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Abstract

We propose a novel method of incorporating physical knowledge as an additional
input to the discriminator of a conditional Generative Adversarial Net (cGAN). Our
proposed approach, termed as Physics-informed Discriminator for cGAN (cGAN-
PID), is more aligned to the adversarial learning idea of cGAN as opposed to
existing methods on incorporating physical knowledge in GANs by adding physics
based loss functions as additional terms in the optimization objective of GAN. We
evaluate the performance of our model on two toy datasets and demonstrate that
our proposed cGAN-PID can be used as an alternative to the existing techniques.

1 Introduction
Although state-of-the-art deep learning models (like Deep Neural Nets, Convolutional Neural Nets,
Recurrent Neural Nets, Deep Generative Models, etc.) [8, 9, 11] have experienced enormous success
over the last decade in numerous fields, they have often been questioned for their lack of robustness
and interpretability. The ability of a model to perform uncertainty quantification (UQ) is often
considered as a first step in the direction towards robust and interpretable model learning. Uncertainty
quantification can be achieved in multiple ways [2, 4], one of them being, Monte Carlo (MC)
Dropouts [5], which can be applied to any predictive deep learning model. Another more natural way
of obtaining uncertainty estimates is through generative modeling [12], where a distribution on the
outputs can be obtained by varying the built-in random noise vector z. An even challenging task,
especially in scientific problems, is the ability of the model to adhere to previously known scientific
knowledge. One of the promising lines of research in this direction, referred to as the physics-guided
learning (PGL) paradigm [6, 7], focuses on guiding the learning algorithm by penalizing the model
during training whenever scientific principles are violated in the model outputs, captured using physics
loss (PhyLoss) functions. A primary motivation of this work is to incorporate scientific knowledge
into deep learning models while performing UQ. Specifically, we are looking at a predictive modeling
task, where we want to train a neural network fθ(.) to learn the mapping from the inputs x to output y,
fθ : x −→ y to get to the posterior distribution of the outputs P (fθ(x)|x), while minimizing deviations
from existing scientific knowledge, i.e., minθ PhyLoss(x, fθ(x)).

A naïve appraoch to incorporate physical knowledge while performing UQ is to use the PGL paradigm
in conjunction with MC Dropouts to estimate the posterior distribution P (fθ(x)|x). However, as
demonstrated in a recent work [3], this approach can fail miserably as a model trained using PGL
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can easily become physically inconsistent with minor perturbations in model weights such as those
introduced by MC Dropout. In case of generative models, physics loss has already been incorpo-
rated in the generator loss in existing works [12], where they consider the following optimization
objective for generative adversarial networks (GANs): minG Ez∼pz(z)[log(1 −D(G(x, z), x))] +
λphyPhyLoss(x,G(x,z)) and maxD Ez∼pz(z)[log(1−D(G(x, z), x))]+Ey∼pdata(y)[logD(y, x)], for
the generator G and discriminator D, respectively. However, this does not take the full advantage of
the adversarial learning strategy that makes GANs such powerful tools. In particular, adding PhyLoss
as another term in the objective function of generator can be interpreted as adding a separate auxiliary
task to the primary task of adversarial learning by minimizing GAN-based loss terms. Note that this
is a common characteristic of the PGL paradigm where PhyLoss is simply added as an auxillary
task (with a constant trade-off hyper-parameter) to the primary task of minimizing data-driven loss
fucntions such as the mean-squared error(MSE) or binary-cross entropy (BCE) loss.

In this paper, we explore a novel direction to incorporate physical knowledge directly into the
adversarial learning strategy of conditional GAN (cGAN) models by using a transformation of the
physics loss as an additional input in the discriminator along with the input x. We refer to our
proposed approach as physics-informed discriminator for cGAN (cGAN-PID). We demonstrate that
cGAN-PID shows good generalization performance on two toy datasets for both in-distribution and
out-of-distribution predictive tasks, while showing reduced sensitivity to the choice of trade-off
hyper-parameter controlling the importance of physics loss in the learning procedure.

2 Proposed Method
We use a conditional GAN (cGAN) formulation in this paper for predictive learning. In a cGAN
setting, the generator G learns the mapping from the input vector x and some random noise vector
z to y, G : (x, z) −→ y. The generator is trained to make predictions ŷ = G(x, z) which cannot be
distinguished from “real” outputs by an adversarially trained discriminator D. The discriminator D,
on the other hand, is trained to detect the generator’s “fake” predictions as well as possible. We can
also compute physical inconsistency PhyLoss(x, ŷ) of the generated predictions using the physical
knowledge which are often available in the form of constraints.
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Figure 1: A schematic representation of the training procedure for the proposed Physics-informed
Discriminator for cGAN (cGAN-PID).
We propose a novel more natural way of incorporating physics into the adversarial learning framework
of cGAN where we provide a measure of physical consistency nphy for each generated prediction
as an additional input to the discriminator (See Figure 1). The motivation of adding physics into
the discriminator is to aid the discriminator such that it not only distinguishes between a real and a
fake sample by learning from the underlying data distribution but also uses the additional physical
knowledge (nphy) to make the distinction. A simple way of defining nphy is as follows:

nphy = f(λphyPhyLoss(x, ŷ)), (1)
where f(.) is some monotonic transformation function and λphy is a trade-off hyperparameter.

