
These models often require that these models be detailed
enough to accommodate the wireless channel’s relevant char-
acteristics. Furthermore, the models must be straightforward
to ease implementation with speedy computational time.
However, it is tough to compromise between simplicity
and accuracy in wireless channel modeling [78]. Because of
this, two approaches for modeling MIMO channels have
been reported [28]. These include physical models and sto-
chastic models. While physical models are aimed at model-
ing real-world physical parameters of the radio channels
like the DoA and the DoD of all multipath components
(MPCs), stochastic models present a description of the spa-
tial channel properties by modeling the statistics at the
antenna array elements.

A generic MIMO channel model can reproduce a couple
of significant effects present in a MIMO channel. These are
enumerated as follows. First, the direction of arrivals (DoAs)
at the receiving array strongly depends on the direction of
departures (DoDs) on the other link end’s transmit weights.
Second, the spatial properties of the channel differ for differ-
ent delays of frequency-selective channels. Third, the number
of scatterers in the model has to be finite. Fourth, the long-
term spatial properties should reflect the clusterization of
multipath components (MPCs) in delay and space. Fifth,
the instantaneous MIMO transfer matrix can be rank defi-
cient for the spatial covariance matrices at the link ends. Last,
keyhole or pinhole channels must be adequately covered
[79]. In a similar classification to the report in [80], MIMO
channel models are broadly classified, as shown in Figure 3.
In the next section, we shall present a detailed overview of
the physical channel models.

3. Physical Models

Models of physical channels define the propagation environ-
ment based on double-directional electromagnetic wave
propagation from the transmitting to the receiving arrays.
The statistics of the parameters of the MPCs, which make
up the total impulse response, can be easily modeled using
the physical models. Interestingly, they model the parameters
of the radio wave propagation like the direction of arrivals
(DoAs) and direction of departures (DoDs) as complex
amplitude values and delay of multipath components
(MPCs). The models are independent of the antenna config-
urations, such as antennas, system bandwidth, mutual cou-
pling, antenna pattern, polarization, and array geometry
[17]. One of the simplest double-directional model’s assump-
tions is that the DoAs and DoDs are separable [61]. Here, a
joint power spectrum of the BS angular spectrum and the
mobile spectrum are simply the two spectra’ products. This
allows directional channel models to be reused immediately.
Second, geometrical models can assume single-scattering
processes. In this case, the location of the scatterers deter-
mines the DoA and the DoD. These models are not suitable
for microcellular scenarios. However, the models can be
handy for modeling MIMO channels in macrocellular envi-
ronments [81]. The physical MIMO channel models can be
classified into deterministic physical models, geometry-
based stochastic channel models, and nongeometrical sto-
chastic channel models.

3.1. Deterministic Physical Models. Deterministic channel
models tend to simulate the radio-propagation characteris-
tics in the environment of interest. The simulation is done
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Figure 2: Illustration of multiuser MIMO technology: (a) uplink and (b) downlink.
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with a well-defined system setup to replicate the channel’s
transfer characteristics and the radio coverage specifically
for a defined environment. These models find useful applica-
tions in the deployment or optimization of site-specific radio
systems. They are also instrumental in channel evaluation
during system design in crucial reference cases. Determinis-
tic and ray models could be used to visualize the actual prop-
agation mechanism, making them very useful channel
modeling tools [28].

These models require the geometrical description of the
environment under investigation. On the one hand, the geo-
metric information is obtained from the given environment’s
database, using a digital file. Here, data for urban environ-
ments is saved in 3D vector format. In this case, the building
walls and edges are depicted in 3D cartesian reference struc-
tures as collections of points or vectors. It was challenging to
obtain such information in the past, but dense urban geo-
graphical structures [30] and building databases are fast
becoming readily accessible at a reduced cost.

On the other hand, deterministic models could generate
field strength outputs and a detailed explanation of the mul-
tidimensional channel transfer function over a network loca-
tion, path, cell, or entire service region. These models provide
quality information on time and space distribution, including
delays in propagation, ray-paths, departure angles, and mul-
tipath arrival [82]. This is quite useful for planning 4G net-
works and the recently commercialized 5G wireless
communication systems, adopting MIMO technology with

multiple antennas and space-time coding schemes. Despite
the numerous advantages of deterministic models, inaccura-
cies in database information, difficulties in modeling diffuse
scattering, and high computational complexity are vital fac-
tors that limit the usefulness of the models. However, high
expectations that the development of modern digital maps
with more accurate geographic information systems will lead
to significant improvements in GPS navigators in vehicular
networks, and other mobile devices will further increase
deterministic models’ usefulness. In [83], the concept of dou-
ble ring was used to explain M2M nonisotropic scattering
environments, providing a new simulated deterministic
channel model with a fair approximation of the desired sta-
tistical characteristics of the reference model. The concepts
of ray tracing and stored measurements are briefly discussed
as follows.

3.1.1. Ray-Tracing Algorithm. The propagation of electro-
magnetic waves through mobile communication channels is
modeled by the ray-tracing algorithm [84]. The Tx and Rx
locations are specified, followed by determining all possible
routes or paths between the transceivers, using geometrical
optics rules. Geometric ray tracing can be very challenging
and time-consuming since this aspect of ray tracing requires
technical skills and precision. Generally, a visibility tree can
be adapted to capture the individual propagation paths. This
tree has a well-layered structure, nodes, and branches [28].
Every tree node here portrays an entity of a building wall

Physical Models

1. Deterministic physical models
■ Ray Tracing 
■ Stored Measurements

2. Geometry-based stochastic channel models
■ One-ring model
■ Two-ring model
■ Elliptical model

3. Nongeometrical stochastic physical models
■ Saleh-Valenzuela model
■ Extended Saleh-Valenzuela model
■ Zwick model

Analytical Models

1. Correlation-based analytical models
■ i.i.d model
■ Kronecker model
■ Weichselberger model
■ Virtual channel representation
■ Diagonal-decorrelation model
■ Rough surface model
■ The structured model

2. Propagation-motivated analytical models
■ Finite scatterer model
■ Maximum entropy model

3. Analytical models based on space -time 
coding.

Standard Channel Models

■ SUI channel models
■ IEEE 802.11n models
■ IEEE 802.16d/e models
■ 3GPP/3GPP 2 spatial channel models 
■ Random cluster model
■ COST 259/273/2100 channel models
■ WINNER II/+ channel models
■ 3GPP 3D channel models

MIMO channel models

Figure 3: Basic classification of MIMO channel models.
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and receives an antenna, and each branch of the tree repre-
sents an LoS link between two nodes, and the root nodes rep-
resent the transmit antenna as shown in Figure 4.

It is interesting to know that the tree’s design follows a
recursive approach like the typical tree, starting from the
tree’s root, from the transmitter to the receiver. In the first
layer of the tree, the nodes correspond to all the transmitter
has an LoS. A branch links the next two nodes in subsequent
layers if there is a line of sight between the respective objects.
Practically, a repeat of the process is carried out until reach-
ing the highest layer in the prediction order. Furthermore,
the branch corresponding to it is usually terminated with a
leaf whenever the Rx is present in a layer. This means that
the whole leaves on the tree equate to the number of tracks
detected by the ray-tracing algorithm. Here, it should be
noted that the design of a visibility tree can be challenging,
especially for a full 3D, if the prediction order is reasonably
large. In particular, the concept of diffuse scattering was
introduced in the ray-tracing technique to enhance its per-
formance and the accuracy of prediction of the multidimen-
sional propagation parameters and reduce the computational
time. In [85], the concept of ray tracing was used to investi-
gate and quantify the elevation characteristics such as height
and distance dependency of key channel parameters, mean
elevation angle, and elevation spread of a typical urban
macrocellular environment. In [86], efficient multielement
ray tracing was recorded, and the results were compared with
site-specific measurements using calculated MIMO channel
data. The ray-tracing algorithm has recently been used for
links at 2GHz in built-up areas [87]. Unfortunately, ray trac-
ing can be too computationally expensive and lacks flexibility
since its effects are fundamentally related to the particular
site in which they were extracted [88].

3.1.2. Stored Measurements. The concept of stored measure-
ments was utilized in [89]. The sounder used for measure-
ments, and the experimental set up recorded several SIMO

snapshots as a Fast Doppler Block (FDB). Each snapshot
comprises several complex uniform results along with the
uniform linear array (ULA). A similar application of a
sounder for measurements and storage is reported in [90].
The channel responses were estimated online and stored as
a complex frequency response for subsequent offline post-
processing on the sounders’ hard disk. This methodology is
greatly affected by many memory requirements, coupled
with the understanding that the channel responses obtained
are site-specific [88].

3.2. Stochastic Models. These models use statistical means to
estimate the spatial features of MIMO-based radio chan-
nels. These spatial features or properties are often referred
to as the channel’s correlation properties [91, 92]. A plane
wave that impinges upon an antenna array from a specific
direction gives the steering vector. Notably, the correlation
properties are dependent on the channels of spatial charac-
teristics and the configurations of the antenna array. Stochas-
tic models tend to model the MIMO channel as experienced
by communication systems applying specific antenna arrays.
Details on the second-order statistics obtained from the full
MIMO correlation matrix can be quite large. The elements
can be challenging to interpret directly concerning physical
propagation.

3.2.1. Geometry-Based Stochastic Models (GBSMs). In the
GBSM model, the scatterers are seen to be stochastically
distributed across the two ends of the link. In this case,
the fundamental laws governing diffraction, reflection, and
dispersion of electromagnetic waves are utilized to derive
the channel model from the scatterers’ positions. It should
be noted that the shape of the scattering area gives informa-
tion about the tested scenario. Through a careful distribution
of scatterers around the UE, macrocells can be appropriately
simulated. On the other hand, the microcells include ellipses,
which have focal points at the NodeB and the UE [88].

Tx

Rx

WallWallRxWallWallCorner

Wall Corner Rx

Rx: Receiver
Tx: Transmitter

Figure 4: An illustration of a ray-tracing visibility tree.
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Furthermore, some parameters, like the number of scatterers
in the scattering region and creating them into clusters, are
crucial to achieve a reliable simulation of the particular prop-
agation scenario. In a situation where the scatterers are dis-
tributed evenly in and around a circle positioned on the
UE, analogous to Clark’s Doppler spectrum, it becomes easy
to achieve uniform distribution of the DoA in the azimuth,
and typical model that accounts for double bounces has been
presented in the following reports [93–95].

3.3. Geometry-Based Statistical Propagation Models. The
geometry-based statistical propagation models are briefly
discussed under the one-ring model, a combined elliptical
model, and the one-disk model.

