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Threat Assessment and Proactive Decision-Making for Crash Avoid-
ance in Autonomous Vehicles

Vanshaj Khattar

(ABSTRACT)

Threat assessment and reliable motion-prediction of surrounding vehicles are some of the

major challenges encountered in autonomous vehicles’ safe decision-making. Predicting a

threat in advance can give an autonomous vehicle enough time to avoid crashes or near-

crash situations. Most vehicles on roads are human-driven, making it challenging to predict

their intentions and movements due to inherent uncertainty in their behaviors. Moreover,

different driver behaviors pose different kinds of threats. Various driver behavior predictive

models have been proposed in the literature for motion prediction. However, these models

cannot be trusted entirely due to the human drivers’ highly uncertain nature. This thesis

proposes a novel trust-based driver behavior prediction and stochastic reachable set threat

assessment methodology for various dangerous situations on the road. This trust-based

methodology allows autonomous vehicles to quantify the degree of trust in their predictions

to generate the probabilistically safest trajectory. This approach can be instrumental in the

near-crash scenarios where no collision-free trajectory exists. Three different driving behav-

iors are considered: Normal, Aggressive, and Drowsy. Hidden Markov Models are used for

driver behavior prediction. A ”trust” in the detected driver is established by combining four

driving features: Longitudinal acceleration, lateral acceleration, lane deviation, and veloc-

ity. A stochastic reachable set-based approach is used to model these three different driving

behaviors. Two measures of threat are proposed: Current Threat and Short Term Predic-

tion Threat which quantify present and the future probability of a crash. The proposed



threat assessment methodology resulted in a lower rate of false positives and negatives. This

probabilistic threat assessment methodology is used to address the second challenge in au-

tonomous vehicle safety: crash avoidance decision-making. This thesis presents a fast, proac-

tive decision-making methodology based on Stochastic Model Predictive Control (SMPC). A

proactive decision-making approach exploits the surrounding human-driven vehicles’ intent

to assess the future threat, which helps generate a safe trajectory in advance, unlike reactive

decision-making approaches that do not account for the surrounding vehicles’ future intent.

The crash avoidance problem is formulated as a chance-constrained optimization problem

to account for uncertainty in the surrounding vehicle’s motion. These chance-constraints

always ensure a minimum probabilistic safety of the autonomous vehicle by keeping the

probability of crash below a predefined risk parameter. This thesis proposes a tractable

and deterministic reformulation of these chance-constraints using convex hull formulation

for a fast real-time implementation. The controller’s performance is studied for different

risk parameters used in the chance-constraint formulation. Simulation results show that the

proposed control methodology can avoid crashes in most hazardous situations on the road.



Threat Assessment and Proactive Decision-Making for Crash Avoid-
ance in Autonomous Vehicles

Vanshaj Khattar

(GENERAL AUDIENCE ABSTRACT)

Unexpected road situations frequently arise on the roads which leads to crashes. In an

NHTSA study, it was reported that around 94% of car crashes could be attributed to driver

errors and misjudgments. This could be attributed to drinking and driving, fatigue, or reck-

less driving on the roads. Full self-driving cars can significantly reduce the frequency of such

accidents. Testing of self-driving cars has recently begun on certain roads, and it is estimated

that one in ten cars will be self-driving by the year 2030. This means that these self-driving

cars will need to operate in human-driven environments and interact with human-driven

vehicles. Therefore, it is crucial for autonomous vehicles to understand the way humans

drive on the road to avoid collisions and interact safely with human-driven vehicles on the

road. Detecting a threat in advance and generating a safe trajectory for crash avoidance are

some of the major challenges faced by autonomous vehicles. We have proposed a reliable

decision-making algorithm for crash avoidance in autonomous vehicles. Our framework ad-

dresses two core challenges encountered in crash avoidance decision-making in autonomous

vehicles: 1. The outside challenge: Reliable motion prediction of surrounding vehicles to

continuously assess the threat to the autonomous vehicle. 2. The inside challenge: Gener-

ating a safe trajectory for the autonomous vehicle in case of future predicted threat. The

outside challenge is to predict the motion of surrounding vehicles. This requires building

a reliable model through which future evolution of their position states can be predicted.

Building these models is not trivial, as the surrounding vehicles’ motion depends on human



driver intentions and behaviors, which are highly uncertain. Various driver behavior predic-

tive models have been proposed in the literature. However, most do not quantify trust in

their predictions. We have proposed a trust-based driver behavior prediction method which

combines all sensor measurements to output the probability (trust value) of a certain driver

being “drowsy”, “aggressive”, or “normal”. This method allows the autonomous vehicle to

choose how much to trust a particular prediction. Once a picture is painted of surrounding

vehicles, we can generate safe trajectories in advance – the inside challenge. Most existing

approaches use stochastic optimal control methods, which are computationally expensive

and impractical for fast real-time decision-making in crash scenarios. We have proposed

a fast, proactive decision-making algorithm to generate crash avoidance trajectories based

on Stochastic Model Predictive Control (SMPC). We reformulate the SMPC probabilistic

constraints as deterministic constraints using convex hull formulation, allowing for faster

real-time implementation. This deterministic SMPC implementation ensures in real-time

that the vehicle maintains a minimum probabilistic safety
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Chapter 1

Introduction

1.1 Background and Motivation

According to a Global status report on road safety 2018 from World Health Organization[3],

approximately 1 million people die worldwide in road accidents every year. Around 30 million

people suffer from injuries resulting in long-term disabilities. This could be attributed to

drinking and driving, getting sleepy or reckless driving on the roads. In an NHTSA study,

it was reported that around 94% of car crashes could be attributed to driver errors and

misjudgments. Therefore, it is crucial to detect anomalous driving behaviors on the road

and react quickly and appropriately in a near-crash situation. Various Advanced Driver

Assistance Systems(ADAS) have been developed to improve the safety of the cars. For

example, methods like Lane Keeping Assistance(LKA), Collision warning systems, Adaptive

cruise control, and blind angle vehicle detection are being extensively deployed to improve

vehicles’ safety.

Full self-driving cars can significantly reduce the accidents caused due to human errors and

misjudgments. Self-driving cars have recently started being tested on certain roads, and it

is estimated that one in 10 cars will be self-driving by the year 2030 [4]. This means that

these self-driving cars will need to operate in human-driven environments and interact with

human-driven vehicles. Therefore, it is crucial for autonomous vehicles to understand the

way humans drive on the road to avoid collisions and interact safely with human-driven

1
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vehicles on the road.

There are various kinds of dangerous drivers that drive on the roads, e.g., drowsy, drunk, or

aggressive drivers. Each driver’s behavior type poses a different threat to the autonomous

vehicle, as each driver’s behavior has different driving patterns. Various driver behavior

predictive models have been proposed in the literature [5, 6] that can predict driver behaviors

and intentions. The driver assistance systems use these models to assess future threat and

intentions of the surrounding vehicles. As human behaviors are highly uncertain, these

predictive models cannot be trusted entirely.

Moreover, many of these predictive models do not quantify the confidence in their driver

behavior predictions. A wrong prediction can lead to a fatal crash with the surrounding

vehicle. This makes it necessary to have a degree of trust in predictions that can assess

the future threat. This is the first challenge addressed in this thesis, where a reliable mo-

tion prediction model of the surrounding vehicles is developed with a degree of trust in its

predictions.

Reachability analysis [7] has been widely used for motion prediction of the surrounding vehi-

cles. It gives information about all the surrounding vehicle’s reachable states in a finite time

horizon given the initial set of states. As the surrounding human-driven vehicles have uncer-

tain inputs, stochastic reachable sets [7] can be used to represent the most likely occupancy

regions of the surrounding vehicle. This information can be used by the motion planning

module of the autonomous vehicle (ego vehicle) to keep its planned trajectories outside the

stochastic reachable set areas.

Model Predictive Control (MPC) has been one of the most widely used planning and control

strategies for autonomous vehicles operating in uncertain environments. MPC offers an

advantage of simultaneous trajectory generation and control of the vehicle while handling the
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environmental uncertainty and the constraints on vehicle dynamics. Robust MPC (RMPC)

approaches have been previously used in the autonomous vehicles path planning [8]. RMPC

uses deterministic and bounded descriptions of the system and environmental uncertainties.

This bounded description can lead to large sets of occupancy regions of the surrounding

vehicle, as it covers all the surrounding vehicles’ possible movements. Using these large

bounded reachable sets description of the surrounding vehicles in the MPC controller lead

to conservative control action or infeasible solutions [9].

Stochastic Model Predictive Control (SMPC) approaches have recently proven to be highly

effective for controlling systems in highly uncertain environments [10]. SMPC approaches can

handle the system and the environmental uncertainty using probabilistic measures. SMPC

approaches are able to use this probabilistic framework to formulate chance-constraints for

the optimization problem. These chance-constraints guarantee constraint satisfaction with

a minimum probability for the closed-loop performance. This leads to feasible and less con-

servative control actions. This chance-constrained framework can be highly effective for

ensuring minimum probabilistic safety of autonomous vehicles in crash or near-crash scenar-

ios. However, solving SMPC chance-constrained problems can be computationally expensive.

This is the second challenge addressed in this thesis, where a fast SMPC framework for crash

avoidance decision-making is proposed.

1.2 Problem Statement and Objectives

This thesis addresses the decision-making methodology for autonomous vehicles encoun-

tering various unexpected hazardous situations on the road. Real-time decision-making in

autonomous vehicles involves addressing two core challenges:
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1. The outside challenge: The motion prediction of the surrounding vehicles to con-

tinuously assess the threat to the autonomous vehicle (ego vehicle) from surrounding

cars.

2. The inside challenge: Generating a safe trajectory for the autonomous vehicle in

case of a future predicted threat.

Motion prediction requires building a reliable model of the motion of the surrounding vehicle

through which their future evolution of position states can be predicted. Building these

reliable models is not trivial as the surrounding vehicles’ motion depends on human drivers’

intentions and behaviors, which are highly uncertain. This thesis’s first objective is to

propose a reliable motion model of the surrounding vehicles with a degree of trust in its

predictions. These motion predictions will allow formulating a measure of threat to the ego

vehicle from the surrounding vehicles.

Predicting a possible crash (threat) in advance can give ego vehicle enough time to take

action to avoid a crash. This is called proactive decision-making in autonomous vehicles. A

proactive decision-making approach exploits the surrounding human-driven vehicles’ intent

to assess the future threat. This helps to generate a safe trajectory in advance, unlike

reactive decision-making approaches[11] that do not account for the surrounding vehicles’

future intent. This thesis’s second objective is to propose a fast real-time proactive decision-

making algorithm for crash avoidance in autonomous vehicles. A fallback trajectory has to

be generated to avoid the crash with the surrounding vehicle or result in a minimum threat

value.
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1.3 Thesis Contributions

The motion prediction problem is solved by modeling the surrounding vehicles using driver

behavior-based Stochastic Reachable (SR) sets. These SR sets allow formulating a surround-

ing driver’s possible future movements depending on their predicted driving behavior. Three

different driver behaviors are modeled: normal, aggressive, and drowsy. Each driver’s be-

havior type has certain kinds of motion patterns and poses a different threat to the ego

vehicle.

The second problem of generating a safe trajectory is solved using a proactive decision-making

approach. A Stochastic Model Predictive Control Problem (SMPC) problem is formulated,

which keeps the value of short-term prediction threat under a minimum probabilistic risk.

A positive value of threat at any time instant implies that the ego vehicle must take a

safety action to avoid a collision or crash. For a fast real-time implementation of the SMPC

framework, it is reformulated as a deterministic MPC problem. The chance-constraints are

converted to deterministic constraints using convex hull formulation. This convexification

of the chance-constraints leads to a fast real-time implementation of the crash avoidance

algorithm.

The contributions of this thesis are summarised as follows:

1. A trust-based driver behavior prediction method is proposed by combining all sensor

measurements so that a degree of trust can be associated with the driver behavior

prediction.

2. Driver behavior-based stochastic reachable sets are proposed, which consider the degree

of ”trust” of the predicted driver behavior. Three driver behaviors are considered:

Normal, Aggressive, and Drowsy.
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3. A Short Term Prediction Threat (STPT) measure is proposed, which gives information

about the probability of collision at each time step instead of a combined probability

of crash as done in [1].

4. Chance-constrained problem of Stochastic Model Predictive Control is solved by re-

formulating it in terms of deterministic convex hull constraints for a fast real-time

implementation.

1.4 Thesis Outline

This thesis’s overall goal is to design a real-time proactive decision-making methodology

for crash avoidance in autonomous vehicles. Chapter 2 covers the literature review and

preliminaries. It covers the recently proposed methodologies in motion prediction and motion

planning of autonomous vehicles. Drawbacks and potential improvements in the proposed

methods are highlighted. This chapter also covers the background of the three core concepts

used in this thesis: Markov Chains, Hidden Markov Models, and Stochastic Model Predictive

Control.

Chapter 3 covers the proposed stochastic reachable set threat assessment methodology using

trust-based driver behavior prediction. Threat Assessment module architecture is presented.

Chapter 3 also proposes two probabilistic threat assessment measures: Current Threat and

the Short Term Prediction Threat.

Chapter 4 covers the proposed proactive decision-making algorithm for crash avoidance.

Crash avoidance problem is formulated as a chance-constrained optimization problem using

Stochastic Model Predictive Control (SMPC). A deterministic reformulation of the SMPC

framework is presented using deterministic convex hull constraints.
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Chapter 5 provides the validation and simulation results for the proposed threat assessment

and decision-making methodologies. The control methodology is tested for three different

hazardous road scenarios and different initial conditions. The advantages and limitations of

the proposed methodology are highlighted. Chapter 6 concludes the thesis with final remarks

and suggestions for future work.