In this paper, we use an exponentially decaying transformation function for f(.), i.e., nphy =

e−λphyPhyLoss(x,ŷ). Note that if PhyLoss(x, ŷ) = 0, i.e., the predictions completely obey the known
physics, then nphy = 1. Conversely, when PhyLoss(x, ŷ) is very large, i.e., the predictions have
large deviations from the known physics, nphy −→ 0. This allows us to interpret nphy as a likelihood
score of the generated sample being physically consistent, a larger likelihood score indicates greater
physical consistency.
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Moreover, we adapt a similar formulation to [10], where we use an additional network Q to learn
the mapping Q : {x, ŷ} −→ z. This network delivers stability in the training procedure by mitigating
mode collapse while providing a variational approximation to true posterior over the latent variables
z.

The overall learning objective of the generator and the discriminator for the cGAN-PID is shown
below:

min
G

max
D

V (D,G) = Ey∼pdata(y)[logD(x, y, 1)] + Ez∼pz(z)[log(1−D(x,G(x, z), nphy))]

+ λQ Ez∼pz(z)[(z −Q(x,G(x, z)))2] (2)

It must be noted that we use nphy = 1 when we show “real” samples to the discriminator as we
assume all “real” samples are physically consistent.

3 Dataset Description
We demonstrate the efficacy of our proposed approach on the following two datasets.

3.1 Synthetic Toy Dataset

First, we create a synthetic toy dataset to model a 2D-wave (See Figure 2(a)) given by the equation
3. We additionally impose a constraint on the output z, such that it should lie on the surface of a
sphere of radius 2 units given by the Equation 4. We discretized both inputs x and y between the
interval [-2,2] into 10,000 points and then sampled points from the intersection of the two curves
with a tolerance value of 0.00001. As a result, we obtain a dataset with 300 points where both the
Equation 3 and 4 are satisfied. We divide this dataset into two different training and test splits, to test
the performance of the model on in-distribution and out-of-distribution test samples (See Figure 2(b)
and 2(c)).

z = sin(x) + sin(y) (3)

x2 + y2 + z2 = 4 (4)

(a) Schematic Representation of Syn-
thetic Dataset

(b) In-Distribution Training-Test
Split

(c) Out-of-Distribution Training-Test
Split

Figure 2: Synthetic Toy Dataset

3.2 Collision Dataset

We used a simulation dataset from the paper [1] to evaluate our proposed PID architecture. The
dataset uses the speed of two objects at the two initial time stamps {va1 , vb1 , va2 , vb2 }, mass {
ma,mb }, distance between the objects D as input x to estimate their speed after collision {vaf , vbf }.
The physical constraints of momentum and energy conservation for this problem are shown in
Equation 5 and Equation 6, respectively. In this problem, we computed the physical loss as the sum
of inconsistencies in these energy and momentum equations.

mava1 +mbvb1 = mavaf +mbvbf (5)
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4 Results

We use the standard conditional GAN (cGAN), cGAN trained with additional physical loss (cGAN-
PhyLoss), and multi-layer perceptron (MLP) trained with additional physics loss (MLP-PhyLoss) as
baselines to compare the performance of our proposed model (cGAN-PID). For the MLP-PhyLoss
model we utilize dropout [5] to approximate the posterior distribution of the target variable (with
dropout rate = 0.2). We use a sampling size of 10000 to obtain the distribution for both cGAN-based
models and MLP-PhyLoss. For evaluation metrics, we use Mean Root Mean Squared Error (RMSE)
and Mean physical inconsistency, i.e., we use the mean of our predicted distribution to calculate the
RMSE and the physical inconsistency.

4.1 Synthetic Dataset

4.1.1 In-distribution and Out-of-distribution Results

On the synthetic dataset, we evaluate the performance of the various baselines for both in-distribution
and out-of-distribution test setups. We observe that for both evaluation setups, using any form of
physics supervision in the deep learning models helps to achieve better generalizability which is
reflected through lower Mean RMSE as well as lower mean physical inconsistencies in the predictions.
From Table 1, we see that cGAN-PID outperforms the existing baselines in terms of both Mean
RMSE and mean physical inconsistency across both evaluation setups. It must also be noted that
the variance of the mean RMSE for cGAN-PID is the least indicating less variability to random
initialization, which is again desirable.

