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Abstract

Rapid advances in machine learning have made information analysis more efficient than ever

before. However, to extract valuable information from trillion bytes of data for learning

and decision-making, general-purpose computing systems or cloud infrastructures are often

deployed to train a large-scale neural network, resulting in a colossal amount of resources in

use while themselves exposing other significant security issues. Among potential approaches,

the neuromorphic architecture, which is not only amenable to low-cost implementation, but

can also deployed with in-memory computing strategy, has been recognized as important

methods to accelerate machine intelligence applications. In this dissertation, theoretical and

practical properties of a hybrid neural computing architecture are introduced, which uti-

lizes a dynamic reservoir having the short-term memory to enable the historical learning

capability with the potential to classify non-separable functions. The hybrid neural com-

puting architecture integrates both spatial and temporal processing structures, sidestepping

the limitations introduced by the vanishing gradient. To be specific, this is made possi-

ble through four critical features: (i) a feature extractor built based upon the in-memory

computing strategy, (ii) a high-dimensional mapping with the Mackey-Glass neural acti-

vation, (iii) a delay-dynamic system with historical learning capability, and (iv) a unique

learning mechanism by only updating readout weights. To support the integration of neu-

romorphic architecture and deep learning strategies, the first generation of delay-feedback

reservoir network has been successfully fabricated in 2017, better yet, the spatial-temporal

hybrid neural network with an improved delay-feedback reservoir network has been success-

fully fabricated in 2020. To demonstrate the effectiveness and performance across diverse

machine intelligence applications, the introduced network structures are evaluated through

(i) time series prediction, (ii) image classification, (iii) speech recognition, (iv) modulation

symbol detection, (v) radio fingerprint identification, and (vi) clinical disease identification.
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General Audience Abstract

Deep learning strategies are the cutting-edge of artificial intelligence, in which the arti-

ficial neural networks are trained to extract key features or finding similarities from raw

sensory information. This is made possible through multiple processing layers with a colos-

sal amount of neurons, in a similar way to humans. Deep learning strategies run on von

Neumann computers are deployed worldwide. However, in today’s data-driven society, the

use of general-purpose computing systems and cloud infrastructures can no longer offer a

timely response while themselves exposing other significant security issues. Arose with the

introduction of neuromorphic architecture, application-specific integrated circuit chips have

paved the way for machine intelligence applications in recently years.

The major contributions in this dissertation include designing and fabricating a new class of

hybrid neural computing architecture and implementing various deep learning strategies to

diverse machine intelligence applications. The resulting hybrid neural computing architec-

ture offers an alternative solution to accelerate the neural computations required for sophis-

ticated machine intelligence applications with a simple system-level design, and therefore,

opening the door to low-power system-on-chip design for future intelligence computing, what

is more, providing prominent design solutions and performance improvements for internet of

things applications.
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Chapter 1

Introduction

1.1 Motivation

Emerging data processing capabilities are highly desired in our data-driven society. General-

purpose computers with the conventional von Neumann architecture have demonstrated

their exceptional performance when executing basic mathematical instructions. However,

the limitation of system buses between central processing unit (CPU), graphics processing

unit (GPU) and storage unit (e.g., flash memory) significantly reduces the computational

efficiency when dealing with highly sophisticated machine intelligence applications, such as

pattern recognition [1–4]. More importantly, the demand on computational resources and

energy has increased with the increasing demand for data density, especially in today’s data-

intensive environment. Such required resources and energy have become the burden to the

world’s energy consumption [5].

In our daily life, we are constantly impacted by sensory impressions, for instance, recognizing

familiar faces and hearing ongoing traffic. All these external impulses instantly produce a

huge neural activity in our brain. To be specific, when recognizing familiar faces or sound

from a crowd, our brain not only analyzes each trait, but also classifies and compares them

with the known ones. More importantly, our brain could recognize the scene from a fraction of

blurry images within a second, in which a classical computer takes minutes or even hours. It
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has been proved that our human brain is capable to constantly categorizing external impulses

in different patterns for analyzing and learning with merely 20W of power consumption [6],

which is more efficient than any supercomputers.

Emerged with the evolution of artificial intelligence (AI), deep learning strategies, taking ad-

vantages from human brains, provide systems the ability to automatically learn and optimize,

in a way that is sufficient by training a large-scale artificial neural network (ANN) with a

general-purpose learning algorithm. Throughout the development history of AI, deep learn-

ing strategies are optimized by utilizing high performance processors and big data [7–9].

Despite that the deep learning strategies have broken many performance records in ma-

chine intelligence applications, the general-purpose learning algorithm relied on the conven-

tional von Neumann architecture significantly restricts the computational efficiency [10–12],

more importantly, impeding such a powerful learning module to be deployed onto resource-

constrain or power-limited portable platforms.

Arose with the introduction of neuromorphic architecture [13], application-specific integrated

circuit (ASIC) chips have paved the way for deep learning strategies, accelerating the compu-

tational efficiency while reducing the hardware overhead. For instance, TrueNorth, fabricated

by IBM in 28nm process, demonstrates 25, 000× power reduction over the one used by a

classical computer [14,15]. Loihi, fabricated by Intel in 14nm process, demonstrates 1, 000×
speedup with 100× power reduction over CPU [16]. Moreover, a specialized ASIC-based

convolutional neural network (AlexNet), fabricated by Stanford University in 45nm process,

demonstrates 189× speedup with 24, 000× power reduction over CPU and 13× speedup

with 3, 400× power reduction over GPU [17]. Last but not least, Tianjic, fabricated by

Tsinghua University in 28nm process, demonstrates 100× throughput enhancement with

10, 000× power efficiency acceleration over GPU [9,18].

In general, many learning algorithms used in deep learning strategies utilize some version of

gradient descent during the training operation, and yet, such approaches are complicated by

the vanishing gradient problem while themselves consuming a colossal amount of computa-

tional resources (e.g., the storage capacity and the memory bandwidth during the operation).

To this end, it is crucial to investigative a new class of neuromorphic architecture with a

computational-efficient processing structure and learning algorithm.
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1.2 Research Contribution

During my Ph.D study, my research aims to bridge the neuromorphic architecture and deep

learning strategies by designing and fabricating a new class of hybrid neural computing

architecture. To be specific, I introduce a spatial-temporal hybrid neural network built

upon a delay-feedback reservoir network with a unique learning algorithm, reducing the

implementation complexity of deep learning strategies on ASIC chips, while exhibiting a

competitive accuracy across diverse machine intelligence applications. Major contributions

are summarized as follows:

1. Design and Fabrication of Delay-Feedback Reservoir Network

My goal in this project is to design a new class of nonlinear neural activation and

spiking neurons for the reservoir computing network (RCN) and to explore the appli-

cations of RCNs in time series prediction and facial recognition. The insight of my

approach is to adapt by simplifying the conventional RCNs through a single nonlinear

neural activation and a delay-feedback topology with a chain of spiking neurons. The

resulting delay-feedback reservoir (DFR) network has been successfully fabricated in

GlobalFrondries 130nm BiCMOS process.

2. Investigation of Neuromorphic Architecture with Memristive Synapses

In this project, my goal aims to design a convolution-immersed DFR (Ci-DFR) network

with emerging memristor devices as electronic synapses, enabling a new computing

solution for neuromorphic architecture with extremely high efficiency. The resulting

Ci-DFR network has been successfully implemented on a printed circuit board with

discrete memristor devices.

3. Design and Fabrication of Spatial-Temporal Hybrid Neural Network

To support the integration of neuromorphic architecture and deep learning strate-

gies, my goal in this project is to build a new class of hybrid neural network (HNN)

by integrating both spatial and temporal information processing capabilities with the

unique nature from DFR network. My techniques involve integrating the multilayer

perceptron (MLP) and the DFR network to improve the network’s learning capabil-

ity, utilizing the in-memory computing strategy to accelerate the neural computations,
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and adopting the unique learning mechanism to sidestep the vanishing gradient prob-

lem. The resulting spatial-temporal HNN (STHNN) has been successfully fabricated

in GlobalFrondries 180nm CMOS process.

4. Implementation of Spike-Timing-Dependent Plasticity

In the endeavor to accelerate the training efficiency, my goal in this project is to adapt

the neural activity (i.e., spikes) to carry out the training operation without the need

of data conversion. My approach is to design a new class of training circuits and

systems by utilizing the spike-time-dependent plasticity (STDP) topology with the use

of supervised learning framework. The resulting STDP training circuits and systems

are designed and optimized in GlobalFrondries 180nm CMOS process.

5. Deployment of Deep Learning Strategies on Internet of Things

My goal in this project is to explore the applications of deep learning strategies on inter-

net of things (IoT) applications, including communication and healthcare. More specif-

ically, my approach is to deploy various deep neural network (DNN) models for mod-

ulation symbol detection in 5G multiple-input multiple-output orthogonal frequency-

division multiplexing (MIMO-OFDM) systems, radio fingerprint identification in over-

the-air WiFi environments, and clinical disease identification in healthcare.

The rest of this dissertation is organized as follows: Chapter 2 provides an overview of

neuromorphic architecture and deep learning strategies. Chapter 3 and Chapter 4 exhibit

the design solution for high-performance DFR network and neuromorphic architecture with

reconfigurable memristive synapses, respectively, followed by the design strategy of STHNN

with in-memory computing acceleration in Chapter 5. The implementation of deep learn-

ing strategies on IoT applications is discussed in Chapter 6, and the dissertation is then

concluded in Chapter 7.
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Chapter 2

Programming versus Deep Learning

Benefited by the Moor’s Law, general-purpose computers built based upon the von Neumann

architecture have been deployed worldwide in past several decades [19]. The success in the

development was firstly enabled by doubling the computational performance, followed by

the multi-core computing architecture [20]. However, the fact that separating the location

of processing units and memory storage significantly restricts the computational efficiency,

especially in today’s data-driven society. This is where neuromorphic architecture comes

into help, in a way that is sufficient by training large-scale artificial neural networks (ANNs)

with a colossal amount of data, replicating the way that we humans learn.

2.1 Neuromorphic Architecture

With merely 20W of power consumption, our human brain is capable to process raw sen-

sory impulses to enable learning and analyzing activities. More importantly, our humans

along with other mammalian creatures are capable to adapt their behaviors according to

environment changes with a unique historical self-learning capability. These advantages are

attributed from the parallel operation in low frequency. Compared to conventional von

Neumann computers based on arithmetic operations, the unique signal processing natures in

mammalian brain are fundamentally different, as summarized in Table 2.1. Such distinctions
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Table 2.1: Comparison of von Neumann computer to human brain.

Von Neumann Computer Human Brain

Processing Elements
central processing unit

(CPU)
soma

Computing Units
arithmetic logical unit

(ALU)
artificial neuron

Memory Storage random-access memory synapses

Signal Transmission system buses dendrites and axons

Transmission Scheme one-to-one many-to-many

Format of Signal binary spike

Learning Mechanism pre-programmed instructions self-learning

Level of Complexity low high

Operating Frequency high (within GHz range) low (within kHz range)

Power Consumption high (within kW range) low (≈ 20W)

of processing structure and working mechanism result in a performance difference between

von Naumann computers and human brain. As the development of von Naumann comput-

ers on machine intelligence applications is suffered by the computational resources spent on

data transmission [21], it is essential to develop a novel computing architecture, in a way to

replicate the working mechanism of our human brain.

The concept of neuromorphic architecture was developed by Dr. Carver Mead in 1980s [13],

replicating the natural neuro-biological behaviors with very large-scale integration (VLSI)

technology and highly parallel computing architectures. This is made possible by rebuilding

three critical components: (i) neuron, (ii) synapse, and (iii) network structure.

General architectures of von Neumann computers and ANNs are depicted in Fig. 2.1. In

a classical von Neumann computer, raw sensory inputs are digitized and subsequently pro-

cessed by a set of pre-programmed instructions through arithmetic logical units (ALUs),

which are usually executed by a combination of logical blocks [22–24]. After a series of exe-

cutions, the computed digitized information is then converted back into analogue signals for
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(a)

(b)

Figure 2.1: General architectures of (a) von Neumann computers with pre-

programmed instructions and (b) artificial neural networks with self-learning

capability.
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Table 2.2: Overview of key features on contemporary neuromorphic chips.

SpiNNake

[25]

Neurogrid

[26]

TrueNorth

[14]

Loihi

[16]

Technology 130nm 180nm 28nm 14nm

# of Neurons 20,000 65,000 1 million 130,000

Design Strategy – analog digital digital

# of Synapses 20 million – 256 million 130 million

Silicon Area 102mm2 168mm2 430mm2 60mm2

Neuron Density 204 per mm2 390 per mm2 2,438 per mm2 2,184 per mm2

Synapse Density
0.2 million

per mm2
–

0.6 million

per mm2

2.1 million

per mm2

Power Density 0.012mW/mm2 18mW/mm2 0.15mW/mm2 –

visualization. ANNs, on the other hand, are capable to generate a general solution by learn-

ing a colossal amount of problems without any predefined instructions. More importantly,

analogue information can be processed without digitization. Machine learning algorithms

are what underlies ANNs, implementing a general-purpose learning algorithm that allow

ANNs to automatically learn and optimize.

The methodology behind ANNs is that a network is built upon layers of neurons with in-

terconnected electronic synapses. In general, raw sensory information propagates between

neurons while having an appropriate scaling with weights and a nonlinear transformation.

The final outcomes are influenced not only by the nonlinear transformation, but also by the

way that the electronic synapses are interconnected. In other words, the output can be ma-

nipulated by adapting the strength of electronic synapses. Such a manipulating mechanism

can be seen as the training operation, while the neural-like computing structure is generally

referred to the neuromorphic architecture.

Neuromorphic architecture, also referred to the cognitive computing systems in recent years,

exhibits a path of designing a high-performance and high-efficient computing system, specifi-

cally targeted on accelerating computational efficiency while reducing the hardware overhead
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for machine intelligence applications [9, 14, 16, 25–46]. An overview of key features on con-

temporary neuromorphic chips is summarized in Table 2.2.

2.2 Deep Neural Network

Deep learning strategies are the cutting edge of artificial intelligence (AI), in which ANNs

are trained to extract key features or finding similarities from raw sensory information. This

is made possible through multiple processing layers with a colossal amount of neurons, that

is, deep neural networks (DNNs) are what underpins deep learning strategies.

The general structure of DNNs can be represented as a hierarchical organization of neurons

interconnected by electronic synapses. By concatenating layers of neurons in a processing

pipeline, a complex network is created to carry out neural computations and to learn with

some feedback mechanisms. To be specific, a neuron is activated and passes computed

information to others only if the incoming signal results in a value greater than certain

threshold, otherwise ignored. The incoming signal to a neuron is influenced by the computed

signals from its former layer and the associated synaptic weights. In a DNN, initial synaptic

weights are all random but during the training operation, these synaptic weights are updated

interactively, in a way that is sufficient by learning to predict a correct output.

Depending on network configurations, the structure of DNNs can be generally categorized

into two aspects, i.e., the feedforward neural networks (FNNs) and the recurrent neural net-

works (RNNs). The former aims to extract key features from static data (e.g., images) while

the latter aims to discover similarities from temporal information (e.g., speech). In recent

machine intelligence applications, DNNs can represent functions of increasing complexity by

deploying more hidden layers and associated neurons.

2.2.1 Feedforward Neural Network

In the FNN family, neurons are divided into separate sequence layers while signal can only

be propagated forward without internal loops. Each layer simply executes the operation of
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Figure 2.2: General processing structure of feedforward neural network.

hl =

f(x ·Win + bin), if l = 1,

f(hl−1 ·W l
h + blh), otherwise,

(2.1)

where f() is a nonlinear neural activation, x is a set of input vectors, l indicates the l-th

hidden layer, Win and Wh denote input weights and internal weights, respectively, and b is

bias vectors. The output state can be then calculated as

ŷ = g(hlast ·Wout + bout), (2.2)

where g() is the softmax function to compute the probability distributions of a given input,

hlast is network states in the last hidden layer, and Wout is output weights. The resulting

output only contains information of a single trajectory of input history, and thus, such a

computing structure is designed to process static data. Multilayer perceptron (MLP) and

convolutional neural networks (CNNs) are quintessential models in the FNN family. The

former is only made of dense layers, while the latter is made of convolutional layers, pooling

layers and dense layers. With the capability of capturing both spatial and temporal depen-

dencies, CNNs perform a better design solution for filtering images, and thus, understanding

the sophistication of images better. Despite that CNNs have broken many performance
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records in pattern recognition [7, 47–57], the network’s accuracy and the training time are

significantly impacted by the number of convolution layers and kernels.

2.2.2 Spiking Neural Network

In the endeavor to integrate neuroscience and deep learning strategies, DNN models in recent

years aim to create a network that replicates the behavior of brain cortex. By incorporat-

ing with the discrete event-driven processing structure, spiking neural networks (SNNs), a

new class of FNN, propagates neural information through biologically-realistic signals (i.e.,

spikes), as demonstrated in Fig. 2.3. Essentially, SNNs take advantages of specialized net-

work topology, exhibiting favorable properties in neural circuits and systems [58, 59]. In

recent machine intelligence applications, SNNs have been proven to be a powerful network

model in the domain of pattern recognition [60–65]. However, SNNs are not differentiable,

where the gradient descent cannot be adapted for the training operation, otherwise losing

the precise temporal information within spikes. Such training properties significantly limit

the performance of SNNs in real-world applications.