Chapter 2

Literature Review and Preliminaries

2.1 Related Research

2.1.1 Motion Prediction and Threat Assessment

There has been extensive research on motion prediction and threat assessment for au-

tonomous vehicles. A comprehensive review by Lefavre et al. [12] classified motion pre-

diction models into three categories: 1.)Physics-based motion models; 2.) Maneuver-based;

3.) Interaction-aware motion models. Physics-based motion models are described using

kinematic and dynamic motion models, which lead to computationally fast implementation

of motion prediction of vehicles. Kinematic and dynamic bicycle model is an important

model used in various motion prediction strategies [13, 14, 15]. The drawback of using

physics-based models is that motion prediction can only be made for a short time horizon.

Moreover, human driver behaviors and intentions are not incorporated in the models, lead-

ing to faulty predictions. Various maneuver-based motion models have been developed to

generate a long-term prediction and include driver behaviors in the motion models. These

models are mostly built using learning (like Hidden Markov Models[16], Gaussian Process

Regression[17] etc.) and filtering techniques [18, 19]. These maneuver-based motion models

have also been used for various anomaly detection methods to warn the driver of a risky

driver behavior [20, 21]. The drawback with maneuver-based motion models is that they are

8
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modeled only for specific road geometry and situations, making them less reliable to be used

on different roads. Interaction-aware motion models account for the interaction between the

ego vehicle and the surrounding vehicle and incorporate the dependence of the ego vehicle’s

actions on the surrounding vehicle’s actions. This results in a more reliable motion prediction

and risk assessment for traffic situations. In [22], a multiple model Kalman filtering scheme

was used to estimate the movement of multiple vehicles using a hierarchical approach based

on a priority list. [23] proposed a data-driven interaction-aware motion model for pedestrian

environments and static obstacles. The major drawback with the interaction-aware motion

models is their increasing computational complexity with the increasing number of traffic

participants. This makes these algorithms incompatible for real-time implementation on

roads.

A review by Li et al. [24] categorizes threat assessment metrics into five types. First are the

time-based (TTX) metrics which use time as a measure to quantify threat. Time to Collision

(TTC) [25], Time to Reaction (TTR) [26] and Time to Headway (THW) [27] are some of the

earliest proposed threat assessment methodologies. These methods do not account for the

geometry of the roads and can give false positives. Second are the kinematic-based metrics

that use distance [28], velocity and acceleration [29] for assessing the threat around the

vehicle. These kinematic metrics are not reliable as they can result in many false positives

due to the constant model parameters. The third category is the probabilistic-based threat

metric which quantifies the threat using the probability of collision [1]. These methods

could be improved using offline computations and machine learning techniques. The fourth

category is the potential-field-based metrics [30] which consider surrounding vehicles as a

repulsive field. The fifth category of threat assessment metrics is based on unexpected driver

behavior-based metrics, which rely on detecting anomalous driver behaviors [31, 32, 33] for

threat assessment. The drawback of these methods is that they do not quantify the risk,
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and there are many technical challenges in anomaly detection.

Combining driver behavior prediction with motion prediction models has been the recent

focus for reliable threat assessment for autonomous vehicles [34, 35]. However, still, these

methods do not provide any confidence or trust measures on the predicted driver behavior.

Driver behaviors are highly uncertain, and no motion model is perfect.

We propose a novel trust-based driver behavior prediction method used to build driver

behavior-based stochastic reachable sets. Most driver behavior prediction methods focus on

anomalous driver behaviors but do not quantify the measure of threat from the anomalous

driver. Our motion prediction approach is inspired from [1], where surrounding vehicle

dynamics are represented as Markov Chains. We extend their method to driver behavior-

based stochastic reachable sets where a degree of trust of predicted driver behavior is used

to represent the Stochastic reachable sets.

2.1.2 Motion Planning and Proactive Decision-Making in Autonomous

Vehicles

Various motion planning algorithms have been proposed in the literature for safe navigation

and collision avoidance systems. An extensive review by Gonzalez et.al.[36] covers modern

motion planning and decision-making techniques for autonomous vehicles. They classified

the motion planning techniques into the following categories: interpolating curve-based plan-

ning, graph-search planners, sample-based planners, and optimization planners.

Interpolating curve-based planners use a set of control points to generate a trajectory. Some

examples of interpolating path planners are Bezier curves [11, 37], spline curves [12], clothoid

curves [38] and polynomial curves [39]. These planners have been widely used in the DARPA

urban challenge. The drawback of these methods is that they do not consider the dynamic
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constraints on the vehicle. Moreover, they can only be used for reactive path planning and

not proactive path planning. This makes them a weak choice for urban environments.

Graph search-based planners divide the vehicle’s planning space into a grid space and plan the

trajectory from the initial grid to the destination grid. This trajectory planning is done using

the Dijkstra’s algorithm, D algorithm [40], A algorithm [41]. These methods are usually used

for global path planning and are computationally expensive for higher-dimensional problems.

Sampling-based methods sample the planning state space into many vertices and keep adding

these vertices until the goal is reached. Approaches like Rapidly-exploring Random Tree

(RRT) [42] and RRT ∗ [43] create a tree-like map that keeps expanding stochastically until

the goal is reached. The drawback with these methods is that there can be many iterations

until an optimal path is reached. These methods cannot be used for sudden unexpected

hazardous situations where a vehicle has to react quickly.

Another kind of motion planning technique is the potential-field-based approach. The main

idea in these approaches is that goal is represented by the attractive forces, and repulsive

forces represent the obstacles. The resultant force results in a final trajectory towards the

goal. Ji et al. proposed cosine potential-fields for lanes, and exponential potential-fields for

the surrounding vehicles [44]. Wang et al. used the Artificial potential-field method combined

with MPC for safe decision-making in autonomous vehicles [45]. One of the drawbacks of

the potential-field methods is the local minima problem [46] which makes the ego vehicle or

robot oscillate infinitely between obstacles. This occurs due to the resultant high degree of

non-linearity of the potential fields of all obstacles. Various approaches have been proposed

to overcome this, like improved-APF [47], Hybrid Fuzzy potential field [48]. Most of these

approaches are only applicable in stringent conditions and are not very flexible.

With the rise of sensing and computational capabilities, optimization-based or MPC-based
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motion planning techniques have shown immense potential for autonomous vehicles in uncer-

tain environments [49, 50]. These approaches consider the constraints on vehicle dynamics,

environmental uncertainty, safety constraints, and actuator constraints to generate an op-

timal trajectory. However, these approaches deal with the uncertainty using worst-case

measures, leading to conservative or infeasible solutions. Recently Stochastic MPC (SMPC)

approaches have been proposed for handling uncertainty using probabilistic measures so

that feasible solutions can be computed. SMPC allows for a chance-constrained optimiza-

tion problem formulation where minimum probabilistic safety guarantees are provided during

the operation of the system. Some of the works that have used SMPC for autonomous vehicle

decision-making are covered in [10, 51, 52].

This thesis focuses on developing an SMPC solution based on a stochastic reachable set

threat assessment approach for avoiding crashes with the surrounding vehicles. The crash

avoidance problem is formulated as an SMPC problem where chance-constraints are specified

to account for uncertainty in the surrounding vehicle’s motion. These chance-constraints

always ensure a minimum probabilistic safety of the autonomous vehicle by keeping the

probability of crash below a predefined risk parameter. For a fast-real time implementation

during the crash scenarios, the SMPC chance-constrained formulation will be transformed

to a deterministic reformulation.

2.2 Preliminaries

2.2.1 Markov Chains

Markov chains are examples of a stochastic process with discrete states as random vari-

ables Y ∈ N+. In this thesis, discrete-time Markov chains are considered for the pro-
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Figure 2.1: An example of a Markov Chain with 3 discrete states and its transition probability
graph

posed motion prediction methodology. Markov chains are a collection of random variables

Y = {Y0, Y1, Y2, ...}.

A stochastic process Y is called a Markov chain if it follows the Markov property for all time

steps k:

P(Yk = j|Yk−1 = i, Yk−2 = ik−2, · · · , Y0 = i0) = P(Yk = j|Yk−1 = i) ≜ Pij (2.1)

The Markov property implies that the probability distribution at a future time step k + 1

depends only on the current probability distribution at time step k. This implies that

the future distributions are independent of the past probability distributions. If an initial

probability distribution for discrete states of the Markov chains is given as p0, then the future

evolution of probability distributions can be found using:

p(k + 1) = Pijp(k) (2.2)

Where Pij is called the transition probability matrix for the Markov chain. An example of

a Markov chain is given in Figure 2.1.
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2.2.2 Stochastic Reachable Sets

Reachability analysis [7] gives information about all the possible set of states that a system

can achieve, given the initial set of states and disturbances of a system. Information about the

reachable sets of the surrounding vehicles can help in motion planning for the ego vehicle.

The major drawback of using reachable sets is that they are usually very large as they

cover almost all the possible states that a vehicle can achieve. This leads to infeasible

and conservative motion planning for the ego vehicle, making it impractical to be used for

real-time motion planning.

Stochastic reachability analysis addresses this problem of large reachable sets by assigning

probability values to the states in the reachable set. This information can help the ego vehicle

to know the probability of reaching a particular state at some time step. The reachable states

of the surrounding vehicle with low values of probability can be used in the ego vehicle’s

motion planning space. Moreover, probability of crash and probabilistic safety guarantees

can be provided for the ego vehicle. This can help overcome the drawbacks of using simple

reachability analysis, i.e., conservative behavior and infeasible solutions for the ego vehicle.

Stochastic reachable sets of a system are defined by the probability of a system to be in

a certain state at some time step. They are represented using the probability distribution

function over the system’s reachable states for some time step k. Let there be a random

dynamical system with the random state vector X. Stochastic reachable set at time step k

can be represented using the following probability distribution function:

fX(x, t = k) = Pr(X = x) at time step k (2.3)

Where, Pr(.) is the probability operator. The stochastic reachable set includes all the states
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where the probability distribution function is positive. Figure 2.2 shows a visual represen-

tation of the stochastic reachable sets at different time steps for a surrounding vehicle.

Figure 2.2: Visualization of the Stochastic Reachable sets at different time steps. Adapted
from [1]

2.2.3 Hidden Markov Models

Hidden Markov Models (HMM) are statistical Markov models that can predict the hidden

information from an observable sequence of states of a stochastic system. The hidden in-

formation is termed as hidden states. The stochastic processes considered in the HMM are

assumed to be Markov processes, i.e., the future state only depends on the present state.

HMM is widely used in modeling and reasoning about the stochastic systems (Markov) whose

states cannot be observed directly. Other observable states of the system are used to infer the

sequence of hidden states that the given Markov system went through. The non-observable

sequence is termed as the Hidden states, and the observable sequence is termed as the Emis-

sion states. Hidden Markov Models are widely used in biomedical engineering, audio signal

processing, statistical-mechanics, pattern recognition, time-series prediction, and countless

others. Figure 2.3 shows the representation of a Hidden Markov Model.

A HMM is defined using following quantities:
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• T = Length of the observed sequence

• S = {S0, S1, · · · , ST} is the set of hidden states that a HMM went through

• O = {O0, O1, · · · , OT} is the set of emitted sequence or the observable states of the

stochastic system

• π : S → [0, 1] is the initial probability distribution of the hidden states, which provides

the probability of starting in each state.

• P is the transition probability matrix for the evolution of hidden states

• E is the emission probability matrix which stores the probability of observing a certain

state when the Markov system is in a certain hidden state

Two main assumptions in the HMM are the Markov property assumption and the output

independence assumption. The output independence assumption suggests that the observed

current output at time t is only dependent on the previous hidden state and independent of

previous observations. The main question that will be solved in this thesis using HMM is to

decode the sequence of hidden states that a stochastic system went through to generate the

observed sequence.

Viterbi algorithm [53] is the famous solution for finding the optimal sequence of hidden states

through an observed sequence. A dynamic programming approach is used to find the most

likely sequence of hidden states S when an observed sequence O is given.

In this thesis, a surrounding vehicle’s driver behavior cannot be directly observed from on-

board vehicle sensor measurements, but the vehicle states can be observed. Therefore, vehicle

state observations are used to infer the most likely behavior of the surrounding vehicle’s

driver.
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Figure 2.3: Hidden Markov Model, adapted from [2]

2.2.4 Stochastic Model Predictive Control

Model Predictive Control (MPC) has been one of the most widely used optimal control

strategies for complex systems with multiple inputs, outputs, and constraints [54]. Robust

implementation using MPC’s receding horizon control framework handles the uncertainty

in the systems by assuming they lie in a bounded set. This deterministic formulation of

the uncertainty leads to over-conservative or infeasible solutions due to the bounded set

approach’s worst-case considerations.

Most of the uncertainty in the system and the environment is probabilistic. Stochastic Model

Predictive Control is widely used to handle the system’s uncertainty using probabilistic

measures and chance-constraints. The cost function for the MPC is satisfied with a minimum

probability, which ensures a minimum probabilistic constraint satisfaction during the optimal

control.