In-Distribution Results Out-of-Distribution Results

Test Mean RMSE Test Physical
Inconsistency Test Mean RMSE Test Physical

Inconsistency
cGAN 0.134± 0.030 0.181± 0.046 0.579± 0.012 0.520± 0.027

cGAN-PID 0.021± 0.003 0.026± 0.006 0.489± 0.003 0.428± 0.040
cGAN-PhyLoss 0.048± 0.007 0.007± 0.016 0.549± 0.010 0.481± 0.015
MLP-PhyLoss 0.135± 0.010 0.173± 0.015 0.676± 0.013 0.596± 0.032

Table 1: In-distribution and out-of-distribution results on the synthetic toy dataset for 10 random
runs. We choose λphy = 0.2 for cGAN-PID, λphy = 0.5 for cGAN-PhyLoss, and λphy = 10 for
MLP-PhyLoss.

4.1.2 Sensitivity of trade-off hyper parameter
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Figure 3: Plot to show the sensitivity of λphy for
cGAN-PID vs cGAN-PhyLoss.

Note that the choice of the trade-off hyperparam-
eter (weighting PhyLoss with other loss terms)
plays a crucial role in the PGL paradigm. Here,
we demonstrate that by varying the trade-off
hyperparameter for both the cGAN-PID and
cGAN-PhyLoss models. Figure 3 shows that
for cGAN-PhyLoss, after a particular value of
λphy , both the training and test RMSE skyrock-
eted. This can be explained using the analogy
between the PGL paradigm and multi-task learn-
ing. Since, we can treat the PhyLoss as an aux-
iliary optimization task, so once we give too
much weight on the auxiliary task by increasing
the value of λphy, the model tries to optimize
only for the PhyLoss rather than optimizing the
primary objective which is the adversarial loss
in this case. This results in the cGAN-PhyLoss
model not converging, thus producing high test/train RMSE.
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4.2 Collision Dataset

For the collision dataset, we can observe from Table 4.2 that cGAN-PID, cGAN-Phyloss, and MLP-
PhyLoss perform better than cGAN, which re-establishes the idea that integrating physical knowledge
into the learning algorithm improves the generalizibility of models on unseen test instances. The
cGAN-PID again outperformes all other baselines by a significant margin in terms of Mean RMSE.
Also, the cGAN-PID obtains the least physical inconsistency, which further demonstrates that by
introducing an additional term in the discriminator we are indeed able to make the predictions more
physically consistent and perhaps it might be even better than the conventional PGL paradigm of
using loss functions in this special case of adversarial learning.

Test Mean RMSE Test Mean Physical
Inconsistency

cGAN 2.318± 0.433 36.910± 6.520
cGAN-PID 0.712± 0.073 14.008± 3.300

cGAN-PhyLoss 1.048± 0.063 21.367± 2.016
MLP-PhyLoss 1.003± 0.027 26.178± 1.620

Table 2: Results on Collision Dataset for 10 random runs. We choose λphy = 0.005 for cGAN-PID,
λphy = 0.1 for cGAN-PhyLoss, and λphy = 0.001 for MLP-PhyLoss.

5 Conclusion and Future Work

In this paper, we provide preliminary results in favor of a novel approach for incorporating physical
knowledge as an additional input in cGANs, termed as cGAN-PID, which could be used as an
alternative to the existing PGL paradigm. We also demonstrate that cGAN-PID shows lower sensitivity
to the choice of the trade-off hyperparameter. There are numerous directions which could be explored
from here on. The choice of transformation f(.) used to obtain nphy could be further explored. Also,
efforts could be made to learn the trade-off hyper-parameter λphy or even adaptively change it during
the training process. Furthermore, scientific laws are often based on oversimplified assumptions
which are sometimes incomplete/incorrect. We will experiment the effectiveness of our cGAN-PID
framework, in scenarios with imperfect scientific knowledge in future work. Further, we will also
explore other ways of incorporating imperfect scientific knowledge in softer ways as additional inputs
to the cGAN generator can be explored in future work. Future work can also demonstrate the effect
of cGAN-PID on uncertainty quantification and extensions of PID to other GAN based formulations.

Broader Impact

Our work presents a novel way of incorporating physics in GAN formulations, which have several
potential impacts on science and society. GANs are increasing being used in a number of commercial
applications such as style transfer and photo-realistic image generation, as well as scientific applica-
tions such as particle physics and hydrology. In many of these applications, incorporating physics in
GAN formulations can lead to better predictions than black-box GAN formulations.
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