
A large proportion of the world’s population lives 
on low- elevation (<10 m) land near the sea1,2, much 
of which is subject to subsidence due to natural and 
anthropogenic processes3. As of 2005, ~40 million peo-
ple and assets worth 5% of global gross domestic prod-
uct were exposed to a 1- in-100- year coastal flooding 
hazard4. By 2070, the exposed population is expected 
to grow more than threefold, and the value of property 
exposed is expected to increase to ~9% of the projected 
gross domestic product, with the USA, Japan and the 
Netherlands having the most exposure4. However, these 
estimates often rely only on projections of global average 
sea- level rise and do not account for vertical land motion 
(VLM), in terms of subsidence (downward VLM) or 
uplift (upward VLM) of the land surface. A different 
estimate of exposure could result when VLM is taken 
into account, particularly considering recent findings 
that the elevation of many coastal lowlands has, to date, 
been considerably overestimated5.

The recent increase in global mean sea level (GMSL) 
has led to a present- day rate of rise of ~3.35 mm  
per year (ref.6); GMSL rise since 1900 is mostly attributed 
to accelerated ice- mass loss of glaciers and ice sheets, 
plus the thermal expansion of ocean water7. However, 
the relative sea level (RSL), defined here as the elevation 
difference between the sea surface and the solid Earth8, 
excluding the dynamic sediment surface9, is of particular 

relevance for assessing the effects of sea- level change at 
any given location. RSL change is defined as the sum 
of geocentric sea- level change plus VLM8. Note that the 
sediment- accretion rate, which has sometimes been 
invoked as a term in the RSL equation10, merely affects 
local water depth, not RSL. VLM is driven by natural 
processes, such as glacial isostatic adjustment (GIA)11–13, 
tectonics and earthquakes14,15, and sediment consolida-
tion, including natural compaction owing to sediment 
deposition (loading)16–19, as well as anthropogenic effects 
caused by peat oxidation following drainage20–24 and 
the compaction of aquifer systems and hydrocarbon 
reservoirs accompanying the extraction of subsurface 
fluids20,25,26 (fig. 1).

These drivers can be divided into shallow processes 
affecting depths of less than ~25 m (for example, com-
paction of Holocene sediments) and deep processes 
(such as tectonics and compaction of pre- Holocene 
strata)27. VLM can be much greater than nearby geo-
centric sea- level rise alone and, in turn, GMSL rise, 
which is estimated, in part, based on tide- gauge records. 
Thus, knowing how much, where and why coastal land 
subsides and how its rate varies over time is essential 
to evaluating hazards associated with sea- level rise and 
estimating GMSL rise.

During the twenty- first century, the rate of RSL rise is 
expected to increase, not only due to continued thermal 
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expansion of ocean waters and mass loss in Greenland 
and Antarctica28,29 but also because of accelerated com-
paction of aquifer systems and hydrocarbon reservoirs 
in coastal areas, owing to increasing demand for coastal 
groundwater and fossil fuels30,31. Additionally, increases 
in coastal land reclamation in response to coastward 
population migration can contribute to subsidence. 
Such anthropogenic subsidence can be rapid and cause 
metres of land subsidence over decades3. Although nat-
ural subsidence processes tend to be much slower, there 
are notable exceptions, including earthquake- driven 
subsidence, with a coseismic slip potentially produc-
ing metres of coastal subsidence in minutes14,15,32,33, and 
sediment compaction, which can amount to centimetres 
per year in thick Holocene successions19,34. Subsidence 
might substantially increase future flooding risk associ-
ated with storms and sea- level rise35–38 by increasing the 
rate of local RSL rise. Thus, spatially dense and contin-
uous observation of coastal land subsidence, improved 
understanding of the driving mechanisms and reliable 
predictions of future subsidence are needed to inform 
policy decisions39,40 and flood- resilience plans for coastal 
megacities around the world39.

In this Review, we discuss the diverse processes that 
cause coastal subsidence and show how the availability 
of satellite geodetic data from global navigation satellite 
systems (GNSS) and interferometric synthetic aperture 
radar (InSAR) has transformed our ability to meas-
ure the contemporary rate of coastal subsidence at an 
unprecedented spatial scale and precision level. We also 
discuss land- based monitoring techniques that have led 
to recent advances in our understanding of the vertical 
dimension of coastal subsidence. We then introduce 
various numerical models that can be used to simulate 
observed land subsidence and predict future trends, and 
highlight the challenges associated with monitoring, 
modelling and predicting future subsidence. Finally, we 
present examples from coastal cities worldwide and dis-
cuss the possible socio- economic consequences of land 
subsidence to these communities. As such, this Review 
offers a comprehensive synthesis of a wide range of 
topics, several of which have been the subject of more 
focused overviews41–43.

