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Graph Processing

Mohamed W. Hassan

(ABSTRACT)

Graph analytics represent an important application domain widely used in many fields such

as web graphs, social networks, and Bayesian networks. The sheer size of the graph data sets

combined with the irregular nature of the underlying problem pose a significant challenge

for performance, scalability, and power efficiency of graph processing. With the exponential

growth of the size of graph datasets, there is an ever-growing need for faster more power

efficient graph solvers. The computational needs of graph processing can take advantage of

the FPGAs’ power efficiency and customizable architecture paired with CPUs’ general pur-

pose processing power and sophisticated cache policies. CPU-FPGA hybrid systems have

the potential for supporting performant and scalable graph solvers if both devices can work

coherently to make up for each other’s deficits.

This study aims to optimize graph processing on heterogeneous systems through interdis-

ciplinary research that would impact both the graph processing community, and the

FPGA/heterogeneous computing community. On one hand, this research explores

how to harness the computational power of FPGAs and how to cooperatively work in a CPU-

FPGA hybrid system. On the other hand, graph applications have a data-driven execution

profile; hence, this study explores how to take advantage of information about the graph

input properties to optimize the performance of graph solvers.

The introduction of High Level Synthesis (HLS) tools allowed FPGAs to be accessible to

the masses but they are yet to be performant and efficient, especially in the case of irregu-

lar graph applications. Therefore, this dissertation proposes automated frameworks to help



integrate FPGAs into mainstream computing. This is achieved by first exploring the opti-

mization space of HLS-FPGA designs, then devising a domain-specific performance model

that is used to build an automated framework to guide the optimization process. Moreover,

the architectural strengths of both CPUs and FPGAs are exploited to maximize graph pro-

cessing performance via an automated framework for workload distribution on the available

hardware resources.
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(GENERAL AUDIENCE ABSTRACT)

Graph processing is a very important application domain, which is emphasized by the fact

that many real-world problems can be represented as graph applications. For instance,

looking at the internet, web pages can be represented as the graph vertices while hyper

links between them represent the edges. Analyzing these types of graphs is used for web

search engines, ranking websites, and network analysis among other uses. However, graph

processing is computationally demanding and very challenging to optimize. This is due to the

irregular nature of graph problems, which can be characterized by frequent indirect memory

accesses. Such a memory access pattern is dependent on the data input and impossible to

predict, which renders CPUs’ sophisticated caching policies useless to performance.

With the rise of heterogeneous computing that enabled using hardware accelerators, a new

research area was born, attempting to maximize performance by utilizing the available hard-

ware devices in a heterogeneous ecosystem. This dissertation aims to improve the efficiency

of utilizing such heterogeneous systems when targeting graph applications. More specifi-

cally, this research focuses on the collaboration of CPUs and FPGAs (Field Programmable

Gate Arrays) in a CPU-FPGA hybrid system. Innovative ideas are presented to exploit the

strengths of each available device in such a heterogeneous system, as well as addressing some

of the inherent challenges of graph processing. Automated frameworks are introduced to

efficiently utilize the FPGA devices, in addition to distributing and scheduling the workload

across multiple devices to maximize the performance of graph applications.
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Chapter 1

Introduction

Many real-world problems can be presented as large-scale graphs with millions of vertices and

billions of edges, such as social networks, biological interactions, and web graphs [37, 63].

Graph analytics is an area of study used to extract useful information from these huge

datasets as depicted in Figure 1.1. For instance, in web graphs, web pages represent the

graph vertices while hyper links between them represent the edges. Analyzing these types

of graphs is used for web search engines, ranking websites, and network analysis among

other uses [28]. The enormous size of these datasets compounded by the irregularity of the

underlying problem exhibit substantial challenges to graph processing.

Figure 1.1: High level abstraction of the scope of graph processing
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The importance of this application domain is highlighted by its usability to solve many

problems but hampered by it underlying irregular nature. There is an abundance of research

attempting to optimize graph processing via both, software optimizations [6, 20, 29, 44, 46,

48, 60, 63, 66, 67, 74] and hardware accelerators such as FPGAs [4, 5, 14, 15, 19, 21, 52, 53,

71, 75, 83]. However, efficiently utilizing such hardware accelerators with ease is still an open

research problem especially when considering irregular applications like graph processing [4].

This dissertation aims to address and benefit two research areas, heterogeneous computing

and graph processing. Heterogeneous computing, more specifically CPU-FPGA hybrid sys-

tems, are explored where the architectural strengths of each device are exploited. Moreover,

FPGA design and optimization techniques are explored to optimize the usage of its underly-

ing architecture. On the other hand, graph processing algorithms are analyzed to overcome

some of its inherent challenges. Combining the improvements in these two research areas

results in a significant overall enhancement in graph processing and CPU-FPGA hybrid

systems efficiency as well.

1.1 Research Problems

Optimizing graph processing is a well-researched problem, whether it is using a generalized

approach on CPUs and GPUs [22, 48, 68, 69, 74] or application specific using FPGAs [5, 57,

71, 75, 81, 84, 85]. While generalized approaches are programmable, they don’t necessarily

yield the best performance. On the other hand, application-specific solutions are restrictive

to the targeted application only. Hence, with the rise of heterogeneous computing (more

specifically, CPU-FPGA hybrid systems) and High Level Synthesis (HLS) tools, there is great

potential to efficiently harness that growing computational power for irregular applications

(such as graph processing). This section dissects the research challenges into two categories,
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graph processing challenges, and hybrid-systems utilization challenges. Chapter 2 elaborates

on the previous work and how to build on it to improve both the performance of graph

applications and the efficiency of utilizing heterogeneous systems.

Graph processing challenges Graph algorithms are inherently difficult to process effi-

ciently, especially when targeting large-scale real-world graphs. This application has a large

memory footprint, coupled with poor locality, low compute to memory access ratio and ir-

regular memory access pattern. As a result, system performance is usually bound by the

throughput of the external DRAM bandwidth. Large scale graphs have exploded in size in

recent years and extracting information from these graphs is increasingly challenging. The

performance bottlenecks that hamper graph applications are diverse and variable, not only

do they depend on the graph algorithm and the underlying hardware architecture, but the

size and structure of the graph is also a critical variant. Graph processing challenges are

summarized in the list below:

• Poor locality and irregular data access pattern

– Unstructured relationships between graph vertices lead to poor locality, which

incurs frequent high latency global memory access.

• Lack of scalability

– Communication between partitions of large-scale graphs causes heavy traffic,

which inhibits scalability.

• Heavy data conflicts

– Vertices from different partitions may read/write the same vertex simultaneously,

leading to heavy conflicts.

3



Heterogeneous processing challenges There is a growing trend in high-performance

computing towards heterogeneous platforms, where 25% of the top 100 supercomputers are

designed using heterogeneous model employing either GPUs or FPGAs or both [18]. The use

of heterogeneous systems in HPC to enhance performance is growing and proved effective

for data parallel applications with regular memory access patterns [23, 56]. However, these

powerful systems are still yet to be efficient in the irregular application domain such as graph

applications [5, 21, 26, 71, 74, 75].

This dissertation focuses on CPU-FPGA hybrid systems. The research focuses on two as-

pects, exploiting the strengths of both CPU and FPGA platforms, and the process of syn-

thesizing efficient designs on the FPGA. FPGAs offer a massively parallel configurable ar-

chitecture that could be customized and optimized for a target problem and usually provide

superior power efficiency, yet it has its limitations. Developing an efficient FPGA-based

hardware design requires knowledge and expertise about the underlying configurable archi-

tecture. While the use of High-Level Synthesis (HLS) tools significantly reduced the level of

effort to utilize FPGAs, it does not necessarily yield an efficient and performant hardware

design [26, 88]. The FPGA’s performance and scalability problems are aggravated when

targeting irregular applications.

1.2 Methodology

This research aims to expand the scope of graph processing frameworks to extract the best

performance out of heterogeneous computing platforms when targeting graph applications

domain. Hence, to tackle the challenges illustrated in Section 1.1, this dissertation lays out

how to address some of the inherent challenges in graph processing in addition to exploiting

the strengths of both CPUs and FPGAs.

4



Figure 1.2 lays out the dissertation overview. First, a workload distribution framework

is devised to partition the workload on devices in a CPU-FPGA hybrid system. Second,

FPGA-specific optimizations are explored for irregular graph-like applications to improve

the performance of the synthesized hardware. Third, an FPGA Domain-specific performance

model framework is constructed to model the performance and automatically explore the

optimization space for graph applications.

Figure 1.2: Dissertation overview.

The goal of this work is to optimize the performance of heterogeneous processing for graph

applications. To harness the power of heterogeneous systems, one has to be able to exploit

the architectural strengths of the available hardware devices. This dissertation focuses on

CPU-FPGA hybrid systems, to optimize the performance of graph applications by exploiting

knowledge of the graph-input dataset connectivity structure. However, exploiting the archi-

tectural strengths of FPGAs requires hardware skills, rendering it inaccessible to the masses.

Hence the dissertation extends to explore how to efficiently utilize the FPGA’s customizable

architecture and optimize its performance, more specifically, when executing graph appli-

cations using HLS tools. Finally, research transitioned to performance modelling for HLS

designs on FPGAs. Building on an established state of the art performance model [88], we

fashioned a custom performance model specifically for graph-like applications synthesized

for FPGA using HLS tools. Consequently, we were able to devise a framework that explores

5



the optimization space and recommends the best optimization strategy for a graph dataset.

Testing and experimentation of the frameworks was conducted on Intel’s Devcloud platform.

Intel acquired Altera [9] in 2016 and in their pursuit to democratize the use of heterogeneous

systems and make it accessible to the masses, they constructed the Devcloud platform. It

is an experimental cluster including many nodes, where each node is constructed as a CPU-

FPGA hybrid system or a CPU-GPU hybrid system. During my research I have been granted

access to the Devcloud platform to run my experiments to verify my research, which also

serves them as a way of advertising for their beta software/hardware system. This allowed

me to join their community, Intel Innovators, which is tasked with providing feedback of user

experience of their system as well as participating in conferences and workshops to promote

their heterogeneous ecosystem.

1.3 Contributions

This dissertation attempts to have a meaningful impact on both the graph analytics com-

munity and the heterogeneous/FPGA computing community. First, the graph processing

community would benefit from improving the performance of graph analytics applications.

Second, the FPGA community would benefit from research regarding FPGA specific op-

timization and domain-specific performance modelling which would ultimately serve the

greater goal of including FPGAs into mainstream computing. The recent purchase of Xil-

inx by ARM [10], in addition to previous Altera acquisition by Intel [9], suggest trending

towards tighter coupling of CPUs and FPGAs, perhaps on the same chip. The resulting

collective impact of this research is well positioned to harness the computational power of a

CPU-FPGA hybrid system, more specifically when targeting graph applications.
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To achieve the goal of high-performance scalable graph processing on heterogeneous plat-

forms, multiple underlying steps have been taken. Hence, this study was conducted in four

phases. In a first phase, graph datasets are evaluated on CPUs and FPGAs to capture

the execution profile of such an irregular application. In a second phase, multiple aspects

of irregular applications are analyzed such as memory access patterns, in addition to the

execution profile, to formulate the basis of a workload distribution plan in order to exploit

the strengths of each hardware device in a heterogeneous system. Up to 6.5× speedup was

achieved compared to CPU-only and FPGA-only implementations, by simply distributing

the workload on a CPU-FPGA hybrid system. In a third phase, due to the inefficiency

of irregular applications execution on FPGAs, architecture specific optimizations were ex-

plored to accelerate sub-optimal performance of graph applications on FPGAs. In a fourth

phase, a custom performance model is built to project the execution profile of graph applica-

tions on FPGAs and explore the optimization space. Compared to the architecture agnostic

implementations, 3.4× speedup was achieved executing graph applications using the auto-

mated framework’s optimization recommendations. The framework recommended the best

optimization strategy in 90% of the test cases.

To that end, the contributions of this dissertation can be summarized as follows:

• Augmenting graph input characteristics into a workload distribution framework (GAHS:

Graph Analytics on Hybrid Systems), which is described in detail in chapter 3. Since

graph applications follow a data-driven computation style, each graph input has its

unique impact on the execution profile. Hence, generalizing an optimization approach

for all graph datasets will not yield the best performance. Therefore, GAHS Utilizes

the graph features to decide the best workload distribution over the resources of a

CPU-FPGA hybrid system.
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• Formalizing a method to optimize irregular applications such as graph processing when

targeting hardware-based accelerators (HLS-based FPGA designs). Candidate code

patterns for optimizations were identified and optimization recipes were created and

applied as detailed in chapter 4.

• Addressing the irregular nature of graph applications that makes performance mod-

elling erroneous, a domain-specific performance model has been devised for HLS-based

FPGA designs. General purpose performance models are usually accurate for compute

bound applications (i.e., regular applications), but fails to capture the execution profile

of memory bound applications (i.e., graph applications). Exploiting knowledge of the

graph structure aided the model to capture the execution profile of such a data-driven

application domain, as depicted in chapter 5.

• Exploring the optimization space of graph kernels on FPGAs, an automated framework

has been devised assisted by the domain-specific performance model. The framework

guides the best optimization strategy for FPGA designs based on knowledge of the

graph input properties and hardware design specifications. Chapter 5 details how such

an automated framework relieves FPGA developers of the time-consuming burden

of manually synthesizing and testing various optimization strategies attempting to

maximize performance.
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1.4 Dissertation outline

The rest of this dissertation is organized as follows. Chapter 2 discusses background and

related work. Chapter 3 describes a framework for workload partitioning and scheduling of

graph analytics on CPU-FPGA hybrid systems exploiting the architectural strengths of both

CPUs and FPGAs collectively. Chapter 4 addresses the efficiency and optimization of uti-

lizing reconfigurable architectures to process irregular applications such as graph problems.

Chapter 5 presents a domain-specific performance model and an automated framework to ex-

plore the optimization space for graph applications on FPGAs. Finally, Chapter 6 provides

a summary of the contributions and outlines future research paths.
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Chapter 2

Background and Related Work

While there are many ways computer scientists can attempt to accelerate the graph process-

ing problem and scale it efficiently (such as optimizing software libraries, abstracting domain

specific APIs, and using hardware accelerators), this work focuses on utilizing heterogeneous

systems. This dissertation builds upon the work of graph processing, FPGA optimization,

and heterogeneous computing domains. This research endeavor aims to enhance the perfor-

mance and scalability of graph applications while exploiting the strengths of heterogeneous

platforms, more specifically, CPU-FPGA hybrid systems.

