

Spiking Neural Network with Memristive Based Computing-In-Memory Circuits

and Architecture

Fabiha Nowshin

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

In

Electrical Engineering

Yang (Cindy) Yi, Chair

Lingjia Liu

Daniel Sable

May 12, 2021

Blacksburg, VA

Keywords: Neuromorphic Computing, Spiking Neural Network, Reservoir Computing,

Pattern Recognition, Digit Recognition, Memristor, Computing-In-Memory, LIF Neuron

Copyright 2021, Fabiha Nowshin

Spiking Neural Network with Memristive Based Computing-In-Memory Circuits

and Architecture

Fabiha Nowshin

ABSTRACT

In recent years neuromorphic computing systems have achieved a lot of success

due to its ability to process data much faster and using much less power compared to

traditional Von Neumann computing architectures. There are two main types of Artificial

Neural Networks (ANNs), Feedforward Neural Network (FNN) and Recurrent Neural

Network (RNN). In this thesis we first study the types of RNNs and then move on to

Spiking Neural Networks (SNNs). SNNs are an improved version of ANNs that mimic

biological neurons closely through the emission of spikes. This shows significant

advantages in terms of power and energy when carrying out data intensive applications by

allowing spatio-temporal information processing.

On the other hand, emerging non-volatile memory (eNVM) technology is key to

emulate neurons and synapses for in-memory computations for neuromorphic hardware. A

particular eNVM technology, memristors, have received wide attention due to their

scalability, compatibility with CMOS technology and low power consumption properties.

In this work we develop a spiking neural network by incorporating an inter-spike interval

encoding scheme to convert the incoming input signal to spikes and use a memristive

crossbar to carry out in-memory computing operations. We develop a novel input and

output processing engine for our network and demonstrate the spatio-temporal information

processing capability. We demonstrate an accuracy of a 100% with our design through a

small-scale hardware simulation for digit recognition and demonstrate an accuracy of 87%

in software through MNIST simulations.

Spiking Neural Network with Memristive Based Computing-In-Memory Circuits

and Architecture

Fabiha Nowshin

GENERAL AUDIENCE ABSTRACT

In recent years neuromorphic computing systems have achieved a lot of success

due to its ability to process data much faster and using much less power compared to

traditional Von Neumann computing architectures. Artificial Neural Networks (ANNs) are

models that mimic biological neurons where artificial neurons or neurodes are connected

together via synapses, similar to the nervous system in the human body. here are two main

types of Artificial Neural Networks (ANNs), Feedforward Neural Network (FNN) and

Recurrent Neural Network (RNN). In this thesis we first study the types of RNNs and then

move on to Spiking Neural Networks (SNNs). SNNs are an improved version of ANNs

that mimic biological neurons closely through the emission of spikes. This shows

significant advantages in terms of power and energy when carrying out data intensive

applications by allowing spatio-temporal information processing capability.

On the other hand, emerging non-volatile memory (eNVM) technology is key to

emulate neurons and synapses for in-memory computations for neuromorphic hardware. A

particular eNVM technology, memristors, have received wide attention due to their

scalability, compatibility with CMOS technology and low power consumption properties.

In this work we develop a spiking neural network by incorporating an inter-spike interval

encoding scheme to convert the incoming input signal to spikes and use a memristive

crossbar to carry out in-memory computing operations. We demonstrate the accuracy of

our design through a small-scale hardware simulation for digit recognition and demonstrate

an accuracy of 87% in software through MNIST simulations.

iv

Acknowledgments

 I would like to thank my advisor, Dr. Yang (Cindy) Yi, for her unwavering support,

kindness, encouragement, and constant motivations. In the past two years Dr. Yi has always

made research fun and ensured we were all taking care of ourselves during this pandemic.

She was always ready to help at all times and this would not have been possible without

her guidance. I would also like to thank Dr. Lingjia Liu, Dr. Daniel Sable and Dr. Dong

Dong for being great committee members.

 I would like to thank Dr. Kangjun Bai for helping me learn so much about Analog

IC and Neuromorphic Computing and Nima Mohammadi for helping me fill in my gaps

with the software part. I would also like to thank Dr. Hongyu An for helping me learn about

memristors. Thank you to my colleagues at the MICS lab, Jinhua, Ryan, Moqi, Jiayuan,

Chenyuan, Yibin, Victor, Shiya, Honghao, Varsha and Osaze.

 I am forever grateful to my parents Rashid Ahamed Hossaini and Umma Kulsum,

my brother Ashraf Ansary and my sister-in-law Rufiaat Rashid for always supporting me

and being there for me. I am thankful to all my friends from Bangladesh and the friends I

have made throughout my years at Virginia Tech.

 v

Table of Contents

ABSTRACT .. ii

GENERAL AUDIENCE ABSTRACT.. iii

Acknowledgments .. iv

Table of Figures... vii

List of Tables .. ix

Chapter 1: Introduction ... 1

1.1 Reservoir Computing.. 1

1.2 Spiking Neural Network ... 3

Chapter 2: Reservoir Computing .. 6

2.1 Architecture of Reservoir Computing .. 6

2.1.1 Echo-State Machines ... 8

2.1.2 Liquid State Machines ... 9

2.1.3 Delayed Dynamical Systems ... 10

2.2 Electronic Reservoir Computing ... 11

2.2.1 Analog Circuit Implementations .. 12

2.2.2 Field-Programmable-Gate-Arrays ... 14

2.2.3 Very-Large-Scale-Integrated Circuits .. 15

2.2.4 Memristive Reservoir Computing.. 16

2.3 Other Types of Reservoir Computing ... 18

2.4 Applications of Reservoir Computing ... 19

2.5 Conclusion ... 20

Chapter 3: Spiking Neural Network ... 22

3.1 Architecture of the Spiking Neural Network ... 22

3.2 The Memristor .. 24

3.2.1 Memristive Crossbar .. 26

3.2.2 The VT Memristor ... 29

3.3 Inter-Spike Interval Encoding Scheme ... 32

3.3.1 LIF Neuron... 32

3.3.2 Current Mirror Stage .. 34

3.3.3 ISI Encoding Block .. 37

3.3.4 Intermediate Stages .. 39

3.3.5 Output Stage... 40

 vi

3.4 Analysis and Verification ... 41

3.4.1 Hardware Simulations .. 41

3.4.2 Power Breakdown .. 47

3.4.3 Comparison with other state-of-the-art Neuromorphic Architectures 49

3.4.4 Software Results .. 50

Chapter 4: Conclusion and Future Work ... 52

References .. 54

 vii

Table of Figures

Figure 2-1: Basic Architecture of Reservoir Computing .. 6

Figure 2-2: Recurrent Neural Network ... 7

Figure 2-3: Reservoir Computing Architecture .. 8

Figure 2-4: Architecture of Delayed Dynamical Systems...11

Figure 2-5: Schematic of Reservoir Computing implementation using Mackey-Glass

nonlinear function with delay..12

Figure 2-6: a) Architecture of the DFR system [19]. (b) Circuit implementation of

nonlinear system [19]. (c) Circuit Implementation of I&F neuron....................................13

Figure 2-7: Register Transfer Level Schematic of ESN in FPGA.....................................15

Figure 2-8: Vector-matrix computation using memristor-based crossbar.........................17

Figure 3-1: Spiking Neural Network Design .. 22

Figure 3-2: Relationship between the 4 Key Components..24

Figure 3-3: I-V Characteristic of Memristor...25

Figure 3-4: (a) ReRAM structure. (b) Unipolar ReRAM operation. (c) Bipolar

operation..26

Figure 3-5: Memristive Crossbar...27

Figure 3-6: Read and Write Operations on Memristive Crossbar.....................................28

Figure 3-7: Single Layer Neural Network...29

Figure 3-8: Memristor (a) set and reset process (b) Formation of Conductive Filaments.30

Figure 3-9: Fabricated VT Memristor die (a) die; (b) Zoomed-in view; (c) 5x5 crossbar

structure; (d) Memristor at Crosspoint...31

Figure 3-10: LIF Neuron ... 32

Figure 3-11: LIF Neuron Plot..33

Figure 3-12: LIF Neuron Layout...34

Figure 3-13: Opamp Design.. 35

Figure 3-14: Opamp Layout..36

Figure 3-15: Current Mirror Stage...37

Figure 3-16: ISI Encoder Plot ... 38

Figure 3-17: ISI Encoder...39

Figure 3-18: Output Stage Circuit... 40

 viii

Figure 3-19: Hardware Simulation Architecture .. 41

Figure 3-20: Input Stage Plots and Output Plots from Crossbar 42

Figure 3-21: ISI Encoder Outputs..43

Figure 3-22: Output Currents from Second Crossbar..43

Figure 3-23: ISI Encoder Output Plots from Second Stage .. 44

Figure 3-24: Current Outputs from Crossbar .. 44

Figure 3-25: Final Output as TTFS Signal ... 45

Figure 3-26: Digit Images used for Hardware Simulations...46

Figure 3-27: Software Architecture of the SNN..50

 ix

List of Tables

Table 1: Output Spike Times for each digit .. 47

Table 2: Power Consumption for each component ... 48

Table 3: Comparison of Results with State-of-the-Art Implementations 49

Table 4: Accuracy Results with MNIST for Different Encoding Schemes 51

1

Chapter 1: Introduction

Compared to traditional Von Neumann computing architectures, neuromorphic

computing systems have the ability to process data much faster and consume much less

power. Neuromorphic computing, introduced by Dr. Carver Mead in 1980, can emulate

biological processes using highly parallelized computing architectures [1]. Artificial

Neural Networks (ANNs) are models that mimic biological neurons. In ANNs, neurodes

or artificial neurons are connected to other neurodes via synapses, similar to the nervous

system, and they are usually arranged in a layer [2]. The inputs applied to these neurodes

are multiplied by certain weights and it is through the adjustment of these weights that

learning is mimicked in ANNs. A transfer function is used to transform the neurons input

value where the most commonly used ones include sigmoid or hyperbolic tangent functions

[2]. The output values are obtained from the summation of the products of the input values

and the corresponding weights.

Feedforward neural networks (FNN) and Recurrent Neural Networks (RNN) are

the two most common ANNs. In FNNs, there are no loops found internally and the

connections between the neurons happen only in one direction from the input to the output

layer [3]. Due to their feedforward nature, only static spatial input patterns can be

processed, as the data received from the output layer has information about one particular

moment of the input.

RNNs, derived from FNNs, have internal loops or recurrent connections in the

hidden layer that allows them to keep the data in the network for a certain time period [4].

This creates dynamical behavior in RNNs and gives it the ability to process both spatial

and temporal data. Therefore, RNNs can emulate biological neurons more closely.

1.1 Reservoir Computing

The major drawback of RNNs is that the training procedure is extremely complex

and expensive due to the recurrent connections in the hidden layers. Derived from RNNs

is Reservoir Computing that possesses the spatio-temporal information processing

capability. Echo state networks (ESNs) and Liquid State Machines (LSMs) are subsets of

 2

reservoir computing and they take advantage of the dynamical property of RNNs [5], [6].