Figure 2.3: General operating principle of spiking neural network.

2.2.3 Recurrent Neural Network

By contrast, RNNs are built upon FNNs with recurrent connections added to the hidden

layer, as shown in Fig. 2.4. Each neuron within the hidden layer has a feedback loop to

create a dynamical memory, and thus, having a similar temporal dynamic as in SNNs [66].

With the recurrent nature, the state of network are influenced not only by the present input,
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but also by the context based on historical information stored in the network itself, which

can be expressed as

ht = f(xt ·Win + ht−1 ·Wh + bh), (2.3)

where xt is the input at present time, and ht−1 is the state of network at previous computing

cycle. The output state of RNNs at present time can be then calculated with the same

correlation as in FNNs, as depicted in Eq. 2.2.

Figure 2.4: General processing structure of recurrent neural network.

With the implementation of an interacting cell and several regulating gates built upon the

classical RNN model (known as vanilla RNN [67]), both long short-term memory (LSTM) [68]

and gated recurrent unit (GRU) [69] have the capability to determine how much of each in-

formation should be passed forward or removed. Such a learning mechanism enables both

LSTM and GRU to have a better control-ability and performance over vanilla RNN. Be-

yond that, the Hopfield network demonstrates the capability to emulate the human memory,

offering the content-addressable (i.e., associative) memory natures during the training op-

eration [70]. Because of the sequential nature of recurrent connections, RNNs are widely

deployed in temporal-related applications, such as time series prediction, speech recognition,

and natural language processing [12, 71–78]. Nevertheless, the highly nonlinear nature of

RNNs has become a major factor that limits the computational efficiency on the training

operation. What is more, the required computational resources lead to a significant hardware

overhead, impeding such powerful computing modules to be deployed onto resource-constrain

or power-limited portable devices.
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2.2.4 Reservoir Computing Network

Reservoir computing networks (RCNs) are a recently introduced deep learning paradigm

that is built by simplifying the processing structure based on classical RNNs [79–85]. The

concept underlying RCNs is the mechanism that our human brain process information by

producing patterns of transient neuronal activity [86]. A general RCN consists of three

computing layers as in classical RNNs, in which the reservoir layer is built with a group

of sparsely-connected neurons, as depicted in Fig. 2.5. The state of reservoir dynamics

expresses a similar correlation as in classical RNNs, which can be written as

ht = f(xt ·Win + ht−1 ·Wres + yt−1 ·Wfb), (2.4)

where yt−1 is the output state at previous computing cycle, Wres is specialized internal

weights, and Wfb denote feedback weights from the output layer to the reservoir layer. The

output state of the network can be also calculated with the same correlation as in FNNs, as

depicted in Eq. 2.2.

Figure 2.5: General processing structure of reservoir computing network.

In classical RNNs, all weight matrices and bias vectors are needed to be trained. By contrast,

RCNs take the advantages from linear algorithms, in a way that is sufficient by only training

the linear readout weights. In order to properly compute the reservoir principle, internal
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weights in the reservoir layer are must initialized according to the echo state property (ESP)

[87], which can be expressed as

Wres :=
|λmax(Wres)|

σ
·Wres, (2.5)

where |λmax(Wres)| is the absolute maximum eigenvalue of Wres ∈ [−1, 1], and σ < 1 denote

the spectral radius. Once Win and Wres are initialized, these weighted values remain fixed

for the entire simulation.

High-dimensional mapping and fading memory are two other critical properties for comput-

ing the reservoir principle. The former aims to nonlinearly project sequential inputs onto a

higher dimensional space to enhance the network’s separability, while the latter adopts the

historical learning mechanism as in classical RNNs to improve the network’s learning capa-

bility. High-dimensional mapping is the key operation in RCNs for separating random inputs

into different categories. As illustrated in Fig. 2.6, two various objects cannot be linearly

separated in a low-dimensional space. By contrast, the network’s separability optimizes ac-

cordingly as inputs are projected onto a higher dimensional space (e.g., from two-dimensional

to three-dimensional), and thus, separating two various objects with a linear hyperplane.

Figure 2.6: Illustration of high-dimensional mapping.

The echo state network (ESN) [79] and the liquid state machine (LSM) [80] are the two

well-known RCN paradigms. In general, the use of signal topology is the major attribute

that set these two models apart, where numeral numbers are adopted in ESN while spikes

are adopted in LSM. In recent machine intelligence applications, it has been found that the
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performance metrics of RCNs outperform classical RNNs by three-order of magnitude more

accurate in time series prediction [45, 82]. Better yet, RCNs have also proven their benefit

in speech recognition [88–92], optical character recognition [93,94], grammar modeling [95],

noise modeling [96], and robotics [97–100].

2.3 Nonlinear Neural Activation

In DNN designs, the correlation between pre-neuron and post-neuron activities is generally

defined by a nonlinear activation function (NNA), mapping the resulting values within [0, 1],

[−1, 1], etc. based upon applications.

2.3.1 Unit Step Function

In the past century, the unit step function, as shown in Fig. 2.7a, was firstly introduced as

a NNA [101], which can be expressed as

fstep(x) =

0, if x < 0.

1, otherwise.
(2.6)

The unit step function is widely adopted in SNNs, allowing spiking neurons to be activated

only if the incoming signal results in a value grater than a specific threshold. However, as

the unit step function is not differentiable and immutable, such a function cannot be applied

in classical FNNs and RNNs.

2.3.2 Rectified Linear Unit

The rectified linear unit (ReLU) [102] is the most commonly used NNA in recent machine

intelligence applications, more specifically, in FNNs. The ReLU function, as depicted in Fig.

2.7b, ranges within [0,∞], which can be written as
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fReLU(x) = max(0, x). (2.7)

The ReLU function is monotonic and differentiable, where its derivative can be denoted

using a unit step function as presented in Eq. 2.6. In practice, the fact that forcing all

negative values to zero significantly reduces the network’s learning capability, known as

the dying ReLU problem [103]. To be specific, synaptic weights will not be updated and

corresponding neurons will stop responding to variations in gradient errors, because the

gradient goes towards zero during the training operation.

(a) (b)

(c) (d)

Figure 2.7: Common nonlinear activation functions and their derivative on (a)

unit step, (b) rectified linear unit, (c) sigmoid, and (D) hyperbolic tangent.
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2.3.3 Sigmoid and Hyperbolic Tangent

By contrast, sigmoid and hyperbolic tangent (tanh) are the most commonly used NNAs in

RNNs, as demonstrated in Fig. 2.7c and 2.7d, respectively, in which tanh is antisymmetric

with respect to the origin. The mathematical representation of sigmoid function and its

derivative can be expressed as

fsigmoid(x) =
1

1 + e−x
, (2.8)

f ′sigmoid(x) = fsigmoid(x)(1− fsigmoid(x)), (2.9)

while the mathematical representation of tanh function and its derivative can be denoted as

ftanh(x) =
ex − e−x

ex + e−x
. (2.10)

f ′tanh(x) = 1− ftanh(x)2 (2.11)

It has been proven that the tanh function converges faster than the sigmoid function [104].

However, both sigmoid and tanh functions are suffered from the vanishing gradient problem

[105]. Such a property indicates that the gradient towards either end of these functions tends

to respond very less to change, and therefore, slowing down the learning operation or even

refusing the network to learn.

2.4 Training Algorithm

DNNs simply carry out the neural computations based on their network structure, in which

the resulting outputs would be a classification or a prediction. Based upon the resulting

outputs, some feedback mechanisms can be applied to enable the learning operation, allowing
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the network to improve so as to classify or predict better. Such a learning operation is

adapted by updating synaptic weights between neurons and hidden layers, in a way to

minimize the cost function, which can be generally defined as

C = cost(y, ŷ) (2.12)

where ŷ denotes the predicted output from network, and y denotes the expected outcome.

Several cost functions can be adapted during the learning operation, such as the empirical

loss, the mean square error, the cross-entropy loss, etc.

Figure 2.8: Applying gradient decent training algorithm to minimize the loss.

The backpropagation algorithm, as depicted in Fig. 2.8, aims to minimize the cost function

by optimizing synaptic weights and bias vectors with some version of gradient descent with

respect to a learning rate of η, which can be generally written as

W := W − η ∂C
∂W

, (2.13)

b := b− η∂C
∂b
. (2.14)
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In general, the bigger the gradient, the bigger the adjustment to synaptic weights and bias

victors, or vice versa. In practice, such a method would be suffered by the vanishing gradient

problem [106]. To be specific, as the gradient of cost function propagates recursively back-

ward, the resulting gradient will gradually shrink. More importantly, as the network gets

deeper, the gradient presented in the earlier layers will be plainly small or even non-existent,

and thus, slowing down the learning operation or even refusing the network to learn. Nev-

ertheless, the backpropagation algorithm is still the most powerful and successful training

algorithm for DNNs.
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Chapter 3

High-Performance Delay-Feedback

Reservoir Network

3.1 Introduction

Deep neural networks (DNNs) have matured to provide intelligence systems that replicate

the neural-biological processes of our human brain, demonstrating remarkable success across

diverse machine intelligence applications. A pristine DNN with a colossal amount of neurons

is not capable to generate a general solution until its synaptic weights are properly trained

by tremendous amount of data. That is, the capability of DNNs deployed for real-world

applications is associated not only with the network structure, but also with the data vol-

ume [107–109]. It can be observed from Fig. 3.1 that the data volume used for big data

analytic has explosively increased over the past decade [110], potentially improving the ca-

pabilities of DNNs. Nevertheless, the demand on computational resources and energy has

significantly increased with the increasing demand for data volume. To this end, it is essential

to investigate a new class of neuromorphic architecture with a simple processing structure,

high reliability and low power consumption.

Reservoir computing networks (RCNs), an emerging machine learning paradigm, are built

based upon the classical recurrent neural networks (RNNS), in which the echo state network
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Figure 3.1: Global growth trend of data volume over the past decade.

(ESN) [79] and the liquid state machine (LSM) [80] are deployed to keep pace with the

explosive escalation of data density on machine intelligence applications. The internal layer

of RCNs is built of sparsely connected neurons with fixed synaptic weights, and thus, the

learning operation is hereby carried out by only updating the linear readout weights. RCNs,

in recent years, have been fully developed in both software (e.g., TensorFlow, PyTorch, Caffe,

etc) and hardware (e.g., field programmable gate array (FPGA)), and have demonstrated

their advantages over classical RNNs across diverse machine intelligence applications [90,

111–114]. Despite that the RCNs offer significant reduction on training complexity while

yielding a competitive classification or prediction accuracy, the fact that realizing a colossal

amount of nonlinear neurons in hardware is still suffered from the computational cost and

design overhead.

A key finding emerged that the our human brain operates in the transition regime between

periodic and chaotic [115], known as the edge-of-chaos [116], leading to more advanced

information processing capabilities. Such a hypothesis can be also deployed in DNNs with the

introduction of delay-feedback systems and time-multiplexing, particularly suitable for RNNs

due to the recurrent nature [117]. It has been proven that the computational performance in

targeted systems can be significantly improved with the embedded edge-of-chaos computing

characteristic [118,119].
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My goal in this project is to design a new class of nonlinear neural activation and spiking

neurons for the delay-feedback reservoir network and to explore the applications of RCNs

in time series prediction and facial recognition. The insight of my approach is to adapt

by simplifying the classical RCNs through a single nonlinear neural activation and a delay-

feedback topology with a chain of spiking neurons. Major contributions of this project are

summarized as follows:

• A novel design solution for delay-feedback reservoir network built based upon a delay-

dynamic architecture with the time-multiplexing characteristic, exhibiting a rich dy-

namic behaviors by varying the network dynamic in between periodic and chaotic.

• A prototype fabrication with fully-analog components, yielding an average power con-

sumption of 529µW. To the best of our knowledge, this fabricated prototype is the

first implementation of delay-feedback reservoir network with analog integrated circuit

(IC) design technique.

• Up to 6.79× error reduction over the state-of-the-art RCN models on a time series

prediction benchmark.

• A classification accuracy of 98% on facial recognition, yielding 26 percentage points

more robust against noise compared to the multilayer perceptron.

The rest of this chapter is organized as follows: Section 3.2 provides an overview and related

works of RCNs. The design methodology of the introduced delay-feedback reservoir network

and the performance evaluations of the fabricated prototype are discussed in Section 3.3 and

Section 3.4, respectively, followed by the software-based experimental evaluations in Section

3.5. This chapter is then concluded in Section 3.6.

3.2 Time-Delay Reservoir Network

Nonlinear systems with a delay-feedback coupling can be referred to a class of dynamic

systems, which are ubiquitous in a variety of real life systems [120]. Such behaviors can
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be found in the transport of substances, the conduction time of nerves, the regulation of

gene, etc [121]. With the everlasting enthusiasm of neuroscience, a key finding emerged

that our human brain operates in the transition regime between periodic and chaotic. To

support the integration of neuroscience and DNNs, such a dynamic variation nature is hereby

deployed in RCNs with the capability to improve the computational performance. From the

mathematical point of view, the transition of system dynamic can be controlled by varying

the timing-coefficient of a delay-feedback system [118]. Such a property is described by the

delay differential equations, defining a system in which the dynamics depend on both present

and previous states, and changing its dynamic behaviors accordingly as the delay varies.

Figure 3.2: General processing structure of time delay reservoir network.

The delay-feedback system is expected to be the most suitable architecture in RCNs because

of its nonlinear transformation and high-dimensional mapping natures. With the introduc-

tion of time-multiplexing deployed on a delay-feedback system, the reservoir dynamics are

hereby given by a single nonlinear neural activation and a delay-feedback loop, as demon-

strated in Fig. 3.2. Such an evolutionary structure is referred to the time-delay reservoir

(TDR) network, in which the state of reservoir dynamics can be simplified as

ht = f(xt ·MK + ht−1), (3.1)

where MK is a mask function, in which the time length per frame is identical to the time

interval between neurons in the delay-feedback loop. The mask function introduces the time-

multiplexing with random scaling factors to inputs, ensuring that the system always resides
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in the temporal domain. Along the delay-feedback loop, the temporal separation together

with the short-term memory experience the high-dimensional mapping with the potential to

classify otherwise non-separable functions.

Such a delay-feedback-immersed RCN significantly reduces the design complexity of DNNs

in application-specific integrated circuit (ASIC) chips with analogue hardware in either elec-

tronically [27, 88, 112, 113, 122–125] or optically [126–133]. For instance, in [112], a LSM

model is implemented with 135 neurons in a FPGA for pattern recognition, yielding a recog-

nition accuracy of 96.4%. Moreover, in [113] and [123], two different LSM models with 200

and 343 neurons, respectively, are implemented in a FPGA for speech recognition, yielding

a recognition accuracy of 95% and 99.79%, respectively. Last but not least, in [124], an ESN

model is implemented in a FPGA for time series prediction, yielding a mean square error as

low as 2.39× 10−4.

The photonic implementations of TDR Network introduce the phenomenon of optical chaos,

attracting wide-spread attention in recent years. For instance, [128] and [130] introduce a

photonic implementation of TDR network with the semiconductor optical amplifiers (SOAs),

offering a high-speed optical information processing. More importantly, photonic devices are

nonlinear in nature, potentially reducing the hardware overhead. Nevertheless, the photonic

implementation often requires expensive peripheral devices, such as digitizer and waveform

generator, resulting in a lower mobility.

On the other hand, digital IC implementations offer compact design area, low power con-

sumption and noise immunity. For instance, [88] and [125] introduce a digital TDR network

built with discrete components, demonstrating a potential implementation capability of TDR

network with very large-scale integration (VLSI) circuits and systems. However, real-time

operations require the interface with raw sensory information in an analog format, and there-

fore, power-hungry peripherals are necessary, for instance, operational amplifiers, analog-to-

digital converters (ADCs), digital-to-analog converters (DAC), etc. By contrast, analog IC

implementations process analog signals directly without the need of data conversions, hence,

significantly reducing the design complexity and hardware overhead. More importantly, ana-

log implementations closely mimics the physical characteristic of neurological systems, in a

similar way that how we human brain process information.
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3.3 Design Strategy of Delay-Feedback Reservoir Net-

work

3.3.1 Network Architecture

An overview of the delay-feedback reservoir (DFR) network is demonstrated in Fig. 3.3. The

DFR network is built based upon the conventional TDR network, comprising of a temporal

encoder and a dynamic reservoir layer with the delay-feedback topology.

Figure 3.3: System-level architecture of delay-feedback reservoir network.

Unlike the classical TDR network, the masking interface is substituted by a temporal encoder

[134–136] in the introduced DFR network, relating input with time-multiplexing nature while

representing the post-neuron signals by an inter-spike-interval (ISI) temporal spike train. To

be specific, the carried information from raw sensory inputs is encoded into the time intervals,

Di, between spikes, which can be written as

Di = st+τ (Cm, Vth)− st(Cm, Vth), (3.2)

where st+τ and st denote the firing time of spikes presented at time t+ τ and t, respectively,

which can be generally expressed as
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s(Cm, Vth) = Cm ·
Vth

Iin − Ileak
, (3.3)

where Cm denotes the membrane capacitance, Vth denotes the firing threshold, Iin and Ileak

denote raw sensory input and leakage currents, respectively. Such an encoded ISI spike train

allows each spike to be the reference frame with respect to each other, as depicted in Fig.

