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ABSTRACT 

 

 

In recent years neuromorphic computing systems have achieved a lot of success 

due to its ability to process data much faster and using much less power compared to 

traditional Von Neumann computing architectures. There are two main types of Artificial 

Neural Networks (ANNs), Feedforward Neural Network (FNN) and Recurrent Neural 

Network (RNN). In this thesis we first study the types of RNNs and then move on to 

Spiking Neural Networks (SNNs). SNNs are an improved version of ANNs that mimic 

biological neurons closely through the emission of spikes. This shows significant 

advantages in terms of power and energy when carrying out data intensive applications by 

allowing spatio-temporal information processing.  

On the other hand, emerging non-volatile memory (eNVM) technology is key to 

emulate neurons and synapses for in-memory computations for neuromorphic hardware. A 

particular eNVM technology, memristors, have received wide attention due to their 

scalability, compatibility with CMOS technology and low power consumption properties. 

In this work we develop a spiking neural network by incorporating an inter-spike interval 

encoding scheme to convert the incoming input signal to spikes and use a memristive 

crossbar to carry out in-memory computing operations. We develop a novel input and 

output processing engine for our network and demonstrate the spatio-temporal information 

processing capability. We demonstrate an accuracy of a 100% with our design through a 

small-scale hardware simulation for digit recognition and demonstrate an accuracy of 87% 

in software through MNIST simulations. 
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GENERAL AUDIENCE ABSTRACT 

 

 

In recent years neuromorphic computing systems have achieved a lot of success 

due to its ability to process data much faster and using much less power compared to 

traditional Von Neumann computing architectures. Artificial Neural Networks (ANNs) are 

models that mimic biological neurons where artificial neurons or neurodes are connected 

together via synapses, similar to the nervous system in the human body. here are two main 

types of Artificial Neural Networks (ANNs), Feedforward Neural Network (FNN) and 

Recurrent Neural Network (RNN). In this thesis we first study the types of RNNs and then 

move on to Spiking Neural Networks (SNNs). SNNs are an improved version of ANNs 

that mimic biological neurons closely through the emission of spikes. This shows 

significant advantages in terms of power and energy when carrying out data intensive 

applications by allowing spatio-temporal information processing capability.  

On the other hand, emerging non-volatile memory (eNVM) technology is key to 

emulate neurons and synapses for in-memory computations for neuromorphic hardware. A 

particular eNVM technology, memristors, have received wide attention due to their 

scalability, compatibility with CMOS technology and low power consumption properties. 

In this work we develop a spiking neural network by incorporating an inter-spike interval 

encoding scheme to convert the incoming input signal to spikes and use a memristive 

crossbar to carry out in-memory computing operations. We demonstrate the accuracy of 

our design through a small-scale hardware simulation for digit recognition and demonstrate 

an accuracy of 87% in software through MNIST simulations. 
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Chapter 1: Introduction 

Compared to traditional Von Neumann computing architectures, neuromorphic 

computing systems have the ability to process data much faster and consume much less 

power. Neuromorphic computing, introduced by Dr. Carver Mead in 1980, can emulate 

biological processes using highly parallelized computing architectures [1]. Artificial 

Neural Networks (ANNs) are models that mimic biological neurons. In ANNs, neurodes 

or artificial neurons are connected to other neurodes via synapses, similar to the nervous 

system, and they are usually arranged in a layer [2]. The inputs applied to these neurodes 

are multiplied by certain weights and it is through the adjustment of these weights that 

learning is mimicked in ANNs. A transfer function is used to transform the neurons input 

value where the most commonly used ones include sigmoid or hyperbolic tangent functions 

[2]. The output values are obtained from the summation of the products of the input values 

and the corresponding weights.  

Feedforward neural networks (FNN) and Recurrent Neural Networks (RNN) are 

the two most common ANNs. In FNNs, there are no loops found internally and the 

connections between the neurons happen only in one direction from the input to the output 

layer [3]. Due to their feedforward nature, only static spatial input patterns can be 

processed, as the data received from the output layer has information about one particular 

moment of the input.  

RNNs, derived from FNNs, have internal loops or recurrent connections in the 

hidden layer that allows them to keep the data in the network for a certain time period [4]. 

This creates dynamical behavior in RNNs and gives it the ability to process both spatial 

and temporal data. Therefore, RNNs can emulate biological neurons more closely.  

1.1 Reservoir Computing 

The major drawback of RNNs is that the training procedure is extremely complex 

and expensive due to the recurrent connections in the hidden layers. Derived from RNNs 

is Reservoir Computing that possesses the spatio-temporal information processing 

capability. Echo state networks (ESNs) and Liquid State Machines (LSMs) are subsets of 
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reservoir computing and they take advantage of the dynamical property of RNNs [5], [6]. 

ESN and LSM are a subset of reservoir computing and they are a simplified version of the 

RNNs. ESN and LSM are constructed with a layer of nonlinear neurons to add nonlinearity 

to the system and have fixed, untrained weights in the reservoir layer. The weights in the 

output layer are only trained in reservoir computing, which greatly simplifies the training 

procedures. ESN and LSM has proven to be very successful in the past years. For instance, 

ESNs have been used in intelligent stock trading systems and automatic speech recognition 

[7], [8]. LSMs have also shown successful results in speech recognition and pattern 

recognition on FPGAs [9], [10], [11].  

An evolution of ESN and LSM is the Delay-Feedback Reservoir (DFR) Computing 

which uses the embedded delay property [3], [12], [13]. This is derived from the theory 

that delay is present in the biological system [14]. In DFR, the entire recurrent network is 

substituted by one single nonlinear node followed by neurons that are separated by delays. 

Since delay is present in biological systems, DFR systems are able to mimic biological 

systems closely. DFR systems have shown successful results in photonic implementations 

due to their simplicity in hardware implementations [15] [16], [17]. They have also shown 

to exhibit near chaotic behavior [18]. A complete analog IC implementation of DFR has 

also been designed and fabricated, as well as been analyzed and evaluated using Monte 

Carlo simulations [19]. Memristor synapses have also been used with the Deep DFR to 

show successful results with the applications on spoken digit recognition and handwritten 

digit classification [20].  

In this part of the thesis for background study we first cover the basic architecture 

and elaborate on the different types of reservoir computing including ESNs, LSMs and 

Delayed Feedback systems. Electronic Reservoir Computing is explained in the next 

section with a focus on Analog Implementations, Field-Programmable-Gate-Array 

(FPGA), Very-Large-Scale-Integrated Circuits (VLSI) and memristors. Other types of 

reservoir Computing are explained afterwards followed by applications for Reservoir 

Computing with a conclusion. 
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1.2 Spiking Neural Network 

 Deep neural networks that use deep learning has shown excellent results in the field 

of large data analysis [21]. Deep neural network can be applied to speech recognition, digit 

recognition, pattern classification and natural language processing. The efficiency of deep 

neural networks can be improved significantly by using Spiking Neural Networks (SNNs). 

SNNs mimic biological neurons more closely because of their spiking nature; once a 

threshold is exceeded, a spike is fired, and the information depends on the specific time of 

the spikes or the sequence of the spikes [22]. Furthermore, the binary nature of the spikes 

in SNNs contribute to efficiency in terms of both power and energy. Spiking neural 

networks are therefore said to be the third generation of artificial neural networks [23].  

