
Integrated Framework for Dairy Feeding

Authors

Dwarakh Nayam

Kevin Kapros

Mike Silvasy

Oliver Stein

Evan Webb

Ger Vue

Multimedia, Hypertext, and Information Access Report

Instructor: Dr. Edward A. Fox

Clients:

Mark Hanigan, Dairy Science Professor

Wu Feng, CS Professor

May 14, 2021

Blacksburg, Virginia 24061

Contents

List of Figures vi

List of Tables viii

Executive Summary 1

1 Project Description 2

2 Requirements 3

2.1 Website . 3

2.2 Data Acquisition . 4

2.3 Data Reports . 4

2.4 Anomaly Detection . 4

2.5 What Tools Did We Use? . 5

3 User Manual 6

3.1 Overview . 6

3.2 Purpose . 6

3.3 Farmers . 7

3.3.1 User Sign Up Process . 7

ii

3.3.2 Farms . 10

3.3.3 Edit/Update Ingredients . 12

3.3.4 Edit/Update Mixes . 13

3.3.5 Edit/Update Diets . 16

3.3.6 Analysis . 17

3.4 Data Management Team . 18

3.5 Admin(s) . 18

4 Developers Manual 20

4.1 Overview . 20

4.2 Getting Started . 20

4.3 Front End . 21

4.3.1 Design . 21

4.3.2 Ingredients . 25

4.3.3 Mixes . 26

4.3.4 Diets . 27

4.3.5 File Uploads . 28

4.3.6 R Analysis . 28

4.4 Back End . 28

4.4.1 Django Framework . 28

iii

4.4.2 Data Parsing . 34

4.4.3 Alerts . 35

4.5 Docker . 38

4.5.1 Dockerfile . 38

4.5.2 Apache Configuration . 40

5 Methodology 42

5.1 Outline . 42

5.2 Farmer Goals . 42

5.2.1 Farm Management Tasks . 43

5.2.2 Ingredient Retrieval Tasks . 44

5.2.3 Create Mixtures Tasks . 45

5.2.4 Create Diets Tasks . 47

5.2.5 File Upload and Data Injection Tasks 47

5.2.6 Retrieve Dairy Production Data . 48

5.3 Data Management User Goals . 48

5.3.1 Receive Notifications Upon Dietary Changes Tasks 49

5.3.2 Monitor Farmers Production Data 50

6 Testing 51

6.1 Farm . 51

iv

6.2 Ingredients . 51

6.3 Mixes . 52

6.4 Diets . 53

6.5 Storage . 53

6.6 Data Uploading . 53

6.7 Staff Notifications and Commit . 54

6.8 R with Python . 55

6.9 Troubleshooting . 55

7 Lessons Learned 57

7.1 Timeline/Schedule . 57

8 Future Work 60

9 Acknowledgement 62

10 References 63

v

List of Figures

3.1 Register for an account . 7

3.2 Registration example . 8

3.3 Activation page example . 9

3.4 Activation email . 9

3.5 Add farm information . 11

3.6 Updated farm . 12

3.7 Ingredient was copied and moved to the local table 13

3.8 Adding an ingredient to a mix . 14

3.9 Create a mix composed of ingredients . 15

3.10 Created mixes in the mixes page . 15

3.11 Adding a mixture to a diet . 16

3.12 Create a diet composed of mixtures . 17

3.13 An image displaying admin user permissions 19

4.1 First design of a farmer’s local ingredients 22

4.2 First design of the default ingredients that a farmer will choose from 23

4.3 Final wire-frame design for viewing user and default ingredients. 24

4.4 Uploading Files HTML Format. 28

vi

4.5 An image of the weather model . 34

4.6 An image of the weather model . 34

4.7 An image of some of the user profiles . 35

4.8 An image of an ingredient edit notification email 35

4.9 Staffs link to commit user edits . 36

4.10 Staffs view to see a user edits on an ingredient 36

4.11 Staffs view to see possibly affected mixes on an ingredient edit 37

4.12 Staffs view to see possibly affected storage ingredients on an ingredient edit . 37

4.13 Dockerfile for the dairy_feeding_framework Docker image 38

4.14 api.conf file used by Docker image to configure Apache Server 41

5.1 Farm registration and management work flow 44

5.2 Ingredient retrieval task work flow . 45

5.3 Create mixture task work flow . 46

5.4 Creating the diets task work flow . 47

5.5 Retrieve dairy production data work flow . 48

5.6 Notifications when editing an ingredient work flow 49

5.7 Monitoring data in production work flow . 50

7.1 An image of our timeline . 57

vii

List of Tables

4.1 Files related to the front-end . 25

4.2 Files related to the mixes . 26

4.3 Files related to the diets . 27

viii

Executive Summary

Cattle farmers today have technology such as total mixed rations trackers that gather feeding

data with respect to nutrients and total amount of feed consumed by pens of cattle [11]. An

online platform that could help farmers manage nutritional diets for an individual cow and/or

pens of cattle based on statistical feedback from milk production would serve as a useful

complimentary tool to existing total mixed rations tracking technologies. A potential online

platform such as the one described could prevent the use of excess nutrients during feeding,

mitigate costs, as well as optimize dairy production and herd health. These aforementioned

potential benefits are exactly what the Integrated Dairy Feeding Framework aims to provide.

The web platform created by our team provides farmers with a simplistic and practical

interface that allows them to construct new diets for their cattle based on the statistical

feedback of their previous milk composition data and health reports with the intention of

generating healthier cattle capable of producing higher quantities of milk as well as a higher

quality milk product for the consumer.

1

Chapter 1

Project Description

The goal of this project is to produce a web framework that provides data management and

analysis tools for dairy farmers, as well as information and manipulation of data regarding

their herds’ diets, ingredients, feeding details, and other preliminary and tertiary data aspects

such as weather data and particular statistical analyses. The specific target audience/user

base is the subset of farmers who are bovine dairy-oriented farmers who currently utilize

a sister technology called Select Sires[10] for “developing and delivering innovative genetic

solutions”.

Data that is produced from Select Sires by the farmers is used as input to our tool, and is

stored in our databases. Additionally, farmers will be able to input data manually regarding

their herds’ feeding/diet specifics including ingredients, percentages, and mixtures. These

are the basic blocks of data that users will interact with and that our website will provide to

the interface. Analysis using R will produce statistics designed by dairy scientists working

with the development team to provide useful anomaly detection statistics as well as statistical

visualizations and analysis of dairy production.

2

Chapter 2

Requirements

The main technological deliverables that our clients required included the following: finishing

or redesigning the website, automating data acquisition from multiple sources, creating data-

driven reports for the farmer, finishing anomaly detection code, and creating an anomaly

event report. Outside of the technical specifications of our clients’ requirements, we are

required to lead weekly meetings with our clients where we will show our current progress

in completing the main deliverables.