ESN and LSM are a subset of reservoir computing and they are a simplified version of the

RNNs. ESN and LSM are constructed with a layer of nonlinear neurons to add nonlinearity

to the system and have fixed, untrained weights in the reservoir layer. The weights in the

output layer are only trained in reservoir computing, which greatly simplifies the training

procedures. ESN and LSM has proven to be very successful in the past years. For instance,

ESNs have been used in intelligent stock trading systems and automatic speech recognition

[7], [8]. LSMs have also shown successful results in speech recognition and pattern

recognition on FPGAs [9], [10], [11].

An evolution of ESN and LSM is the Delay-Feedback Reservoir (DFR) Computing

which uses the embedded delay property [3], [12], [13]. This is derived from the theory

that delay is present in the biological system [14]. In DFR, the entire recurrent network is

substituted by one single nonlinear node followed by neurons that are separated by delays.

Since delay is present in biological systems, DFR systems are able to mimic biological

systems closely. DFR systems have shown successful results in photonic implementations

due to their simplicity in hardware implementations [15] [16], [17]. They have also shown

to exhibit near chaotic behavior [18]. A complete analog IC implementation of DFR has

also been designed and fabricated, as well as been analyzed and evaluated using Monte

Carlo simulations [19]. Memristor synapses have also been used with the Deep DFR to

show successful results with the applications on spoken digit recognition and handwritten

digit classification [20].

In this part of the thesis for background study we first cover the basic architecture

and elaborate on the different types of reservoir computing including ESNs, LSMs and

Delayed Feedback systems. Electronic Reservoir Computing is explained in the next

section with a focus on Analog Implementations, Field-Programmable-Gate-Array

(FPGA), Very-Large-Scale-Integrated Circuits (VLSI) and memristors. Other types of

reservoir Computing are explained afterwards followed by applications for Reservoir

Computing with a conclusion.

 3

1.2 Spiking Neural Network

 Deep neural networks that use deep learning has shown excellent results in the field

of large data analysis [21]. Deep neural network can be applied to speech recognition, digit

recognition, pattern classification and natural language processing. The efficiency of deep

neural networks can be improved significantly by using Spiking Neural Networks (SNNs).

SNNs mimic biological neurons more closely because of their spiking nature; once a

threshold is exceeded, a spike is fired, and the information depends on the specific time of

the spikes or the sequence of the spikes [22]. Furthermore, the binary nature of the spikes

in SNNs contribute to efficiency in terms of both power and energy. Spiking neural

networks are therefore said to be the third generation of artificial neural networks [23].

 A number of encoding schemes have been developed to convert the data into spike

events. The two main encoding schemes are rate encoding and temporal encoding [24].

Rate encoding is where the data is encoded into the frequency of the spikes and temporal

encoding is where the data is encoded into the timing of spikes. In temporal encoding

scheme some common ones are time-to-first-spike (TTFS), phase and burst encoding.

Temporal encoding is more energy efficient compared to rate encoding because of the

fewer spike events generated. In this thesis we use an inter-spike interval (ISI) encoding

scheme to encode the data into spike events. The key idea of this ISI encoding scheme is

that it has higher information density compared to its TTFS counterpart since it carries

information in both the timing of the spikes as well as the distance between the spikes

based on the intensity of the information.

 Conventional CMOS technology has been employed to build neuromorphic

systems which is the use of hardware components to build neural networks. Some notable

examples of neuromorphic computing chips include Loihi by Intel and TrueNorth by IBM

[25], [26]. Loihi, that consumes only 0.001% of the power consumed by traditional

computing architectures while TrueNorth has the capability of classifying multiple objects

while consuming only 65mW of power [26].

 Compared to the traditional CMOS memory technologies that include static random

access memory (SRAM), dynamic random access memory (DRAM) and flash, emerging

 4

non-volatile memory technologies (eNVMs) has shown to emulate biological neurons and

synapse more closely that is invaluable to in-memory computations for neuromorphic

hardware. A particular eNVM called resistive random access memory (ReRAM) or

memristor has received wide attention due to its scalability, compatibility with CMOS

technology, analog conductance modulation and low power consumption [27].

Furthermore, using ReRAMs for in-memory computation operations replaces the need for

power-hungry and area-hungry analog-to-digital and digital-to-analog converters.

 In this work we use the VT memristor model to develop our neural network. This

memristor has a novel heat dissipation capability that reduces the resistance variation by

almost 30% [28]. The VT memristor also has a competitive cycle-to-cycle variation of only

4%. The high on and off resistance ratio of this VT memristor also provides a stable high

and low state that is favorable for binarized neural network.

 With the ISI encoding scheme and the VT memristor model a deep spiking neural

network is then proposed. The pre and post processing engine of the memristor is discussed

in detail in this work that shows how the network can be scaled easily. The proposed system

also has a spatio-temporal information processing capability where multiple rows of pixel

values can be taken in at a time. A TTFS based output post processing technique is

discussed as well that allows to do classifications for different machine learning

applications such as digit or pattern recognition. A small-scale hardware model is proposed

with using a 3 layer spiking neural network architecture and the accuracy is shown using

pixelated digit images of 0-9 as inputs. A 3-layer neural network software model is then

developed to test this network with MNIST dataset that has shown to have 86% accuracy.

The main contributions in this part of the thesis includes

1. A novel scalable deep neural network design with compute-in-memory architecture

for ReRAM crossbars.

2. A spatio-temporal information processing capability where each row of pixels can

be taken in for one clock cycle.

 5

3. Incorporates inter-spike interval encoding scheme for information processing and

uses it as an interface between layers.

4. Uses the VT memristor model for the design of the crossbar that allows for matrix-

vector-matrix multiplication followed by a current compensator stage that adds

variation to compensate for both binary weights as well as leakage current.

5. Evaluation of accuracy on hardware using the pixels from images of digits 0-9 and

shows a 100% accuracy with the TTFS classification scheme.

6. A software model to evaluate the large-scale model of the designed neural network

and comparing it with the TTFS counterpart.

 6

Chapter 2: Reservoir Computing

The fundamental framework of reservoir computing is discussed in detail in this

section. This section also covers the detailed working procedures of the three common

reservoir computing framework which includes ESNs, LSMs and Delayed Dynamical

Systems.

2.1 Architecture of Reservoir Computing

Figure 2-1: Basic Architecture of Reservoir Computing

The overview of the well-known Recurrent Neural Network sections is shown in

Figure 2-1. Derived from FNNs, a typical example of RNN is shown in Fig. 2-2. A

dynamical memory is made in RNNs that stems from the recurrent connections. The

processing of temporal information is made easier in RNNs because each state can depend

on previous states and they can be used for tasks such as time series prediction or speech

recognition [3].

 7

Figure 2-2: Recurrent Neural Network

Hopfield network, a subset of RNN, consists of attractors [29], [30]. The input can

be classified into an attractor which represents a class. Each network has a scalar value

which is defined as the energy of the network. The nodes in the network are updated and

eventually the nodes converge to a local minimum. The major issue with Hopfield

networks is that it is unable to process information at any particular moment and only the

final result can be read [3]. Long Short Term Memory, another subset of RNN, has shown

successful results in handwritten digit recognition and speech recognition [31], [32], [33].

It has feedback connections and is able to process a series of data [34]. Reservoir

Computing has recently shown successful results in computing challenging tasks such as

speech recognition, grammar modeling, character recognition, generation and prediction

of chaotic time series and noise modeling [35], [36], [37], [38], [39], [40], [41], [42]. The

inputs are nonlinearly transformed to a high dimensional space to classify the data and

passed to the reservoir layer where the inputs are randomly connected, similar to the RNN

structure. Only the weights in the output layer are trained as depicted in Figure 2-3 [3], [5],

[6].

Since only the output layer is trained, the training process can be simplified to a

linear training algorithm such as a linear classifier [3]. The reservoir also implements the

fading memory property because each state depends on the values from the recent past due

to the recurrent connections and the values from the distant past get faded away over time

[43], [44], [45], [46]. The reservoir should also have different responses dynamically to

different types of inputs to be able to separate these inputs into different classes. Apart

 8

from the fading memory property and the separation property from the nonlinearly

transformed inputs, another important property for reservoirs is that it needs to be able to

approximate such that similar inputs are mapped to the same class.

Figure 2-3: Reservoir Computing Architecture

2.1.1 Echo-State Machines

The Echo-State Network (ESN) model was developed in the early 2000s [5], [40],

[47], [48], [49], [50]. The ESN functions as described previously where only the output

layer is trained. The reservoirs states at each time is a combination of the individual nodes.

The state of a node at a particular time step n in the reservoir can be described by Equation

(1) [5]. From the equation x(n) is the vector of the node state during the time step n. The

input matrix is u(n-1) which is at the previous time step due to causality. Win and W are

the input and the reservoir weight matrices respectively that are usually random and are

scaled based on the requirements of the system. The function f is the nonlinear activation

function, typically a sigmoid, that is used for the high-dimensional projection.

 𝑥(𝑛) = f(𝑊𝑖𝑛𝑢(𝑛 − 1) + 𝑊𝑥(𝑛 − 1) (1)

 9

 𝑦(𝑛) = 𝑔𝑊𝑜𝑢𝑡𝑥(𝑛) (2)

Equation (2) shows the output matrix which is calculated by using an output matrix

Wout and an output activation function g. This weight matrix is trained to reduce the

difference between the target output and the actual output. The echo-state property has to

work in order for ESN to work. This property dictates that the reservoir should remove

the data from the initial condition [5]. It has also been observed that, if for any input the

spectral radius is smaller than unity, then the echo-state property has been met.

2.1.2 Liquid State Machines

Liquid State Machines (LSM) and ESN were developed simultaneously. While ESN is

a rate-based approximation, LSM uses a spiking neural network inspired from biological

neurons [6]. The Spiking Neural networks (SNN) used in LSM is capable of storing the

activation energy in one bit and consume very low power, as low as 20pJ, for each spike

[50]. These SNNs were shown to be as powerful as the activation function sigmoid and the

threshold neurons [51]. The LSM has a similar structure like the basic framework of

Reservoir Computing shown in Figure 2-3 and has an input layer, a liquid layer like the

reservoir and an output or readout layer [52]. The synaptic connections to the input and the

liquid layer are fixed and random connections. Different inputs will produce different

results when projected into the higher-dimensional space. LSMs are shown to be used in

embedded systems since they are robust to noise. The dynamics of the reservoir is

described is Equation (3) and Equation (4) [6], [53], [54].