To formulate a general SMPC problem, consider a discrete time system given by:
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xk+1 = f(xk, uk, wk)

yk = h(xk, uk, vk)

(2.4)

where k ∈ N+, xk ∈ RNx , yk ∈ RNy and uk ∈ U ⊂ RM are the systems states, system

outputs and inputs to the system respectively. U is the measurable set for the inputs, Nx

is the number of states, Ny is the number of outputs and M is the number of inputs to the

system. wk and vk are the system disturbances and sensor noises respectively. f and h are

the nonlinear functions describing the dynamics of the system and its output respectively.

Let N ∈ N be the prediction horizon for the receding horizon control framework. Let the

feedback control policy be:

u := {u0, u1, u2, · · ·uN−1} (2.5)

For a certain control policy u, the cost function for a SMPC problem can be written as:

JN(xk, u) = E

[
N−1∑
i=0

Jc(x̂i, ui) + JT (x̂N)

]
(2.6)

where JN(xk, u) is the total cost of operation using a feedback control policy u. Jc and JT are

the per-stage cost function and terminal cost function at the end of the prediction horizon,

respectively. x̂i represents the predicted systems state at time i where the disturbance is

given by wj where j ∈ [0, i − 1]. The minimization of the above cost function is subject to

the chance-constraints on the system outputs and states. Let ŷi be a predicted output at

the time i; then the joint chance constraints can be written as [55]:



2.2. PRELIMINARIES 19

Pr[gj(ŷi) ≤ 0] ≥ βj for all j = 1, 2, · · · s ; i = 1, · · · , N (2.7)

where gj : RNy → R is some linear or non-linear Borel-measurable function, s is the total

number of inequality constraints and β ∈ [0, 1] is the minimum threshold probability value

with which the probabilistic constraints gj(ŷi) ≤ 0 have to be satisfied for all j = 1, · · · , s.

The overall SMPC formulation using the system dynamics, cost function and chance con-

straints can be written as follows:

J⋆
N(xk) := min

u
JN(xk, u)

such that:

x̂i+1 = f(x̂i, ui, wi), for all i ∈ [0, N − 1]

ŷi = h(x̂i, ui), for all i ∈ [0, N ]

ui ∈ U, for all i ∈ [0, N − 1]

Pr[gj(ŷi) ≤ 0)for all j = 1,· · · ,s] ≥ β, for all i ∈ [1, N ]

(2.8)

where J⋆
N(xk) is the optimal cost function for the optimal control policy u⋆. The initial state

is known to be x0.

This probabilistic formulation of constraints and the model predictive control allows for the

slight violation of constraint satisfaction, resulting in more feasible actions and does not

lead to too much conservative behaviors of the system. Moreover, the external uncertainties

arising in the system can be appropriately handled using probabilistic inequalities. A more

extensive overview, state of the art, and applications for SMPC are covered in the review by

Mesbah [55].
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2.3 Summary

This chapter reviewed the recent literature on the motion prediction and decision-making

algorithms in autonomous vehicles. Section 2.1 highlights the advantages and drawbacks

of the current methodologies for crash avoidance in autonomous vehicles. The four core

concepts were reviewed in Section 2.2 on which this thesis is based, i.e., Markov chains and

Stochastic Reachable sets, Hidden Markov Models, and Stochastic Model Predictive Control.



Chapter 3

Stochastic Reachable Set-Based

Threat Assessment

3.1 Introduction

This chapter introduces a novel threat assessment methodology for autonomous vehicles

based on stochastic reachable (SR) sets. Driver behavior-based SR sets are introduced for

three different driver behaviors: Normal, Aggressive, and Drowsy. Each driver’s behavior

poses a different threat to the ego vehicle due to each driver’s behavior type’s different

motion patterns. A novel ”trust” based method is proposed to quantify the confidence in

the predicted driver behavior. Two threat assessment methods are proposed based on the

probability of crash: Current Threat (CT) and Short Term Prediction Threat (STPT).

3.2 Threat Assessment Module Architecture

Figure 3.1 shows the proposed threat assessment methodology for autonomous vehicles. The

autonomous car’s perception module is used for sensor measurements of different features of

the surrounding vehicle. These sensor measurements are fed into the intention estimation

module and trust-based driver behavior prediction module. Surrounding vehicle dynamics

21
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Figure 3.1: Threat Assessment Module Architecture

representation using Markov chains is done offline by generating state and input transition

probability matrices for different driver behaviors. Using the information from all the above

three modules, driver behavior-based Stochastic Reachable sets are computed for a finite time

horizon N . Stochastic reachable sets’ information allows for assessing the risk at different

time points using the probability of a crash.

3.3 Driver Behavior Prediction and intention estima-

tion

The first stage in assessing the threat around our autonomous car (ego vehicle) is to detect

the surrounding vehicle’s driver behavior. This allows formulating unique responses to each

driver type for any dangerous situation encountered on the road.

A driver behavior dataset UAH-DriveSet[56] is used to build the models for three different

driving behaviors: Normal, Aggressive, and Drowsy. The dataset [56] consists of six drivers
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emulating all three driving behaviors on two types of roads: motorway and secondary roads.

The dataset consists of more than 500 minutes of naturalistic driving data in Madrid city,

Spain.

In this thesis, we propose that ego vehicle’s on-board vehicle sensor measurements can be

used to predict the surrounding vehicle’s driver behavior. We assume that all these sen-

sor measurements are available at each time step to the autonomous vehicle. Four sensor

measurements or features are used for driver behavior prediction, i.e., Longitudinal Accel-

eration, Lateral Acceleration, Lane Deviation or weaving, and Velocity. Hidden Markov

Model (HMM) technique is applied to each of these four features time-series data collected

from UAH-DriveSet. The UAH-Drive dataset was collected at a frequency of 10 Hz. The

HMM outputs the most probable sequence of hidden states that a system went through to

produce the detected features. In our case, the hidden states are the driver behavior that

are producing the detected features. In conclusion, the ego vehicle senses the variables that

puts the driver behavior into categories.

3.3.1 HMM Model Training

The HMM models are trained using the time-series data of 4 given features for three driver

behaviors obtained from the UAH-DriveSet. Out of 6 drivers, data from the first four drivers

is used for training the HMM models. Time-series data corresponding to each feature is

normalized to the integer values as HMM only accepts integer values as input. Each of the

features time-series data is associated with a certain type of driver behavior. These labels

are available from the dataset for supervised training of the HMM. The following three labels

or hidden states are defined for the HMM models:

1. B1: Normal behavior
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2. B2: Aggressive behavior

3. B3: Drowsy behavior

The Machine Learning Toolbox in MATLAB is used to generate 4 HMM models for each of

the four features acting as emission states. These emission states are used to predict driving

behavior type. Let Xf be a normalized time series data for a certain feature for all three

types of driving behaviors. Xf acts as observations for the training of HMM:

Of,i for f = 1,2,3,4 and i ∈ [1, N ]

Where f are the detected features, i is the time step of the data, N is the total number of data

time steps, and Of,i is the observation for feature f at time step i. All these observations

are taken from the first four drivers’ dataset and are labeled accordingly with respective

driver behaviors. Each of the four HMM models for each feature has two parameters, i.e.,

the transition probability matrix and the emission probability matrix. These parameters are

computed using the labeled data, observed time-series dataOf,i and the Maximum Likelihood

Algorithm[57].

The transition probability matrix gives the state transition probability matrix for the three

hidden states: driver behaviors. The emission probability matrix gives the probability that

a certain state Of,i was observed given the system was in hidden state Bj for j = 1, 2, 3.

These parameters are used in driver behavior prediction of other unseen observed time-series

data.

It has to be noted that, the driving behaviors in the given driver-behavior dataset are quite

subjective and have led to a stationary Markov Chain for this experiment. In the real-

time scenarios, this assumption of stationarity in the underlying Markov chain might not be

entirely applicable. With a bigger driver behavior dataset, we can get closer to the real time

scenarios and estimating the underlying behavior transition Markov Chain.
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3.3.2 HMM Model Testing

The 4 HMM models for each feature were tested on the data from the remaining two drivers.

A time window of 2 seconds was applied for the prediction of driver behavior of the sur-

rounding vehicle. The surrounding vehicle features for the last 2 second time window are

considered and were fed as an input to each of the trained HMM. The other inputs to the

HMM are the transition probability matrix and the emission matrix computed from each

feature’s dataset and driver behavior.

An optimization problem is solved for each time window, to infer the most likely driver

behavior,

Let Of,i = of,1, of,2, of,3.....of,T be the observed sequence of feature f of the surrounding car,

where T is the time window of 2 seconds. Observations of all four features are fed into each

trained HMM model, and their respective transition probability and emission matrices are

computed offline.

The following unconstrained optimization problem is solved online using the Viterbi Algorithm[53]

for each feature’s respectively trained HMM:

Z⋆
f (k) = argmax

Zf

P (Z|Of,2) for f = 1, 2, 3 and 4 (3.1)

Where Z⋆
f is the optimal sequence of driver behaviors predicted from the measured data Of,2

at time k for feature f over the previous 2 second time window. A sliding time window

technique, with a one-time step shift at each iteration, is used to predict the driver behavior

continuously. To infer the driver behavior over each time window, a trust ratio (TR) is

computed for each driver behavior from each predicted optimal sequence Z⋆
f . This is done

by counting the number of predicted states of a particular behavior in the optimal sequence
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Table 3.1: Driver Behavior Prediction Accuracy (trust values) for all 4 features

Normal
Driving(S1)

Aggressive
Driving(S2)

Drowsy
Driving(S3)

Longitudinal
Acceleration

91% 83% 89%

Lateral
Acceleration

78% 76% 81%

Lane
Deviation

93% 78% 90%

Velocity 79% 88% 75%

Z⋆
f , by the total number of time steps in the time window:

TRf,b =
No. of predicted states of behavior b Z⋆

f

No. of time steps in 2 sec time window (3.2)

Where b = 1, 2, and 3 for three driver behaviors and f is for all the four detected features

over the 2 second time window. At each time step, 12 TR ratios will be computed for each

feature and driver behavior. These ratios are used for online trust-based driver behavior

prediction by fusing all the features, as shown in the next section.

Each feature’s behavior prediction accuracy was computed using the ground truth behavior

labels in the remaining two drivers dataset. This behavior prediction accuracy for each

feature can be interpreted as a trust value for that feature.

The trust values or prediction accuracy for each feature and each driving behavior for the

remaining two drivers are given in Table 3.1.
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3.3.3 Reliable online driver-behavior prediction using all the fea-

tures

The values in Table 3.1 can be interpreted as the trust that we can have in each feature’s

driver behavior predictions. These are termed as the trust weights for each feature or sensor

measurement. We propose an online driver behavior prediction method that combines the

Trusted Ratios from eq. (2) of predicted behaviors from all 4 features with their trust weight

values. This results in Online Trust Ratios for each driver behavior given by the following

formulas:

OTRN =
w1NTR1,N + w2NTR2,N + w3NTR3,N + w4NTR4,N

w1N + w2N + w3N + w4N

(3.3)

OTRA =
w1ATR1,A + w2ATR2,A + w3ATR3,A + w4ATR4,A

w1A + w2A + w3A + w4A

(3.4)

OTRD =
w1DTR1,D + w2DTR2,D + w3DTR3,D + w4DTR4,D

w1D + w2D + w3D + w4D

(3.5)

where OTR is the Online Trust Ratio for driver behaviors Normal (N), Aggressive (A), and

Drowsy (D) behavior, respectively. wf,b are the trust weights from Table I for each feature f

and driving behavior b. TRf,b are individual Trust Ratios (TR) of predicted driving behaviors

b and feature f using eq. (2). The architecture of the proposed scheme is given in Figure

3.2.

This real-time detection procedure is done using the 2-second shifting time window technique,

where TR values are obtained for all four features. This method’s online implementation

average time for every time window is 5 ms, making this method very useful for real-time

safety applications.
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Figure 3.2: Architecture for online trust based driver behavior prediction

3.3.4 Intention estimation using detected features
Other than driver behavior prediction, intention estimation of surrounding vehicles is also

necessary to predict contradicting intentions with the ego vehicle. This information of in-

tention estimation is necessary for proactive decision-making in autonomous vehicles.

Intention estimation is done synchronously with the driver behavior prediction computation.

Four intentions are being considered for the surrounding vehicle, i.e., going straight, lane

change, right turn, and left turn.

The training method used in section 3.3.1, is also used to train the 4 HMM models for

intention estimation of the surrounding vehicle. Four HMM models are built for each of

the observed feature time-series data. The labels and timestamps of different intentions

are available from the UAH driver dataset for four different vehicle intentions. The HMM

parameters: transition probability matrix and emission probability matrix are built obtained

using the maximum likelihood algorithm and data from the first four drivers in the dataset.

The testing of these HMM models is done on the remaining two drivers in the dataset.

Prediction results were obtained and compared to the ground truths available from the
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Table 3.2: Driver Intention Prediction Accuracy for all 4 features

Going
Straight

Lane
Change

Right
turn

Left
turn

Longitudinal
Acceleration

89% 83% 92% 95%

Lateral
Acceleration

76% 84% 79% 69%

Lane
Deviation

93% 88% 90% 83%

Velocity 81% 91% 77% 72%

UAH driver dataset, and prediction accuracy for different features in intention estimation

are shown in Table 3.2

The average computation time for synchronous intention estimation and driver behavior

prediction is 12 ms. We can observe from the table 3.2, that longitudinal acceleration has

the maximum average prediction accuracy of 89.75% for all four intentions. Therefore, in

this thesis, longitudinal acceleration time-series data will be used for intention estimation of

the surrounding vehicle.

