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Punching Holes in the Cloud: Direct Communication between Server-
less Functions Using NAT Traversal

Daniel Moyer

(ABSTRACT)

A growing use for serverless computing is large parallel data processing applications that

take advantage of its on-demand scalability. Because individual serverless compute nodes,

which are called functions, run in isolated containers, a major challenge with this paradigm is

transferring temporary computation data between functions. Previous works have performed

inter-function communication using object storage, which is slow, or in-memory databases,

which are expensive. We evaluate the use of direct network connections between functions

to overcome these limitations. Although function containers block incoming connections,

we are able to bypass this restriction using standard NAT traversal techniques. By using

an external server, we implement TCP hole punching to establish direct TCP connections

between functions. In addition, we develop a communications framework to manage NAT

traversal and data flow for applications using direct network connections. We evaluate this

framework with a reduce-by-key application compared to an equivalent version that uses

object storage for communication. For a job with 100+ functions, our TCP implementation

runs 4.7 times faster at almost half the cost.



Punching Holes in the Cloud: Direct Communication between Server-
less Functions Using NAT Traversal

Daniel Moyer

(GENERAL AUDIENCE ABSTRACT)

Serverless computing is a branch of cloud computing where users can remotely run small

programs, called “functions,” and pay only based on how long they run. A growing use for

serverless computing is running large data processing applications that use many of these

serverless functions at once, taking advantage of the fact that serverless programs can be

started quickly and on-demand. Because serverless functions run on isolated networks from

each other and can only make outbound connections to the public internet, a major challenge

with this paradigm is transferring temporary computation data between functions. Previous

works have used separate types of cloud storage services in combination with serverless

computing to allow functions to exchange data. However, hard-drive–based storage is slow

and memory-based storage is expensive. We evaluate the use of direct network connections

between functions to overcome these limitations. Although functions cannot receive incoming

network connections, we are able to bypass this restriction by using a standard networking

technique called Network Address Translation (NAT) traversal. We use an external server

as an initial relay to setup a network connection between two functions such that once the

connection is established, the functions can communicate directly with each other without

using the server anymore. In addition, we develop a communications framework to manage

NAT traversal and data flow for applications using direct network connections. We evaluate

this framework with an application for combining matching data entries and compare it to

an equivalent version that uses storage based on hard drives for communication. For a job



with over 100 functions, our implementation using direct network connections runs 4.7 times

faster at almost half the cost.
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Chapter 1

Introduction

1.1 Problem statement

Serverless computing is a service that allows developers to run programs directly without

having to manage servers themselves. Also known as Functions as a Service (FaaS), serverless

computing is offered by major cloud platforms, for instance Amazon Web Services (AWS)

Lambda. Because serverless computing can scale rapidly, a growing trend is to use it to

run large distributed workloads without needing to provision a cluster of machines. Recent

works have used serverless for data analytics [28], machine learning [1, 7, 35], linear algebra

[29], and video processing [11, 36]. However, since serverless programs, which are called

functions, each run in their own isolated environment, a key problem for large-scale com-

pute applications is transferring data between multiple instances of a function. Individual

serverless functions have limited memory, computation power, and execution time, so inter-

function communication is a requirement for many applications. Existing works have used

object storage and in-memory databases for communication, but these techniques require

trade-offs with regard to performance, cost, and scalability [17, 25]. Using direct network

connections between functions is attractive since it would be fast, incur no extra cost, and

scale with the number of functions; however, serverless providers use network firewalls to

block inbound connections.

1



2 Chapter 1. Introduction

1.2 Novelty

Our work implements a method to bypass the firewall for AWS Lambda, and we develop

the first communication framework that uses direct network connections between functions.

Lambda uses a common networking configuration called Network Address Translation (NAT)

to allow outbound connections from functions while blocking inbound connections. However,

there are several standard techniques that allow endpoints behind NAT to establish a con-

nection with each other by using an external server for setup. This process is called NAT

traversal, and our communication library implements it in order to transfer data between

serverless functions over TCP connections. We demonstrate that our communication li-

brary can scale to workloads with over 100 functions and show it achieves a significant

speedup compared to exchanging data with object storage. There have been several pre-

vious serverless execution frameworks [5, 16, 38], but to our knowledge none of them use

direct network communication. Also, prior studies [17, 25] on inter-function communication

for large serverless workloads have found limitations in existing methods: object storage is

slow and in-memory databases are expensive and do not scale easily. Fouladi et al. [12] men-

tion that NAT traversal between functions is possible, but do not evaluate it or discuss it

in detail. Our work demonstrates that serverless functions can communicate using network

connections, which has significant advantages over current techniques.

1.3 Design and Contributions

We develop a communication library with function and server components so that serverless

applications can use network communications easily. We specify an interface for serverless

application code that runs on each serverless function. Our library supports multi-function
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jobs and manages communication between functions automatically. We also implement an

orchestrator server to invoke functions and send control messages between them. An external

server is necessary to perform NAT traversal, and we also use it for coordination. By using

network connections, our library achieves high performance. We measure throughput of

680 Mbps between a pair of functions. We also evaluate it using a multi-stage reduce-by-key

application with over 100 functions. Compared to an equivalent implementation using object

storage, our library is 4.7 times faster and costs only 52% as much.



Chapter 2

Background

2.1 Serverless computing

Serverless computing, also called Functions as a Service (FaaS), is a paradigm in cloud com-

puting where users can execute short-lived application code in a quickly scalable, stateless

environment without needing to deploy or manage servers. A single instance of a serverless

application is called a function. Serverless functions can be triggered automatically to re-

spond to events or used to process data in parallel. As an example, uploading an image to a

particular bucket in object storage might trigger a serverless function to resize it automati-

cally. Major commercial FaaS providers include Amazon Web Services (AWS) Lambda [3],

Azure Functions [21], Google Cloud Functions [13], IBM Cloud Functions [15], and Oracle

Cloud Functions [23] and there are also several open source serverless platforms including

OpenFaaS [22], Apache OpenWhisk [4] and Kubeless [19].