This chapter first introduces background about graph processing in general in Section 2.1,

later, chapters 3,4,5 elaborate in detail the background of each specific graph application

used. Afterwards, Section 2.2 discusses previous research in the heterogeneous computing

area concerning graph processing. Then, Section 2.3 presents previous work related to uti-

lizing graph input properties to influence the runtime decision of graph processing. Later,

Sections 2.4,2.5 detail previous efforts to optimize and model the performance of HLS based

FPGA implementations. Finally, Section 2.6 summarizes the research attempts in each area

and how it is built upon in this dissertation to achieve the overarching goal of enhancing

graph processing on heterogeneous systems.
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2.1 Graph Processing Background

This section describes the algorithmic properties of graph algorithms and their impact on

the underlying hardware architecture. Many graph applications depend on sparse matrix

vector operations as shown in Figure 2.1, which like most graph algorithms are typically

characterized by their workload imbalance, unpredictable control flow, and irregular memory-

access patterns. Such an application domain usually executes data-driven computations

dictated by the connectivity structure of the graph, while performing a relatively small

amount of computation, which makes execution time governed by the memory access latency.

Figure 2.1: Graph (a) Logical representation (b) Adjacency matrix (c) In-degree calculation
as SPMV (adopted from [69]).

Such pointer-based computation is unstructured and requires highly irregular fine-grained

random memory accesses. This leads to poor temporal and spatial locality, which inhibits

performance scalability on cache-based processors, especially when targeting real life large-

scale graphs.
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Properties of this application domain are listed below:

• Data driven computation: Most graph algorithms are iterative, where each iteration

depends on the data processed (vertices and edges) in the previous iteration.

• Irregular memory access: Indirect, pointer-based memory references lead to random

memory accesses with high latency.

• Poor temporal and spatial locality: Portions of a graph algorithm may be able to employ

data reuse (high temporal locality), while other portions of the algorithm may have

contiguous memory accesses (high spatial locality). Taking advantage of both locality

types is challenging, while optimizing for one type and neglecting the other typically

causes a performance hit.

• Low compute to memory access ratio: A significant amount of the graph workload

is for traversing the graph while a much smaller amount is required for doing actual

computation. This is the reason for characterizing this application domain as memory

bound.

Graph applications are generally characterized by a low computation to communication ra-

tio. A previous study by Ham et al. [22] showed that more than 90% of a graph algorithm’s

instruction (or execution time) is spent on traversing the graph, which translates to commu-

nication or global memory accesses. On the other hand, less than 10% of the instructions

are for computation.

General-purpose processing (CPUs) is not ideal for such an execution profile. The fixed

memory access granularity based on cache line sizes is rigid and wasteful in terms of mem-

ory bandwidth. This irregular application domain requires much finer granularity when

accessing the global memory, where in the case of coarser grained CPU memory transaction,
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Figure 2.2: Overview of graph solvers: classification of hardware platforms

simply translates to wasted memory bandwidth. Hence, when executing such an irregular ap-

plication, the little or no spatial and temporal locality of the application make it challenging

to scale good performance on general-purpose CPUs. GPUs, on the other hand, offer massive

parallelism for Single Program Multiple Data (SPMD) like applications. Graph applications

with varying degrees of parallelism are a challenging target to harness the computational

power of GPUs. While CPUs and GPUs are easier to program, FPGA designs are more

flexible and power efficient. The data-driven execution profile of FPGAs saves a lot of the

energy used by CPUs and GPUs to decode instructions and look up data in the cache, which

usually consume the majority of power in instruction-based architectures. Table 2.1 shows

an overview of the latest graph processing frameworks and their properties, while Figure 2.2

shows a visual representation of the hardware platform classification of graph solvers.
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Graph processing framework Year System architecture Hardware platform
[68] Solta et al. (2015) Distributed CPU
[85] Zhou et al. (2017) Distributed CPU

[65] Ligra: Shun, et al. (2013) Shared-memory CPU
[67] GoFFish: Simmhan, et al. (2014) Distributed CPU

[45] GraphLab: Low, et al. (2010) Shared-memory CPU
[61] X-Stream: Roy, et al. (2013) Shared-memory CPU

[62] Chaos: Roy, et al. (2015) Distributed CPU
[24] Giraph: Apache Software Foundation (2012) Distributed CPU

[70] Giraph++: Tian, et al. (2013) Hybrid CPU
[73, 75] Wang, et al. (2018) Shared-memory FPGA+CPU
[71] Umuroglu, et al. (2015) Shared-memory FPGA+CPU
[5] Betkaoui, et al. (2012) Distributed FPGA
[81] Zhang, et al. (2017) Shared-memory FPGA
[86] Zhou, et al. (2018) Shared-memory FPGA

[14] FPGP: Dai, et al. (2016) Shared-memory FPGA
[83] Medusa: Zhong, et al. (2013) Distributed GPU+CPU

[19] TOTEM: Gharaibeh, et al. (2013) Hybrid GPU+CPU
[74] Gunrock: Wang et al. (2016) Distributed GPU
[16] MapGraph: Fu, et al. (2014) Distributed GPU

[50] Merrill, et al. (2012) Distributed GPU
[48] Pregel: Malewicz, et al. (2010) Distributed N/A

[69] GraphMat: Sundaram, et al. (2015) Shared-memory N/A

Table 2.1: Overview of graph processing frameworks.

2.2 Heterogeneous Computing &

Workload Partitioning

Various graph solvers make use of hardware accelerators to improve the performance of graph

processing either using GPUs [16, 50, 74] or FPGAs [14, 25, 42, 52]. GPUs may appear poorly

suited for graph processing, since massive parallelization with lack of adequate synchroniza-

tion introduces load balancing and under-utilization problems. However, as stated by Merrill

et al. [50], two key optimization techniques may alleviate these challenges, multi-threading

and fine-grained synchronizations. Unlike the main GPU-based research, Zhong and He

[83] and Gharaibeh et al. [19] leveraged the heterogeneity of CPU-GPU hybrid platform to
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enhance the performance of graph processing. Zhong and He [83] introduced Medusa, a pro-

gramming framework that exposes C/C++ APIs to make use of GPUs’ massive parallel data

structure. On the other hand, TOTEM, introduced by Gharaibeh et al. [19], distributes the

workload on both GPUs and CPUs, where highly parallel workloads are assigned to GPUs,

while small parallelism degree workloads are assigned to CPUs.

Many FPGA-based graph processing frameworks have been proposed, such as GraphGen

[52], FPGP [14], GraphOps [53], ForeGraph [15], and others [5, 25, 42, 71, 75, 81]. However,

the cooperative use of CPU-FPGA hybrid systems was not as extensively researched.

Research proposed by Umuroglu et al. [71] exploits a CPU-FPGA heterogeneous device to

accelerate graph processing, specifically the Breadth-First Search (BFS) problem. They

aim to maximize the memory bandwidth utilization and create a stall-free data path on

the FPGA. The workload is partitioned to offload low parallelism iterations on the CPU

while leaving the high parallelism iterations to the high-throughput FPGA. They achieve an

average traversal speed of 172 million traversed edges per second (MTEPS).

Other work by Wang el al. in [75, 76] exploits the close coupling of CPU and FPGA in the

shared memory architecture of the Heterogeneous Architecture Research Platform (HARP).

The authors optimize data access by optimizing the on-chip data reuse. Moreover, they

utilize the heterogeneity to implement Processor Assisted Scheduling (PAS) which offloads

the scheduling tasks to the CPU and leaves the high-throughput data crunching to the

FPGA. While employing hardware and pre-processing optimizations, they achieved a maxi-

mum performance of approximately 280 MTEPS for sparse graphs. While this work strives

to optimize the custom FPGA design to maximize performance, it makes their design strictly

application-specific.
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2.3 Graph-Input Aware Research

This section highlights the impact of the graph input on the execution profile of a graph pro-

cessing framework. Programmable graph processing frameworks such as Gunrock [74] tend

to integrate graph primitives to augment a general-purpose library. However, as stated by

Meng et al. [49], these programmable approaches may fail to deliver optimized performance

due to sensitivity to the input graph instance in addition to variations in the execution profile

of different graph algorithms. For example, the best hand-tuned BFS implementation using

Gunrock library achieves 47 GTEPS on a power-law graph, while executing a road-net graph

performance drops to 44 MTEPS. The optimizations applied to graph traversal applications

such as BFS, are not applicable to the denser workload of centrality measure applications

such as PageRank.

GSWITCH, proposed in [49], is a pattern-based algorithmic auto-tuning system. It includes a

set of algorithmic patterns that assemble variants of the algorithm and dynamically switches

between optimization strategies with negligible overhead. This framework abstracts a graph

algorithm as a set of algorithmic patterns characterized by quantitative parameters. Other

work [79] proposes an input aware auto-tuning framework for parallel sparse matrix-matrix

multiplication called IA-SpGEMM. This is strongly related to graph applications since the

two application domains share many of characteristics. IA-SpGEMM automatically decides

the best sparse format for arbitrary sparse matrices to enhance the performance based on

sparse features from the input including statistics of the matrix sparsity, the ratio of non-

zero elements and its variance. This work is limited to deciding the best sparse format to be

used. While both [49, 79] work was tested on CPUs and GPUs, none took advantage of the

heterogeneity of the system.
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2.4 HLS Design and Optimization on FPGAs

Czajkowski et al. [12] were the first to propose Altera’s OpenCL compiler demonstrating

four well-known applications: Monte Carlo Black-Scholes (MCBS), matrix multiplication

(SGEMM), finite difference (FD), and particle simulation (Particles). To enhance the per-

formance of dynamic programming on FPGAs, Settle [64] introduced OpenCL pipes [64],

which improves the performance by 1.5× and 9.9× in comparison to the GPU and CPU

implementations, respectively, while providing energy savings of up to 26-fold. Both en-

deavors achieved high utilization of FPGA resources with low clock frequency (less than

200 MHz). Moreover, the FPGA-specific implementations differed from their GPU-based

counterparts. While the GPU implementation used SIMD-like parallelism, the FPGA imple-

mentation adopted a MIMD-like execution where each thread executed a distinct operation

on a set of data items.

More recent research efforts proposed by Zohouri et al. [88] evaluated the performance of six

regular benchmarks from the Rodinia suite using the Altera OpenCL SDK on a Stratix V

FPGA. The original OpenCL implementations followed the bulk synchronous parallel (BSP)

execution model, targeting GPU-like architectures with massive multi-threaded execution.

Unfortunately, this approach can degrade FPGA performance due to barrier synchronization

points that dictate flushing the pipeline, effectively halving the pipeline throughput. The

authors in [88] reached the conclusion that FPGA-specific optimizations must be applied

to the OpenCL kernels to yield efficient, high-performance hardware designs. In particular,

they outlined five main FPGA-specific optimization techniques: compute unit replication,

vectorization (or ”SIMD-iztion”), loop unrolling, shift registers, and sliding windows. These

optimizations improved the performance by up to two orders of magnitude compared to

the BSP OpenCL kernels and achieved 3.4× better power efficiency when compared to the
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NVIDIA K20c GPU.

The work published by Zohouri et al. [88] was extended in [55] to evaluate the performance

of three different design methodologies for FPGAs: general-purpose manycore system (30

Nios II soft-core processors), FSM-based architecture using LegUp HLS tool (MIMD archi-

tecture with focus on lower latency), and Intel’s FPGA SDK for OpenCL (deeply-pipelined

architectures with focus on higher throughput). The experiments showed that the FSM and

soft-core implementations have scalability issues that are mainly related to cache conflicts

and capacity misses. This issue was partially solved using a multi-banked cache design.

However, the OpenCL implementations still outperformed both approaches across all the

applications with up to two orders-of-magnitude speedup.

Other work [40, 72] used the OpenDwarfs benchmark suite to evaluate the performance of

the OpenCL programming model on a Stratix V FPGA using the Altera OpenCL SDK.

Kernels from regular application domains were tested, such as N-body methods, structured

grids, unstructured grids, and dense linear algebra. Unlike Rodinia, the OpenDwarfs suite

provides architecture-agnostic OpenCL kernels rather than GPU-specific (i.e., GPU-biased)

implementations. These kernels were used as the baseline for comparison on the CPU, GPU,

Intel MIC, and FPGA architectures. The authors explored FPGA-specific optimization

techniques that exploit different parallelism levels as well as minimizing data movement

across the memory hierarchy. It was also reported that the architecture-agnostic OpenCL

kernels yielded inefficient hardware designs, which further suggests the need for FPGA-

specific optimizations.

Finally, XSBench, a proxy application for Monte Carlo simulation, was used in [47] to eval-

uate the performance of OpenCL applications with irregular memory accesses on FPGAs on

an Intel Arria 10 FPGA platform. The authors applied three different optimizations and

evaluated their effect on performance. A fused multiply-add unit was integrated into the
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design. The BRAMs were used to implement a constant cache along with data pre-fetching

and packing techniques. The final optimization technique used vector data types and stored

them in private memory. Applying these optimizations delivered a 50% improvement in

energy efficiency, while sacrificing 35% of the performance compared to an Intel Xeon CPU

with eight cores.

2.5 HLS Performance Modelling and Design Space Ex-

ploration

As demonstrated in multiple publications [7, 17, 39, 55, 77], the expected performance for

HLS design is highly unpredictable. Also, HLS tools require FPGA-specific optimizations

more often than not in order to yield efficient hardware architectures [26, 40, 47]. One of the

earliest works on modelling performance for HLS design was presented in [77]. Static and

dynamic analyses were used to build an analytical performance model for the key architec-

tural features of FPGAs under the OpenCL programming model. This tool can predict the

performance of OpenCL kernels with different combinations of FPGA-specific optimizations.

This greatly helps in guiding the code-tuning process for performance purposes. However,

this approach depends on collecting information by performing static analysis of the LLVM

code, dynamic profiling of the OpenCL application execution on GPUs, then feeding the

information into the analytical model. This amount of information is not readily available

for users and is not easily reproducible for new applications.

Zohouri et al. [88] presented one of the latest works in the performance of OpenCL kernels

on a Stratix V FPGA. They proposed in this work an analytical performance model that

captures the baseline performance of HLS designs. The approach presented is sound but will
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only be feasible in the case of compute bound applications. However, in the case of irregular

memory access applications such as memory bound graph applications, the model fails to

depict the execution profile accurately. Moreover, the exploration of optimization techniques

was wildly off par. This is mainly due to the simplistic memory access model presented in

their work.

Other interesting work proposed by Da Silva et al. [13], explores the idea of extending the

roofline model [78] to the HLS design space. This work utilizes the resource consumption

and the parameters used in the HLS tools, to maximize the performance and the resource

utilization within the area of the FPGA. This work considers the resource utilization on the

FPGA to maximize area usage by replicating the Processing Entities (PEs), and in turn

maximize performance. However, in addition to the limited bandwidth of global memory

access on FPGAs, complications may arise due to the irregular memory access patterns of

graph applications. Moreover, this work only recognizes the peak performance attainable on

the FPGA design, which is not realistic considering the irregularity of the graph applications

domain.