 𝑥(𝑡) = 𝐿𝑚𝑢(𝑡) (3)

 𝑦(𝑡) = 𝑓𝑚𝑥(𝑡) (4)

From Equation (3) the t is the continuous time and x is the reservoir state. The input u

is a form of spike train and the Lm is the filter that is used to convert the input signals to

reservoir states. From Equation (4), y(t) is the output and fm is the map used in the readout

layer. This fm contains the trained map derived from a simple algorithm. If Lm is chosen

 10

from a class of filter that are time-invariant and has the fading memory property and the

separation property and fm is chosen from a class that exhibits the approximation property,

the transformation from input u to output y can be approximated from any degree of

precision [5], [53].

2.1.3 Delayed Dynamical Systems

Since the delay property comes in a number of real-life systems, nonlinear systems with

delayed feedback are dynamical systems that received a lot of attention [14], [55]. This

delayed dynamical system is similar to the ESN model except the entire network of

nonlinear nodes connected are replaced one single nonlinear node as shown in Figure 2-4.

[3], [12], [13]. The inputs in the delayed feedback system is preprocessed to prevent the loss

of parallelism and then fed to one nonlinear node [3], [12], [13], [56]. This preprocessing is

referred to as the masking procedure. Different scaling factors are imprinted with the input

and time-multiplexed to ensure the system is operating in the transient regime. The input is

injected into the nonlinear node and the signal stays in the delay line for a time period τ.

The different states in the delay line are referred to as the nodes or neurons of the system.

The virtual nodes are separated by a temporal separation θ. This θ is the interval with which

the states of the delay line are read out. The time interval between two nodes can be

calculated using θ = τ/N, where N is the time points of the virtual nodes. Finally, in the

output layer the node’s transient dynamical response is read out and the responses are

combined in a weighted sum. The delayed dynamical system in [3] was implemented using

a feedback loop and electronic circuitry and showed successful results in the nonlinear

autoregressive moving average (NARMA)-10 time series prediction task and the spoken

digit recognition task.

 11

Figure 2-4: Architecture of Delayed Dynamical Systems

The advantage of using this delayed feedback system is that the entire recurrent network

system is replaced by one single nonlinear node allowing immense simplification of the

hardware implementations of reservoir computing. Therefore, there was an increased

number of single node reservoir computing implementations in optoelectronics, optics and

electronic reservoir computing. [15], [16], [17], [18], [19], [57], [58], [59]. Two different

ways of building delay based reservoir computing is proposed in [13], using decoupled

neurons and using coupled neurons through feedback lines. Benchmark tasks were solved

from the neurons in the output layer and from the simulation results it can be concluded that

both implementations achieve higher performance than using one neuron.

2.2 Electronic Reservoir Computing

Low power and low cost reservoir computing have been widely used in the field

of machine learning. Reservoir computing using a single node is discussed in this section

which paved the way for simpler hardware implementations. Currently, electronic circuit

implementations focus on making high-speed, energy-efficient, low power and noise

immune circuits. Reservoir Computing systems implemented with FPGAs, VLSI circuits

and memristive reservoir systems are also discussed in this section.

 12

2.2.1 Analog Circuit Implementations

There has been an increased number of analog circuit implementations of single

node reservoirs due to their simplicity [3], [12], [13], [59]. A mixed analog and digital

implementation of the single nonlinear node concept is discussed [59] that consists of a

nonlinear electronic circuit as its major component. The effects of noise are analyzed using

a chaotic time-series prediction task and a classification problem. There is an issue of

quantization noise that comes from the analog-to-digital conversion process which affects

the system’s performance. Therefore, the resolution of the conversion is varied, and the

system performance is evaluated for two different tasks to observe the noise sensitivity.

Figure 2-5: Schematic of Reservoir Computing implementation using Mackey-Glass nonlinear

function with delay [59].

It can be observed from Figure 2-5. that the delay-based reservoir computing is

divided into multiple blocks, with the first stage being the input preprocessing stage to

timemultiplex the input data. A Mackey-Glass nonlinearity function is used in this

implementation which has the embedded delay property and this nonlinear function is able

to spread out the inputs to higher dimensions [60], [61]. The working procedure is similar

to the delayed dynamical system discussed in the preceding section. The output is

preprocessed and given by a linear weighted sum and these weights are obtained by a

simple linear regression from the training process. The Mackey-Glass nonlinearity is

implemented in hardware using a summation amplifier, a single bipolar transistor to

implement the nonlinear part and another amplifier followed by a filter. The discussed

system shows optimum performance and is strong for benchmark tasks. This single neuron

design has also been used to implement a delayed feedback reservoir (DFR) using analog

hardware [62]. The merging of deep learning and DFR is also discussed. Deep DFR and

 13

multiple-input Deep DFR structures are proposed and compared with leaky ESN with time

series prediction tasks. From the results it was observed that both the Deep DFR structures

discussed have a much greater performance compared to the leaky ESN.

Figure 2-6: (a) Architecture of the DFR system [19]. (b) Circuit implementation of nonlinear system

[19]. (c) Circuit Implementation of I&F neuron [19]

A fully analog energy-efficient DFR was designed and fabricated in [19]. As show

in Figure 2-6, this design was built using a temporal encoder, a nonlinear transfer function

and a delayed feedback loop. The delayed feedback loop follows the similar structure of

the Delayed Dynamical system discussed previously. A temporal encoder is used [63] to

replace the masking procedure in the input layer. Previously a spike based delayed

feedback reservoir was previously proposed by [64] and [65] where spike signals were

transmitted instead of analog signals. Similarly, in the DFR design in Figure 2-6. this

temporal encoder is implemented where the input patterns are encoded into the distance

between the spikes in the temporal spike train. In the reservoir layer the signal is

 14

nonlinearly transformed using an analog circuit configuration shown in Fig. 2-6(b) and

converted to spikes after which it is sent to the delay line. The delay time is also calibrated

using an operational amplifier and a current mirror array. The circuit implementation of

the integrate and fire (I&F) is also shown in Fig. 2-6(c). The delay line is built using a

number of I&F neurons where the delay is controlled by the leakage current and the

capacitor value. The NARMA10 chaotic time series prediction benchmark was used to

evaluate the DFR chip design and it showed a 36%-85% decrease in the error rate compared

to the state-of-the-art designs [19].

2.2.2 Field-Programmable-Gate-Arrays

Large amount of data is generated when processing realtime applications.

Programmable electronics such as Field Programmable Gate Arrays (FPGA)s can be used

to attain such high speeds. The use of reservoir computing using FPGA is also

advantageous since the sparse connectivity allows simple wiring techniques that matches

with the FPGA requirements [66].

A reservoir computing framework using stochastic bitstream framework is

discussed in [39]. Analog neurons were used to build this reservoir computing system on

an FPGA. In [9], an LSM system was built on FPGA for real-time speech recognition. The

hardware architecture implemented was based on serial processing of dendritic trees using

serial arithmetic. The designed reservoir computing system was used to port the speech

recognition application to quantized hardware architecture.

In [67], a single-node reservoir computing system was implemented in FPGA.

Genetic algorithms were used in this time-delay reservoir system for the dynamic property

optimization. The discussed system was prototyped in simulation and evaluated in speech

recognition task and verified using FPGA. The experimental results obtained from the

FPGA based reservoir computing matches the ones obtained with simulations from noise

which showed that this implementation can be applied to physical systems where noise is

present.

 15

Figure 2-7: Register Transfer Level Schematic of ESN in FPGA [68]

A real-time hardware based FPGA spike-time dependent encoder and reservoir

design is discussed in [68] which uses the ESN architecture and is implemented using a

reservoir. The discussed design can be trained and implemented in FPGA without the use

of any software implementations. In Figure 2-7. the Register Transfer Level (RTL)

schematic of the ESN in FPGA is shown that consists of four layers, the input layer, the

reservoir layer, the output layer and the weight training layer. The four input signals include

the clock signal (CLK), the input signal (U), the reset signal (RST) and the source of the

target output signal (Yr). The five output signals are the output signal (Y), the bias signal

(b), the output weights (w) and the output matching signal (S). An encoding circuit is

proposed followed by an analog-to-digital converter since the FPGA is a digital platform

and the provided inputs are analog. An FPGA based Stochastic ESN is discussed in [66]

for timeseries forecasting. The stochastic architecture discussed uses comparatively less

area than typical hardware implementations. This enables the use of low cost FPGA

devices for ESN implementations.

2.2.3 Very-Large-Scale-Integrated Circuits

Reservoir Computing based on pulse signals and spiking signals are becoming

more popular due to their high-speed and low power in VLSI implementations. In [69],

 16

real-time wideband signal processing algorithms are processed using mixed signal Printed

Circuit Board (PCB) and a digital Application Specific Integrated Circuit (ASIC) prototype

of a signal processor. It implements Reservoir Computing as the signal processing

approach where the architecture of the reservoir is achieved by using Asynchronous Pulse

Processor (APP) for processing analog signals.

An LSM with dendritically enhanced readout layer is described in [70] which has

an architecture derived from the nonlinear processing properties of the dendrites.

Compared to parallel perceptron readout this architecture has shown to have higher

performance with binary synapses that is suitable for VLSI implementations and the

discussed learning method is able to choose the connections between the inputs and the

dendritic branches that are most feasible. A scalable and hardware-efficient reconfigurable

digital LSM model is proposed in [71] that is able to process real-time data. This model

uses spatial locality property in the approach and has shown an average accuracy of 85%

for epileptic seizure detection. A low power VLSI-based LSM is proposed in [72] for data

intensive machine learning algorithm such as speech recognition. The proposed LSM uses

online learning method which is local so that the weight update depends only on the

presynaptic and the postsynaptic neuron. This reduces communication between the

neighboring elements and thus eases the VLSI implementation.

2.2.4 Memristive Reservoir Computing

The switching dynamics and electrical behavior of memristive devices emulate the

behavior of synapses and neurons. This makes memristors suitable candidates for brain-

inspired computing [73]. Memristors can be used to build large-scale crossbar arrays to

form neural networks and can perform in-memory computations [73] [74], [75]. They can

interact with analog signals directly and this reduces the cost and energy consumption that

arises from the use of analog-to-digital and digital-to-analog converters [73].

 17

Figure 2-8: Vector-matrix computation using memristor-based crossbar [20]

Memristors can be used as reservoirs to transform inputs to high-dimensional space.

A training efficient hybrid Deep Neural Network (DNN) is discussed in [20] that uses

memristive synapses in hierarchical information processing method and delay-based

spiking neural network (SNN) as the output readout layer. The movement of signal

between the DNN layers depend on vector-matrix multiplication. Resistive Random

Access Memory (ReRAM) used is a type of memristor that is a two-terminal metal-oxide

device which performs like a variable resistor [20]. The memristor crossbar array used in

the vector-matrix computation supports a large number of signal connections within a small

area, as shown in Figure 2-8. and is a promising candidate to be used in neural networks.

The memristive based reservoir computing structure described is capable of handling data-

intensive computations and has shown successful results in handwritten digit classification

and spoken digit recognition. A Deep Reservoir computing structure is discussed in [76]

that shows a memristor configuration with heat dissipation capability to reduce variation.