 A number of encoding schemes have been developed to convert the data into spike 

events. The two main encoding schemes are rate encoding and temporal encoding [24]. 

Rate encoding is where the data is encoded into the frequency of the spikes and temporal 

encoding is where the data is encoded into the timing of spikes. In temporal encoding 

scheme some common ones are time-to-first-spike (TTFS), phase and burst encoding. 

Temporal encoding is more energy efficient compared to rate encoding because of the 

fewer spike events generated. In this thesis we use an inter-spike interval (ISI) encoding 

scheme to encode the data into spike events. The key idea of this ISI encoding scheme is 

that it has higher information density compared to its TTFS counterpart since it carries 

information in both the timing of the spikes as well as the distance between the spikes 

based on the intensity of the information.  

 Conventional CMOS technology has been employed to build neuromorphic 

systems which is the use of hardware components to build neural networks. Some notable 

examples of neuromorphic computing chips include Loihi by Intel and TrueNorth by IBM 

[25], [26]. Loihi, that consumes only 0.001% of the power consumed by traditional 

computing architectures while TrueNorth has the capability of classifying multiple objects 

while consuming only 65mW of power [26]. 

 Compared to the traditional CMOS memory technologies that include static random 

access memory (SRAM), dynamic random access memory (DRAM) and flash, emerging 
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non-volatile memory technologies (eNVMs) has shown to emulate biological neurons and 

synapse more closely that is invaluable to in-memory computations for neuromorphic 

hardware. A particular eNVM called resistive random access memory (ReRAM) or 

memristor has received wide attention due to its scalability, compatibility with CMOS 

technology, analog conductance modulation and low power consumption [27]. 

Furthermore, using ReRAMs for in-memory computation operations replaces the need for 

power-hungry and area-hungry analog-to-digital and digital-to-analog converters.  

 In this work we use the VT memristor model to develop our neural network. This 

memristor has a novel heat dissipation capability that reduces the resistance variation by 

almost 30% [28]. The VT memristor also has a competitive cycle-to-cycle variation of only 

4%. The high on and off resistance ratio of this VT memristor also provides a stable high 

and low state that is favorable for binarized neural network.  

 With the ISI encoding scheme and the VT memristor model a deep spiking neural 

network is then proposed. The pre and post processing engine of the memristor is discussed 

in detail in this work that shows how the network can be scaled easily. The proposed system 

also has a spatio-temporal information processing capability where multiple rows of pixel 

values can be taken in at a time. A TTFS based output post processing technique is 

discussed as well that allows to do classifications for different machine learning 

applications such as digit or pattern recognition. A small-scale hardware model is proposed 

with using a 3 layer spiking neural network architecture and the accuracy is shown using 

pixelated digit images of 0-9 as inputs. A 3-layer neural network software model is then 

developed to test this network with MNIST dataset that has shown to have 86% accuracy.  

The main contributions in this part of the thesis includes 

1. A novel scalable deep neural network design with compute-in-memory architecture 

for ReRAM crossbars. 

2. A spatio-temporal information processing capability where each row of pixels can 

be taken in for one clock cycle. 
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3. Incorporates inter-spike interval encoding scheme for information processing and 

uses it as an interface between layers.  

4. Uses the VT memristor model for the design of the crossbar that allows for matrix-

vector-matrix multiplication followed by a current compensator stage that adds 

variation to compensate for both binary weights as well as leakage current.  

5. Evaluation of accuracy on hardware using the pixels from images of digits 0-9 and 

shows a 100% accuracy with the TTFS classification scheme. 

6. A software model to evaluate the large-scale model of the designed neural network 

and comparing it with the TTFS counterpart.  
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Chapter 2: Reservoir Computing  

The fundamental framework of reservoir computing is discussed in detail in this 

section. This section also covers the detailed working procedures of the three common 

reservoir computing framework which includes ESNs, LSMs and Delayed Dynamical 

Systems. 

2.1 Architecture of Reservoir Computing 

 

Figure 2-1: Basic Architecture of Reservoir Computing 

 

The overview of the well-known Recurrent Neural Network sections is shown in 

Figure 2-1. Derived from FNNs, a typical example of RNN is shown in Fig. 2-2. A 

dynamical memory is made in RNNs that stems from the recurrent connections. The 

processing of temporal information is made easier in RNNs because each state can depend 

on previous states and they can be used for tasks such as time series prediction or speech 

recognition [3]. 
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Figure 2-2: Recurrent Neural Network 

Hopfield network, a subset of RNN, consists of attractors [29], [30]. The input can 

be classified into an attractor which represents a class. Each network has a scalar value 

which is defined as the energy of the network. The nodes in the network are updated and 

eventually the nodes converge to a local minimum. The major issue with Hopfield 

networks is that it is unable to process information at any particular moment and only the 

final result can be read [3]. Long Short Term Memory, another subset of RNN, has shown 

successful results in handwritten digit recognition and speech recognition [31], [32], [33]. 

It has feedback connections and is able to process a series of data [34]. Reservoir 

Computing has recently shown successful results in computing challenging tasks such as 

speech recognition, grammar modeling, character recognition, generation and prediction 

of chaotic time series and noise modeling [35], [36], [37], [38], [39], [40], [41], [42]. The 

inputs are nonlinearly transformed to a high dimensional space to classify the data and 

passed to the reservoir layer where the inputs are randomly connected, similar to the RNN 

structure. Only the weights in the output layer are trained as depicted in Figure 2-3 [3], [5], 

[6]. 

Since only the output layer is trained, the training process can be simplified to a 

linear training algorithm such as a linear classifier [3]. The reservoir also implements the 

fading memory property because each state depends on the values from the recent past due 

to the recurrent connections and the values from the distant past get faded away over time 

[43], [44], [45], [46]. The reservoir should also have different responses dynamically to 

different types of inputs to be able to separate these inputs into different classes. Apart 
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from the fading memory property and the separation property from the nonlinearly 

transformed inputs, another important property for reservoirs is that it needs to be able to 

approximate such that similar inputs are mapped to the same class. 

 

Figure 2-3: Reservoir Computing Architecture 

 

2.1.1 Echo-State Machines 

The Echo-State Network (ESN) model was developed in the early 2000s [5], [40], 

[47], [48], [49], [50]. The ESN functions as described previously where only the output 

layer is trained. The reservoirs states at each time is a combination of the individual nodes. 

The state of a node at a particular time step n in the reservoir can be described by Equation 

(1) [5]. From the equation x(n) is the vector of the node state during the time step n. The 

input matrix is u(n-1) which is at the previous time step due to causality. Win and W are 

the input and the reservoir weight matrices respectively that are usually random and are 

scaled based on the requirements of the system. The function f is the nonlinear activation 

function, typically a sigmoid, that is used for the high-dimensional projection. 

              𝑥(𝑛) = f(𝑊𝑖𝑛𝑢(𝑛 − 1) + 𝑊𝑥(𝑛 − 1)                   (1) 
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          𝑦(𝑛) = 𝑔𝑊𝑜𝑢𝑡𝑥(𝑛)                                              (2) 

Equation (2) shows the output matrix which is calculated by using an output matrix 

Wout and an output activation function g. This weight matrix is trained to reduce the 

difference between the target output and the actual output. The echo-state property has to 

work in order for ESN to work. This property dictates that the reservoir should remove 

the data from the initial condition [5]. It has also been observed that, if for any input the 

spectral radius is smaller than unity, then the echo-state property has been met. 