3.4 Stochastic Reachable sets for different driver be-

haviors

Stochastic reachable (SR) sets allow the formulation of a detected vehicle’s most likely oc-

cupancy regions for a finite time horizon. This can help determine the probability of a crash

of ego vehicle with the surrounding vehicle when a threat has been detected. These SR sets

of the surrounding vehicle act as the unsafe set for the ego vehicle that has to be avoided.

The ego vehicle can determine the best control action using the surrounding vehicle SR set
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information so that the probability of a crash is minimized.

In this thesis, the SR sets of the surrounding vehicle are represented using probability dis-

tribution over different cross sections of the road as follows:

f(x, y) = Pr[x ∈ X, y ∈ Y ] forX := [x1, x2];Y := [y1, y2] (3.6)

where Pr(.) is the probability operator; x1, x2 and y1, y2 are lower and upper limits of

longitudinal and lateral positions respectively. These are also called the rectangular covering

functions, which will be discussed at the end of this section. This is done using the random

matrices and representing the surrounding vehicle dynamics and the driver inputs as Markov

chains. This idea is inspired by [1], and our implementation extends it to driver behavior-

based stochastic reachable sets. This gives an SR set that is dependent on the trust level

of our driver behavior prediction. The second advantage of the given method is that the

computationally intensive Markov chain computations are done offline.

These Markov chains are built offline and can be loaded into the ego vehicle for online

threat assessment on the roads. The random matrices computed are converted to Markovian

random sets[58] which allows expressing the evolution of the SR sets over time exclusively

in terms of the SR set computed for the previous time step.

To incorporate the driver behavior into the SR sets, Online Trust Values of predicted driver

behavior are used to represent the Markov random sets. These SR sets are termed as driver

behavior-based stochastic reachable sets. The computation of the driver behavior-based SR

sets is considered in the following sections.
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3.4.1 Surrounding vehicle dynamics representation using Markov

Chains

Markov chains are an example of a stochastic dynamic system with discrete states. To

represent the surrounding vehicle dynamics as Markov Chains, firstly, the state space is

discretized using the cell partitions as done in[1]. The second step for the Markov chain

representation is the computation of the transition probability matrices for the system states

and driver inputs.

The evolution of the detected vehicle states depends on two factors: 1) Longitudinal dynam-

ics of the surrounding vehicle; 2) Applied throttle and lane deviation of the vehicle, which

depends on the driver behavior.

The following hybrid dynamical system[59] is used to determine the probability distribution

for the longitudinal dynamics of surrounding vehicle to be represented as a Markov chain:

ẋ = v v̇ =


amaxu, 0 < v ≤ vsw OR u ≤ 0

amax vsw

v
u, v > vsw AND u > 0

0, v ≤ 0

(3.7)

subject to the constraint:

|a| ≤ amax, where |a| =
√

a2N + a2T , aN =
v2

r(x)
, aT = v̇ (3.8)

Where x is the longitudinal position of the vehicle, amax is the maximum possible acceleration

due to the tire friction, and vsw is the velocity at which the car dynamics change due to the

aerodynamic drag[59]; r(x) is the radius of curvature of the path followed, and u is the
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Figure 3.3: State space discretization into D = ab discrete states with a and b partitions on
velocity and position

applied acceleration by the driver.

The probability distribution (pdf) for longitudinal dynamics is represented using f(x), where

x is the vehicle’s detected position.

For Markov Chain representation, the state space and the surrounding vehicle dynamics’

input space is discretized as a first step. State-space of the detected vehicle dynamics consists

of x (position) and v (velocity). In this study, threat assessment is considered for highway

road scenarios, the velocity interval [16− 42]m/s is selected. This velocity range is divided

into a segments. Similarly, position interval can be selected based on the on-board sensor’s

range. [0, 150]m position interval is considered and divided into b segments. This results in

a 2-dimensional discrete state space with ab = D discrete states. Each discrete state di is a

cell containing a range of velocities and longitudinal positions as shown in Figure 3.3.

For Markov Chain representation of the surrounding vehicle dynamics, transition probability

matrix for discrete states D is computed. The transition probability matrix for the evolution
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of states from di to dj is computed by applying Monte Carlo simulations to the dynamic

model of the surrounding vehicle:

T un
ij =

No. of simulations reaching state dj from state di
Total No. of simulations started from state di

(3.9)

where T u
i,j is the state transition probability matrix for a certain input un. T un

ij is used to

compute the probability distribution of the next state p(k+1) of the vehicle over the discrete

cell divisions when input un is applied:

p(k + 1) = T un
ij p(k) (3.10)

where the entries of the random vector p(k) represent the probabilities of detected vehicle

to be in a certain discrete state di for i ∈ [1, D].

The size of T un
ij for a certain input un will be D×D and size of p(k) will be D× 1 as shown:

p(k) = [p1(k) p2(k) .... pD(k)]
T (3.11)

where pi(k) is the probability of being in a discrete state di defined by a certain velocity

and a position range. Our eventual goal is to determine the probability distribution of the

position of the vehicle for threat assessment. The probabilities from the p(k) vector can be

transformed to a probability vector p̃n(k) for longitudinal position distribution in 0 to 150m.

p̃(k) will have b entries in our case as 150m is divided into b cells. p̃(k) can be calculated

by taking average of the sum of each velocity cell probability in the same longitudinal cell

range:
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p̃n(k) =

a−1∑
i=0

p(bi+n)(k)

a
(3.12)

where p̃n(k) is the nth entry of the new probability vector; a and b are the respective divisions

made in velocity and position range. The size of final p̃n(k) will be b× 1.

The main idea is to get probability vectors p(k) for a fixed prediction horizon N using Eqn.

3.10. But the Eqn. 3.10 assumes known deterministic inputs un for n ∈ [1 2 ..... N ] of the

detected driver for the prediction horizon N . This will not be the case as the surrounding

drivers’ acceleration and steering inputs are unknown and driver behavior dependent. The

stochastic inputs and their transition probability matrices have to be incorporated in the

above computation. Input transition probability matrices generated from driver behavior

models are discussed in the next subsection.

3.4.2 Driver behavior modeling

Surrounding vehicle’s dynamics also depend on the applied acceleration and the lane de-

viation of the vehicle. These two quantities are dependent on the driver’s behavior and

their motivations. To account for transitions in the inputs during a prediction horizon N,

probability distributions and input transition probability matrices are computed using the

UAH-driver dataset. To model driver behavior in the SR sets, the probability distribution of

lane deviations is considered, accounting for steering input changes. The second input: ac-

celeration command, is divided into discrete states/cells, and transition probability matrices

are computed for different driver behaviors using the UAH-drive dataset.
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Lane Deviation (Weaving)

Lane deviation around the center of the road represents the lateral dynamics of the sur-

rounding vehicle. The probability distribution for lane deviation is represented using f(δ)

using piecewise probability distribution functions.

The lane deviation of the center of the detected vehicle is considered, which can be changed

accordingly with the vehicle dimensions. It is taken around the center of the lane where

weaving outside the lane is also taken into account for aggressive and drowsy drivers.

We have used trust levels of the predicted driver behavior to represent the probability distri-

butions of the lane deviation. Firstly, lane deviation pdf’s are developed for three different

driver behaviors without including the trust levels as shown in Figure 3.4. Then a method

is proposed to include the trust levels of the predicted diver behavior in the probability

distributions of the lane deviations.
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Figure 3.4: Lane Deviation PDF for different driver behaviors

The road lane width is taken as 4m and divided into eight cells where the lane’s center is

taken as zero lane deviation. The computation of the probability distributions for different
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driver behaviors is done using the UAH-drive dataset on motorway roads as shown in Figure

3.4. From Figure 3.4 we can observe that drowsy and aggressive drivers are more likely to

have larger lane deviations as compared to the normal drivers. Moreover, we can also observe

that drowsy driver behaviors have more lane deviation probability than aggressive drivers.

The Online Trust Ratios (OTR) computed from equation 3.3, 3.4 and 3.5 give the trust values

of each predicted driver behavior. These values are used to represent dynamically changing

probability distributions of lane deviations based on trusted driver behavior ratios. Let

OTRN , OTRA and OTRd be the respective online trust ratios computed for a surrounding

vehicle at some time point. LetND, AD andDD be the 8×1 probability vectors representing

the lane deviations of 100% normal, aggressive and drowsy driving respectively as given in

Figure 3.4. A cumulative probability distribution c(δ) is formulated based on the OTR values

as follows:

c(δ) = OTRN(ND) +OTRA(AD) +OTRD(DD) (3.13)

The size of cumulative distribution c(δ) probability vector for lane deviation is also 8 × 1.

It represents the pdf across eight cell divisions across the lane by combining all three driver

behaviors and their OTR values. The Figure shows cumulative pdf c(δ) for different OTR

values of the detected vehicle at some time instant k.

This representation of the lane deviation pdf using the OTR values allows to account for

slight uncertainties in the predicted driver behavior.
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Figure 3.5: Lane Deviation PDF for different driver behaviors. a.) Left figure shows pdf
for OTR 0.85 for aggressive, 0.05 drowsy and 0.1 normal driver behavior. b.) Right figure
shows pdf for OTR of 0.85 drowsy, 0.12 aggressive and 0.03 normal driver behavior.

Longitudinal Acceleration

The second input of the surrounding driver is the acceleration command. Transition prob-

ability matrices for the acceleration input for different driver behaviors and road situations

are computed to quantify the changes in a detected driver’s acceleration command during

a prediction time horizon N . The UAH-driver dataset is used for 4 different actions on the

road, i.e., Lane Change (LC), Going straight (GS), Turning Left (TL), and Turning Right

(TR). The acceleration command range of [−4, 2.5]m/s2 is considered and divided into 65

ranges of 0.1m/s2 each. The transition probability matrix for input acceleration command

is computed for each of the road actions and driver behavior. Each matrix’s size is 65× 65

defining the probability of transition from one acceleration range to the other for the next

time step. These are computed offline and can be loaded into the car during its operation.

The 12 input transition matrices for driver behavior are named using the following convention

for each driver behavior and road action: ΠBc whereB ∈ [N,A,D] for normal, aggressive, and



38 CHAPTER 3. STOCHASTIC REACHABLE SET-BASED THREAT ASSESSMENT

drowsy behaviors respectively, and c ∈ [LC,GS, TL, TR] for a lane change, going straight,

turning left and right respectively. Each entry of ith row and jth column of ΠBc defines the

probability of input changing from un = i to un+1 = j in the next time step.

Some examples of the longitudinal acceleration input transition matrices for lane change and

going straight are shown in Figure 3.6, 3.7 and 3.8.

Figure 3.6: Longitudinal acceleration transition probabilities of a normal driver behavior
straight driving

It can be seen from these figures that how different driver behavior types have specific driving

characteristics. Figure 3.6 shows that normal driver behaviors exhibit only a small range

of longitudinal accelerations. In drowsy and aggressive driver behaviors, we can observe

from Figure 3.7 and 3.8 that these driver behaviors exhibit higher ranges of longitudinal

accelerations.
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Figure 3.7: Longitudinal acceleration transition probabilities of an Aggressive driver behavior
straight driving

Figure 3.8: Longitudinal acceleration transition probabilities of drowsy driver behavior
straight driving
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3.4.3 Driver behavior-based stochastic reachable sets

After the state space discretization and offline computation of the transition probability

matrices for states and inputs, the detected vehicle’s SR sets can be computed online using

the current sensor measurements and the dominant driver behavior corresponding to the

maximum OTR value. These are called the driver behavior-based stochastic reachable sets.

As stated before, Eqn. 3.10 assumes a known sequence of driver inputs for N time steps.

This is not true as the driver inputs are stochastic and unknown. To incorporate driver

behavior inputs in the SR set computation, the acceleration input transition probability

matrices are incorporated in equation 3.10. This is done using the offline computation of 65

state transition matrices T un
ij for each possible acceleration input range, with each of them

having a size of D×D. All these state transition probability matrices are stored in a sparse

matrix as follows:

Tij =



T u1
ij 0 0 · · · · · · 0

0 T u2
ij 0

0 T u3
ij

...
... . . . ...

0 · · · 0 0 T u65
ij


(3.14)

where each T un
ij is a D×D state transition probability matrix for each of the 65 input cells.

Size of the above matrix Tij is 65D × 65D. The input transition probability matrix ΠBc is

also written in the time dependent sparse matrix form Π̃(k) as follows:
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Π̃(k) =



ΠBc 0 0 · · · · · · 0

0 ΠBc 0

0 ΠBc

...
... . . . ...

0 · · · 0 0 ΠBc


(3.15)

where each ΠBc is a 65× 65 input transition probability matrix for each of the 65 input cells

corresponding to predicted driver behavior and intention c at time k. Size of Π̃(k) is also

65D × 65D. The eqn.3.11 representing probability distribution of the discrete states also

has to be re-written in accordance with the input probability distribution. Let the input

probability distribution at time k be represented by vector pu(k):

pu(k) = [pu1(k) pu2(k) .... pu65(k)]
T (3.16)

where each entry in pu(k) is the probability distribution of driver inputs divided into 65

segments. pu(k) also addresses the initial sensor measurement uncertainty for the inputs.