The evaluation of the accuracy was done using a Deep DFR model and the design area,

power and latency were significantly reduced compared to typical SRAM memory

techniques. Dynamic memristor devices were used in [77] to build a memristor-based

 18

Reservoir Computing system that offers internal short-term memory and demonstrated that

only 88 memristor could be used to solve tasks such as handwritten digit recognition.

2.3 Other Types of Reservoir Computing

Aside from electronic reservoirs there are many other types of physical reservoirs

including photonic reservoirs, mechanical reservoirs, spintronic reservoirs and biological

reservoirs [46]. Advances and trends in photonic reservoir computing are discussed in

detail in [46], [78] and [79]. The initial photonic reservoir computing was developed in

[80] where a network of coupled Semiconductor Optical Amplifiers (SOA) was used to

build the reservoir. The first passive silicon photonics reservoir was developed in [81]

which was used to compute Boolean logic operations with memory and use successful

results in spoken digit recognition.

The complex behavior arising from the body dynamics of soft and compliant robots

can be used to achieve the nonlinear dynamics of reservoir computing [46]. Mass-spring

systems can be used to achieve nonlinear behaviors in mechanical reservoir computing

[82]. The input to output mapping can be obtained by adding a static and linear readout.

Charge and spin of electrons are also being used to develop nanoscale electronic devices

in the field of spintronics. These devices can have non-volatile memory and can be used in

the reservoir [46]. A nanoscale spintronic oscillator is developed in [83] that demonstrated

a similar accuracy using spoken-digit recognition task compared to the state-of-art neural

networks. In [84], spin waves were used to develop a reservoir computing device that uses

the nonlinearity of the spin waves arising from the magneto-electric effect. Through the

spin waves, the developed device was able to generate the essential properties of reservoir

computing including high-dimensionality, fading memory and nonlinearity. A different

type of spintronic reservoir device can be generated using magnetic skyrmion [85]. A

skyrmion network in magnetic films is used to make a two terminal device that has

nonlinear characteristics.

 19

2.4 Applications of Reservoir Computing

As discussed previously, Reservoir Computing has been used for machine learning

applications due to their simplistic training procedure where only the output layer in

trained. It has been used in data-intensive applications such as speech recognition, time

series forecasting, short-term memory, signal processing and pattern classification [9],

[10], [11], [35], [36], [37], [38], [39], [40], [41], [42].

In [7], an intelligent stock trading system is proposed where genetic algorithm is

used to improve the trading rules, and these were used to provide trading suggestions with

ESN. A predictive ESN classifier is introduced in [8] that makes use of both ESN and

competitive state machine framework. In speech classification experiment the described

ESN classifier has proven to be more robust compared to hidden Markov model. LSMs

also showed successful results in speech recognition [9]. The use of LSMs in pattern

recognition is discussed in [10] and [11]. In [11] it is shown that the LSM with self-

organizing network using spike-time-dependent plasticity has better performance in pattern

classifications. The applications of Reservoir Computing are demonstrated in [86] through

isolated handwritten digit recognition on MNIST dataset and detecting the status of a door

using moving pictures from a camera.

Reservoir Computing has also been applied in the field of communication systems.

In [87] a Deep-ESN is proposed for symbol detection in 5G multiple-input and multiple-

output orthogonal frequency-division (MIMO-OFDM) systems. The proposed design uses

both memristive synapses as well as dynamic reservoir layer to improve computation

capabilities. The use of ESN in MIMO-OFDM system for symbol detection is also

discussed in [88] where it is shown that this method has better performance compared to

typical symbol detection methods. Using a deep RC for MIMO-OFDM signals in [89] was

also shown to have a faster learning convergence and a reduction in unknown nonlinear

radio frequency interference. Reservoir Computing can be used to implement deep

reinforcement learning (DNL) by using the temporal correlation of dynamic spectrum

access (DSA) network [90]. From the experimental results it was observed that the

Reservoir Computing based approach can decrease the collision probability of secondary

users with other primary users and secondary users. Reservoir Computing was also used

 20

for attack detection strategies in smart grids [91]. From simulation results it has been shown

that the proposed design is able to detect attacks under different attack variations.

Reservoir Computing has also been used to model biological systems, for instance

the cerebellum was modeled using LSM that is more computationally powerful than

perceptrons [92]. The hippocampus was also modeled using reservoirs, where the bottom

layer was constructed using recurrent nodes and fixed weights [93]. Reservoir Computing

is also used in patient-adaptive model for monitoring electrocardiogram and from the

simulation results it can be concluded that the system provided a cost-effective, accurate

and fast patient—customized heartbeat classifier [94].

2.5 Conclusion

Reservoir Computing is a recently developed machine learning framework derived

from RNNs. Since only the output weights are trained, Reservoir Computing greatly

simplifies the training complexity compared to RNNs which has led to a significant

development in this area. With the development of single node reservoirs in delayed

dynamical systems, the hardware implementations were also immensely simplified since

the entire recurrent network can be replaced by one nonlinear node.

This review summarizes the basic architecture of reservoir computing and discusses

the working procedure of the three commonly known subsets including ESN, LSM and

Delayed Dynamical Systems. It provides a focus on electronic reservoirs, discussing the

various developments in analog circuits, FPGAs, VLSIs and memristors to build reservoirs.

Ongoing research is being carried out to determine the best suited electronic reservoir in

terms of speed, energy and power efficiency and scalability of reservoirs. Scalability of

reservoirs is a challenging aspect in this field and future research is being carried out in

developing miniature emerging devices, such as memristors and spintronic devices, to

build reservoirs that are capable of handling immense data. Other types of physical

Reservoir Computing are mentioned as well including photonic, mechanical, spintronic

and biological reservoirs. Due to their spatio-temporal information processing capability

and simplified training procedures, Reservoir Computing has applications in various

 21

machine learning applications such as speech recognition, image classification and time

series forecasting.

 22

Chapter 3: Spiking Neural Network

3.1 Architecture of the Spiking Neural Network

Figure 3-1: Spiking Neural Network Design

A spiking neural network structure was developed using the memristive crossbar

shown in Figure 3-1. The VT memristor model was used for the memristive crossbar

design. The inputs are applied to the ISI encoding module to encode the data into a pulse-

width-modulation (PWM) signal. The network has a spatio-temporal information

processing capability where the input signals can be applied parallelly at each row of the

crossbar that increases energy and power efficiency. The memristive crossbar contains

trained weights that are used for feature extraction from the inputs. These input PWM

signals are then applied to the memristor crossbar to compute the matrix-vector-matrix

multiplication operation.

The memristive crossbar in this design are built with high resistance state (HRS)

and low resistance state (LRS) values. The VT memristor has a very high on and off

resistance state of 989MΩ and 1MΩ. The output signal from the crossbar is the

accumulated current signal from each bitline of the crossbar. This current signal is then

transferred to a post processing stage which consists of a current amplifier and then passed

to a Leaky-Integrate-and-fire (LIF) neuron stage. The LIF neuron charges up based on the

amount of current generated and then generates one spike. This is the output stage of the

network where the output result depends on the time to first spike and the neuron which

spikes. This neural network has a scalable architecture, and the dimensions can be

increased further by replicating the blocks of the ISI encoding scheme and the crossbar.

 23

The following sections discuss the detailed circuit design of each block and a hardware

implementation using the pixels from the digits 0-9.

 24

3.2 The Memristor

The three basic circuit elements include the resistor, the inductor, and the capacitor.

In 1971 Professor Leon Chua from the University of Berkeley developed the fourth basic

circuit element called the memristor [8]. The three fundamental devices, resistor, capacitor

and inductor cover the relationship between current, voltage, charge and flux shown in

Figure 3-2. Dr. Chua found the missing link between charge and flux which can be

described by the memristor using the equation:

dΦ = M * dq

Here M represents the memristance, Φ is the flux and q is the charge stored.

Figure 3-2: Relationship between the 4 Key Components

 The memristor is often referred to as a memory resistor and it is a two-terminal

device where its resistance increases when charge flows through it in one direction and

decreases when the charge flows in the opposite direction. When no voltage is applied

 25

across the memristor, it remembers its previous state which is a unique property in

memristors. The current-voltage characteristic curve of the memristor also has the shape

of a hysteresis loop. As frequency increases, the memristor starts behaving more and more

like a resistor as depicted in Figure 3-3 [95-96].

Figure 3-3: I-V Characteristic of Memristor [97]

This memristor is an emerging non-volatile memory (eNVM) technology that has

been immensely studied in the recent years and has shown to emulate neurons and synapses

to build neuromorphic hardware. The conventional memory technologies of SRAM,

DRAM and flash rely on charge storage phenomenon. SRAM stores charges at the cross-

coupled inverter nodes, DRAM stores charges at cell capacitor and in flash memory the

charge is stored in the floating gate of the transistors. However, the major problem with

these memory technologies is scalability which causes the stored charges to be lost and

hence exacerbates the performance and introduces noise and reliability issues. Besides

being scalable, the new memory technologies need to have non-volatile storage, low

operating voltage, high endurance, long retention time, several synapse strength levels,

capable of implementing synaptic learning as well as a simple framework [98-100]. Based

on these characteristics, several emerging non-volatile memory (eNVM) technologies have

been developed which include phase-change random access memory (PCRAM), spin-

 26

transfer-torque magnetic random access memory (STT-MRAM) and resistive random

access memory (ReRAM). Out of the discussed eNVMs, ReRAMs or memristors have

received wide attention due to their scalability, compatibility with CMOS technologies,

analog conductance modulation and low power consumption [101].

The typical ReRAM structure consists of a metal-insulator-metal (MIM) structure

shown in Fig. 12 [102]. The ReRAM devices should be able to switch from a high-

resistance state (HRS) to a low-resistance state (LRS) demonstrating the resistive switching

behavior. The switching behavior of memristors is dependent on both the choice of the

metal electrodes as well as the choice of the oxide. The switch from HRS to LRS is called

the set process while the switch from LRS to HRS is called the reset process. As depicted

on Figure 3-4, unipolar switching depends on the amplitude of the voltage while bipolar

switching depends on the polarity of the voltage. Compliance current is a value set to

prevent the permanent dielectric breakdown and prevent the damage of the memristive

device.

Fig 3-4. (a) ReRAM structure. (b) Unipolar ReRAM operation. (c) Bipolar operation [102].

3.2.1 Memristive Crossbar

The memristive crossbar is shown in Figure 3-5. Based on the MIM structure from

Fig. 3-4, the memristor is placed between two nanowire layers so that the memristor can

be located at the crossing point [103]. Because of this crossbar structure, the memristor can

be used to implement large scale neural networks since it has high density, non-volatile,

 27

nanoscale structure, low operating voltage, low power consumption and can be used for in-

memory computations [103].