2.1.2 Liquid State Machines 

Liquid State Machines (LSM) and ESN were developed simultaneously. While ESN is 

a rate-based approximation, LSM uses a spiking neural network inspired from biological 

neurons [6]. The Spiking Neural networks (SNN) used in LSM is capable of storing the 

activation energy in one bit and consume very low power, as low as 20pJ, for each spike 

[50]. These SNNs were shown to be as powerful as the activation function sigmoid and the 

threshold neurons [51]. The LSM has a similar structure like the basic framework of 

Reservoir Computing shown in Figure 2-3 and has an input layer, a liquid layer like the 

reservoir and an output or readout layer [52]. The synaptic connections to the input and the 

liquid layer are fixed and random connections. Different inputs will produce different 

results when projected into the higher-dimensional space. LSMs are shown to be used in 

embedded systems since they are robust to noise. The dynamics of the reservoir is 

described is Equation (3) and Equation (4) [6], [53], [54].  

 

          𝑥(𝑡) = 𝐿𝑚𝑢(𝑡)                                                   (3)                                               

          𝑦(𝑡) = 𝑓𝑚𝑥(𝑡)                                                   (4) 

From Equation (3) the t is the continuous time and x is the reservoir state. The input u 

is a form of spike train and the Lm is the filter that is used to convert the input signals to 

reservoir states. From Equation (4), y(t) is the output and fm is the map used in the readout 

layer. This fm contains the trained map derived from a simple algorithm. If Lm is chosen 
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from a class of filter that are time-invariant and has the fading memory property and the 

separation property and fm is chosen from a class that exhibits the approximation property, 

the transformation from input u to output y can be approximated from any degree of 

precision [5], [53].  

2.1.3 Delayed Dynamical Systems  

Since the delay property comes in a number of real-life systems, nonlinear systems with 

delayed feedback are dynamical systems that received a lot of attention [14], [55]. This 

delayed dynamical system is similar to the ESN model except the entire network of 

nonlinear nodes connected are replaced one single nonlinear node as shown in Figure 2-4. 

[3], [12], [13]. The inputs in the delayed feedback system is preprocessed to prevent the loss 

of parallelism and then fed to one nonlinear node [3], [12], [13], [56]. This preprocessing is 

referred to as the masking procedure. Different scaling factors are imprinted with the input 

and time-multiplexed to ensure the system is operating in the transient regime. The input is 

injected into the nonlinear node and the signal stays in the delay line for a time period τ. 

The different states in the delay line are referred to as the nodes or neurons of the system. 

The virtual nodes are separated by a temporal separation θ. This θ is the interval with which 

the states of the delay line are read out. The time interval between two nodes can be 

calculated using θ = τ/N, where N is the time points of the virtual nodes. Finally, in the 

output layer the node’s transient dynamical response is read out and the responses are 

combined in a weighted sum. The delayed dynamical system in [3] was implemented using 

a feedback loop and electronic circuitry and showed successful results in the nonlinear 

autoregressive moving average (NARMA)-10 time series prediction task and the spoken 

digit recognition task. 
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Figure 2-4: Architecture of Delayed Dynamical Systems 

The advantage of using this delayed feedback system is that the entire recurrent network 

system is replaced by one single nonlinear node allowing immense simplification of the 

hardware implementations of reservoir computing. Therefore, there was an increased 

number of single node reservoir computing implementations in optoelectronics, optics and 

electronic reservoir computing. [15], [16], [17], [18], [19], [57], [58], [59]. Two different 

ways of building delay based reservoir computing is proposed in [13], using decoupled 

neurons and using coupled neurons through feedback lines. Benchmark tasks were solved 

from the neurons in the output layer and from the simulation results it can be concluded that 

both implementations achieve higher performance than using one neuron. 

2.2 Electronic Reservoir Computing  

Low power and low cost reservoir computing have been widely used in the field 

of machine learning. Reservoir computing using a single node is discussed in this section 

which paved the way for simpler hardware implementations. Currently, electronic circuit 

implementations focus on making high-speed, energy-efficient, low power and noise 

immune circuits. Reservoir Computing systems implemented with FPGAs, VLSI circuits 

and memristive reservoir systems are also discussed in this section. 
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2.2.1 Analog Circuit Implementations 

There has been an increased number of analog circuit implementations of single 

node reservoirs due to their simplicity [3], [12], [13], [59]. A mixed analog and digital 

implementation of the single nonlinear node concept is discussed [59] that consists of a 

nonlinear electronic circuit as its major component. The effects of noise are analyzed using 

a chaotic time-series prediction task and a classification problem. There is an issue of 

quantization noise that comes from the analog-to-digital conversion process which affects 

the system’s performance. Therefore, the resolution of the conversion is varied, and the 

system performance is evaluated for two different tasks to observe the noise sensitivity. 

 

Figure 2-5: Schematic of Reservoir Computing implementation using Mackey-Glass nonlinear 

function with delay [59]. 
 

It can be observed from Figure 2-5. that the delay-based reservoir computing is 

divided into multiple blocks, with the first stage being the input preprocessing stage to 

timemultiplex the input data. A Mackey-Glass nonlinearity function is used in this 

implementation which has the embedded delay property and this nonlinear function is able 

to spread out the inputs to higher dimensions [60], [61]. The working procedure is similar 

to the delayed dynamical system discussed in the preceding section. The output is 

preprocessed and given by a linear weighted sum and these weights are obtained by a 

simple linear regression from the training process. The Mackey-Glass nonlinearity is 

implemented in hardware using a summation amplifier, a single bipolar transistor to 

implement the nonlinear part and another amplifier followed by a filter. The discussed 

system shows optimum performance and is strong for benchmark tasks. This single neuron 

design has also been used to implement a delayed feedback reservoir (DFR) using analog 

hardware [62]. The merging of deep learning and DFR is also discussed. Deep DFR and 
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multiple-input Deep DFR structures are proposed and compared with leaky ESN with time 

series prediction tasks. From the results it was observed that both the Deep DFR structures 

discussed have a much greater performance compared to the leaky ESN.  

 

Figure 2-6: (a) Architecture of the DFR system [19]. (b) Circuit implementation of nonlinear system 

[19]. (c) Circuit Implementation of I&F neuron [19] 

A fully analog energy-efficient DFR was designed and fabricated in [19]. As show 

in Figure 2-6, this design was built using a temporal encoder, a nonlinear transfer function 

and a delayed feedback loop. The delayed feedback loop follows the similar structure of 

the Delayed Dynamical system discussed previously. A temporal encoder is used [63] to 

replace the masking procedure in the input layer. Previously a spike based delayed 

feedback reservoir was previously proposed by [64] and [65] where spike signals were 

transmitted instead of analog signals. Similarly, in the DFR design in Figure 2-6. this 

temporal encoder is implemented where the input patterns are encoded into the distance 

between the spikes in the temporal spike train. In the reservoir layer the signal is 
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nonlinearly transformed using an analog circuit configuration shown in Fig. 2-6(b) and 

converted to spikes after which it is sent to the delay line. The delay time is also calibrated 

using an operational amplifier and a current mirror array. The circuit implementation of 

the integrate and fire (I&F) is also shown in Fig. 2-6(c). The delay line is built using a 

number of I&F neurons where the delay is controlled by the leakage current and the 

capacitor value. The NARMA10 chaotic time series prediction benchmark was used to 

evaluate the DFR chip design and it showed a 36%-85% decrease in the error rate compared 

to the state-of-the-art designs [19]. 