3.4, conveying more information for latter computations.

Figure 3.4: Illustration of temporal encoder and the fabricated prototype.

The processing structure of the dynamic reservoir layer in the introduced DFR network is

built and optimized based upon the classical TDR network implementation strategy, com-

posing of a sigmoid nonlinear neural activation (NNA), an analog-to-spike (A/S) encoder,

a dynamic delay-feedback loop (DFL) with a delay calibration module, a spike-to-analog

(S/A) decoder, and an analog adder. During the operation, time intervals between spikes

on an ISI temporal spike train from the input encoder are fetched into the sigmoid NNA to

carry out the nonlinear transformation. The selected activation data are then digitized back

into the a temporal spike train by the A/S encoder, propagated along the dynamic DFL,

and eventually integrated with the next incoming input to create the short-term memory.

Such a property establishes connections within the context of data, enabling the historical

learning capability, which can be expressed as

ht = f((1− α) ·Di
t + α · ht−1). (3.4)
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To minimize the information lost during computations, the dynamic DFL is built followed

by a S/A decoder and a signal gain regulator, α, ensuring that the new incoming input is

dominant. Moreover, to realize a variety of dynamic behaviors with respect to the time-

multiplexing, a controllable delay calibration module is deployed to regulate the timing-

coefficient along the dynamic DFL. Last but not least, by adopting the spiking information

processing technique, the introduced DFR network not only enables a novel design solution

for TDR network with analog IC implementations, but also eliminates the complex data

conversion, and thus, power-hungry peripherals are unnecessary, potentially making the

system suitable for large-scale DNN designs.

3.3.2 Learning Rule

During the training operation, the trajectory of reservoir dynamics is computed by feeding

the training samples, {xj}mj=1, where m is the input dimension. As the outcomes, a set of

internal states, {ht}mt=1, is obtained. Consequently, optimal output weights can be calculated

directly through the Tikhonov regularization, which can be defined as

Wout = Y · S ′ · (S · S ′ + η · I)−1, (3.5)

where S ′ represents the transpose matrix of reservoir dynamics S = [h0, h1, · · · , hn], Y =

[y0, y1, · · · , yn] is the target output, n is the number of training samples, η ≥ 0 is a constant,

and I is the identity matrix with the same size of reservoir state. The general learning

operation of the introduced DFR network is summarized in Algorithm 1.

3.3.3 Hardware Implementation

Sigmoid Nonlinear Neuron Activation

It can be observed that the sigmoid NNA is a critical module that plays an important role in

the operation of high-dimensional mapping. The simplified design scheme of sigmoid NNA

is depicted in Fig. 3.5.
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Algorithm 1: Delay-Feedback Reservoir Network

Data: x = [n,m], y = [n, u], scaling = α

Result: Wout

initialization

for i→ 1 to n do

for ii→ 1 to m do
Dt = st+τ (mii)− st(mii)

end

return Dt

for ii→ 1 to Dt do
ht = f((1− α) ·Dt + α · ht−1 + bh)

end

end

return ht

S = [h0, h1, · · · , hn]

Y = [y0, y1, · · · , yn]

Wout = Y · S ′ · (S · S ′ + η · I)−1

Figure 3.5: Design scheme of sigmoid nonlinear neural activation.
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The nonlinear transformation is achieved by sensing the voltage level of inputs, Vin, through

the nonlinear transformer, as shown in the dashed box in Fig. 3.5. In the resetting phase,

the input, Vin, is set to be VDD. Such a high voltage disables the input trigger, M1 &

M2, and discharges the nonlinear transformer, thereby, the output remains at 0V. In the

decision-making phase, the nonlinear transformer continuously tracks the variations of input

and charges up its intrinsic capacitor to regulate Vg. When Vg > Vth,M7, the drain-to-source

voltage of M5 increases accordingly and eventually reaches its saturation region, and thus,

the diode-connected M6 fully enables the output current mirror, M6 & M8, to generate the

corresponding output current. In the meantime, the feedback current mirror, M3 & M4,

induces a high voltage at Vfb to disable the input trigger, and therefore, fully resting the

NNA until the arrival of next input. As such, the nonlinear transformation for one input

sample is accomplished.

Delay-Feedback Loop with Integrate-and-Fire Neurons

With the embedded delay characteristic, the dynamic behaviors of a system change accord-

ingly as the delay varies. Such a property can be realized by a dynamic DFL, which is built

of multiple integrate-and-fire (IF) neurons, as depicted in Fig. 3.6.

During the operation, the membrane capacitor, Cm, continuously tracks the variations of

current that is generated from the delay calibration module and charges up its potential.

When the voltage potential across the membrane capacitor, Vth, exceeds the firing threshold

of input transistor, M1, two cascading inverters, M3 & M4 and M7 & M8, fire a spike as

output. In the meantime, the positive feedback loop, M5 & M6, induces a high voltage at

Vreset, enabling the resetting transistor, M11, to fully discharge the membrane capacitor. As

such, the firing process for one output spike is accomplished.

In a typical IF neuron, the firing time, τfire, depends on the total integration time over

the membrane capacitor, which can be controlled by the current conducted from the delay

calibration module, Ical. Such a property can be denoted with the similar correlation as in

Eq. 3.3, which can be written as
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Figure 3.6: Design scheme of integrate-and-fire neuron.

Figure 3.7: Operating principle of dynamic delay-feedback loop.
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τdelay = Cm ·
Vth
Ical

. (3.6)

In general, the mathematical model of timing-coefficient on a delay system is represented by

the product of resistance and capacitance (e.g., τ = R · C). The equivalent input resistance

of an IF neuron can be defined as Rin = Vth
Ical

, and thus, the firing time (also referred to the

timing-coefficient) can be then simplified as

τdelay = Cm ·Rin. (3.7)

Compared to the classical RC delay that is built upon a large silicon area of resistors and

capacitors, the IF neuron is capable to process spiking information directly with a superior

dynamic range of controllable timing-coefficient and a small silicon area.

The dynamic DFL is obtained by dividing the total timing-coefficient, T , into N equidistant

IF neurons with an identical timing-coefficient, as depicted in Fig. 3.7. During the operation,

the output spike train generated from a neuron is adopted as the clock triggering signal to its

following. To be specific, when the temporal spike train is generated from the first neuron,

N1, it resets its following neuron, N2. In the meantime, the voltage potential across the

membrane capacitor of N2 starts to charge up. Over the period of τdelay, N2 fires a spike as

output, introducing a delay to the input spike train.

Delay Calibration

To realize a variety of dynamic behaviors with respect to various timing-coefficients, a con-

trollable delay calibration module, as shown in Fig. 3.8, is deployed to regulate the timing-

coefficient along the dynamic DFL. The delay calibration module is built based upon a

voltage-to-current converter. The current mirror array, as shown in the dashed box in Fig.

3.8, keeps tracking the variations between the input, Vcal, and the feedback voltage, Vfb, and

linearly generates the corresponding calibration current, Ical, which can be expressed as
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Ical = (Vcal − Vfb) · gm, (3.8)

where gm is the trans-conductance of the operational amplifier. The current mirror array is

optimized with identical design parameters, ensuring that the calibration currents for each

IF neuron along the dynamic DFL are also identical.

Figure 3.8: Design scheme of delay calibration module.

3.4 Performance Evaluation of Fabricated On-Silicon

Prototype

A small-scale prototype of the introduced DFR network has successfully fabricated in Glob-

alFoundries 130nm BiCMOS process for basic function verification. Fig. 3.9 demonstrates

the die micrograph of the fabricated DFR network prototype. Twelve DFR network proto-

types implemented with four various design methodologies along with peripheries measure

2.25mm2, where each DFR network occupies 0.0098mm2.
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Figure 3.9: Die Micrograph of fabricated delay-feedback reservoir network pro-

totype in 130nm BiCMOS process, occupying 2.25mm2 silicon area.
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3.4.1 Nonlinear Behavior of Sigmoid Neural Activation

The mathematical representation of a delay-feedback system can be separated into two com-

puting modules, i.e., the nonlinear transformation and delay regulation. The nonlinear

response of the designed sigmoid NNA can be expressed as:

Xout =
β

1 + eε·(Xin−γ)
, (3.9)

where β is the scaling parameter that controls the amplitude of output, ε is the nonlinear

exponent, and γ determines the time-shift of input. By gradually increasing the input from

0–to–1.2V, the measured nonlinear behavior of sigmoid NNA is plotted in Fig. 3.10 together

with the ideal fit. It can be observed that the measured nonlinear behavior fits the ideal

function with design parameters of β = 1, ε = 12 and γ = 0.75.

Figure 3.10: Measured nonlinear behavior of sigmoid neural activation together

with the ideal fit.

In the circuit implementation, the robustness of sigmoid NNA can be improved by reducing

the nonlinear effect introduced from transistors because of the channel length modulation,

which can be defined as
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error =
|∆L|
Lideal

· 100%, (3.10)

where Lideal is the desired channel length of transistors and ∆L = Lideal − Lactual is the

difference due to the random process variations.

3.4.2 Delay Regulation

The dynamic range of delay characteristic of an IF neuron is depicted in Fig. 3.11. It can be

observed that the IF neuron has a superior dynamic range of timing-coefficient from 20ns to

1.38µs. To acquire a 1.38µs delay time using the classical RC delay, such a circuit requires a

100kΩ resistor and a 13.8pF capacitor, resulting in a large silicon area while themselves are

sensitive to noise. With the capacitor-sensing technique, such an identical timing-coefficient

can be realized with merely 54.7nA of calibration current in the designed IF neuron with a

150fF capacitor, where the equivalent resistance Ron = 10.96MΩ. It is reasonable to conclude

that the designed IF neuron is capable to process spiking information directly with superior

dynamic range of controllable timing-coefficient and a small silicon area.

Figure 3.11: Measured delay characteristic of dynamic delay-feedback loop and

the demonstration of an analog spike.
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(a) (b)

(c) (d)

Figure 3.12: Measured dynamic behaviors of reservoir layer with (a) T = 0.64µs,

(b) T = 1µs, (c) T = 1.2µs, and (d) T = 1.4µs.

3.4.3 Dynamic Behavior

The phase portrait is a graphical tool to visualize how the solutions of a given delay-feedback

system would behavior in a long run. As demonstrated in Fig. 3.12, plotted phase portraits

were obtained from measurements using two activation data within the dynamic reservoir

layer, in which one of them was collected with time delay. By varying the total timing-

coefficient, T , along the dynamic DFL, the dynamic behavior of DFR network changes

accordingly. As depicted in Fig. 3.12b, the delayed activation data repeatedly traces its
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initial path even in a long run when the total timing-coefficient is set to be 1µs, resulting as

in the periodic regime. As the timing-coefficient increases (e.g., 1.4µs), the delayed activation

data diverges from its initial path but without off-tracking from the equilibrium point even

in a long run, resulting as in the edge-of-chaos regime, as depicted in Fig. 3.12d. It can

be observed that the introduced DFR network indeed goes through a range of dynamic

behaviors with respect to various timing-coefficients. It is reasonable to conclude that the

fabricated DFR network prototype successfully implements the desired functionality of a

delay-feedback system and enables richness of dynamic behaviors.

3.4.4 Power Analysis

Fig. 3.13 demonstrates the power distribution of dynamic reservoir layer in the fabricated

DFR network prototype, where the total power consumption of 529µW with a supply voltage

of 1.2V was reported when the operating frequency was set to be 1MHz. The sigmoid NNA

occupies 36% of total power, the A/S encoder and the dynamic DFL occupy 7% and 20% of

total power, respectively, and the rest are occupied by the S/A decoder. Design specifications

of the fabricated DFR network prototype and the comparison to the state-of-the-art TDR

Figure 3.13: Power distribution of fabricated dynamic reservoir prototype in

silicon @ 529µW with an operating frequency of 1MHz.
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Table 3.1: Design specifications of fabricated delay-feedback reservoir network

and comparison to the state-of-the-art time-delay reservoir network designs.

[137] [88] [125] This Work

Implementation Strategy PCB FPGA FPGA Analog IC

Technology – – – 130nm

Die Area – – – 2.25mm2

Core Structure – ADC/DAC ADC/DAC neuron

Neuron Type – – – IF

Neural Activation Mackey-Glass Mackey-Glass Mackey-Glass sigmoid

Learning Capability no yes yes no

Supply Voltage ±10V 1.8–to–2.5V 1.8–to–2.5V 1.2V

Power Consumption – – – 529µW

network designs are summarized in Table 3.1. This fabricated prototype demonstrates a new

design solution for TDR network and, to the best of our knowledge, is the first hardware

implementation of DFR network with analog IC design technique.

3.5 Application Evaluation of Delay-Feedback Reser-

voir Network

The fabricated small-scale DFR network prototype is mainly used for basic function ver-

ification, demonstrating how the reservoir dynamic would behave, and yet, real-world ap-

plications are not supported. To further demonstrate the performance and the reliability

of the introduced DFR network, in this section, a mathematical model was implemented

in MATLAB, and its accuracy was evaluated through a time series prediction benchmark

and a facial recognition through video frames. In these experiments, the performance was

evaluated through the 4-core Intel i7-6700 CPU and 16G RAM.
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3.5.1 Time Series Prediction

The performance was initially evaluated through a time series prediction benchmark, the

tenth-order nonlinear autoregressive moving average system (NARMA10) [138], which is a

well-known statistical model to evaluate the performance of a dynamic system. The general

expression of NARMA10 can be written as

yt = 0.3 · yt−1 + 0.05 · yt−1 ·
9∑
i=0

y(t− i) + 1.5 · xt−9 · xt + 0.1, (3.11)

where xt is a random input. In this task, a total of 10,000 sampling points were generated, in

which 100 samples were adopted for initialization, 5,900 samples were adopted for training

and the rest were adopted for testing. The prediction error was then examined using the

normalized mean square error (NMSE), which can be calculated as

NMSE = (
norm|yi − ŷi|
norm|yi|

)2, (3.12)

Figure 3.14: Prediction results on tenth-order nonlinear autoregressive moving

average system benchmark.

39



Table 3.2: Prediction error comparison to the state-of-the-art reservoir comput-

ing network models on time series prediction benchmark.

Algorithm # of Neurons
Training Error

(NMSE)

Prediction Error

(NMSE)

[139] TDR 1,990 0.065 0.464

[140] TDR 200 – 0.17

[88] TDR 400 – 0.15

[141] ESN 100 – 0.1075

This Work DFR 100 0.0849 0.0683

where yi and ŷi are target output and predicted output from the network, respectively.

Experimental results of predicted output against target output are plotted in Fig. 3.14,

and the comparison of prediction error to the state-of-the-art RCN models is summarized in

Table 3.2. It can be observed that the prediction error from the introduced DFR network

exhibits 1.57–to–6.79× reduction over the state-of-the-art RCN models.

3.5.2 Facial Recognition

The performance was then evaluated through a facial recognition. As the DFR network by

itself is not capable to perform a classification task, a multilayer perceptron (MLP) with two

hidden layers is deployed as the classifier for the introduced DFR network.

Total of 48 images, containing three different persons with multiple face angles, were drawn

from the head pose image database [142], as demonstrated in Fig. 3.15a, in which 24 images

were adopted for training and the rest were adopted for testing. For the training set, the

horizontal angle of face rotates from 0◦ to 75◦ with an increment of 15◦ per rotation, while

the vertical angle of face remains at 0◦. For the testing set, the alteration of horizontal angles

of face follow the training set but with an additional 15◦ applied to the vertical angle. The

reliability of network was then investigated by introducing various levels of salt-and-pepper

noise to the down-sampled testing set, as depicted in Fig. 3.15b.
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(a)

(b)

Figure 3.15: Demonstration of head pose image database separated into (a)

training set of three persons and (b) down-sampled testing set with various

levels of salt-and-pepper noise.

Figure 3.16: Experimental testbench for facial recognition using mutiple percep-

tron as classifier for the introduced delay-feedback reservoir network.
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Fig. 3.16 depicts the experimental testbench for facial recognition. During the operation,

each input image was firstly down-sampled into 64× 64 pixels, in which each pixel was then

mapped into a higher dimensional space for linear separation by the introduced DFR network.

As the outcome from the dynamic reservoir layer, total of 4,096 spike trains, representing

the nonlinearly transformed information of each pixel, were generated and converted back

into numerical numbers for the training operation. Initially, synaptic weights in the MLP

classifier were generated randomly. As each piece of data was processed in the training

stage, synaptic weights were calibrated based on the corrections that minimizing the error

between predicted and target outputs. To sidestep the overfitting issue, the cross-validation

technique was applied.

Figure 3.17: Recognition rate with respect to various levels of salt-and-pepper

noise on head pose image database.

As demonstrated in Fig. 3.17, the recognition rate maintains at 98% with the introduced

DFR network when the noise level is set to be less than 10%. The same trend can be found

with the MLP-only training model, yielding a constant recognition rate of 78%. At the

low-noise scenario, the use of DFR network exhibits much higher recognition rate than that

the one with MLP-only training model. When the noise level reaches 50%, the recognition

rate of DFR network decreases to 93%. However, with the MLP-only training model at 50%

of noise level, the recognition rate has dropped to 67%, which is 26 percentage points poorer

than the introduced DFR network.
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Figure 3.18: Recognition rate with respect to various timing-coefficients and

levels of salt-and-pepper noise on head pose image database.