2.1 Website

Since our clients decided to step away from their initial decision to develop the website with

PHP, our team was tasked to develop the website from scratch using Python and the Django

Web Framework. The clients required that our website should be implemented with ease of

use since farmers are the target users of the website. With this in mind, we were tasked with

creating a login and registration system, a page within the website for the farmer to edit or

add ingredients from a master ingredients SQL table, a page for farmers to create mixtures

from their local ingredients, and a page for farmers to create diets from their mixtures. This

will give the farmer the ability to control diet composition and optimization from the website.

3

4 CHAPTER 2. REQUIREMENTS

2.2 Data Acquisition

Our clients originally requested that our web framework server would automatically pull

Select Sires[10] data, feeding data, local weather data by farm zip code, TMR Tracker data,

and DHIA Milk composition data. However, later our clients decided that the Select Sires

data will be collected via template file upload by the user and then stored within the mySQL

database. Data collection for weather data is remotely pulled via API calls and should take

place every week. Similar to the Select Sires data, the TMR Tracker data will be manually

uploaded via template files. Finally, the DHIA Milk composition data will be inserted by

the user into the web framework for analysis.

2.3 Data Reports

Once our web framework has all of the appropriate data, our clients specified that the

framework needs to give the farmer a report that will summarize the milk production by herd,

pen, or farmer defined groups of cows. These data reports should be formatted appropriately

for readability and should be easily accessed by the farmer on the website.

2.4 Anomaly Detection

The web framework is required to support anomaly detection. An anomaly detection report

will summarize multiple anomalies that include events like farmer reported health events,

environmental stress events, reproductive activity events, nutrition delivery events, and un-

defined events. We can use the analysis to predict when a dairy animal becomes sick or

when a cow is producing less milk. We can then use this data and the history of the dairy

2.5. WHAT TOOLS DID WE USE? 5

animals to figure out what caused this. We can then suggest a change in certain variables

like food and eating habits to help the dairy animal.

2.5 What Tools Did We Use?

Following is a list of the tools that our team used to fulfill our clients needs.

• Python (version 3.7.9) and the Django Web Framework (version 3.1.7)

• Bootstrap 4.0 with HTML 5

• MySQL which is supported by rlogin.cs.vt.edu

• rlogin.cs.vt.edu to host the website

• R package (rpy2 3.4.3) so we can use R in Django Framework.

Chapter 3

User Manual

3.1 Overview

This web app is designed for farmers to be able to upload, track, and make inferences on their

data of both their cattle’s performance and output, and their diet ingredients and mixtures

they give to the cattle. In this user manual you will find how to sign up and start an account

with the application, how to utilize the diet mixtures/ingredients, how to upload your own

data, how to edit that data, and what kinds of analysis you can find with the web app’s

visualization measures.

3.2 Purpose

The purpose of this user manual is to inform future users of how to use the Dairy Feeding

Framework so that they can employ the appropriate functionalities listed in the Overview

(see above).

6

3.3. FARMERS 7

3.3 Farmers

3.3.1 User Sign Up Process

Registration

If you are new to the website, the first thing you will need to do is create an account. To

register, click “Sign Up Now For Free!”

Figure 3.1: Register for an account

After clicking the “Sign Up Now For Free!” link shown in Figure 3.1, you will be redirected to

our registration page shown in Figure 3.2. There you will need to create a unique username,

providing an email that does not already have an account and a password. The password

cannot be similar to your personal information, must be at least 8 characters long, cannot be

a commonly used password (e.g., “Password”) and cannot be completely numeric. You will

also have to confirm the password, for verification. If there are any errors, you will receive

8 CHAPTER 3. USER MANUAL

an error message.

Figure 3.2: Registration example

After inputting all the required information, click the “Sign Up” button. If you receive any

error messages, you will need to rectify the errors. If not, your account has been created

and you will now need to verify your email address. Figure 3.3 shows a successful attempt

at registering an account.

3.3. FARMERS 9

Figure 3.3: Activation page example

Email Verification

After successfully registering for an account, you will need to activate it before being able

to access the website. You should have received an email, but if you would like the email to

be resent, you can click the “Resend Email” button. To activate your account, you will need

to check your email for the activation link. The email a user can expect to see is shown in

Figure 3.4.

Figure 3.4: Activation email

After accessing the link, your account will be activated and you will be redirected to the

login page where you can log in and finally access the website.

10 CHAPTER 3. USER MANUAL

Login

Now that you have created and activated your account, you can log in using your username

and password. If either of these two are incorrect, error messages will be displayed and you

will need to fix the errors before logging in. If the username and password are both correct,

log in by pressing the “Log in” button. After logging in, you will be redirected to our home

page.

3.3.2 Farms

After logging into the website, you will be taken directly to the PFP Dashboard. Here, you

will see your farm(s). Each farm has a name, the date when data collection began on the

farm, the time zone and address of the farm. To add a farm, simply click the “Add a Farm”

button on the dashboard. You will be redirected to our add farm page shown in Figure

3.5, where you must enter the farm name, date when data collection began, time zone and

address of the farm. After entering the required information, click the “Submit” button and

the farm data will be saved on the back end and displayed on the dashboard.

3.3. FARMERS 11

Figure 3.5: Add farm information

To update an existing farm, click the “Update Farm” button next to the farm you wish to

update. After clicking the button, you will be redirected to our update farm page where

you can modify the name of the farm only. After modifying the name, click the “Update”

button and the modifications will be saved on the back end and displayed on the dashboard.

Figure 3.6 shows the result of an update on “Sample Farm” after its name was changed to

“Sample Farm - Update.”

12 CHAPTER 3. USER MANUAL

Figure 3.6: Updated farm

3.3.3 Edit/Update Ingredients

To edit or update an ingredient, you will need to head over to the ingredients page located

under the relevant pages tab. After navigating to this page, you will see two tables, one

called “My Ingredients” and one called “Default Ingredients.” The “Default Ingredients”

table contains 283 ingredients which you can copy and edit into your “My Ingredients”

table to make mixes. To do this, click the “Copy & Edit” button next to the ingredient

of your choice, make edits to the ingredient composition (if applicable) and rename the

ingredient. You can see in Figure 3.7 that the alfalfa meal ingredient was copied from the

“Default Ingredients Table,” renamed to “Alfalfa meal - Edited,” and moved into the “My

Ingredients” table.

3.3. FARMERS 13

Figure 3.7: Ingredient was copied and moved to the local table

Once you have ingredients in your “My Ingredients” table, you can still edit and make copies

of those ingredients. There will be an “Edit” button next to each ingredient so that you can

still edit ingredients. You must edit ingredients within 35 days of the last edit/copy and the

admin will be notified via email that you have made changes. This is important because any

changes to an ingredient will change any mixes and diets that ingredient is in. There is also

a “Copy” button next to each ingredient so that you can create a copy of an ingredient.