The p(k) from Eqn. 3.10, can be redefined in terms of pu(k) as follows:

p̄(k) = [p1(k)p
u
1(k), p1(k)p

u
2(k) .... p1(k)p

u
65(k)

p2(k)p
u
1(k) p2(k)p

u
2(k) ...p2(k)p

u
65(k) p3(k)p

u
1(k) ....

pD(k)p
u
65(k)]

T (3.17)

where the values are taken from vector pu(k) and p(k). Size of the new probability vector

p̄(k) is 65D × 1 which makes its dimension compatible for the computation of the future
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SR sets using the multiplication of the Tij and Π̃(k). Equation 3.10 for computation of the

future SR sets can be rewritten as:

p̄(k + 1) = Π̃(k)Tij p̄(k) (3.18)

where Tij and Π̃(k) are taken from equation3.14 and 3.15 respectively. The above equation

3.18 is used for the computation of probability distributions of the longitudinal position

of the detected vehicle. Once the N probability vectors [p̄(k) p̄(k + 1) ... p̄(k + N)] have

been computed, they can be converted into the D × 1 probability vector p(k) by adding all

probability values for a certain discrete state as shown:

pn(k) =

65n∑
65(n−1)+1

p̄i(k) (3.19)

for the nth entry of probability vector p(k) where k can be any time instant. Then using eqn.

3.12, final probability distribution along the longitudinal position can be computed and are

stored in p̃(k). The lane deviation probability distributions c(δ) computed from eqn.3.13 are

used to describe the probability distributions in the lateral direction. These are stored in

the 8× 1 vector L(k):

L(k) = [c1(δ) c2(δ) ... c8(δ)] (3.20)

where c1(δ), c2(δ)...c8() are the entries of c(δ) from eqn.3.13. L(k) will keep changing dy-

namically over each time step according to eqn.3.13. Using both longitudinal and lateral

probability distributions, rectangular random sets are computed to represent driver behav-

ior based stochastic reachable sets.
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For fast computation, low values of probability that lie under a threshold pth in longitudinal

and lateral probability distributions are taken as zero. The random matrix is computed

using the following matrix computation:

PSR(k + i) =



p̃1(k + i)L1(k + i) · · · p̃1(k + i)L8(k + i)

p̃2(k + i)L1(k + i) · · · p̃2(k + i)L8(k + i)

...
...

...
...

p̃b(k + i)L1(k + i) · · · p̃b(k + i)L8(k + i)


(3.21)

where PSR(k + i) is the ith random matrix associated with the ith SR set in the future and

b is the total number of divisions in the longitudinal position. For a prediction horizon N , i

will be in [0, N ]. SR(k+ i) has b rows and 8 columns. The row and column entries represent

the longitudinal and lateral probability distribution, respectively, for the cell divisions made

along with the longitudinal and lateral positions. The probability values below threshold pth

will be taken as zero. The SR set at the time of detection k can simply be calculated with

sensor measurements represented through p(k) and cumulative lane deviation distribution

L(k).

The finally obtained PSR(k + i) can be represented by a rectangular covering function [60]

representing the probabilities of each cell of the SR set. This can be done using the following

equation:

SR(k + i) = f(x, y) (3.22)

= Pr[(x, y) ∈ d] (3.23)
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where d is a certain discrete state or cell and Pr[(x, y) ∈ d] is extracted from equation 3.21.

An example of a rectangular covering function for the behavior-based SR set is illustrated

in Figure 3.9.

Figure 3.9: SR(k) represented by a rectangular covering function, where each cell has a
probability value

The only difference will be during the SR sets’ computation during the lane change, where

the center will be shifted according to driver behaviors, as shown in Figure.

The ego vehicle computes N future SR sets of the detected vehicle for a fixed prediction

horizon N for N time steps. This gives a better risk estimation to the ego vehicle about the

surrounding vehicle at each time step.

Method for computation of the SR sets is shown in Algorithm 1.

3.5 Threat Assessment using probability of collision

The SR sets computed act as an unsafe set of positions that have to be avoided by the ego

vehicle. The ego vehicle’s safety can be guaranteed for a prediction horizon N , if its pre-
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Algorithm 1 Future SR sets computation
Input: pu(k); sensor measurements at time k
Output: [SR(k+1), SR(k+2), · · ·SR(k + i)]
Data: ΠBc and Tij matrices computed offline

1: while i < N do
2: Predict dominant driver behavior B and intention c at time k + i
3: Compute Π̃(k + i) using Eq. 3.15
4: Compute p̄(k + i) using Eqn. 3.18
5: Apply Eq. 3.19 to p̄(k + i)
6: Compute lateral pdf L(k + i) according to the Eqn. 3.13
7: Compute PSR(k + i) using Eqn. 3.21 and replace entries lower than pth with 0
8: Extract the lowest dimension matrix with positive values
9: Compute the probability distribution of the SR set using equation 3.23 and get the

rectangular covering function.
10: i←− i+1
11: end while

planned trajectory for that time horizon does not belong to the computed behavior-based

SR sets. The computation of N behavior-based SR sets at any time k can be used to assess

current threat and threat for a few seconds ahead to the ego vehicle. In this study, the

probability of crash is used as a measure of threat. Two types of threats are formulated at

time k, i.e., current threat and the short-term prediction threat to the ego vehicle.

3.5.1 Current Threat

Current Threat (CT) or instantaneous threat is defined as the probability of collision with

the surrounding vehicle at the time of detection k. The SR set SR(k) computed at time k

is used to compute the probability of collision of ego vehicle with the detected vehicle. Let

[(xe
1, y

e
1), (x

e
2, y

e
2), ..., (x

e
N , y

e
N)] be a pre-planned path of the centre of the ego vehicle for a

prediction horizon N . The ego vehicle dimensions are taken as Lego and Wego. The current

threat to the ego vehicle at time k from the detected vehicle can be computed using the sum

of probability cells that intersect with the ego vehicle’s body at time k. This is illustrated
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Figure 3.10: a.) Zero Current Threat for a detected oncoming normal driver at time k. b.)
Positive Current Threat of 0.1757 for a detected drowsy driver at time k.

Algorithm 2 Current Threat computation
Input: pu(k); (xe

1, y
e
1); sensor measurements at time k;

Output: Current Collision Probability
1: Compute SR(k) using the sensor measurements and L(k) using Eq. 3.20
2: Determine intersecting cells of SR(k) with the vehicle body around (xe

1, y
e
1)

3: Add the probabilities of the intersecting cells in SR(k)

in Figure 3.10 .

CT (k) = p1(k) + p2(k) + · · ·+ pi(k) (3.24)

where p1(k), p2(k), · · · pi(k) are the probabilities of the intersecting cells with the ego vehicle’s

body at time k.

3.5.2 Short term prediction threat

Short Term Prediction Threat (STPT) is defined as the sum average of positive weighted

probabilities of collision with the surrounding vehicle at the time of detection k. These are

calculated for the future behavior-based SR sets [SR(k+1), SR(k+2), · · ·SR(k+N)], where

N is the prediction horizon. In simple terms, STPT is the sum average of perceived future

positive weighted CT values at each future time. The sum of weighted probabilities is taken

because the prediction made more into the future would be less trusted than predictions for

just after detection. A discount factor γ is used to weight each consecutive probability of

collision to compute STPT as shown:
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STPT (k) =
CT (k) + γCT (k + 1) + · · · (γ)NCT (k +N)

Number of positive entries in each CT (3.25)

A positive value of STPT can help in proactive decision-making for the ego vehicle.

There are other alternate measures possible for the evaluation of the probability of crash using

the computed Stochastic Reachable sets. One measure could be taking the maximum of the

computed Current Threat for a finite time horizon. This can give a better quantification of

how dangerous a particular situations is at a given time.

Our STPT approach, differs in a way that the threat is detected at any time STPT goes

slightly positive (i.e. no lower threshold used). It just includes an average measure for

probability of crash. The magnitude of our proposed STPT, does not exactly reflect how

dangerous a certain situation is. Instead, the location of the SR sets will tell how dangerous

a situation is and does the autonomous vehicle needs to take an aggressive control action or

not.

3.6 Summary

This chapter introduced a novel trust-based driver behavior prediction methodology using

the Hidden Markov Models. These HMM models are trained for four features. A novel trust-

based driver behavior prediction method is formulated, which combines trust values from all

sensor measurements for a reliable motion prediction model. This chapter also introduced

a stochastic reachable set-based threat assessment approach that uses the trust level of the

predicted driver behavior and intention estimation to evaluate threats around the ego vehicle.

Moreover, a continuous threat measure - Short-Term Prediction Threat is proposed, which

continuously assesses the threat with weighted probabilities at each time step. As most of
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the intensive computations are done offline, it makes the proposed methodology practical

for real-time implementation.



Chapter 4

Crash Avoidance using Stochastic

Model Predictive Control

4.1 Introduction

This chapter covers the details of the proposed SMPC algorithm for crash avoidance decision-

making in autonomous vehicles. Stochastic Model Predictive Control (SMPC) has recently

shown immense potential for systems operating in uncertain environments like autonomous

vehicles [10, 51]. It allows exploiting the receding horizon control framework with uncertainty

formulation using probabilistic or chance-constraints. In the case of autonomous vehicles,

SMPC ensures that the probability of crash always stays below a minimum threshold pre-

defined risk parameter. This is done by having an upper bound on the probability of crash

with the other vehicle.

The contributions of the proposed SMPC algorithm are as follows:

1. Chance constraints are converted into deterministic constraints using the safe allowable

state space’s convex hull formulation. This results in a fast real-time implementation.

2. Relationship between controller conservativeness and minimum threshold risk param-

eter is discussed.

49
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This chapter includes ego vehicle dynamic modeling, computation of chance constraints

from SR sets of the surrounding vehicle, deterministic formulation of chance constraints,

and control design for crash avoidance decision-making.

4.2 Ego Vehicle Dynamic Modelling

4.2.1 Dynamic Bicycle Model

For the controller design, a dynamic bicycle model adapted from [45] is used to model the

dynamics of the ego vehicle. A 2 degree of freedom bicycle model is considered as shown in

4.2. The lateral, longitudinal and yaw dynamics for the ego vehicle are given by the following

equations:

m(v̇x − vyθ̇) = FxT (4.1)

m(v̇y + vxθ̇) = Fyf + Fyr (4.2)

Iz θ̈ = Fyf lf − Fyrlr (4.3)

Ego Vehicle’s motion in global coordinates can be described using the following equations of

motion:

Ẋ = vxcosθ − vysinθ (4.4)

Ẏ = vxsinθ + vycosθ (4.5)
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Figure 4.1: Ego Vehicle Bicycle Model

where X, Y are the ego vehicle’s longitudinal and lateral positions in the global coordinates;

vx, vy are the vehicle’s longitudinal and lateral velocity; θ is the heading angle of the vehicle;

θ̇ is the yaw rate at the center of gravity of the vehicle; m is the mass of the vehicle; Iz is

the moment of inertia of the vehicle about the vertical axis. FxT is the longitudinal force on

the tires; Fyf and Fyr are the lateral force on the front and rear tires, respectively.

A linear tire model is used as developed in [61] to model the tire friction:

Fyf = −Cαfαf = Cαf

(
δ − v + lf θ̇

vx

)
(4.6)

Fyr = −Cαrαr = Cαr

(
− v − lrθ̇

vx

)
(4.7)

Where f and αr are the side slip angles for the front and rear tires; δ is the steering angle;

Cαf
and Cαr are the cornering stiffness for the front and the rear tires respectively.
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4.2.2 Linear Parameter Varying (LPV) Model
For the SMPC design, the above dynamic bicycle model is linearized around the current

longitudinal velocity vx to obtain an LPV model of the ego vehicle. In state space form, the

dynamics can be written as:

ẋego = Axego +Bu (4.8)

yego = Cxego +Du (4.9)

where, xego = [X vx Y vy θ θ̇]
T , u = [FxT δ]T ,

A =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 −Cαf+Cαr

mvx
0

lrCαr−lfCαf

mvx
− vx

0 0 0 0 0 1

0 0 0
lrCαr−lfCαf

Izvx
0 − lf

2Cαf+lr
2Cαf

Izvx


; B =

0 1
m

0 0 0 0

0 0 0
Cαf

m
0

lfCαf

Iz



This model is valid under two assumptions. Firstly, a small cornering angle is assumed.

Lateral velocity vy is also assumed to be small and the term yθ̇ is neglected in equation 4.1.

These assumptions are valid as in the high-speed motorway scenarios, lateral and cornering

angles will be small.

This continuous state-space model is discretized using the forward-Euler method to be used

for a discrete controller design. This discrete dynamic model can be represented by:

xego
k+1 = Āxego

k + B̄uk (4.10)

xego
k+1 = f(xego

k , uk) (4.11)
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where Ā and B̄ are the discretized state space matrices for some velocity vx at time k.

4.3 Evaluation of chance-based safety constraints

The ego vehicle uses the SR sets of the surrounding vehicle to infer its possible future

movements. A positive measure of STPT will imply that there is an immediate risk to the

ego vehicle, and action must be taken at that time to avoid a crash. This is called proactive

decision-making in autonomous vehicles. It exploits the intent of the surrounding human-

driven vehicles to assess future threat instead of reactive decision-making [11] which does

not account for the future behavior of the surrounding vehicles.

For the SMPC formulation, the probabilistic chance constraints have to be defined. In our

case, the chance-constraints are defined using the STPT information at each time instant k

as follows:

STPT (k) ≤ pth (4.12)

where pth is the tunable predefined risk parameter. The safety constraint above for crash

avoidance has to be satisfied with a minimum probability of pth. This probabilistic constraint

ensures crash avoidance for a prediction horizon N with atleast (1− pth) probability. From

equation 3.25, it could be further written as:

Pr[xego
k ∈ SR(k)] + Pr[xego

k+1 ∈ SR(k + 1)] + · · ·+ Pr[xego
k+N ∈ SR(k +N)]

Number of Positive Probabilities ≤ pth (4.13)

where xego
k is the ego vehicle state at time k. The chance constraint in equation 4.13, can
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be simplified using a SR set union representation for a finite prediction horizon N . Let the

combined set of N SR sets at time k be represented by Kunsafe
k , where Kunsafe

k is the union

of N predicted SR sets.