Figure 3-5. Memristive Crossbar

 The read and write operations for a memristive crossbar is shown below in Fig. 3-

6 [104]. In a memristive crossbar a single cell reading and writing is allowed. The

horizontal lines or rows are the wordlines and vertical lines or columns are the bitlines. To

perform a read operation on the memristor located in the first row and 4th column, a voltage

of Vread is applied to the wordline and a voltage of 0 is applied to the bitline. For all the

other wordlines and bitlines, the voltage is set to 0. For the selected memristor shown in

green, the corresponding current is the one at the bitline. The blue cells are the half selected

memristors and the red cells are the unselected memristors that have 0 voltage drop across

them. The other cells have a voltage half of the read voltage applied to them or a voltage

of 0. This keeps them in a non-conducting state because in an ideal case the voltage does

not exceed the threshold that would allow the memristor to change its state. The current

Ileak is the leakage current that occurs due to nonidealities and even when the voltage is less

than the threshold voltage some current is conducted which is a current area of research in

memristors. The write operation is carried out similarly where the voltage Vwrite is applied

 28

across the selected cell while half of that voltage is applied to the other wordlines and

bitlines [104].

Fig 3-6. Read and Write Operations on Memristive Crossbar

 Using the read and write operations the memristive crossbar is used to build large

scale neural networks since they can be trained and the weights can be written in the

respective memristors [103, 105]. A single layer neural network can be used to show how

the memristive crossbar can be used for training shown in Figure 3-7. If there is an input

matrix of X containing n elements and an output vector of Y containing m elements, in a

single layer neural network, the relationship between X and Y can be described as

Yn = Wnxm x Xm

 29

The Wnxm matrix is the weight matrix that can be implemented using the

conductance states of the memristors inside the crossbar. When the training data is applied

at the input, the weight matrix gets updated continuously following the equation

∆Wij = μ
𝜕(𝑦−𝑦∗)2

𝜕𝑤𝑖𝑗

From the equation Wij is the synaptic weight connecting the input and output

neurons while μ is the learning rate. The weight matrix W which can be implemented by

the memristive crossbar is updated continuously until the difference between the output

and the target output y* is minimized [105].

Figure 3-7: Single Layer Neural Network [103, 105]

3.2.2 The VT Memristor

 One of the major drawbacks of memristors is their low reliability that prevents them

from being used in neural network implementations since it reduces the inference accuracy

[102, 106]. The resistance variation is one of the reasons for low reliability. In [107]

through a study it was found that the resistance variation comes from the heat accumulation

during the metal atom diffusion of the conductive filament (CFs). The VT memristor was

developed to solve this problem by having an additional heat dissipation layer to inside the

metal electrodes to compensate for resistance switching variation by more than 30% [108].

 30

 From Figure 3-8, initially the bonding inside the metallic oxide is strong but when

a high voltage is applied the oxygen ions move to the metal electrode. This creates oxygen

vacancies inside the metallic oxide and causes the conductive filament to form. The metal

atoms from one of the electrodes gets reduced to cations and then migrate to the cathode

that has the inert material. When these ions migrate, the forms the conductive filament that

connects the two metal electrodes to each other and turns the device into the set process

called the on-state Ron. When the polarity is switched between the two electrodes, the

conductive filament gets destroyed and the resistance increases and the devices switches

to the off-state called Roff which is the reset process. A significant amount of current flows

in the set and reset process and if the heat is not dissipated on time, the temperature of the

conductive filament increases and causes a significant metal atom diffusion. This

contributes to the resistance variation and eventually reduces inference accuracy [108].

Figure 3-8: Memristor (a) set and reset process (b) Formation of Conductive Filaments [108].

 For the VT memristor e-beam evaporation was used to deposit the metal electrodes

and solid electrolytes. For the oxide layer Ta2O5 pellets were deposited using evaporation.

This memristor can achieve a high resistance state of 980MΩ and a low resistance state of

 31

1MΩ which provides a high on and off ratio for the resistances. Due to this high ratio the

leakage current problem is mitigated. Figure 3-9 shows the fabricated memristor die and

the memristor crossbar. Furthermore, in the VT memristor the additional metal dissipation

layer of Cr metal is used to mitigate the heat related problem [108].

Figure 3-9: Fabricated VT Memristor die (a) die; (b) Zoomed-in view; (c) 5x5 crossbar structure; (d)

Memristor at Crosspoint [108]

 32

3.3 Inter-Spike Interval Encoding Scheme

3.3.1 LIF Neuron

 The key component in this Inter-spike interval (ISI) encoding scheme is the LIF

neuron. The structure of the LIF neuron is shown below in Figure 3-10.

Figure 3-10: LIF Neuron

In the biological nervous system, impulses are produced that are transmitted in form

of spikes. Similarly, we use this LIF neuron model in this neural network to generate the

spikes and convert the incoming signals to spikes. The neuron takes a current signal as the

input and the incoming current is the excitation current that can be written as

I = C(
𝑑𝑉

𝑑𝑡
) +Ileak

 From the equation, C acts as the membrane capacitance of the neuron and V is the

membrane voltage. Ileak is the leakage current of the neuron. This leakage current is

controlled by the NMOS transistor connected in parallel with the capacitor and Vleak

 33

represents a very low gate voltage. The clock signal controls the frequency of the spikes.

The input excitation current charges up the capacitor and the voltage across it increases.

Once it exceeds the threshold voltage which is set to 1V, a spike is fired and passes through

the buffer stage. When the spike is fired and the clock is low, the voltage is reset to 0V by

the feedback transistor.

Figure 3-11: LIF Neuron Plot

 The plot in Figure 3-11 shows the LIF neuron output using an excitation current of

500nA with an offset of 2uA. The second plot is the voltage across the capacitor. When the

clock signal is high, the current charges up the capacitor and the voltage increases. Once it

exceeds the threshold voltage, the signal passes through the buffer stage and a spike is

fired. It can also be noticed from the plot that the higher the amplitude of the current, the

sooner the spike occurs with respect to the clock signal. The average power consumption

of the neuron is only 4.37μW. The layout the LIF neuron is also shown below in Figure 3-

12, covering an area of 21.37μm x 21.28μm.

 34

Figure 3-12: LIF Neuron Layout

3.3.2 Current Mirror Stage

Before the ISI encoding stage is made, a precision current to current converter

needs to be used for the input preprocessing part. For this stage, an opamp configuration is

used with a current mirror configuration shown below in Figure 3-13. The opamp used in

this design is a very low power opamp that was made with minimum transistor sizes and

consumes a DC power of 64.62μW.

 35

`

VDD

VN VP

OUT

173f

1u
1u

1u
1u

1u
1u

3u
1u

2.4u
1u

2.4u
1u

1u
600n

1u
600n

460n
600n

460n
600n

Figure 3-13: Opamp Design

 36

Figure 3-14: Opamp Layout

 Using this opamp the precision current to current converter is designed that is used

to preprocess the incoming input signal shown in Figure 3-15. Since the opamp has high

input impedance, this configuration can be used to drive the neurons in the next stage. The

input current signal is applied to the noninverting input of the opamp while the inverting

input is grounded. This current then passes to the drain of the transistor M1 and transistors

M2 and M3 are matched so the current can be copied from the left hand side to the right

hand side.

 37

Figure 3-15: Current Mirror Stage

 To have an efficient current mirror structure, a cascode structure is used with a

diode connected PMOS stage as a load. This prevents the variation of the drain to source

voltage of the PMOS transistor to affect the output current. Using two different current

ratios, in this stage the input current is converted to two different current values of Iout1 and

Iout2 and fed to the neuron stage explained below.

3.3.3 ISI Encoding Block

After the current signal is split into two levels using the precision current to current

converter, it is applied to the encoding stage which consists of two LIF neurons and an

extractor followed by a buffer stage shown in Figure 3-17. In the current mirror stage Iout1

 38

is set to have a higher current value than Iout2. When applied to the LIF neuron, Iout1 causes

the first neuron to fire the spike first and turns on the NMOS transistor. Once this transistor

is turned on, the capacitor is charged up to VDD and remains at this point. When Iout2 causes

the second neuron to fire, the capacitor can discharge the voltage across it. This produces

a pulse-width modulation signal that can be applied to the memristor crossbar to conduct

the matrix-vector-matrix multiplication. The resulting output plot from the ISI encoding

stage is shown below in Figure 3-16.

Figure 3-16: ISI Encoder Plot

 Using the same clock signal for both the LIF neurons, a current of 2μA is applied

to neuron 1 and a current of 1.2μA is applied to neuron 2. Neuron 1 generates a spike first

and charges up the capacitor and neuron 2 generates the spike afterwards that discharges

the capacitor. The resulting output signal is shown by the plot OUT in Figure 3-16.

 39

Figure 3-17: ISI Encoder

3.3.4 Intermediate Stages

The output signal from the memristive crossbar is a current signal. The memristive

crossbar contains a weighted matrix with the memristor value set to a specific resistance.

When the pulse-width-modulation signal from the ISI encoding stage is applied to the

memristive crossbar, it is multiplied with the resistance values and the output from the

crossbar is the accumulated current from each column of the crossbar. This SNN is a

scalable network more layers can be added by simply replicating the input preprocessing

stage in the intermediate layers. This is done by using the current mirror stage and the

encoding stage after the crossbar. The current output from the crossbar can be split into

two and then applied to two LIF neurons. After that the extractor will be used to generate

the PWM signal.

 40

3.3.5 Output Stage

For the output stage the current output is taken from the columns of the memristive

crossbar and then passed to the current amplifier to reduce the loading effect as shown in

Figure 3-18. The similar current mirror structure can be used from the previous stage and

the amplified current generated from the current mirror can be applied to the LIF neuron.

The LIF neuron then generates a spike based on the amount of current from the crossbar.

The time to first spike and the column from which it spikes can be used as a method for

classification in this design.

Figure 3-18: Output Stage Circuit

 41

3.4 Analysis and Verification

3.4.1 Hardware Simulations

To evaluate the SNN design we use the images 0 to 9 as inputs to the network. A

three layer neural network is used to process the images. Since a small scale neural network

is used with an output layer of 4x4 crossbar, the weights are trained to identify the digits 0

to 3. The hardware simulation architecture is shown in Figure 3-19.

Figure 3-19: Hardware Simulation Architecture

 The image pixels are taken in for one clock cycle and applied to a 5x5 crossbar.

The crossbar has the weights shown in the Figure 3-20. The input signals are preprocessed

first by applying them to the weighted input crossbar to add some variation to the signal.

The resulting output current I1 to I5 is shown below when the image pixels from the

number 0 is applied to the crossbar. IN1 to IN5 are the input signals to the system and 1 –

5 are output currents. From the output of the first crossbar there are three levels of output

currents, 0μA, 1.8μA and 3.6μA that are the results of the multiply and accumulate

operations.

 42

Figure 3-20: Input Stage Plots and Output Plots from Crossbar

 The resulting output currents are then applied to the preprocessing stage which is

the precision current to current amplifier. This stage splits the current signal into two values

of different weights and applies the following signal to the ISI encoding stage. As discussed

in the preceding section, the ISI encoding stage then applies the current signal to 2 LIF

neurons and then using the extractor generates the pulse-width-modulation signal which is

the output from the ISI encoding stage. The resulting plot from the ISI encoding stage is

shown below in Figure 3-21.