3.3.4 Edit/Update Mixes

To look at your mixes, you will need to head over to the mixes page located under the

relevant pages tab. After navigating to this page, you can view mixes you’ve already created

14 CHAPTER 3. USER MANUAL

or create a new mix. To create a new mix, click the “Make a New Mix” button on the top

right of the page. After clicking this button, you will be redirected to the create a mix page.

Here you will see two tables, your “My Ingredients” table from the ingredients tab shown in

Figure 3.8, and your “Mixture Ingredients” table shown in Figure 3.9. If you would like to

add an ingredient to a mix, click the “+” button next to that ingredient. You can add as

many ingredients you would like to a mix.

Figure 3.8: Adding an ingredient to a mix

After adding the ingredient to the mix, you will see it in the “Mixture Ingredients” table

as shown in Figure 3.9. Here you will have to input the percentage in dry matter of the

ingredient. The total percentage in dry matter of all the ingredients should have a sum of

100%. If the total percentage of dry matter doesn’t sum up to 100%, an error message will

pop up and instruct you to fix the percentages so that they sum up to 100% (though there

is a slight amount of rounding up allowed if it is not a perfect 100%). If you’d like to remove

an ingredient from the mix, click the red “X” button next to that ingredient. After you have

your desired mixture, create a name for the mixture and click the “Submit” button to create

your mix.

3.3. FARMERS 15

Figure 3.9: Create a mix composed of ingredients

After you create your mix, you should see it in the mixes page. Here, you can edit the

mix (changing ingredients or the percentage in dry matter composition), or delete the mix

altogether as shown in Figure 3.10.

Figure 3.10: Created mixes in the mixes page

16 CHAPTER 3. USER MANUAL

3.3.5 Edit/Update Diets

To look at your diets, you will need to head over to the diets page located under the relevant

pages tab. After navigating to this page, you will need to choose the farm where the diet

is being used. After choosing the farm, you can view the diets you have already created, or

create a new diet. To create a diet, click the “Make a New Diet” button on the top right

of the screen. After clicking this button, you should be redirected to our make a diet page.

Here you will see two tables, your “My Mixtures” table from the mixes tab shown in Figure

3.11 and your “Diet Mixtures” table shown in Figure 3.12. If you would like to add a mix

to a diet, click the “+” button next to that mix. You can add as many mixes you would like

to a diet.

Figure 3.11: Adding a mixture to a diet

After adding the mix to the diet, you will see it in the “Diet Mixtures” table. Here you will

3.3. FARMERS 17

have to input pounds of each mixture in the diet. If you’d like to remove a mix from the

diet, click the red “X” button next to that mix. You must also input the diet start date,

and animal ID if applicable. After you have your desired diet, create a name for the diet

and click the “Done” button to create your diet.

Figure 3.12: Create a diet composed of mixtures

After you create your diet, you should see it in the diets page. Here you can edit the mix

(changing mixes or the percentage of mixes) or delete the diet altogether.

3.3.6 Analysis

Analysis of the cattle data and the ingredients data will be utilized along with weather

data in R. The calculations done on the data are unknown to the development team at the

moment, but it can be speculated that the dairy scientists currently formulating the R data

18 CHAPTER 3. USER MANUAL

analysis will be targeting statistics such as what diets are correlated with the best dairy

output from the given farmer’s cattle, what weather makes which herds perform differently,

and what ingredients to use to respond to conditions in herd performance or weather changes

or possibly other dependencies.

3.4 Data Management Team

The data management team includes the users who handle data flow, data injection, and

data modifications. These users have data coming in every day. Not all data needs to be

monitored at all times, only at crucial times. This team will have access to run different

scripts which will run processes to help with data flow and modifications. This team will

also handle any edit commits that farmers may want to make. When farmers need to speak

with someone to tackle data errors, this team can be at their service.

3.5 Admin(s)

Admin users are privileged users that have permissions within the Dairy Feeding Framework

beyond the permissions shared with regular users. Admin users can: add log entries, view

log entries, change log entries, delete log entries, etc. (see Figure 3.13).

3.5. ADMIN(S) 19

Figure 3.13: An image displaying admin user permissions

Certain admins also have access to view/add/edit/delete data in the tables this website

contains, based on what permissions are given to this admin user by the super user.

Chapter 4

Developers Manual

4.1 Overview

The developers manual will give anyone assigned to start development on the web frame-

work, guidance as to what dependencies are needed to run the web framework locally, front

end design choices and implementation, back end design choices and implementation, and

methodology for using the application.

4.2 Getting Started

To get started on development for this project, the developer will need to make sure that

they have the following languages and dependencies downloaded.

• Python version 3.7.9

• GitHub

• R programming language

After installing the programming languages and dependencies above, the new developer must

clone the GitHub repository using the following URL.

20

4.3. FRONT END 21

https://github.com/dwarakhvt/DairyFeedingFramework/

The developer must make sure they pull from the master branch. Now the developer should

have all files for the web framework. Next, the developer will need to install all of the web

framework’s dependencies by running the ‘setup.sh -all’ bash script that will set up the virtual

environment and install the Django framework dependencies from the requirements.txt file.

Another way to install all the dependencies is to run

Python PythonPackageInstaller.py requirements.txt

4.3 Front End

4.3.1 Design

Django has the capability to stitch and merge several HTML documents together and send

them to the user as a single HTML file. This allows developers to put sections of the HTML

code in separate files. One HTML document can be used for several different page requests.

For example, if you wanted your website to look the same with different pages having only a

few sections modified, you can have an HTML document act as a base template, where other

HTML files will use the base template and fill in the missing sections in the body and/or head.

Each section of the code, for a different purpose, is in a separate file. This helps organize

the different components that go into creating the final page. Django has template merging

capabilities which allow for easy inheritance of the contents of other HTML documents.

22 CHAPTER 4. DEVELOPERS MANUAL

Figure 4.1: First design of a farmer’s local ingredients

The team’s first design for the farmer to manipulate ingredients was to have two separate

pages where the farmer will have one page for adding ingredient, Figure 4.2, and another

page for viewing and editing their local ingredients, Figure 4.1.

4.3. FRONT END 23

Figure 4.2: First design of the default ingredients that a farmer will choose from

After reviewing the simple solution with our clients, we decided to change the design so that

both actions of adding ingredients from the default ingredients table to the farmer’s local

table and viewing those local ingredients would be in a single page, see Figure 4.3.

24 CHAPTER 4. DEVELOPERS MANUAL

Figure 4.3: Final wire-frame design for viewing user and default ingredients.

4.3. FRONT END 25

4.3.2 Ingredients

Table 4.1 shows the file structure for the ingredients components in the web framework.