Kunsafe
k = SR(k) ∪ SR(k + 1) ∪ · · · ∪ SR(k +N) (4.14)

Each SR(k) is represented by respective rectangular covering functions, containing each cell’s

location and probability value. The union of all the SR sets can be viewed as the locations

or cells that have to be avoided by the ego vehicle. Kunsafe
k is the time-varying probabilistic

unsafe set which has to be avoided by the ego vehicle at each time instant k. This unsafe set

Kunsafe
k will get updated at each instant using the algorithm 1. Using the information from

equation 4.14.The updated chance constraints for prediction horizon N can be approximately

written as follows:

Pr(xego
k,k+N ∈ Kunsafe

k ) ≤ pth (4.15)

where xego
k,k+N is the state of the ego vehicle at time from time k to k +N , KKunsafe

k ) is the

union of the N unsafe SR sets at time k; pth is the tunable predefined risk parameter.These

safety constraints for crash avoidance have to be satisfied with a minimum probability of

pth.

4.4 Deterministic Formulation for chance constraints
For fast real-time implementation, it is necessary to get a tractable and deterministic rep-

resentation of the chance constraints from equation 4.15. This can be computationally

expensive in our case as the probability distributions are non-Gaussian [62].
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A deterministic and hard constraint reformulation method is presented for the chance con-

straints in equation 4.15. The area outside the Kunsafe
k can be considered the safe area for the

ego vehicle’s path planning. Moreover, to avoid collisions with the vehicles in other lanes,

the area outside Kunsafe
k and inside the ego vehicle’s lane can be considered as the safe area.

Let this safe area be represented by:

Ksafe
k = (Kunsafe

k )
′ (4.16)

where (Kunsafe
k )

′ represents the area outside (Kunsafe
k ) and inside the the current lane of the

ego vehicle. This allows to re-formulate the chance constraints as hard constraints as follows:

xego
k,k+N ∈ Ksafe

k (4.17)

This hard constraint ensures the safety of the vehicle with at least pth probability and

can be handled in a general optimization framework of Model Predictive Control (MPC)

formulation.

4.4.1 Convexification of the deterministic constraint

Just specifying a hard deterministic formulation for the chance-constraints is not sufficient for

a fast SMPC real-time implementation. The hard constraint formulation can be converted

to convex constraints. This will lead to fast real-time implementation, as the optimization

framework for the MPC gets converted to a quadratic programming framework. Convexi-

fication of deterministic constraints is done by representing the safe set Ksafe
k in terms of a

convex hull. The main idea is that a convex hull can be represented using linear inequality
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constraints of the form [63]:

Ax ≤ b (4.18)

Where A is a matrix, x ∈ R2 is the vector of points in the 2-D plane.

Generally, Ksafe
k is a non-convex area, and it is not easy to represent it using one convex hull.

To overcome this, the area Ksafe
k can be considered as consisting of many successive convex

hull regions. The closest safe convex hull enclosing the ego vehicle is computed to avoid

crash with the other vehicle. The MPC can use this closest safe convex hull information at

time k to guide and steer the ego-vehicle towards that safe region. Algorithm 3 provides the

details of how the closest safe convex hull is computed inside the safe set Ksafe
k :

Figure 4.2: Algorithm 3 implementation for the oncoming vehicle

The detail of this procedure is shown in the Figure for two cases: an oncoming vehicle and

a cut-in scenario. The safe area Ksafe
k can be considered as consisting of many convex hulls.

The closest safe convex hull inside the Ksafe
k at time k is represented as Csafe

k as shown in

the Figure . From algorithm 3, linear inequality constraints are obtained for the safe convex

hull. Asafe
k and bsafe

k computed from algorithm 3 are used in the MPC controller design as
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Algorithm 3 Computation of linear inequality constraints for the closest safe convex hull
Input: [SR(k), SR(k+1), · · · , SR(k +N)], [x(k), y(k)]
Output: Asafe

k , bsafe
k

1: Compute the convex hull of Kunsafe
k . Let this convex hull be denoted by Cunsafe

k . Store
the vertices of this convex hull in variable vertices.

2: if the vehicle detected on the left lane of the ego vehicle then
3: vertices = Points having lateral coordinate magnitude bigger than the rear left corner

coordinate of the ego vehicle safety region.
4: vertexClose = min(vertices(1) - x(k))
5: if x(k)< x coordinate of vertexClose then
6: mClose = slope of the line from the rear left corner of the safety region and the

vertexClose
7: Find the lateral coordinate on this line in the sensor range (150m) and store in

coord3
8: Using mClose and rear right corner of the safety region, find lateral coordinate in

the sensor range (150)m store in coord4
9: else

10: coord3 = coordinate with same lateral coordinate as rear left corner of the safety
region; longitudinal coordinate as the sensor range (150m)

11: coord4 = coordinate with same lateral coordinate as rear right corner of the safety
region; longitudinal coordinate as the sensor range (150m)

12: end if
13: else
14: Same computations using right rear corner of the safety region to compute coord3

and coord4 in the sensor range 150m.
15: end if
16: Store the coordinates coord3, coord4, rear left and right corners of safety region in the

variable ConvHull
17: Convert the vertex representation of ConvHull into the linear inequality representation

using equation 4.18



58 CHAPTER 4. CRASH AVOIDANCE USING STOCHASTIC MODEL PREDICTIVE CONTROL

follows:

Asafe
k xego

k ≤ bsafe
k (4.19)

Where Asafe
k and bk are associated with the closest safe convex hull for the ego vehicle.

4.5 Control Design for Crash Avoidance decision-making

The linear inequality constraints computed using the convexification of the chance-constraints,

can be used to formulate a tractable and deterministic version of the SMPC problem. The

MPC optimization problem is formulated as:

min J = min
U

N−1∑
k=1

(∥∥xego
k − xego

k,ref

∥∥2
Q + ∥uego

k ∥
2

R

)
+
(
∥xego

N ∥
2
S

)
(4.20a)

s.t. xego
k+1 = f(xego

k , uk), k ∈ N (4.20b)

SR(k + i) = g(SR(k + i− 1)), i ∈ [1, N ], k ∈ [1, N ] (4.20c)

uk ∈ Uk, k = 1, 2, · · · , N − 1 (4.20d)

xego
k ∈ Xk, k = 1, 2, · · · , N (4.20e)

Asafe
k xego

k ≤ bsafe
k (4.20f)

where, N is the prediction horizon; U = [u0, u1, · · ·uN−1]
T ; and ∥w∥2W = wTWw; and xego

k,ref

is the reference state vector for the ego vehicle; Q,S ∈ R6×6 are the state-weighting matrices

and R ∈ R2×2 is the input weighting matrix; SR prediction model denoted by equation

4.20c; the state and input constraints are represented by Uk and Xk given in equation 4.20d
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and 4.20e. The tractable and deterministic formulation for chance-constraints is given in

equation 4.20f which leads to a fast-SMPC implementation.

4.6 Summary

This chapter presented the proposed proactive decision-making approach using Stochastic

Model Predictive Control (SMPC). The information from SR sets of the surrounding vehicle

allowed to formulate a chance-constrained problem for the crash avoidance. The chance-

constrained framework was reformulated in terms of deterministic convex hull constraints.

A safe area is computed at each time instant using the probabilistic reachable sets of the

surrounding vehicle and the predefined risk parameter. This safe area is further formulated

using convex hull representation, which allows it to be represented using linear inequality

constraints. This converts the SMPC formulation into a simple MPC problem. The under-

lying constraints are still probabilistic depending on the risk factor chosen for the SMPC

controller. It is expected that the proposed framework will have a fast real-time implemen-

tation due to deterministic MPC reformulation for the SMPC. The next chapter covers the

evaluation and validation for the proposed threat assessment and motion prediction method-

ologies.



Chapter 5

Simulation Results and Discussion

5.1 Overall Flowchart for Threat Assessment and Decision-

Making Algorithm

Figure 5.1: Flowchart for the working of the proposed threat assessment and decision-making
algorithm

60
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Figure 5.1, provides the overall flowchart for the proposed threat assessment and decision-

making algorithm for crash avoidance in autonomous vehicles. The offline computations

are done for Trust weights for each sensor, transition and emission probability matrices for

HMM. The online implementation continuously computes the STPT value. The decision-

making algorithm is implemented whenever STPT value is positive and keeps generating

the trajectory until the STPT value reduces to zero. The MATLAB code for the proposed

threat assessment and decision-making is available at our Github. 1.

The online threat assessment algorithm is validated and tested using the Driver 6 data from

the UAH-Drive dataset. The overall decision-making algorithm using SMPC is also tested

on simulations using time-series data of the driver 6 of the UAH-Drive dataset for different

driver behaviors. The detailed explanations for the simulation setups are provided in the

following sections.

5.2 Validation for Threat Assessment approach

A simulation study is conducted to evaluate and validate the proposed threat assessment

method for autonomous vehicles. The time-series data from driver 6 of the UAH-drive

dataset is used to conduct the simulation study. The videos provided in the dataset are

used to extract the time stamps for the vehicle’s different intentions, like a lane change,

turning, and going straight. Current Threat and Short Term prediction threat are computed

for a pre-planned trajectory of the ego vehicle in three different road scenarios: Oncoming

vehicle, cut-in scenario, and a left-turning vehicle at the intersection. For threat assessment

computation, a safety margin (∆) around the vehicle is considered, whose dimensions are

shown in Table 5.2. Continuous Reachability Analysis Toolbox(CORA)[64] is used for com-

1https://github.com/vanshajkhattar/ThreatAssessmentDecisionMaking
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Table 5.1: Parameters for the offline computation

Parameters Value
Velocity Segments(a) 13
Velocity Range [16, 42]m/s

Longitudinal Position
segments(b)

50

Longitudinal Position
range

[0,150]m

Total Discrete
states(D)

650

Surrounding vehicle
vsw

7.2m/s

One time step(τ) 0.1 sec

Table 5.2: Parameters for the simulation of the ego vehicle

Parameters Value
Length(L) 5m

Width(W) 2m

Safety Margin (∆) 0.3m

Prediction Horizon
(N)

1 sec

γ for STPT 0.7

puting the intersection of the vehicle’s safety regions with the computed behavior-based SR

sets. The intersecting cells of the vehicle’s safety region and the SR sets are used for threat

assessment computation using Algorithm 2 and 1. Following parameters are used for the

ego vehicle and offline computation of the transition probability matrices of the surrounding

vehicle as shown in Table 5.1 and Table 5.2.

Evaluation of the proposed threat assessment method is done using 3 metrics: 1.) Driver

behavior prediction accuracy; 2.) Intention estimation accuracy; 3.) Percentage of false

positives and false negatives
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Figure 5.2: An oncoming vehicle with normal driver behavior going straight. The prediction
time horizon is shown as 4 time steps in this simulation

5.2.1 Oncoming Vehicle

An oncoming vehicle from the adjacent lane is considered. This vehicle ideally should go

straight. Two scenarios are considered where this vehicle will either go straight or illegally

make a maneuver onto the ego vehicle’s lane. Data points from driver 6 of the UAH-Drive

dataset are used for going straight and lane change intentions. 20 simulations are conducted

for different driver behaviors and intentions emulated by driver 6. Evaluation of the proposed

threat assessment is done for the ego vehicle based on the 3 metrics given above.

At each time instant k, the ego vehicle has the following information: 1.)OTR values for

driver behavior; 2.) Intention estimation I; 3.) Dynamic probability distribution for lane

change L(k) 4.) CT (k) and STPT (k). Figure 5.2 and figure 5.3 shows two cases of the

oncoming vehicle going straight and a second case of making an illegal maneuver onto the

ego vehicle’s lane.

20 time-series data are taken for each vehicle going straight and vehicle changing lane in

front of the ego vehicle. A positive value of STPT implies that there is a positive probability
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Figure 5.3: An oncoming vehicle with drowsy driver behavior coming into the lane of the
ego vehicle. The prediction time horizon is shown as 4 time steps in this simulation

of crash. If the ego vehicle’s safety region for the pre-planned path intersects with the time-

series data of the surrounding vehicle at any time, it is assumed the crash will happen. In

this case, the ideal situation is that there should be a positive value of STPT. Conversely,

suppose there is no intersection between the ego vehicle’s safety region for the pre-planned

path and the time-series data for the surrounding vehicle. In that case, the STPT value

should always be zero. False positives are when the STPT value is positive even though no

crash is about to happen. False negatives are when the STPT value is zero even though the

crash is about to happen. Both false positives and false negatives should be low for a reliable

threat assessment methodology.

For the oncoming vehicle simulations, the average STPT value in an oncoming vehicle sce-

nario for no crash or vehicle going straight was 0.07. The average STPT value in an oncoming

vehicle for near-crash or crash situations is 0.78. These results imply that the proposed threat

assessment methodology is successful in detecting safe and hazardous situations.
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5.2.2 Cut-in Scenario

A cut-in scenario is considered where a vehicle from an adjacent lane going in the same

direction changes the lane and cuts-in lane of ego vehicle going straight. Two scenarios

are considered where the surrounding vehicle goes straight or cuts-into the lane of the ego

vehicle.