A key feature of serverless is that it scales quickly compared to traditional server-based

computing where users provision virtual machine servers. It is possible to simultaneously

launch hundreds of serverless functions and the initialization time is usually well under a

second, whereas it may be up to a minute for server-based machines. However, each serverless

function has a maximum execution time, which is 15 minutes in the case of AWS Lambda.

Users can also configure the memory and CPU power allocated to each function, which

ranges from 128–10,240 MB with AWS Lambda. Serverless computing uses a pay-as-you-

4



2.2. Data storage with serverless 5

go cost model where users are billed based on the total execution time of their functions

proportional to the configured memory size as well as the number of function invocations.

The rapid scalability and usage-based billing means that serverless is ideal for uneven or

bursty workloads since users do not need to provision resources in advance.

Besides scalability, one of the main characteristic of serverless functions are that they run in a

stateless, isolated environment called a container. Although containers have a small amount

of storage space (512 MB for AWS Lambda) during their execution, it is not persisted so

functions must use external storage mechanisms. Containers also block incoming network

connections, so it is not possible to run web servers directly in functions or to access running

function code in a remote shell for debugging. While different functions are guaranteed to

run in separate containers, a FaaS provider may at its discretion reuse a container from a

previous execution of the same function. This reduces startup time since the function does

not need to reinitialize and is called a warm start, as compared to when a function runs

in a new uninitialized container, which is called a cold start. Overall, serverless computing

has several distinct properties, namely minimal management, rapid scalability, and isolated

execution environments.

2.2 Data storage with serverless

Serverless applications must solve problems related to data transfer and limited function life-

time that do not occur with traditional server-based computing. One challenge in serverless is

how to persist data and transfer it between multiple functions, since functions are ephemeral

by nature. Although functions do have access to limited storage space during runtime, it

is not persistent. Also, functions can be invoked with a small amount of metadata, but

this is not sufficient for data processing applications. Thus, it is necessary for serverless
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functions to input and output data via one or more external data stores, such as database

servers or object storage. Because functions are isolated from each other, using external data

storage also allows functions to communicate for large computing workloads. This differs

from traditional server-based computing frameworks where nodes can easily exchange data

over the network. In addition, conventional server-based computing nodes do not have lim-

ited lifetimes, but serverless functions do. Serverless computations must account for limited

function lifetime when scheduling functions and ensure that functions finish writing their

output before they timeout.

There are several different external cloud computing services that serverless functions can use

to send and receive data, such as object storage, memory- and disk-backed databases, and

proxied network connections. Persistent object storage such as AWS Simple Storage Service

(S3) can store large amounts of data for a few cents per gigabyte per month. A disadvantage

is that it does not support high throughput and rate-limits requests to a few thousand

per second [25]. While object storage is cheap, the fastest storage available is memory-

backed key-value stores, such as AWS ElastiCache which provides managed Memcached or

Redis instances. These memory-backed databases can support a very fast request rate (over

100,000 requests per second) and are efficient for small objects, but are significantly more

expensive: ElastiCache is hundreds of times more expensive than S3 when storing the same

amount of data [25]. Also, memory-backed stores must have servers provisioned to run on.

Of course any other type of database can also be used in combination with serverless to

provide different trade-offs with respect to cost and performance. Most databases still need

provisioned servers, however, which limits scalability. In theory, it is also possible to use

external proxy servers so serverless functions can communicate over the network. However,

this would only be practical if the bandwidth each function needs is small compared to that

of a server, since provisioning multiple servers just to act as proxies would defeat the purpose
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of using serverless in the first place. Overall, for large computing serverless workloads, there

are several options for external storage including object storage, databases, and proxied

connections, but they all require trade-offs between cost and performance.

2.3 NAT

2.3.1 Definition

Network Address Translation (NAT) [31] is a commonly used technique to connect an in-

ternal network with a different IP addressing scheme from its external network. A network

address translator rewrites the IP packets that cross from one network to the other in order

to translate between internal and external IP addresses and port numbers, modifying the

packet headers to do so. It maintains connection state so that when a client on the internal

network makes an outbound connection, it can correctly forward the return packets back to

that client. Typically, NAT is used in combination with filtering rules to block unsolicited

incoming packets from entering the internal network. In this case, two clients behind differ-

ent internal networks are unable to connect to each other directly without using a special

technique to bypass NAT, which is known as NAT traversal.

2.3.2 NAT Traversal

Transmission Control Protocol (TCP) hole punching is a technique for establishing a TCP

connection between two endpoints that are both behind separate NAT networks and thus

cannot connect directly [10]. The way TCP hole punching works is that both endpoints

simultaneously make an outbound connection to the other endpoint. If the destination IP

address and port of each connection matches the source IP address and port of the other,
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then each NAT device will allow the incoming connection from the other endpoint because

it treats it as the response to the outbound connection from its own endpoint. For this to

work, each endpoint must know the public source IP address and port of the other endpoint’s

outbound connection so it can make the destination IP address and port of its connection

match. Thus, a prerequisite for hole punching is that both endpoints exchange their external

source IP addresses and ports using an out-of-band method such as a relay server. However,

the NAT device must use a known or predictable external source IP address and port for

TCP hole punching to be possible. If the NAT device uses an unpredictable external port,

then the opposite endpoint will not know what destination port to use and the NAT traversal

will not work.