Files Description File Path

Templates Contain all of the HTML documents PFP_WEB/core/templates/core/ingredients

Models Classes and tables used for ingredi-

ents

PFP_WEB/core/models.py

Views Implements the functionality for in-

gredients pages

PFP_WEB/core/views.py

URLs Contains the URL extensions for the

ingredients pages

PFP_WEB/core/urls.py

Forms Allow storing user input into an ex-

isting ingredients model

PFP_WEB/core/forms.py

Table 4.1: Files related to the front-end

26 CHAPTER 4. DEVELOPERS MANUAL

4.3.3 Mixes

Table 4.2 shows the file structure for the mixes components in the web framework.

Files Description File Path

Templates Contain all of the HTML documents PFP_WEB/core/templates/core/Mixes

Models Classes and tables used for mixes PFP_WEB/core/models.py

Views Implements the functionality for

mixes pages

PFP_WEB/core/views.py

URLs Contains the URL extensions for the

mixes pages

PFP_WEB/core/urls.py

Forms Allow storing user input into an ex-

isting mixes model

PFP_WEB/core/forms.py

Table 4.2: Files related to the mixes

4.3. FRONT END 27

4.3.4 Diets

Table 4.2 shows the file structure for the diets components in the web framework.

Files Description File Path

Templates Contain all of the HTML documents PFP_WEB/core/templates/core/Diets

Models Classes and tables used for diets PFP_WEB/core/models.py

Views Implements the functionality for di-

ets pages

PFP_WEB/core/views.py

URLs Contains the URL extensions for the

diets pages

PFP_WEB/core/urls.py

Forms Allow storing user input into an ex-

isting diets model

PFP_WEB/core/forms.py

Table 4.3: Files related to the diets

28 CHAPTER 4. DEVELOPERS MANUAL

4.3.5 File Uploads

Within the File Upload page, there is a box containing a button that users can click to

upload files to the Dairy Feeding Framework. For a more explicit illustration of what this

button looks like, please see the Figure 4.4.

Figure 4.4: Uploading Files HTML Format.

4.3.6 R Analysis

We use an artificial R environment that runs with Python [8]. Our website back-end can

pass file names and necessary variables to R scripts provided by the dairy scientist admins.

This is done to produce statistical analysis output in an HTML format for the dairy science

users. Our tool is not only a valuable tool for farmers, but an interactive and useful tool for

dairy scientists.

The flow of operations would be that a user navigates to a data analytics page, and a user

action/button click takes the user through installing their R script, runs it, and returns the

results to their webpage in HTML [9].

4.4 Back End

4.4.1 Django Framework

Overview

This website needs to have high functionality and performance capabilities. Django is an

organized Python based web framework platform with many security features and integra-

4.4. BACK END 29

tions built straight into it. This framework allows us to build apps, templates with special

Python/Django capabilities for filling in information, customized URLs, customized forms,

and customized functions[1].

Security

In the main project folder, there is a file called settings.py. This file contains all the security

and Django application settings. For security, there is a secret security key which is NOT

to be revealed to the public. This key is used for any transfers between the user and the

server. There are several middleware security packages added by default.

django.middleware.security.SecurityMiddleware

django.contrib.sessions.middleware.SessionMiddleware

django.middleware.common.CommonMiddleware

django.middleware.csrf.CsrfViewMiddleware

django.contrib.auth.middleware.AuthenticationMiddleware

django.contrib.messages.middleware.MessageMiddleware

django.middleware.clickjacking.XFrameOptionsMiddleware

Apps

Django can create apps (a collection of methods, templates, URLs, and forms for a particular

sub-project of the whole website). All these apps combined make the whole website. Plus

it maintains a certain degree of proper organization. Currently, we have two apps (user and

core).

1. User App

The user app contains all of the necessary components and information about the user.

30 CHAPTER 4. DEVELOPERS MANUAL

This includes the user’s profile with active status and “send me alerts”. This user’s

templates directory contains a base template which all app’s HTML templates use.

There are certain forms in this app for user registration and log-in.

2. Core App

The core app contains all of the components for the dairy feeding framework. This

includes viewing, making, editing farms, ingredients, mixes, and diets, etc. The tem-

plates directory is organized into sub-folders for the different sections such as Diets,

Farm, Mixes, etc. Be sure to add new sub-folders for new tasks to maintain organiza-

tion.

Models

Models are another term for tables. These models contain the column names (fields) with

their corresponding data storage type and restrictions [3]. In views.py you can treat these

as a query set with class variables (the unique fields), for example:

User.objects.first().username

This will get the username value for this first record. Changes to the model can be pushed

to the database by running two commands.

python manage.py makemigrations

This will make a staging file with the changes to commit. This also points out any errors

that may exist. You must not have any errors to continue.

python manage.py migrate

This will push the staging changes to the server’s database. After this you can see the

changes in the admin page.

4.4. BACK END 31

Views (Classes and Functions)

The views contains all the classes and functions that would be run for a particular page

request [6]. These page request functions must take in at least one parameter (request);

additional parameters can be passed in, but it must be configured in the urls.py to accept

those extra parameters. Along with this, this function should be called from within the

urls.py file with the URL path and ID set properly. See the URLs section for more infor-

mation. The page request functions must return either a render of an HTML template or

a redirect to another page (URL). Other helper functions can exist, but do not require the

request parameter. The request parameter contains all information about the user request-

ing that page. The render can take in a dictionary of information you want to display on

the HTML webpage. This data can be accessed in the HTML using the Python/Django

template structures.

Templates

Apps may or may not have templates. Templates only are required for any page requests

that app may have. Templates are stored in the <APP>/templates/<APP>/ directory. In

the templates, you place your HTML code as well as any Python code with special syntax

for any areas where you want to pass data to the HTML page. The views.py render call can

pass in a dictionary which holds data that can be used. Django takes the HTML template

document, edits it (to add the dictionary data to the document), then sends the rendered

HTML file(s) to the user [4]. You can access the data in the dictionary by using the key in

this format <KEY>. Below you can find an example of using “if” conditionals and “for”

loops.

{% for farm in farms %}

{% if farm.visible == True %}

32 CHAPTER 4. DEVELOPERS MANUAL

<h2> {{farm.name}} </h2>

{% else %}

<h2> Hidden Farm </h2>

{% endif %}

{% empty %}

<h2> farms is empty! </h2>

{% endfor %}

URLs

Apps may or may not have a urls.py file. The urls.py file contains any URLs with matching

functions the page is associated with. ‘urlspatterns’ holds an array of these paths where the

first parameter is for the link, the second parameter is for the method it calls, and the last

parameter is for the unique name this link has [5].

urlpatterns = [

path('farms/', views.viewFarms, name="my-farms"),

...

]

All page requests are directed to these URL paths. Upon a request, the method or class is

called, then renders an HTML document for the user and sends it to the user.