Another effective design space exploration work was proposed in [82], where they recursively

quantify the loop latency through an analysis on the LLVM-IR level. However, a major

drawback that would make this work not well suited for graph applications, is that their

analysis depends on having static loop bounds. This work is efficient in the case of regular

memory access applications, where the loop bounds are usually static and global memory

can be accessed through fixed stride accesses. However, unfortunately this is not the case

for graph applications. Graph applications have an inner loop which is dynamically bound

depending on the data input which makes this work an un-viable candidate for design space.
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2.6 Discussion

In summary, previous studies by Meng et al. [49], Xie et al. [79] showed the impact utilizing

graph input properties to influence runtime decisions in graph processing and sparse matrix

operations. Moreover, it has been established how powerful heterogeneous systems can be

if its computational potential can be efficiently harnessed. Hence, this dissertation explores

how to exploit the strength of each device in a CPU-FPGA hybrid system supported by

the knowledge gained from graph input analysis, which facilitated the formulation of an

automated framework for workload distribution and scheduling on both CPUs and FPGAs.

Chapter 3 elaborates about this topic in detail.

Focusing on FPGA implementations, previous studies showed the need for applying FPGA-

specific optimizations to OpenCL kernels to generate efficient custom hardware accelerators.

However, the expected performance and efficiency is highly dependent on the characteristics

of the target application as well as the graph input properties. Moreover, generic OpenCL

kernels (following the BSP execution models), achieve high performance on GPUs, but gen-

erate extremely inefficient FPGA designs. While previous work generally focused on regular

OpenCL kernels, this dissertation attacks the problem of optimizing the more challenging

problem of irregular applications such as graph processing. The importance of this particular

study is highlighted by the development of new benchmarks, such as CHO [51], developed

for the sole purpose of providing unoptimized OpenCL kernels to test the FPGA capabil-

ities using OpenCL compilers. Further details about the FPGA-specific optimization are

examined in Chapter 4.

Modelling the performance of such FPGA designs is challenging especially in the case of

irregular applications. Previous research relied on dynamic profiling [77], simplified memory

access modelling [88], and oversimplified assumptions [82]. However, this dissertation tackles
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the performance modelling for irregular graph applications by augmenting the innovative idea

of using information from the dataset input. Building on the performance model proposed

in [88] and augmenting it with knowledge from graph-input aware research, we were able to

capture the execution profile of irregular memory accesses. This addressed the problem of

simplified memory access modelling without the need for extra information gathering using

dynamic profiling which is discussed in detail later in Chapter 5. This work extends the use

of graph input properties which helped in formulating an automated framework for exploring

the optimization space.
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Chapter 3

Workload Distribution on

CPU-FPGA Hybrid Systems

This chapter focuses on a high-level view of system design, in particular heterogeneous

computing. The focus in this chapter is shifted towards a CPU-FPGA hybrid system, where

the architectural properties of each device are exploited to enhance the performance of graph

applications processing. This chapter examines two hypotheses. First, a variety of properties

of a set of graph instances are extracted and examined to determine if they can be used to

predict the analytical execution profile on different hardware devices. Second, can this

information be used to partition the workload and properly schedule it on a hybrid CPU-

FPGA system. This work is intended to enhance the performance and scalability of graph

processing by exploiting the heterogeneity of CPU-FPGA hybrid systems [28].

This chapter details a framework called Graph Analytics on Hybrid Systems (GAHS) for

workload partitioning and scheduling of graph analytics on hybrid systems. The decision-

making process of the framework is configured to be guided by data input properties. The

goal of this work is to expand the design space exploration to include both CPUs and FPGA.

Moreover, GAHS not only depends on the characteristics of the application and the available

hardware resources but also includes data input properties.
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3.1 Motivation & Goal

Many real-world problems can be presented as large-scale graphs with millions of vertices

and billions of edges, such as social networks, biological interactions, and web graphs [37, 63].

Graph analytics is an area of study used to extract useful information from these huge data-

sets. For instance, in web graphs, web pages represent the graph vertices while hyperlinks

between them represent the edges. Analyzing these types of graphs (in this case, usually using

the PageRank algorithm [54]) are used for web search engines, ranking websites, and network

analysis among other uses. This emphasizes the motivation for enhancing the performance

and scalability of graph applications.

3.1.1 Challenges

Performing graph analytics to extract useful information from these ever-growing graphs

is a complex and challenging task. The sheer size of these graph data-sets combined with

the irregular nature of the underlying problem pose a significant challenge for performance,

scalability, and power efficiency [4, 26]. Large real-world graphs are challenging to process

efficiently, not only due to their large memory footprint, but most graph algorithms entail

irregular data-dependent memory access patterns with low compute to memory access ratio.

To complicate matters further, these data-sets tend to be scale-free (following the power-

law degree distribution), which makes load balancing and access locality harder to achieve.

Analyzing and extracting useful information from this big data domain is challenging, which

emphasizes the important role of high-performance scalable graph processing.

Previous research attempted to overcome the challenges of graph processing using the grow-

ing trend in heterogeneous high-performance computing. The use of hybrid systems to

enhance the performance of applications is growing and proved effective for data-parallel
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applications with regular memory access patterns [23, 56]. However, these powerful systems

are still yet to be efficient in the irregular applications domain such as graph applications

[5, 21, 26, 71, 74, 75]. On the other hand, there is little prior work that explores optimiz-

ing the graph processing environment using the features of the input graph instance while

targeting a hybrid ecosystem.

3.1.2 Approach

Observing a hybrid ecosystem of hardware including CPUs and FPGAs, each platform excels

in a specific aspect. Generally, CPUs are easily programmable and can take advantage of

instruction-level parallelism and sophisticated cache policies. On the other hand, FPGAs

offer superior power efficiency and customizable hardware architecture to fit an application’s

needs. Hence, this chapter presents a graph analytics framework (GAHS) that exploits the

strengths of each platform through efficient workload partitioning on a CPU-FPGA hybrid

ecosystem. Moreover, GAHS auto-tunes the workload distribution based on graph input

features (since it is a data-driven application). Not only that, but GAHS also learns as

it goes. Augmenting GAHS’s library with more execution profiles helps in fine-tuning the

workload distribution decision making process.

3.1.3 Contributions

Using multiple workload distribution designs and graph input features, GAHS framework

was able to achieve significant performance improvement compared to CPU-only, FPGA-

only implementations, and state-of-the-art hybrid FPGA solvers. Results show that up to

6.5× speedup can be attained over a CPU-only or FPGA-only implementations through

proper distribution of the workload. Moreover, GAHS achieves an average of 18× speedup
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compared to state-of-the-art hybrid CPU-FPGA solvers. The contributions of this work are

listed below:

• Analyzing and profiling the execution of multiple graph types with a wide range of

properties.

• Devising a novel framework that uses graph input features to decide the best workload

distribution over the resources of a CPU-FPGA hybrid system.

• Constructing a self-learning technique, where the framework fine-tunes its decision-

making process as it ingests more graphs via a feedback loop.

3.2 Background

This section explains the background of the PageRank application, the graph data-set, and

the workload distribution configurations used. This is intended to introduce the problem

scope and design space. PageRank application is used as a case study to showcase GAHS,

so a detailed explanation of the algorithm and its kernel implementation is presented in Sec-

tion 3.2.1. Then we elaborate on the graph data-set and the feature-set used to characterize

graph properties. Finally, we demonstrate our workload distribution configurations.

3.2.1 PageRank Algorithm

PageRank (PR) is an algorithm used by the Google search engine to rank web pages [54].

Initially, PR assigns an equal PR value of the reciprocal of the number of vertices to all the

vertices of the graph. Afterward, a series of superstep iterations are executed that terminate

either after a user-defined iteration count or an automated convergence check condition. In
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each iteration, each vertex donates a share of its PR value to its neighbors along its outgoing

edges. The number of outgoing edges of each vertex is used to divide the PR value equally

among the recipient vertices. After the summation operation of each vertex calculating the

total PR value donated to it, a damping factor is applied to the final PR value. The damping

factor is a value set between 0 and 1, to which the default is 0.85. For this work, the default

damping factor is used and the number of iterations of PageRank is set to 20 iterations.

The implementation in this chapter as in Chapter 4 is based on the SPMV-based PageRank

algorithm from [8]. The kernels breakdown is shown in Table 3.1. The graph input is

imported into a compressed sparse row (CSR) data structure and a CSR initialization kernel

is invoked. The CSR initialization kernel is responsible for updating the sparse matrix

that represents the graph to be compatible with SPMV calculations. Originally the sparse

matrix included only the connectivity structure of the graph; however, after invoking the

CSR initialization kernel, it is updated to consider the portion of PR value a vertex will

receive from its neighbors. This allows a standard SPMV kernel to perform the PR value

update, where the SPMV’s dense vector represents the previous iteration’s PR values for the

vertices without the need for atomic addition (which is required in the original algorithm).

The added overhead of including the CSR initialization kernel is insignificant relative to the

overhead of the atomic addition operation required by the original PageRank algorithm [8].

Kernel code-name K1 K2 K3 K4
Kernel name init_buffer() CSR_initialize() SPMV() PR_update()

Description Initializes PR buffers Constructs CSR matrix
from the graph Performs SPMV calculations Updates PR array with

the damping factor

Table 3.1: Kernels of the SPMV-based PageRank algorithm and the relevant kernel naming
code used throughout this chapter.

27



3.2.2 Graph Data-set and Features

The network data repository [59] is used as the source of real-world graphs used in this work.

To ensure the generality of different types of graphs for the framework’s learning process,

we use a set of graphs with a wide range of properties as shown in Table 3.2. Although

only a sample of the graphs is shown, 25 unweighted directed graphs were used spanning

different types of graph data-sets including web graphs, social networks graphs, email graphs,

citation networks, ecology networks, and road networks. This sample is used to evaluate the

initial parameters of the framework’s decision tree. Graph analytics applications (including

PR application) follow a data-driven execution profile, which emphasizes its high sensitivity

to the properties of the input graph. Since the goal is to capture a graph’s sparsity and

connectivity structure, we chose the features shown in Table 3.2, which are explained below.

• CC (Clustering Coefficient): is a measure of the tendency of graph vertices to cluster

together.

• D (Diameter): is the greatest distance between any pair of vertices in the graph.

• DEG (average degree): is the average number of edges for graph vertices.

• SCC (Strongly Connected Component): is a maximal strongly connected subgraph.

This feature-set has been selected based on graph parameters used in [49, 79] for input-

aware execution, augmented with additional parameters that capture the graph connectivity

Type Graph Vertices Edges CC D DEG SCC
Road network road-road-usa 23947347 28854313 0.0176 10 2 0

Collaboration network ca-hollywood-2009 1069126 56306654 0.7664 4 105 0.000001
Web graph web-Stanford 281903 2312498 0.5976 10 16 0.533985

Social network socfb-Georgetown15 9414 425639 0.225 3 90 0.000106
Ecology network eco-foodweb-baydry 128 2138 0.3346 2 33 0.804688

Table 3.2: Sample of the data-set used for initializing GAHS.
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structure. The workload per iteration in the PR application depends on the number of

neighbors for each graph node, hence, the selected feature-set has a direct impact on the

amount of computation and memory requests in each iteration.

The features and statistics of the data-set have been collected using SNAP library functions

[43]. We use this feature-set to capture the structure of a graph instance. This structure

directly affects the execution profile of the graph application in multiple ways. For instance,

it affects the data parallelism granularity and memory transactions granularity. While CPUs

take advantage of sophisticated cache policies, the fixed memory access granularity (which is

based on the size of a cache line) is not well suited for graph processing. Graph applications

may require much finer granularity when accessing the global memory, which in the case of

coarser-grained CPU memory transactions simply translate to wasted memory bandwidth.

The graph structure also affects the pipeline parallelism efficiency, which is important for

FPGA implementations. The data-driven execution model of FPGAs is well suited for the

graph application domain. However, the graph structure may impose stalls in the data path

pipeline (waiting for global memory access), significant performance degradation is observed.

Hence, when executing such an irregular application with limited spatial and temporal local-

ity, we aim to exploit the strengths of both general-purpose CPUs and application-specific

FPGAs.

3.2.3 Workload Distribution Configurations

The execution of the PageRank algorithm was profiled for both CPU execution and FPGA

execution to come up with reasonable partitioning of the workload over the available re-

sources. The workload distributions chosen for this work are based on the execution profile

of multiple graph inputs. Four design configurations were used to partition the workload
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between the CPU and FPGA in addition to CPU-only and FPGA-only configurations. In

these cases (CPU-only and FPGA-only) the workload is not distributed over multiple de-

vices, rather offloaded to one device only. Depicted in Table 3.3 are the different workload

partitioning designs with the distribution of kernels among CPUs and FPGAs. Offloading

kernels to the appropriate hardware resource in a hybrid system shows significant perfor-

mance improvement as discussed later in Section 3.4.

Configuration Workload distribution
K1 K2 K3 K4

Config-CPU CPU CPU CPU CPU
Config-FPGA FPGA FPGA FPGA FPGA

Config-1 FPGA CPU FPGA FPGA
Config-2 FPGA CPU CPU FPGA
Config-3 FPGA CPU CPU CPU
Config-4 CPU CPU FPGA FPGA

Table 3.3: The distribution of kernel computations over the hybrid system for the different
workload distribution configurations.

During the initial stages of building the framework, it was observed that the ”CSR_initialize”

kernel denoted as ”K2” is significantly slower when executed on the FPGA compared to the

CPU implementation. The reason is the many irregular global memory accesses required by

that kernel that are not amortized over the very lightweight computation of the kernel. This

influenced the decision when designing the workload distribution configurations to always

offload that kernel to the CPU (except in the FPGA-only configuration). This emphasizes

the importance of sharing the workload across the available hardware resources in the hybrid

system.
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3.3 Graph Processing on Hybrid Systems Using GAHS

The goal of GAHS framework is to make the best use of the available resources in a hybrid

system. The general structure of GAHS is shown in Figure 3.1, which shows the breakdown

of the components of the framework. GAHS is divided into two major parts, a back-end, and

a front-end. The back-end constructs the analysis and learning process while the front-end

recommends workload distributions for new incoming graph instances. GAHS is first initial-

ized using the execution profile of a graph data-set with a wide range of properties. Then,

it correlates relations between the execution profile of a graph and the different workload

distribution configurations. After that initial start, GAHS can start recommending workload

distribution configurations to new graphs. It also makes use of a feedback loop that uses the

new graphs’ execution profile to refine its analysis and recommendation process.

Figure 3.1: GAHS framework general structure and its associated components.
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3.3.1 Execution Profile Library

The first module of GAHS’s back-end is responsible for quantifying the execution profile

of the application. This module is responsible for maintaining data structures and storing

the initialization graphs’ execution profiles in addition to execution profiles acquired from

a learning feedback loop. A custom data structure was developed in this module to store

all the relevant information of a graph’s execution profile, including graph names, timing

reports, and indexing pointers for easy information retrieval.

3.3.2 Analysis Engine

The analysis engine examines the properties of a graph instance along with its execution

profile. This is a major component of the framework designed to find the best configuration

for a graph instance with the objective of minimizing the execution time. This module is

aware of the different design configurations identified earlier in Section 3.2.3. The information

from the execution profile library is extracted and combined with the appropriate workload

distribution design configuration. At this point, the analysis engine has the execution profile

of each kernel along with information about the hardware resources used to execute each

kernel. Next, the analysis subroutine is initiated to analyze the application’s execution profile

breakdown.