As the delay plays an important role in a delay-feedback system, in this experiment, the

recognition rate was also evaluated with respect to various timing-coefficients, as plotted

in Fig. 3.18. It can be observed that when the timing-coefficient is set to be 20ms, the

recognition rate remains at 98% with a noise level below 10%. As the noise level approaches

to 50%, the recognition rate remains above 93%. On the other hand, if the timing-coefficient

deviates from 20ms, the recognition rate is significantly impacted by the variation of noise,

resulting in approximately 26 percentage points poorer in the recognition rate.

3.6 Conclusions

In this project, a novel design methodology for DFR network is demonstrated together with

a small-scale prototype fabrication. By mimicking dynamic aspects of the neural informa-

tion processing, the introduced DFR network is built of a sigmoid NNA for high dimensional

mapping and a dynamic DFL with an ISI temporal encoder to enable the spiking information

processing. With a controllable timing-coefficient, the introduced DFR network exhibits rich-

ness in dynamic behaviors, signaling the successful implementation of delay-feedback system.
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A 130nm prototype is fabricated for basic function verification with a power consumption of

529µW at an operating frequency of 1MHz. Moreover, numerical evaluations demonstrate

that the introduced DFR network offers up to 6.79× error reduction on NARMA10 bench-

mark over the state-of-the-art RCN models. What is more, the introduced DFR network

offers 26 percentage points more robust against noise in the facial recognition compared to

the classical MLP model. This project demonstrates a new design solution for TDR network

and, to the best of our knowledge, is the first hardware implementation of DFR network

with analog IC design technique.
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Chapter 4

Convolution-Immersed

Delay-Feedback Reservoir Network

with Memristive Synapses

4.1 Introduction

The continue success in deep learning has immensely pushed the artificial intelligence (AI)

forward. Deep neural networks (DNNs) are what underpins deep learning, introducing a

neural computing strategy to accelerate the computational efficiency for machine intelligence

applications. DNNs are generally relied on the vector-matrix and matrix-matrix multiplica-

tions, in which the vectors represent the raw sensory information and the matrices denote

the synaptic weights between layers. More specifically, such computations are primarily built

based upon the multiplication-and-accumulation (MAC) operation. It is obvious that the

high level of complexity in machine intelligence applications requires the use of a colossal

amount of memory storage, and yet, the bottleneck of nonvolatile weight storage significantly

hinders the hardware realization of DNNs. To be specific, synaptic weights can be stored in

capacitors or floating-gate transistors (e.g., flash memory) [143]. Nevertheless, due to the

leakage of charges, synaptic weights on capacitors fade in time, and thus, requiring the weight

updating operation with more frequent intervals. Moreover, because of the nonlinear effect
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and the costly double-poly process, the feasibility when exploiting floating-gate transistors

as analog memory cells in neuromorphic applications remains limited [144].

The resistive random-access memory (ReRAM), a type of memristor [145] that relies on the

nonvolatile memory technology, can be leveraged in realizing reconfigurable systems [146].

Such an emerging memory device offers extremely high storage density and low power con-

sumption [11], becoming one of the most promising candidates for the next-generation mem-

ory technology and yielding a promising perspective toward energy-efficient neural computa-

tions. With the intrinsic parallel computing nature in a crossbar, ReRAM is widely adopted

to develop energy- and area-efficient synaptic arrays for DNNs [147], enabling a new era

for brain-inspired information processing. However, similar as in the digital implementa-

tion of DNNs, the interface with raw sensory information in real-time requires power-hungry

peripherals, and thus, concealing the advantages introduced by ReRAM.

My goal in project aims to adopt the emerging memristor devices as electronic synapses to

enable a new computing solution for delay-feedback reservoir (DFR) network. The insight

of my approach is to introduce a convolutional layer with memristive crossbar as a fea-

ture extractor for the previously designed DFR network, improving the network’s learning

capability. Major contributions of this project are summarized as follows:

• A novel design solution to improve the learning capability for DFR network by inte-

grating convolutional layers and a dynamic reservoir layer in a processing pipeline.

• A novel Mackey-Glass nonlinear neural activation (NNA) with delay-dynamic property

in nature to enable the efficient neural computations.

• A prototype built on a printed circuit board with discrete ReRAM cells, yielding an

average power consumption of 1.05mW.

• Up to 13.77× error reduction over the state-of-the-art reservoir computing network

(RCN) models on time series prediction benchmarks.

• A classification accuracy ups to 99.03% and 99.63% on handwritten digits and spo-

ken digits, respectively, exhibiting a higher classification accuracy over the one with

classical NNAs.
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The rest of this chapter is organized as follows: Section 4.2 provides an overview of emerg-

ing memristor devices. The design methodology of the introduced convolution-immersed

DFR network and the performance evaluations of the implemented prototype are discussed

in Section 4.3 and Section 4.4, respectively, followed by the software-based experimental

evaluations in Section 4.5. This chapter is then concluded in Section 4.6.

4.2 Resistive Memory and Crossbar Array

Due to the needs of a colossal amount of memory storage for neuromorphic applications,

emerging nonvolatile memory technologies are hereby investigated for seeking an alternative

solution to expand the storage density and to reduce the power consumption. Examples

include phase change RAM (PCRAM) [148–153], ferroelectric RAM (FeRAM) [154–159],

spin-transfer torque RAM (STT-RAM) [160–165], and ReRAM [145,166–170]. Among these

emerging technologies, ReRAM is considered as a promising candidate for memory storage

used in neuromorphic applications because of its extremely high storage density and low

power consumption.

The resistive switching effect is the basic principle in ReRAM, describing a hysteretic switch-

ing phenomenon in a silicon oxide thin film [171]. The concept of memristor was then de-

veloped by Dr. Leon Chua in 1970s, introducing the fourth fundamental circuit element in

relation to the magnetic flux and charge [145]. Until 2008, HP Labs fabricates a prototype

of ReRAM with analogue resistive states, approving the extensive of memristor [172]. In

general, ReRAM is a two-terminal metal-oxide-based nanoscale device, performing the same

functionality as a variable resistor with the nonvolatility characteristic. ReRAM is usually

formed based on the transition metal oxides such as titanium dioxide (TiO2) [173], hafnium

dioxide (HfO2) [174], etc. Due to the formation of conductive filaments in the insulator

material between two terminals, the resistance of ReRAM can be switched from its high-

resistance-state (HRS) to low-resistance-state (LRS) when the stimulus across the device

excesses a specific threshold, as demonstrated in Fig. 4.1.

With the appearance of emerging memory technologies, a novel design solution for neuro-

morphic architecture are widely investigated [175]. It can be observed that the vector-matrix

47



Figure 4.1: Resistive switching behavior of resistive random-access memory cell.

and matrix-matrix multiplications are the fundamental operator in neural computations that

determines the accuracy, power consumption and operational speed. A simple neural compu-

tation with synaptic weights is illustrated in Fig. 4.2a. The output state, ŷ, can be expressed

as the sum-of-product of inputs and a weight matrix

ŷj =
m∑
i=1

xi ·Wij, (4.1)

where xi is input vectors, m defines the data length of inputs, and Wij represents the weighted

value located at the i-th input and the j-th output.

The crossbar structure with current-based ReRAM cells can frankly implement such a vector-

matrix multiplication as required in neural computations, as demonstrated in Fig. 4.2b. By

mapping input vectors to voltages and the weight matrix to a crossbar, the vector-matrix

multiplication can be realized by sampling the total output current, Ij, on each bit-line,
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(a)

(b)

Figure 4.2: Representation of vector-matrix multiplication in (a) artificial neural

network and (b) resistive crossbar.
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which can be written as

Ij =
m∑
i=1

Vi ·Gij, (4.2)

where Vi is input voltages and Gij defines the conductance of a ReRAM cell located at the

i-th word-line (WL) and the j-th bit-line (BL).

The ReRAM is naturally adept in the historical behavior [176]. Firstly, the ReRAM-based

crossbar supports a numerous amount of signal connections within a small silicon area, mim-

icking the synaptic connections in neurological system. Secondly, the ReRAM-based crossbar

inherently provides the vector-matrix multiplication with the intrinsic parallel computing na-

ture, imitating the operation of dendrite potential [177]. Benefited by the crossbar structure,

the ReRAM cell has become a promising candidate to develop energy- and area-efficient neu-

ral networks. For instance, in [178], a convolutional neural network (CNN) accelerator is

introduced with a 128 × 128 ReRAM-based crossbar, yielding improvements of 14.8× and

5.5× in throughput and energy, respectively, compared to the von Neumann supercomputer.

Moreover, in [179], a neuromorphic hardware with STT-RAM obtains more than 15–to–300×
energy reduction over the state-of-the-art CMOS design.

4.3 Design Strategy of Convolution-Immersed Delay-

Feedback Reservoir Network

4.3.1 Network Architecture

Fig. 4.3 demonstrates the general architecture of the introduced convolution-immersed DFR

(Ci-DFR) network, in which the input layer is built of a reconfigurable convolutional net

(ConvNet). To enable efficient data processing and training operations with the historical

learning capability, the previously designed dynamic reservoir [27,180–182] is deployed. Dur-

ing the operation, each data sample of a given input pattern is represented by an analog

voltage, and weighted values in the convolution kernels are corresponded to the conductance
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of ReRAM cells within the crossbar. For every computing cycle, all data samples of an

input pattern are applied into the crossbar in parallel. The output current, Ij, at the j-th

BL can be then calculated by Eq. 4.2. At the end of the convolutional layer, K × [P,Q]

data points, representing the extracted features of one input pattern, are generated, where

P and Q define the dimension of the generated feature map, and K represents the number

of convolution kernels.

Figure 4.3: System-level architecture of convolution-immersed delay-feedback

reservoir network.

The spatial dimension of generated feature maps is then reduced through the max-pooling

layer. In practice, depending on the complexity of applications, more ConvNets can be

deployed for the feature extraction. The final outcomes from the max-pooling layer are then

reshaped into an one-dimensional (1D) column vectors and process through the dynamic

reservoir layer. Consequently, the corresponding number of spike trains, represented the

equivalent information of the nonlinearly transferred features, are generated. These spike

data patterns are then decoded back into analog signals for the training operation through the

Tikhonov regularization. The general learning operation of the introduced Ci-DFR network

is summarised in Algorithm 2

4.3.2 Convolutional Net with Current Sensing Methodology

Fig. 4.4 depicts how to deploy the feature extraction on a ReRAM-based crossbar. In the

ConvNet, the convolution kernels are typically formed by a [3, 3] or a [5, 5] two-dimensional

(2D) matrix. To implement the convolution kernels on a ReRAM-based crossbar, kernels

are unrolled into multiple 1D column vectors, and thus, Kj represents the j-th kernel is
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Algorithm 2: Convolution-Immersed Delay-Feedback Reservoir Network

Data: x = [n,m], y = [n, u], kernel = k, scaling = α

Result: Wout

initialization

for i→ 1 to n do

for ii→ 1 to k do
conv = convolution(m)

fact = fMG(conv)

pool = max.pooling(fact)

end

return pool

flat = flatten(pool)

for j → 1 to len(flat) do
ht = f((1− α) · flatt + α · ht−1 + bh)

end

end

return ht

S = [h0, h1, · · · , hn]

Y = [y0, y1, · · · , yn]

Wout = Y · S ′ · (S · S ′ + η · I)−1

mapped into the j-th column in the crossbar. With the intrinsic parallel computing nature,

receptive input voltages, representing information of an input pattern, are applied to each

WL in parallel. Therefore, multiple features, in a format of analog current, can be generated

through each BL synchronously, which can be calculated by Eq. 4.2.

In general, a specific weighted value located at the i-th row and the j-th column satisfies the

constraints of

Wmin ≤ Wij ≤ Wmax, (4.3)

where Wmin and Wmax denote the minimum and maximum weighted values, respectively. In

the meantime, the conductance of a ReRAM cell located at the i-th WL and the j-th BL
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Figure 4.4: Deploying the convolution kernels on a resistive crossbar.

satisfies the constraints of

Goff ≤ Gij ≤ Gon, (4.4)

where Goff and G[on] denote the off and on conductance of a ReRAM cell, respectively,

thereby, the expression to map a weighted value into the conductance of a ReRAM cell can

be written as

Gij =
Wij −Wmin

Wmax −Wmin

· (Gon −Goff ) +Goff . (4.5)

It has been proven that the computation with a crossbar structure has several orders of

magnitudes more energy- and area-efficient over the central processing unit (CPU) and

graphics processing unit (GPU) [183]. In practice, extracting valuable information from

crossbar requires a sensing amplifier, and thus, the voltage sensing methodology is widely

adopted due to its ease of conception. In [184], a voltage sensing amplifier is implemented by

converting each BL current through a fixed resistor and an operational amplifier. However,

the use of fixed resistor severely degrades the accuracy due to its sensitivity to noise, and the

output headroom of sensing amplifier is limited in the analog integrated circuit (IC) design.

In this project, a linear current amplifier with the inlaid current-to-voltage converter is in-

troduced, as shown in Fig. 4.5. Such a linear current amplifier isolates the sum-of-product

computation in the crossbar and the current-to-voltage conversion in the current ampli-

fier, and therefore, the computational results in crossbar will not be distorted. During the
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Figure 4.5: Design scheme of voltage-model current sensing amplifier.

operation, the input current, Iin, along with the bias current from the transistor M1 are

collected by the transistor M3 and mirrored to the transistor M4 with a 1:1 ratio, and thus,

IM4 = IM3 = Iin + IM1. An operational amplifier with transistor M5 creates a negative

feedback, allowing the voltage of Vp to track the variation of the negative input, Vn. By

clamping the voltage of Vp to the same level of Vn, the current through the transistor M5

can be then calculated as IM5 = IM4 − IM2 = Iin. The output current mirror, M5 & M6,

duplicates the input current to transistor M6 with a 1:10 ratio and consistently converts

into a voltage signal through a loading transistor, ML. By isolating the sum-of-product

computation in the crossbar and the current-to-voltage conversion in the current amplifier,

the introduced linear current amplifier maintains the linearity and the stability during the

current-to-voltage conversion.

4.3.3 Mackey-Glass Nonlinear Neural Activation

The rectified linear unit (ReLU) function is the most commonly used NNA in CNNs. How-

ever, the ReLU function does not have the timing-coefficient in nature to emulate the dy-

namic behaviors of neurological systems. In recent years, the Mackey-Glass (MG) function

has become a decent candidate for delay-feedback system designs [185]. Originating from the

ordinary differential equation, the MG function defines a system in which dynamics depend

on both current and previous states, where its nonlinear response can be expressed as
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Xout =
β ·Xin

1 + τ ε ·Xε
in

, (4.6)

where β is the arbitrary design parameters that define the scaling factor of the system, ε and

τ are the nonlinear and delay exponents, respectively.

Figure 4.6: Design scheme of Mackey-Glass nonlinear neural activation.

Fig. 4.6 depicts the electronic circuit model of MG NNA. In general, the nonlinear behavior of

MG function can be realized by controlling the switching conditional of a n-type switch, Mn,

and a p-type switch, Mp. During the operation, Mp fully turns on to reduce charges from the

low-pass filter, as shown in the dashed box in Fig. 4.6, under the condition of Vin < Vth,p,

where Vth,p is the threshold voltage of Mp; as such, the voltage across the low-pass filter

remains at 0V. Under the condition of Vth,p < Vin < Vth,n, where Vth,n is the threshold

voltage of Mn, charges from the input source are accumulated in the low-pass filter, and

thus, the voltage across the low-pass filter follows the input voltage. When Vin > Vth,n, Mn

fully turns on to reduce charges from the low-pass filter again, such that the voltage across

the low-pass filter is discharged to 0V. To accurately model the explicit representation of

MG function, the transistor M2 is implemented to serve as the scaling parameter in the

circuit point of view. The nonlinearity can be turned by the aspect ratio of Mn and Mp,

while the delay exponent can be adjusted by the reference current source, Iref .

The MG function triumphs the ReLU function over its intrinsic delay characteristic, naturally

suitable for the delay-feedback system design.
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4.4 Performance Evaluation of Fabricated On-Board

Prototype

A prototype of the introduced Ci-DFR network has successfully built on a printed circuit

board (PCB) for basic function verification, as depicted in Fig. 4.7. To demonstrate the

design possibility of deploying ReRAM cells as synaptic weights and to evaluate the com-

puting capabilities of feature extraction, the prototype is built with both off-chip resistive

and memristive crossbars, sample-and-hold (SH) amplifiers, MG NNA, and the previously

fabricated on-chip DFR network.

To realize the operation of feature extraction, a 4× 4 off-chip resistive crossbar is deployed

on the prototype. Synaptic weights were randomly implemented, whereby the conductance

states of each resistor were calculated by Eq. 4.5. The rate of data-flow is mainly controlled

by the off-chip input buffers. To reduce the device variation of crossbar, only the binary

weights were implemented, in which the HRS and the LRS of the off-chip resistive crossbar

were set to be 50µS and 1µS, respectively, where the according resistance is 20kΩ and 1MΩ.

This particular resistance state is allocated within the range of measured resistance states

on the discrete ReRAM cell (BS-AF-W) [186] from the Knowm Inc.

During the operation, each BL current from the ConvNet is accumulated to generate the

desired voltage for latter computations. A supplementary off-chip MG NNA is then used to

carry out the nonlinear transformation. The max-pooling layer fetches the maximum selected

activation data to SH amplifiers, following by processing through the on-chip DFR network.