3.3.1. One-Ring Model. The one-ring model appears to be the
most popular geometry-based stochastic channel models
proposed in line with MIMO systems in [96, 97]. The model
follows an approach that accounts for local dispersion with
the subscriber unit from obstacles nearby. This is achieved
through the appropriate placement of scatterers on a ring.
This model finds useful applications in MIMO systems, as
presented in [98]. The one-ring model may not necessarily
follow the popular Kronecker model [98]. For instance, when
the antenna separation distances are chosen so that the trans-
ceivers’ correlations are forced to a zero value, the cross-
correlation in the 2 × 2 broadside configuration equals -0.24
and 1. This is quite far from the Kronecker assumption.
The set of equations detailing the different correlation coeffi-
cients for the model are also available in [98].

3.3.2. Combined Elliptical-Ring Model. A combination of iso-
delay ellipses was explored for the defined tap-delay profile
and angular spreads, leading to the creation of the combined
elliptical-ring model in [99]. Typically, this model is charac-
terized by a vital parameter called local scattering ratio (LSR).
This ratio and the angular spreading properties are directly
related. For example, an LSR indicates an omnidirectional
spread of scatterers on the local ring, whereas a low LSR rep-
resents scatterers’ distribution in a given direction [100, 101].

3.3.3. One-Disk Model. The one-disk model is very similar to
the geometry-based model for the LoS multipath radio chan-
nel reported in [102]. The model consists of a reasonably
large single disk located between a transmitter and a receiver
and loaded with several evenly spaced scatterers. This
model’s correlation properties are highly dependent on the
path loss exponent, and this property clearly distinguishes
the one-disk model from the other geometry-based statistical
propagation models. However, the antenna correlation can
be relatively low, and the magnitude of the cross-correlations
for the one-disk model can be relatively high.

3.4. Nongeometrical Stochastic Physical Models. These models
only define paths between transmitter and receiver by statis-
tical means without considering physical environments’
geometry. Examples of such models include the Saleh-
Valenzuela model, the extended Saleh-Valenzuela model,
which uses MPC clusters, and the Thomas Zwick model,
which manages MPCs individually.

3.4.1. Saleh-Valenzuela Model. Following the pioneering
work reported in [103], Saleh and Valenzuela [104] present
a model, which gives information about the arrival time of
the MPCs in the delay domain for a wireless time-invariant
channel. Leveraging on the pioneering work in [103], Saleh-
Valenzuela considered the channel response and broke it into
clusters, each comprises several multipath components. Typ-
ically measured parameters for the Saleh-Valenzuela model
in an indoor, fixed point-to-point office environment are
documented [104].

Key contributions of the Saleh-Valenzuela model are
worth mentioning. First, the model is among the earliest
models to consider the concept of clustering as related to
multipath. Second, the clusters’ arrival times and the multi-
path components within each cluster were modeled as two
independent Poisson processes, each with a different rate.
Third, the model showed the splitting of the received proba-
bility density profile (PDP) into several PDP components
and an overall PDP. Also, the model revealed that both PDPs
could be modeled as exponentially decaying profiles. The
model has gained widespread popularity due to its accuracy
and simplicity. Key elements of the model serve as founda-
tion blocks for the development of most standard channel
models, including the popular 3GPP spatial channel (SCM),
COST 259, COST 273, and the IEEE 802.15 ultrawide band
(UWB) models [105].

3.4.2. Extended Saleh-Valenzuela Model. While working at
Bells Laboratories, Saleh and Valenzuela [104] performed
extensive measurement campaign from many fixed indoor
point-to-point locations. They provided a heuristic estima-
tion of the parameters using curve-fitting techniques. The
results of their investigation revealed that MPC clusters could
be modeled in the delay domain through a double
exponential-decay process. This modeling approach is often
described as the Saleh-Valenzuela (SV) model. However,
the sounder used by Saleh and Valenzuela for the radio prop-
agation measurements utilized antennas that were omnidi-
rectional in the azimuth plane.

Consequently, the model omits any AoA and AoD char-
acterization. Several studies have reported extensions to the
model to widen its application to include the azimuth and
elevation characteristics. For example, in [106], PDPs were
measured in the azimuth domain, extending the Saleh-
Valenzuela model to include the azimuth AoA. Similar to
the SV model, the resulting model is only applicable to the
time-invariant channel. Furthermore, the resulting model
from work in [107] clustered in the delay domain, and mul-
tipath components were seen clustered in the azimuth
domain. It is worth mentioning that the azimuth clustering
followed a Laplacian distribution. In the extended SV model,
the channel impulse response in the azimuth-elevation space
reflects a summation of all multipath components’ contribu-
tions in all clusters (4) given by [108].

h τ, φð Þ = 〠
∞

c=0
〠
∞

ℓ=0
ac, ℓejφc ,ℓδ τ − τc − τc,ℓð Þδ φ − φc − φc,ℓ

� �
, ð4Þ
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where the variables φc and φ‘ describe the azimuth AoA of
the clusters and the MPCs, respectively. Notably, φc stands
for the mean value of the AoA of all multipath components
within that cluster. Also, φc and φ‘ are random variables.
If the AoA of the first cluster is given, the conditional distri-
bution is modeled assuming a uniform distribution within
Uð0, 2πÞ. The multipath component distribution is modeled
as a zero-mean Laplacian in (5), also given by [108].

p φc,ℓ
� �

=
1ffiffiffiffiffiffiffiffiffiffiffiffi
2σφc,ℓ

p exp −
ffiffiffi
2

p

σφc,ℓ
φc,ℓ
�� �� !

, ð5Þ

where σ2φc,ℓ
is the azimuth spread at the receiver, and it is an

empirical quantity.

3.4.3. Zwick Model. The Zwick model is typically a stochastic
model suitable for indoor channel propagation [109]. The
model uses geometry based on a death-birth technique for
modeling the appearance and disappearance of the motion
of multipath components concerning time. In this case, it
becomes straightforward to monitor spatial and temporal
correlations. The model uses a ray-tracing tool, which can
be very expensive, to allow automated extraction of parame-
ters for new environments and different frequencies without
the need for actual field measurements. However, the model
enables Monte Carlo to simulate wireless communication
systems, especially smart adaptive antennas, coding, and
modulation. Here, path properties can be observed following
the BS and MS’s motion, which results in a practical Doppler
activity of the signal. This model also enables smooth transi-
tions and achieves results with lesser computational time,
between LoS and the obstructed line of sight (oLoS) config-
urations, by modeling the LoS portion separately from other
multipath components. The model could be used to carry
out system simulations for the bit error rates (BERs) of radio
links and intelligent antenna configurations such as SDMA,
MIMO, and spatial filtering for interference reduction
(SFIR) [110].

In the preceding section, we have presented an elaborate
description of the physical channel models. Next, we shall
explore the analytical channel models.

4. Analytical Models

Analytical models tend to model the radio channel’s impulse
response between the transmitters and receivers on an indi-
vidual basis, without providing adequate information about
the wave propagation. This contrasts with the physical
models, which tend to show the statistics of the parameters
of MPCs that make up the total impulse response. In this
case, the individual channel responses could be taken as the
MIMO channel matrix. The analytical channel models find
a wide range of useful applications in simulation environ-
ments because they are easy to generate and can be very use-
ful in representing various channel responses. Here, it is
worth noting that there is no direct correspondence between
the physical environment where the MIMO system operates
and the channel matrix. Generally, these models are further

classified into the correlation-based and the propagation-
motivated analytical channel models. Also, the analytical
models based on space-time coding are briefly highlighted.

4.1. Correlation-Based Analytical Models

4.1.1. The i.i.d Model. The independent and identically dis-
tributed (i.i.d) model is often described as the simplest
MIMO model. In some literature, it is called the canonical
model. In the model, RH = p2 I, where p2 is referred to as
the channel power and H is used to denote the MIMO chan-
nel matrix. The matrix comprises elements, which are uncor-
related and statistically independent and of equal variance p2

[111]. This phenomenon is often observed in spatially white
MIMO channels over a robust scatterer environment defined
by uniformly distributed independent MPCs. This model
consists of the channel power used in information theory
for analyzing MIMO systems. The i.i.d model describes the
application of multiple elements for a single user over the
additive Gaussian channel. Due to its characteristic behav-
ior, the model is statistically independent and unable to
achieve correlation. However, most systems exist in environ-
ments with limited scatterers and small antenna spacing
between the Tx and Rx. The implication is that there exists
a strong correlation between the channel matrix elements
and mutual coupling between the specified elements of the
antenna array on the link ends. Hence, it can be suggested
that the i.i.d model and its capacity gains are most suitable
for theoretical analysis.

4.1.2. Kronecker Model. The Kronecker model assumes that
the scatterers at both link ends can be treated independently.
Given this separability assumption, the model approximates
the full correlation as the Kronecker product of one-sided
correlation matrices. Consequently, the number of parame-
ters needed is reduced to provide useful information about
the channel and introduces some structure to the model.
The correlation matrices are a clear indication of the scatter-
ing seen at either link end. Despite the numerous reports sug-
gesting that the Kronecker model is inaccurate for most
practical scenarios, it is, to no small extent, the most widely
used MIMO channel model because of its ease of application
and analytical tractability [112]. The Kronecker model could
also be used to model Tx and Rx’s correlation properties sep-
arately, but it often ignores the dependence of the DoAs on
the DoDs [61]. The Kronecker model only presents the full
correlation matrix as the Kronecker product of the two mar-
ginal correlation properties at both link ends. Any DoD will
result in the same DoA. This is usually not valid for most
practical MIMO channels since the model is seen to predict
the capacity of the channel inconsistently [96, 98, 113–115].
The wideband equivalent synthesis equation of the model is
given in (6) by [116].

HKron =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr RRxf gp R1/2
RxG R1/2

Tx
� �T

: ð6Þ

As given in (6), RTx = EfHTH?g, and RRx = EfHHHg,
represent the Tx and Rx correlation matrices, respectively.
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Also, G is an i.i.d unity-variance random fading matrix with
complex Gaussian variables.

4.1.3. Weichselberger Model. To improve the Kronecker
model, a more realistic channel model was provided by
Weichselberger [117]. Here, the transmitter and the
receiver’s joint correlation are modeled while preserving the
dependencies between the DoAs and DoDs. The Weichsel-
berger model comprises three components. First is the corre-
lation matrix of the spatial eigenbasis of the transmitter and
the receiver. Second, the receiver and transmitter eigenmode
pair, which spans the SISO channel. Next, the power-
coupling matrix of each element is formed by its average
energy.

It should be noted that these eigenmode SISO channels
are mutually completely not correlated [61]. When the cou-
pling matrix is the same as the transmitter’s outer product
and receiver eigenvalues, the Weichselberger model approx-
imates the Kronecker model. The implication is that the cou-
pling matrix would reduce to rank one. The eigenvalue
decomposition of the receiver and transmitter correlation
matrices are given in (7), and the Weichselberger synthesis
is given in (8).

RRx =URxΛRxUH
Rx, RTx =UTxΛTxUH

Tx, ð7Þ

Hweichsel =URx
~ΩweichselΘG
� �

UT
Tx, ð8Þ

where G gives the i.i.d, a complex Gaussian random fading
matrix, and ~Ωweichsel describes the element-wise square root
of the power coupling matrix Ωweichsel. Further explanation
of the variables in the model is given in [116].