The execution profile is broken down into three major parts, host-device communication,

kernel execution time, and workload distribution overhead. Although both the CPU and

FPGA are considered computational devices, in this instance the 24-core CPU is referred

to as the host while the FPGA is referred to as the device. The host-device communication

pertains to loading initial data to the device and unloading the final result to the host. This

is mainly affected by the memory bandwidth of a hardware resource. The kernel execution
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time is purely dependent on the efficiency of the hardware resource used when executing a

specific kernel. For example, high data parallelism and fine-grained kernel computations are

more suited to FPGA execution, while irregular cache-friendly kernels are better suited for

CPU execution.

The workload distribution overhead pertains to the overhead incurred by moving data from

one hardware device to the other. It is calculated as a ratio of the communication time

relative to the performance gain of offloading computation to another device. This overhead

is mitigated by parallel execution on more than one hardware device; however, its effect is not

negligible. The analysis engine calculates the relative overhead coefficient that results from

using a specific configuration with a specific graph input. This relative overhead coefficient

is used later in the recommendation system.

3.3.3 Correlation Engine

The correlation engine starts by drawing relations between the analyzed information from

the analysis engine and the graph input features. It is responsible for drawing links between

graph input characteristics and hardware architecture abstractions for each kernel. The set

of features identified previously in Section 3.2.2 are used to set the parameters that construct

a scoring system. Thresholds for these parameters are set by the correlation engine using

empirical evaluation of the initialization data-set. However, the more execution profiles

learned by the framework, the more fine-tuned these thresholds are. The scoring system is

explained later in Section 3.3.4, but the parameter thresholds are set at this stage. This

module includes an iterative method that sets the parameter thresholds based on graph

features linking it to the best workload distribution configuration. Absolute graph features

identified in Section 3.2.2 are used in addition to a combined feature (V
E

), which is a measure
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of the sparsity of the graph.

• (V,E): The graph size is used to evaluate whether the graph fits in the cache memory

of the CPU.

• (CC): Higher clustering coefficients translate to higher data reuse between different

vertices. Properly designed hardware implementations can exploit data reuse to sig-

nificantly enhance performance on FPGAs.

• (DEG): The degree of a vertex determines the number of its neighbours, which directly

translates to the number of memory requests required to perform computation for

that vertex. FPGAs offer flexible granularity for memory requests making use of

burst coalescing memory access up to a maximum threshold (defined by the hardware

specification). On the other hand, CPU cache has a fixed granularity, where if it

doesn’t match that of the graph instance may lead to many cache misses.

• (V
E

): Graph sparsity directly impacts the number of stall cycles required to resolve

global memory requests.

After the initial learning phase, the parameters thresholds are relayed to the recommendation

system to configure the scoring system. The correlation engine is rerun each time a new graph

is processed to calculate the new threshold. However, the overhead impact of rerunning

that module is insignificant. The effect of the new graph feature values on the threshold is

weighted giving the history of learned statistics a heavier weight. The weight factor is related

to the number of learned graphs versus new incoming graph profiles. The new threshold value

is the weighted average over all the previously and newly learned graphs.
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3.3.4 Recommendation System

The front-end of the framework is responsible for deciding the workload distribution for a

new graph input. GAHS’s front-end starts by ingesting the graph’s features to decide the

best workload distribution. The recommendation of using a specific design configuration

is dependent on a scoring system. Graph features are used to calculate the score of every

design configuration available, based on the preset thresholds of the correlation engine. Only

a sample of the scoring system’s decision tree pseudocode is previewed in Listing 3.1 to

showcase its methodology; however, some evaluations take precedence before resorting to

the scoring system. The graph size is first evaluated using (V,E) features to determine if its

working set is small enough to fit in the cache memory of the CPU. In that case, Config-CPU

is the design configuration of choice. Otherwise, the recommendation system is employed to

decide which workload distribution is most suited for the graph input instance. Thresholds

for the scoring system are heuristically set by the correlation engine, which was initialized

using a data-set with a wide spectrum of properties.

Listing 3.1: Sample of the scoring system (preview).
1 i f ( graph .CC > CC_threshold )
2 con f i g −2−sco r e ++;
3 else
4 con f i g −3−sco r e ++;
5 con f i g −4−sco r e ++;
6
7 i f ( graph .DEG < DEG_threshold1 )
8 con f i g −4−sco r e ++;
9 e l s e i f ( graph .DEG < DEG_threshold2 )

10 con f i g −3−sco r e ++;
11 else
12 con f i g −FPGA−sco r e ++;
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3.3.5 Fine-Tuning Feedback

A graph instance is executed on the hybrid system using the workload distribution of the

design configuration suggested by GAHS. The execution profile along with the graph features

are relayed to GAHS’s back-end for the feedback learning process. As the framework learns

new graphs and reruns the back-end part of the framework, the correlation engine updates the

recommendation system with the new feature thresholds to reconfigure the scoring system.

Hence, the system becomes more accurate in predicting the best design choice. Initially it

needs a collection of graphs with a wide range of properties to jump-start the framework.

25 graphs were used to initialize the framework and achieved an initial prediction accuracy

of 89%.

3.4 Results & Evaluation

This section explores how GAHS is capable of enhancing the performance of the PageRank

application on a hybrid platform. It starts by discussing the hardware resources used in

this work, then steps into the details of performance evaluation and a deep analysis of the

framework’s results.

3.4.1 Hardware Platform

The computational platform used is the Intel Devcloud [36]. The computational node in-

cludes an Intel Arria 10 GX FPGA (Intel PAC Platform) and an Intel Xeon Gold 6128 CPU

running at 3.40GHz. The FPGA board has two 4-GB DDR-4 memory banks, 1150-K logic

elements, 54,260-Kb of M20K on-chip BRAM memory, and attaches to the host through a

PCIe interface. The FPGA compiled designs run at an average frequency of 275 MHz. On

the other hand, the CPU includes 24 cores, 32-KB L1 cache, and is running Ubuntu 18.04.
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3.4.2 Testing Data-Set

100 real-world graphs are used for testing the framework from the network data repository

[58, 59] with graph sizes up to 100-M edges. A sample of the dataset is shown in Table 3.4

due to the very large size of the data-set. Table 3.4 also depicts a graph ID for each graph

to link to the performance plots. We chose to use the graph ID in the plots as the graph

names are too long to include in the figures. The last column to the right in Table 3.4 shows

GAHS’s workload distribution recommendation for each graph input.

Graph ID Graph Vertices Edges CC D DEG SCC GAHS’s choice
G1 ca-coauthors-dblp 540486 15245730 0.8019 7 56 0.000002 (Config-2)
G2 cit-DBLP 12591 49744 0.1169 5 7 0.019061 (Config-1)
G3 cit-patent 3774768 16518948 0.0757 9 9 0 (Config-FPGA)
G4 email-enron-large 33696 180812 0.5092 5 11 0.00003 (Config-4)
G5 road-asia-osm 11950757 12711604 0.0006 1377 2 0 (Config-3)
G6 road-roadNet-CA 1957027 2760389 0.0465 442 3 0.000001 (Config-2)
G7 rt-retweet-crawl 1112702 2278853 0.0187 6 4 0.000001 (Config-4)
G8 socfb-A-anon 3097165 23667395 0.097 6 15 0 (Config-2)
G9 socfb-Duke14 9885 506438 0.2455 3 103 0.000101 (Config-FPGA)
G10 socfb-uci-uni 58790782 92208196 0.043 9 3 0 (Config-2)
G11 web-BerkStan 685230 7600596 0.5967 10 22 0.488678 (Config-2)
G12 web-google 1299 2774 0.3483 8 4 0.00077 (Config-3)
G13 web-it-2004 509338 7178414 0.816 8 28 0.000002 (Config-2)
G14 web-wikipedia2009 1864433 4507316 0.1596 9 5 0.000001 (Config-2)

Table 3.4: Sample of the testing data-set used for evaluating GAHS framework.

3.4.3 Total Execution Time Analysis

GAHS’s workload distribution recommendations achieve up to 6.5× speedup compared to

FPGA-only and CPU-only execution as shown is Figure 3.2. The CPU-only configuration is

a multi-core implementation utilizing 24 cores in the Intel Xeon Gold 6128 CPU. Figure 3.2

shows that the workload distribution is beneficial in almost all of the test cases, with an

average speedup of 5× across the 100 tested graphs. However, the test case (G4) where

GAHS’s recommendation causes a slowdown is discussed in Section 3.4.4.
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Figure 3.2: GAHS’s recommendation speedup relative to FPGA- and CPU-only execution.

While Utilizing the available hardware resources and distributing the workload shows sig-

nificant speedup; in some cases, as shown in Table 3.4, GAHS’s recommendation was not to

partition the workload. Instead, GAHS recommended utilizing the FPGA resource only. In

this particular case, most of the kernels are expected to be more performant on the FPGA,

while only one kernel was predicted to be more performant on the CPU. Initially, GAHS’s

decision is based on analyzing each kernel separately, then it evaluates the overhead co-

efficient. If the workload distribution overhead (depicted by the overhead coefficient) has

more of an impact on performance than offloading the one kernel to the faster CPU (for this

particular kernel), then all the computation is offloaded to the FPGA.

3.4.4 Recommendation Accuracy

Testing GAHS’s recommendation accuracy was an elaborate job that included executing the

entire testing data-set over all the configuration choices. Each graph is executed using all the

available configuration choices to figure out which workload distribution configuration is the

fastest for that graph. The fastest configuration is compared to GAHS’s recommendation,
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eleven out of the hundred tested graphs were not the most performant choice. This aggregates

to a recommendation accuracy of 89%. However, interesting findings were revealed when

studying inaccurate cases where GAHS failed. We find that although GAHS’s choice was

sub-par in some cases, it chooses a configuration with comparable performance to the best

choice. Figures 3.3 and 3.4 show two sample cases of GAHS’s miss-prediction.
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Figure 3.3: Performance (GTEPS: Giga Traversed Edges Per Second) of road-asia-osm
graph across all workload distribution configurations.

Figure 3.3 shows the performance of road-asia-osm across all the configuration choices.

The fastest configuration is Config-2 while GAHS recommended Config-3. This is a 60%

slowdown compared to the fastest configuration. However, GAHS’s choice still showed a 4.3×

speedup over CPU-only and 5.5× speedup compared to FPGA-only configuration. Hence,

while GAHS mis-predicted the best workload distribution, it still improved performance.

On the other hand, Figure 3.4 shows performance of the graph email-enron-large across

all configurations. In that case, GAHS recommended Config-4, while the fastest imple-

mentation was of Config-FPGA. This is attributed to a bad overhead coefficient calculation.

Although each separate kernel would be faster using Config-4, there was a significant over-
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Figure 3.4: Performance (GTEPS: Giga Traversed Edges Per Second) of email-enron-large
graph across all workload distribution configurations.

head of 22% when executing this graph using Config-4. The overhead was underestimated

by GAHS causing it to avoid choosing Config-FPGA which offloads all the computation to

the FPGA only.

3.4.5 Comparison with State-of-the-Art

Executing the graphs data-set on GAHS’s recommended design configuration choice achieved

a maximum absolute performance of 4.8 GTEPS, with an average of 1.78 GTEPS. This

amounted to an average speedup of 18× compared to the state-of-the-art CPU-FPGA hybrid

designs as shown in Figure 3.5.

GAHS is compared with state-of-the-art highly optimized hand-tuned designs that use CPU-

FPGA hybrid systems proposed in [71, 75, 81, 87] as shown in Figure 3.5. The work in [71]

achieved an average traversal speed of 172 MTEPS when executing synthetically generated

graphs as explained earlier in Chapter 2. GAHS framework achieves 10× improvement in

performance simply by distributing the workload. Moreover, while employing hand-tuned
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Figure 3.5: Maximum performance achieved by GAHS compared to related work

optimizations in [75], they achieved a maximum performance of approximately 280 MTEPS

for sparse graphs. GAHS’s workload distribution achieves 17.1× speedup compared to [75]

without the need for tedious hand-tuned optimizations. Hence, GAHS outperformed their

optimized solution by only efficiently distributing the workload.
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3.5 Summary

This chapter presents a means of harnessing the computational power a CPU-FPGA hybrid

platform. The performance of graph processing is enhanced using workload distribution over

the available hardware resources in such a hybrid ecosystem. GAHS (Graph Analytics on

hybrid Systems) is an analysis and recommendation framework that automatically decides

the best workload distribution over the available hardware resources. The framework decides

the best design configuration choice based on properties of the input graph and the hardware

specification to select the workload distribution most suited for that specific graph input.

Furthermore, GAHS learns as it goes. The framework includes a feedback loop that relays

new graph properties and execution profiles back to GAHS’s back-end. This feedback loop

enhances the decision-making process of GAHS and makes it more accurate in choosing the

best workload distribution.

GAHS shows significant performance improvement executing the PageRank application on

a CPU-FPGA hybrid system. Up to 6.5× speedup was observed compared to CPU-only and

FPGA-only implementations. It also shows an average of 18× improvement compared to

state-of-the-art hybrid FPGA solvers, though these implementations usually include hand-

tuned hardware optimizations.
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Chapter 4

HLS Design Space and Optimization

Exploration

When targeting execution on a heterogeneous platform, a portable programming language

is essential to facilitate coding on all the available devices. OpenCL is considered for graph

processing development in this dissertation as it can be easily used to program both CPU,

and FPGA based platforms. While OpenCL is emerging as a high-level hardware description

language, it may not yield the best FPGA designs. OpenCL addresses the productivity chal-

lenges of developing applications on FPGAs by providing an abstract interface to facilitate

high productivity.

However, these OpenCL-realized accelerators are unlikely to make efficient use of the recon-

figurable fabric without adopting FPGA-specific optimizations [55, 88], particularly for irreg-

ular OpenCL applications [26, 47]. Consequently, this chapter explores the FPGA-specific

optimization space for OpenCL applications and presents insights on which optimization

techniques improve application performance and resource utilization. Exploring this opti-

mization space will enable end users to harness the computational potential of the FPGA

using HLS tools.
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4.1 Motivation & Goal

FPGAs have been used to accelerate a wide spectrum of applications, due to their superior

power efficiency over general-purpose architectures such as CPUs and GPUs. However, these

performance and power gains come at the cost of complex programming with hardware

description languages (HDLs). OpenCL compilers for FPGAs were introduced to address

this problem [3, 80].

4.1.1 Challenges

OpenCL Programming Model

Unlike HDLs, OpenCL provides an abstract machine model and high-level programming

approach for reconfigurable architectures [12, 64], making it easier for end users to develop

custom hardware accelerators for their applications and benefit from the power efficiency of

FPGAs. Moreover, OpenCL employs a hierarchical memory structure with strong support

for parallel execution. Hence, the parallelism can be specified at different granularity levels

and data movement can be easily manipulated, enabling OpenCL compilers to potentially

generate efficient FPGA designs.