2.3.3 AWS Lambda NAT behavior

AWS Lambda creates each function container with a private IP address behind a NAT

firewall that blocks incoming connections. The NAT firewall translates the function’s private

IP address into a public IP address so it can access the public internet. However, since the

firewall does not allow functions to receive connections, this means that Lambda cannot be

used to run externally-accessible servers and that two functions cannot directly communicate

with each other over the network without NAT traversal. AWS does not explicitly state the

behavior of the NAT firewall they use for Lambda function containers, but based on our

experimentation, it rewrites the private IP address of the function to a public IP for outgoing

connections, but preserves the TCP port used by the function. Also, the public IP address

assigned to a container is static throughout the container’s lifetime which means that the

public IP address and port of an outgoing connection is predictable as required for TCP

hole punching. RFC 3489 [27] classifies NAT implementations as cone NAT or symmetric

NAT based on whether the mappings it assigns are consistent across multiple connections.
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When a client makes outbound connections from the same private IP address and port, cone

NAT consistently maps the connections to the same public IP address and port; however

symmetric NAT assigns a different public IP address or port to subsequent connections. In

general, it is not possible to perform hole punching with symmetric NAT since the public IP

address and port number cannot be known in advance (except when symmetric NAT uses a

sequential or other predictable assignment). However, AWS Lambda uses cone NAT, which

makes hole punching feasible. We demonstrate that it is possible to perform NAT traversal

to establish a TCP connection between two concurrently running Lambda functions and

incorporate this ability into our communication library.



Chapter 3

Design

3.1 Communication library functionality

In order to use serverless functions to run a distributed application, there is a fair amount of

setup involved. Each function must be started and then receive instructions for what input

sources and output destinations to use. Also, for direct network communication, functions

must exchange the network address information for the peer functions with which they will

communicate. This paper presents a communication framework for performing this setup as

well as establishing network connections between function. The implemented communica-

tions library consists of two main parts: an orchestrator that invokes functions and manages

communication between them, and worker functions that perform NAT traversal and run

application code for data processing. The orchestrator must be hosted on a machine that

allows inbound network connections since this is a requirement for NAT traversal. When

starting an application run, the orchestrator first generates a communication graph of all

the functions to deploy that specifies which pairs of functions should establish direct net-

work connections and provides a list of all the inputs and outputs for each function. The

orchestrator uses the information in this graph to invoke the necessary functions and then

starts a listening server. When each worker function starts, it connects to this server and

exchanges information to learn which peer functions to connect to. After a function receives

the address information for its peers, it performs NAT traversal to establish direct TCP

10
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connections with them. We use TCP instead of UDP to provide reliable transmission of

data between functions. Once this setup is complete, the worker begins running the actual

application code. This initialization process for the first TCP connection between two func-

tions is shown in Figure 3.1. Worker applications that use the communication library must

Figure 3.1: Communication library initialization procedure for the first two worker functions.
The first worker starts reading and processing data while establishing a connection to the
second in parallel. If the second worker has any other peers, it will repeat this setup with
them once it starts reading data from the first worker.

implement interface methods to produce input data, consume output data, transfer data

between functions, and process input data into output data.

3.2 Client-server design

Our framework uses a separate server for communication to bypass the restriction that

Lambda functions do not allow inbound connections. Since AWS firewalls Lambda functions,

it is not possible for one function to connect to another directly by themselves. However, with
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a server external to Lambda, it is possible to relay traffic between functions or to facilitate

NAT traversal so functions can establish a direct connection. Because having a server is

necessary to use NAT traversal in our communication library, we decided to also use it as

an orchestrator to invoke functions and send control messages between them. The server

starts a service using the WebSocket protocol [9] on a publicly accessible host and port, and

includes this information as part of the function event data on invocation. Then, when each

function starts, it makes a persistent connection to the orchestrator server so it can exchange

small control-plane messages. At this point, the orchestrator sends peer network information

for each pair of functions that need to perform NAT traversal.

While implementing the orchestrator on a single server may affect scalability, the per-function

resource requirements in our design are small, so we believe that this is an acceptable trade-

off. Because performing NAT traversal requires an external server so functions can exchange

network address information, the only design variable is whether or not to have that server

support additional functionality. We decided to use that server to implement a function

orchestrator, which maintains a persistent connection with each function throughout its

lifetime to send and receive control messages. However, an alternate design would be to

have the central server only act as a NAT traversal relay and implement the orchestrator a

part of the serverless functions themselves. Implementing the orchestrator on a traditional

server has the benefit of allowing persistent connections to a centralized point. This saves

the need for a more complicated peer-to-peer control approach, or running the orchestrator

in a separate function and having to handle the case where it must run for longer than the

15-minute maximum function lifetime and having to use some replacement scheme. The

main potential drawback with moving additional features to the server is that it might

decrease the scalability of the design. For each function, the server must maintain some data

structures in memory and a single persistent connection with that function. The difference
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is that in the NAT-traversal-only case, the server can free these resources for a function once

it has completed NAT traversal, whereas in our design, the server must maintain them until

the function exits. However, a single server should be able to scale to many thousands of

concurrently-running functions since the per-function resources are fairly small, and running

jobs of that scale would probably also require additional design improvements regardless.

3.3 NAT traversal protocol

Although there are multiple protocols that can be used to perform NAT traversal, we used

a custom implementation of TCP hole punching because we wanted to use TCP for data

reliability and to use the same system for NAT traversal and exchanging control messages.

In general, there are many possible configurations for a network address translator, but our

design only needs to work in the specific environment of AWS Lambda. One of our main

design decisions was to use TCP instead of UDP. We chose TCP because it automatically

detects and corrects transmission errors. Although UDP hole punching may be more common

than TCP hole punching, Ford et al. [10] state the latter is just as “fast and reliable”

as the former. However, TCP hole punching is slightly more complex to implement from

an application perspective, since the application must both listen on and make outbound

connections from the same socket. This is not a problem for our communication library

since we control the implementation and can configure it to allow socket reuse in this way.