4.1.4. Virtual Channel Representation (VCR). The VCR tends
to model the channel in the beam space, using predefined
steering vectors given in [118]. In mathematical form, the
VCR model is given in (9) by [116].

Hvirtual =ΛRx
~ΩvirualΘG
� �

ΛT
Tx, ð9Þ

with ΛRx and ΛTx and ~Ωvirtual denoted as the element-wise
square root of the power coupling matrix Ωvirtual in the vir-
tual domain. In this case, the number of virtual angles will
help determine the VCR model’s accuracy and angular reso-
lution. It is interesting to note that the number of virtual
angles cannot be assumed at random but obtained from the
antenna array configurations. In practice, the virtual channel
representation is seen to restrict the eigenbases shown to be
of one-sided correlation matrices to predefined digital Fou-
rier transform (DFT) matrices elaborated in [117]. This con-
cept makes the DFT matrices perform an asymptotic optimal
eigenfunction for the channel matrix [118]. Also, samples of
the uncorrelated spectral features are formed by the elements
of the fading matrix ~ΩvirtualΘG. One key component of the
VCR is the ease with which it can be interpreted. The antenna
configuration determines its angular resolution accuracy.
The accuracy increases relative to smaller angular bins as
the number of antennas grows.

4.1.5. Diagonal-Decorrelation Model. The diagonal-
decorrelation model tends to equate all cross-correlations to
zero independently with antenna correlation values. Here,
the channel matrix R is assumed to remain semipositive def-
inite. This model has been reported in [119–121] with details
limited to physical justification.

4.1.6. Rough Surface Model. The rough surface model was
proposed in [122] to model multiuser MIMO channels. This
model takes its root from Kirchhoffs theory [123] on the der-
ivation of cross-user and intrauser correlations for two near
located users. The model enables the study of the antenna
pair correlation across users and within a single user. Here,
the physical environment’s essential features, such as the
scattering surface’s roughness and geometry, are character-
ized. The scatterer is modeled such that it resembles a rough
surface, having a height defined as a Gaussian process. Points
on the uneven surface scatter the incident wave in different
directions with a given probability. Correspondingly, this
leads to multiple user signal correlation.

This model could apply to model users located within a
valley and scatterers located in streets. The model is useful
in estimating the spatial correlation relative to the scattering
surface profile and the channel gain’s theoretical limit, and it
could be extended to multiuser channel models. The model
could also be advantageous in locations where the scatterer’s
random rough surface modeling is achievable.

For the model, theoretical derivations for the inter- and
intrauser correlations were estimated using numerical
methods. Here, LoS signals are seen to enhance the correla-
tion with a flatter trajectory in space for the inter- and intrau-
ser cases. This feature could be explored to distinguish LoS
signals from their NLoS counterparts clearly. A comparative
analysis of the Kronecker model, VCR model, Weichselber-
ger model, and the rough surface model is reported in
Table 1.

4.1.7. The Structured Model. The structured model is an
extended version of the Weichselberger model. It adopts
the tensor calculus concept in describing the scatterers’ cou-
pling across the receiver’s delay space and the transmitter.
Three correlation matrices that describe the correlation
around the receiver, transmitter, and delay space have been
highlighted in this model, using tensor calculus. The struc-
tured model approximates the correlation across receive-
transmit-delay space. There is no independence assumption
between the scatterers at the receiver, transmitter, or different
delays as in the Kronecker model. This is why this model bet-
ter approximates the actual structure of the wideband MIMO
channel. This model also requires fewer parameters than the
Kronecker model for the synthesis of an ensemble of H
-tensors. In most practical scenarios, reports show that this
model consistently outperforms the well-known Kronecker
model, using several metrics [124].

4.2. Propagation-Motivated Analytical Models. Models such
as the finite scatterer and the maximum entropy tend to
describe the MIMO channel matrix, employing appropriate
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propagation parameters. A brief description of these models
is as follows.

4.2.1. Finite Scatterer Model. This is a well-known
propagation-motivated analytical model. This model uses a
limited number of multipath components for the modeling
of the channel. In contrast with the GSCM models that
accommodate only single and double-bounce scattering, this
model gives room for a single-bounce and multiple or several
bounce scattering. It should be added that this model allows
for split components, having a single direction of departure
and then splitting into two or several paths with different
directions of arrivals afterward. Here, the split component
is seen as multiple components having the same DoA or
DoD. The MIMO channel matrix for the narrowband case
of this model is presented in [28]. It is worthy of note that this
model is fully compatible with the 3GPP spatial channel
model [125]. The reader can find additional information on
this model in related reports [126–128].

4.2.2. Maximum Entropy Model. Another well-known
propagation-motivated analytical model is the maximum
entropy model proposed in [111]. This model gives the distri-
bution of the MIMO channel regarding useful information
available on the channel. Usually, this preliminary informa-
tion may consist of the propagation domain features and sys-
tem parameters such as bandwidths and arrivals’ directions,
among others. For consistent results from the model, it is
reported in [111] that the choice of the model influences
the type of application. This means that different channels
of the model may be evaluated for capacity estimation than
for the simulation of BER. In conclusion, the maximum
entropy model is straightforward to apply, mainly when
translating physical information into the channel’s distribu-
tion model that requires consistency.

4.3. Analytical Models Based on Space-Time Coding. These
are a class of propagation models that have been developed
for theoretical analysis of communication systems based on
space-time coding reported in several works of literature
[129–134]. These models characterize the communication
channel in terms of degrees of freedom, allowing precise
analysis of the channel capacity following the reports [135–
137]. The interest in this class of analytical models is increas-

ing due to the development of 6G wireless networks to
achieve the much anticipated ubiquitous connectivity [138].

In particular, the limit on the available number of spatial
degrees of freedom is derived for multiple-antenna systems
that suffer the limitations posed by the area and geometry
of large antenna arrays [135]. The work is aimed at defining
the spatial signal space to describe channel propagation mea-
surements better to characterize the physical environment
under investigation. The optimal number of antennas
required for a given wireless device in a well-defined applica-
tion environment is determined. A typical illustration of the
clustering of transmitting and receiving signals showing the
clustering intervals in the multiple-antenna channels is
described by [135] in Figure 5.

Similarly, in [136], the authors considered the number of
degrees of freedom of the field in MIMO channels. The work
is aimed at examining the relationship between the number
of degrees of freedom (NDF) of the field and the effective
number of degrees of freedom (ENDF) of a MIMO channel.
The work also examines the channel capacity of a pure spatial
communication system corrupted by AWGN. The spatial
band limitation properties of the field were employed in eval-
uating the maximum ENDF. Results indicate a strong rela-
tionship between the NDF of the field and the MIMO
system’s best performance. More specifically, the field’s
NDF poses a significant limitation to the largest number of
SISO subchannels. The results find useful applications in
microwave tomography and inverse source detection.

In [137], a numerical evaluation of the electromagnetic
(EM) degrees of freedom (DoF) of a noise-limited system
in 2D with multiple random scattering is presented. The
received EM fields were obtained using the fast multipole
method (FMM), and the Monte Carlo simulation was
adopted to determine the ensemble average of the DoF num-
ber. The results show that the transmit and receive volume
sizes and the scattering region determine the average EM
DoF number. Specifically, the transmit and receive volumes
tend to increase the average number of DoF, though the
observed increase is a nonlinear process.

5. Standardized Models

In the preceding section, we provide an exhaustive survey of
the analytical channel models. Next, we shall examine the
standardized channel models in this section.

Table 1: A comparative description of some MIMO channel models.

Models Suitable environments Benefits Limitations

Kronecker Local scatters only Mathematically simple A special case of VCR

Virtual
channel
representation

Scatters distribute mainly
according to predefined

angular directions

Capturing the impact of scattering parameters on
channel diversity and capacity

Requiring specific scatter
distribution or large array

Weichselberger Versatile environments The limitations on VCR being lifted
They require clustered antennas at

the Tx and Rx.

Rough surface
model [122]

Large plane scatters
Theoretically computing the spatial correlation relative
to the scattering surface profile and the channel gain

and extending to multiuser channel models

Restricted to specific environments
and requiring some parameters of

the scattering surface
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The standard models present a unified framework for the
development of new radio systems. Different techniques,
such as signal processing and multiple access, are incorpo-
rated into such models to improve performance and enhance
system capacity [61]. An example of the standardized model
is the wideband COST 207 power delay profile model. This
model is used for GSM development in terms of choosing
appropriate modulation and access techniques. Other direc-
tional standardized MIMO models include the COST action
projects, 3GPP SCM, WINNER channel, IEEE 802.11n [46],
IEEE 802.16ac, and the Stanford University Interim (SUI)
models. These are briefly described as follows.

5.1. COST Action Projects. The European COST action initia-
tive has developed several models, including the wireless
channel’s directional features that apply to MIMO and smart
antenna simulations. Starting with the COST 207, following
rapid improvements leading to the COST 2100 model’s
emergence, the COST action project has triggered wireless
communication systems’ growth and development. These
models are briefly presented in Table 2.

5.2. 3GPP Spatial Channel Models. In this section, we present
the 3GPP/3GPP2 spatial channel model and the extended
3GPP spatial channel model as follows;

5.2.1. 3GPP/3GPP2 Spatial Channel Model. The 3GPP spatial
channel (SCM) model was developed to aid the simulations
of macrocells and microcell deployment in 3G networks with
a bandwidth of 5MHz [148, 149]. In this model, the azimuth
spread, DoAs, and DoDs were assigned constant values.
Unlike the COST, the model approach is quite unconven-
tional, which allows for continuous large-scale movement
of user devices. The model takes into consideration the differ-
ent aspects of the user device’s motion within the coverage

area. Tap-delay line parameters are provided for the imple-
mentation of this model. Here, each tap-delay line has mul-
tiple subpaths sharing different DoAs and DoDs with the
same delay. In the model, interference is categorized into
strong and weak interference. Weak interferers are modeled
as spatially white, and strong interferers are characterized as
spatially correlated. Considering multiple mobile device con-
nection to a single BS and a single mobile device connection
to multiple base stations, the values of the shadowing corre-
lation are given as 0 and 0.5, respectively.

5.2.2. Extended 3GPP Spatial Channel Model. An interim
channel model for use in emerging technologies other than
3G systems was reported [150]. It is worthy of note that this
model is backward compatible with the 3GPP SCM. Mean-
while, the original SCM is a ray-based model following the
stochastic modeling of scatterers. The model has been imple-
mented in MATLAB, following the report in [151].