The OpenCL programming model targets heterogeneous systems with different types of ac-

celerators, including CPUs, GPUs, Intel MICs, DSPs, and FPGAs. While OpenCL provides

functional portability across these accelerators, performance portability is not guaranteed.

In particular, generic (architecture-agnostic) OpenCL kernels are unlikely to make efficient

use of the FPGA resources, which leads to performance degradation. This has been shown

for multiple application domains such as dense linear algebra, structured grid, unstructured

grid, dynamic programming, and N-Body [7, 17, 39, 40, 47, 55, 77, 88]. Moreover, existing

OpenCL codes that target CPUs and GPUs are not directly applicable to FPGAs, due to
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the different hardware capabilities and execution models.

FPGA Optimization

The FPGA-specific optimizations proposed in this chapter are general and applicable to

any application; however, the expected performance gain and resource-utilization efficiency

vary depending on the application characteristics. In particular, we pursue the more chal-

lenging problem of irregular OpenCL applications, which suffer from workload imbalance,

unpredictable control flow, and irregular memory-access patterns.

Irregular Applications

Irregular applications, such as graph processing, typically achieve a small fraction of the

peak performance on general-purpose architectures due to their workload imbalance, un-

predictable control flow, and irregular memory-access patterns. As a consequence, they

have the potential to benefit from acceleration using custom hardware architectures. How-

ever, when targeting irregular applications, identifying which optimization (or combination

of optimizations) to use to enhance the performance and resource utilization on FPGAs is

challenging.

4.1.2 Approach

Experiments using representative kernels from the graph traversal, combinational logic, and

sparse linear algebra application domains show that FPGA-specific optimizations can im-

prove the performance of irregular OpenCL applications by up to 27-fold in comparison to

the architecture-agnostic OpenCL code from the OpenDwarfs benchmark suite. Specifically,

hardware profilers are used to analyze the limitations of OpenCL application kernels and to
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guide the development of FPGA-optimized implementations.

Figure 4.1: Programmability vs. performance spectrum for FPGAs.
Figure 4.1 illustrates the performance versus programmability spectrum and shows the

design-space exploration and how FPGA-specific optimizations can be used to enhance the

performance with little impact on OpenCL programmability. While the figure is not drawn

to scale, it shows the additional programmability overhead (in terms of the average lines of

code used to apply the optimization) with respect to the expected performance gain. The

optimization techniques depicted in Figure 4.1 are explained later in Section 4.2.
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4.1.3 Contributions

This study aims to extract the best possible performance of irregular applications on FPGAs

using high-level OpenCL programming model. Moreover, it guides non-expert users to the

appropriate FPGA-specific optimizations for irregular application domains, including graph

traversal, combinational logic, and sparse linear algebra.

Figure 4.2: The performance of irregular OpenCL kernels on CPU and FPGA architectures.
The optimized FPGA execution uses a deeply-pipelined, compute unit running at 200-260
MHz, while the CPU platform consists of 16 compute units running at 3.5 GHz.

Figure 4.2 illustrates the benefits of applying such optimizations to generate efficient accel-

erators on FPGA architectures. For a set of irregular OpenCL kernels, the optimized FPGA

designs achieve up to 5.2× speedup over the corresponding parallel execution on a 16-core

CPU, while running at an order-of-magnitude slower frequency.

This study aims to enhance the performance of irregular applications such as graph process-

ing when using a high-level portable programming model like OpenCL. This goal is achieved

by conducting the following three phases:
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• Identification of and insight on the FPGA-specific optimizations for OpenCL kernels.

The identified optimizations apply to any user application; however, the expected per-

formance gain and resource utilization depend on the characteristics of the application

kernels. Furthermore, end users need insight on which optimizations to use for their

target applications.

• Profiling and analyzing of the OpenCL kernels to identify the execution bottlenecks

and, in turn, guide the FPGA optimization of irregular codes. We use Intel/Altera’s

hardware profiler to facilitate the analysis and optimization of irregular application

kernels from the OpenDwarfs benchmark suite.

• A detailed study of the FPGA-specific optimizations for representative irregular appli-

cations, namely graph traversal, combinational logic, and sparse linear algebra appli-

cations. The results show that the FPGA-specific optimizations improve performance

by an order of magnitude when compared to the architecture-agnostic OpenCL code

from OpenDwarfs.

4.2 Background

We categorize the FPGA-specific optimization space as follows: (1) exploiting parallelism at

different levels, (2) optimizing floating-point operations, and (3) minimizing data movement

across the memory hierarchy. By default, FPGA OpenCL compilers exploit deep pipeline

parallelism, which, in turn, generally achieves higher throughput than data parallelism or

task parallelism on FPGAs. Data and task parallelism are constrained due to the limited

resources on FPGAs, which restrict the number of concurrently active work items.
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4.2.1 Parallelism Optimizations

There are two main OpenCL execution models on FPGAs: multi-threaded execution and

single-task execution. Multi-threaded execution attempts to expose the maximum paral-

lelism by executing multiple threads concurrently, if possible. On the other hand, single-

task execution exploits pipeline parallelism and runs the work items (i.e., units of computa-

tion) sequentially as a single task. The baseline, architecture-agnostic OpenCL kernels from

OpenDwarfs are based on the multi-threaded execution model. However, both single task

and multi-threaded execution models are explored in this work.

Loop Unrolling. Unrolling loops improves performance by decreasing the number of loop

iterations executed and, in turn, the number of branches. However, there is a trade-off

between the loop unrolling factor and the extra hardware cost incurred.

Kernel Vectorization. Vectorization enables multiple work items to execute in a single-

instruction, multiple-data (SIMD) fashion. This technique achieves higher computational

throughput and automatically performs memory coalescing. The SIMD approach vectorizes

the data path of the kernel while keeping a single control logic path shared across the SIMD

lanes. Therefore, backward branches with thread ID dependencies prohibit this optimization

technique, as they can serialize the execution process.

Compute Unit Replication. Generating multiple compute units, where data and control

paths are replicated, fully parallelizes the kernel execution. This optimization divides the

workload on the available compute units which can mitigate the limitations of the SIMD

approach, namely the thread ID dependency problem. However, compute unit replication

uses more hardware resources than the SIMD approach. It also increases the stress on the

global memory bandwidth, as more load/store units would be competing for accessing the

global memory.
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4.2.2 Floating-Point Optimizations

The floating-point operations in a specific kernel may not be balanced, leading to pipeline

stalls and higher hardware cost [2]. The Altera OpenCL Compiler provides command-line op-

tions to optimize the floating-point operations using balanced trees. Moreover, removing the

floating-point rounding operations and conversions, whenever possible, introduces hardware

savings. While the amount of hardware resources employed for the floating-point operations

can be reduced, the accuracy of the results might get affected. Therefore, these optimiza-

tions are used only when the application can tolerate small differences in the floating-point

results.

Floating-Point Accumulator. The newer FPGA platforms, such as Altera’s Arria 10, include

a floating-point accumulator that performs the accumulations in a single cycle; however,

only single work-item kernels that perform accumulation in a loop without branching can

leverage this feature. Modifications are required in the kernel code for the compiler to infer

the use of the accumulator structure. The accumulator must be part of a loop, it must have

an initial value of 0 and it cannot be conditional.

1 i n t i ;

2 f l o a t acc = 0 .0 f ;

3 f o r ( i = 0 ; i < k ; i++)

4 acc+=5;

5 a [ 0 ] = acc ;

As shown in the code example above, the accumulator must be part of a loop, it must have

an initial value of 0 and it cannot be conditional.
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4.2.3 Data Movement Optimizations

Shift Registers (SR) and Sliding Windows (SW). Several computational kernels, such as

sparse matrix-vector multiplication (SPMV), have loop-carried data dependencies. On FPGA

architectures, cross-iteration dependencies may increase the initiation interval of the loop,

where the next iteration is stalled until the dependency is resolved. To relax this cross-

iteration dependency, the loop body is modified to employ shift registers with a sliding-

window technique, which resolves this problem by eliminating the pipeline stalls.

Data Compression (DC) and Bit Manipulation (BM). The OpenCL standard instantiates

Boolean variables as 32-bit integers. Programming bit-wise operations and masks allows

single-bit on-chip memory (BRAM/register) access by the OpenCL code.

4.3 Evaluation & Analysis of Irregular Applications

The Intel FPGA Dynamic Profiler for OpenCL was used to analyze the execution pro-

file of the architecture-agnostic (generic) OpenCL kernels from the OpenDwarfs suite [41].

Analyzing the execution profile pinpoints the bottlenecks of the execution pipeline. This

study applies the above optimizations, both in isolation and in combination, to the target

OpenCL kernels and evaluates the resulting performance, which typically outperforms the

architecture-agnostic and GPU-optimized OpenCL implementations on FPGA architectures.

The FPGA resource utilization is also considered in evaluating the hardware cost of each opti-

mization technique. Finally, the performance analysis of the different optimizations provides

key insights into which optimizations to use for each target application and how to apply such

optimizations to address the execution bottlenecks and to achieve the required performance

gain. The optimized kernels are available at https://github.com/vtsynergy/OpenDwarfs.
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Experimental Setup: The experiments use an Altera Arria 10 1150-GX FPGA connected to

two 4-GB DDR3 memory with peak bandwidth of 25 GB/s. The FPGA attaches to the host

machine via PCIe 8x 3.0 interface. The host includes an Intel Xeon E5-2637 CPU and runs

Ubuntu 14.04 along with Altera OpenCL SDK version 16.0.

4.3.1 Graph Traversal

Breadth-first search (BFS) is used by the OpenDwarfs suite as a representative kernel for

the graph traversal dwarf. The target graphs are undirected and unweighted in the form

G = (V,E), where V is the set of vertices or nodes and E is the set of edges connecting

them. To avoid processing a node more than once, a Boolean visited array is used. As such,

the graph is traversed in levels, where all nodes at each level are explored before the next

level is processed. The final output is the cost C, which represents the shortest distance

from the source node to each visited node on the graph. The time complexity is O(V +E).

The original OpenCL kernel (from OpenDwarfs) is multi-threaded, executing each graph

level update in a separate kernel launch. After computing a level of the graph, synchroniza-

tion with the host is required, followed by a new kernel launch for the new graph level. Our

hardware profiling pinpointed two major bottlenecks. First, the cross-iteration dependencies

stalled the execution pipeline for more than 800 clock cycles in each iteration. This high

Optimization Description Frequency Logic utilization BRAM
Generic Architecture agnostic OpenDwarfs kernel 248 MHz 29% 20%
MT-LU8 Loop unrolling factor 8 205 MHz 37% 37%
MT-PE2 Compute unit replication (2 PEs) 204 MHz 32% 24%
MT-PE4 Compute unit replication (4 PEs) 202 MHz 35% 42%

ST-Regular Simple conversion to single work item by inserting outer for-loop 201 MHz 28% 20%
ST-NoSync Eliminate host side synchronization by inserting outer while-loop 212 MHz 29% 20%
ST-Mem Use bit manipulation on integer arrays to implement Boolean arrays 160 MHz 27% 74%

Table 4.1: BFS optimizations and resource utilization. [MT ]: Multi-Threaded, [ST ]: Single
Task.
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initiation interval of the loop is caused by (a) the serial execution of the for-loop,where

loop pipelining optimization isn’t applied by default due to unrelieved cross iteration depen-

dency and (b) the host side synchronization step between kernel invocations. Second, the

global memory access pattern for five different arrays is inefficient, lowering the bandwidth

efficiency of data transfer to an average of 13% of the peak memory bandwidth. Table 4.1

shows the different optimization techniques employed to address these bottlenecks, along

with their operating frequency and logic utilization.

Figure 4.3: The performance of BFS (nodes processed per second) across different graph
sizes for multiple optimization techniques.

Multi-Threaded Execution

The global memory access bottleneck and kernel launch overhead are the main reasons

that none of the multi-threaded optimization techniques yielded any significant performance
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gains. Compute unit replication does not address the memory access bottleneck or solve the

pipeline stall problem. Hence, the performance improvement was 6% at most, as shown in

Figure 4.3. Loop unrolling enhanced the performance by a maximum of 14%, due to memory

coalescing which increases the bandwidth efficiency. The combination of loop unrolling

with compute unit replication is unnecessary as neither have the potential to address the

pinpointed bottlenecks. The multi-threaded model does not leverage data-level parallelism

(vectorization), due to the loop-carried data dependencies and the thread ID dependent

branching in its inner and outer loop. So, SIMD optimization was not applied to this

application kernel.

Single Task Execution

In the single work-item execution model, multiple optimizations were tested to enhance

performance. The ”ST-Regular” implementation fully pipelines the for-loop without mod-

ifying the global synchronization scheme. On the other hand, ”ST-NoSync” avoids synchro-

nizing with the host, which accounted for an average 5% of the execution time, and moves

all computations to the FPGA. The Altera OpenCL compiler was not able to pipeline the

outer while-loop in this implementation, as cross iteration dependency is critical for func-

tional correctness. Figure 4.3 shows a slight decrease in performance for ”ST-Regular” and

”ST-NoSync”, as these optimizations do not address the memory access bottleneck, which

has the most impact on performance.

The following step was to optimize the memory access operations by moving the Boolean

arrays to the local on-chip memory (BRAMs) in ”ST-Mem”. The OpenCL standard supports

Boolean variables; however, they are treated as 32-bit integers with a constant value of ”0”

or ”1”, which wastes the on-chip memory. Therefore, integer arrays are used, as shown in

Figure 4.5, where each integer represents 32 Boolean flags that can be accessed through a
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Figure 4.4: BFS speedup across the different optimization techniques. The baseline is the
OpenDwarfs, architecture-agnostic OpenCL code.

Figure 4.5: Boolean array data compression.
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series of bit-wise manipulations (shift, AND, OR and XOR operations). This optimization

technique enables fast Boolean checking which yielded 4× speedup as shown in Figure 4.4.

However, due to the limited on-chip memory, this approach can only support graphs of sizes

up to 32M nodes.

For smaller graphs with size up to 512K nodes, the algorithmic refactoring showed great

performance. The kernel was modified to use a local-memory queue instead of the Boolean

mask. The new unvisited nodes are inserted into the FIFO queue, and one node is popped in

each iteration, which greatly reduces the total number of iterations. However, this evaluation

targets large-scale graphs with at least 1M vertices; hence, this approach was excluded from

the results.