Another potential concern with TCP is that its handshake and slow-start behavior may lead

to slower data speeds than UDP soon after creating a connection. However, when sending

large amounts of data, these startup costs should have minimal effect, but for applications

that care about fine performance optimizations, we leave the investigation of UDP as future

work. Another design decision we made was not to use existing protocols such as STUN
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[27] or TURN [20] to help with NAT traversal. The STUN protocol uses a public server

to help a client determine its public IP address, whether it is behind NAT, and the NAT

type if so. However, since we already knew the NAT behavior for AWS Lambda, it was

easier for us to find the public IP address using our orchestrator server that to set up a

separate STUN server simply for that purpose. Also, the TURN protocol provides a way

to implement relaying when NAT traversal is not possible, but this is not applicable for

our case and would be very inefficient anyway. While our hole punching implementation is

implemented specifically for AWS Lambda, the TCP hole punching technique works for most

NAT configurations such as cone NAT as well as nested NAT when the outer NAT supports

hairpin translation, although it does not work with symmetric NAT [10]. Based on our

testing, AWS Lambda does not currently support IPv6, which could eliminate the need for

NAT if its implementation assigned a public IP address directly to each function. However,

there would likely still be a stateful firewall that blocked incoming connections, so a similar

process to bypass this by making simultaneous outbound connections might still be necessary

if AWS Lambda deployed IPv6 but sill prevented functions from communicating directly

with each other. Although there are many possible behaviors for NAT, our communication

library only needs to support the one used by AWS Lambda, so we decided to use TCP hole

punching because it was simple enough to implement as part of our orchestrator server and

because we wanted to use TCP for its built-in data reliability.



Chapter 4

Implementation

4.1 NAT traversal technique

In order to create a direct connection between Lambda functions, our communication library

uses TCP hole punching, which is a known NAT traversal technique [10], to bypass how

Lambda blocks incoming connections to functions. On startup, the function component of

our library connects to the orchestrator server in order to receive control information. Since

the orchestrator server runs outside of Lambda, this outbound connection is permitted by

Lambda’s firewall. Once the orchestrator accepts connections from both functions that plan

to establish a mutual TCP connection, it sends the public IP and a TCP port number of each

function to the other. Thus, both functions have the necessary IP address and port number

information to make an outbound TCP connection, and repeatedly try to connect to the

other function using this information. While trying to make the outbound connection, each

function also opens a socket to listen on its own fixed port number in case the connection

from its peer succeeds first. After both functions attempt outbound connections, eventually,

the Lambda NAT firewall will allow traffic from the other function through as it treats this as

return traffic from the outbound connection. At this point, from one function’s perspective,

either its outbound connection attempt succeeds or the listening socket accepts a connection

from the other function. Which event succeeds first is non-deterministic, but either way the

15
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function has a valid TCP connection open to its peer function and can begin sending and

receiving data.

We present an example sequence diagram of TCP hole punching between two AWS Lambda

functions in Figure 4.1. In this example, Function 1 has public IP 3.0.1.1 and Function 2 has

Figure 4.1: TCP hole punching example

public IP 3.0.2.2. Also, both functions start listening for incoming connections on their cor-

responding private IP addresses and ports: address 172.16.1.1 port 10001 for Function 1 and

address 172.16.2.2 port 20002 for Function 2. At this point, both functions have exchanged

public IP addresses and listening port numbers via the orchestrator server. Once they receive

this information, both functions try to open an outbound TCP connection to the other. In

the diagram, the first connection attempt is made by Function 1 to the public IP address of

Function 2. Note that Function 1 sets the source port of the TCP SYN connection request

packet to be the same as the port number it is listening on. The NAT firewall for Function 1

rewrites the private source port of this packet to the public IP of Function 1, namely 3.0.1.1,

but it keeps the source port number the same. The fact that the AWS Lambda firewall

preserves port numbers makes TCP hole punching possible. However, at this point the NAT

firewall for Function 2 sees the incoming packet as unsolicited and drops it. Independently,

Function 2 now sends a connection request to Function 1, and its NAT firewall rewrites the

source IP address to the public IP address of Function 2. When the connection request
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reaches the firewall for Function 1, the source and destination addresses and ports are ex-

actly switched compared to the connection previously initiated by Function 1. Thus, the

Function 1 firewall treats the second connection request as a response to the first, and allows

it. Now, Function 1 receives the connection SYN request from Function 2 on its listening

port, and sends a SYN-ACK acknowledgment packet back to continue the TCP connection

setup. The firewall for Function 2 will also accept the acknowledgment because it is a valid

response to the SYN packet Function 2 sent. Thus, both firewalls will allow traffic through,

so the functions can finish the handshake to establish a valid TCP connection between them.

4.2 Server-function communication

Our communications library uses persistent WebSocket connections implemented with the

Python Socket.IO [14] library to exchange control messages between the orchestrator server

and worker functions. As discussed in section 3.2, we use a client-server design for the

communication library where the orchestrator server is responsible to send and receive com-

mands and status updates between function. These control messages include the initial

information needed for NAT traversal, when a function has finished, and notification of

when a function has output available so the orchestrator can invoke functions that depend

on it. As it invokes functions, the server creates a listening WebSocket service and each

function establishes a connection to it on startup. The function keeps this connection open

throughout its lifetime and only disconnects when it exits. One requirement of this design

is that the orchestrator must be able to push messages to functions. Thus, since functions

cannot receive inbound connections, they must either poll the server repeatedly for updates

or establish a persistent full-duplex communication channel. Polling inherently has a higher

latency and introduces more overhead since it uses multiple connections, so we opted for a
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single persistent connection. We decided to use the WebSocket protocol [9] because it sup-

ports full-duplex communication over a single TCP connection and is lightweight for small

messages. Also, we wanted to use a preexisting message protocol with an available Python

library instead of implementing some custom protocol directly on top of TCP. Thus, we chose

the Python Socket.IO library for sending messages as both a client and server WebSocket

implementation.