The model classified the urban micro, urban macro, and
suburbanmacro environments. Here, urban micro has differ-
ent characteristics for NLoS and LoS propagation. There are
six fixed paths for each scenario depicting the Dirac delay
function consisting of twenty subpaths spatially separated.
This model follows directly from the sum-of-sinusoids
method. The SCM is only defined for CDMA at 5MHz
bandwidth, and the model is limited in terms of system-
level simulations for time-varying channels. The interim
beyond the 3G channel model was proposed partly due to
its simplicity and backward compatibility to alleviate these
shortcomings. The extension to the SCM focuses on band-
width, frequency range, and other extensions such as LoS
scenarios, time evolution, and tapped-delay line modeling
characteristics [152–154].

Some features such as the intrapath delay spread (DS)
inherently missing from the SCM model are added on
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Figure 5: A typical illustration of the clustering of transmitting and receiving signals showing the clustering intervals in the multiple-antenna
channels.
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bandwidth. This addition is done so that the model’s charac-
teristics are unaltered compared with the original SCM at
5MHz resolution bandwidth. Saleh and Valenzuela earlier
proposed this approach of intrapath delay spread, and it
has been used for an outdoor environment in the COST
259 model [155, 156]. Further to this, midpaths moved
to different delays with the original path were developed
by splitting the twenty subpaths into subsets. The midpath
specifications, including the delay profile, power, and mid-
path number, are presented in [150]. The power of the mid-
paths was estimated by computing the decreasing power
relative to the delay with limits taken, more significant than
the least number of subpaths. Details on the method used
to derive the delays are reported in [150]. Other extensions
to the SCM are given in [148, 155, 157].

5.3. The COST 259 Directional Channel Model. The COST
259 is the first model in the COST action projects that con-
sidered complex relationships between the propagation dis-
tance, angular spread, delay dispersion, and other channel
parameters [158]. The channel delay and angular dispersion
are seen at the base station, and mobile station under differ-
ent radio propagation conditions are modeled using this
model [159, 160].

The objectives of the COST 259 were focused on agree-
ment with measurements, consistency, simplicity, and
completeness. First, the model’s fundamental goal is to
reproduce many of the characteristics derived from mea-
sured data. Second, the model should be backward compati-
ble. Since the model is built on existing COST projects like
the early COST 207 model, whose constructs are used for
remarkable realizations, the model is expected to be consis-
tent with its older versions. Third, the model is developed
such that it is mathematically tractable and of low computa-

tional complexity. Macro, micro, and picocells are mod-
eled, and frequencies ranging from 800MHz to 5GHz,
covering both outdoor and indoor scenarios, are included
in the model [158].

This physical model provides a general overview of the
radio propagation site. The coverage includes macrocellular,
microcellular, and picocellular scenarios such as the urban,
bad urban, open-square, outdoor domain, and indoor office.
The modeling approaches for macro-, micro-, and picocell
cells vary widely in this model [158, 161]. Each radio envi-
ronment is defined in the macro approach by external
parameters such as base station positioning, average base sta-
tion, and mobile station height, radiofrequency, and a set of
functions of probability density and statistical moments
defining the given propagation site. A Poisson distribution,
for example, characterizes the number of scatterers. The
model could be treated as both partly stochastic and geo-
metric to evaluate the global parameters. Besides, the MS
can be positioned within the BS coverage at random. This
positioning makes it easy to calculate the delay and mean
angles of the various clusters, which constitute the double-
directional impulse response. The angular distribution, the
delay’s distribution, and the shadowing are stochastically
determined. These are seen as lognormally distributed, corre-
lated random variables.

For the global parameters’ realizations, local parameters
are randomly generated in each radio environment compris-
ing multiple propagation environments. Local parameters
are presumed to be approximately constant and define the
instantaneous channel behavior. The COST 259 model can
manage MS’s continuous movement through multiple prop-
agation environments and various radio environments.

Modeling constructs: basically, four methods are sug-
gested to simulate the channel impulse response (CIR)

Table 2: The early COST action projects.

S/N. COST model Model description

1 COST 207 channel model

COST 207 is the earliest of the COST action projects [37]. This model proceeds from the Digital Land
Mobile Radio communications project from September 1984 to September 1988. The project is aimed at
supporting the Confederation of European Posts and Telecommunications (CEPT) GSM to coordinate

research in propagation, modulation, and coding.
The propagation activity themes focused on field strength prediction techniques, radio channel

measurements, characterization, radio channel simulation, antenna, and manufactured noise. During the
project, existing path loss prediction techniques were reviewed, and information from the terrain and

land cover was carefully obtained to form a topographic database.
The study also investigated the design of diversity antennas for base stations, vehicle-mounted, and

handheld applications. The impact of the vehicle structure on the radiation characteristics of the antennas
was analyzed. The study also specified the PDP for the environments classified as typical urban (TU), bad
urban (BU), reduced TU, reduced BU, rural area (RA), and hilly terrain (HT). It is worthy of note that the

COST 207 project prepared a foundational framework for developing the COST 231 model.

2 COST 231 Hata model

The COST 231 Hata model is based on a proposal for extending the popular Okumura-Hata model
to the 1500-2000MHz band, specifically for propagation environments where the Okumura-Hata
model underestimates the path loss. The specifications of the model can be found in several reports

[35, 139–144].

3
COST 231 Walfisch-

Ikegami model

Interestingly, the COST 231 Walfisch-Ikegami model classified the propagation link by distinguishing
between LoS and NLoS suited for microcellular cells. The operating frequency span 800MHz to

2000MHz and a receiver-transmitter separation distance of 0.02-5 km. Details of the LoS and NLoS
scenarios and other useful parameters of the model are given in [34, 145–147].
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functions in the COST 259 model. These are stored ray CIRs,
optical approaches, stochastic models of radio channels, and
stochastic parametric models, as given in [159].

Stored CIRs are defined to be the most accurate and real-
istic CIRs. However, it is challenging to incorporate all envi-
ronmental effects on a particular set of stored CIRs. If a large
group of CIRs is used, there is a considerable price for stor-
age. Besides, it is very difficult to share stored measurement
results with the public. Second, the ray-tracing outcomes
are much easier to derive compared with observed CIRs.
However, an extensive database is often required for effective
ray tracing, and a precise definition of the propagation effects
is of paramount importance.

Appropriate modeling of stochastic radio channels helps
to characterize the CIR as the stochastic process’s product
properly. Also, the Widesense Stationarity Uncorrelated
Scattering (WSSUS) model utilizes power spectral densities
or correlation functions to classify propagation channels
[162, 163]. This modeling approach was adopted for the
COST 207 model, and the parametric method is used for
most aspects of the COST 259 model. The WSSUS property
for parametric stochastic models, however, is not too neces-
sary. Here, incident waves at the receiver are usually defined
by some parameters like the delay and DoA, not their corre-
lation functions.

5.3.1. Propagation Scenarios. Fundamentally, radio wave
propagation relies on the topography and electromagnetic
characterization of the environment under investigation. A

well-defined three-layered structure has been proposed for
the model [159]. For example, the popular COST 259 direc-
tional channel’s layered structure is illustrated in Figure 6.
The layered structure eases categorizing channel models
according to their applications in different types of systems.

The top layer shows different cell types, such as macro,
micro, and pico. For all cell types, radio environments are
attached. All radio environments’ names start with the word
generalized, indicating an extension of the COST 207, as
shown in the middle layer. As shown in the third layer,
modeling constructs’ layered structure comprises the various
propagation scenarios (PSs), depicting random realization of
multipath conditions. There are three scenarios, which are
denoted as 1, 2, and 3 propagation scenarios.

Interestingly, the PSs are not strictly classes, but they rep-
resent small-scale channel states, each showing a constant
power delay direction profile (PDDP) and scattering func-
tion. In most practical scenarios, large-scale parameters
within a PS are seen to be constant. This implies that a PS
can only represent the propagation conditions within a spec-
ified physical area.

Parameter types: here, we look at the parameters that
define radio environments. These parameters are external,
global, and local parameters. The external parameters
include the average heights of the BS and MS antennas, the
frequency band, the average distance of the transceivers,
average height, and separation of the structures being consid-
ered. Further to this, specifying the LoS and NLoS condition
requirements is a prerequisite in many REs. However, in

Radio environments

GTU-General typical urban
GRA-General rural area
GBU-General bad urban
GHT-General hilly terrain

GUM-General urban microcell
GBM-General bad urban microcell
GOP-General open place
GPN-General open NLoS

GOL-General office LoS
GON-General office NLoS
GCL-General corridor LoS
GCN-General corridor NLoS
GFH-General factory/hall

2. Radio 
environments

Macrocell Microcell Picocell

GFHGUM GBM GCNGOP GPN GOL GON GCLGTU GRA GBU GHT

1. Cell types

Propagation scenario #1

Tx
Rx

Random local 
Parameter set #1

Propagation scenario #2

Random local 
Parameter set #2

Propagation scenario #3

Random local 
Parameter set #3

Tx
Rx

Tx
Rx

3. Propagation 
scenarios

Figure 6: A layered structure depicting the COST 259 directional channel model.

14 Wireless Communications and Mobile Computing



some REs, the LoS and NLoS conditions may occur, follow-
ing a stochastic pattern.

Global parameters (GPs) help describe the propagation
conditions of the entire RE and the number of visible inter-
acting object (IO) clusters defined by a Poisson distribution.
In this scenario, the MS within a region of visibility (VR) fol-
lows a Poisson process. Accordingly, the GP can be retrieved
using ray-tracing techniques, and the associated RE GPs
could monitor propagation scenarios.

Last, the local parameters (LPs) are worth mentioning.
These are random parameter realizations of the instanta-
neous channel conditions in a local site. As described in the
COST 259 DCM second-layer structure (see Figure 6), LPs’
statistical data are given via the collection of GPs [159].
Finally, GPs and LPs are dependent on external parameters,
and the flowchart for the model’s implementation is shown
in Figure 7.

5.4. The COST 273 Model. One of the key models developed
by the COST action project is the COST 273 model, and this
is the result of an extensive coordinated effort in the Euro-
pean scientific and industrial communities to develop a com-
prehensive channel model for use in the development of
radio communication standards [108, 164]. A comprehen-

sive report on the full framework and implementation of
the model for a large urban macrocell environment is pre-
sented in [61].

The COST 273 framework’s primary focus is on a statis-
tical model for the amplitude, phase, AoA, AoD, and delay of
all multipath components. The COST 273, a refinement of
the COST 259 model, applies the generic channel model
(GCM). The COST 273 model extends the GCM to the case
where multipath components can be clustered, depending
on the environment for which the model is defined, whether
macrocell, microcell, or picocell, the transmitter and receiver
can move to different locations [165, 166]. The most deter-
mining factor is the COST 273 environment, the Tx and Rx
location, including the surrounding buildings’ density. It is
worthy of note that each environment has different parame-
ters, and the set of all parameters is classified into external
and stochastic parameters. On the one hand, the external
parameters are user-defined and are maintained constant
for a simulation run. On the other hand, the stochastic
parameters provide the information required to generate all
random variables in the model.