4.3.2 Sparse Linear Algebra

The OpenDwarfs suite includes SPMV (sparse matrix-vector multiplication) as a represen-

tative kernel of sparse linear algebra. While computation across the rows of the input sparse

matrix (outer loop) are independent, the operations required to compute a single output

element (inner loop) have data dependencies. A series of memory accesses are required by

each iteration of the outer loop to retrieve the indices of non-zero elements of each sparse

row, and read the respective values of these elements and the corresponding elements of the

input vector. On hardware architectures with limited memory bandwidth, such memory

operations introduce a global memory bottleneck. The hardware profiler showed that band-

width efficiency is limited to 55% at the bottlenecked inner loop. Moreover, the number of

iterations in the inner loop is input dependent (i.e., depends on the sparsity pattern of the

input matrix).
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Optimization Description Frequency Logic utilization BRAM
Generic Architecture agnostic OpenDwarfs kernel 255 MHz 26% 21%

MT-LU16 Loop unrolling factor 16 225 MHz 33% 31%
MT-LU32 Loop unrolling factor 32 211 MHz 39% 46%
MT-PE2 Compute unit replication (2 PEs) 245 MHz 28% 25%
MT-PE4 Compute unit replication (4 PEs) 230 MHz 31% 36%

MT-PE2-LU16 Compute unit replication (2 PEs) + Loop unrolling factor 16 203 MHz 41% 47%
MT-PE2-LU32 Compute unit replication (2 PEs) + Loop unrolling factor 32 174 MHz 54% 77%
MT-PE4-LU16 Compute unit replication (4 PEs) + Loop unrolling factor 16 164 MHz 57% 80%
ST-PF-SR-LU8 Pre-fetching+SR and sliding window+Loop unrolling factor 8 205 MHz 41% 50%
ST-PF-SR-LU12 Pre-fetching+SR and sliding window+Loop unrolling factor 12 192 MHz 51% 66%

ST-PF-SR-LU8-LU4 Pre-fetching+SR and sliding window+LU8(outer loop)+LU4(inner loop) 166 MHz 57% 69%

Table 4.2: SPMV optimizations and resource utilization. [MT ]: Multi-Threaded, [ST ]:
Single Task.

Multi-Threaded Execution

The multi-threaded version of SPMV exploits different parallelism levels: task-level (com-

pute unit replication), and instruction-level (loop unrolling). However, the multi-threaded

code does not leverage data-level parallelism (vectorization), due to the loop-carried data

dependencies and the thread ID dependent branching in the inner loop.

Figure 4.6: SPMV speedup for small and large matrix sizes.

Figures 4.6 and 4.7 show the effect of the different optimizations on the SPMV performance

in comparison with the baseline OpenCL code, while Table 4.2 shows the resource utilization

of each implementation. For the small input data, these optimizations showed a maximum

speedup of 6.8× (matrix size 4K in Figure 4.6). ”MT-LU32” provides the best performance

57



Figure 4.7: The performance of SPMV for the multi-threaded optimizations. The baseline
is the OpenDwarfs, architecture-agnostic code.

only with 13% more logic utilization than the baseline kernel, but with double the on-chip

memory usage. Compute unit replication has limited performance improvement, it achieved

at most 1.7× speedup by ”MT-PE2” and ”MT-PE4”. This is mainly due to the contention on

the limited global memory bandwidth. Combining both optimizations of multiple compute

units and loop unrolling shows comparable performance to simply just unrolling the loop,

but with much higher hardware cost. ”MT-PE4” increases the logic utilization by 30% and

the on-chip memory usage by 60%.

Figures 4.6 and 4.7 show the limited scalability of the multi-threaded execution model for

SPMV. Scaling up the input matrix puts the multi-threaded SPMV at a great disadvantage,

due to the limited global memory bandwidth. In fact, these optimizations do not address

the issue of the bandwidth efficiency of the inner loop. So, as the matrix size increases these

optimization add more stress to the global memory access and the performance decreases

and becomes slower than the baseline code.
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Single Task Execution

The single task (work item) execution of SPMV throttles the parallelism (concurrent work

items) to reduce the contention on the limited FPGA resources, specifically the global mem-

ory bandwidth. However, due to the extra unused FPGA resources, the single task code can

leverage advanced techniques to minimize the data movement across the memory hierarchy,

such as caching (pre-fetching), shift registers, and enhanced floating-point units. The caching

optimization pre-fetches the data into the private memory (BRAM) and maximizes the data

reuse. The shift register (SR) optimization uses a sliding window technique to alleviate the

loop-carried dependencies in the SPMV inner loop, which enables the compiler to efficiently

pipeline the inner loop with successive iterations initiated into the pipeline every clock cycle.

Finally, the code was modified to allow the compiler to infer floating-point accumulator (see

section 4.2.2) to further enhance the performance of the inner loop.

These techniques relieved the inner loop contention on global memory access increasing the

bandwidth efficiency to 100% (according to the hardware profiler). However, the hardware

profiler showed that this execution model limits the efficiency of the store unit that writes

the final result at the end of each outer loop iteration to 20%. Nevertheless, the effect of

this limitation has much less impact on performance, since the number of store operations

is significantly less than the number of load operations. The number of load operations

is O(NZE), where NZE is the (number of Non Zero Elements). The number of store

operations is O(R), where R is the (number of matrix Rows).

Figures 4.6 and 4.8 show the performance of the single task execution compared to the

baseline and the multi-threaded versions. Unrolling the outer loop and minimizing the data

movement in ”ST-PF-SR-LU12” showed a speedup of 4× over the baseline kernel. Moreover,

single task execution has scalable performance and sustainable speedup, as depicted in Fig-
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Figure 4.8: The performance of the single-task optimizations for SPMV. The baseline is the
OpenDwarfs, architecture-agnostic OpenCL code.

ure 4.8, with input matrix size up to 128K. Unrolling the inner loop in ”ST-PF-SR-LU8-LU4”

didn’t provide performance advantages, due to inefficient pipeline structure in addition to

the input dependent number of inner loop iterations (loop bounds are not constants). The

Altera OpenCL Compiler might fail to meet scheduling because it cannot unroll this nested

loop structure easily, resulting in a high II (number of stall clock cycles before issuing the

next loop iteration) [2, 3]. In summary, the results showed the importance of alleviating

the contention on the limited FPGA global memory bandwidth and inferring an efficient

pipeline structure to attain scalable performance.

4.3.3 Combinational Logic

The OpenDwarfs adopts cyclic redundancy check (CRC) as a representative kernel of combi-

national logic applications, which rely on bit-wise logic operations. This application domain

is amenable to acceleration using FPGA architectures with fine-grain logic fabric. The CRC

60



Optimization Description Frequency Logic utilization BRAM
Generic Architecture agnostic OpenDwarfs kernel 270 MHz 26% 18%
MT-LU8 Loop unrolling factor 8 236 MHz 32% 23%

MT-PE2-LU8 Compute unit replication (2 PEs) + LU8 230 MHz 40% 31%
MT-PE4-LU8 Compute unit replication (4 PEs) + LU8 230 MHz 56% 47%

MT-SIMD2-LU8 SIMD (2 vector lanes) + LU8 227 MHz 39% 29%
MT-SIMD4-LU8 SIMD (4 vector lanes) + LU8 224 MHz 52% 44%
MT-SIMD8-LU8 SIMD (8 vector lanes) + LU8 203 MHz 78% 89%

ST-Regular Simple conversion to single work item by inserting outer for-loop 148 MHz 41% 30%
ST-PF-SW Pipelining for-loop by pre-fetching+relaxing cross iteration dependency 231 MHz 26% 18%

Table 4.3: The CRC optimizations and their resource utilization. [MT ]: Multi-Threaded,
[ST ]: Single Task.

kernel computes the 32-bit CRC code of a set of input data pages (packets) using the ”Slice-

By-8” algorithm developed by Intel [35, 38]. The CRC32 generation process consists of a

single table lookup, bit-wise and shift operations for each byte. The hardware profiler showed

that there is 67 clock cycles of stalls in the pipeline execution for each loop iteration, due to

inefficient loop structure.

Multi-Threaded Execution

Figure 4.9 shows the performance of the different multi-threaded versions in comparison

with the baseline, architecture-agnostic code. The results show that fully-unrolled loops in

”MT-LU8” yield around 2× speedup compared to the baseline with minimal hardware cost

(6% logic utilization increase).

Exploiting task-level parallelism in ”MT-PE2-LU8 and MT-PE4-LU8” achieves 4-5× speedup

with additional hardware cost of 14% and 30% for two and four processing elements (PEs)

respectively as shown in Table 4.3. However, Figure 4.9 shows that the compute unit repli-

cation approach does not provide scalable speed up, due to the contention on the global

memory access. In particular, as the number of input data pages increases, beyond 1K, the

performance degrades and converges to a consistent 2× speedup.
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Figure 4.9: CRC speedup across different optimization techniques. The baseline is the
OpenDwarfs, architecture-agnostic OpenCL code.

SIMD vectorization shows a speedup of 6× over the baseline in ”MT-SIMD2-LU8”; however,

increasing the number of vector lanes does not improve the performance over using two

SIMD lanes, while incurring up to 52% additional area overhead. The increased hardware

cost for using more vector lanes suggests that using two lanes would be the best option.

SIMD vectorization works well with this specific kernel, as there is no thread ID dependent,

backward branching.

Although the multi-threaded execution model shows some performance gain, it can be no-

ticed in Figure 4.10 that, as the input size grows larger, the performance advantages de-

grade. The above multi-threaded execution versions suffer from a major bottleneck: the

limited global memory bandwidth, where multiple threads in flight are competing for global

memory access. Therefore, as the size of input data increases (more than 4K data pages),

the performance takes a severe hit and the speedup decreases to 1.5-2× over the baseline.
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Figure 4.10: The performance (words processed per second) of CRC across different opti-
mization techniques.

Single Task Execution

Moving to the single task execution model alleviated the problem of having multiple threads

competing for the limited global memory bandwidth. Figure 4.9 shows that the single task

CRC versions achieved scalable speedup with the growing input size. Moreover, Figure 4.10

shows that ”ST-Regular” and ”ST-PF-SW” process a constant number of words per second,

that does not decrease. The execution profile pulled from the hardware profiler shows that

the efficient pipeline execution with no stalls allows high bandwidth efficiency for each loop

iteration. Memory accesses are pipelined and latency is efficiently hidden by the computation

in each loop iteration, sustaining scalable performance.

Hence, unlike the multi-threaded execution model, the single task execution is scalable, i.e.,

its speedup improves as the input data size increases. After inspecting the FPGA execution
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profile, further advanced optimizations were not needed, as the computational loops are

efficiently pipelined with a loop iteration issued every two clock cycles (according to the

compiler optimization report).

4.4 Discussion

The results across three representative irregular OpenCL applications showed that the lim-

ited global memory bandwidth of the FPGA architecture hinders the scalability of the multi-

threaded OpenCL execution model. When the input data set is small enough to not increase

the contention on the global memory access, the multi-threaded execution model can pro-

vide significant gains (e.g., up to 6.8× performance gains in SPMV kernel). However, with

larger input data, the performance of the multi-threaded kernels is severely affected which

leads to saturated and limited speedup. On the other hand, the single task execution model

resolves the global memory bottleneck and enables streamed memory access to/from the

main memory without competition between multiple threads.

Figure 4.2 shows the FPGA performance relative to the execution on a multi-core CPU plat-

form. The CPU platform includes an Intel Xeon E5-2637 with 16 compute units running

at 3.5 GHz, and it has a memory bandwidth of 80 GB/s and a cache size of 15 MB. The

performance of the architecture-agnostic OpenCL kernels on FPGA (Unoptimized_FPGA)

is an order of magnitude slower than the CPU execution. Even though the significantly

higher frequency and larger number of compute units of the CPU platform put the FPGA

platform at a great disadvantage, applying the FPGA-specific optimizations yields sustain-

able speedups over the CPU execution. While the optimized FPGA implementation runs

at a frequency range of 200-260 MHz and uses a single deeply-pipelined compute unit, it

achieves 5.2×, 1.3× and 1.6× speedup for the CRC (ST-PF-SW), SPMV (ST-PF-SR-LU12),
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and BFS (ST-Mem) kernels, respectively, compared to the CPU execution.

The experiments show that applying FPGA-specific optimizations to the architecture-agnostic

OpenCL code can significantly enhance the performance. Exploring the aforementioned op-

timization space, code patterns were identified according to the hardware profiler and the

optimization reports. The effects of the optimizations on these code patterns are analyzed

aiming to help in two aspects. First, providing guidelines and best practices for the devel-

opment of new OpenCL kernels with similar code patterns towards the best performance.

Second, guiding the future work of automating the optimizations process of architecture-

agnostic OpenCL kernels. Below is a list of the identified code patterns along with their

relative FPGA-specific optimizations.

• OpenCL kernels with Boolean data structures that reside in the global memory can

be optimized using data compression techniques and bit-mask arrays to reduce the

memory usage and to be able to place such arrays in on-chip BRAMs, allowing fast

Boolean array look up.

• Kernels that use conditional statements depending on a global memory read transaction

should be handled using pre-fetching of the conditional variable to the on-chip local

memory to enable fast conditional checking.

• Using DEF-USE chain analysis, loop carried dependencies can be detected, and then the

performance can be improved by relaxation using shift registers and sliding window

operation, or by elimination using temporary on-chip storage before offloading the

results to the corresponding output.

• Floating-point accumulation can be easily detected in the code and modified for opti-

mization by balancing the floating-point operations tree and/or inferring floating point

accumulation structures (see section 4.2.2).
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• Loop unrolling factor is critical for performance. The unrolling factor should be closely

coupled to the expected number of iterations of the loop. Unrolling a loop with a higher

than necessary value would waste space (area) and time (frequency), which might lead

to performance degradation.

4.5 Summary

This work discusses the FPGA-specific optimization space for the OpenCL programming

model, with a specific focus on the irregular applications that suffer from workload imbalance,

fine-grain bit-wise operations, dynamic control flow, and scattered memory access pattern.

Applying such optimizations enables the OpenCL kernels to deliver both functional and

performance portability on the FPGA architectures by synthesizing more efficient hardware

designs. Moreover, hardware profiling was used to pinpoint the execution bottlenecks and to

guide the optimization process. A detailed analysis of the FPGA-specific optimizations on

the target application domains is provided to guide the end users to extract high performance

from the energy-efficient reconfigurable architectures.

The experiments showed the potential of the single task execution model to resolve the

contention on the shared FPGA resources and demonstrated scalable speedup on the three

tested application domains. Specifically, the Breadth first search (BFS), cyclic redundancy

check (CRC), and sparse matrix-vector multiplication (SPMV) applications achieved up to

4.2×, 27×, and 6.8× speedup, respectively, over the architecture-agnostic kernels from the

OpenDwarfs benchmarks suite.

While significant performance improvements were obtained using the FPGA-specific opti-

mizations of the original algorithms, previous studies [30, 33, 34] showed that algorithmic

refactoring can result in multiplicative performance gain. As such, there are many opportu-
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nities to expand the current work by analyzing and modeling the inherent characteristics of

the different algorithms [31, 32] to guide the algorithmic innovation and refactoring of the

irregular applications to better match the capabilities of the FPGA platforms. This work

gives FPGA designs a fair chance when being evaluated alongside other hardware acceler-

ators in a heterogeneous platform, such as many core CPUs and GPUs. specifically when

targeting data-driven graph processing, FPGAs can provide a significant performance ad-

vantage. However, high-level approaches such OpenCL programming may not provide the

best performance on FPGAs without FPGA-specific optimizations. Since OpenCL is used

to address a heterogeneous ecosystem for graph processing, OpenCL-based FPGA designs

should be optimized.
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Chapter 5

Domain-Specific Performance

Modelling for FPGA designs and

automated optimization space

exploration

High Level Synthesis (HLS) tools [2, 36, 80] significantly improved the ease of use of FP-

GAs and allowed it to be accessible to the masses. Since then, FPGAs’ potential has

been maximized making it integral in high performance computing facilitating its inte-

gration into mainstream computing. Nevertheless, it has been established that FPGA-

specific optimizations are required to achieve the true potential of such a customizable

architecture. Since the conception of HLS tools, there has been a myriad of research at-

tempts to optimize kernels implemented in a High Level Language (HLL) such as OpenCL

[7, 17, 26, 39, 40, 47, 55, 71, 75, 77, 82, 88]. However, performance modelling research

was not advancing at the same pace. Performance modelling of HLS realized hardware de-

signs has been mainly focused on regular applications with uniform memory access patterns.