Drivers of coastal subsidence
Before discussing the wide range of processes that cause 
coastal subsidence, we highlight the distinction between 
VLM in static (such as urban) and dynamic (such as  
wetland) landscapes. In the former, land- elevation 
changes are generally equivalent to VLM, whereas in the 
latter, VLM must be separated from changes in surface 
elevation due to deposition or erosion — common phe-
nomena in coastal zones. This separation is a non- trivial 
task that is often overlooked. Capturing VLM in static 
landscapes is relatively straightforward using, for exam-
ple, space- geodetic techniques. However, dynamic land-
scapes require subsurface methods to isolate the role of 
subsidence. Subsurface methods also offer an important 
key to understanding driving mechanisms.

Natural processes. Natural processes that drive coastal 
subsidence operate on a wide range of spatial and tem-
poral scales, including long geologic timescales (fig. 1b). 
Thermal subsidence due to cooling of the mantle, which 
results in a thicker and denser lithosphere, could con-
tribute to coastal subsidence. However, its rate (≪1 mm 
per year) is much slower than the processes discussed 
below44,45. Thus, we do not discuss it further herein.

At active plate margins, such as Cascadia, Alaska, 
Japan, Central and South America, and Indonesia, earth-
quakes are the result of sudden fault slip that releases 
elastic energy stored over the preceding decades to cen-
turies, as part of the earthquake cycle15,33,46–48. When an  
oceanic plate subducts beneath a continental plate,  
an offshore trench develops near where the ocean plate 
is subducting (fig. 1a, bottom left). The overriding con-
tinental plate is compressed during the interseismic 
period, producing subsidence near the trench and uplift 
landward of the trench; VLM can be as large as several 
millimetres per year. During an earthquake (the co-
seismic period), the accumulated stress is released owing  
to slip on the fault, resulting in extension of the overriding  
plate and sudden, metre- scale vertical motion offshore 
and decimetre to metre- scale vertical motion along the 
coast, the effects of which can extend ~300–600 km 
perpendicular to the trench49–52. Whether the coastal 
zone uplifts or subsides during an earthquake depends 
on the location of the shoreline relative to the fault- slip 
patch and the distribution of slip on the fault52. Large 
earthquakes are followed by a postseismic deformation 
phase, potentially lasting years or decades, during which 
afterslip occurs within the fault zone and the viscoelas-
tic mantle relaxes the coseismic stress changes, caus-
ing transient vertical motions of the land surface52,53. 
For example, the viscoelastic relaxation of the mantle 
after the 2004 Sumatra–Andaman earthquake pro-
duced 20–30 mm of subsidence in Bangkok, Thailand 
(~800 km away from the rupture zone) in the first 5 years 
after the earthquake54, worsening flooding hazards.

Along passive margins, particularly in large depocen-
tres, normal faulting can also substantially contribute to 
coastal subsidence55–58. These normal faults, commonly 
growth faults, represent seaward failure under the grav-
ity of thick, unbuttressed deposits (fig. 1a, bottom right). 
Growth faults typically form when higher- density sed-
iments (such as sands) overlie weak and deformable 

Key points

•	realistic estimates of the impact of sea- level rise on coastal communities require 
knowledge of coastal subsidence.

•	Subsidence rates due to glacial isostatic adjustment and basin tectonics are steady, 
except in places that experience contemporary ice loss.

•	Processes such as natural sediment compaction, organic- matter oxidation, 
aquifer- system and hydrocarbon- reservoir compaction, and large earthquakes cause 
coastal- subsidence rates that are highly variable in space and time.

•	Human effects in the coastal zone can accelerate subsidence, with rates up to two 
orders of magnitude higher than present- day rates of geocentric sea- level rise.

•	State- of- the- art, physics- based numerical models enable quantification of present 
and prediction of future coastal subsidence for a range of different natural and 
anthropogenic processes.

•	Coastal subsidence is a highly complex problem with large spatio- temporal variability 
owing to multiple processes, requiring multidisciplinary approaches to characterize 
the driving mechanisms and to elucidate their individual contributions, as well as to 
enable predictions.
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strata (typically muds or evaporites)59–62. Driven by grav-
ity, growth faults initiate near the surface and propagate 
downward as the overburden loading continues; over the 
long term, systems of growth faults exhibit substantial 

displacements62–64. Unlike subduction faults, these faults 
often have a concave- up (listric) geometry64,65, attributed 
to a vertical change in rheology combined with shear 
stress along lithological interfaces62,63. A combination 
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of levelling and tide- gauge data suggests that fault-
ing is required to adequately explain deep subsidence 
in the Mississippi Delta, USA66. However, the relative 
contribution to subsidence from faulting versus other 
mechanisms in this region has been challenged58,67.