Three types of clusters have been defined in this model
[167]. These include the single-interaction clusters, which
simulate the scenario when there is a strong correlation
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Figure 7: Flowchart showing the implementation of the COST 259 directional channel model.
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between the AoA and AoD statistics. A practical example is
when the BS and the MS illuminate the same set of scatterers.
Second, local clusters comprise two single-interaction clus-
ters. In this scenario, one cluster is located at the transmitter
and the other at the receiver. Third, twin clusters simulate
multiple-bounce scattering, where there is rich NLoS scatter-
ing between the receiver and transmitter. Figure 8 gives the
common clusters’ basic concept, consistent with the COST
273 model [55]. Just like any other channel model, the COST
273 has its strengths and limitations.

5.4.1. Strengths. The COST 273 model, compared with the
COST 259 double-directional channel model, lends itself to
physical interpretations and broad applicability. First, the
parameters of the model hold relatively straightforward
physical interpretations. This implies that specific parame-
ters of the model can be changed to depict different environ-
ments and the effects under study, even without actual
measurements campaign. Second, when the parameters are
derived from measured data, they show useful information,
revealing the investigated environments’ characteristics, such
as the density of scatterers around each link end. Third, the
model has general features making it suitable for applications
in several environments.

5.4.2. Limitations. The disadvantages of the COST 273 model
circle around complexity, complex stochastic parameters,
model specificity, and the inability to implement all aspects
of the model. First, the model has so many working parts,
and most of these functional parts change rapidly from one
environment to another. Keeping track of all the parameters
and implementing a general program to accommodate all
environments can be computationally expensive. Second, it
can be very tasking to derive some of the model’s stochastic
parameters from measured data, partly due to their sensitiv-
ity to calibration errors. For instance, a great deal of care is
required in angular power measurements when calibrating
for power and antenna gain in the azimuth and elevation.
In practice, this can be very difficult due to the dynamic
nature of the environment.

However, the model’s elevation parameters can be
relaxed to simplify the model to ease computation efforts.

Third, the model lacks reliable specifics and does not accu-
rately represent any single channel but instead describes
many related environments’ average behavior. This can pose
a severe problem for a designer who wants to reproduce a
single channel, such as a specific path between two buildings
in a particular environment. Finally, the model’s parameter
list is not exhaustive, and it is challenging to implement all
aspects of the model [165]. An extension to the COST 273
model is reported in [168].

5.5. The Random Cluster Model. Considering the vast limita-
tions of the COST 273 model, the need to refine the model
becomes imperative. In [169], a cluster-based model known
as the random cluster model (RCM) was proposed. This
model was developed based on a refinement of the existing
COST 273 model. The random cluster model presents two
characteristics that differentiate it from the COST 273 model.
First, the model is capable of automatic identification of clus-
ter parameters from measured data. Second, the identified
clusters are characterized using a multivariate PDF called
the environment PDF [108].

In contrast with the COST 273 model, RCM targets auto-
matic and faster means of identifying and characterizing
clusters from measured data. Analogous to the COST 273
model, the RCM is a system-level cluster model, suitable for
evaluating algorithmic and transceiver design trade-offs in
specific environments. RCM characterizes each environment
using the environment PDF by changing the environment
probability density function (PDF). This is unlike the COST
273 model that varies from one environment to the next. This
is why the implementation complexity of the RCM is low
when compared with the COST 273 model. The RCMmodel
computes the environment PDF automatically from mea-
sured data, resulting in a model closely aligned with the
investigated environment and measurement routes. This fea-
ture makes it very hard to include the model in a standard as
the specifics of the environment PDF makes it difficult to
describe the average behavior of many channels in a related
environment [170].

Another key feature of the RCM is introducing a
smoothly time-varying cluster birth-death process to simu-
late movement. A joint clustering and tracking framework

VR
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BS1

BS3
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2

Figure 8: A simple illustration of the common clusters associated with the COST 273 channel model. A VR must not see more than one
cluster, and Ci denotes clusters that can associate with more than one BS and VR.
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has been adopted to compute the cluster movement parame-
ters from experimental data automatically. Just like any other
channel model, the RCM model has its strengths and limita-
tions outlined as follows.

5.5.1. Strengths. The advantages of the RCM include time
variation, double direction, system independence, and sim-
plicity. First, the RCM focuses on tracking clusters over
time, resulting in an accurate channel time variation sim-
ulation. Just like the COST 273 model, the RCM is a
double-directional model. Similar to the COST 273 model,
the RCM is system-independent and models the effects of
MPCs independently. Last, it is relatively simple to pro-
duce exemplar channels once the environmental PDF has
been computed.

5.5.2. Limitations. The computation of environmental PDF is
quite a difficult task. Also, several parameters in the cluster-
ing and tracking framework affect how the measurement
paths are clustered. In this model, the path parameters are
specific to the measured path, and the simulation channel
will be specific to that particular path. This makes it very dif-
ficult to vary the given environment parameters to obtain
simulation results for a given environment. Also, the indeter-
minate number of parameters is worth noting. With every
snapshot, it is observed that the total number of parameters
in the model changes correspondingly. There is a direct inter-
action between the clusters’ size and the channel’s total num-
ber of parameters. This means more clusters, more paths, and
more significant clusters require more paths to be correctly
defined, as remarked in [108].

5.6. COST 2100 MIMO Channel Model. The COST 2100
channel took its root from the COST 259 and COST 273

models [171]. This model can mimic the stochastic proper-
ties of multilink MIMO channels over the trio: time, fre-
quency, and space. It is generic and versatile compared to
other GSCM models. This makes it suitable for applications
relevant to the simulation of multiuser MIMO systems. The
basic structure of the COST 2100 model is shown in
Figure 9. The model is an extension to the COST 273 model
by focusing on the following: the expansion of multicell
MIMO scenarios, the multipath contribution polarization
model, and the inclusion of dense multipath component
specular contribution. Besides, the model defines three ways
for the entire set as follows. First, a clear description of the
large number of clusters equipped with well-defined stochas-
tic parameters in the simulation relative to the BS’s position-
ing is outlined. Second, identify and derive the scattering of
the visible clusters at each channel case. Third, processing
large-scale parameters (LSPs) is focused on cluster scattering
reported in [172].

In this channel model, the LSP statistics are guaranteed
in each channel sequence of instances, which is a vital
strength of the model. However, some drawbacks arise from
forcing the statistical accuracy of the LSPs. This relates that
the model lacks the desired level of flexibility since it does
not endorse continuous channel definitions over intervals
more significant than the autocorrelation distance. Thus,
this distorts the simulation of large MS movements. Sec-
ondly, the model dictates that the propagation environment
is defined only from the LSPs. The implication is that the
inclusion of new LSPs would require a redefinition of the
entire initialization of the site, which will result in a distor-
tion in the extension of the model. Next, we take a close
look at the model’s structure, cluster parameterization,
modeling concepts, model developments, parameterization,
and implementation.

Single-bounce
cluster

BS MS

Twin 
cluster

Local
cluster

MPC

Figure 9: A simple structure of the COST 2100 channel model showing the mobile station, base station, single-bounce cluster, local clusters,
twin clusters, and multipath components.
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5.6.1. Structure of the COST 2100 Channel Model. This model
was developed to replicate the propagation channel between
the BS multiple static antennae and the MS multiple anten-
nae [173]. The structure of the COST 2100 channel model
is correlated with local, single, and twin-cluster bounces.
The local clusters are clustered around the MS or BS, distin-
guished only by their single-bounce scatterers. This indicates
that in the azimuth plane, the local clusters have omnidirec-
tional distribution and their delay and spread of elevation
achieve their spatial distribution. Further to this, the single-
bounce clusters have a different delay and azimuth spreads
than the local clusters [171]. Another cluster variant worth
mentioning is the far cluster. This is a mixture of clusters of
single and multiple bounces. By matching their delays and
angles via geometrical analysis, single-bounce clusters could
be mapped to a specific location. The multiple-bounce clus-
ters are represented by their views from the BS and the MS
sides, respectively.

This is, in practice, known as twin clusters [95]. Far clus-
ters are distributed all over the simulation environment, hav-
ing an average density that is consistent with the Poisson
distribution. Here, the average number of active state clusters
monitors a specific channel’s LSPs. This means that the clus-
ters are visible to the MS in the active state, thus contributing
to the channel [108]. In reality, the visibility region (VR) def-
inition can be used to know whether there are far-flung clus-
ters accessible [174]. This definition helps to confine the
cluster’s operation to a given boundary in a geographical site
[175]. The twin cluster ratio to the single-bounce cluster is
constant in a particular environment [176]. A simple illustra-
tion of the twin cluster rotation at the MT and the transmitter
end is shown in Figure 10. In [108], the twin-cluster idea was
used to suggest a technique for modeling multiple interac-
tions of MPCs with dynamic objects in the BS-MS paths
[177]. A standard example of a geometry-based stochastic

channel model showing how black dots within each cluster
reflects the individual multipath components is shown in
Figure 11 [173]. The concept of the model is designed to
allow easy adaptation to different environments. Additional
information on the interdependence of the MIMO cluster
parameters can be found in the literature [176, 178, 179].

5.6.2. Cluster Parameterization. There is a need for cluster
parameterization in channel modeling. Clustering paths
helps to define the LSPs of the channel better. These include
the delay of the cluster-link, the delay and angular spread of
the MPCs in each cluster, the cluster’s attenuation, and the
level of random shadowing. Whenever the excess delay of
the cluster increases, there is an exponential increase in clus-
ter attenuation. Typically, uncorrelated clustering is pre-
sumed in most cases. This implies that the LSPs of several
clusters are statistically independent. Practical LSP values
for the macro-, micro-, and picocellular scenarios are pre-
sented in [173].

5.6.3. COST 2100 Modeling Concepts. Visibility regions,
clusters, line of sight, multipath elements, and time evolu-
tion are primary modeling concepts in the COST 2100
channel model. These principles of modeling are briefly
defined as follows.

Visibility regions: a circular region of the simulation area
given a fixed scale is the visibility region (VR). A VR specifies
only one cluster’s visibility. Visibility regions confine the
behaviors of clusters within a defined geographic area. In
practice, the associated cluster smoothly increases its visibil-
ity when MS enters within a VR. A factor named VR gain is
used to account for VR. This factor increases from zero to
one as the MS gains entry into the VR.

Furthermore, if the MS is at a location in a region where
multiple VRs tend to overlap, the effect is the simultaneous

BS

MT

BS

MT

Figure 10: A simple illustration depicting the rotation of the twin cluster at the mobile terminal (MT) and the base station (BS) side.
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visibility of multiple clusters. The COST 2100 channel model
practically observes a uniform distribution of VRs in and
around the simulation region. In this scenario, the VR den-
sity is closely aligned to the average number of visible clusters
derived from an extensive measurement campaign. As illus-
trated in Figure 12, after the MS passes through the VR, the
MS receives signals dispersed by the corresponding cluster.
As it reaches the VR center, the cluster steadily increases its
visibility [180]. Mathematically, when going into the VR, a
factor called VR gain is used to account for visibility, and it
rises from 0 to 1. Here, the cluster evolution on the receiver
side can be defined using the VR size and gain, as noted in
[181]. A simple illustration of the concept of cluster visibility
regions extended to the BS side. Each of the antenna signs
denoting a small MIMO array is shown in Figure 13.