Forms

You may create templates for any forms you may need in the forms.py file. Forms classes

can use an existing model (table), custom entries, or both together [2]. For the existing

model, you can specify which columns of the model you want to display as a form to the

4.4. BACK END 33

user. It will take care of any input types and restrictions that are present in the models.py

for that particular model. Here is an example with Address being a model with columns

being Street, City, State, Country, ZipCode, Lat, and Long.

class AddFarmAddressForm(forms.ModelForm):

class Meta:

model = Address

fields = ['Street', 'City', 'State', 'Country', 'ZipCode']

For custom entries, every entry is assigned a form field from forms.Form.

class DocumentForm(forms.Form):

docfile = forms.FileField(label='Select a file')

In the views.py an instance of this form can be passed into the dictionary for the HTML

template to use this. In the document, all you need is the form tag, csrf token, farmForm

and your submit button. You can also add crispy (a Django to HTML formatting package)

to make use of Bootstrap 4 in the Python form rendering process.

{% load crispy_forms_tags %}

<form method="POST" enctype="multipart/form-data">

{% csrf_token %}

{{ farmForm|crispy }}

<div><button type="submit" class="btn btn-primary">Submit</button></div>

</form>

This will take the fields in the form and make the HTML form for you. This data can then

be read in by the request parameter in views functions.

34 CHAPTER 4. DEVELOPERS MANUAL

4.4.2 Data Parsing

The weather data is pulled from weatherbit.io [12] API. A request to fetch data is done once

per week and is stored in the database. The weather.py script contains all of the parsing

logic. During the data fetch, only information needed is gathered and pushed to the weather

info model; see Figure 4.5. If no error occurs then the model gets migrated into the database.

Figure 4.5: An image of the weather model

For file uploads, a file type restriction is applied. Currently, only file types .csv and .xlsx

are accepted. Changes can be made in the future if the restriction needs to expand. The file

is parsed by iterating through each row and storing the column’s value to its appropriate

variable name. Figure 4.6 shows a small code snippet of ingredient data being stored in each

iteration. Once the file has been parsed, the data is pushed to the database and updates the

library. The systems does not need to differentiate the type of file beings parsed since each

file upload is specific to its tab. If a farmer is uploading ingredients, then they can only do

it in the ingredients tab.

Figure 4.6: An image of the weather model

4.4. BACK END 35

4.4.3 Alerts

Users who are given staff status and have the ‘Send Me Alerts’ box checked shown in Figure

4.7 will receive email notifications whenever user(s) make a change to any ingredients after

90 days from when the ingredient was last edited/created.

Figure 4.7: An image of some of the user profiles

The email notifications mentioned when a user modifies an ingredient appear in the format

shown in Figure 4.8.

Figure 4.8: An image of an ingredient edit notification email

The staff/admin can click on the link and it will take them to this page as shown in Figure

4.9.

36 CHAPTER 4. DEVELOPERS MANUAL

Figure 4.9: Staffs link to commit user edits

The staff/admin can see the edits made in the ingredients. They can view which mixes and

storage records need to be edited to use the updated ingredient’s data. You can see a sample

of the sections in Figures 4.10, 4.11, and 4.12.

Figure 4.10: Staffs view to see a user edits on an ingredient

4.4. BACK END 37

Figure 4.11: Staffs view to see possibly affected mixes on an ingredient edit

Figure 4.12: Staffs view to see possibly affected storage ingredients on an ingredient edit

The staff can click the Commit Changes button which will update all the mixes and storage

records shown to use the new/updated ingredient.

38 CHAPTER 4. DEVELOPERS MANUAL

4.5 Docker

To host the web framework on Virginia Tech’s cloud container cluster, we needed to create

a Docker repository to hold a Docker image of the web app. The Docker image is created

using the Dockerfile located at ‘DairyFeedingFramework/Dockerfile’ in the project directory.

A Docker image declares the state of a Docker container when running the container on a

cluster. To get started with Docker, the developer must first install the Docker desktop

application from the following link.

https://docs.docker.com/desktop/

4.5.1 Dockerfile

Figure 4.13: Dockerfile for the dairy_feeding_framework Docker image

The first line of the Dockerfile shown in Figure 4.13 is a ‘FROM’ command that specifies

the base Docker image that our Docker image will build from. Next, the ‘RUN‘ command

will install dependencies in the container once the CentOS8 Docker image is loaded. After

the dependencies are installed to our Docker image, the ‘COPY’ command is used to copy

files from our local machine to the Docker image so that all of the content needed to run

the web framework are present in the Docker image. Once the ‘COPY’ commands are

complete, we set the working directory in our Docker image by using the ‘WORKDIR’

4.5. DOCKER 39

command which is set to ‘var/www/html’. Next, another ‘RUN’ command is used to run

the PythonPackageInstaller.py with the requirements.txt file that were previously copied

from our local machine to the Docker image. This will install all of the web frameworks

dependencies so the Web framework can run properly. Finally, the last command in the

Dockerfile is the ‘ENTRYPOINT’ command that will configure the container to run the

start.sh file once the container starts [7].

When any changes are made to the Dockerfile, the developer will need to push the changes to

the Docker Hub repository that stores the Docker image. The following steps will correctly

push the Dockerfile changes to the repository.

On a command line tool, navigate to the project’s root directory ‘DairyFeedingFramework/’

Run the command ‘docker build -t ewebb4505/dairy_feeding_framework’ Run the command

‘docker push ewebb4505/dairy_feeding_framework’

• on a command line tool, navigate to the project’s root directory ‘DairyFeedingFrame-

work/’

• Run the command ‘docker build -t ewebb4505/dairy_feeding_framework .’

• Run the command ‘docker push ewebb4505/dairy_feeding_framework’

Once the Docker image is successfully pushed to the Docker Hub, the developer will have to

redeploy the container on Virginia Tech’s cloud container cluster with the following steps.

• Navigate to the following link https://cloud.cs.vt.edu/p/c-l4mcr:p-z6pfk/workloads

• Click on the checkbox beside ‘pfp_web’ on the namespace table. The namespace will

also be labeled ‘pfp_web’

• Next click on the ‘Redeploy’ button. This will take time to restart the container and

pull the image from the Docker Hub repository.

40 CHAPTER 4. DEVELOPERS MANUAL

4.5.2 Apache Configuration

The Apache Configuration file that is copied from our local working directory to the

etc/httpd/conf.d/ directory in the Docker image will configure the Apache web server that

our Docker image runs.

Currently, the api.conf file does not display the web framework but the Apache test page is

currently displayed at the host URL. Getting the web framework to be served by the Apache

Web Server in the Docker container will be a part of the future work for this project since

we had to make a switch from our web framework being host by the Virginia Tech rlogin

service to the Virginia Tech Cloud Container Cluster. Figure 4.14 shows the current state

of the api.conf file.