These performance models fail to accurately capture the performance of graph applications

with irregular memory access patterns. This chapter presents a domain-specific performance

model targeting graph applications synthesized using HLS tools for FPGAs.
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5.1 Motivation & Goal

Modelling the performance and exploring the optimization space of graph applications is

extremely challenging [27]. The use of general-purpose performance models to capture the

execution profile of graph applications proved to be a futile endeavor as explained previously

in Chapter 2. Hence the work presented in this chapter explains the development of a novel

domain-specific performance model for graph application when targeting HLS designs on

FPGAs.

5.1.1 Challenges

The main challenge is that graph applications have a data-driven execution profile that is

hard to capture using an analytical performance model. In many instances, the processing

requirements of a given graph computation are heavily data-dependent with a major impact

on the computational solution and in turn the resulting performance. Performance models

previously developed to target HLS designs may display a measure of accuracy when tested

against regular applications such as dense linear algebra. The uniform memory access pattern

of these applications make it easy enough to predict performance. However, in the case of

irregular applications, these performance models fail to accurately capture the expected

performance.

Moreover, not only performance modelling is of concern, exploring the optimization space

is also a major concern. Many optimization techniques can be applied to the hardware

design such as loop unrolling to make use of pipeline parallelism, and replicating compute

units to make use of data parallelism. For an FPGA developer to test the efficacy of these

optimizations, one has to spend days synthesizing multiple designs with various optimization

techniques. Many FPGA developers wish for an answer for some optimization questions
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without the need to fully synthesize many design optimizations. Some of these questions

are: would loop unrolling enhance or degrade performance? How many compute units

would achieve the best performance without overloading the memory interface? The answers

to these questions may be straightforward for regular applications. However, for graph

applications, these answers are directly tied not only to the hardware specifications, but also

to the graph input characteristics.

5.1.2 Approach

The goal of this work is to provide FPGA users with a performance modelling framework for

graph applications, to estimate performance and explore the design and optimization space

(without going through the lengthy compilation process of the full hardware generation).

The framework is built using information form three sources; the hardware intermediate

compilation report, the application’s kernel, and the graph input size. The intermediate

compilation report can be generated in seconds; hence, we acquire the information needed

without resorting to the lengthy compilation process of full hardware generation. Moreover,

the model derives useful information about the graph input characteristics using information

readily available upon reading the graph. Therefore, no time-intensive pre-processing of the

graph input is required to extract the graph characteristics. Finally, additional information

is extracted directly from the high-level representation of the application. Using such a

collection of parameters, the framework was able to depict the execution profile of a specific

graph input operated on by a specific graph application. The framework is also used to

explore the optimization space and guides the user on how to optimize the hardware design

for a specific graph input.
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5.1.3 Contributions

The framework was tested on Intel’s Devcloud platform and achieved speedup up to 3.4× by

applying the recommended optimization strategy compared to the baseline implementation

of Pannotia benchmark [8]. Furthermore, the framework recommended the best optimization

strategy in 90% of the test cases without the need for time intensive synthesis of multiple

optimization strategies to maximize performance.

The contributions of this chapter can be summarized as follows:

• A domain-specific performance model is devised to estimate the performance of graph

applications,

• The performance and optimization space are explored based on graph input charac-

teristics and hardware specifications, and

• Multiple optimization strategies are formulated and a framework is devised to guide

FPGA users to choose the most appropriate optimization technique.

5.2 Background

This section introduces the applications and the data-set used to evaluate the performance

model. Their characteristics are discussed to capture the scope of the domain-specific aspects

of the performance model.
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5.2.1 Graph Applications

In this work, three graph applications are used to evaluate the efficacy of the performance

model; PageRank (PR), Single Source Shortest Path (SSSP), and Maximal Independent Set

(MIS).

PageRank Algorithm

(PR) is an algorithm used by the Google search engine to rank web pages [54]. In this case,

the web search space is represented as a graph. In each iteration, each node contributes a

share of its PR value to its neighbors along its outgoing edges. Our implementation is based

on the SPMV-based PageRank algorithm from [8]. The SPMV-based algorithm transforms

the computation to an SPMV update operation. This transformation eliminates the need

for frequent atomic addition operations, (which are required in the original algorithm). For

instance, the web search space can be represented as a graph where nodes represent web

pages. Initially, PR assigns an equal PR value of the reciprocal of the number of vertices

to all the vertices of the graph. Afterward, a series of superstep iterations are executed

that terminate either after a user-defined iteration count or an automated convergence check

condition. In each iteration, each vertex donates a share of its PR value to its neighbors

along its outgoing edges.

Single Source Shortest Path Algorithm

(SSSP) is the problem of finding the shortest path tree from one source node to the rest of

the graph nodes [11]. Dijkstra (DJK) algorithm is used to solve this problem for a graph

with non-negative edge path costs. This algorithm is used as a building block for many

graph applications. An example is finding the shortest path between two intersections on a
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road map, where the nodes correspond to intersections and the edges correspond to roads

connecting them. Given a source node, the algorithm finds the path with the lowest cost

between the source node and all the other nodes in the graph. A distance array is used to

keep track of visited nodes as well as the path of nodes along that path. Visiting a new

node triggers computation for its neighbors. If a new shorter path is discovered, the path is

committed as the new shortest path. Otherwise, the old shortest path is kept, and the new

node is marked as visited.

Maximal Independent Set Algorithm

(MIS) finds a maximal subset of nodes in a graph such that no nodes outside that set may

join it (per the independent set theory) [1]. This is also another example of a popular

building block for many graph applications. Initially, each node is labeled with a random

integer value. The computation progresses iterating on each node of the graph, where the

decision is made whether to include that node in the set. Nodes eligible for addition to

the set are added to the array storing the up-to-date status of the independent set. The

neighbors of each node added to the set are traversed and marked as inactive, to be removed

from consideration. The algorithm will terminate when all nodes are visited and evaluated.

5.2.2 Graph Data-set & features

Graph processing applications follow a data-driven execution profile, which emphasizes its

high sensitivity to the properties of the input graph. Hence, the network data repository

[59] is used as the source of real-world graphs used in this work. To ensure the generality of

different types of graphs, we use a set of graphs with a wide range of properties as shown in

Table 5.1.
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Graph Vertices Edges Diameter Degree
socfb-uci-uni 58,790,782 92,208,196 9 4

ca-hollywood-2009 1,069,126 56,306,654 4 105
road-road-usa 23,947,347 28,854,313 10 2
socfb-A-anon 3,097,165 23,667,395 6 15

cit-patent 3,774,768 16,518,948 9 9
ca-coauthors-dblp 540,486 15,245,730 7 56

road-asia-osm 11,950,757 12,711,604 1377 2
web-BerkStan 685,230 7,600,596 10 22
web-it-2004 509,338 7,178,414 8 28

web-wikipedia2009 1,864,433 4,507,316 9 5
rt-retweet-crawl 1,112,702 2,278,853 6 4

road-roadNet-CA 1,957,027 2,760,389 442 3
web-Stanford 281,903 2,312,498 10 16
socfb-Duke14 9,885 506,438 3 103

socfb-Georgetown15 9,414 425,639 3 90
email-enron-large 33,696 180,812 5 11

cit-DBLP 12,591 49,744 5 7
web-google 1,299 2,774 8 4

eco-foodweb-baydry 128 2,138 2 33
eco-everglades 69 911 6 26
eco-stmarks 54 353 3 13

Table 5.1: Data-set used for evaluating the performance model

5.2.3 Hardware Parallelism Extensions

Parallel extension optimizations in the scope of HLS can be categorized into three main

groups; SIMD vectorization, Compute Unit replication (CU), and Loop Unrolling (LU).

Firstly, SIMD optimization is not available in this graph applications domain due to the

presence of unavoidable cross iteration dependency in its loops. HLS compilers automatically

remove SIMD optimizations for these loops. However, we use multiple compute units to

explore the data parallelism space. On the other hand, loop unrolling synthesizes multiple

copies of the loop while decreasing the iteration count by the same factor. This deepens the

pipeline, so we categorized it as a pipeline parallelism extension.
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5.3 The Performance Model Framework

This section discusses the construction of the performance model starting by the introduction

of some terminology that will be used, then elaborate on the details of the performance model.

Figure 5.1: Overview of the performance model framework. Information flowing from the
user, through the framework, then back to the user.

5.3.1 Information Collection & Terminology

The approach is simple and easy to use, with an easily obtainable set of information, one

can predict the performance of a graph application. Not only that, but the optimization

space is automatically explored without any additional information. As shown in figure 5.1,

a user starts by generating the intermediate compilation report of the original application

using the HLS tool, which takes seconds to compile. The second step is simply to collect a

small amount of information from the source code and the data-set to be executed, as seen

in Table 5.2. The final step would be running the analytical model to retrieve performance

predictions and optimization recommendations. This is all done without the need for any

long compilation process, or any dynamic profiling, or pre-processing of the graph data-set

to extract information.
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Parameter Source Description
N Compiler Number of pipeline stages

Fpipe Compiler Pipeline frequency
Fmem Compiler Memory frequency
II Compiler Initiation Interval: Number of stall cycles between iterations

Mem_cyclesouter Compiler Number of clock cycles to access the global memory in the outer loop
Mem_cyclesinner Compiler Number of clock cycles to access the global memory in the inner loop
BURST_SIZE Compiler Number of maximum memory access transactions per cycle

CU Compiler Data parallelism degree: The number of Compute Units
LU Compiler Pipeline parallelism degree: Loop unrolling factor

Mem_accessesouter Application Number of global memory requests in the outer loop
Mem_accessesinner Application Number of global memory requests in the inner loop

Nodes Input Number of graph nodes
Edges Input Number of graph edges

Chunk_size Input Ratio of edges to nodes. An indication of the average number of neighbours for each node

Table 5.2: Performance model parameters, source, and description

Performance Model Terminology

As shown in Table 5.2, the parameters are divided into three groups; hardware specifica-

tions, application characteristics, and input properties. Table 5.2 explains the meaning of

each parameter and its source. These parameters form the basic set of parameters utilized;

however, other parameters are derived from this basic set. These derived parameters are

explained in detail in Subsection 5.3.2.

Model Parameters’ Impact on Performance Estimation

Introduced here are the key parameters of the performance model and their impact on

performance modelling and optimization techniques, starting by discussing the parameters

obtained from the input graph. Pre-processing a graph input is time-intensive and defeats

the purpose of this fast exploration of the optimization search space. Hence, the framework

only depends on information readily available by reading the graph, the number of nodes

(Nodes), and the number of edges (Edges). However, the ratio of edges to nodes as depicted

in Equation 5.1, directly translates to the average degree of the graph, which is used to infer

the average number of memory requests in the inner loop of the graph application.
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Chunk_size = Edges/Nodes (5.1)

As for the application parameter, by studying the kernel structure of the graph application,

it was observed that most graph applications have a double nested loop structure. In some

instances, the outer loop fetches a graph node while the inner loop fetches its neighbors,

such as BFS and SSSP. Other instances, the outer loop fetches pointers to the nodes in

a graph level while the inner loop fetches the nodes value or state, such as PR. Hence,

the performance model features Mem_accessesouter & Mem_accessesinner. Finally, the

compiler parameters are extracted from the intermediate compilation report, which compiles

in seconds to minutes. This information is easily obtained without fully synthesizing the

hardware design.

5.3.2 Performance Model Construction

To better understand the performance model, its structure is broken down to first introduce

the single pipeline model, then we extend the approach for pipeline and data parallelism.

Equation 5.2 shows the construction of the total estimated time.

est_tot_time = est_pipe_time+ est_mem_time (5.2)

Pipeline Latency

The performance model starts by quantifying an estimate of the pipeline’s computational

time est_pipe_time. As shown in Equation 5.3, the number of pipeline stages N is added

to the pipeline throughput to quantify the number of computational clock cycles.
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est_pipe_time =
N + (Nodes× (II + 1))

Fpipe

(5.3)

Memory Access Latency

First, the memory access model calculates the total number of memory requests that will be

generated in the outer loop, as shown in Equation 5.4. It makes use of the BURST_SIZE

parameter to accurately model its latency. Then the number of clock cycles required to fetch

this amount of data from global memory is quantified in Equation 5.5.

Loop_accessesouter =
Nodes×Mem_accessesouter

BURST_SIZE
(5.4)

Loop_latencyouter = Loop_accessesouter×

Mem_cyclesouter

(5.5)

On the other hand, inner loop modelling uses Chunk_size to quantify how it utilizes the

burst coalescing feature of the global memory access as depicted in Equation 5.6. With

the number of inner loop invocations Itersinner = Nodes, the total memory access requests

generated by the inner loop are estimated as shown in Equations 5.7, 5.8. The total estimated

memory access latency is quantified as shown in Equation 5.9.

Loop_reqsinner =
⌈ Chunck_size

BURST_SIZE

⌉
(5.6)
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Loop_accessesinner = Loop_reqsinner×

Itersinner ×Mem_accessesinner

(5.7)

Loop_latencyinner = Loop_accessesinner ×Mem_cyclesinner (5.8)

est_mem_time =
Loop_latencyinner + Loop_accessesouter

Fmem

(5.9)

5.3.3 Parallelism Extension

The benefits of parallelism extensions are described here as well as how the framework

captures the pressure imposed on the global memory interface.

Loop Unrolling Extension - Pipeline Parallelism

The offline compiler synthesizes loop unrolling by coalescing the load operations so that the

compute unit can maximize its memory bandwidth efficiency. Loop unrolling increases the

number of parallel operations by deepening the pipeline of the loop; therefore, extending

the pipeline parallelism. This is reflected in the reduced trip count of the loop as shown

in Equation 5.10. Moreover, it increases the memory bandwidth utilization as shown in

Equation 5.11.

Itersinner_LU = Nodes/LU (5.10)

Loop_reqsinner_LU =
⌈Chunck_size× LU

BURST_SIZE

⌉
(5.11)
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The model accounts for the extra memory pressure exerted on the global memory interface.