Time evolution of the COST 2100 model: regardless of the
MS location, the environment consisting of the clusters and

BS

Single-bounce cluster
Double-bounce cluster

Double-bounce cluster

Local cluster

MS

Figure 11: A typical example of a geometry-based stochastic channel model. The black dots inside each cluster represent the individual
multipath components.

MS MSMS

BS

MPC

VR

Figure 12: Concept of visibility region. BS: base station; MPC: multipath component; MS: mobile station; VR: visibility region.

Base 
station

Mobile
station

Clusters with MPCs

Figure 13: A simple illustration of cluster visibility regions extended
to the BS side, and each of the antenna sign denotes a small MIMO
antenna array.
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VRs can be created independently, and virtual sites are cre-
ated similarly. These conditions are capable of reproducing,
in a stochastic manner, the characteristics of an actual site,
the exact position, and shapes of scatterers, clusters, and their
VRs. Furthermore, the COST 2100 model’s layout and
parameterization do not depend on theMS speed. The higher
the speed, the quicker the MS travels to and fro the VRs,
reducing the stationary channel distance. This indicates that
the COST 2100 channel model is very fit for the simulation of
high-speed MS scenarios.

5.6.4. COST 2100 Developments. Recent developments lead-
ing to the extension of the model include but are not limited
to polarization, dense multipath components, and multilink
aspects. These are briefly described as follows.

Polarization: at the cluster level, the polarization charac-
teristics of the channel are clarified. An MPC is composed of
four polarization components [171, 182]. These polarizations
are given as follows: (1) horizontal to horizontal (HH), (2)
vertical to vertical (VV), (3) vertical to horizontal (VH),
and (4) horizontal to vertical (HV). Besides, a power matrix
tends to characterize the power ratios among the given polar-
ization components of each MPC.

Dense multipath components: experimental findings
reported in [171] show that specific parameters such as corner
diffractions, rough reflections of surfaces, and reflections from
a scatterer’s different layers result in a significant amount of
diffuse scatter. Therefore, an inference is drawn that diffuse
scattering can significantly affect the channel’s behavior in
both delays and angular domains, which may not be ade-
quately captured by a few specular MPCs. To this end, two
methods were established for using diffuse scattering.

First, the propagation path can be extended to satisfy dif-
fuse scattering characteristics following a continuous distri-
bution in the delay and angular domains, depending on
path dispersion modeling’s efficiency. Second, it is possible
to superimpose a reasonably large number of specular paths
modified with dense multipath components (DMCs). How-
ever, this method would increase the whole parameters, espe-
cially with large numbers of DMCs, which can give an
excellent capture of the residual channel spectrum at the
same time [173]. The second approach is regarded in the
COST 2100 model as an extension of the MPC definition.
A subgroup of DMCs increases the delay and angular spectra
from each MPC within the cluster, whose powers decrease in
the delay, and angular domains, concerning the MPC. Notice
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Figure 14: A simple description of cluster-based diffused multipath components (DMC).

1

2

3 MIMO transfer 
Matrix generation

Generic 
model

Campaign 
planning

Channel 
measurements

Measurements
data 

SimulationsChannel 
realizations

Data post
processing/
analysis

Array 
responses

Parameter 
generation

Parameter 
PDFs

Figure 15: Block diagram representation of the procedure for channel coefficient generation for the WINNER channel model.
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that the DMC shares the cluster’s large-scale properties, such
as attenuation of shadowing and cluster control. The over-
view of cluster-based DMC showing how DMC clustering
is superimposed at the same centroid to multipath compo-
nent clustering is shown in Figure 14.

Multilink aspects: multilink aspects explore the concurrent
communications that are spatially isolated between several BSs
and MSs. By definition, multiuser scenarios correspond to the
single connection in the COST 2100 model. This is due to its
ability to accurately characterize one BS’s environment regard-
less of the position where the MS is located.

Various connections can be associated via correlation in a
situation where the BSs and MSs are reasonably separated by
distance. This concept is described as correlated clustering;
clusters exhibit correlated fading or LSPs in separate ties

[183, 184]. Another way to understand this idea is to con-
sider that clusters are simultaneously visible in various con-
nections. This implies that between multiple ties, clusters are
common. This approach’s main requirement is to define
cluster visibility in various linkages without altering other
cluster’s physical properties. This will result in a well-
matched extension of the COST 2100 model for single-link
scenarios to the current structure. The commonness of clus-
ter connection is an auxiliary function of clusters in multi-
link systems, and it does not affect cluster definition
coverage in terms of power attenuation and spatial distribu-
tion. To improve the consistency between the individual
connection channels in multilink scenarios, proper model-
ing of the cluster connection’s stochastic properties’ com-
monness becomes imperative.

SegmentsBS

BS

BS

BS

MS

MS

MS

Figure 16: Illustration of the WINNER II multilink channel model showing the base stations, mobile terminals, and segments.

Table 3: Comparison of the WINNER II, WINNER+, and 3GPP 3D channel models.

Parameter WINNER II WINNER+ 3GPP channel model

Scenarios
Urban, macro, and micro outdoor to
indoor, indoor, indoor to outdoor,

Suburban, urban, indoor, macro, and
micro outdoor to indoor scenarios

Urban, outdoor, macro, and
micro outdoor to indoor

Outdoor height of eNB
25m and 10m for macro and

micro, respectively
25m and 10m for macro and micro,

respectively
25m and 10m for macro
and micro, respectively

Indoor height of user
equipment

1.5m to 7.5m for three-floor
scenario

1.5m to 7.5m for three-floor scenario
1.5m to 22.5m for eight-floor

scenario

Line of sight probability Height independent Height independent Depends on height

Path loss Height-gain nonexistent Models height-gain Models height-gain

Power angular spectrum
(zenith)

Models Gaussian Models Laplacian Models Laplacian

Mean zenith angle spread
of departure

It is constant It is constant Depends on distance and height

Zenith angle of departure
offset

It is not modeled It is constant Depends on distance and height
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5.6.5. Parameterization and Implementation. Propagation
measurements have been reported on parameterization for
the COST 2100 channel model [11]. These measurements
give valuable data, which are required for the parameteriza-
tion of the model. The model describes the stochastic
parameters for relations between (1) VR and cluster, (2)
VR, LoS, and cluster powers, (3) cluster shadowing and
MPC fading, (4) locations of VR, cluster, LoS, and MPCs,
(5) locations, powers, and fading of DMC, and (6) field
polarization. In the work of [171, 173], a full list of model
parameters and suggested distributions for the COST 2100
model is presented. The model implementation requires a
complete picture of the propagation site and the MIMO
channel matrix synthesis, coupled with the double-
directional channel and the transmitter and receiver steer-
ing vectors of the antenna. Implementing the DMCs is
comparable to the MPCs, where each MPC can be projected

onto its polarization matrix to obtain the multipolarized
subchannels. Finally, the model implementation is well dis-
cussed in [11].

Model validation: model validation focuses on angular
spread and delay spread, distributions of parameters, and
interlink correlation. A comparative study of propagation
measurements and simulations on the interlink connection
in a dual BS and single MS was used in [11, 171] to test the
model’s validity. Measurements have also been recorded in
an indoor 5.3GHz corridor. Here, the BS and MS are consid-
ered vertically polarized planar dipole antenna arrays.
Descriptions of the validation results are provided in [55].
Furthermore, as reported in [75, 181], the COST 2100 was
extended for 3D channel modeling [185], polarization, phys-
ically wide array, and closely spaced users. Finally, in terms of
modeling and validation, massive MIMO extensions to the
COST 2100 channel model are given by [186].

Table 4: A brief description of the SUI and IEEE 802.xx channel models.

S/N. Channel models Brief description

1
Stanford University Interim

channel models

Towards the development of the SUI model by researchers at Stanford University, IEEE 802.16
provided specifics for fixed wireless access (FWA) systems [200]. The group worked on frequency
bands below 11GHz after establishing guidelines for frequency bands above 11GHz. The SUI

models are classified into terrain types A, B, and C. In particular, terrain type A deals with huge path
loss, and it is most suited for hilly terrain with densities of moderate to heavy foliage. Type C is
closely related to minimal path loss, and it is specific to flat terrain with densities of light trees.
Specifically, type B can be suitably applied to hilly terrains with light tree densities or mostly flat
terrains with moderate to heavy tree densities. The path loss equation and the correction factors

relevant to the SUI model are given in [200]. Six SUI tap-delay lines are presented in the SUI channel
models, with three taps valid for a distance of 7 km between the transmitter and the receiver. For

channels 1 to 4 of the SUI model, Ricean is distributed as the first tap, and Rayleigh fading
characterizes the others. Another prominent feature of the SUI models is that a rounded shape

centered very close to zero is given to each tap’s Doppler spectrum, and this has limited information
in the Jakes spectrum [126].

2 IEEE 802.11n channel models

The IEEE 802.11n is a simplified form of the extended SV model. This set of models is carefully built
with bandwidths up to 100MHz [201], and the model finds useful applications in indoor MIMO
LAN networks at 2 GHz and 5GHz. Here, six canonical channels are modeled systematically to

cover flat fading situations, residential, traditional workplace, large office, small office, and large open
spaces. MATLAB implementation of the model is given in [202].

3 IEEE 802.16a channel models

Following the modification to the popular SUI channel models, which find useful applications in
directional and omnidirectional antennas, the IEEE 802.16 models were derived. The IEEE 802.16
models use directional antennas to increase the Ricean taps’ K-factor and decrease the spread of

global delay. One key advantage of the IEEE 802.16a model is that it does not alter the user terminal’s
correlations when reducing the antenna beamwidth. This is contrary to the assumption that as the
beamwidth decreases, the correlation coefficients will increase. Further to this, the IEEE 802.16a

includes a path loss model, an appropriate model depicting the Ricean K-factor narrowband, and an
antenna gain reduction factor model. Here, three terrain categories are included in the path loss
model. These are hilly terrain with moderate-to-heavy tree densities as category A, category B as
terrain with intermediate path loss state, and category C is mostly flat terrain with light tree densities.
Category A would find useful applications in models 5 and 6 of the SUI, category B for models 3 and
4 of the SUI, and category C for models 1 and 2 of the SUI [28]. A typical example of a spatial channel

model is derived based on this standard [99].