For the cut-in vehicle simulations, the average STPT value in a cut-in scenario for no crash or

vehicle going straight was 0.05. The average STPT value in a vehicle for near-crash or crash

situations is 0.81. These results imply that the proposed threat assessment methodology is

successful in detecting safe and hazardous situations.

Figure 5.4: A surrounding vehicle with a drowsy driver behavior cuts in to the lane of the
ego vehicle. The prediction time horizon is taken as 4 time steps

5.2.3 Intersection Scenario

An intersection scenario is considered where a surrounding vehicle can either go left, right,

or straight.

For the intersection scenario simulations, the average STPT value in a cut-in scenario for
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no crash or vehicle going straight was 0.10. The average STPT value in a vehicle for near-

crash or crash situations is 0.65. These results imply that the proposed threat assessment

methodology is successful in detecting safe and hazardous situations.

5.2.4 Evaluation

Table 5.3 shows how our proposed algorithm performs in three different road scenarios:

oncoming vehicle, cut-in scenario, and intersection scenario where a vehicle can go straight

left or right.

Driver behavior prediction accuracy is determined using the ground truth from driver 6

of the UAH-Drive dataset and our algorithm’s predicted dominant driver behavior. The

driver behavior gives dominant driver behavior with maximum Online Trust Ratio. Intention

estimation accuracy is also computed using the ground truths from driver 6. False positives

mean the instances at which there was no crash situation, but a positive value of STPT was

computed at different time steps. Ideally, the STPT value should be closer to zero in case

of no crash scenario. False negatives are the instances where a positive threat value was not

reported in a crash/near-crash scenario. Ideally, STPT values should be high in case of a

crash/near-crash scenario. The results are summarised in Table 5.3.

5.3 Simulation results for SMPC framework

The SMPC framework presented in chapter 4 will be tested for various road scenarios on the

simulations. This method has been implemented in MATLAB using the Model Predictive

Control toolbox. In this section, the simulation setup is discussed, and then three road

scenarios are simulated for different initial conditions. This section aims to study the effec-
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Table 5.3: Evaluation metrics for proposed threat assessment method on Driver-6 from
UAH-Drive dataset

Oncoming
Vehicle

Cut-in
Scenario

Intersection
Scenario

Behavior Pre-
diction Accu-
racy(%)

96% 95% 83%

Intention Esti-
mation Accu-
racy(%)

89% 82% 76%

False Posi-
tives(%)

7% 9% 15%

False Nega-
tives(%)

3% 5% 11%

Average Com-
putation
time(ms)

32.5 41.3 35.6

tiveness of the proposed decision-making algorithm. Moreover, the effects of three different

initial conditions will be studied: variation in the risk factor pth; variations in the relative

distance at the time of detected threat ∆D; variations in the relative velocity at the time of

detected threat ∆V .

5.3.1 Simulation Setup

The ego vehicle’s dynamic model from equation 4.10 is used. The dimensions and parameters

for the ego vehicle are taken from the table 5.2.

The ego vehicle will have the following input constraints Uk during its operation:
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δ ∈
[−π

6
,
π

6

]
(5.1)

∆δ ∈
[−π
45

,
π

45

]
(5.2)

FxT ∈

[
0,

Tmax

Reff

]
(5.3)

and the following state constraints Xk:

Y ∈ [−2, 2]m (5.4)

vx ∈ [0, 42]ms−1 (5.5)

θ ∈
[−π

3
,
π

3

]
(5.6)

The sampling time Ts is taken to be two seconds for the discretization. The prediction

horizon for the SMPC is taken to be N = 1 second, which is equal to five time-steps; State

weighting matrix Q is taken as diag(0.1,0,10,0,0,0); and the input weighting matrix R is

taken as diag(0.1,0.1). Algorithm 3 is used to find the successive convex hull computations.

The control horizon is taken as 0.2 seconds, i.e., one time step.

5.3.2 Variations in the risk factor pth

Performance and safety of the proposed SMPC framework is studied for different risk factors

pth. Three ranges of risk factors are considered: low (pth = 0.05); medium (pth = 0.10); high

pth = 0.15. These variations will be considered for three road scenarios: Oncoming vehicle,

cut-in scenario and the left turning vehicle at an intersection. The time-series data for the
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surrounding vehicle is taken from the driver 6 data of the driver behavior dataset.

Oncoming Vehicle

A scenario is considered where an oncoming vehicle from an opposite lane turns into the

ego vehicle lane. Driver 6 aggressive waypoints for a lane change are considered. The initial

relative distance from the oncoming surrounding vehicle when the threat was detected is

taken to be 80m. The initial velocity of the ego vehicle and the surrounding vehicle is taken

to be 25m/s. The following figures show the simulation results for this scenario.

Figure 5.5 shows three cases of an oncoming vehicle (blue) coming onto the ego vehicle lane.

We can see that different values of risk factors affect the performance of the controller. Figure

5.25a shows that low value of pth led to conservative control actions and the ego vehicle went

far into the adjacent lane to avoid a crash. This conservative behavior can be dangerous on

the road, as the ego vehicle can crash with the other vehicle on the adjacent lane. Figure

5.25b shows an effective response to an oncoming vehicle where the evasive maneuver is not

too conservative while not going too much inside the adjacent lane. Figure 5.5 shows that

having a high value of pth can lead to a crash. This is due to the small SR sets because of the

high pth, which misses much information of the likely achievable states for the surrounding

vehicle.

From Figure 5.6 and Figure 5.7, it is evident that a lower value of risk factor pth leads to more

aggressive control actions. The maximum and minimum steering angle values for pth = 0.05

are atleast two times more than medium and higher pth.

Cut-In Scenario

A cut-in scenario is considered where a vehicle from the adjacent lane drives into the ego

vehicle lane. Driver 6 aggressive waypoints for a lane change are considered. The initial
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(b) Risk Factor pth = 0.10 (medium)
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(c) Risk Factor pth = 0.15 (high)

Figure 5.5: Visualization of the evasive maneuver by the ego vehicle (red) when the sur-
rounding vehicle (blue) comes onto the lane of the ego vehicle. All vehicles are plotted at
an interval of 0.6 seconds for a total time interval of 3 seconds. The ego vehicle starts from
left at (0, 0) and the surrounding vehicle starts from the right at relative distance of 80m
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(a) Steering angle input for the ego vehicle to gen-
erate an evasive maneuver for low pth = 0.05
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(b) Steering angle input for the ego vehicle to gen-
erate an evasive maneuver for medium pth = 0.10
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(c) Steering angle input for the ego vehicle to gen-
erate an evasive maneuver for high pth = 0.15

Figure 5.6: Ego vehicle’s steering angle for crash avoidance with the oncoming vehicle for
three different risk factors
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(a) Throttle input for the ego vehicle to generate
an evasive maneuver for low pth = 0.05
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(b) Throttle input for the ego vehicle to generate
an evasive maneuver for medium pth = 0.10
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(c) Throttle input for the ego vehicle to generate
an evasive maneuver for high pth = 0.15

Figure 5.7: Ego vehicle’s throttle input for crash avoidance with the oncoming vehicle for
different risk factors.
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relative distance between both vehicles when the threat was detected is taken as 10m. The

initial velocity of the ego vehicle and the surrounding vehicle is taken to be 25m/s. The

following figures show the simulation results for this scenario.

Figure 5.8 shows three cases of a cut-in scenario where the surrounding vehicle (blue) cuts

into the lane of the ego vehicle. We can see that different values of risk factors affect the

performance of the controller. These results are quite similar to the results in an oncoming

vehicle. Figure 5.8a shows that low value of pth led to conservative control actions and the

ego vehicle went far into the adjacent lane to avoid a crash. This conservative behavior

can be dangerous on the road, as the ego vehicle can crash with the other vehicle on the

adjacent lane. Figure 5.8b shows an effective response to the cut-in vehicle where the evasive

maneuver is not too conservative while not going too much inside the adjacent lane. Figure

5.8c shows that having a high value of risk factor pth almost led to the crash at the time

1.8 seconds. This is due to the small SR sets from high pth, which tends to miss much

information of the likely achievable states for the surrounding vehicle.

In the first two cases, the ego vehicle was able to continuously generate safe convex hulls

using algorithm 3 for the crash avoidance.

From Figure 5.9 and 5.10, it is evident that a lower value of risk factor pth leads to more ag-

gressive control actions. Significant effect can be observed from the steering angle differences

for varying risk factors.

Left turn at the intersection

An intersection scenario is considered where a surrounding vehicle from the other side is

turning left even though the ego vehicle has the right to go straight. Driver 6 aggressive

waypoints for a left turn are considered. The initial relative longitudinal distance between



74 CHAPTER 5. SIMULATION RESULTS AND DISCUSSION

0 20 40 60 80 100 120 140

x(m)

-6

-4

-2

0

2

4

6

y
(
m

)

(a) Risk Factor pth = 0.05 (low)
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(b) Risk Factor pth = 0.10 (medium)
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(c) Risk Factor pth = 0.15 (high)

Figure 5.8: Visualization of the evasive maneuver by the ego vehicle (red) when the sur-
rounding vehicle (blue) cuts into the lane of the ego vehicle. All vehicles are plotted at an
interval of 0.6 seconds for a time interval of 3 seconds. The ego vehicle starts from left at
(0, 0) and the surrounding vehicle also starts from the right at a relative distance of 10m
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(a) Steering angle input for the Risk Factor pth =
0.05 (low)
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(b) Steering angle for the Risk Factor pth = 0.10
(medium)
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(c) Steering angle for the Risk Factor pth = 0.15
(high)

Figure 5.9: Ego vehicle’s steering angle for avoiding crash with the cutting in vehicle at
different risk factors.
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(a) Throttle input for the risk Factor pth = 0.05
(low)
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(b) Throttle input for the risk Factor pth = 0.1
(medium)
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(c) Throttle input for the risk Factor pth = 0.15
(high)

Figure 5.10: Ego vehicle’s acceleration and steering angle for crash avoidance with the on-
coming vehicle
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both vehicles when the threat was detected is taken to be 35m. The initial velocity of both

the ego vehicle and the surrounding vehicle is taken to be 15m/s.
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(a) Risk factor pth = 0.05 (low)
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(b) Risk factor pth = 0.10 (medium)
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(c) Risk factor pth = 0.15 (high)

Figure 5.11: Visualization of the evasive maneuver by the ego vehicle (red) when the sur-
rounding vehicle (blue) turns left from the opposite lane in an intersection scenario. All
vehicles are plotted at an interval of 0.4 seconds for a time interval of 2 seconds. The ego
vehicle starts from left at (−2,−15) and the surrounding vehicles starts from the right at
(20,2).

Figure 5.11 shows three cases in an intersection scenario with different risk parameters.

Different risk factors resulted in different control actions for the proposed controller. Figure

5.11a shows the conservative control action taken by the controller for risk factor pth = 0.05.
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It went past the desired lane, which can put the ego vehicle in danger.

Figure 5.11b shows a better response to the surrounding vehicle turning left. It was able to

avoid the crash. Figure 5.11c, the ego vehicle was just able to avoid the surrounding vehicle.

The evasive maneuver is not too conservative while not going too much inside the adjacent

lane. In the last two cases, the ego vehicle was able to continuously generate safe convex

hulls using algorithm 3 for the crash avoidance with the other vehicle.
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(a) Steering angle for low risk factor pth = 0.05
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(b) Steering angle for medium risk factor pth =
0.10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time(sec)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

S
te

e
ri
n

g
 a

n
g

le
 (

ra
d

ia
n

s
)

(c) Steering angle for high risk factor pth = 0.10

Figure 5.12: Ego vehicle’s steering angle input for crash avoidance with the left turning
vehicle with variations in the risk parameter.
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(a) Throttle input for low risk factor pth = 0.05
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(b) Throttle input for medium risk factor pth =
0.10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time(sec)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
h

ro
tt

le
 (

m
/s

2
)

(c) Throttle input for high risk factor pth = 0.15

Figure 5.13: Ego vehicle’s throttle input for crash avoidance with the left turning vehicle
with variations in the risk factor.
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5.3.3 Variations in the relative longitudinal distance ∆D

The performance and safety of the proposed SMPC framework are studied for different

relative distances ∆D when the threat is detected. Three ranges of relative distances are

considered for the oncoming vehicle case: low relative distance ∆D ∈ [0 − 35]m, medium

relative distance ∆D ∈ [35 − 80]m, and large relative distance ∆D ∈ [80 − 130]m. These

variations will vary for the other two cases: the cut-in scenario and the intersection scenario.

Oncoming Vehicle

The initial velocity of the ego vehicle and the surrounding vehicle is taken to be 25m/s. A

medium-risk factor of 0.10 is considered to study the variations due to the relative distance

∆D at which the threat was detected. The data for the surrounding vehicle is taken from

the driver 6 data of the driver behavior dataset.

Figure 5.14 shows three cases of an oncoming vehicle scenario where the surrounding vehicle

(blue) drifts into the lane of the ego vehicle. Different relative distances ∆D resulted in

different control actions for the proposed controller. Figure 5.14a shows that there was no

optimal solution found for ∆D = 35m, even for a medium risk factor pth = 0.10. This

implies that if the threat is detected too late, no optimal control action was found to avoid

the crash. This will be a topic of future study that how to mitigate a crash in case of an

imminent collision.