4.3 Communication library API overview

The serverless communications library presented in this work presents a high-level Applica-

tion Programming Interface (API) that supports the development of serverless applications

with inter-function communication over TCP. Applications using the library must specify

two components: a topology graph of worker functions that dictates how they should com-

municate with each other and the data processing implementation itself. The communication

library is responsible for invoking all of the functions and performing NAT traversal to es-

tablish all of the TCP connections for data transfer specified by the application topology.

In the topology, applications must define the inputs and outputs for each worker function

with two possible types for each: an internal TCP connection or an external application-

implemented subroutine. Inputs and outputs with an internal TCP type are managed by

the communication library itself where the output data of one function is sent over TCP

to become the input data of another. These internal TCP connections form directed edges

between functions in the topology graph. The application is required to make sure the func-

tion graph is acyclic so that there are no circular dependencies between functions. While

TCP connections can be used to send data between functions, applications must be able to

read initial data and write their results to an external source because serverless functions
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are ephemeral. Thus, the communication library also allows applications to define custom

subroutines for input and output and then specify in the graph which functions should run

these subroutines and with what parameters. As an example, Figure 4.2 defines a topology

with three functions. The application’s custom input and output subroutines could respec-

tively read from and write to the S3 object specified in the path metadata field. Then, the

first two functions, worker-0 and worker-1, download data from S3, process it and send

their immediate results over TCP to worker-2, which combines them and writes the final

output to S3.
[ { "name": "worker-0",

"inputs": [ {"type": "s3", "path": "s3://example-bucket/input-0.csv"},
{"type": "s3", "path": "s3://example-bucket/input-1.csv"} ],

"outputs": [ {"type": "tcp", "name": "worker-2"} ] },
{ "name": "worker-1",

"inputs": [ {"type": "s3", "path": "s3://example-bucket/input-2.csv"} ],
"outputs": [ {"type": "tcp", "name": "worker-2"} ] },

{ "name": "worker-2",
"inputs": [ {"type": "tcp", "name": "worker-0"},

{"type": "tcp", "name": "worker-1"} ],
"outputs": [ {"type": "s3", "path": "s3://example-bucket/result.csv"} ] } ]

Figure 4.2: Example function topology definition

In addition to the function topology, applications that use our communications library must

implement the actual data processing logic that the serverless functions run. The communi-

cations library expects applications to write a Python class that implements a list of required

methods. Each of these methods use Python generators to efficiently produce and/or con-

sume a stream of data objects and run simultaneously in their own thread. As discussed

before, the communication library expects the application to implement two methods to

handle external inputs and outputs specified by the function topology. In addition, the

application must write its main data processing method that transforms objects received as

inputs into objects that can be sent as outputs. Finally, the application must implement

two methods that can serialize and deserialize the data objects it uses into a binary format

for transmission over TCP.
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4.4 Function program design

The communication library uses a multi-threaded design to run application data processing

subroutines and to perform network communication. A major advantage of using TCP for

communication is that multiple functions running in parallel can use pipelining to improve

throughput. So, as soon as one function is finished processing some block of data, it can

immediately send that block to the next function in the pipeline while continuing to pro-

cess the next data block. Thus, to implement pipelining efficiently, each function should

be simultaneously reading input data, processing it, and writing output data. Our com-

munication library uses separate threads for each of these tasks to implement parallelism

within a function so that a series of functions can achieve data pipelining. In each function,

the library uses one thread to run the application’s data processing subroutine, as well as

one thread for each input or output source or destination whether it is a TCP connection

or a custom application subroutine. An alternative design would be to use an event-based

approach using Python coroutines, but this requires non-blocking I/O, which is difficult

to implement. Furthermore, our library’s NAT traversal implementation must listen on a

socket while making outbound connections at the same time, and using a separate thread

for each is the most straightforward approach. Putting each application input and output

subroutine in a separate thread means that it can block to read or write without affecting

data processing. One disadvantage to our use of Python threads is that the Python inter-

preter uses a global lock so threads do not gain a benefit from running on a multi-core CPU

[26]. For small function sizes, this does not matter since AWS Lambda will allocate less than

one virtual CPU to the function, but it does prevent the communication library from fully

utilizing multiple cores with larger function sizes. However, our communication library’s

use of multiple threads allows it to still support pipelining with other functions since it can

process data at the same time as performing blocking input and output.
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Evaluation

5.1 TCP performance in Lambda

5.1.1 Throughput

In order to set some expectations for the performance of network communications, we ran

several experiments to measure the performance of TCP connections between Lambda func-

tions. The first metric we measured was the raw throughput for a single connection between

two functions. We implemented a simple benchmark application using our communication

library, which uses Python TCP sockets with default settings. The benchmark consisted of

two components, a producer and a consumer, each of which ran in a separate function. The

producer repeatedly transmitted a fixed block of data as fast as possible and the consumer

read data from its connection and counted the total size of the data received. To calculate

throughput, the consumer also recorded the time between the first and last block of data re-

ceived. Each of our tests sent 1 gigabyte total and used functions with 3072 MB of memory.

We tried different buffer sizes from 1 KB to 1 MB for reading and writing from the network

socket and measured each with 5 runs. For each buffer size, Run 1 was a cold start due to

the fact that the function code was modified and Lambda was thus forced to provision a

new container for execution. The remaining Runs 2–5 were warm starts, but since our ex-

periment only measured time while sending data after both functions had already initialized

21
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and established a TCP connection between them, we do expect this to make a difference.