4.5. DOCKER 41

Figure 4.14: api.conf file used by Docker image to configure Apache Server

Chapter 5

Methodology

5.1 Outline

For the dairy feeding framework, there will be two types of users: farmers and data man-

agement users. Farmers will use the dairy feeding framework to virtually monitor the dairy

production at each of their registered farms. Farmers will interact with interfaces that will

give them the ability to create diets, download dairy production reports, upload data reports,

and view visuals that portray milk production anomalies and other relevant statistics. Data

management users will have access to a farmer’s dairy production data to make inferences

on the quality of the dairy production. Also, data management users will be notified when

farmers make changes to a diet.

5.2 Farmer Goals

Farm Management: The farmer will be able to register multiple farms under their user pro-

file. Each farm will have farm-specific information.

Ingredient Retrieval: The farmer will be able to copy ingredients from the default (global)

ingredient dataset into their local ingredients table and edit these ingredients if necessary.

Farmers will be able to create mixes composed of the ingredients in their local ingredients

table.

Create Mixtures: The farmer will be able to create ingredient mixtures composed of ingre-

42

5.2. FARMER GOALS 43

dients from the farmer’s local ingredients table. The farmer will determine the amount of

each ingredient in the mixture by percentage and will be able to edit and delete mixtures

after creation.

Create Diets: The farmer will be able to create diets composed of mixtures from their list

of mixtures. Farmers can assign a diet to a particular herd of cows or an individual cow.

File Upload and Data Injection: The farmer will be able to upload DHIA (Dairy Herd

Improvement Association) data reports which the web framework will analyze and provide

useful information to the farmer.

Retrieve Dairy Production Data: The farmer will be able to view and download a dairy

production data report that shows milk production statistics over time including anomalies

and visual diagrams of farmer-relevant data.

5.2.1 Farm Management Tasks

Refer to Figure 5.1 for the Farm Management Tasks work flow diagram. Following are the

task to complete the Farm Management user goal.

a) Farmer registers a farm via a form.

b) Update farm information as needed. This task is reliant on task a.

44 CHAPTER 5. METHODOLOGY

Figure 5.1: Farm registration and management work flow

5.2.2 Ingredient Retrieval Tasks

Refer to Figure 5.2 for the Ingredient Retrieval Tasks work flow diagram. Following are the

task to complete the Ingredient Retrieval farmer goal.

a) Display global library of ingredients: retrieve global ingredients data from database.

b) Display farmer’s local ingredients: retrieve the farmer’s ingredients stored in the database

and present it to the farmer. Reliant on tasks c, d and e.

c) ingredients from the global library to the local table: the copy functionality is necessary

for a farmer to copy an ingredient from the default/global table into their local ingredients

table to later create mixes. This task is reliant on task a.

d) Update/edit ingredient data in the local ingredients table: a farmer will be presented

with the tools to edit or update individual ingredient’s data from their local ingredients

5.2. FARMER GOALS 45

table. The farmer will be able to edit ingredients data through a form on a separate page

when the user indicates that they need to edit an ingredient’s data. This task is reliant on

task b.

e) Clone local ingredients: a farmer will be presented with the tools to clone ingredients

that already exist in their local ingredients table. This will be more efficient than cloning

from the default/global table, as the farmer will not have to edit the ingredient all over

again. This task is reliant on task b.

Figure 5.2: Ingredient retrieval task work flow

5.2.3 Create Mixtures Tasks

Refer to Figure 5.3 for the Create Mixtures Tasks work flow diagram. Following are the

task to complete the Create Mixtures farmer goal.

a) Display farmer’s local ingredients: retrieve the farmer’s ingredients stored in the database

46 CHAPTER 5. METHODOLOGY

and present it to the farmer.

b) Add an ingredient to a mixture. This task is reliant on task a.

c) Edit percentage of ingredients in a mixture: the farmer will be given an input field to

enter the percentage of an added ingredient in the mixture. This task is reliant on task b.

d) Notify the farmer when mixture composition percentage is not 100%: display a message

to the farmer that the sum of ingredient percentages do not equal 100%. This task is reliant

on task c.

e) Edit the mixture name: give the farmer the ability to edit the mixture name when

creating the mixture. This task is reliant on task c.

Figure 5.3: Create mixture task work flow

5.2. FARMER GOALS 47

5.2.4 Create Diets Tasks

Refer to Figure 5.4 for the Create Diets Tasks work flow diagram. Following are the task to

complete the Create Diets farmer goal.

a) Display the farmer’s mixtures: retrieve the farmer’s mixtures stored in the database.

b) Add a mixture to the diet. This task is reliant on task a.

c) Adjust the appropriate percentages of each mixture for a given diet. This task is reliant

on task b.

d) Assign a start date for the diet. This task is reliant on task c.

e) Assign diet to a particular pen of cattle or an individual cow. This task is reliant on task d.

Figure 5.4: Creating the diets task work flow

5.2.5 File Upload and Data Injection Tasks

a) Add a file via file-dialog box.

b) Receive confirmation that file is stored. This task is reliant on task a.

48 CHAPTER 5. METHODOLOGY

5.2.6 Retrieve Dairy Production Data

Refer to Figure 5.5 for Retrieve Dairy Production Data work flow diagram. Following are

the task to complete the Retrieve Dairy Production Data farmer goal.

a) Pull dairy production data from the database.

b) Perform data analysis on the dairy production data with R. This task is reliant on task

a.

c) Render the results of data analysis to the web interface. This task is reliant on task b.

d) A Farmer can download results to their local computer. This task is reliant on task c.

Figure 5.5: Retrieve dairy production data work flow

5.3 Data Management User Goals

Data Management User Goals: Receive Notifications Upon Dietary Changes: Data managers

will receive notifications when diets have been altered if the change has taken place within

5.3. DATA MANAGEMENT USER GOALS 49

35 days of creation or the last edit. The data managers will then review the change to ensure

that it is an acceptable change. Monitor Farmers Production Data: Data managers will be

able to monitor milk production data from farms. This data includes the amount of milk

yielded, contents of the milk and other additional fields related to the quality of the milk

(such as spectral DHIA data).

5.3.1 Receive Notifications Upon Dietary Changes Tasks

Refer to Figure 5.6 for Receive Notifications Upon Dietary Changes work flow diagram.

Following are the task to complete the Receive Notifications Upon Dietary Changes data

management user goal.

a) Received email that a farmer has changed diet data.

b) View data changes side by side. This task is reliant on task a.

c) Confirm that the changes to the diet data are accurate. This task is reliant on task b.

50 CHAPTER 5. METHODOLOGY

Figure 5.6: Notifications when editing an ingredient work flow

5.3.2 Monitor Farmers Production Data

Refer to Figure 5.7 for Monitor Farmers Production Data work flow diagram. Following are

the task to complete the Monitor Farmers Production Data data management user goal.

a) Connect to R with Python to run the anomaly detection tool.

b) Calculate diet changes and production statistics (run R script). This task is reliant on

task a.

c) Produce visuals based on past/current data statistics, data anomalies, and recommended

future changes/actions. This task is reliant on task b.