 43

Figure 3-21: ISI Encoder Outputs

 The five output signals from the ISI encoding stage are then applied to a 5x4

crossbar with the weights specified in the Figure 3-19. The similar multiply and accumulate

operation occurs at this stage where the signals from the ISI encoding stage are multiplied

with the crossbar weights and the output currents from this stage are shown below. Due to

the multiply and accumulate operation, the four output currents have different values

shown in Figure 3-22.

Figure 3-22: Output Currents from Second Crossbar

 44

 The resulting current outputs are again applied to the current mirror stage where

they are split into two levels and then applied to the ISI encoding stage. In the ISI encoding

stage the LIF neurons generate the spikes based on the two current levels and use the

extractor to then produce the pulses shown in Figure 3-23.

Figure 3-23: ISI Encoder Output Plots from Second Stage

 The resulting output pulses are applied to trained output crossbar to compute the

multiply and accumulate operation. From the trained output crossbar, the accumulated

current outputs are shown below in Figure 3-24.

Figure 3-24: Current Outputs from Crossbar

 45

 The output current signals are then applied to a current amplifier stage discussed in

the preceding sections and then an LIF neuron layer to generate a spike shown below in

Figure 3-25.

Figure 3-25: Final Output as TTFS Signal

 The way the output classification happens is based on the time to first spike method.

The output is determined by which neuron and from which column spikes first. Since the

hardware design uses a 4x4 crossbar, the output weights are trained to classify images 0 to

3. For image 0 the first, for image 1 the second neuron spikes first, for image 2 the third

neuron spikes first and for image 3 the fourth neuron spikes first. Even though the output

crossbar is only 4x4 and therefore is able to classify 4 digits, the rest of the outputs from

the digits 4-9 are applied to show that the spiking pattern for each neuron is also different

which can be used to classify the images. The image pixels used for classification are

shown in Figure 3-26.

 46

Figure 3-26: Digit Images used for Hardware Simulations

 The following Table 1 shows the output from spike time from each digit. It can be

observed that for digits 1 to 3 each column spikes first from Column 1 to Column 4

respectively. The spike time from the other digits are shown to demonstrate the difference

in spiking pattern and how they can still be classified. From the hardware results the design

shows 100% accuracy in recognizing all digits.

 47

Number Column 1 Column 2 Column 3 Column 4

0 805ns 0ns 821ns 0

1 0 1.5μs 1.51μs 0

2 1.39μs 1.25μs 1.24μs 1.4μs

3 1.02μs 1.47μs 1.1μs 993ns

4 1.02μs 925ns 1.02μs 985μs

5 1.1μs 0 0 0

6 1.19μs 0 1.2μs 0

7 0 0 1.12μs 0

8 1.17μs 0 1.2μs 0

9 1.4μs 1.3μs 1.4μs 1.36μs

Table 1: Output Spike Times for each digit

3.4.2 Power Breakdown

The power breakdown from the circuit components is shown below in Table 2. The

power consumption for the neuron is the average power consumption since the neuron on

time depends on the clock signal. The ISI encoding stage consists of the two LIF neurons

 48

and an extractor and hence the power consumption reported includes the power consumed

by two LIF neurons as well.

Component Power Consumption

LIF neuron 4.37μW

Opamp 64.62μW

Current Mirror 115μW

ISI Encoding Stage 13.37μW

Table 2: Power Consumption for each component

 49

3.4.3 Comparison with other state-of-the-art Neuromorphic

Architectures

 The following Table 3 summarizes the comparison of the designed SNN

architectures with other state-of-the-art neuromorphic architectures. For the hardware

testing and evaluation pixels from digits 0 to 9 were used to show the proof of concept. In

terms of power consumption of only 2.9mW and an inference speed of 2μs/image, the

designed SNN architecture shows competitive results compared to the state-of-the-art

architectures.

 [109] [110] [111] [112] This Work

Technology 180nm 65nm 130nm 130nm 180nm

Algorithm CNN CNN RBM MLP SNN

Memory Cell SRAM SRAM ReRAM ReRAM ReRAM

Memory

Mode

- - CIM CIM CIM

Weight

Precision

- - 1-bit 3-bit

signed

1-bit

Neuron Type IF - IF - LIF

Supply

Voltage

1.8V 1V 1.8V 5V 1.8V

Latency 15.4ns - - 51.1ns 334ns

Power

Consumption

4mW 278mW 2.2mW - 2.9mW

Table 3: Comparison of Results with State-of-the-Art Implementations

 50

3.4.4 Software Results

 The designed SNN architecture is then tested for a large scale software model using

MNIST. In the software model the structure is defined using the Figure 3-27 shown below.

The software model developed from [113] includes an encoding stage where the inputs are

initially encoded into either one of Poisson, TTFS or ISI. After the encoding stage the

inputs are applied to the memristive crossbar layer that performs the matrix multiplication.

Here the memristor weights are trained using ADAM optimizer and weights are quantized

to 7 bits. After the crossbar layer the Batch Normalization layer is added which mimics the

current mirror stage. In this stage column output currents are converted to voltage and it is

clamped between two values. After this layer, a set of LIF neuron layers are added which

then generates the spikes. The first set of LIF layer contains 100 neurons and the second

output stage of LIF layer contains 10 neurons.

Figure 3-27: Software Architecture of the SNN

With the software model we evaluate our SNN architecture and compare with the

different encoding schemes. Using the ISI encoding scheme the SNN architecture can

achieve an 86% of accuracy and the results are summarized in the Table 4 below.

 51

Encoding Scheme Accuracy Epochs

Poisson 84% 10

TTFS 85% 10

ISI 87% 10

Table 4: Accuracy Results with MNIST for Different Encoding Schemes

 52

Chapter 4: Conclusion and Future Work

In recent years neuromorphic computing has received a lot of attention due to its

ability to mimic the human brains. It has great benefits over traditional Von Neumann

computing architectures since it can process data much faster using parallel processing and

uses much less power. Neuromorphic computing architectures have also shown successful

results in the field of machine learning and artificial intelligence.

In this thesis we initially study the two types of ANNs, mainly the RNNs which are

more powerful in computing spatio-temporal tasks. We study an energy and power efficient

version of RNNs that is Reservoir Computing which simplifies training process by only

training the output layer and hence makes way for simpler hardware implementations. We

study deep into Reservoir Computing to find out the different types of electronic reservoirs

and its applications.

In the second part of this thesis, we cover SNNs which are the third generation of

ANNs. SNNs provide significant advantage in terms of power and energy consumption by

conveying information through spikes as well as keeping the temporal aspect of the

information. To convert the information into spikes, a novel ISI encoding scheme is used

which has higher information density compared to its TTFS counterpart and encodes the

information in the time between the spikes. A memristive crossbar is used for in-memory

computation to carry out the matrix multiplication process for feature extraction. The

memristor model is the VT memristor that has a novel heat dissipation capability which

reduces the resistance variation. An input preprocessing unit is designed which includes a

precision current converter stage to apply the inputs to the crossbar. For the output stage a

set of LIF neuron layer is used and the output data is determined by TTFS method. This

network has a scalable structure and can be used to create a large scale neural network.

Furthermore, it has a spatio-temporal information processing capability since it can take in

an entire row of pixels over one clock cycle. This gives the SNN architecture a very high

inference speed of 2μs/image. The whole network also has a power consumption of only

2.9mW. Software evaluation of this network in large scale with a 100 LIF neurons in the

 53

input stage and 10 LIF neurons in the output stage reveals an 87% accuracy using the

MNIST database with an ISI encoding scheme.

Future work with this SNN architecture involves testing the network with noisy

images and exploring more complex datasets to see the accuracy. Training algorithms can

be explored in the hardware using backpropagation circuits. Moreover, this architecture

will be extended to a tiled one because for large amount of data processing in machine

learning applications, it can perform matrix-matrix multiplication much faster with reduced

energy. Different in-memory computations can be explored using this architecture such as

the addition, truth tables and floating gate operations.

 54

References

[1] C. Mead, "Neuromorphic electronic systems," in Proceedings of the IEEE, vol. 78, no.

10, pp. 1629-1636, Oct. 1990.

[2] S. Walczak and C. Narciso, “Artificial Neural Networks,” in Encyclopedia of Physical

Science and Technology, 3rd ed, pp. 631-645, 2003.

[3] L. Appeltant et al., "Information processing using a single dynamical node as complex

system", Nature communications, vol. 2, pp. 468, 2011.

[4] J. Schmiduber, “Jürgen Schmidhuber, “Deep learning in neural networks: An

overview”, Neural Networks, vol. 61, pp. 85-117, 2015.

[5] H. Jaeger, “The ‘echo state’ approach to analysing and training recurrent neural

networks,” German Nat. Res. Cntr. Inf. Technol., Sankt Augustin, Germany, 2001,

GMD Report 148.

[6] W. Maass, T. Natschlager, and H. Markram, “Real-time computing without stable

states: A new framework for neural computation based on perturbations,” Neural

Comput., vol. 14, no. 11, pp. 2531–2560, Nov. 2002.

[7] Xiaowei Lin, Zehong Yang, Yixu Song, “Intelligent stock trading system based on

improved technical analysis and Echo State Network”, Expert Systems with

Applications, vol. 38, no 9, 2001, pp. 11347– 11354.

[8] M. D. Skowronski and J. G. Harris, "Automatic speech recognition using a predictive

echo state network classifier", Neural Netw., vol. 20, no. 3, pp. 414-423, Apr. 2007.

[9] B. Schrauwen, M. D’Haene, D. Verstraeten, and J. V. Campenhout, “Compact

hardware liquid state machines on FPGA for real-time speech recognition,” Neural

Networks, vol. 21, no. 2–3, pp. 511–523, 2008.

[10] J. Vreeken, “On real-world temporal pattern recognition using liquid state machines,”

M.S. thesis, Utrecht University, Utrecht, Netherlands, 2004.

[11] S. Luo, H. Guan, X. Li, F. Xue and H. Zhou, "Improving liquid state machine in

temporal pattern classification," 2018 15th International Conference on Control,

Automation, Robotics and Vision (ICARCV), Singapore, 2018, pp. 88-91, doi:

10.1109/ICARCV.2018.8581122.

 55

[12] Grigoryeva, L., J. Henriques, L. Larger, and J.-P. Ortega, "Optimal nonlinear

information processing capacity in delay-based reservoir computers." Scientific

reports, 2015.

[13] Ortín, S. and L. Pesquera, "Reservoir Computing with an Ensemble of Time-Delay

Reservoirs." Cognitive Computation, 2017: p. 1-10.

[14] A. Beuter, J. Bélair, and C. Labrie, “Feedback and delays in neurological diseases: A

modeling study using dynamical systems,” Bull. Math. Biol., vol. 55, no. 3, pp. 525–

541, May 1993.