4 IEEE 802.16d/e channel models

The IEEE 802.16d/e models are an updated version of the interim SUI channel model intended for
fixed macrocellular connectivity. The model is true for the directional and omnidirectional antennas,
which contribute to an increase in the global K-factor, while the distribution of delays tends to

decrease. The log-normal model of shadowing path loss forms the basis of the IEEE 802.16d. Three
types of model categorizations (type A, type B, and type C) are derived. These depend on the density

(e.g., tree densities) of the obstacle separating the transmitter from the receiver, considering a
microsuburban environment. The MIMO channel models in the IEEE 802.16e standard have been

established in the WiMAX Forum, following several reports [203–206].
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5.7. WINNER Channel Models

5.7.1. Interim WINNER Channel Model. Considering the
minimal parameters available in the 3GPP/3GPP2 SCM
model, the interim WINNER model expanded the SCM to
include the intracluster delay spreads, LoS, and K-factor
models, for all scenarios. The implementation was achieved
by first specifying a range of large-scale parameters such as
the Ricean K-factor, spreading delay, shadowing standard
deviation, and spreading directions at both departure and
arrival. The model follows a well-defined distribution pattern
for a particular connection to fix the large-scale parameters
given in [187].

Furthermore, it can be inferred from the WINNER chan-
nel model that successive channel matrices can be created in
short segments, and a sample of large-scale parameters corre-
sponds to those short segments [188]. In a situation where
two segments appear to be quite similar, the clusters are pro-
duced independently for each segment. In this case, both seg-
ments share large-scale parameters that are strongly
correlated but see different clusters [189]. Like the COST
2100 model, the WINNER model produces multipaths for
any segment, using clusters and scatterers [190, 191]. For
the WINNER model, a block diagram representing the chan-
nel coefficient generation procedure is given in Figure 15. A
detailed report on model validation is given in [192]. A com-
parative analysis shows the SCM performances and the
extended SCM, and the generic WINNER channel model is
given in [193].

5.7.2. WINNER II Multilink MIMO Channel. The revision to
the 1st WINNER model gave birth to the WINNER II model
[188]. As illustrated in Figure 16, the geometry-based sto-

chastic model of the multilink method is a standard-level
model. For all the radio links between the BS and MS to
be realized, the propagation environment should be well
specified. In this model, simultaneous stimulation of the mul-
tilinks between the BSs and the MTs can be easily recognized.
In contrast, in the SCM model, each simulation is run sepa-
rately for each connection. When parameters of large scale
are correlated, the correlation between multiple links can be
introduced. This is because correlation is a distance feature
as per implemented multisegment scenarios [194]. One of
the fascinating aspects of the modified WINNER model is
that large-scale statistics can be derived for any realization
scenario [52]. However, in each case, the propagation envi-
ronment’s initialization does not link realizations readily, in
an independent manner, which is an essential requirement
for evaluating the time variations induced by the users’
motion. This implies that, at the system level, the model
forces this consistency, making the model lacking in flexibil-
ity. This presents problems with the basic extension of
the WINNER II multilink MIMO channel model. Typical
large-scale parameters for this model at 2.53GHz in an urban
macrocell setting are provided in [195]. Following the
description in [196–198], the QuaDRiGa project gave an
extension to the WINNER II/+ models, and Table 3 provides
a comparative analysis of the 3D channel models: WINNER
II, WINNER+, and 3GPP channel model [199].

5.8. SUI and IEEE 802.xx Channel Models. The SUI and
the IEEE 802.xx channel models are presented in Table 4.
The IEEE 802.xx channel models comprise the IEEE
802.11n channel model, IEEE 802.16a model, and the IEEE
802.16d/e channel models.
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scenario, network 
layout and antenna 

parameters

Step 2: Assign 
propagation 

condition 
(NLoS/LoS, 

indoor/outdoor)

Step 9: Generate 
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path loss and 
shadowing
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Figure 17: Block diagram illustrating the steps for channel generation in the 3GPP 3D model.
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Table 5: Description of critical aspects of the 3GPP 3D channel model.

S/N.
The aspect of 3D
channel model

Brief description

1.
Applicability of the
3D channel model

The height of the eNB in the 3D-UMa is around 25m higher than the buildings’ heights in the vicinity. In this
case, the prevalent propagation technique for indoor and outdoor UEs is built over the roof’s diffractions.

Similarly, for 3D-UMi, the eNB is considered to be 10m below the surrounding buildings. Consequently, the
signal intensity obtained at the UE is a combination of signal propagation mechanisms over the rooftop and the
surrounding structures. The building density, building heights, and street orientation were considered to derive

this model for proper ray-tracing, simulations, and field measurements [199].
For carrier frequencies in the 2-6GHz range, with up to 100MHz bandwidth, the 3D channel model is valid. The
model has validity in the neighborhood of 1.5m to 22.5m for UE heights. The 1.5m height is essentially the level

of a street. As reported in [199, 213, 214], an indoor UE can be linked with a height denoted by hUE = 3
nfloor − 1ð Þ + 1:5, where nfloor refers to the floor number, which has a uniform distribution between 1 and N floor,
and N floor is the building height in floors. More specifically, this is uniformly distributed between 4 and 8. The
height of the outdoor UEs can typically be taken to be 1.5m. This aspect demonstrates the extension of the

current 3GPP and ITU-R specifications, where a street-level UE is normally modeled.

2. Antenna modeling

For each antenna elements in the 2D channel model, corresponding channel responses are generated in the 3D
channel model, among other details. It is worthy to note that 3D channel modeling helps address some

significant limitations of the 2D channel model.
The polarization is another parameter worth noting. It is a crucial feature required in the modeling of antennas.
Suppose the cross-polarized transmit antenna pair of ±45/45 degrees is considered. In that case, the constant
polarization model tends to bring about an equal power split for all UE positions in the vertical and horizontal
directions. On the other hand, equal power split at the antenna boresight in both the vertical and horizontal
directions is seen via the slanted dipole polarization model. However, the power split ratio depends on the UE
position in both azimuths and elevation measurements. It can be inferred that the antenna patterns of the

simulated eNBs affect the use of a particular polarization model in any simulation scenario.

3.
LoS probability and
path loss modeling

Line of sight likelihood and path loss are primary parameters often considered in MIMO channel modeling. The
effect on LoS likelihood and path loss modeling of various UE heights ranging from 1.5m to 22.5m for the 3D-
UMa and 3D-UMi scenarios has been documented [199] [215]. Simulation of the likelihood of LoS, path loss,
and the fast fading channel’s characterization requires the inclusion of the channel model’s building dimensions.
In 3GPP, a decision was reached to adopt the stochastic modeling method used in the SCM and WINNER II,
independent entirely, on the building/street orientation dimensions. In the development of the 3D-UMa and
3D-UMi, some of the 2D channel model parameters were used. This results in enormous savings in propagation

measurement costs and reduces computational complexity for simulations at the machine level [199].

4.
Path loss modeling
(LoS and NLoS)

In 3GPP, the LoS path modeling is achieved by applying the 3D distance separating the eNB from the UE. The
coefficients for 3D-UMa and 3D-UMi by using LoS path loss equations were specified in the ITU working

documents. For the modeling of NLoS path loss, in a 3D-UMa environment, the dominant propagation paths
appear to move over rooftops via multiple diffraction, by diffraction occurring at the edge of a building, following
the report in [214]. Measured data recorded by 3GPP [214] shows that the path loss increases with the diffraction
angle as the UE moves from a high floor towards a low floor. A linear term for the height-gain expressed as −

α h − 1:5ð Þ is implemented for functional modeling, and α dB/mð Þ is referred to as the gain coefficient.

5. Fast fading model

For a cellular downlink, fast fading can be represented such that the AoA and the AoD are specified on the UE
side and eNB side, respectively. The time variance of wireless channels coordinated by a mix of multipath and

UE motion is modeled by fast fading channel coefficients.
Further information on fast fading is available in the 3GPP recommendation document [199, 214], explaining
how the radio channels are formed. As shown in Figure 16, the channel realizations followed a hierarchical
protocol. It is worth noting that there is no description of the propagation between the first and the last

interaction. This method could aid in modeling several interactions with the scattering media. For example, this
is an indication that the geometry cannot achieve the delay of multipath. Parameters of arrival and departure
have to be exchanged for the uplink case, and presumption is made for the downlink scenario. The channel
coefficient generation process from steps 4 to 11 for the LoS O2I scenario is the same for the NLoS scenario

illustrated in Figure 16.
In general, the channel generation equation is correctly updated in the last step of the channel generation

coefficient to account for the ZoAs and ZoDs. A structure for studying 3D channel model extensions and features
is given in [216], and preliminary results on 3D channel modeling are presented in [217]. Further to this, the
reports in [218, 219] also include implementing, validating, and deploying the open-source simulation software

model.
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6. 3D Channel Modeling

Two key performance indicators of great significance in wire-
less communication systems are the link’s SE and reliability
[207, 208]. The current 2-dimensional (2D) channel models
presented in [209] from the SCM, ITU, and WINNER II
are essential candidates for channel modeling and character-
ization. However, these models cannot capture the eleva-
tion’s characteristics, and as such, their applications are
limited to the azimuth dimension. Thus, there is a need for
channel models capable of 3D applications to create and
assess multiple antenna techniques involving elevation char-
acteristics [210, 211].

3GPP recently reported a 3-dimensional (3D) channel
model [212, 213] to accommodate the 2D channel model
limitations. Leveraging on the degree of freedom provided
by the 3D channel, it is easy to align the beamforming poten-
tials for every user at various locations, thus enhancing the
signal intensity obtained at the Rx and mitigating the poten-
tial impact of interference with colocated users in the same
channel [212].

The 3D channel model development follows the WIN-
NER+/WINNER II paradigm with extensions involving
some parameters related to height and distance-dependent
elevation. This led to the development of multiantenna trans-
mission techniques using large-scale antenna structures, and
the potentials of a MIMO channel’s 3D spatial dimensions
were also exploited by 3GPP [188].

The 3D channel model discussed here is a geometry-
based stochastic model. COST 259, COST 273, COST 2100,
SCM, and WINNER II/+ channel models follow the

cluster-based approach and extend the 2D channels from
the ITU/WINNER II models. Channel generation steps for
the 3GPP 3D model are illustrated in Figure 17. Further
information about the 3D channel model applicability,
antenna modeling, probability and path loss of LoS, and
model fast fading are given in Table 5.

6.1. Transitioning from 2D to 3D Channel Modeling. The
transition from 2D to 3D channel models has seen remark-
able improvements worth noting in this paper. The changes
observed include UMa and UMi outdoor to indoor users,
3D UE dropping, distinct path loss expressions, high-rise sce-
nario, large-scale distance-dependent parameters, and UE
attachment policy. These are briefly described in Table 6.

7. Open Research Issues

There is no doubt that some studies have been carried out in
wireless communications, especially as it relates to radio
propagation channel modeling in MIMO communication
systems. However, there are still open research areas in this
field yet to be adequately explored. While this list is not
exhaustive, critical areas of current relevance to wireless
communications are highlighted briefly in Table 7.

8. Lessons Learned

In this survey, several lessons are drawn. These include but
not limited to (1) difficulty in the development of generalized
propagation channel models, (2) dependency of emerging
wireless channel models on earlier channel models, (3)

Table 6: Parameters for the transitioning from 2D to 3D channel modeling.