Figure 5.7: Monitoring data in production work flow

Chapter 6

Testing

In this chapter, we’ll discuss the steps on how to test each function of our website.

6.1 Farm

To test the creation of the farm, you will need to do the following:

1. Run server

2. Log in (then the website takes you to the home page)

3. Click the “Add Farm” button

4. Enter your farm information

5. The newly added farm should be displayed once the information is saved.

6.2 Ingredients

To test the “Make Copy” of default ingredients, you will need to do the following.

1. Navigate to the Ingredients Tab.

2. Choose “Make Copy” from the defaults ingredients.

3. Make certain changes and save.

51

52 CHAPTER 6. TESTING

4. The edited mix should be in My Ingredients. This mix should have a reference ID to

the original default mix (you can check on the admin ingredients tab for “old_ingr”).

To test the “Edit” of my ingredients, you will need to do the following:

1. Navigate to the Ingredients Tab.

2. Choose “Edit” from my ingredients.

3. Make certain changes and save.

4. Should create a new record for the edited mix.

5. Should set old ingredient’s, (IngrID prior to edit), visible to false.

6. Should see the updated ingredient in my ingredients

To test the “Make Copy” of my ingredients, you will need to do the following:

1. Navigate to the Ingredients Tab.

2. Choose “Make Copy” from my ingredients.

3. Make certain changes and save.

4. Should create a new record for the edited mix.

5. Should keep the old ingredient’s, (Ingr_ID prior to edit), visible to true.

6. Should see both old and updated ingredient in my ingredients

6.3 Mixes

Testing for mixes is similar to testing ingredients. The only difference is that the mixes have

a JSON string object to hold the ingredients and its percentages together. They follow the

6.4. DIETS 53

same structure with the “Edit” button. It creates a new record for every edit and sets the

old mix’s visible to false. You can also remove a mix if needed.

6.4 Diets

Testing for diets is similar to testing mixes. The only difference is that the mixes have a

JSON string object to hold the mixes and its amount together.

6.5 Storage

To test the creation of a storage ingredient record, you will need to do the following:

1. Navigate to the Storage Tab.

2. Click on the “Add Storage” button.

3. Fill in the information and save.

4. The newly added storage ingredient should be displayed once the information is saved.

6.6 Data Uploading

To test the file uploading, data parsing, and saving, you will need to do the following:

1. Log in as admin/staff.

2. Go to the staff links.

3. If you have Select Sires Animal data, then choose Select Sires, then Upload Animal

Data. If you have TMR data, then choose Upload TMR Data.

54 CHAPTER 6. TESTING

4. Choose the farm you are uploading this data for. Then upload the file.

5. The process should not take long before it directs you to the files uploaded page.

6. You should see the newly added file at the bottom of the list.

7. If you navigate to the Django Administrator page to the respective table, the data

should be uploaded to the farm you chose.

6.7 Staff Notifications and Commit

To test the staff notifications and the commit changes option, you will need to do the

following:

1. Change EDIT_NOTIFY_DAYS in PFP_WEB/core/views.py to 0 or a number

smaller than the age of the ingredient/mix you wish to edit.

2. Make sure there is at least one staff who has send_me_alerts on.

3. Make sure the ingredient’s age is larger than EDIT_NOTIFY_DAYS.

4. Make sure the ingredient is used in Mixes and Storage tabs. (Not needed)

5. Edit that ingredient.

6. A notification should appear indicating a notification to the staff.

7. Every staff with send_me_alerts on, will get an email notification.

8. The email should contain a link only accessible to Staff/Admin.

9. The link will display all the changes made in ingredients. It will also show you where

the old ingredient was used in Mixes and Storage tabs if step 4 is complete.

6.8. R WITH PYTHON 55

10. There is a commit button at the bottom. Click it.

11. This should commit all the changes. Mixes and Storage records will now use the

updated/new ingredient.

12. The link will refresh and should show you no possible changes to Mixes or Storage

records.

6.8 R with Python

To test the functionality of the R to Python to HTML bridge, you will need to do the

following:

1. Login as admin

2. Click the analytics page

3. Select “Add R File”

4. Upload the R file using provided GUI

5. Select “Submit”

6. You should now see a new line of input on the analytics page. Select either “view” or

“run” – if you select “view” you must then select “run” and in both situations you will

be redirected to the output of the R code that was input in an HTML page format.

6.9 Troubleshooting

Django offers its own debugging tool to help developers troubleshoot errors that arise within

their websites. When errors occur, the debugger will output useful information so devel-

opers/programmers can find where and why these errors occur. The website is currently

56 CHAPTER 6. TESTING

running in production, so the debugger has been turned off. However, developers can turn

the debugger on by navigating to the settings.py folder found at the following path:

PFP_WEB/PFP_WEB/settings.py

After navigating to the file, programmers will need to change the DEBUG and AL-

LOWED_HOSTS settings. DEBUG needs to be changed to true and the AL-

LOWED_HOSTS setting needs to be changed to an empty list.

DEBUG = True

ALLOWED_HOSTS = []

After changing these settings, the debugger will be on and programmers will be able to

troubleshoot any errors within the site.

After fixing any errors, it’s important for the programmers to change the settings back to

what they were before. The DEBUG and ALLOWED_HOSTS settings should look like

this:

DEBUG = False

ALLOWED_HOSTS = [‘*’]

Chapter 7

Lessons Learned

7.1 Timeline/Schedule

Figure 7.1: An image of our timeline

The timeline shown in Figure 7.1 was the schedule we had set for completing this project.

We split up the project into six sub-tasks and organized them based on priority or logical

order.

Create Login System and Accounts:

We decided to work on the login and accounts functionality first. The reason is so we

can build a rough web interface that will act as our foundation. The login system and

accounts weren’t complicated to implement, but it allowed us to set up some of the basic

web functionality into our web page.

Upload File for Data Injection:

57

58 CHAPTER 7. LESSONS LEARNED

Next, we supported file upload functionality to our web page. From the front-end perspective,

this functionality simply allows users to upload TMRTracker templates and Select Sires files.

The file(s) containing the data must be in the range of allowed format. From the back-end

perspective, we are making sure that the file is being parsed correctly. This also includes

making sure the parsed data are stored in their appropriate table in the database.

Pushing File Uploads to Database:

Next, after properly parsing data from the uploaded file, we pushed the data to our database.

Originally, we are using SQLite as our temporary Database Management System but had

moved on to MySQL to support client and server architecture.

User Dashboard:

The user dashboard covers the majority of the user interface for the website. We made sure

that our website is accessible and simple enough for farmers to use. We’ve organized different

pages into tabs on the side menu so farmers can easily access information. We’ve also made

sure to set a common style/format for all the pages. This is to allow design consistency

throughout the website and for any new pages that may get added later on.