2.2.2 Field-Programmable-Gate-Arrays 

Large amount of data is generated when processing realtime applications. 

Programmable electronics such as Field Programmable Gate Arrays (FPGA)s can be used 

to attain such high speeds. The use of reservoir computing using FPGA is also 

advantageous since the sparse connectivity allows simple wiring techniques that matches 

with the FPGA requirements [66].  

A reservoir computing framework using stochastic bitstream framework is 

discussed in [39]. Analog neurons were used to build this reservoir computing system on 

an FPGA. In [9], an LSM system was built on FPGA for real-time speech recognition. The 

hardware architecture implemented was based on serial processing of dendritic trees using 

serial arithmetic. The designed reservoir computing system was used to port the speech 

recognition application to quantized hardware architecture.  

In [67], a single-node reservoir computing system was implemented in FPGA. 

Genetic algorithms were used in this time-delay reservoir system for the dynamic property 

optimization. The discussed system was prototyped in simulation and evaluated in speech 

recognition task and verified using FPGA. The experimental results obtained from the 

FPGA based reservoir computing matches the ones obtained with simulations from noise 

which showed that this implementation can be applied to physical systems where noise is 

present. 
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Figure 2-7:  Register Transfer Level Schematic of ESN in FPGA [68] 

A real-time hardware based FPGA spike-time dependent encoder and reservoir 

design is discussed in [68] which uses the ESN architecture and is implemented using a 

reservoir. The discussed design can be trained and implemented in FPGA without the use 

of any software implementations. In Figure 2-7. the Register Transfer Level (RTL) 

schematic of the ESN in FPGA is shown that consists of four layers, the input layer, the 

reservoir layer, the output layer and the weight training layer. The four input signals include 

the clock signal (CLK), the input signal (U), the reset signal (RST) and the source of the 

target output signal (Yr). The five output signals are the output signal (Y), the bias signal 

(b), the output weights (w) and the output matching signal (S). An encoding circuit is 

proposed followed by an analog-to-digital converter since the FPGA is a digital platform 

and the provided inputs are analog. An FPGA based Stochastic ESN is discussed in [66] 

for timeseries forecasting. The stochastic architecture discussed uses comparatively less 

area than typical hardware implementations. This enables the use of low cost FPGA 

devices for ESN implementations. 

2.2.3 Very-Large-Scale-Integrated Circuits 

Reservoir Computing based on pulse signals and spiking signals are becoming 

more popular due to their high-speed and low power in VLSI implementations. In [69], 
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real-time wideband signal processing algorithms are processed using mixed signal Printed 

Circuit Board (PCB) and a digital Application Specific Integrated Circuit (ASIC) prototype 

of a signal processor. It implements Reservoir Computing as the signal processing 

approach where the architecture of the reservoir is achieved by using Asynchronous Pulse 

Processor (APP) for processing analog signals. 

An LSM with dendritically enhanced readout layer is described in [70] which has 

an architecture derived from the nonlinear processing properties of the dendrites. 

Compared to parallel perceptron readout this architecture has shown to have higher 

performance with binary synapses that is suitable for VLSI implementations and the 

discussed learning method is able to choose the connections between the inputs and the 

dendritic branches that are most feasible. A scalable and hardware-efficient reconfigurable 

digital LSM model is proposed in [71] that is able to process real-time data. This model 

uses spatial locality property in the approach and has shown an average accuracy of 85% 

for epileptic seizure detection. A low power VLSI-based LSM is proposed in [72] for data 

intensive machine learning algorithm such as speech recognition. The proposed LSM uses 

online learning method which is local so that the weight update depends only on the 

presynaptic and the postsynaptic neuron. This reduces communication between the 

neighboring elements and thus eases the VLSI implementation. 

2.2.4 Memristive Reservoir Computing 

The switching dynamics and electrical behavior of memristive devices emulate the 

behavior of synapses and neurons. This makes memristors suitable candidates for brain-

inspired computing [73]. Memristors can be used to build large-scale crossbar arrays to 

form neural networks and can perform in-memory computations [73] [74], [75]. They can 

interact with analog signals directly and this reduces the cost and energy consumption that 

arises from the use of analog-to-digital and digital-to-analog converters [73]. 
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Figure 2-8: Vector-matrix computation using memristor-based crossbar [20] 

Memristors can be used as reservoirs to transform inputs to high-dimensional space. 

A training efficient hybrid Deep Neural Network (DNN) is discussed in [20] that uses 

memristive synapses in hierarchical information processing method and delay-based 

spiking neural network (SNN) as the output readout layer. The movement of signal 

between the DNN layers depend on vector-matrix multiplication. Resistive Random 

Access Memory (ReRAM) used is a type of memristor that is a two-terminal metal-oxide 

device which performs like a variable resistor [20]. The memristor crossbar array used in 

the vector-matrix computation supports a large number of signal connections within a small 

area, as shown in Figure 2-8. and is a promising candidate to be used in neural networks. 

The memristive based reservoir computing structure described is capable of handling data-

intensive computations and has shown successful results in handwritten digit classification 

and spoken digit recognition. A Deep Reservoir computing structure is discussed in [76] 

that shows a memristor configuration with heat dissipation capability to reduce variation. 

The evaluation of the accuracy was done using a Deep DFR model and the design area, 

power and latency were significantly reduced compared to typical SRAM memory 

techniques. Dynamic memristor devices were used in [77] to build a memristor-based 
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Reservoir Computing system that offers internal short-term memory and demonstrated that 

only 88 memristor could be used to solve tasks such as handwritten digit recognition. 

2.3 Other Types of Reservoir Computing 

Aside from electronic reservoirs there are many other types of physical reservoirs 

including photonic reservoirs, mechanical reservoirs, spintronic reservoirs and biological 

reservoirs [46]. Advances and trends in photonic reservoir computing are discussed in 

detail in [46], [78] and [79]. The initial photonic reservoir computing was developed in 

[80] where a network of coupled Semiconductor Optical Amplifiers (SOA) was used to 

build the reservoir. The first passive silicon photonics reservoir was developed in [81] 

which was used to compute Boolean logic operations with memory and use successful 

results in spoken digit recognition.  

The complex behavior arising from the body dynamics of soft and compliant robots 

can be used to achieve the nonlinear dynamics of reservoir computing [46]. Mass-spring 

systems can be used to achieve nonlinear behaviors in mechanical reservoir computing 

[82]. The input to output mapping can be obtained by adding a static and linear readout. 

Charge and spin of electrons are also being used to develop nanoscale electronic devices 

in the field of spintronics. These devices can have non-volatile memory and can be used in 

the reservoir [46]. A nanoscale spintronic oscillator is developed in [83] that demonstrated 

a similar accuracy using spoken-digit recognition task compared to the state-of-art neural 

networks. In [84], spin waves were used to develop a reservoir computing device that uses 

the nonlinearity of the spin waves arising from the magneto-electric effect. Through the 

spin waves, the developed device was able to generate the essential properties of reservoir 

computing including high-dimensionality, fading memory and nonlinearity. A different 

type of spintronic reservoir device can be generated using magnetic skyrmion [85]. A 

skyrmion network in magnetic films is used to make a two terminal device that has 

nonlinear characteristics. 
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2.4 Applications of Reservoir Computing 

As discussed previously, Reservoir Computing has been used for machine learning 

applications due to their simplistic training procedure where only the output layer in 

trained. It has been used in data-intensive applications such as speech recognition, time 

series forecasting, short-term memory, signal processing and pattern classification [9], 

[10], [11], [35], [36], [37], [38], [39], [40], [41], [42]. 