GIA causes vertical displacements, gravity- field 
changes and ocean- mass redistributions on a global 
scale13,68–72, affecting multiple components of RSL rise 
(fig. 1a, bottom, second from right). GIA accounts for 
VLM due to loading and unloading of the lithosphere  
by ice sheets and associated changes in ocean water mass. 
Ice sheets cause isostatic depression (subsidence) in the 
near field (beneath the ice sheets) and a forebulge (uplift) 
immediately outside the periphery of the ice sheets and 
beyond. Subsequent ice- sheet melt causes rebound of the 
lithosphere in the near field, which persists today, along 
with subsidence in the regions previously occupied by 
the forebulge. The contemporary rate of GIA is ~10 mm 
per year of uplift in near- field regions (such as central 
Scandinavia and Hudson Bay, Canada) that were cov-
ered by ice sheets during the last glacial, and ~1–2 mm 
per year of subsidence in intermediate- field regions (for 
example, New Jersey, USA) located on the periphery 
of the previous ice sheets73,74. Additional contributions 
to GIA occur in places that are currently losing ice 
mass, such as Antarctica and Alaska, USA, where uplift 
rates can be several times those in former centres of 
glaciation75–78. For example, in south- east Alaska, uplift 
rates exceed 30 mm per year in several areas, almost 
entirely due to local ice loss over the past 200 years77.

Isostatic adjustments are not limited to changing 
ice (and associated water) loads72. Several studies have 
proposed that the response of the lithosphere to sedi-
mentary isostatic adjustment (SIA) can result in subsid-
ence rates as high as a few millimetres per year in large 
depocentres, such as the Mississippi Delta79–81 and the 
Ganges–Brahmaputra82,83 (Bangladesh and India) Delta. 
Over geologic timescales, SIA can be explained in terms 
of the lithospheric- flexure model84. The flexure of an 
elastic lithosphere over an inviscid mantle is equivalent 
to a fully relaxed response from GIA or SIA. By con-
trast, the elastic over viscoelastic conditions used in GIA 
models apply over shorter timescales while the mantle 
is viscously responding to the load change. Moreover,  
a change in terrestrial water storage causes modifications 
to the purely elastic response to ongoing load changes85, 
which can vary continually and, in some places, such  
as Bangladesh, with a large annual cycle of up to 6 cm as 
measured by GNSS data86.

Compaction of unconsolidated sediment under its 
own weight or owing to overburden loading can also 
cause coastal subsidence (fig. 1a, bottom right); this 
is often a dominant factor in major depocentres19,87–90. 
When sediment accretion leads to an increase in effec-
tive stress, pore fluid is expelled, causing hydrostatic 
compaction91–93. Sediment compaction can be particu-
larly rapid over relatively short timescales (decades to 
centuries)90,94,95. For example, coastal Louisiana, USA, 
exhibits a contemporary subsidence rate of ~9 mm  
per year (ref.96), albeit with large spatial variability, and 
local rates that can be several times higher34. Compaction 
of shallow Holocene strata (<5 m deep), including peat  

beds90, accounts for at least 60% of total subsidence in 
this area87. In the San Francisco Bay Area, USA, subsid-
ence rates as high as 10 mm per year are observed over 
areas underlain by artificial fill and Holocene mud97. 
Compaction rates can be as high as ~25–41 mm per year, 
as measured in the Mekong Delta, Vietnam19. However, 
these high compaction rates do not lead to elevation loss, 
as accretion rates are even higher (~37–68 mm per year), 
currently resulting in net elevation gain98. Compaction 
is coupled with sediment accretion, whereby increased 
accretion rates lead to increased subsidence rates, 
whereas sediment starvation can result in lowered sub-
sidence rates34. This somewhat counter- intuitive rela-
tionship is not always recognized and should not be 
confused with the fact that sediment starvation often 
results in coastal degradation and land loss, independent 
of subsidence.