[15] K. E. Callan, L. Illing, Z. Gao, D. J. Gauthier, and E. Schöll, “Broadband chaos

generated by an optoelectronic oscillator,” Phys. Rev. Lett., vol. 104, no. 11, p. 113901,

Mar. 2010.

[16] L. Larger and J. M. Dudley, “Nonlinear dynamics: Optoelectronic chaos,” Nature, vol.

465, pp. 41–42, May 2010.

[17] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R.

Mirasso, and I. Fischer, “Photonic information processing beyond turing: An

optoelectronic implementation of reservoir computing,” Opt. Exp., vol. 20, no. 3, pp.

3241–3249, Jan. 2012.

[18] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “An experimental

unification of reservoir computing methods,” Neural Netw., vol. 20, no. 3, pp. 391–

403, Apr. 2007.

[19] K. Bai and Y. Yi, “DFR: An energy-efficient analog delay feedback reservoir

computing system for brain-inspired computing,” ACM J. Emerg. Technol. Comput.

Syst., vol. 14, no. 4, p. 45, 2018.

[20] K. Bai, Q. An, L. Liu and Y. Yi, "A Training-Efficient Hybrid-Structured Deep Neural

Network With Reconfigurable Memristive Synapses," in IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp. 62-75, Jan. 2020.

[21] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu and F. E. Alsaadi, "A survey of deep neural

network architectures and their applications", Neurocomput., vol. 234, pp. 11-26, 2017.

[22] S. Ghosh-Dastidar and H. Adeli, "Spiking neural networks", International journal of

neural systems, pp. 295-308, 2009.

 56

[23] W. Maass, “Networks of spiking neurons: the third generation of neural network

models,” 1997.

[24] R. Van Rullen and S. J. Thorpe, "Rate coding versus temporal order coding: What the

retinal ganglion cells tell the visual cortex", Neural Comput., vol. 13, no. 6, pp. 1255-

1283, Jun. 2001.

[25] M. Davies et al., "Loihi: A Neuromorphic Manycore Processor with On-Chip

Learning," in IEEE Micro, vol. 38, no. 1, pp. 82-99, January/February 2018.

[26] H. Cheng, W. Wen, C. Wu, S. Li, H. H. Li and Y. Chen, "Understanding the design of

IBM neurosynaptic system and its tradeoffs: A user perspective," Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2017, Lausanne, 2017, pp. 139-

144.

[27] N. K. Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia and J. J. Yang, "Emerging

memory devices for neuromorphic computing", Adv. Mater. Technol., vol. 4, no. 4,

Apr. 2019.

[28] L. J. I. T. o. c. t. Chua, "Memristor-the missing circuit element," vol. 18, no. 5, pp. 507-

519, 1971.

[29] J. J. Hopfield, “Neural networks and physical systems with emergent collective

computational abilities,” Proc. Natl. Acad. Sci. USA, vol. 79, pp. 2554-2558, 1982.

[30] J. J. Hopfield, Neurons with graded response have collective computational properties

like those of two-state neurons,” in Proc. Natl. Acad. Sei. USA, vol. 81, pp. 2088-3092,

1984.

[31] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, “A

novel connectionist system for unconstrained handwriting recognition,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 31, no. 5, pp. 855–868, May 2009.

[32] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent neural network

architectures for large scale acoustic modeling,” in Proc. Annu. Conf. Int. Speech

Commun. Assoc. (INTERSPEECH), 2014, pp. 338–342.

[33] Xiangang Li and Xihong Wu, “Constructing long short-term memory based deep

recurrent neural networks for large vocabulary speech recognition,” in Acoustics,

 57

Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on.

IEEE, 2015, pp. 4520–4524.

[34] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation,

vol. 9, no. 8, pp. 1735– 1780, 1997.

[35] A. Alalshekmubarak and L. S. Smith, “On improving the classification capability of

reservoir computing for arabic speech recognition,” in Proc. Artif. Neural Netw. Mach.

Learning, 2014, pp 225–232.

[36] A. Ghani, T. M. McGinnity, L. Maguire, L. McDaid, and A. Belatreche, “Neuro-

inspired speech recognition based on reservoir computing,” in Advances in Speech

Recognition, N. Shabtai, Ed. Rijeka, Croatia: InTech, 2010.

[37] X. Hinaut and P. Dominey, “On-line processing of grammatical structure using

reservoir computing,” in Proc. Int. Conf. Artif. Neural Netw., 2012, pp. 596–603.

[38] Y. Jin and H. Yue, “Handwritten numeral recognition utilizing reservoir computing

subject to optoelectronic feedback,” in Proc. Int. Conf. Natural Comput., 2015, pp.

1165–1169.

[39] D. Verstraeten, B. Schrauwen, and D. Stroobandt, “Reservoir computing with

stochastic bitstream neurons,” in Proc. 16th Annual Prorisc Workshop, Veldhoven, The

Netherlands, 2005, pp. 454–459.

[40] H. Jaeger, “Short Term Memory In Echo State Networks,” GMD-Forschungszentrum

Informationstechnik 2001.

[41] F. wyffels, B. Schrauwen, and D. Stroobandt, "Using reservoir computing in a

decomposition approach for time series prediction," in European Symposium on Time

Series Prediction, 2007, pp. 149-158.

[42] A. Goudarzi, P. Banda, M. R. Lakin, C. Teuscher, and D. Stefanovic. (Jan. 2014). “A

comparative study of reservoir computing for temporal signal processing.” [Online].

Available: https://arxiv.org/abs/1401.2224.

[43] R. Legenstein and W. Maass, “Edge of chaos and prediction of computational

performance for neural circuit models,” Neural Netw., vol. 20, no. 3, pp. 323–334,

2007.

 58

[44] M. Lukosevicius and H. Jaeger, “Reservoir computing approaches to recurrent neural

network training,” Comput. Sci. Rev., vol. 3, no. 3, pp. 127–149, 2009.

[45] B. Hammer, B. Schrauwen, and J. J. Steil, “Recent advances in efficient learning of

recurrent networks,” in Proc. Eur. Symp. Artif. Neural Netw., Bruges, Belgium, Apr.

2009, pp. 213–226.

[46] G. Tanaka et al., “Recent advances in physical reservoir computing: A review,” Neural

Netw., vol. 115, pp. 100–123, 2019.

[47] H. Jaeger, “A tutorial on training recurrent neural networks, covering BPPT, RTRL,

EKF and the ‘echo state network’ approach,” German Nat. Res. Cntr. Inf. Technol.,

Sankt Augustin, Germany, 2002, GMD Report 159.

[48] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and

saving energy in wireless communication,” Science, vol. 304, pp. 78–80, 2004.

[49] H. Jaeger, “Discovering multiscale dynamical features with hierarchical echo state

networks,” School Eng. Sci., Jacobs Univ., Bremen, Germany, Tech. Rep. 10, Jul.

2007.

[50]] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Eventdriven random back-

propagation: Enabling neuromorphic deep learning machines,” Frontiers Neurosci.,

vol. 11, p. 324, Jun. 2017.

[51] W. Maass, “Networks of spiking neurons: the third generation of neural network

models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[52] N. Soures and D. Kudithipudi, “Deep liquid state machines with neural plasticity for

video activity recognition,” Front. Neurosci., vol. 13, pp. 686, 2019. doi:

10.3389/fnins.2019.00686.

[53] W. Maass and H. Markram, "On the computational power of circuits of spiking

neurons," Journal of Computer and System Sciences, vol. 69, no. 4, pp. 593-616, 2004.

[54] W. Maass, “Liquid state machines: Motivation, theory, and applications,” in

Computability in Context: Computation and Logic in the Real World, B. Cooper and

A. Sorbi, Eds. Imperial College Press, 2010, pp. 275–296.

[55] H. Haken, Brain Dynamics, Synchronization, and aCtivity Patterns in Pulse-Coupled

Neural Nets with Delays and Noise. New York: Springer, 2002.

 59

[56]] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre,

B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single

dynamical node as complex system,” Nature Commun., vol. 2, art. no. 468, pp. 1–6,

2011.

[57] Y. Paquot et al., “Optoelectronic reservoir computing,” Sci. Rep., vol. 2, p. 287, Feb.

2012.

[58] R. Martinenghi, S. Rybalko, M. Jacquot, Y. K. Chembo, and L. Larger, “Photonic non-

linear transient computing with multiple-delay wavelength dynamics,” Phys. Rev.

Lett., vol. 108, no. 24, p. 244101, 2012.

[59] Soriano, M.C., S. Ortín, L. Keuninckx, L. Appeltant, J. Danckaert, L. Pesquera, and G.

Van der Sande, "Delay-based reservoir computing: noise effects in a combined analog

and digital implementation." IEEE transactions on neural networks and learning

systems, 2015. 26(2): p. 388-393.

[60] A. Namaj¯unas, K. Pyragas, and A. Tamaševiˇcius, “An electronic analog of the

Mackey-Glass system,” Phys. Lett. A, vol. 201, no. 1, pp. 42–46, 1995.

[61] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,”

Science, vol. 197, no. 4300, pp. 287–289, 1977.

[62] J. Li, K. Bai, L. Liu, and Y. Yi, “A deep learning based approach for analog hardware

implementation of delayed feedback reservoir computing system,” in Proceedings of

19th International Symposium In Quality Electronic Design (ISQED), 2018.

[63] C. Zhao et al., “Energy efficient spiking temporal encoder design for neuromorphic

computing systems,” IEEE Trans. Multi-Scale Comput. Syst., vol. 2, no. 4, pp. 256–

276, Sep. 2016.

[64] C. Zhao, J. Li, L. Liu, L. S. Koutha, J. Liu, and Y. Yi, “Novel spike based reservoir

node design with high performance spike delay loop,” in Proc. 3rd ACM Int. Conf.

Nanoscale Comput. Commun., Sep. 2016, pp. 1–5.

[65] C. Zhao, Y. Yi, J. Li, X. Fu, and L. Liu, “Interspike-interval-based analog spike-time-

dependent encoder for neuromorphic processors,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 25, no. 8, pp. 2193–2205, Aug. 2017.

 60

[66] Miquel L. Alomar, Vincent Canals, Nicolas Perez-Mora, Víctor Martínez-Moll, and J.

L. Rosselló “FPGA-based Stochastic Echo State Networks for Time-Series

Forecasting,” Comput. Intell. Neurosci., vol. ND, no. ND, p. Article ID 537267, 2015.

[67] B. Penkovsky, L. Larger, and D. Brunner, “Efficient design of hardware-enabled

reservoir computing in FPGAs,” J. Appl. Phys. 124, 162101, 2018.

[68] Yi, Y., Liao, Y., Wang, B., et al.: ‘FPGA based spike-time dependent encoder and

reservoir design in neuromorphic computing processors’, Microprocess. Microsyst.,

2016, 46, Part B, pp. 175–183.

[69] P. Petre and J. Cruz-Albrecht, “Neuromorphic mixed-signal circuitry for asynchronous

pulse processing,” in Rebooting Computing (ICRC), IEEE International Conference

on. IEEE, 2016, pp. 1–4.