In [7], an intelligent stock trading system is proposed where genetic algorithm is 

used to improve the trading rules, and these were used to provide trading suggestions with 

ESN. A predictive ESN classifier is introduced in [8] that makes use of both ESN and 

competitive state machine framework. In speech classification experiment the described 

ESN classifier has proven to be more robust compared to hidden Markov model. LSMs 

also showed successful results in speech recognition [9]. The use of LSMs in pattern 

recognition is discussed in [10] and [11]. In [11] it is shown that the LSM with self-

organizing network using spike-time-dependent plasticity has better performance in pattern 

classifications. The applications of Reservoir Computing are demonstrated in [86] through 

isolated handwritten digit recognition on MNIST dataset and detecting the status of a door 

using moving pictures from a camera. 

Reservoir Computing has also been applied in the field of communication systems. 

In [87] a Deep-ESN is proposed for symbol detection in 5G multiple-input and multiple-

output orthogonal frequency-division (MIMO-OFDM) systems. The proposed design uses 

both memristive synapses as well as dynamic reservoir layer to improve computation 

capabilities. The use of ESN in MIMO-OFDM system for symbol detection is also 

discussed in [88] where it is shown that this method has better performance compared to 

typical symbol detection methods. Using a deep RC for MIMO-OFDM signals in [89] was 

also shown to have a faster learning convergence and a reduction in unknown nonlinear 

radio frequency interference. Reservoir Computing can be used to implement deep 

reinforcement learning (DNL) by using the temporal correlation of dynamic spectrum 

access (DSA) network [90]. From the experimental results it was observed that the 

Reservoir Computing based approach can decrease the collision probability of secondary 

users with other primary users and secondary users. Reservoir Computing was also used 
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for attack detection strategies in smart grids [91]. From simulation results it has been shown 

that the proposed design is able to detect attacks under different attack variations. 

Reservoir Computing has also been used to model biological systems, for instance 

the cerebellum was modeled using LSM that is more computationally powerful than 

perceptrons [92]. The hippocampus was also modeled using reservoirs, where the bottom 

layer was constructed using recurrent nodes and fixed weights [93]. Reservoir Computing 

is also used in patient-adaptive model for monitoring electrocardiogram and from the 

simulation results it can be concluded that the system provided a cost-effective, accurate 

and fast patient—customized heartbeat classifier [94]. 

2.5 Conclusion 

Reservoir Computing is a recently developed machine learning framework derived 

from RNNs. Since only the output weights are trained, Reservoir Computing greatly 

simplifies the training complexity compared to RNNs which has led to a significant 

development in this area. With the development of single node reservoirs in delayed 

dynamical systems, the hardware implementations were also immensely simplified since 

the entire recurrent network can be replaced by one nonlinear node. 

 

This review summarizes the basic architecture of reservoir computing and discusses 

the working procedure of the three commonly known subsets including ESN, LSM and 

Delayed Dynamical Systems. It provides a focus on electronic reservoirs, discussing the 

various developments in analog circuits, FPGAs, VLSIs and memristors to build reservoirs. 

Ongoing research is being carried out to determine the best suited electronic reservoir in 

terms of speed, energy and power efficiency and scalability of reservoirs. Scalability of 

reservoirs is a challenging aspect in this field and future research is being carried out in 

developing miniature emerging devices, such as memristors and spintronic devices, to 

build reservoirs that are capable of handling immense data. Other types of physical 

Reservoir Computing are mentioned as well including photonic, mechanical, spintronic 

and biological reservoirs. Due to their spatio-temporal information processing capability 

and simplified training procedures, Reservoir Computing has applications in various 
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machine learning applications such as speech recognition, image classification and time 

series forecasting. 
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Chapter 3: Spiking Neural Network  

3.1 Architecture of the Spiking Neural Network  

 

Figure 3-1: Spiking Neural Network Design 

A spiking neural network structure was developed using the memristive crossbar 

shown in Figure 3-1. The VT memristor model was used for the memristive crossbar 

design. The inputs are applied to the ISI encoding module to encode the data into a pulse-

width-modulation (PWM) signal. The network has a spatio-temporal information 

processing capability where the input signals can be applied parallelly at each row of the 

crossbar that increases energy and power efficiency. The memristive crossbar contains 

trained weights that are used for feature extraction from the inputs. These input PWM 

signals are then applied to the memristor crossbar to compute the matrix-vector-matrix 

multiplication operation. 

The memristive crossbar in this design are built with high resistance state (HRS) 

and low resistance state (LRS) values. The VT memristor has a very high on and off 

resistance state of 989MΩ and 1MΩ. The output signal from the crossbar is the 

accumulated current signal from each bitline of the crossbar. This current signal is then 

transferred to a post processing stage which consists of a current amplifier and then passed 

to a Leaky-Integrate-and-fire (LIF) neuron stage. The LIF neuron charges up based on the 

amount of current generated and then generates one spike. This is the output stage of the 

network where the output result depends on the time to first spike and the neuron which 

spikes. This neural network has a scalable architecture, and the dimensions can be 

increased further by replicating the blocks of the ISI encoding scheme and the crossbar. 



 23 

The following sections discuss the detailed circuit design of each block and a hardware 

implementation using the pixels from the digits 0-9.  
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3.2 The Memristor 

The three basic circuit elements include the resistor, the inductor, and the capacitor. 

In 1971 Professor Leon Chua from the University of Berkeley developed the fourth basic 

circuit element called the memristor [8]. The three fundamental devices, resistor, capacitor 

and inductor cover the relationship between current, voltage, charge and flux shown in 

Figure 3-2. Dr. Chua found the missing link between charge and flux which can be 

described by the memristor using the equation: 

 

dΦ = M * dq 

 

Here M represents the memristance, Φ is the flux and q is the charge stored.  

 

 

Figure 3-2: Relationship between the 4 Key Components 

 

 The memristor is often referred to as a memory resistor and it is a two-terminal 

device where its resistance increases when charge flows through it in one direction and 

decreases when the charge flows in the opposite direction. When no voltage is applied 
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across the memristor, it remembers its previous state which is a unique property in 

memristors. The current-voltage characteristic curve of the memristor also has the shape 

of a hysteresis loop. As frequency increases, the memristor starts behaving more and more 

like a resistor as depicted in Figure 3-3 [95-96].  