Figure 5.14b shows an effective response to the oncoming vehicle and where the ego vehicle

can avoid the potential crash when the threat was detected at 80m. The evasive maneuver is

not too conservative while not going too much inside the adjacent lane. Figure 5.14c shows

that having a detected threat at a high relative distance has a comfortable response from

the ego vehicle, and it gets enough time to plan an evasive maneuver. This is one of the
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(a) Low relative longitudinal distance ∆D = 35m
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(b) Medium relative longitudinal distance ∆D =
80m
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(c) High relative longitudinal distance ∆D =
120m

Figure 5.14: Visualization of the evasive maneuver by the ego vehicle (red) when the sur-
rounding vehicle (blue) drifts into the lane of the ego vehicle. All vehicles are plotted at an
interval of 0.6 seconds for a time interval of 3 seconds. The ego vehicle starts from left at
(0, 0) and the surrounding vehicles starts from the right at different relative distances. Risk
factor of 0.10 is considered.
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advantages of the proposed proactive decision-making algorithm. In the last two cases, the

ego vehicle was able to continuously generate safe convex hulls using algorithm 3 for the

crash avoidance.
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(a) Steering angle for low relative distance ∆D =
35m
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(b) Steering angle for medium relative distance
∆D = 80m
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(c) Steering angle for high relative distance ∆D =
120m

Figure 5.15: Ego vehicle’s steering angle input for crash avoidance with the oncoming vehicle
with variations in the relative distances of initial detected threat.
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(a) Throttle input for low relative distance ∆D =
35m
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(b) Throttle input for medium relative distance
∆D = 80m
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(c) Throttle input for high relative distance ∆D =
120m

Figure 5.16: Ego vehicle’s throttle input for crash avoidance with the oncoming vehicle with
variations in the relative distances of initial detected threat.
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Cut-in Scenario

In the case of cut-in scenario, different ranges of relative longitudinal distances are considered

i.e. : low 10m, medium 20m and high 40m.

Figure 5.17 shows three cases of a surrounding vehicle (blue) cutting into the lane of the ego

vehicle. Different relative distances ∆D resulted in different control actions for the proposed

controller. Figure 5.17a shows the aggressive control action and a sharp maneuver taken by

the ego vehicle when the threat was detected at ∆D = 10m. This implies that the control

action will be aggressive if the relative distance is low.

Figure 5.17b shows an effective response to the oncoming vehicle and where the ego vehicle

can brake and maneuver to avoid the potential crash when the threat was detected at 20m.

The evasive maneuver is not too conservative while not going too much inside the adjacent

lane. Figure 5.17c shows no need for the ego vehicle to maneuver, and simple braking was

enough to avoid a potential collision with the surrounding vehicle. In all three cases, the ego

vehicle was able to continuously generate safe convex hulls using algorithm 3 for the crash

avoidance.

Left turn at the intersection

In this scenario, different ranges of relative longitudinal distances are considered when the

threat was detected i.e. : low 25m, medium 35m and high 45m.

Figure 5.20 shows three cases at an intersection scenario. Different relative distances ∆D

resulted in different control actions for the proposed controller. Figure 5.20a shows the

ego vehicle could not respond effectively when the threat was detected at a lower relative

distance.
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(a) Low relative longitudinal distance ∆D = 10m
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(b) Medium relative longitudinal distance ∆D =
20m
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(c) High relative longitudinal distance ∆D = 40m

Figure 5.17: Visualization of the evasive maneuver by the ego vehicle (red) when the sur-
rounding vehicle (blue) cuts into the lane of the ego vehicle. All vehicles are plotted at an
interval of 0.6 seconds for a time interval of 3 seconds. The ego vehicle starts from left at
(0, 0) and the surrounding vehicle also starts from the left at different relative distances.
Risk factor of 0.10 is considered.
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(a) Steering angle input for low relative longitu-
dinal distance ∆D = 10m
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(b) Steering angle input for medium relative lon-
gitudinal distance ∆D = 20m
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(c) Steering angle input for high relative longitu-
dinal distance ∆D = 40m

Figure 5.18: Ego vehicle’s steering angle input for crash avoidance with the cutting-in vehicle
for different relative longitudinal distances.
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(b) Throttle input for medium relative longitudi-
nal distance ∆D = 20m
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(c) Throttle input for high relative longitudinal
distance ∆D = 40m

Figure 5.19: Ego vehicle’s throttle inputs for crash avoidance with the cut in vehicle for
different relative longitudinal distances at which the threat was detected.
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(a) Low relative longitudinal distance ∆D = 25m
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(b) Medium relative longitudinal distance ∆D =
35m
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(c) High relative longitudinal distance ∆D = 45m

Figure 5.20: Visualization of the evasive maneuver by the ego vehicle (red) when the sur-
rounding vehicle (blue) turns left. All vehicles are plotted at an interval of 0.4 seconds for a
time interval of 2 seconds. The ego vehicle starts from left at (−2, 15) and the surrounding
vehicle starts at different relative distances. Risk factor of 0.10 is considered.
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Figure 5.20b shows an effective response to the oncoming vehicle and where the ego vehicle

can brake and maneuver to avoid the potential crash when the threat was detected at 35m.

The evasive maneuver is not too conservative while not going too much inside the adjacent

lane. Figure 5.20c shows the comfortable control action by the ago vehicle in avoiding the

crash. In the last two cases, the ego vehicle was able to effectively and continuously generate

safe convex hulls using algorithm 3 for the crash avoidance.
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(a) Steering angle input for low relative longitu-
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(b) Steering angle input for medium relative lon-
gitudinal distance ∆D = 35m
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(c) Steering angle input for high relative longitu-
dinal distance ∆D = 45m

Figure 5.21: Ego vehicle’s steering angle input for crash avoidance with the left turning
vehicle for different relative longitudinal distances.
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(a) Throttle input for low relative longitudinal
distance ∆D = 25m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time(sec)

-0.1

0

0.1

0.2

0.3

0.4

0.5

T
h

r
o

tt
le

 (
m

/s
2
)

(b) Throttle input for medium relative longitudi-
nal distance ∆D = 35m
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(c) Throttle input for high relative longitudinal
distance ∆D = 45m

Figure 5.22: Ego vehicle’s throttle inputs for crash avoidance with the left turninig for
different relative longitudinal distances at which the threat was detected.
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5.3.4 Variations in the relative velocities ∆V

The performance and safety of the proposed SMPC framework are studied for different

relative velocities ∆V when the threat is detected. Three ranges of relative velocities are

considered: low relative velocity 0− 20m/s, medium relative velocity 20− 40m/s, and large

relative velocity 40 − 80/sm. These variations will be considered for three road scenarios:

Oncoming vehicle, cut-in scenario, and the intersection scenario. The risk factor is taken to

be 0.10. The data for the surrounding vehicle is taken from the driver 6 data of the driver

behavior dataset.

Oncoming Vehicle

We can see from Figure 5.23 that the ego vehicle is able to avoid the oncoming vehicle from

an adjacent lane. It is able to continuously generate safe convex hulls using algorithm 3 for

the crash avoidance.

Left turn at the intersection

In this scenario, different ranges of relative velocities are considered when the threat was

detected i.e. : low ∆V = 20m/s, medium ∆V = 30m/s and ∆V = 40m/s. The initial

relative distance is taken as 35m and the risk factor pth is considered to be 0.10.

We can see from Figure 5.26a that the ego vehicle is able to avoid the oncoming vehicle from

an adjacent lane. It is able to continuously generate safe convex hulls using algorithm 3 for

the crash avoidance.
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(b) Medium relative velocity ∆V = 40m/s
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(c) Risk Factor pth = 0.15 (high)

Figure 5.23: Ego vehicle’s acceleration and steering angle for crash avoidance with the on-
coming vehicle
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(a) Steering angle input for low relative velocity
∆V = 20m/s
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(b) Steering angle input for medium relative ve-
locity ∆V = 40m/s
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(c) Steering angle input for high relative velocity
∆V = 800m/s

Figure 5.24: Ego vehicle’s steering angle input for crash avoidance with the oncoming vehicle
w.r.t. varying relative longitudinal distances
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(a) Throttle input for low relative velocity ∆V =
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(b) Throttle input for medium relative velocity
∆V = 40m/s
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Figure 5.25: Ego vehicle’s Throttle input for crash avoidance with the oncoming vehicle
w.r.t. varying relative velocities at which threat was detected.
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(a) Low relative velocity ∆V = 20m/s
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(b) Medium relative velocity ∆V = 30m/s
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(c) High Relative velocity ∆V = 40m/s

Figure 5.26: Visualization of the evasive maneuver by the ego vehicle (red) when the sur-
rounding vehicle (blue) turns left from the opposite lane in an intersection scenario. All
vehicles are plotted at an interval of 0.4 seconds for a time interval of 2 seconds. The ego
vehicle starts from left at (−2,−15) and the surrounding vehicles starts from the right at
(20,2) with different velocities.
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(a) Steering input for low relative velocity ∆V =
20m/s
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(b) Steering input for medium relative velocity
∆V = 30m/s
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(c) Steering input for high relative velocity ∆V =
40m/s

Figure 5.27: Ego vehicle’s steering angle for crash avoidance with the left turning vehicle
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(a) Throttle input for low relative velocity ∆V =
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(b) Throttle input for medium relative velocity
∆V = 30m/s
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(c) Throttle input for high relative velocity ∆V =
40m/s

Figure 5.28: Ego vehicle’s throttle input for crash avoidance with the left turning vehicle
with varying relative velocities at the time of detected threat.



98 CHAPTER 5. SIMULATION RESULTS AND DISCUSSION

5.4 Summary and Discussion

This chapter presented the evaluation and validation of the proposed threat assessment and

SMPC decision-making algorithms. The average computation time for the threat assessment

algorithm was around 38 ms. This low computation time makes it practical for real-time

threat assessment applications. Moreover, the proposed algorithm achieved a high accuracy

for driver behavior prediction and intention estimation. The percentage of false positives and

negatives was lower than 10% for the cut-in scenario and oncoming vehicles. The proposed

threat assessment methodology could be made more robust to outliers using more extensive

naturalistic driving data for different driver behaviors. Intention estimation accuracy could

also be improved using trust-based intention estimation using trust values from all the on-

board sensors.

The proposed SMPC framework is also tested on three frequently occurring hazardous road

scenarios on the road, i.e., oncoming vehicle, cut-in scenario, and turning left when there is no

right of way. All three scenarios are tested for different initial conditions for the controller,

i.e., variations in the risk factor pth, variations in the relative distance ∆D at which the

threat was detected, and the relative velocity ∆V at which the threat was detected.

It was observed that the choice of the risk factor pth had a significant impact on the con-

troller’s performance. A lower risk factor led to aggressive control actions and can potentially

get the vehicle into hazardous situations. Moreover, a low value of the risk factor can also

lead to an infeasible solution. On the other hand, a high risk factor leads to smooth control

action but ignores many likely positions a surrounding vehicle can occupy. This can result in

a crash with the other vehicle, as we saw in some of our simulations with a high risk factor.

Overall, it can be said that it is not easy to decide the value of the risk factor for the SMPC

controller. A not-so-high risk factor can result in better responses to hazardous situations
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on the road.

The relative velocity ∆V and the relative distance ∆D at which the threat is detected also

affects the controller’s overall performance. The algorithm was not able to produces feasible

solutions in a few cases where ∆D was low. Overall, the SMPC decision-making algorithm

is able to avoid crashes in most of the hazardous situations.

Some of the limitations for the proposed threat assessment and decision-making framework

are as follows:

1. The driver behavior dataset only consists of 6 drivers emulating three different driver

behaviors. More naturalistic driving data can make the proposed threat assessment

approach more reliable.

2. The proposed method can be computationally expensive for multiple vehicles.

3. Some of the safe regions are not considered during the deterministic reformulation of

the SMPC framework, which can sometimes lead to infeasible solutions for near-crash

scenarios.



Chapter 6

Conclusion and Future Work

This thesis presented a proactive decision-making algorithm for autonomous vehicles for

avoiding crash situations on the road. Two major challenges were addressed in this thesis:

the outside challenge (motion prediction and threat assessment); and the inside challenge

(decision-making). A reliable motion prediction method was proposed on stochastic reach-

able sets and driver behavior prediction. A trust value was established for the driver behavior

prediction using trust values from all the sensors. This allowed quantifying the reliability of

the driver behavior prediction using the proposed method. Using multiple sensors for driver

behavior prediction and threat assessment makes the proposed method highly robust to any

individual sensor failures. A stochastic reachable set threat assessment was formulated using

the probability of collision. Two quantities were formulated for assessing threat: Current

Threat (CT) and Short Term Prediction Threat (STPT). A positive value of STPT at any

time can give ego vehicle enough time to implement a crash avoidance control action. This

was covered in the decision-making part of the thesis.

The proactive decision-making is done using the Stochastic Model Predictive Control, which

uses the stochastic reachable sets and the future predicted threat information to take control

action for an evasive maneuver. A deterministic reformulation of the chance-constrained

optimization problem led to fast real-time implementation of the SMPC framework. This

thesis studied the effects of different controller parameters and initial conditions on the

proposed decision-making algorithm. The risk factor pth is not trivial to decide. From the

100
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results in Chapter 5, a medium value of pth led to optimal and safe controller actions.

The future work will validate this proposed proactive decision-making approach on mobile

robots in a lab setup. Moreover, this decision-making framework will be extended to con-

nected autonomous vehicles, where sensor reliability is a major issue. Trust-based motion

predictions in a cooperative vehicles environment can help overcome the sensor reliability

challenge. This will allow to test the methodology for multiple surrounding vehicles. The

future work will also investigate dynamically changing risk factors for the SMPC controller

depending on the threat of the situation. A more extensive naturalistic driving data can be

used to validate and make our method more robust.
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