[70] S. Roy, A. Banerjee, and A. Basu, “Liquid state machine with dendritically enhanced

readout for low-power, neuromorphic VLSI implementations,” IEEE Trans. Biomed.

Circuits Syst., vol. 8, no. 5, pp. 681–695, Oct. 2014.

[71] A. Polepalli and D. Kudithipudi, “Reconfigurable digital design of a liquid state

machine for spatio-temporal data,” presented at the Third ACM Int. Conf. Nanoscale

Computing and Communication, 2016.

[72] Y. Zhang, P. Li, Y. Jin, and Y. Choe. A digital liquid state machine with biologically

inspired learning and its application to speech recognition IEEE Trans. on Neural

Networks and Learning Systems 2015.

[73] Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired computing,”

Nature Mater., vol. 18, no. 4, pp. 309–323, 2019.

[74] V. Keshmiri, “A study of the memristor models and applications,” Linköping Univ.,

Linköping, Sweden, Tech. Rep. LITH-EX-11/4455, 2014.

[75] T. Chang, Y. Yang, and W. Lu, “Building neuromorphic circuits with memristive

devices,” IEEE Circ. Syst. Mag., vol. 13, no. 2, pp. 56–73, 2013.

[76] H. An, M. S. Al-Mamun, M. K. Orlowski, L. Liu and Y. Yi, "Robust Deep Reservoir

Computing through Reliable Memristor with Improved Heat Dissipation Capability,"

in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

doi: 10.1109/TCAD.2020.3002539.

 61

[77] C. E. A. Du, “Reservoir computing using dynamic memristors for temporal information

processing,” Nature Commun., vol. 8, 2017, Art. no. 2204.

[78]] G. Van der Sande, D. Brunner, and M. C. Soriano, “Advances in photonic reservoir

computing,” Nanophotonics, vol. 6, no. 3, pp. 561–576, 2017.

[79] D. Brunner, Miguel C. Soriano, and G. Van der Sande, “Photonic reservoir

Computing,” 1st ed., De Gruyter, 08.07.19.

[80] K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, and

J. V. Campenhout, “Toward optical signal processing using photonic reservoir

computing,” Opt. Exp., vol. 16, no. 15, pp. 11 182– 11 192, Jul. 2008.

[81] K. Vandoorne et al., “Experimental demonstration of reservoir computing on a silicon

photonics chip,” Nature Commun., vol. 5, 2014, Art. no. 3541.

[82] H. Hauser, A. Ijspeert, R. Fuechslin, R. Pfeifer, and W. Maass, “Towards a theoretical

foundation for morphological computation with compliant bodies,” Biological

Cybernetics, vol. 105, pp. 355–370, 2011.

[83] J. Torrejon et al., “Neuromorphic computing with nanoscale spintronic oscillators,”

Nature, vol. 547, pp. 428–431, Jul. 2017.

[84] R. Nakane, G. Tanaka, and A. Hirose, ‘‘Reservoir computing with spin waves excited

in a garnet film,’’ IEEE Access, vol. 6, pp. 4462–4469, Jan. 2018.

[85] D. Prychynenko et al., “Magnetic skyrmion as a nonlinear resistive element: A potential

building block for reservoir computing,” Phys. Rev. A, Gen. Phys., vol. 9, no. 1, 2018,

Art. no. 014034, doi: 10.1103/ PhysRevApplied.9.014034.

[86] A. Jalalvand, G. Van Wallendael and R. Van De Walle, "Real-Time Reservoir

Computing Network-Based Systems for Detection Tasks on Visual Contents," 2015

7th International Conference on Computational Intelligence, Communication Systems

and Networks, Riga, 2015, pp. 146-151, doi: 10.1109/CICSyN.2015.35.

[87] K. Bai, Y. Yi, Z. Zhou, S. Jere and L. Liu, "Moving Toward Intelligence: Detecting

Symbols on 5G Systems Through Deep Echo State Network," in IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 2, pp. 253-263,

June 2020, doi: 10.1109/JETCAS.2020.2992238.

 62

[88] S. S. Mosleh, L. Liu, C. Sahin, Y. R. Zheng and Y. Yi, "Brain-Inspired Wireless

Communications: Where Reservoir Computing Meets MIMO-OFDM," in IEEE

Transactions on Neural Networks and Learning Systems, vol. 29, no. 10, pp. 4694-

4708, Oct. 2018, doi: 10.1109/TNNLS.2017.2766162.

[89] Z. Zhou, L. Liu, V. Chandrasekhar, J. Zhang, and Y. Yi, “Deep Reservoir Computing

Meets 5G MIMO-OFDM Systems in Symbol Detection,” in 34th AAAI Conf.

Artificial Intell., 2020.

[90] H. Chang, H. Song, Y. Yi, J. Zhang, H. He and L. Liu, "Distributive Dynamic Spectrum

Access Through Deep Reinforcement Learning: A Reservoir Computing-Based

Approach," in IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1938-1948, April

2019, doi: 10.1109/JIOT.2018.2872441.

[91] K. Hamedani, L. Liu, R. Atat, J. Wu and Y. Yi, "Reservoir Computing Meets Smart

Grids: Attack Detection Using Delayed Feedback Networks," in IEEE Transactions on

Industrial Informatics, vol. 14, no. 2, pp. 734-743, Feb. 2018, doi:

10.1109/TII.2017.2769106.

[92] T. Yamazaki and S. Tanaka, “The cerebellum as a liquid state machine,” Neural

Networks, vol. 20, no. 3, pp. 290–297, 2007.

[93] E. A. Antonelo, et al., "Unsupervised Learning in Reservoir Computing: Modeling

Hippocampal Place Cells for Small Mobile Robots," presented at the International

Conference on Artificial Neural Networks (ICANN), 2009.

[94] F. Hadaeghi, “Reservoir computing models for patientadaptable ECG monitoring in

wearable devices,” arXiv preprint arXiv:1907.09504, 2019.

[95] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor

found," nature, vol. 453, no. 7191, pp. 80-83, 2008.

[96] S. R. Williams, "How we found the missing memristor," Spectrum, IEEE, vol. 45, no.

12, pp. 28-35, 2008.

[97] V. Keshmiri, "A Study of the Memristor Models and Applications," 2014.

[98] Y. Xie and J. Zhao, "Emerging Memory Technologies," in IEEE Micro, vol. 39, no. 1,

pp. 6-7, Jan.-Feb. 2019, doi: 10.1109/MM.2019.2892165.

 63

[99] J. Park, “Neuromorphic Computing Using Emerging Synaptic Devices: A

Retrospective Summary and an Outlook,” Electronics, vol. 9, no. 9, p. 1414, Sep. 2020.

[100] N. K. Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia and J. J. Yang, "Emerging

memory devices for neuromorphic computing", Adv. Mater. Technol., vol. 4, no. 4,

Apr. 2019.

[101] D. Niu, Yang Xiao and Yuan Xie, "Low power memristor-based ReRAM design with

Error Correcting Code," 17th Asia and South Pacific Design Automation Conference,

2012, pp. 79-84, doi: 10.1109/ASPDAC.2012.6165062.

[102] H.-S. P. Wong et al., "Metal-oxide RRAM", Proc. IEEE, vol. 100, no. 6, pp. 1951-

1970, Jun. 2012.

[103] A. Huang et al., "Memristor neural network design", Memristor and Memristive Neural

Networks, pp. 1-35, 2018.

[104] M. Shevgoor, N. Muralimanohar, R. Balasubramonian and Y. Jeon, "Improving

memristor memory with sneak current sharing," 2015 33rd IEEE International

Conference on Computer Design (ICCD), 2015, pp. 549-556, doi:

10.1109/ICCD.2015.7357164.

[105] Liu B. Neuromorphic System Design and Application. University of Pittsburgh;

ProQuest Dissertations Publishing, 2016.

[106] B. Govoreanu et al., "10× 10nm 2 Hf/HfO x crossbar resistive RAM with excellent

performance, reliability and low-energy operation," in Electron Devices Meeting

(IEDM), 2011 IEEE International, 2011: IEEE, pp. 31.6. 1-31.6. 4.

[107] M. Al-Mamun, S. W. King, S. Meda, and M. K. Orlowski, "Impact of the Heat

Conductivity of the Inert Electrode on ReRAM Performance and Endurance," ECS

Transactions, vol. 85, no. 8, pp. 207-212, 2018.

[108] H. An, M. S. Al-Mamun, M. K. Orlowski, L. Liu and Y. Yi, "Robust Deep Reservoir

Computing through Reliable Memristor with Improved Heat Dissipation Capability,"

in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

doi: 10.1109/TCAD.2020.3002539.

 64

[109] G. Indiveri, F. Corradi, and N. Qiao, “Neuromorphic architectures for spiking deep

neural networks,” in 2015 IEEE International Electron Devices Meeting (IEDM).

IEEE, 2015, pp. 4–2.

[110] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks,” IEEE journal of

solid-state circuits, vol. 52, no. 1, pp. 127–138, 2016.

[111] W. Wan, R. Kubendran, S. B. Eryilmaz, W. Zhang, Y. Liao, D. Wu, S. Deiss, B. Gao,

P. Raina, S. Joshi et al., “33.1 a 74 tmacs/w cmos-rram neurosynaptic core with

dynamically reconfigurable dataflow and in-situ transposable weights for probabilistic

graphical models,” in 2020 IEEE International Solid-State Circuits Conference-

(ISSCC). IEEE, 2020, pp. 498–500.

[112] Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao, C.-X. Xue, W.-

H. Chen et al., “33.2 a fully integrated analog reram based 78.4 tops/w compute-in-

memory chip with fully parallel mac computing,” in 2020 IEEE International Solid-

State Circuits Conference- (ISSCC). IEEE, 2020, pp. 500–502.

[113] Q. Duan, Z. Jing, X. Zou, Y. Wang, K. Yang, T. Zhang, S. Wu, R. Huang, and Y. Yang,

“Spiking neurons with spatiotemporal dynamics and gain modulation for

monolithically integrated memristive neural networks,” Nature News, 07-Jul-2020.

[Online]. Available: https://www.nature.com/articles/s41467-020-17215-3.

© 2020 IEEE. Reprinted, with permission, from [F. Nowshin, Y. Zhang, L. Liu and Y. Yi,

"Recent Advances in Reservoir Computing With A Focus on Electronic

Reservoirs," 2020 11th International Green and Sustainable Computing Workshops

(IGSC), 2020, pp. 1-8, doi: 10.1109/IGSC51522.2020.9290858.]

© 2020 IEEE. Reprinted, with permission, from [F. Nowshin, L. Liu and Y. Yi,

"Energy Efficient and Adaptive Analog IC Design for Delay-Based Reservoir

Computing," 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems

(MWSCAS), 2020, pp. 592-595, doi: 10.1109/MWSCAS48704.2020.9184677.

65