 

Figure 3-3: I-V Characteristic of Memristor [97] 

  

This memristor is an emerging non-volatile memory (eNVM) technology that has 

been immensely studied in the recent years and has shown to emulate neurons and synapses 

to build neuromorphic hardware. The conventional memory technologies of SRAM, 

DRAM and flash rely on charge storage phenomenon. SRAM stores charges at the cross-

coupled inverter nodes, DRAM stores charges at cell capacitor and in flash memory the 

charge is stored in the floating gate of the transistors. However, the major problem with 

these memory technologies is scalability which causes the stored charges to be lost and 

hence exacerbates the performance and introduces noise and reliability issues. Besides 

being scalable, the new memory technologies need to have non-volatile storage, low 

operating voltage, high endurance, long retention time, several synapse strength levels, 

capable of implementing synaptic learning as well as a simple framework [98-100]. Based 

on these characteristics, several emerging non-volatile memory (eNVM) technologies have 

been developed which include phase-change random access memory (PCRAM), spin-
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transfer-torque magnetic random access memory (STT-MRAM) and resistive random 

access memory (ReRAM). Out of the discussed eNVMs, ReRAMs or memristors have 

received wide attention due to their scalability, compatibility with CMOS technologies, 

analog conductance modulation and low power consumption [101]. 

The typical ReRAM structure consists of a metal-insulator-metal (MIM) structure 

shown in Fig. 12 [102]. The ReRAM devices should be able to switch from a high-

resistance state (HRS) to a low-resistance state (LRS) demonstrating the resistive switching 

behavior. The switching behavior of memristors is dependent on both the choice of the 

metal electrodes as well as the choice of the oxide. The switch from HRS to LRS is called 

the set process while the switch from LRS to HRS is called the reset process. As depicted 

on Figure 3-4, unipolar switching depends on the amplitude of the voltage while bipolar 

switching depends on the polarity of the voltage. Compliance current is a value set to 

prevent the permanent dielectric breakdown and prevent the damage of the memristive 

device.  

 

Fig 3-4. (a) ReRAM structure. (b) Unipolar ReRAM operation. (c) Bipolar operation [102]. 

 

3.2.1 Memristive Crossbar 

The memristive crossbar is shown in Figure 3-5. Based on the MIM structure from 

Fig. 3-4, the memristor is placed between two nanowire layers so that the memristor can 

be located at the crossing point [103]. Because of this crossbar structure, the memristor can 

be used to implement large scale neural networks since it has high density, non-volatile, 
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nanoscale structure, low operating voltage, low power consumption and can be used for in-

memory computations [103].  

 

Figure 3-5. Memristive Crossbar 

 

 

 The read and write operations for a memristive crossbar is shown below in Fig. 3-

6 [104]. In a memristive crossbar a single cell reading and writing is allowed. The 

horizontal lines or rows are the wordlines and vertical lines or columns are the bitlines. To 

perform a read operation on the memristor located in the first row and 4th column, a voltage 

of Vread is applied to the wordline and a voltage of 0 is applied to the bitline. For all the 

other wordlines and bitlines, the voltage is set to 0. For the selected memristor shown in 

green, the corresponding current is the one at the bitline. The blue cells are the half selected 

memristors and the red cells are the unselected memristors that have 0 voltage drop across 

them. The other cells have a voltage half of the read voltage applied to them or a voltage 

of 0. This keeps them in a non-conducting state because in an ideal case the voltage does 

not exceed the threshold that would allow the memristor to change its state. The current 

Ileak is the leakage current that occurs due to nonidealities and even when the voltage is less 

than the threshold voltage some current is conducted which is a current area of research in 

memristors. The write operation is carried out similarly where the voltage Vwrite is applied 
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across the selected cell while half of that voltage is applied to the other wordlines and 

bitlines [104].  

 

Fig 3-6. Read and Write Operations on Memristive Crossbar 

 Using the read and write operations the memristive crossbar is used to build large 

scale neural networks since they can be trained and the weights can be written in the 

respective memristors [103, 105]. A single layer neural network can be used to show how 

the memristive crossbar can be used for training shown in Figure 3-7. If there is an input 

matrix of X containing n elements and an output vector of Y containing m elements, in a 

single layer neural network, the relationship between X and Y can be described as 

Yn = Wnxm x Xm 
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The Wnxm matrix is the weight matrix that can be implemented using the 

conductance states of the memristors inside the crossbar. When the training data is applied 

at the input, the weight matrix gets updated continuously following the equation 

∆Wij = μ
𝜕(𝑦−𝑦∗)2

𝜕𝑤𝑖𝑗
 

From the equation Wij is the synaptic weight connecting the input and output 

neurons while μ is the learning rate. The weight matrix W which can be implemented by 

the memristive crossbar is updated continuously until the difference between the output 

and the target output y* is minimized [105].  

 

Figure 3-7: Single Layer Neural Network [103, 105] 

3.2.2 The VT Memristor 

 One of the major drawbacks of memristors is their low reliability that prevents them 

from being used in neural network implementations since it reduces the inference accuracy 

[102, 106]. The resistance variation is one of the reasons for low reliability. In [107] 

through a study it was found that the resistance variation comes from the heat accumulation 

during the metal atom diffusion of the conductive filament (CFs). The VT memristor was 

developed to solve this problem by having an additional heat dissipation layer to inside the 

metal electrodes to compensate for resistance switching variation by more than 30% [108].  
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 From Figure 3-8, initially the bonding inside the metallic oxide is strong but when 

a high voltage is applied the oxygen ions move to the metal electrode. This creates oxygen 

vacancies inside the metallic oxide and causes the conductive filament to form. The metal 

atoms from one of the electrodes gets reduced to cations and then migrate to the cathode 

that has the inert material. When these ions migrate, the forms the conductive filament that 

connects the two metal electrodes to each other and turns the device into the set process 

called the on-state Ron. When the polarity is switched between the two electrodes, the 

conductive filament gets destroyed and the resistance increases and the devices switches 

to the off-state called Roff which is the reset process. A significant amount of current flows 

in the set and reset process and if the heat is not dissipated on time, the temperature of the 

conductive filament increases and causes a significant metal atom diffusion. This 

contributes to the resistance variation and eventually reduces inference accuracy [108].  

 

Figure 3-8: Memristor (a) set and reset process (b) Formation of Conductive Filaments [108]. 

 For the VT memristor e-beam evaporation was used to deposit the metal electrodes 

and solid electrolytes. For the oxide layer Ta2O5 pellets were deposited using evaporation. 

This memristor can achieve a high resistance state of 980MΩ and a low resistance state of 
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1MΩ which provides a high on and off ratio for the resistances. Due to this high ratio the 

leakage current problem is mitigated. Figure 3-9 shows the fabricated memristor die and 

the memristor crossbar. Furthermore, in the VT memristor the additional metal dissipation 

layer of Cr metal is used to mitigate the heat related problem [108].  

 

Figure 3-9: Fabricated VT Memristor die (a) die; (b) Zoomed-in view; (c) 5x5 crossbar structure; (d) 

Memristor at Crosspoint [108] 
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3.3 Inter-Spike Interval Encoding Scheme 

3.3.1 LIF Neuron 

 The key component in this Inter-spike interval (ISI) encoding scheme is the LIF 

neuron. The structure of the LIF neuron is shown below in Figure 3-10.  

 

 

Figure 3-10: LIF Neuron 

  

In the biological nervous system, impulses are produced that are transmitted in form 

of spikes. Similarly, we use this LIF neuron model in this neural network to generate the 

spikes and convert the incoming signals to spikes. The neuron takes a current signal as the 

input and the incoming current is the excitation current that can be written as 

I = C(
𝑑𝑉

𝑑𝑡
) +Ileak 

 From the equation, C acts as the membrane capacitance of the neuron and V is the 

membrane voltage. Ileak is the leakage current of the neuron. This leakage current is 

controlled by the NMOS transistor connected in parallel with the capacitor and Vleak 
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represents a very low gate voltage. The clock signal controls the frequency of the spikes. 