The output classifier is built of a 2× 2 crossbar with discrete ReRAM cells, generating the

predicted outputs from the network.

4.4.1 Resistive Switching Behavior

The bipolar resistive switching behavior of discrete ReRAM cell is analyzed through its iv

characteristic. In this measurement, a bias voltage was applied between the top and bottom

electrodes of a ReRAM cell with the latter being grounded. The current compliance was set

to be 10µA while a voltage range of −1–to–1V was applied. The measured iv characteristic
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Figure 4.7: Prototype of convolutional-immersed delay-feedback reservoir net-

work with discrete memristor device mounted on a printed circuit board.
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Figure 4.8: Measured bipolar resistive switching behavior of discrete memristor

device (BS-AF-W).

Figure 4.9: Measured resistance states of discrete memristor device (BS-AF-W)

with respect to various switching pulse width and voltage amplitudes.
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of the discrete ReRAM cell is depicted in Fig. 4.8. It can be observed that the current

jumps abruptly at a positive voltage of 0.4V as the bias voltage increases gradually. By kept

increasing the bias voltage, the ReRAM cell switches from its HRS to LRS, indicating as

the “SET” operation. By contrast, at a negative voltage of −0.4V, the ReRAM cell starts

switching from LRS to HRS, indicating as the “RESET” operation.

By nature, the resistance states of a ReRAM cell can be controlled by the switching volt-

age across the device and its switching pulse width. Fig. 4.9 demonstrates the measured

resistance states of discrete ReRAM cell with respect to various switching pulse widths and

voltage amplitudes. It can be observed that the tunable electrical resistance exists in the

range of 15k–to–2MΩ, where the equivalent conductance ranges from 0.5µS to 67.38µS. It

can be also observed that as the bias voltage increases, the ReRAM cell is more easily to be

switched from its HRS to LRS even with a shorter switching pulse width.

4.4.2 Nonlinear Behavior of Mackey-Glass Neural Activation

The off-chip supplemental MG NNA is built of bipolar junction transistors (BJTs). To

demonstrate the nonlinear behavior of the designed circuitry, a sequential bias voltage was

applied as the input with a range of −1.8–to–1.8V. By gradually increasing the bias voltage,

the nonlinear behavior of MG NNA is recorded together with the corresponding ideal fit, as

plotted in Fig. 4.10. It can be observed that the designed analogue circuit of MG NNA fits

the ideal MG function with the scaling parameter, nonlinear and delay exponents of β = 1,

ε = 12 and τ = 1, respectively.

4.4.3 Linearity of Current Sensing Amplifier

The introduced linear current amplifier isolates the sum-of-product computation in the cross-

bar and the current-to-voltage conversion in the current amplifier, and thus, computational

results in the crossbar cannot be distorted, and the linearity as well as the stability during

the current-to-voltage conversion can be preserved. To demonstrate such a functionality,

the BL current, collected from crossbar with a range of 0–to–1mA, was applied. As plotted
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Figure 4.10: Measured nonlinear behavior of Mackey-Glass neural activation

together with ideal fit.

Figure 4.11: Simulated characteristic of voltage-model current sensing amplifier

compared to voltage sensing amplifier.
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in Fig. 4.11, it can be observed that the simulated linear correlation between BL current

and output voltage can be obtained. It is reasonable to conclude that the introduced linear

current amplifier is capable of providing a stable and accurate current-to-voltage conversion

compared to the classical voltage sensing amplifier.

4.4.4 Power Analysis

In this experiment, the power consumption of Ci-DFR network prototype was measured on

PCB with an operating frequency of 1MHz and a global supply voltage of 9V. The power

distribution of Ci-DFR network prototype is demonstrated in Fig. 4.12. The overall power

consumption reaches 9.45mW. Two on-chip DFR networks occupy merely 11.1% of total

power with a 1.2V supply voltage, while the rest are consumed by off-chip components, in

which the resistive crossbar with input buffers occupy 21% of total power, the MG NNA and

SH amplifiers occupy 6% and 38% of total power, respectively, while the rest are occupied

by peripheries. Design specifications of the fabricated DFR network prototype and the

comparison to the state-of-the-art neuromorphic chips are summarized in Table 4.1.

Figure 4.12: Power distribution of implemented convolution-immersed delay-

feedback reservoir network prototype on a printed circuit board @ 9.45mW with

an operating frequency of 1MHz.
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4.5 Application Evaluation of Convolution-Immersed

Delay-Feedback Reservoir Network

Similar as the previously fabricated DFR network prototype in silicon, the Ci-DFR network

prototype built on a PCB also does not support the computations of real-world applications.

To further demonstrate the performance and the reliability of the introduced Ci-DFR net-

work, a mathematical model was implemented in TensorFlow, and its accuracy was evaluated

through three various time series prediction benchmarks, a handwritten digit classification,

and a spoken digit recognition. Two convolution layer (where each has 64 × [5, 5] kernels)

and two max-pooling layers (where each has [2, 2] pooling size) were implemented. In this

experiment, the performance was evaluated through the 8-core Intel i7-9700K CPU, 16G

RAM and the Nvidia RTX 2080 GPU.

4.5.1 Time Series Prediction

In this experiment, the performance of introduced Ci-DFR network was initially evaluated

through three time series prediction benchmarks. The tenth-order nonlinear auto regressive

moving average system (NARMA10) benchmark [138] used in this experiment has the same

configuration as the one used in the DFR network as depicted in Section 3.5. The other se-

lected benchmark is the temperature forecasting in the city of San Francisco [192], containing

the average daily temperature variation in San Francisco from January 1st, 2010 to October

8th, 2015. This dataset consists of 2,104 samples, in which 100 samples were adopted for

initialization, 1,500 samples were adopted for training and the rest were adopted for testing.

The last benchmark used in this experiment is the temperature forecasting during the El

Nino, which refers to the cycle of warm and cold temperatures of the tropical central at

South America Ocean since 1980 [193]. This dataset consists of 10,950 temperature data of

sea surface, whereby 950 samples were adopted for initialization, 6,000 samples were adopted

for training and the rest were adopted for testing. The prediction error was then examined

using the normalized mean square error (NMSE) as defined in Eq. 3.12 and compared to

the state-of-the-art DNN models.
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Experimental results of predicted outputs against target outputs on three various time series

prediction benchmarks are plotted in Fig. 4.13. The prediction error comparison to the

state-of-the-art DNN models are summarized in Table 4.2. It can be observed that the

prediction error from the introduced Ci-DFR network exhibits 1.6–to–13.77× reduction over

the state-of-the-art DNN models.

(a)

(b) (c)

Figure 4.13: Experimental results of time series prediction benchmarks in (a)

tenth-order nonlinear auto regressive moving average system, (b) temperature

forecasting in San Francisco, and (c) temperature forecasting in South America

Ocean during El Nino.
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Table 4.2: Prediction error comparison to the state-of-the-art deep neural net-

work models on time series prediction benchmarks.

Benchmark Algorithm # of Neurons Prediction Error (NMSE)

NARMA10

[96] DFR 100 0.464

[140] DFR 200 0.17

[194] Deep ESN – 0.1572

[195] Deep ESN – 0.0832

[27] DFR 100 0.0683

This Work Ci-DFR 100 0.0377

San Francisco
[196] MLP – 0.1009

This Work Ci-DFR 100 0.0873

El Nino
[197] MLP – 0.16

This Work Ci-DFR 100 0.045

4.5.2 Handwritten Digit Classification

The MNIST handwritten digit database [198] used in this experiment contains 70,000 28×28-

pixel bi-level images of handwritten digits, in which 60,000 samples were adopted for training

and the rest were adopted for testing. Table 4.3 summarizes the classification accuracy com-

parison with respect to various NNAs. Experimental results demonstrate that the introduced

Ci-DFR network with MG NNA exhibits 0.67–to–1.4 percentage points of improvement over

alternative NNAs, and yet, the resulting training time requires approximately 19% longer.

The classification accuracy comparison to the state-of-the-art DNN models is summarized

in Table 4.4.

4.5.3 Spoken Digit Recognition

The spoken digit command dataset [203] used in this experiment contains 10,000 spoken

digits with 997 different speakers, in which 4,000 samples were adopted for training, 800

samples adopted used for testing, and the rest were unused. The contained waveform audio

(WAV) file is inherently a 1D continuous signal across time. In order to extract valuable
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Table 4.3: Classification accuracy comparison with respective to various nonlin-

ear neural activation on handwritten digit database.

NNA Type Classification Accuracy Training Time

MG 99.03% 1X

tanh 97.6% 0.814×
ReLU 98.37% 0.805×

Leaky ReLU 98.37% 0.816×

Table 4.4: Classification accuracy comparison to the state-of-the-art deep neural

network models on handwritten digit database.

Algorithm Network Structure Classification Accuracy

[32] MLP 6× dense 98.36%

[199] Binary MLP 3× dense 97.2%

[200] Spiking CNN

3× convolution

3× pooling

1× dense

97.2%

[201] Binary MLP 3× dense 95.8%

[202] MLP 2× dense 90%

This Work Ci-DFR

2× convolution

2× pooling

1× DFR

1× dense

99.03%
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Table 4.5: Recognition accuracy comparison with respective to various nonlinear

neural activation on spoken digit command dataset.

NNA Type Recognition Accuracy Training Time

MG 99.63% 1X

tanh 97.38% 0.586×
ReLU 97% 0.591×

Leaky ReLU 97.5% 0.657×

features from a time-dependent input pattern, a pre-processing operation was done by de-

ploying a sampling window to sample the input pattern for a short period of time. The

sampled audio information will be then converted into a mel spectrogram by calculating

the strength of frequencies across a band of filters. Such a mel spectrogram can be treated

as a single-channel image, and thus, features can be extracted by the introduced Ci-DFR

network. Table 4.5 summarizes the recognition accuracy comparison with respect to various

NNAs. Experimental results demonstrate that the introduced Ci-DFR network with MG

NNA exhibits approximately 2.5 percentage points of improvement over alternative NNAs,

and yet, the resulting training time requires approximately 39% longer.

4.6 Conclusions

In this work, a Ci-DFR network with embedded ReRAM-based electronic synapses is intro-

duced, demonstrating a new design possibility for DFR network. Such a processing structure

is capable of establishing connections within the context of data and improving the learning

capability of the previously designed DFR network. Measurement results on a PCB proto-

type along with resistive and memristive synapses occupy 9.45mW of power consumption.

By applying to time series prediction benchmarks, the introduced Ci-DFR network exhibits

an error reduction up to 13.77×. Moreover, experimental results on handwritten digit clas-

sification and spoken digit command recognition demonstrate that the introduced Ci-DFR

network with MG NNA is capable of exhibiting approximately 1.4 and 2.5 percentage points
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of improvement, respectively. In conclusion, experimental results have proven the correct-

ness and the effectiveness of the introduced Ci-DFR network in sequence prediction and

classification, demonstrating the potential of DFR network for exploring more sophisticated

machine intelligent applications.
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Chapter 5

Hybrid Neural Network with

In-Memory Computing Acceleration

5.1 Introduction

In the recent artificial intelligent (AI) society, deep learning strategies are optimized by

utilizing high-performance processors and big data [7–9]. However, the fact that executing

the neural computations through general-purpose computing systems or cloud infrastructures

significantly degrade the user experience, while themselves exposing other security issues.

More importantly, the demand on computational resources and complexity has increased

with the increasing demand for data density, and thus, boosting the power consumption to

a higher magnitude.

Arose with the introduction of neuromorphic architecture, application-specific integrated

circuit (ASIC) chips have paved the way for deep learning strategies, accelerating the com-

putational efficiency while reducing the hardware overhead. This is made possible by ex-

ecuting the neural computations through layers of artificial neurons, in a similar way to

humans. That is, deep neural networks (DNNs) are what underpins deep learning strategies.

On one side, ASIC implementations significantly accelerate the computational efficiency of

DNNs. On the other hand, DNNs tend to maximize the accuracy with increments of com-
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plexity [204]. In particular, the use of backpropagation learning algorithm utilizes some

version of gradient decent for calculating weight updates, that is, the deeper the network

structure, the higher the complexity, or vice versa. More importantly, the complications are

amplified by the imperfections in circuit components.

The introduced delay-feedback reservoir (DFR) network, as discussed in Chapter 3, has

opened up new possibilities for ASIC-based DNN implementations by eschewing the complex

backpropagation learning algorithm. The DFR network is built based upon a delay-dynamic

system, offering a unique training mechanism by only updating linear readout weights, and

thus, sidestepping the issue introduced from the vanishing gradient [27, 180–182]. However,

the learning capability of DFR network by itself is limited as the dynamic reservoir layer

does not contain synaptic weights. By implementing a convolutional net (ConvNet) as the

input layer of DFR network, the introduced convolution-immersed DFR (Ci-DFR) network,

as discussed in Chapter 4, offers a novel design solution to improve the network’s learn-

ing capability [122, 205, 206]. Nevertheless, the number of convolution kernels and layers

significantly impacts the training time, inference accuracy and implementation complexity.

My goal in this project is to build a new class of hybrid neural network by integrating both

spatial and temporal information processing capabilities. The insight of my approach is to

adapt by integrating the dynamic reservoir as a processing layer in a multilayer perceptron

(MLP). Specifically, this project focus on the optimization of network structure to minimize

the implementation complexity of ASIC-based DNN designs. Major contributions of this

project are summarized as follows:

• A spatial-temporal computing structure by integrating both MLP and dynamic reser-

voir in a processing pipeline, improving the learning capability of DFR network without

significantly increasing its implementation complexity.

• An analog multiplication-and-accumulation operator with in-memory computing strat-

egy, enabling the parallel operation while reducing the memory bandwidth overhead.

• A prototype fabrication with microcontroller verification, yielding an average on-chip

classification accuracy of 86.1% on handprinted alphabet characters with merely 33mW

of power consumption.
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• Software-based evaluations offer up to 6.5× speedup over the cutting-edge DNN models

while yielding a competitive classification accuracy.

The rest of this chapter is organized as follows: Section 5.2 discusses the design methodology

of the introduced spatial-temporal hybrid neural network. The performance evaluations of

the fabricated prototype and the software-based experimental evaluations are demonstrated

in Section 5.3 and Section 5.4, respectively, followed by the implementation of spike-timing-

dependent plasticity for potential improvement in Section 5.5. This chapter is then concluded

in Section 5.6.

5.2 Design Strategy of Spatial-Temporal Hybrid Neu-

ral Network

5.2.1 Network Architecture

Hybrid neural networks (HNNs) typically concatenate two or more feedforward neural net-

works (FNNs) and recurrent neural networks (RNNs) in a processing pipeline to improve the

network’s learning capability. In this project, a computing-in-memory (CIM)-based spatial-

temporal HNN (STHNN) is introduced by integrating both MLP and dynamic reservoir in

a processing pipeline, making the network becomes linear separable while computing static

and dynamic data in both spatial and temporal domains. Fig. 5.1 demonstrates the general

architecture of CIM-based STHNN, composing of a CIM-based dense layer as feature extrac-

tor, multiple dynamic reservoirs in parallel as an internal processing layer, and a CIM-based

neural classifier as the output layer. More specifically, such a STHNN utilizes the spatial

characteristic in the dense layer to extract key features from raw sensory information, while

utilizing the temporal characteristic in the dynamic reservoir to enable the historical learn-

ing capability. In the meantime, the STHNN also takes advantages of the unique learning

mechanism introduced in the classical reservoir computing networks (RCNs) to reduce the

required resources for training and to diminish the implementation complexity on ASIC chip.
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Figure 5.1: System-level architecture of spatial-temporal hybrid neural network.

Figure 5.2: Deploying the analog multiplication-and-accumulation operator on

a resistive crossbar with in-memory computing strategy.

5.2.2 Analog Multiplication-and-Accumulation Operator

The deployment of multiplication-and-accumulation (MAC) operation on a resistive crossbar

is depicted in Fig. 5.2. In practice, any given patterns (e.g., images or speech waveform) are

commonly reshaped into an one-dimensional (1D) row vectors, [1,m], where m is the input

dimension, before the neural computation takes over. To extract mf features, a crossbar

with the shape of [m,mf ] is deployed. With the consideration of precise modeling, both

positive and negative weights are utilized in this project to form a double-column crossbar,

in which a single weighted value of Win is represented by a pair of memory cells (MCs) with

a shared source-line (SL), that is, Gij = G+
ij − G−ij, where G+

ij and G−ij denote the positive

and negative conductance of MCs, respectively.
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Table 5.1: Simplified truth table of multiplying-and-accumulating operation with

binary input.

Input (1-bit) (+) Weight (-) Weight MAC Out

0 HRS LRS 0

0 LRS HRS 0

1 HRS LRS Ihigh@BL
−

1 LRS HRS Ihigh@BL
+

The MCs used in this design are built of resistive memory, in which the high-resistance-state

(HRS) and the low-resistance-state (LRS) of each MC are defined as R ∈ [1k–to–20kΩ].