The results are graphed in Figure 5.1 with the full data listed in Table 5.1. The maximum

Figure 5.1: Throughput (Mbps) between two Lambda functions based on buffer size

throughput of about 680 megabits per second (Mbps) is achieved when using buffers of 8 KB

or larger. We would expect smaller buffer sizes to increase overhead, and we see that the

performance drops off with 4 KB buffers and smaller. While there was some variability in

the results, this is understandable because AWS Lambda makes no guarantees on the per-

formance or bandwidth available to functions. An additional comment is that Fouladi et al.

[12] report observing speeds of 600 megabits per second for direct network communications
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Table 5.1: Throughput (Mbps) between two Lambda functions based on buffer size

Buffer 1 KB 2 KB 4 KB 8 KB 16 KB 64 KB 1 MB
Run 1 264.965 435.219 676.116 682.517 673.219 678.374 679.434
Run 2 250.180 427.054 621.060 674.673 681.465 679.088 679.643
Run 3 257.868 423.257 609.191 680.248 677.673 682.674 680.327
Run 4 254.905 430.758 627.690 680.236 681.192 681.604 679.864
Run 5 252.256 427.881 622.661 679.362 681.917 680.902 677.918
Average 256.035 428.834 631.344 679.407 679.093 680.528 679.437

between functions in their future work discussion, which is similar if not quite as fast as our

results.

We also experimented with two producers and with two consumers to see if a different

function topology would increase the throughput. In each experiment, we used the same

methodology as before with two functions, except adding either an additional producer or

consumer. We halved or doubled the data sent by each producer so that each consumer would

receive exactly 1 gigabyte of data as before. Based on our previous results, we used a buffer

size of 8 KB since increasing the size further made no difference in throughput. The results

for the first test with two producer functions sending to a single consumer function are listed

in Table 5.2. Likewise, the results for one producer function sending to two consumers are

presented in Table 5.3. This shows the throughput for each consumer separately as well as

the combined total. In both experiments, the maximum total throughput was approximately

680 Mbps, so we conjecture that Lambda imposes a bandwidth cap on each function that

limits the observed speed in each case.

After measuring the network throughput for direct connections, we extended the experiment

to determine if the throughput would decrease when using a longer chain of functions. One

use case for our communication library would be to implement a data pipeline with a chain

of functions where each function receives data over TCP, processes it, and transmits its
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Table 5.2: Throughput (Mbps) with 2 producer and 1 consumer functions

Throughput
Run 1 679.197
Run 2 682.057
Run 3 677.897
Run 4 680.409
Run 5 681.373
Average 680.187

Table 5.3: Throughput (Mbps) with 1 producer and 2 consumer functions

Consumer 1 Consumer 2 Total
Run 1 309.753 372.020 681.773
Run 2 369.452 307.845 677.297
Run 3 313.596 311.577 625.173
Run 4 306.886 354.791 661.677
Run 5 367.429 318.463 685.892
Average 333.423 332.939 666.362

results to be processed by the next function. To see how network speed would affect the

performance of our communication library in this case, we increased the number of functions

in our benchmark application. We used a simple copy operation for the data processing

Figure 5.2: n-function chain for throughput experiment

stage, so for an execution with a chain of n functions there would be a single producer,

n− 2 forwarders, and finally a single consumer to measure throughput. This function graph
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is shown in Figure 5.2. Each forwarder in the chain simply copied the data it received on

its input connection and wrote it to its output connection as fast as possible without doing

any other processing. Note that the case n = 2 with no forwarders is identical to the setup

for the previous throughput test between two functions. We used the same methodology as

previous tests with the same sizes for function memory (3072 MB), read buffers (8 KB), and

data sent (1 GB). We ran five trials for each value n = 3, 4, 5, 10, 50 and list the results in

Table 5.4. This table also includes the results for n = 2 from the previous throughput test

for comparison. Note that the performance is not very consistent between runs even for an

Table 5.4: Throughput (Mbps) for n-function chain

n 2 3 4 5 10 50
Run 1 682.517 613.047 679.856 604.428 679.200 629.934
Run 2 674.673 679.712 636.615 673.883 652.200 610.505
Run 3 680.248 681.710 667.813 620.689 647.970 631.217
Run 4 680.236 677.091 643.818 519.874 672.744 608.416
Run 5 679.362 679.981 665.965 646.269 677.361 618.527
Average 679.407 666.308 658.813 613.029 665.895 619.720

extremely simple application that does no actual computation. While there is substantial

variance between runs and none of the larger cases are as consistent as n = 2, we see that

it is still possible to get data throughput well over 600 Mbps using TCP communication at

the end of a long function pipeline. One additional observation is that a complete trial with

50 functions took about 28 seconds of real time, whereas a trial with 2 functions only took

about 12 seconds. This is due to the time it takes to initialize functions and perform NAT

traversal to establish connections as well as the fact that the data simply has more functions

to flow through. Our purpose with this experiment was to measure potential throughput,

not latency. The results demonstrate the possibility of using our communication library to

implement a multi-stage data processing pipeline with high throughput assuming a workload

where CPU processing is not a bottleneck. This gives an indication of what throughput is
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possible with AWS Lambda using our communication library, but also shows the inherent

variability in its performance.