The input excitation current charges up the capacitor and the voltage across it increases. 

Once it exceeds the threshold voltage which is set to 1V, a spike is fired and passes through 

the buffer stage. When the spike is fired and the clock is low, the voltage is reset to 0V by 

the feedback transistor. 

 

Figure 3-11: LIF Neuron Plot 

 

 The plot in Figure 3-11 shows the LIF neuron output using an excitation current of 

500nA with an offset of 2uA. The second plot is the voltage across the capacitor. When the 

clock signal is high, the current charges up the capacitor and the voltage increases. Once it 

exceeds the threshold voltage, the signal passes through the buffer stage and a spike is 

fired. It can also be noticed from the plot that the higher the amplitude of the current, the 

sooner the spike occurs with respect to the clock signal. The average power consumption 

of the neuron is only 4.37μW. The layout the LIF neuron is also shown below in Figure 3-

12, covering an area of 21.37μm x 21.28μm. 
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Figure 3-12: LIF Neuron Layout 

3.3.2 Current Mirror Stage 

Before the ISI encoding stage is made, a precision current to current converter 

needs to be used for the input preprocessing part. For this stage, an opamp configuration is 

used with a current mirror configuration shown below in Figure 3-13. The opamp used in 

this design is a very low power opamp that was made with minimum transistor sizes and 

consumes a DC power of 64.62μW.  
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Figure 3-13: Opamp Design 
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Figure 3-14: Opamp Layout 

 Using this opamp the precision current to current converter is designed that is used 

to preprocess the incoming input signal shown in Figure 3-15. Since the opamp has high 

input impedance, this configuration can be used to drive the neurons in the next stage. The 

input current signal is applied to the noninverting input of the opamp while the inverting 

input is grounded. This current then passes to the drain of the transistor M1 and transistors 

M2 and M3 are matched so the current can be copied from the left hand side to the right 

hand side.  
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Figure 3-15: Current Mirror Stage 

 To have an efficient current mirror structure, a cascode structure is used with a 

diode connected PMOS stage as a load. This prevents the variation of the drain to source 

voltage of the PMOS transistor to affect the output current. Using two different current 

ratios, in this stage the input current is converted to two different current values of Iout1 and 

Iout2 and fed to the neuron stage explained below.  

3.3.3 ISI Encoding Block 

After the current signal is split into two levels using the precision current to current 

converter, it is applied to the encoding stage which consists of two LIF neurons and an 

extractor followed by a buffer stage shown in Figure 3-17. In the current mirror stage Iout1 
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is set to have a higher current value than Iout2. When applied to the LIF neuron, Iout1 causes 

the first neuron to fire the spike first and turns on the NMOS transistor. Once this transistor 

is turned on, the capacitor is charged up to VDD and remains at this point. When Iout2 causes 

the second neuron to fire, the capacitor can discharge the voltage across it. This produces 

a pulse-width modulation signal that can be applied to the memristor crossbar to conduct 

the matrix-vector-matrix multiplication. The resulting output plot from the ISI encoding 

stage is shown below in Figure 3-16.  

 

Figure 3-16: ISI Encoder Plot 

 Using the same clock signal for both the LIF neurons, a current of 2μA is applied 

to neuron 1 and a current of 1.2μA is applied to neuron 2. Neuron 1 generates a spike first 

and charges up the capacitor and neuron 2 generates the spike afterwards that discharges 

the capacitor. The resulting output signal is shown by the plot OUT in Figure 3-16.  



 39 

 

Figure 3-17: ISI Encoder 

3.3.4 Intermediate Stages 

The output signal from the memristive crossbar is a current signal. The memristive 

crossbar contains a weighted matrix with the memristor value set to a specific resistance. 

When the pulse-width-modulation signal from the ISI encoding stage is applied to the 

memristive crossbar, it is multiplied with the resistance values and the output from the 

crossbar is the accumulated current from each column of the crossbar. This SNN is a 

scalable network more layers can be added by simply replicating the input preprocessing 

stage in the intermediate layers. This is done by using the current mirror stage and the 

encoding stage after the crossbar. The current output from the crossbar can be split into 

two and then applied to two LIF neurons. After that the extractor will be used to generate 

the PWM signal.  
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3.3.5 Output Stage 

For the output stage the current output is taken from the columns of the memristive 

crossbar and then passed to the current amplifier to reduce the loading effect as shown in 

Figure 3-18. The similar current mirror structure can be used from the previous stage and 

the amplified current generated from the current mirror can be applied to the LIF neuron. 

The LIF neuron then generates a spike based on the amount of current from the crossbar. 

The time to first spike and the column from which it spikes can be used as a method for 

classification in this design.  

 

Figure 3-18: Output Stage Circuit 
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3.4 Analysis and Verification 
 

3.4.1 Hardware Simulations 

To evaluate the SNN design we use the images 0 to 9 as inputs to the network. A 

three layer neural network is used to process the images. Since a small scale neural network 

is used with an output layer of 4x4 crossbar, the weights are trained to identify the digits 0 

to 3. The hardware simulation architecture is shown in Figure 3-19. 

 

Figure 3-19: Hardware Simulation Architecture 

 The image pixels are taken in for one clock cycle and applied to a 5x5 crossbar. 

The crossbar has the weights shown in the Figure 3-20. The input signals are preprocessed 

first by applying them to the weighted input crossbar to add some variation to the signal. 

The resulting output current I1 to I5 is shown below when the image pixels from the 

number 0 is applied to the crossbar. IN1 to IN5 are the input signals to the system and 1 – 

5 are output currents. From the output of the first crossbar there are three levels of output 

currents, 0μA, 1.8μA and 3.6μA that are the results of the multiply and accumulate 

operations.  
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Figure 3-20: Input Stage Plots and Output Plots from Crossbar 

 The resulting output currents are then applied to the preprocessing stage which is 

the precision current to current amplifier. This stage splits the current signal into two values 

of different weights and applies the following signal to the ISI encoding stage. As discussed 

in the preceding section, the ISI encoding stage then applies the current signal to 2 LIF 

neurons and then using the extractor generates the pulse-width-modulation signal which is 

the output from the ISI encoding stage. The resulting plot from the ISI encoding stage is 

shown below in Figure 3-21. 
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Figure 3-21: ISI Encoder Outputs 

 The five output signals from the ISI encoding stage are then applied to a 5x4 

crossbar with the weights specified in the Figure 3-19. The similar multiply and accumulate 

operation occurs at this stage where the signals from the ISI encoding stage are multiplied 

with the crossbar weights and the output currents from this stage are shown below. Due to 

the multiply and accumulate operation, the four output currents have different values 

shown in Figure 3-22. 

 

Figure 3-22: Output Currents from Second Crossbar 
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 The resulting current outputs are again applied to the current mirror stage where 

they are split into two levels and then applied to the ISI encoding stage. In the ISI encoding 

stage the LIF neurons generate the spikes based on the two current levels and use the 

extractor to then produce the pulses shown in Figure 3-23. 

 

Figure 3-23: ISI Encoder Output Plots from Second Stage 

 The resulting output pulses are applied to trained output crossbar to compute the 

multiply and accumulate operation. From the trained output crossbar, the accumulated 

current outputs are shown below in Figure 3-24.  