This particular resistance state is allocated within the range of measured resistance states

through the discrete resistive random-access memory (ReRAM) cell (BS-AF-W) from the

Knowm Inc. [186] with a linear scaling factor of 50,000. Table 5.1 demonstrates a simplified

truth table of MAC operation with a binary input. In such a computation, a group of

voltages, representing the corresponding information of raw sensory inputs, is applied to the

horizontal SLs synchronously. As the outcome, an accumulated current is generated at each

vertical bit-line (BL) where the MAC operation is deployed, which can be expressed as

Ij = I+j − I−j =
m∑
i=1

Vi ·G+
ij −

m∑
i=1

Vi ·G−ij. (5.1)

It can be observed that a subtraction operation is required for the double-column crossbar

as the negative conductance nor current are non-existent. To support such an operation, a

bilateral current sensing amplifier (BCSA) with the inlaid neural activation is deployed, as

depicted in the dash box in Fig. 5.2. During the operation, the accumulated I+j and I−j are

respectively injected into the BSCA. The transistor M1 senses the positive input current, I+j ,

and the reference current generated through the transistor M3, such that IM1 = I+j + IM3.

This current is then replicated through the associated current mirror, M5–to–M8, such that

IM8 = IM6 = IM1. As the negative input current, I−j , injects into the transistor M2, the

associated current mirror forces M2 to replicate the current at M1, and thus, IM2 = IM1.
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Figure 5.3: Computing structure of dynamic reservoir layer.

By balancing the current of IM1 and IM2, the current through the transistor M9 can be

expressed as IM9 = I+j − I−j , such that, IM2 = IM9 + I−j + IM4 = I+j + IM4 = IM1. The high-

gain operational amplifier keeps tracking the variation of its positive and negative inputs,

and dynamically regulates the driving voltage of M9. The resulting current of I+j − I−j is

replicated through the output current mirror, M9 & M10, with a current gain of A. The

output voltage can be then consistently generated through a loading transistor ML. Such a

linear computation is obtained when I+j − I−j > 0. By contrast, IM9 = 0 when I+j − I−j < 0

as the current cannot be propagated reversely through the transistor M9, and thus, output

remains at 0V.

Such an analog MAC operator process multiple inputs in a single reading to enable the high-

speed parallel operation, minimizes the output voltage variation under various BL currents,

models the neural activation of the rectified linear unit (ReLU) function as required in the

feature extractor, and isolates the MAC operation and latter computations. More impor-

tantly, the analog MAC operator generate the desired analog signal as required for latter

computations, and thus, power-hungry data conversions are unnecessary, potentially making

the system suitable for large-scale DNN designs.
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Algorithm 3: Spatial-Temporal Hybrid Neural Network

Data: x = [n,m], y = [n, u], scaling = α

Result: Wout

initialization

Win := |λmax(Win)|
σ

·Win

for i→ 1 to n do
flat = flatten(m)

map = fReLU(flat ·Win + bin)

for ii→ 1 to len(map) do
ht = fMG((1− α) ·mapt + α · ht−1 + bh)

end

end

return ht

S = [h0, h1, · · · , hn]

Y = [y0, y1, · · · , yn]

Wout = Y · S ′ · (S · S ′ + η · I)−1

5.2.3 Dynamic Reservoir

The dynamic reservoir layer embedded in the introduced STHNN is optimized based upon

the previously designed DFR network, in which the Mackey-Glass (MG) NNA and the leaky

integrate-and-integrate (LIF) neuron are deployed, as demonstrated in Fig. 5.3. The use

of MG function as NNA in a delay-feedback system was first introduced in [88]; afterward,

the previously designed Ci-DFR network demonstrate the advantages of MG function over

classical NNAs. In this project, the electronic circuit model of MG NNA is optimized based

on the previous design in [207] with 2.66× power reduction. Beyond that, the LIF neurons

used in the dynamic feedback loop (DFL) is optimized based upon the previously designed

IF neuron in [27] with 5.37× power reduction. The operating principle of the newly optimal

dynamic reservoir layer follows the same trend as in the previously designed DFR network,

in which the final outcomes from the dynamic reservoir layer are decoded back into analog

signals for the training operation, whereby the Tikhonov regularization is adopted on the

CIM-based neural classifier. The general learning operation of the introduced STHNN is

summarised in Algorithm 3.
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Figure 5.4: Die Micrograph of fabricated spatial-temporal hybrid neural network

prototype in 180nm CMOS process, occupying 9mm2 silicon area.
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5.3 Performance Evaluation of Fabricated On-Silicon

Prototype

A prototype of STHNN is fabricated in GlobalFoundries standard 180nm CMOS process for

basic function verification of on-chip classification. Fig. 5.4 demonstrates the die micrograph

of the fabricated STHNN prototype. Two STHNN cores along with the peripheries and

basic function modules measure 9mm2, where each STHNN core occupies 0.814mm2. In this

fabricated prototype, each STHNN core is built of a 16 × 8 CIM-based feature extractor

with 8 analog MAC operators, 8× dynamic reservoirs with a total of 64 neurons, and a

8 × 4 CIM-based neural classifier. During the inference, input weights and output weights

are initialized and calculated, respectively, through an offline compiler.

5.3.1 Characteristic of Bilateral Current Sensing Amplifier

With the introduced BCSA, the linearity and the stability between the MAC operation and

latter computations can be maintained, in a similar way to the linear current amplifier as

discussed in Section 4.3. To demonstrate such a functionality, input currents, I+in and I−in,

respectively collected from BL+ and BL− from the crossbar were directly applied to the

designed BCSA. As plotted in Fig. 5.5, a linear response of output voltage, in a range of

0–to–0.7V, can be obtained when I+in − I−in > 0, in which the dynamic range of both I+in and

I−in were set to be 0–to–1mA. By contrast, Vout remains at 0V when I+in− I−in < 0. Compared

to the previous design in [122] and the literature reported in [208], the newly designed BCSA

is capable to process information collected from both positive and negative synaptic weights

and naturally achieve a ReLU NNA.

5.3.2 Nonlinear Behavior of Mackey-Glass Neural Activation

As demonstrated in Fig. 5.6, a nonlinear response of output voltage from the newly designed

MG NNA can be observed, in which the input voltage is set to be 0–to–1.8V. It can be also

observed that the measured nonlinear behavior fits the ideal MG function with the scaling
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Figure 5.5: Measured characteristic of bilateral current sensing amplifier to-

gether with ideal fit.

Figure 5.6: Measured nonlinear behavior of Mackey-Glass Neural Activation

together with ideal fit.
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parameter, nonlinear and delay exponents of β = 1, ε = 16 and tau = 1, respectively, as

depicted in Eq. 4.6.

5.3.3 On-Chip Character Classification

The neural classifier in the fabricated STHNN prototype contains four output neurons, which

are capable to classify images into four categories. In this experiment, 12 capital characters

were drawn from the NIST handprinted alphabet character database [209]. Each MC in the

feature extractor and neural classifier were set according to the optimal weights after training

a small-scale network through software. During the inference, selected images (128 × 128

pixels) were cropped (32 × 32 pixels), down-sampled (4× 4 pixels) and reshaped into a 1D

column vectors through a microcontroller (MCU). The final outcomes from the MCU were

further scaled down to the desired voltage level supported by the fabricated test chip (e.g.,

0–to–1.8V) through off-chip voltage dividers and buffers. These voltage signals were then

processed by the on-chip STHNN, in which the corresponding categories of input images

were measured simply as the highest voltage amplitude among four output neurons. With

the use of down-sampling operation, a large group of characters cannot be represented or

differentiated by a 4×4 array, and thus, only 12 characters were adopted in this experiment.

During the evaluation, 128 measurements were carried out for each set of random characters

to demonstrate the robustness of our fabricated STHNN prototype. Table 5.2 depicts the

classification accuracy of 12 selected characters deployed in 8 different testing sets. Under

the scenario without noise, the average classification accuracy for 4,096 images among 8

testing sets reaches 86.1%. Since the down-sampled images of characters ”A, F and P” as

well as ”H and N” are difficult to be differentiated in a small array, a lower classification

accuracy is reported when they are examined under the same group. Beyond that, the classi-

fication accuracy was also evaluated with the introduction of noise by randomly overwriting

the information of 1–to–3 pixels for each down-sampled images. It can be deduced from

measurement that a higher inference error occurs with the introduction of noise, yielding an

average classification accuracy of 73.1%.
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Table 5.2: Measured on-chip classification accuracy of 12 selected characters

deployed in 8 testing sets.

Test 1 Test 2

Character A C I N A F N T

Accuracy
w/o noise 94.5% 93.0% 95.3% 96.9% 53.1% 46.9% 97.7% 96.9%

w. noise 82.0% 78.9% 79.7% 81.3% 46.1% 40.6% 82.8% 79.7%

Test 3 Test 4

Character C F T U C N O P

Accuracy
w/o noise 96.9% 96.1% 92.2% 90.6% 93.0% 92.2% 94.5% 93.0%

w. noise 82.8% 84.4% 80.5% 78.1% 79.7% 79.7% 81.3% 82.0%

Test 5 Test 6

Character F I J N F N P X

Accuracy
w/o noise 96.9% 95.3% 95.3% 97.9% 48.4% 97.7% 45.3% 96.9%

w. noise 81.3% 76.6% 82.8% 84.4% 39.1% 81.3% 40.6% 79.7%

Test 7 Test 8

Character H N U X J N P X

Accuracy
w/o noise 46.9% 53.1% 90.6% 95.3% 93.8% 92.2% 91.4% 94.5%

w. noise 37.5% 41.4% 76.7% 82.8% 82.0% 81.3% 76.6% 76.6%

5.3.4 Power and Area Analysis

The power distribution and area breakdown of the fabricated STHNN prototype are demon-

strated in Fig. 5.7, where the total power consumption of 33mW with a supply voltage of

1.8V is reported during the inference operation. The feature extractor together with eight

analog MAC operators occupy 40% of total power and 44% of total area; 8× dynamic reser-

voirs occupy 28% and 36% of total power and area, respectively; the neural classifier occupies

20% of total power and 10% of total area, and the rest are occupied by peripheries (e.g.,
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analog/digital buffers, reference voltage/current generators, etc.). Design specifications of

the fabricated STHNN prototype and the comparison to the state-of-the-art neuromorphic

chips are summarized in Table 5.3. Due to the limitation of a small-scale MAC operation,

the reported performance efficiency of 393 × 10−6TOPS/mm2 is significantly lower. How-

ever, the fabricated STHNN prototype demonstrates the possibility of bridging MLP and

dynamic reservoir in a processing pipeline for neuromorphic applications, potentially yielding

a competitive performance with a simplified network structure.

Figure 5.7: Power distribution and area breakdown of fabricated spatial-

temporal hybrid neural network prototype in silicon @ 33mW with an operating

frequency of 1MHz and @ 0.814mm2, respectively.

5.4 Application Evaluation of Spatial-Temporal Hybrid

Neural Network

Due to the limited silicon area and the fabrication cost, the fabricated on-chip STHNN

prototype only contains eight analog MAC operators and four out neurons, having a limited

classification capability on real-world applications. To further demonstrate the performance

and the reliability of the introduced STHNN, a mathematical model was implemented in

TensorFlow, and its accuracy was evaluated through the handwritten digital classification.
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5.4.1 Experimental Setup

In this experiment, the performance was evaluated through the 4-core Intel i7-6700K CPU

and 16G RAM. The MNIST handwritten digit dataset [198] used in this experiment has the

same configuration as the on in the Ci-DFR network as depicted in Section 4.5. Four baseline

DNN models were adopted for the performance comparison, including MLP, CNN, long short-

term memory (LSTM) and gated recurrent unit (GRU). All weight matrices and bias vectors

of baseline DNN models were updated through the gradient-based backpropagation learning

algorithm by minimizing the cross-entropy loss through the Adam optimizer. Learning

parameters were set as follows: an L2 regularization was utilized to prevent the overfitting,

the dropout rate on the readout layer was set to be 0.5, and the learning rate was set to be

1× 10−3.

5.4.2 Classification Accuracy

The classification accuracy of the introduced STHNN with respect to various numbers of

neurons in the MAC operator is plotted in Fig. 5.8. It can be observed that a higher

classification accuracy can be achieved as the number of neurons increases. However, a

longer training time is then required to train the network, e.g., it takes 15secs to run a

256-neuron but 4mins to run a 2,048-neuron. The performance of the introduced STHNN

and baseline DNN models are summarized in Table 5.4.

In this experiment, CNN demonstrates the highest classification accuracy due to its feature-

based learning mechanism, and yet, the longest training time is reported as the convolution

operation is computationally expensive. It can be observed that the introduced STHNN

achieves the lowest classification accuracy when the number of neurons is set to be the

same as in all other DNN models. To perform the same, the number of neurons in STHNN

had to be increased to 2,048, and yet, still exhibiting 1.1–to–6.5× speedup over alternative

approaches. Moreover, MLP performs 4× faster than the STHNN with a similar classification

accuracy due to its simple structure and the simplicity of dataset, and yet, this would not

been the case for other complicated machine intelligence applications.
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Table 5.4: Classification accuracy comparison to baseline deep neural network

models on handwritten digit database.

MLP CNN LSTM GRU STHNN

Network

Structure
2× dense

2× conv.

2× pool.

1× dense

1×
rec.

1×
rec.

1× dense

1× DFR

1× dense

# of Kernels – 64× [3, 3] – – –

# of neurons 2× 256 256 256 256 various

Training Epochs 10 10 10 10 1

Classification

Accuracy
97.37% 98.58% 98.75% 98.89%

97.5% @ 2,048 neurons

90.3% @ 256 neurons

Training Time 1min 26mins 5.5mins 4.5mins
4mins @ 2,048 neurons

15secs @ 256 neurons

Figure 5.8: Classification accuracy of spatial-temporal hybrid neural net-

work with respect to various numbers of neurons in the multiplication-and-

accumulation operator on handwritten digit database.
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5.4.3 Reliability

Since the output weights of STHNN are trainable in a single step, it is often possible to suc-

cessfully train such a network with significantly fewer data. Such a capability is summarized

in Fig. 5.9 together with baseline DNN models. It can be observed that both MLP, CNN

and STHNN are capable to maintain their classification accuracy even with fewer training

samples, while the others have a significant reduction. Unsurprisingly, with the recurrent na-

ture embedded in the dynamic reservoir layer, the introduced STHNN does not have a strong

capability in enhancing the classification accuracy of static data, and yet, the computational

efficiency of STHNN is still 6.5× higher than the one with CNN. Table 5.5 summarizes the

classification accuracy comparison to the cutting-edge DNN approaches.

Figure 5.9: Classification accuracy with respect to various data samples on hand-

written digit database.

5.5 Spike-Timing-Dependent Plasticity

The use of Tikhonov regularization in the introduce DFR network, Ci-DFR network and

STHNN indeed accelerates the training operation while yielding a competitive accuracy over

the gradient descent algorithm, and thus, potentially reducing the implementation com-
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Table 5.5: Classification accuracy comparison to the cutting-edge deep neural

network models on handwritten digit database.

Algorithm Network Structure Classification Accuracy

[200] Spiking CNN

3× convolution

3× pooling

1× dense

97.2%

[201] Binary MLP 3× Dense 95.8%

[212] MLP 7× Dense 98.3%

[213] CNN (LeNET–5)

3× convolution

2× pooling

2× dense

99.1%

[214] MLP – 99.4%

[122] Ci-DFR

2× convolution

2× pooling

1× DFR

1× dense

99.0%

This Work STHNN

1× dense

1× DFR

1× dense

97.5%

plexity and hardware overhead. Nevertheless, the fact that decoding the temporal spike

train back into numerical numbers (i.e., analog signals) undoubtedly introduce additional

operations, requiring more resources to be allocated, and thus, concealing the advantages

introduced by the aforementioned network architectures.

By relating the plasticity at both excitatory and inhibitory synapses, a coincidence detection

mechanism can be realized when two asynchronous spiking events are generated with rela-

tive timing. Such a mechanism is commonly known as the spike-time dependent plasticity

(STDP) [215], illustrating a neuronal excitability with respect to the strength of coincidence

between spiking events. In general, STDP provides systems the ability to learn and optimize
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based on neuronal excitability, and thus, becoming a quintessential learning rule for spiking

neural networks (SNNs) [216–219]. The symmetric STDP and the asymmetric STDP are

the two well-known STDP learning rules. The former performs the weight adjustment re-

gardless of the temporal order while the latter performs the weight adjustment according to

the temporal order and the absolute time difference, as depicted in Fig. 5.10.

(a) (b)

Figure 5.10: Illustration of spike-time dependent plasticity of (a) symmetric and

(b) asymmetric rules.

STDP learning rule adopted the neuronal excitability to perform the weight adjustment with-

out the need of gradient computation and backpropagation operation, and thus, potentially

improving the computational efficiency over classical DNNs. To this end, it is essential to

investigate the possibility of implementing such an efficient training mechanism onto the in-

troduced hybrid neural computing architecture, sidestepping the necessity of spike to analog

decoding operation.

5.5.1 Circuit Principle

Fig. 5.11 demonstrates the electronic circuit model of asymmetric STDP, composing of a

predicted spike detector, a target spike detector, a phase comparator, and a weight regulator.

During the operation, the the predicted spike detector, M1–to–M4, extracts the absolute time

of a predicted spike, Spre, from the network and convert this spike data into a analog signal.

In the meantime, the same operation is executed at the target spike detector, M5–to–M8

87



upon the arrival of a target spike train, Star. The phase comparator extract the absolute time

difference between Spre and Star, and correspondingly control the switching mechanism to

adjust the weighted value on a capacitor, Cw. To be specific, weighted value is increased by

increasing the charges stored in Cw under the scenario of Star − Spre < 0, where the relative

timing of target spike leads ahead predicted spike. By contrast, weighted value is reduced

by removing charges from Cw under the scenario of Star−Spre > 0, where the relative timing

of target spike lacks behind predicted spike.