Through studying the execution schedule, we observed that the memory access units are

overloaded by a factor of (LU − LUcoef ), where LUcoef was empirically evaluated to a value

of 2. Hence, we calculate a metric to quantify the memory overhead pressure factor as shown

in Equation 5.12. It can be observed that as long as Loop_reqsinner_LU > 1, loop unrolling

will show great performance gains. However, when Loop_reqsinner_LU < 1 degradation in

performance is observed, on the count of extra memory pressure without maximizing the

memory bandwidth utilization to mitigate such memory pressure.

Mem_ovh_factor =
LU − LUcoef

Loop_reqsinner_LU

(5.12)

Equation 5.13 demonstrates how to calculate the total number of accesses estimated for the

unrolled loop.

Loop_accessesinner_LU = Itersinner_LU(Loop_accessesinner +Mem_ovh_factor) (5.13)

Multiple Processing Entities (PEs) Extension - Data Parallelism

The major difference between loop unrolling and compute unit replications is in the synthe-

sized load/store units. Unlike loop unrolling, each compute unit has its own memory access

interface. While this diminishes the memory bandwidth available to each compute unit,

graphs with low Chunk_size show significant performance gains compared to the Single

Work Item (SWI) implementation. The memory overhead coefficient is now calculated as in

Equation 5.15, where CUcoef was evaluated to CU/2.

Loop_reqsinner_CU =
⌈Chunck_size× CU

BURST_SIZE

⌉
(5.14)
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Mem_ovh_factor = Loop_reqsinner_CU + (CU × CUcoef ) (5.15)

Hence, to calculate the total Loop_latencyinner_CU , we quantify the size of memory accesses

as shown in Equation 5.16, where Itersinner_CU = Nodes/CU .

Loop_accessesinner_CU = Itersinner_CU(Loop_accessesinner +Mem_ovh_factor) (5.16)

5.4 Evaluation & Analysis of the Framework

This section explores how the performance model is capable of predicting the performance

of irregular graph applications. It starts by discussing the hardware resources used in this

work, then steps into the details of performance prediction, optimization recommendations,

and a deep analysis of the framework’s results.

5.4.1 Experimental Setup

Computational Platform: The computational platform used is the new Intel Devcloud

[36]. The computational node includes an Intel Arria 10 GX FPGA (Intel PAC Platform)

and an Intel Xeon Gold 6128 CPU running at 3.40GHz. The FPGA board has two 4-GB

DDR-4 memory banks, 1150-K logic elements, 54,260-Kb of M20K on-chip BRAM memory,

and attaches to the host through a PCIe interface. The FPGA compiled designs run at an

average frequency of 240 MHz. On the other hand, the CPU includes 24 cores, 32-KB L1

cache, and is running Ubuntu 18.04.
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Hardware Designs: To test the framework and verify its correctness, six different designs

were implemented for each of the three tested applications (PR, SSSP, and MIS). One design

for the single pipeline (also known as Single Work Item “SWI”), three designs for pipeline

parallelism (2, 4, and 8 loop unrolling factors), and two designs for data parallelism (2, and 4

CUs). All designs were compiled and executed across the input data-set to retrieve measured

timing information for accuracy calculation purposes. Hence, there is a total of 18 designs

executed over 20 graphs for a total of 360 instances used to test the performance model. As

mentioned earlier a dataset with a wide spectrum of graph properties is used to ensure the

generality of the performance model to any graph type.

5.4.2 Optimizations & Performance Analysis

To evaluate the performance gains of applying the recommended optimizations by our frame-

work, all the design configurations were implemented for exhaustive testing. By retrieving

the real measured time of each graph over all the design configurations for the three tested

applications, we were able to identify whether our framework’s recommendation did in fact

achieve the best performance. Results show that 90% of the test cases, the framework

recommended the optimal choice. This section details the speedup achieved by using the

recommended optimization strategy as well as elaborate on the wrong predictions.

As depicted in Figure 5.2, the framework achieves up to 3.4× speedup with an average

speedup of 2.1×. It should be noted that a speedup of 1× is not a bad result, on the

other hand, it is counted as an advantage of the framework. Speedup of 1× means that

the framework recommended the SWI implementation, with no optimizations applied. Af-

ter exhaustively measuring the real execution, it showed that expanding pipeline or data

parallelism slows down the performance in these cases. Hence, the single pipeline SWI

implementation turned out to be the best choice indeed.
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(b) SSSP application.

Figure 5.2: Speedup of the recommended optimization strategy compared to the single
pipeline implementation.

While SSSP application’s recommendations were correct for all test cases, PR applica-

tion had two errors in predicting the fastest optimization strategy, road-road-usa and

road-roadNet-CA. This will be detailed later in Section 5.4.5. MIS application is not in-

cluded in the figure because all speedups were 1×. The MIS application includes three

memory accesses in the outer loop and four memory accesses in the inner loop, which is

almost 3× the memory requirements for both PR and SSSP. Hence, the performance model

always recommended the SWI implementation since parallelism extension only adds more

pressure on the global memory interface.

83



5.4.3 Overall Performance Model Accuracy

Figure 5.3: Overall prediction accuracy of the performance model, The figure is shown in
percentiles

It should be noted that analytical performance models for FPGA designs, that use compile-

time information only, rarely achieve accurate performance estimation for graph applications.

Reproducing the performance model proposed in [88] showed up to two orders of magnitude

deviation from actual performance when tested on graph applications. This is due to the

irregular nature of these memory-bound graph applications which is not accurately captured

in [88] as explained earlier in Chapter 2.

The domain-specific performance model presented in this chapter shows accuracy within 2×

of the measured performance, which is considered acceptable considering the data-driven

execution profile of graph applications. Figure 5.3 depicts the overall accuracy of the perfor-

mance model broken down into percentiles. As shown in Figure 5.3, only 5% of the tested

cases were out of bounds of the 2× performance prediction threshold. Moreover, 25% of the

test cases achieved over 80% prediction accuracy.
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5.4.4 Parallelism Extensions Evaluation

For the PR and SSSP applications, the performance model sustains good predictability

for data parallelism extensions. However, as shown in Figure 5.4, pipeline parallelism

prediction accuracy drops to 50%. The execution profile was analyzed to identify the

root causes. The analysis showed that graphs with an average degree in the spectrum

4 < Chunk_size < BURST_SIZE, show unpredictable memory access patterns that are

not well captured by the model. This misprediction is compounded by the pipeline paral-

lelism extension. However, graphs with an average degree outside of these bounds are well

predicted achieving over 85% prediction accuracy.

Figure 5.4: Average of prediction accuracy of each design across the whole data-set
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Figure 5.4 also shows that the MIS application exhibits the lowest average prediction accu-

racy across the three applications. The MIS algorithm’s behavior may choose to include a

node in an independent set, marking its neighbors as ineligible to join that set. Then later

in the execution cycle, that decision may be reversed if the reversal proved to maximize the

independent set. Hence, the working set in each iteration may unexpectedly grow to cause a

misprediction by the performance model. This is one type of profiling that can’t be captured

by an analytical model but would require dynamic profiling.

5.4.5 Discussion

Analyzing the PR application results showed that the framework diverges from optimal

recommendation in two cases as shown in Figure 5.5. The performance model estimated

that road network graphs showed the best performance by applying data parallelism exten-

sions. This was true for all road network graphs for both PR and SSSP applications, except

road-road-usa and road-roadNet-CA in the case of PR application. Figure 5.5 shows the

measured execution time compared to the estimated execution time for three configurations,

the baseline (SWI), the performance model recommended strategy (CU), and the optimal

optimization strategy (LU). As depicted in Figures 5.5a and 5.5b, the performance model

accurately estimated the execution time in both SWI and LU implementations. However,

the performance model greatly underestimated the Mem_ovh_factor in the case of CU4

implementation.

On the other hand, the MIS application has as much as 3× the memory access requirements of

both PR and SSSP. The performance model depicts pressure on the global memory interface

and how parallel extensions may compound that problem. For that reason, the model seemed

to always find the SWI implementation to be always the best choice. That was true for all
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Figure 5.5: Measured and estimated time for three PR configurations, the baseline (SWI),
framework’s recommendation (CU), optimal configuration (LU).

graphs except those exceptionally small graphs that make efficient use of on-chip memory,

eco-everglades, eco-stmarks, and eco-foodweb-baydry. Using CU4 configuration for

these three graphs shows an average of 1.4× speedup.

To sum up, it was observed that road network graphs that have low average degrees have a

fairly predictable execution profile. The low number of memory accesses at the inner loop
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will not overwhelm the external memory interface. The model also performs well with social

network graphs with a very high average degree that directly translated to a bottle-necked

inner loop, which is accounted for in the performance model. However, the gray area identi-

fied earlier where the average degree is in the spectrum 4 < Chunk_size < BURST_SIZE

was shown to be prone to prediction estimation errors.

5.5 Summary

Graph applications have a challenging execution profile that is hard to optimize and harder

to model. The data-driven execution profile makes it hard to capture performance esti-

mations using compile time analytical models. However, in this work, a domain-specific

performance modelling framework was presented. This work projects the performance of

graph applications using information from intermediate compilation report of HLS tools,

the high-level representation of the application, and the graph input properties. Further-

more, the framework explores the optimization space without the need for a lengthy hard-

ware synthesis process for each optimization strategy to be tested. The framework shows up

to 3.4× speedup with an average of 2.1× compared to the single pipeline implementation

via using optimization strategies suggested by the framework. The optimization strategy

recommended by the framework achieved the best performance in over 90% of the tested

cases.
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Chapter 6

Conclusion

With many real-world problems represented as graph applications, in addition to the expo-

nentially growing graph sizes, there is an ever-growing interest in high performance graph

solvers. Not only performance is important, scalability and power efficiency are also be-

coming increasingly important pillars in high performance computing. As a consequence,

heterogeneous computing platforms that employ hardware accelerators are highly in demand.

This dissertation targets the graph processing and heterogeneous computing communities.

The research conducted here aims to enhance graph processing via exploiting heterogeneous

computational power, more specifically CPU-FPGA hybrid systems. Moreover, innovative

ideas are employed to address some of the inherent challenges of graph processing that hinder

its optimization process, especially on FPGAs. Furthermore, FPGA design and optimization

are explored to improve the efficiency of the synthesized hardware designs. Additionally, a

domain-specific approach is employed to model the performance of graph applications and

explore it optimization space.

This work presented automated frameworks to harness the computational power of heteroge-

neous systems, explore the optimization space of HLS-based FPGA designs, and model the

performance of irregular applications on FPGAs. Extensive experimentation on representa-

tive datasets showed (1) the efficacy of the proposed frameworks to increase the efficiency of

utilizing a heterogeneous system, (2) how this work facilitates integrating FPGAs into main-

stream computing, (3) the performance and scalability improvement of graph processing.
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6.1 Dissertation Summary

The collective outcome of this work makes this research well positioned to harness the compu-

tational power of CPU-FPGA hybrid systems, more specifically, when targeting the challeng-

ing problem of irregular graph applications. The scope of this work is focused on efficiently

utilizing hardware accelerators, i.e. FPGA devices, in addition to cooperatively collaborating

with general purpose CPUs. The architectural strengths of each hardware device in such a

heterogeneous ecosystem are exploited to maximize performance of graph processing. The

contributions of this work are explained below.

Workload distribution on CPU-FPGA hybrid systems: In many instances, the pro-

cessing requirements of a given analytics computation are heavily data-dependent and rely

heavily on the characteristics of the graph instance, which, if known could influence the com-

putational solution. This research examined two hypotheses. First, a variety of properties of

a set of graph instances are extracted and examined to determine if they can be used to pre-

dict the analytical execution profile. Second, this information is used to guide the workload

partitioning and properly schedule it on a hybrid CPU-FPGA system. This work is intended

to enhance the performance and scalability of graph processing. An automated framework

(Graph Analytics on Hybrid Systems “GAHS”) was presented for workload partitioning and

scheduling of graph analytics on hybrid systems. Additionally, the decision-making process

of the framework is configured to be guided by data input properties. The goal of this

work is to expand the design space exploration to not only depend on the characteristics of

the application and the available hardware resources but also include data input properties.

Results show that up to 6.5× speedup can be attained over a CPU-only or FPGA-only im-

plementations through proper partitioning. Moreover, an average of 18× speedup is achieved

compared to state-of-the-art hybrid FPGA solvers.
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HLS design space and optimization exploration: Unlike traditional hardware de-

scription languages (HDLs), OpenCL provides an abstract interface to facilitate high pro-

ductivity, enabling end users to rapidly describe the required computations, including par-

allelism and data movement, to create custom hardware accelerators for their applications.

This HLS approach made FPGAs accessible to the masses facilitating its use in a heteroge-

neous ecosystem. However, these OpenCL-realized accelerators are unlikely to make efficient

use of the reconfigurable fabric without adopting FPGA-specific optimizations, particularly

for irregular applications such as graph processing. Consequently, the FPGA-specific op-

timization space has been explored presenting insights on which optimization techniques

improve application performance and resource utilization. Exploring this optimization space

will enable end users to harness the computational potential of the FPGA. Experiments

using representative kernels from the graph traversal, combinational logic, and sparse linear

algebra applications show that FPGA-specific optimizations can improve the performance of

irregular applications by up to 27-fold in comparison to the architecture-agnostic OpenCL

code from the OpenDwarfs benchmark suite.

Domain-specific performance modelling for FPGA designs and automated opti-

mization space exploration: Performance modelling research has been mainly focused

on regular applications with uniform memory access patterns. These performance mod-

els fail to accurately capture the performance of graph applications with irregular memory

access patterns. Hence, this work presents a domain-specific performance model target-

ing graph applications synthesized using HLS tools for FPGAs. The performance model

utilizes information from three sources; the hardware intermediate compilation report, the

application’s kernel, and the graph input size. While the compilation process of HLS tools

takes hours, the information required by the performance model can be extracted from the

intermediate compilation report, which compiles in seconds. The goal of this work is to
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provide FPGA users with a performance modelling framework for graph applications, to es-

timate performance and explore the design and optimization space (without going through

the lengthy compilation process of the full hardware generation). The framework was tested

on Intel’s Devcloud platform and achieved speedup up to 3.4× by applying our framework’s

recommended optimization strategy compared to the single pipeline implementation. The

framework recommended the best optimization strategy in 90% of the test cases.

6.2 Future Work

It can be considered that there are three main hardware devices involved in heterogeneous

computing, CPUs, GPUs, and FPGAs. While this dissertation covers the scope of CPU-

FPGA hybrid systems, augmenting GPU architectures is a strong candidate for future re-

search. Each of the depicted hardware devices has its strengths and its weaknesses. Ulti-

mately having a CPU-GPU-FPGA hybrid system, and being able to efficiently harness their

collective computational power, has a great potential for revolutionizing the future of high

performance computing, especially when targeting graph applications.

Hence, two research paths could be pursued following this dissertation. First, exploiting

the strength of the massively parallel GPU architectures for graph processing while utilizing

the innovative idea of using graph input properties to guide runtime decisions. Second,

integrating GPU architectures in the automated framework for workload distribution and

scheduling to enable exploiting the strengths of CPUs, GPUs, and FPGAs under the umbrella

of the same heterogeneous ecosystem.
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