 

Figure 3-24: Current Outputs from Crossbar 
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 The output current signals are then applied to a current amplifier stage discussed in 

the preceding sections and then an LIF neuron layer to generate a spike shown below in 

Figure 3-25.  

 

Figure 3-25: Final Output as TTFS Signal 

 The way the output classification happens is based on the time to first spike method. 

The output is determined by which neuron and from which column spikes first. Since the 

hardware design uses a 4x4 crossbar, the output weights are trained to classify images 0 to 

3. For image 0 the first, for image 1 the second neuron spikes first, for image 2 the third 

neuron spikes first and for image 3 the fourth neuron spikes first. Even though the output 

crossbar is only 4x4 and therefore is able to classify 4 digits, the rest of the outputs from 

the digits 4-9 are applied to show that the spiking pattern for each neuron is also different 

which can be used to classify the images. The image pixels used for classification are 

shown in Figure 3-26. 
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Figure 3-26: Digit Images used for Hardware Simulations 

 The following Table 1 shows the output from spike time from each digit. It can be 

observed that for digits 1 to 3 each column spikes first from Column 1 to Column 4 

respectively. The spike time from the other digits are shown to demonstrate the difference 

in spiking pattern and how they can still be classified. From the hardware results the design 

shows 100% accuracy in recognizing all digits.  
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Number Column 1 Column 2 Column 3 Column 4 

0 805ns 0ns 821ns 0 

1 0 1.5μs 1.51μs 0 

2 1.39μs 1.25μs 1.24μs 1.4μs 

3 1.02μs 1.47μs 1.1μs 993ns 

4 1.02μs 925ns 1.02μs 985μs 

5 1.1μs 0 0 0 

6 1.19μs 0 1.2μs 0 

7 0 0 1.12μs 0 

8 1.17μs 0 1.2μs 0 

9 1.4μs 1.3μs 1.4μs 1.36μs 

Table 1: Output Spike Times for each digit 

3.4.2 Power Breakdown 

The power breakdown from the circuit components is shown below in Table 2. The 

power consumption for the neuron is the average power consumption since the neuron on 

time depends on the clock signal. The ISI encoding stage consists of the two LIF neurons 
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and an extractor and hence the power consumption reported includes the power consumed 

by two LIF neurons as well.  

Component Power Consumption 

LIF neuron 4.37μW 

Opamp 64.62μW 

Current Mirror 115μW 

ISI Encoding Stage 13.37μW 

Table 2: Power Consumption for each component 
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3.4.3 Comparison with other state-of-the-art Neuromorphic 

Architectures 

 The following Table 3 summarizes the comparison of the designed SNN 

architectures with other state-of-the-art neuromorphic architectures. For the hardware 

testing and evaluation pixels from digits 0 to 9 were used to show the proof of concept. In 

terms of power consumption of only 2.9mW and an inference speed of 2μs/image, the 

designed SNN architecture shows competitive results compared to the state-of-the-art 

architectures.  

 [109] [110] [111] [112] This Work 

Technology 180nm 65nm 130nm 130nm 180nm 

Algorithm CNN CNN RBM MLP SNN  

Memory Cell SRAM SRAM ReRAM ReRAM ReRAM 

Memory 

Mode 

- - CIM CIM CIM 

Weight 

Precision 

- - 1-bit 3-bit 

signed 

1-bit 

Neuron Type IF - IF - LIF 

Supply 

Voltage 

1.8V 1V 1.8V 5V 1.8V 

Latency 15.4ns - - 51.1ns 334ns 

Power 

Consumption 

4mW 278mW 2.2mW - 2.9mW 

Table 3: Comparison of Results with State-of-the-Art Implementations 



 50 

3.4.4 Software Results 

 The designed SNN architecture is then tested for a large scale software model using 

MNIST. In the software model the structure is defined using the Figure 3-27 shown below. 

The software model developed from [113] includes an encoding stage where the inputs are 

initially encoded into either one of Poisson, TTFS or ISI. After the encoding stage the 

inputs are applied to the memristive crossbar layer that performs the matrix multiplication. 

Here the memristor weights are trained using ADAM optimizer and weights are quantized 

to 7 bits. After the crossbar layer the Batch Normalization layer is added which mimics the 

current mirror stage. In this stage column output currents are converted to voltage and it is 

clamped between two values. After this layer, a set of LIF neuron layers are added which 

then generates the spikes. The first set of LIF layer contains 100 neurons and the second 

output stage of LIF layer contains 10 neurons.  

 

Figure 3-27: Software Architecture of the SNN 

With the software model we evaluate our SNN architecture and compare with the 

different encoding schemes. Using the ISI encoding scheme the SNN architecture can 

achieve an 86% of accuracy and the results are summarized in the Table 4 below.  
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Encoding Scheme Accuracy Epochs 

Poisson 84% 10 

TTFS 85% 10 

ISI 87% 10 

Table 4: Accuracy Results with MNIST for Different Encoding Schemes 
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Chapter 4: Conclusion and Future Work  

In recent years neuromorphic computing has received a lot of attention due to its 

ability to mimic the human brains. It has great benefits over traditional Von Neumann 

computing architectures since it can process data much faster using parallel processing and 

uses much less power. Neuromorphic computing architectures have also shown successful 

results in the field of machine learning and artificial intelligence.  

In this thesis we initially study the two types of ANNs, mainly the RNNs which are 

more powerful in computing spatio-temporal tasks. We study an energy and power efficient 

version of RNNs that is Reservoir Computing which simplifies training process by only 

training the output layer and hence makes way for simpler hardware implementations. We 

study deep into Reservoir Computing to find out the different types of electronic reservoirs 

and its applications.  

In the second part of this thesis, we cover SNNs which are the third generation of 

ANNs. SNNs provide significant advantage in terms of power and energy consumption by 

conveying information through spikes as well as keeping the temporal aspect of the 

information. To convert the information into spikes, a novel ISI encoding scheme is used 

which has higher information density compared to its TTFS counterpart and encodes the 

information in the time between the spikes. A memristive crossbar is used for in-memory 

computation to carry out the matrix multiplication process for feature extraction. The 

memristor model is the VT memristor that has a novel heat dissipation capability which 

reduces the resistance variation. An input preprocessing unit is designed which includes a 

precision current converter stage to apply the inputs to the crossbar. For the output stage a 

set of LIF neuron layer is used and the output data is determined by TTFS method. This 

network has a scalable structure and can be used to create a large scale neural network. 

Furthermore, it has a spatio-temporal information processing capability since it can take in 

an entire row of pixels over one clock cycle. This gives the SNN architecture a very high 

inference speed of 2μs/image. The whole network also has a power consumption of only 

2.9mW. Software evaluation of this network in large scale with a 100 LIF neurons in the 
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input stage and 10 LIF neurons in the output stage reveals an 87% accuracy using the 

MNIST database with an ISI encoding scheme.  

Future work with this SNN architecture involves testing the network with noisy 

images and exploring more complex datasets to see the accuracy. Training algorithms can 

be explored in the hardware using backpropagation circuits. Moreover, this architecture 

will be extended to a tiled one because for large amount of data processing in machine 

learning applications, it can perform matrix-matrix multiplication much faster with reduced 

energy. Different in-memory computations can be explored using this architecture such as 

the addition, truth tables and floating gate operations.  
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