Figure 5.11: Design scheme of spike-time dependent plasticity.

5.5.2 Experimental Evaluations

The simulated weight adjustment, as plotted in Fig. 5.12, was recorded by utilizing the

predicted spike trains, collected from the dynamic reservoir layer of STHNN, and the target

spikes trains, generated according to target labels. It can be observed from the simulated

results that a weighted value can be trained with the temporal order and the absolute time

different using STDP learning rule. The performance comparison to the published literature

is summarized in Table 5.6.
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Table 5.6: Performance comparison of introduced spike-time dependent plastic-

ity circuit model to published literature.

[220] [218] [221] [219] [188] [222] This Work

Technology 350nm 250nm 180nm 130nm 10nm 65nm 180nm

Design Strategy analog analog analog analog digital digital analog

Memory Cell DRAM DRAM – DRAM SRAM SRAM
DRAM &

ReRAM

Neuron Type LIF IF LIF LIF LIF – LIF

Encoding TTFS – ISI – – – ISI

Supply Voltage 3.3V 3.3V 1.8V 1.0V 0.9V 1.2V 1.8V

Power

Consumption
– 250µW 200µW 55µW – – 150µW

(a) (b)

Figure 5.12: Simulated weight adjustment with introduced spike-time dependent

plasticity circuit model in (a) ideal scenario and (b) actual results from the

network.
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Table 5.7: Performance comparison of spike-time dependent plasticity to classical

training algorithms on handwritten digit database.

MLP SNN STHNN

# of Layers 2 2 3 3

# of Neurons 2× 256 2× 256 2,048 2,048

Training Algorithm
gradient

descent

unsupervised

STDP

Tikhonov

regularization

supervised

STDP

Training Epochs 10 10 1 10

Classification

Accuracy
97.4% 91.7% 97.5% 91.9%

Training Time 1min 1.5mins 4.5mins 1.3mins

Since additional data conversion is not necessary, it is often possible to accelerate the training

efficiency with STDP learning rule. Such a capability is demonstrated in Table 5.7 together

with the performance comparison to classical training algorithms. In this experiment, the

same configuration of MNIST handwritten digit database were adopted. From the baseline

models, it can be observed that the classification accuracy of a general SNN is lower than

MLP even with the same network structure. The same tendency can be found in the in-

troduced STHNN. It can be observed that the use of supervised STDP learning rule indeed

accelerates the training time by 3.5×, and yet, the classification accuracy is 5.6 percentage

points poorer.

5.6 Conclusions

To support the integration of deep learning strategies and neuromorphic architecture, a

STHNN with the CIM strategy is introduced together with a small-scale prototype fabri-

cation. To be specific, a set of neural computations is implemented to realize the spatial

and temporal information processing, wherein CIM-based feature extractor and dynamic

reservoir layer are incorporated. A 180nm prototype chip is fabricated with 86.1% on-chip
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classification accuracy on handprinted alphabet characters at a power consumption of 33mW.

Beyond that, numerical evaluations demonstrate that the introduced STHNN offers up to

6.5× speedup over the state-of-the-art DNN models while yielding a competitive classifi-

cation accuracy. In the endeavor to accelerate the training efficiency, a supervised STDP

learning rule is designed, whereby 3.5× speedup are obtained over the Tikhonov regulariza-

tion. In conclusion, this work simplifies the neural computing architecture with a unique

training mechanism; therefore, a complex machine intelligence application can be processed

with a simple system-level design. Even with a less advanced CMOS process, this work is

still capable to realize a high classification accuracy with an appreciable power consumption,

opening the door to future mobile edge intelligence computing.
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Chapter 6

Deep Learning Strategies on Internet

of Things

6.1 Introduction

Not only will future high-speed communication networks interconnect people, they will also

interconnect machines and devices, such as the internet of things (IoT) applications, which

will result in billions of devices deployed worldwide [223]. Emerging applications in the

context of IoT often require high-bandwidth communication networks like 5G, empowering

new user experience, and yet, causing a spectrum crunch and impacting spectrum usage [224].

More importantly, the demand on high-speed and reliable receiver has increased with the

increasing demand for wireless propagation characteristics.

Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM)

technology is the foundation of modern high-speed cellular and wireless local area networks,

playing an important role for signal transmission. The applications of IoT often require the

big data transmissible and analytic capabilities in real time, which relies on heterogeneous

environments and channel knowledge. In many mission-critical scenarios, due to the non-

linear distortion caused by practical radio frequency (RF) components in the transceiver

chain and the noise interference introduced by wireless connections, demodulating a group
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of modulation symbols or identifying a particular type of protocol in use have become more

difficult than ever.

Deep learning strategies, on the other hand, offer an alternative approach for IoT applica-

tions, in a way that is sufficient by training to reconstruct corrupted signals from distortion,

interference and noise at the receiver. While a vast majority of literature employs the con-

volutional neural networks (CNNs) [225–230], the fact that pre-processing continues streams

of data significantly degrades the computational efficiency and requires additional resources

to be allocated. Due to the nonlinear sequential nature in communication networks, recur-

rent neural networks (RNNs), including the vanilla RNN [67], the long short-term memory

(LSTM) [68], and the gated recurrent unit (GRU) [69], are expected to be the most suit-

able deep learning strategies for the complex temporal information processing by regulating

sequential inputs over arbitrary time intervals.

My goal in this project is to explore the applications of deep learning strategies on IoT

applications 1, including communication and healthcare. Major contributions of this project

are summarized as follow:

• A deep echo state network as modulation symbol detector for 5G MIMO-OFDM sys-

tems, yielding 47.73% more precise over the state-of-the-art approaches in the literate

for 5G communication networks.

• An echo state network for radio fingerprint identification in over-the-air WiFi environ-

ments, yielding a classification accuracy as high as 98.11% and exhibiting 7.4× speedup

over alternative deep neural network (DNN) models.

• Multiple DNN models for clinical disease identification in healthcare, yielding a clas-

sification accuracy as high as 91.7%, 80.0% and 96.9% in the identification of cardio-

vascular disease, breast cancer and coronavirus disease, respectively.

The rest of this chapter is organized as follows: Section 6.2 introduce the design solution for

modulation symbol detection. The radio fingerprint identification and the clinical disease

1The performance of all applications presented in this chapter was evaluated through the 4-core Intel

i7-6700K CPU and 16G RAM.
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identification are demonstrated in Section 6.3 and Section 6.4, respectively. This chapter is

then concluded in Section 6.5.

6.2 Modulation Symbol Detection

Conducting the modulation symbol detection in MIMO-OFDM systems under heterogeneous

environments and channel conditions is one of the major challenges for 5G communication

networks. This is because the received signal in a MIMO-OFDM system is the superposition

of all modulation symbols associated with its sub-carriers. Increasing the size of the alphabet

table can convey more information through one modulation symbol, and yet, enhancing the

demodulation complexity in the meantime.

An accurate channel estimation is required in a classical modulation symbol detection ap-

proach, which typically consumes a colossal amount of resources. That is, more accurate

channel estimation will require more resources to be allocated, resulting in fewer resources

available for data transmission. The maximum likelihood (ML) [231] and the soft-output

sphere decoding (SD) [232] are the two classical modulation symbol detection approaches

in MIMO-OFDM systems. However, computational and implementation complexities scale

exponentially with the increasing number of antennas and transmitted data streams.

Alternatively, data-driven approaches powered by deep learning strategies may pave the

way towards large-scale MIMO detection with reduced hardware implementation overhead.

Based on the supervised learning framework, deep learning strategies can be deployed to

perform parameter tuning and formulated to perform a classification problem. For instance,

in [233] and [234], an echo state network is deployed as the modulation symbol detector,

sidestepping the required channel estimation and yielding a better energy efficient over clas-

sical approaches. Nevertheless, the memory capacity, representing the amount of input data

that a reservoir layer can store, is limited. As the complexity of input data streams scales

up, the learning capability of reservoir from short-term memory reduces. To this end, a deep

echo state network is investigate in this project.
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6.2.1 Deep Echo State Network

Figure 6.1: General processing structure of deep echo state network composing

of two reservoir layers.

The general processing structure of deep echo state network (DESN) built of two cascading

reservoir layers is demonstrated in Fig. 6.1. During the operation, a set of complex time-

domain symbols of binary digits with both real and imaginary components are applied to the

DESN, which can be defined as xl=1
t ∈ NU , where NU denotes the input dimension and l = 1

denotes the first reservoir layer. The association between the raw sensory inputs and the

reservoir layer is communicated through input weights, W l=1
in ∈ [NU ×NR], where NR is the

number of neurons in each reservoir layer. Through the hierarchical structure, the second

reservoir layer adopts the intermediate output generated from its previous layer to compute

its reservoir dynamics, i.e., xl=2
t = ŷl=1

t , in which the state of reservoir dynamics on each

layer is calculated based on Eq. 2.4 with internal weights, Wres ∈ [NR×NR]. The predicted

output can be then computed by multiplying the reservoir dynamics from the second layer

with output weight, W l=2
out ∈ [NR ×NY ], where NY is the output dimension.

By stacking multiple reservoir layers into a hierarchical processing structure, the state com-

putation and the learning operation are carried out through the pipeline. To reduce the

design complexity, the teacher forcing for each reservoir layer is the same. The general

learning operation of the introduced DESN is summarized in Algorithm 4. The introduced

DESN with stacked hierarchy of reservoir layers achieves multiple temporal representation

for raw sensory information, allowing such a system to capture more features between input

and output patterns, more importantly, improving the richness of reservoir dynamics and

the memory capacity.
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Algorithm 4: Deep Echo State Network

Data: x = [n,m], y = [n, u], layer = l

Result: Wout

initialization

Wres := |λmax(Win)|
σ

·Win

for i→ 1 to n do

for ii→ 1 to m do

if l = 1 then

hl=1
t = f(mii ·W l=1

in + hl=1
t−1 ·W l=1

res )

ŷl=1
t = f(hl=1

t ·W l=1
out )

else

hl=2
t = f(ŷl=1

t ·W l=2
in + hl=2

t−1 ·W l=2
res )

end

end

end

return hl=1
t , hl=1

t

S = [h0, h1, · · · , hn]

Y = [y0, y1, · · · , yn]

Wout = Y · S ′ · (S · S ′ + η · I)−1

Figure 6.2: Deploying reservoir layer on memristive crossbars, in which Win

(highlighted in blue) and Wout (highlighted in green) are fully-connected, while

Wres (highlighted in red) is sparsely-connected; ”+” and ”-” denote positive and

negative weights, respectively.
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Table 6.1: Design specifications of single reservoir layer with hybrid CMOS-

memristor co-design and comparison to the state-of-the-art hardware modeling

approaches.

[235] [236] This Work

Implementation Strategy FPGA MATLAB CMOS

Technology 45nm – 180nm

Memory Cell ReRAM ReRAM ReRAM

# of Neurons 30 1,000 128

Neural Activation tanh tanh Mackey-Glass

Supply Voltage 0.55V – 1.8V

Power Consumption 125.36mW – 104.51mW

A generic hardware model of reservoir layer can be implemented with memristive crossbars,

as depicted in Fig. 6.2, in which the analog multiplication-and-accumulation operators,

as discussed in Section 5.2, and the resistive random-access memory (ReRAM) cells, as

discussed in Section 4.4, are deployed. Design specifications of the single reservoir layer with

hybrid CMOS-memristor co-design and the comparison to the state-of-the-art ESN hardware

modeling approaches are summarized in Table 6.1.

6.2.2 Experimental Setup

In this experiment, the introduced DESN was deployed as the modulation symbol detector

in the receiving chain of MIMO-OFDM systems, in which the MIMO-OFDM signal was

generated according to the 5G new radio (NR) specification that follows the standard 3GPP

TS 38.212 version 15.2.0 [237], where the channel was generated according to the Winner II

channel model [238]. The modulation method was configured as 16 quadrature amplitude

modulation (16-QAM). To be specific, pilots of the communication system, which are utilized

for channel estimation, were evenly used for training. Details of the system specification were

set as followings: the number of transmitting and receiving antennas was set to be 4, the
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Figure 6.3: Testing bit error rate with respect to various detection approaches

on demodulation symbol dataset.

Figure 6.4: Testing bit error rate with respect to various detection approaches

and signal-to-noise ratio on demodulation symbol dataset.
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number of sub-carriers in the OFDM system was set to be 1024, and the number of neurons

for each reservoir layer was set to be 128.

6.2.3 Detection Accuracy

The distribution of testing bit error rate (BER) with 30 samples is depicted in Fig. 6.3 and

6.4 with respect to various signal-to-noise ratios (SNRs). The linear minimum mean squared

error (LMMSE) is a classical model-based detection approach relied on the linear processing

method. Such an approach requires an accurate channel information, which is challenging to

be obtained in the low SNR regime. The reported average BER of the introduced DESN is

merely 5.76× 10−2, yielding 47.73% more precise over the LMMSE approach. Beyond that,

the average BER of the introduced DESN is also compared to the multilayer perception

(MLP) with 3 hidden layers and 1024 associated neurons per layer. Due to the limited

training set, MLP has an average BER up to 50.12 × 10−2. Thereby, it is convincing that

the introduced DESN outperforms state-of-the-art modulation symbol detection strategies

for all SNR regimes even with a very limited training set.

6.3 Radio Fingerprint Identification

Identifying and locating a particular device or protocol in use is one of the critical operations

in IoT applications, and yet, such operations have become more difficult than even in the

modern privacy-sensitive environment.

Many existing identification, localization and authentication mechanisms are based on cryp-

tography algorithms and protocols, which consume considerable energy while themselves

exposing other significant security issues. To identify a particular type of protocol or device

in use, simple and unique identifiers are commonly utilized, for instance, the internet pro-

tocol (IP) address, the medium access control (MAC) address, and the international station

equipment identity (IMEI) number [239]. Alternatively, geometry-based feature identifiers

can be applied, such as the time-of-flight (ToF), the radio signal strength (RSS), the an-

gle of arrival (AoA), and the channel state information (CSI) [240]. However, such simple
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and unique identifiers can be easily spoofed and stolen, while geometry-based features are

susceptible to a device’s physical mobility and environment changes.

It has been found that the likelihood of multiple transmitted radio signals having the same

RF features is extremely low, even if such transmitters are broadcasting the same data in

the same location [241]; this means every transmitter has a unique feature, known as the RF

fingerprint. RF fingerprinting is a process that leverages characteristic features embedded in

transmitted signals to discriminate radios in a shared spectrum environment. In general, RF

fingerprints arise from inherent randomness in the manufacturing process, particularly the

presence of analog components in a wireless transmitter, such as band-pass filters, frequency

mixers, etc. Such randomness, also known as hardware imperfections, can be seen as a unique

RF feature in a specific wireless transmitter, which are inherent to a device’s hardware and

cannot be replicated by malicious agents.

Based on the supervised learning framework, deep learning strategies can be trained to

discover discriminating features caused by hardware imperfections for every RF signal, and

thus, allowing the network to uniquely identify each radio device. Despite that RNNs are

expected to be the most suitable deep learning strategies for complex temporal information

processing, the fact that training all internal weights and bias vectors significantly increases

the computational complexity. To this end, an ESN is investigate in this project to accelerate

the training operation.

6.3.1 Experiment Setup

In this experiment, an ESN was trained to identify specific devices based on raw transmitted

WiFi signals. The dataset used in this evaluation contains 16 USPR X310 transmitter radios,

each of which has 20 millions bit-similar in-phase and quadrature (IQ) samples collected from

over-the-air WiFi transmission with the same B210 radio as receiver [224]. All transmitters

are bit-similar radios with random payload that emit IEEE 802.11a standards-compliant

frames. The software-defined radio (SDR) of the receiver samples input signals at a sampling

rate of 5MS/s with a center frequency of 2.4GHz, and the transmitter-receiver separation

distance is set to be 2, 32, and 62ft. During the experiment, 512,000 complex IQ samples
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were drawn for each device, in which 75% of samples were adopted for training and the

rest were adopted for testing. Collected IQ samples were further partitioned into multiple

sub-sequences with a window length of 128, i.e., the length of contiguous samples that will

be used at a time for both training and testing.

6.3.2 Classification Accuracy

The reservoir layer was initialized with 4,096 neurons, a dropout rate of 0.8, a leaky rate of

0.1, and a Gaussian noise of 0. Fig. 6.5a depicts the average classification accuracy with

respect to various number of devices. It can be observed that more features are needed to be

discriminated as the number of devices increases, and thus, resulting in a lower classification

accuracy. Furthermore, as plotted in Fig. 6.5b, the average classification accuracy reaches

93.1%, 98.1%, and 94.4% when the transmitter-receiver separation distance is set to be 2,

32, and 62ft, respectively, in which the number of devices is kept at 16. The variation of

classification accuracy with respect to different separation distances can be interpreted as the

nonlinear distortion caused by the wireless transmission could impact RF signals. Rather,

it can also be observed that a higher classification accuracy can be achieved as the number

of neurons increases, and yet, a longer run-time is then required to train the network.