5.1.2 Latency

While the throughput between Lambda functions is more important for data processing, we

also tried to measure the network latency. There is variance to where Lambda provisions

containers for different instances of a function—they could possibly be on the same machine

or separate machines either close together or far apart. For the latency experiment, we

started two instances of a function where one sent a small message over a TCP connection

and the other waited to receive it and then responded immediately. The first function

measured the total round-trip time between when it sent the original message and received a

response. We chose a small message size of 16 bytes so it would be guaranteed to fit in a single

packet and because using other sizes made no appreciable difference. For each trial with two

functions, we sent 500 round trip messages at 50 millisecond intervals. We performed 10

trials and made sure they were cold starts so that Lambda used new containers for every

function to get a broader sample. The round-trip times varied from 0.38 to 22.34 ms with

an average across trials of 0.98 ms. We show box plots for each trial in figure Figure 5.3. A

notable finding is high variability between trials. Since using cold starts for each trial forced

Lambda to provision new containers each time, this shows that the latency between functions

depends on AWS Lambda’s internal placement of containers. The results also had a high

number of outliers; note that Figure 5.3 only show outliers up to 3 ms, but the maximum

overall time was 22.34 ms. Even though the round-trip time for TCP connections between

functions has variability, the average latency of around 1 ms will be more than sufficient for

most data processing applications as throughput is more important.
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Figure 5.3: Round-trip time between pairs of function instances
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5.2 TCP vs. S3 comparison

We developed a distributed serverless application using our communications library to com-

pare the performance of using TCP networking for communication instead of S3 object

storage. We implemented a large-scale reduce-by-key application using multiple stages of

functions for merging based after a map-reduce computation paradigm. The input data set

consisted of string keys and floating point values that were merged by summing the values

for each distinct key. The application used a binary tree topology as shown in Figure 5.4.

Each function receives data from two sources: either S3 objects for the first stage or TCP

Figure 5.4: Function graph for reduce-by-key application

connections for subsequent stages. After processing its input, it sends it to a function in

the next stage via a TCP connection, except in the case of the final function, which writes

the completely reduced output to S3. Our experiments used 101 input files with a total
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of 44.5 million key-value pairs that reduced to 1.9 million unique keys. Each run used 104

Lambda functions configured with 3072 MB of memory each. We performed 6 executions,

but discarded the first so that all runs used warm starts for consistency. We measured the

total billed duration of all functions as well as the real time elapsed from when the commu-

nication library orchestrator started the first function to when the last function exited. For

comparison, we ran an experiment using the same data and methodology but using S3 for

inter-function communication instead of TCP. Instead of using TCP connections between

pairs of functions to send data, the first function wrote all the data to an S3 object, and

the receiving function read that object once it was completely written. Table 5.5 compares

the real-time and cost measurement results for the TCP and S3 implementations. Using

TCP connections is 4.7 times faster and costs only 52% as much based on Lambda execution

time. One reason our communication library achieves a large improvement using network

Table 5.5: Communication method performance for reduce-by-key application

S3 TCP
Trial Billed duration (s) Real time (s) Billed duration (s) Real time (s)
Run 1 821.158 156.972 434.830 33.310
Run 2 758.467 157.013 420.921 33.631
Run 3 808.216 154.258 430.776 32.629
Run 4 837.696 153.305 419.542 32.907
Run 5 810.812 155.919 405.974 32.412

Average 807.270 155.493 422.409 32.978

connections is because functions send data incrementally so later stages can start processing

data in parallel to previous ones. However, when using S3, an entire object must be created

before it could be read, so our S3 implementation does not achieve this same parallelism.

This could be somewhat optimized by writing multiple smaller S3 objects, but this would

require significant implementation effort and is not done by Amazon Web Service’s sample

Lambda map-reduce implementation either [2]. Compared to a S3-only implementation,
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our communication library achieves significant time and cost savings by using direct TCP

connections for inter-function communication.
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Related work

6.1 Serverless communication

A major challenge and topic of study with using serverless computation for data processing is

exchanging data between functions. Many serverless frameworks either use object storage for

its low cost and scalability [16, 29], or in-memory stores for their speed [5, 38]. However, Pu

et al. [25] develop a hybrid storage system that combines S3 and Redis to balance cost and

performance. They evaluate their implementation on analytics applications and their results

are significantly faster than S3-only but use less resources than traditional server clusters.

Klimovic et al. [17] evaluate different types of storage systems, specifically technologies based

on disk (S3), memory (Redis), and NVMe flash (Apache Crail and ReFlex). They look at

several workloads and observe that the storage properties serverless applications need for

communication are scalability, high IOPS, high throughput, and low latency, while noting

that high durability is not necessary because computations are short-lived. In addition, they

find that NVMe flash storage can meet the performance requirements of most applications

at a lower cost than memory-based solutions. Pocket [18] is a distributed elastic data store

implementation designed for inter-function communication that uses a combination of storage

based on DRAM, NVMe flash, and HDD. It scales automatically and chooses the most cost-

effective storage type to meet bandwidth requirements, and matches the performance of AWS

ElastiCache Redis at 59% of the cost. Based on these works, using a mixture of storage types

31
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for inter-function communication is necessary to balance cost, performance, and scalability,

but our results demonstrate that network communication can achieve all of these properties

itself.

6.2 Serverless execution frameworks

With different approaches to handle scheduling, communication, and failures, there are mul-

tiple prior works that implement serverless execution frameworks for running distributed

applications. A commonality between the different frameworks is that for communication

between functions they all use object storage such as S3, in-memory databases such as Re-

dis, or a combination of the two. One of the foundational execution frameworks in the

field is PyWren [16], which provides a simple interface to map data using parallel tasks on

serverless functions. Functions read input data from and write their results to S3 object stor-

age, which the authors note is a bottleneck. PyWren is designed to support embarrassingly

parallel tasks and does not have built-in support for exchanging data between functions,

although applications could implement this themselves. There are several works that extend

PyWren, including IBM-PyWren [28], which ports it to IBM Cloud Functions and extends

it to run Map-Reduce jobs. In addition, NumPyWren [29] implements parallel linear alge-

bra algorithms on top of PyWren. Pérez et al. [24] develop a similar programming model

and implementation that make it simple to process S3 files using parallel functions. While

serverless functions are very well suited to run embarrassingly parallel applications, there

are several works that support more general purpose computation. For example, the gg

tool [12] supports jobs where the computation graph is not available before execution, while

managing function failures and stragglers. The authors demonstrate that it can compile

real-world software projects up to 5 times faster than a warm AWS EC2 cluster without
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the need for provisioning. To simplify application implementation, Kappa [38] presents a

programming interface using futures similar to standard concurrency programming models.