S/N. Parameters Description

1 3D UE dropping

Earlier channel models specified that the UE is at 1.5m in height. In this case, the propagation distance
determines the elevation characteristics of the direction of the LoS. The closer the UE to the BS, the higher
the elevation, relative to the direction of the LoS. As a result, users experiencing related slow fading channel
conditions would display closely related elevation in the direction of the LoS, and it will be challenging to

distinguish vertically. Fortunately, TSG-RAN WG1 [214] has given a 3D UE drop to ease the vast
limitations. The latest UE drop allows users to be outside in only 20 percent of the cases, where their height

is maintained at 1.5m.

2
Outdoor to indoor users

for UMa and UMi

According to ITU’s modeling specifications, the outdoor to indoor relationship demonstrates a
propagation mode specified in the urban-microcell scenario in [213] to help UEs located within buildings.

The latest 3GPP channel model has expanded this to UMa as well.

3 High-rise scenario

The high-rise case was suggested to characterize the UE channel on very high floors (more than 20),
following the report [214]. Also, indoor distributed antenna systems can be implemented to assist users in
such buildings. Still, this solution cannot always be extended to high residences, and improved results have

been suggested for uptilt beams.

4
A new expression for

the path loss

The path loss is dependent on the frequency of transmission, the distance of the UE from the BS, and the
heights of the antennas used for radio signal transmission and reception. Following the results of

comprehensive measurements, the working group, TSG-RAN-WG1 [214], updated the ITU channel
model’s path loss expression to accommodate UE height’s effects in the NLoS scenario. Finally, the path

loss expression used a 3D distance to replace the 2D distance.

5
Distance-dependent
large-scale parameters

At the meeting, 3GPP [214] suggested modeling elevation characteristics as lognormal random variables
with specified parameters for UMa scenarios.

6
The policy used for
UE attachment

In addition to estimating the path loss for the reference signal received power (RSRP), an agreement was
also reached at the meeting to account for fast fading. The RSRP estimation depends only on slow fading

components and path loss before this decision [214].
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Table 7: Open research issues.

S/N. Open research issues Brief explanation

1.
Large-scale measurements at mmWave

and Terahertz bands

First, conducting large-scale channel measurements is a major concern. It is still very
difficult to carry out large-scale channel measurements, due partly to the complex nature of
the dynamic environment, especially for outdoor scenarios, and the sophisticated equipment
that is required for such measurements in the mmWave [177, 220] and Terahertz (THz)
[221] bands. In the case of double-directional channel measurements, switched channel

sounders have been used. To the various antenna elements, and in a sequential manner, the
sounding signal produced from a single waveform generator is applied. The received signal

measurements follow this in a fashion similar to the transmitted signal, and this
measurement type has some inherent limitations. First, radio signals transmitted via cables
to the antennas from the waveform generator, usually located several miles away, is costly
and quite tasking, contributing to large signal attenuation [222]. Fiber optic cables have been
deployed for electrooptical conversion and transmission of signals to solve this problem.
However, proper calibration and temporal stability are still crucial issues that require further

investigation.

2. Multilink channel measurements

In practice, it can be very tedious to establish critical parameters required for multilink
modeling. These parameters include correlation information on the angular spreads and
joint cluster identification. Most measurements cannot give the necessary joint double-

directional evaluations of multiple transmitter and receiver locations. Consequently, system
designs requiring such parameters are seriously hampered. There is a need for a

comprehensive model to accommodate these key parameters. Multilink channel models
often present some difficulties related to modeling the correlation properties between the
different links. This is because the different links appear to identify both joint clusters and
disjoint clusters. This scenario can be very worrisome due to the challenging correlated

shadowing processes. Future research could explore high-reliability techniques to simplify
the modeling of the correlation properties of multilink channels.

3.
High-precision measurements

equipment

Mobile devices and applications have witnessed a tremendous surge in usage by millions of
subscribers in recent years. This poses the need for large-scale measurements. Larger

bandwidth fuels the demand for near precise frequency references, leading to an increase in
the amount of data collected, usually in thousands of megabytes. The measurement

campaign will most likely continue to be the method of investigating channel models. If
reliable information related to the channel is required, the measurement equipment must be
well designed with high precision and reliability. Future research could be directed towards

more sophisticated, efficient, and high-precision measurement equipment.

4. Directional characterization

Directional characterization is still a major problem in mmWave channels. Although the
IEEE 802.15.3c [223] and IEEE 802.11ad [224] models provide useful information on
directional characterization, there is still an urgent need for extensive measurement
verification in different environments. Future studies could also be directed towards

investigating the impact of moving objects and human beings’ movement obstructing the
LoS on the polarization properties. Also, in mmWave and Terahertz channels, the

characterization of temporal variations remains an open issue.

5. Channel model parameterization

Channel model parameterization is still a critical area that needs to be addressed. Most
channel models have been parameterized for easy characterization of the stochastic radio
channel responses, especially in multilink MIMO systems with spatial correlation properties
[92]. For example, it was reported in [171] that the COST 2100 channel model gives practical

results, which include several channel properties for proper modeling. However, this
model’s extension will require much effort in new field measurements to parameterize

adequately and validate the extended model [225]. Future research could also be channeled
towards investigating how the various modeling approaches and parameterizations affect
the systems’ performance and how they can be designed for the most efficient operation in
those channels. A better understanding of the propagation channels will provide a very good
platform for efficient system designs, to ease the applicability of channel models, especially

in outdoor-to-indoor scenarios.

6. Channel elevation characteristics

Most findings on elevation characteristics [226, 227] of the channel are based on ray-tracing
simulations. There is a need for a model, especially for outdoor to indoor links. This will help
the mobile station’s proper positioning since its height is critical to the studies related to
wireless channels’ elevation characteristics. Also, there is a need to investigate further how
the indoor floor plan and the horizontal positioning of the mobile inside the building impact
the channel elevation. A summary of previous research work focusing on 3Dmodeling, with

particular interests in elevation characteristics, is reported [228].
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extensive measurement campaign requirements, (4) in-depth
knowledge of the wireless propagation environment, and (5)
high cost of the design of high-precision measurement equip-
ment. These are briefly discussed as follows.

8.1. Difficulty in Developing Generalized Channel Models.
This survey has revealed no single channel model fits all envi-
ronmental conditions. Currently, it is still challenging to
include all environmental requirements in one channel
model. This is because the radio environment is quite
dynamic, and the geographical characterization of one envi-
ronment is different from another environment due partly
to the terrain and structural differences. Toward this end,
wireless communication engineers need to improve on the
existing design techniques to include the required environ-
mental factors or features to design highly robust channel
models for future wireless communication systems.

8.2. Dependency of Emerging Wireless Channel Models on
Earlier Channel Models. This survey has also revealed that
the development of recent and future learning-based predic-
tive channel models would require, to a considerable extent,
adequate knowledge of the existing channel models. This
implies that a thorough knowledge or deep understanding
of the earlier channel models will inevitably develop new
learning-based channel models to support future wireless
communication systems.

8.3. Extensive Measurement Campaign Is Required for
Accurate Model Validation. This survey has shown that an
extensive measurement campaign is an essential requirement

for channel model validation. It is usually very hard to vali-
date theoretical models without testing the models with
real-world propagation measurements. The need for exten-
sive propagation measurements, especially at the higher-
frequency bands, is very crucial to proper model validation.

8.4. Deep Knowledge of the Wireless Propagation
Environment. Another lesson learned from this survey is that
adequate knowledge of the wireless propagation environ-
ment is an essential requirement for effective channel model-
ing. More accurate prediction models are achievable when
sufficient information about the investigated environment
are included in the model’s design.

8.5. High Cost of the Design of High-Precision Measurement
Equipment. Another major lesson learned from this survey
is that it is costly to obtain high-precision measurement
equipment. For example, the design of cutting-edge measure-
ment equipment for the mmWave and Terahertz bands is
still a big issue [240]. This is due mainly to the high design
cost of such equipment and the high-level research and
development requirements. Further research efforts would
be required for designing highly efficient and cost-effective
measurement equipment.

9. Conclusion

An extensive survey on standard radio propagation channel
models for MIMO communication systems has been pre-
sented in this paper. Starting with the fundamental MIMO
channel model, the highlights of critical requirements for

Table 7: Continued.

S/N. Open research issues Brief explanation

7. Massive MIMO systems

Conducting large-scale measurements in massive MIMO systems is still a major issue. This
is because the temporal variability is relatively small, but many antenna elements require
switching. The design of switches for such applications is still a huge issue. It is challenging
to design switches for mmWave frequencies [72, 229]. This is why antennas that require
mechanical forces to be moved or rotated are in use at such frequencies, and this method is
time-consuming and computationally expensive. Future work could explore more efficient

and low-cost techniques for conducting large-scale massive MIMO measurements.

8. Vehicular communications

Several research works related to vehicle-to-vehicle communications have been reported
[230–235], especially in the developed cities of the world. Critical parameters, such as path
loss and delay spread in different environments, have been reported [236, 237]. The vehicle
types in use and the antennas’ positioning call for major concerns [238]. In the first place,
there are several hundreds of heavy-duty trucks and buses plowing the highways, but much
has not been reported about such vehicles. Besides, there is a need to carefully investigate the
impact of such heavy-duty trucks on the transmitters and receivers. We need to know how
the shadowing will be impacted if a big truck or a bus is positioned between the transmitter
and receiver. Also, we need to investigate how cars’ parking on the sides of the road could
impact communication systems. Hopefully, these findings will provide viable insights

required for the design of safety-critical applications.

9.
Machine learning-based

channel modeling

The design and development of machine learning-based signal prediction algorithms are
still a significant issue. This is due partly to the lack of a comprehensive dataset for the

development and testing of the models, especially at the Terahertz bands. For example, in
[239], the proposed artificial neural network path loss (PL) model’s environmental features
could not give the desired descriptions of the actual propagation characteristics due to
inadequate information about the height. This ultimately affects the accuracy of the

proposed PL prediction models.
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MIMO channel modeling, channel sounding, and MIMO
technology classifications are presented. A general overview
of some well-known channel models, which are of vital inter-
est in wireless communication systems, is discussed, empha-
sizing their strengths and limitations. The models are broadly
categorized into physical, analytical, and standardized chan-
nel models. The physical models appear to propagate radio
signals in double directions, independent of the antenna
properties. The analytical models seem to focus more on
the impulse response of the channel and antenna characteris-
tics. The standard models often described as reference
models are most popular and find practical applications in
emerging wireless communication systems. Additionally,
the recent 3D channel model provided by 3GPP was evalu-
ated, and the transitioning from 2D to 3D channel models
was highlighted. Finally, a comparative analysis of some
emerging channel models was presented. Several open issues
and key lessons learned for future research in wireless prop-
agation measurements, channel modeling, and MIMO com-
munication systems are discussed extensively.
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