The average classification accuracy based on classical CSI location-based feature is approxi-

mately 92-97% [242]; therefore, it is reasonable to conclude that the identification strategy

based on ESN is capable of achieving an identical classification accuracy when not consider-

ing security, mobility, and environment changes.

6.3.3 Stability Analysis

To evaluate the stability of ESN, a noise vector can be added to the reservoir dynamics. In

this experiment, a Gaussian noise from 0 to 1 was introduced to the reservoir layer with

respect to various number of neurons, while the transmitter-receiver separation distance was

kept at 32ft. As demonstrated in Fig. 6.5c, the ESN is able to maintain a high classification

accuracy above 90% with 4,096 neurons up to the Gaussian noise of 0.6. Unsurprisingly, as
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(a) (b)

(c) (d)

Figure 6.5: Classification accuracy on radio fingerprint dataset with respect to

(a) various number of devices under different transmitter-receiver separation

distances, (b) various number of neurons under different transmitter-receiver

separation distances, (c) various number of neurons under different Gaussian

noises, and (d) various number of training samples together with baseline deep

neural network models.

the number of neurons is increased, so too does the network’s resilience to noise. However,

larger reservoir networks require 4× more time to train.

Since output weights of ESN are trainable in a single step, it is often possible to successfully

train such a network with significantly fewer data. Such a capability is summarized in Fig.
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Table 6.2: Performance comparison to baseline deep neural network models on

radio fingerprint dataset.

MLP CNN LSTM GRU ESN

Network

Structure
2× dense

2× conv.

2× pool.

1× dense

1×
rec.

1×
rec.

1× reservoir

# of Kernels – 64× [2, 3] – – –

# of neurons 2× 512 512 512 512 various

Training Epochs 500 50 100 100 1

Classification

Accuracy
6.25% 94.6% 95.4% 97.6%

98.1% @ 4,096 neurons

76.1% @ 512 neurons

Training Time 53mins 118mins 35mins 30mins
16mins @ 4,096 neurons

43secs @ 512 neurons

6.5d and Table 6.2 together with the baseline DNN models. From Fig. 6.5d, it can be

observed that only the ESN has the capability to maintain its classification accuracy even

with fewer training samples, while alternative models have a significant reduction. Even

with 256,000 training samples, these alternative DNN models perform 8-12 percentage points

poorer. To perform the same, the ESN had to be reduce to only 20,000 training samples. It

can be also observed that the MLP is not trainable in such a temporal dataset.

The performance metric of ESN is summarized in Table 6.2 together with baseline DNN

models. It can be observed that the ESN achieves the lowest classification accuracy when

the number of neurons is set to be the same as in all other DNN models. To perform

the same, the number of neurons in ESN had to be increased to 4,096. Despite that the

ESN required 8× more neurons to approach an identical classification accuracy, such a

simple training mechanism results 7.4× speedup over alternative DNN models. Beyond

that, the performance comparison to the cutting-edge DNN models is summarized in Table

6.3, demonstrating that the ESN has the capability to achieve an identical classification

accuracy even with a very limited training set.
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Table 6.3: Classification accuracy comparison to the cutting-edge deep neural

network models on radio fingerprint dataset.

[224] [243] [244] [245] This Work

# of Devices 16 16 5 17 16

Samples per Device 2 million 576,000 720,000 – 51,200

Algorithm CNN CNN CNN CNN ESN

Network Structure

8× conv.

4× pool.

2× dense

2× conv.

1× pool.

1× dense

2× conv.

1× pool.

1× dense

5× conv.

5× pool.

1× dense

1× reservoir

# of Kernels 128 50 50 128 –

# of Neurons 256 + 128 256 256 256 4,096

Classification

Accuracy
98.6% 98.6% 98.0% 93.4% 98.1%

6.4 Clinical Disease Identification

In recent years, electronic medical services generate a colossal amount of heterogeneous

biomedical data, from daily records of heart rate and blood pressure to images of magnetic

resonance imaging (MRI) and computerized tomography (CT) scan. On one side, the in-

creasing data volume provides an opportunity to improve the medical diagnostic. On the

other hand, the increasing demand for medical diagnostic significantly reduces the diagnostic

efficiency while consuming a large part of medical expenses.

The identification of a specific clinical disease based on symptoms and endocrine hormones is

a primary procedure in medical diagnostic, creating a risk score system to identify patients

who may need additional medical cares. It has been found that many clinical diseases,

including the earlier stage of cancers, are highly related to the endocrine hormones [246–250],

and can be observed by many symptoms and unusual changes of physical characteristics

[251–255]. In most circumstances, the diagnostic efficiency is limited and errors are inevitable

as complex medical diagnostics involve visual perception.
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This is where the deep learning comes into help, in a way that is sufficient by learning

from a colossal amount of data. From predicting the onset of clinical disease to identifying

suspicious spots on tumors and brain bleeds, deep learning strategies have provided witnessed

striking advances in medical applications [256–260]. Beyond that, arose with the introduction

of IoT, a simple diagnostic procedure can be realized through a highly optimal machine

learning algorithm deployed on wearable devices, improving the diagnostic efficiency while

reducing the necessary medical expenses. To this end, multiple deep learning strategies

are examined in this project to improve the classification performance of clinical diseases,

including cardiovascular disease, breast cancer and coronavirus disease.

6.4.1 Cardiovascular Disease

Cardiovascular disease is the leading causes of death globally, killing approximately 17.9

million people worldwide annually [261], in particular, due to the heart failure caused by

high blood pressure and diabetes. Given the importance of heart, it is essential for medical

doctors to predict heart failure based on electronic health records from patients. In this

context, deep learning strategies can be deployed to unveil the non-obvious correlations and

relationships between patient’s data.

In this experiment, multiple DNN models were trained to predict mortality based on medical

records and vitals. The dataset used in this experiment contains 299 medical records from

patients [262]. The collected features include clinical (e.g., platelet, ejection fraction, etc.),

physical (e.g., age and gender) and lifestyle (e.g., hypertension, diabetes, etc.) information,

as described in Table 6.4. All patients are reported with left ventricular systolic dysfunction

and previous heart failures. The objective of this project is to determine the possibility of

heart failure for patients in the following year. During the experiment, 80% or samples were

adopted for training and the rest were adopted for testing.

The average classification accuracy with multiple DNN models are plotted in Fig. 6.6 and

summarized in Table 6.5. It can be observed that both ESN and STHNN outperform the

alternative DNN models even with a fewer number of neurons, yielding an average classi-

fication accuracy up to 91.7% with merely 0.2s of training time. Under the scenario with
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Table 6.4: Features drawn from medical records of patients on heart failure

clinical records dataset.

Feature Descriptions Range

Age age of patient 40 to 95

Gender female or male 0 or 1

Hypertension if a patient has hypertension 0 or 1

Smoking History if a patient has smoking history 0 or 1

Diabetes if a patient has diabetes 0 or 1

Anaemia decrease of red blood cells or hemoglobin 0 or 1

Creatinine

Phosphokinase
level of creatinine phosphokinase enzyme 23–to–7, 816mcg/L

Ejection Fraction
percentage of blood leaving the heart at

each contraction
14–to–80%

Platelets amount of platelets in blood 25–to–850k/mL

Serum Creatinine level of creatinine in blood 0.5–to–9.4mg/dL

Serum Sodium level of sodium in blood 114–to–148mEq/L

Table 6.5: Performance comparison on heart failure clinical records dataset.

MLP LSTM GRU ESN STHNN

Network

Structure
2× dense 1× recurrent 1× recurrent 1× reservoir

1× dense

1× DFR

1× dense

# of neurons 2× 256 256 256 256 256

Training Epochs 20 20 20 1 1

Classification

Accuracy
75.0% 77.1% 77.1% 91.7% 90.5%

Training Time 26s 35s 31s 0.2s 0.2s
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Table 6.6: Performance comparison to the cutting-edge machine learning ap-

proaches on heart failure clinical records dataset.

[263] This Work

Algorithm KNN SVM GB RandF LR ESN

Classification Accuracy 62.4% 68.4% 73.8% 74.0% 83.3% 91.7%

Figure 6.6: Classification accuracy with respect to various number of neurons

on heart failure clinical records dataset.

64 neurons, both ESN and STHNN are still capable to achieve a classification accuracy

up to 83.8%, which is approximately 13 percentage points better over alternative DNN

models while yielding 175× speedup. Beyond that, the performance comparison to the

cutting-edge machine learning approaches is summarized in Table 6.6, including k-nearest

neighbors (KNN), support vector machine (SVM), gradient boosting (GB), random forests

(RandF) and linear regression (LR). It can be observed from the comparison results that the

introduced identification strategy based on deep learning approach demonstrates a better

classification accuracy over the cutting-edge machine learning approaches.
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Table 6.7: Features drawn from medical records of patients on breast cancer

dataset.

Feature Descriptions Range

Age age of patient 24 to 89

Body Mass Index mass and height of patient 18.4–to–38.6kg/m2

Glucose level of sugar in blood 60–to–201mg/dL

Insulin level of insulin in blood 2.4–to–58.7µU/mL

HOMA level of insulin resistance in blood 0.5–to–25.0

Leptin level of leptin in blood 4.3–to–90.3ng/mL

Adiponectin level of adiponectin in blood 2.7–to–38.0µg/mL

Resistin level of resistin 3.2–to–82.1ng/mL

MCP-1
level of monocyte chemoattractant

protein in blood
45.8–to–1, 698.4pg/dL

6.4.2 Breast Cancer

Breast cancer is the most common cancer and is the second leading cause of cancer death

globally, particular in women, in which 2.26 million people are diagnosed and over 685,000

deaths annually [264]. Similar as in the cardiovascular disease, it is essential to enable breast

cancer screening for early detection, ensuring a greater probability of treatment. Routine

consultation and blood analysis provide a robust predictive screening platform for medical

doctors to predict breast cancer. In this context, DNN models can be also deployed for data

analysis, discriminating the uniqueness between patient’s data.

In this experiment, multiple DNN models were trained to predict the risk for breast cancer

based on vitals and parameters collected from routine blood analysis. The dataset used in

this experiment contains 166 medical records from patients [265]. The collected features

include physical (e.g., age) and haemal (e.g., insulin, adiponectin, etc.) information, as

described in Table 6.7. The distribution of percentage on training and testing samples was

set to be the same as in the previous experiment.
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Table 6.8: Performance comparison on breast cancer dataset.

MLP LSTM GRU ESN STHNN

Network

Structure
2× dense 1× recurrent 1× recurrent 1× reservoir

1× dense

1× DFR

1× dense

# of neurons 2× 256 256 256 256 256

Training Epochs 20 20 20 1 1

Classification

Accuracy
68.0% 72.0% 72.0% 80.0% 78.0%

Training Time 25s 26s 24s 0.2s 0.2s

Table 6.9: Performance comparison to the cutting-edge machine learning ap-

proaches on breast cancer dataset.

[265] This Work

Algorithm LR SVM RandF ESN

Classification Accuracy 73.0% 78.0% 81.2% 80.0%

The average classification accuracy with multiple DNN models are plotted in Fig. 6.7 and

summarized in Table 6.8. The trend on classification accuracy and training time is found

be to the same as in the previous experiment on heart failure identification. The highest

classification accuracy of 80% is reported by the ESN, while both ESN and STHNN demon-

strate 130× speedup over alternative DNN models. Beyond that, the performance to the

cutting-edge machine learning approaches is summarized in Table 6.9, demonstrating that

both ESN and STHNN are capable to achieve a competitive classification accuracy even with

a limited training set.
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Figure 6.7: Classification accuracy with respect to various number of neurons

on breast cancer dataset.

6.4.3 Coronavirus Disease

Following the coronavirus disease 2019 (COVID-19) since 2020, COVID-19 has spread to

every country, causing 156 million confirmed cases and over 3.26 million deaths globally

as of May 2021 (according to the Johns Hopkins Coronavirus Resource Center: https:

//coronavirus.jhu.edu). Beyond that, COVID-19 has become the third leading cause of

death in United States [266]. Similar as in other diseases, an effective screening of COVID-

19 would mitigate the burden on healthcare systems. As machine learning approaches are

widely deployed to assist medical applications, the objective of this project is to predict the

COVID-19 test results.

In this experiment, multiple DNN models were trained to predict the risk of COVID-19

based on simple features. The dataset used in this experiment contains 2.7 million test

records from patients between March 2020 to November 2020 [267]. The collected features

include physical (e.g., age and gender), clinical (e.g., appearance of symptoms) and lifestyle

(e.g., contact with infected individual and travel history) information, as described in Table

6.10. Features are only reported in three various states, for instance, true (1), false (0) or

unknown (-1). The final results are either positive or negative, which have been confirmed
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Table 6.10: Features drawn from medical records of patients on coronavirus

dataset.

Feature Descriptions Range

Age age of patient older than 60 years 0, 1 or -1

Gender female, male or unreported 0, 1 or -1

Cough symptom of cough 0, 1 or -1

Fever symptom of fever 0, 1 or -1

Sore Throat symptom of sore throat 0, 1 or -1

Shortness of Breath symptom of shortness of breath 0, 1 or -1

Headache symptom of headache 0, 1 or -1

Contact with Infected

Individual

contact with infected individual or with

travel history
0, 1 or -1

Table 6.11: Performance comparison on coronavirus dataset.

MLP LSTM GRU ESN STHNN

Network

Structure
2× dense 1× recurrent 1× recurrent 1× reservoir

1× dense

1× DFR

1× dense

# of neurons 2× 256 256 256 256 256

Training Epochs 10 10 10 1 1

Classification

Accuracy
96.4% 96.5% 96.1% 96.9% 96.8%

Training Time 1min 2mins 1.8mins 1min 0.85mins

through the real-time polymerase chain reaction (RT-PCR) assay of a nasopharyngeal swab.

The distribution of percentage on training and testing samples was set to be the same as in

previous experiments.
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Table 6.12: Performance comparison to the cutting-edge machine learning ap-

proaches on coronavirus dataset.

[268] This Work

Algorithm GB ESN

Classification Accuracy 90% 96.9%

(a) (b)

Figure 6.8: Classification accuracy on coronavirus dataset with respect to (a)

various number of neurons, (b) various number of training samples.

The average classification accuracy with multiple DNN models are plotted in Fig. 6.8 and

summarized in Table 6.11. Due to the simple format of features, the average classification

accuracy on all DNN models are identical, in which the gradient-based models (MLP, LSTM

and GRU) can be trained with less epochs. Unsurprisingly, as the number of training samples

is reduced, so too does the network’s classification accuracy, and yet, both ESN and STHNN

still have the capability to maintain their classification accuracy due to the unique training

mechanism. Beyond that, the performance to a cutting-edge machine learning algorithm is

summarized in Table 6.12.
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6.5 Conclusions

In this work, multiple deep learning strategies are deployed for IoT applications, demonstrat-

ing their competitive performance in both communication and healthcare. The DESN-based

modulation symbol detector improves the separability and the memory capacity of reservoir

computing networks, yielding an average BER as low as 5.76 × 10−2, whereby the robust-

ness improvement reaches 47.73% over the state-of-the-art approaches in the literate for 5G

MIMO-OFDM systems. Beyond that, by deploying the ESN as RF identifier, unique fea-

tures between radio devices can be discriminated, yielding an average classification accuracy

as high as 98.11% with 7.4× speedup over alternative DNN models. What is more, nu-

merical evaluations in healthcare applications also demonstrate the advantages of DNN over

alternative machine learning approaches, yielding an average classification accuracy as high

as 91.7%, 80.0% and 96.9% on the identification of cardiovascular disease, breast cancer

and coronavirus disease, respectively. In summary, even with a very limited training set,

deep learning strategies, particular with ESN, are still capable of achieving a competitive

classification accuracy with reduced computing and hardware overhead.
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Chapter 7

Conclusions

To support the integration of deep learning strategies and neuromorphic architecture, in

this dissertation, a delay-feedback reservoir (DFR) network and two emerging hybrid neural

computing architectures, the convolution-immersed DFR (Ci-DFR) network and the spatial-

temporal hybrid neural network (STHNN), are introduced.

With a delay-feedback system embedded into the network, the introduced DFR network

together with a fabricated prototype on 130nm process demonstrate a new design solution for

reservoir computing network (RCN) and, to the best of our knowledge, is the first hardware

implementation of DFR network in silicon. Beyond that, the introduced DFR network offers

up to 6.79× error reduction on time series prediction and up to 26 percentage points more

robust against noise on facial recognition. On the other hand, both Ci-DFR network and

STHNN demonstrate a new design possibility for DFR network, exhibiting an error reduction

up to 13.77× on time series prediction, approximately 2.5 percentage points classification

accuracy improvement on spoken digit recognition, and a training acceleration up to 3.5×
on handwritten digit classification. Beyond that, a fabricated prototype of STHNN on

180nm process demonstrates an on-chip classification capability for handprinted alphabet

characters, yielding an average classification accuracy up to 86.1%. These emerging neural

computing architectures demonstrate a promising solution to realize the next-generation

computing platform for machine intelligence applications.
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What is more, multiple deep learning strategies are deployed for internet of things (IoT)

applications, demonstrating their competitive performance in both communication (e.g.,

modulation symbol detection and radio fingerprint identification) and healthcare (e.g., iden-

tification of cardiovascular disease, breast cancer and coronavirus disease). The resulting

outcomes demonstrate the possibility of deploying deep learning strategies on IoT applica-

tions, opening the door for future mobile intelligence computing.
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