It also provides checkpointing of function results in order to allow failure recovery. Both the

gg and Kappa frameworks support either S3 or Redis as storage backends for communicating

data between functions. The Wukong [5] framework is distinguished in that it does not use a

centralized scheduler. Its worker functions manage scheduling themselves by either becoming

or invoking their successor functions, which improves scalability and data locality. Wukong

also uses a Redis cluster for inter-function communication. There are a variety of serverless

frameworks for parallel computation, but they all rely on object storage or memory-based

stores for transferring data between functions.

6.3 Serverless applications

Serverless computing supports a wide variety of data processing and analytics applications.

One strength of serverless computing is for embarrassingly parallel applications that need to

scale quickly. Zhang, Krintz, Mock, and Wolski [35] implement an application to find the

best hyperparameters for machine learning models while Zhang, Zhu, Zhang, and Liu [36] use

serverless for video processing and consider the effect of function size and type. Ali et al. [1]

use the inherent scalability of serverless combined with batching logic to efficiently perform

machine learning inference with bursty workloads. While there are many other works that

use serverless for straightforward data processing, some have more creative use-cases. Singhvi

et al. [30] develop a network middle-box framework by using functions to operate on packet

streams by dividing network flows into small time-limited chunks. By exploiting container

reuse policies, Wang et al. [34] use serverless functions to implement an in-memory cache
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with a pay-per-use cost model. Overall, the scalability and pricing structure of serverless

computing supports a broad range of applications.

6.4 FaaS platforms

Besides frameworks and applications that run on commercial serverless providers, there are

several works that improve the FaaS platform itself. To avoid the problem of copying data

to serverless functions, Zhang et al. [37] run functions directly on storage nodes to improve

locality and reduce latency. Thomas et al. [33] implement an overlay network for serverless

containers that reduces initialization time when many functions are started in parallel. Dukic

et al. [8] reduce memory usage and cold starts by sharing the application libraries and

runtime between multiple instances of the same function. In addition, Tariq et al. [32]

provide quality-of-service for invoking and scheduling functions with a front-end framework

to commercial FaaS platforms. To support large-scale scientific computing, Chard et al. [6]

develop a distributed FaaS platform that uses heterogeneous clusters and supercomputers as

function executors. All of these frameworks improve or extend the actual serverless execution

platform, which demonstrates some of the current limitations of existing FaaS providers.
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Conclusion

7.1 Limitations and future work

A major area for future work with our communication framework is providing failure detec-

tion and recovery. Our library currently does not implement a way to recover from connec-

tion or function failures and requires restarting the entire job. We believe that rerunning

a computation from the beginning will be sufficient for many serverless applications, espe-

cially since they tend to be short-lived due to the 15-minute maximum lifetime of Lambda

functions. The elasticity of serverless computing makes spawning new functions to restart

a job simple. Also, the delay in saving large amounts of intermediate results to durable

object storage would be prohibitive and defeat the purpose of using direct connections for

communications to begin with. Thus, using network connections prioritizes computation

speed at the cost of some reliability. The main times for potential failures in our design are

at function initialization, connection establishment, and during data processing. It would

be simple to add recovery logic to our library for the first two cases by invoking a replace-

ment function for the one that failed to connect. However, if a function failed during data

processing whether due to a connection reset, runtime error, or exceeding a resource quota,

whatever data was in its memory at the time is lost so it would be extremely difficult for the

remaining functions to recover. This kind of mid-computation recovery would be application

specific and difficult to implement without checkpoint to persistent storage. One approach

35
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that uses our communication library as-is would be to write an application in multiple stages

that run in series where each stage completely writes its output to persistent storage before

the next stage starts. This way, only a failed stage would need to be restarted instead of

the whole application. In practice, the main source of failures we saw during development

were caused by programming mistakes. At the scale we tested, we did not encounter any

consistent failures related to network connections or Lambda functions themselves. A topic

for further research would be to determine how larger or longer-running application are af-

fected by these issues and to implement a checkpointing or other recovery method for them.

Although our design using direct network connections loses some reliability because data

is not persisted in the case of failures, we believe the elasticity, performance, and simplic-

ity of only using network connections will outweigh this limitation for many applications,

especially short-lived or data intensive ones.

While the design of our communications library does have some limitations, our results pro-

vide a lot of potential for future work. Primarily, we hope that our library or direct network

connections in general can be used to improve the performance of serverless applications.

Also, it would be useful to verify that NAT traversal is possible on serverless providers be-

sides AWS Lambda and to port our communication library to them. A better solution would

be for serverless providers to support direct networking between multiple instances of a func-

tion, which would eliminate the need for NAT traversal in the first place. One restriction

with our framework is that the number of functions and their respective inputs and outputs

must be defined in advance for an application before execution. A possible improvement

would be to add the ability for functions to dynamically start successor functions and initi-

ate TCP connections with them during runtime such as in the design used by the gg [12] or

Wukong [5] frameworks. Despite these limitations, our communication library introduces a

fast, cost-effective, and scalable way for serverless functions to exchange data.



7.2. Summary 37

7.2 Summary

Our work implements the first serverless communication library that uses direct network

connections to transfer temporary computation data between functions. We use TCP hole

punching to bypass the AWS Lambda firewall, which restricts incoming connections. Our

communication library manages NAT traversal and connection setup and provides a interface

for developing serverless applications with network connections. Based on our experiments,

network communication is significantly faster and cheaper than writing and reading from

object storage. Using TCP also eliminates the cost and provisioning overhead of in-memory

databases. With its benefits for performance, cost, and scalability, we hope that our commu-

nication framework and NAT traversal technique can be used to improve existing serverless

computing applications and open the potential for new ones.
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