Data Analytics:

Admins and staff who need to upload their R scripts can upload their scripts and run said

scripts from the website. However, as of current, any data analytics to be gathered from

running R scripts would have to be done within the R script itself, as the current functionality

of the site does not support otherwise.

Web Hosting:

Unfortunately, the web framework could not be hosted by the Virginia Tech rlogin clus-

ter since the rlogin cluster’s operating system is CentOS7 which is incompatible with the

project’s version of Django. We were given the task to containerize the project and run the

project container on the Virginia Tech cloud container cluster service. Since the cloud con-

tainer cluster using Kubernetes for container orchestration and workload management, we

7.1. TIMELINE/SCHEDULE 59

started trying to make YAML files that would create the Kubernetes deployment container.

Thanks to Chris Arnold in Virginia Tech Tech Staff, we learned that we could manually cre-

ate the deployment on the cloud container cluster user interface by giving our project Docker

image and a couple of other parameters. The deployment container works but the Apache

configuration file currently is not set up with our web framework. The lessons learned in

this part of the project was getting a high level introduction to containerization with Docker

and container orchestration with Kubernetes.

Chapter 8

Future Work

As of the point in time of producing this document, the requirements given by the clients

have been met in accordance to what has been given. However, while the development team

has accomplished meeting expectations for herd diets (ingredients/mixes), front end func-

tionality, farmer sign up and log in, R to Python data analysis connection, and personalized

data storage, what is left to be completed are the following items:

1. Interface and data management tool for bovine product progress (this is separate from

the completed diet and ingredient data management tool)

2. R anomaly detection

3. Statistical data visualization tool

4. Weather data visualization interface

5. Full data management interface for cumulative data resources (an interface for the

farmer to manage all of their data)

6. Cumulative interface that links to and incorporates every aspect of the web site (this

is a home page that gives a basic interface to each tool the website provides in a

convenient manner)

7. Need to add Pen information to diets. Must retrieve Pen information from Select Sires

or through other means.

60

61

8. Staff notifications for user edits for ingredients and mixes within X number days; you

will need to set the value of X (EDIT_NOTIFY_DAYS) in PFP_WEB/core/views.py.

9. Staff notifications will need to expand to diets.

10. Staff commit user edits may need a backtrack option. Enable the ability to revert

committed changes and or see list of all staff commits with detailed information.

11. Edit email settings on PFP_WEB/PFP_WEB/settings.py to use an account more

professional to the Dairy Feeding Project in production.

12. Create testing scripts to test more efficiently.

13. Correct the Apache Configuration file (api.conf) to communicate with Django and

display the web framework at the dis.cs.vt.edu

14. Add commands to install the R programming language on CentOS8 and set R to the

path variable in the Dockerfile.

15. Set up MySQL container with persistent volume on Virginia Tech’s cloud container

cluster.

Chapter 9

Acknowledgement

We would like to acknowledge our clients and members of the Dairy Feeding Framework

project.

Mark Hanigan, Dairy Science Professor

Wu Feng, Computer Science Professor

Leticia M. Campos, Dairy Science Ph.D. Student

Sonal Jha, Graduate Research Assistant

Charles Zawacki, Research Assistant

Yanlin Du, Research Assistant

62

Chapter 10

References

[1] Django Developers, “Documentation Django 3.2,” 2021. [Online]. Available:

https://docs.djangoproject.com/en/3.2/. [Accessed: 04-May-2021].

[2] Django Developers, “Documentation Django Forms,” 2021. [Online]. Available:

https://docs.djangoproject.com/en/3.2/topics/forms/. [Accessed: 04-May-2021].

[3] Django Developers, “Documentation Django Models,” 2021. [Online]. Available:

https://docs.djangoproject.com/en/3.2/topics/db/models/. [Accessed: 04-May-2021].

[4] Django Developers, “Documentation Django Templates,” 2021. [Online]. Available:

https://docs.djangoproject.com/en/3.2/topics/templates/. [Accessed: 04-May-2021].

[5] Django Developers, “Documentation Django URLs,” 2021. [Online]. Available:

https://docs.djangoproject.com/en/3.2/topics/http/urls/. [Accessed: 04-May-2021].

[6] Django Developers, “Documentation Django Views,” 2021. [Online]. Available:

https://docs.djangoproject.com/en/3.2/topics/http/views/. [Accessed: 04-May-2021].

[7] Docker Developers, “Orientation and setup,” Docker Documentation, 2021. [Online].

Available: https://docs.docker.com/get-started/. [Accessed: 04-May-2021].

[8] RPY2 Developers “Introduction to rpy2,” rpy2 3.5.0dev documentation, 2017. [Online].

Available: https://rpy2.github.io/doc/latest/html/introduction.html. [Accessed: 04-May-

2021].

[9] RStudio Developers, “Introduction R Markdown,” 2020. [Online]. Available:

https://rmarkdown.rstudio.com/lesson-1.html. [Accessed: 04-May-2021].

[10] Select Sires Development Team, Select Sires, 2021. [Online]. Available:

63

64 CHAPTER 10. REFERENCES

https://www.selectsires.com/ [Accessed: 04-May-2021].

[11] Digi-Star TMR Tracker Solution, Digi-Star, 2021. [Online]. Available: https://digi-

star.com/solutions/2-2/TMR_Tracker. [Accessed: 13-may-2021]

[12] WeatherBit Developers, Weatherbit, “Weather API for You,” 2021. [Online]. Available:

https://www.weatherbit.io/. [Accessed: 29-Apr-2021].

	Titlepage
	List of Figures
	List of Tables
	Executive Summary
	Project Description
	Requirements
	Website
	Data Acquisition
	Data Reports
	Anomaly Detection
	What Tools Did We Use?

	User Manual
	Overview
	Purpose
	Farmers
	User Sign Up Process
	Farms
	Edit/Update Ingredients
	Edit/Update Mixes
	Edit/Update Diets
	Analysis

	Data Management Team
	Admin(s)

	Developers Manual
	Overview
	Getting Started
	Front End
	Design
	Ingredients
	Mixes
	Diets
	File Uploads
	R Analysis

	Back End
	Django Framework
	Data Parsing
	Alerts

	Docker
	Dockerfile
	Apache Configuration

	Methodology
	Outline
	Farmer Goals
	Farm Management Tasks
	Ingredient Retrieval Tasks
	Create Mixtures Tasks
	Create Diets Tasks
	File Upload and Data Injection Tasks
	Retrieve Dairy Production Data

	Data Management User Goals
	Receive Notifications Upon Dietary Changes Tasks
	Monitor Farmers Production Data

	Testing
	Farm
	Ingredients
	Mixes
	Diets
	Storage
	Data Uploading
	Staff Notifications and Commit
	R with Python
	Troubleshooting

	Lessons Learned
	Timeline/Schedule

	Future Work
	Acknowledgement
	References