Anthropogenic processes. Extracting fluids from aquifer 
systems or hydrocarbon reservoirs commonly leads to 
compaction and consequent land subsidence99–106 (fig. 1a 
bottom, second from left). This deformation is governed 
by the principle of effective stress, that is, the total stress 
minus pore- fluid pressure. In soil mechanics and the 
mechanics of aquifer- system compaction, the relation is 
generally reduced to consideration of the vertical stress 
components or those normal to an arbitrary horizontal 
plane within the sediments99,100,103,104,106–110. When fluids 
are extracted from aquifer systems or hydrocarbon res-
ervoirs, pore- fluid pressure decreases. Thus, for constant 
total stress, which can generally be represented by the 
geostatic stress or load of the saturated and undersatu-
rated overlying sediments or rocks, the effective stress 
increases. Some aquifer systems are more susceptible to 
compaction than others. Appreciable compaction can 
occur in heterogeneous systems comprising uncon-
solidated sediments with a substantial fraction of fine- 
grained deposits (silts and clays) of generally lower 
permeability and higher compressibility than coarse- 
grained deposits (sands and gravels). Fine- grained 
deposits can be widely interspersed in aquifer systems 
and/or occur as well- defined hydrostratigraphic units, 
such as interbeds and aquitards. For all aquifer systems, 
some degree of reversible elastic deformation occurs 
when the effective111 stress remains below the precon-
solidation stress threshold25,111. This elastic deformation 
typically results in small- magnitude, recoverable dis-
placements (on the millimetre to centimetre scale) of 
the land surface, and commonly occurs in susceptible 
aquifer systems subject to cyclical trends of ground-
water extraction and recharge112. For susceptible aquifer 
systems, when the effective stress exceeds the precon-
solidation stress threshold, deformation (compaction) 
is inelastic and, generally, permanent (irreversible) 
land subsidence results113–116. In these susceptible aqui-
fer systems, inelastic (or viscous) compaction is often 
associated with the rearrangement (packing) of the fine- 
grained material. The compressibility of the interbeds 
and aquitards in the inelastic stress range is typically at 
least an order of magnitude greater than compressibility 
in the elastic stress range. Thus, for equivalent material 
thicknesses, inelastic compaction is often at least an 
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order of magnitude more than elastic compaction in 
these susceptible aquifer systems.

Land subsidence due to aquifer- system compaction 
typically varies spatially and temporally, depending on 
regionally integrated effects resulting from individual 
extraction wells, the seasonal cycles of drawdown super-
imposed on longer- term trends, as well as the variable 
distribution of aquifer- system properties, variability in 
groundwater- demand- driven extraction rates and varia-
bility in hydroclimatic conditions (for example, drought) 
that influence groundwater recharge117,118. In the Mekong 
Delta, increased extraction of groundwater has acceler-
ated aquifer- system compaction119, with average subsid-
ence rates of 16 mm per year at groundwater- monitoring 
wells during 2006–2010 (ref.120), increasing to 20–50 mm 
per year during 2014–2019 (ref.121). Portions of the 
Mississippi Delta experienced ~8–12 mm per year of 
subsidence during 1965–1993 owing to hydrocarbon 
extraction122 and the Houston–Galveston region in 
Texas, USA, experienced subsidence rates of 50 mm 
per year during 1993–2000 and 30 mm per year during 
2004–2011, mostly due to groundwater extraction123.

Although sediment compaction occurs naturally, 
land- use changes in coastal lowlands (such as drain-
ing wetlands or infrastructural loading) can enhance 
compaction by increasing stress24,124 and organic- matter 
decomposition (oxidation)20,22, which, for example, has 
resulted in subsidence rates of up to 13 mm per year in 
portions of the western Netherlands125,126.

Measuring coastal subsidence
Measurements that resolve the spatial and temporal 
variability of land subsidence are crucial to accurately 
account for the role of subsidence in flooding hazards.  
In this section, we review ground- based and space- borne 
monitoring techniques that have substantially improved 
our ability to monitor VLM at various spatial and tem-
poral scales, and discuss the associated challenges and 
opportunities.

Stratigraphic and palaeoenvironmental methods. The 
coastal sedimentary record contains information on 
long- term RSL change and VLM. Geological reconstruc-
tions of RSL change depend on sea- level indicators127,128: 
physical, biological or chemical features (for example, 
marine terraces, microfossils and stable- carbon- isotope 
signatures of organic remains) that have a well- defined 
relationship with tide levels129. Using quantitative tech-
niques, this relationship can be used to reconstruct the 
past elevation within the tidal frame in which sea- level 
indicators found in cores or outcrops formed130. There 
has been a substantial effort over the past 10–15 years 
to assemble comprehensive global databases of palaeo 
sea- level information, most notably for the period since 
the Last Glacial Maximum9. This information can pro-
vide insight into the drivers of land subsidence in coastal 
areas and the relative contribution of subsidence to RSL 
change41,81,90,131. For example, a comprehensive RSL data-
base for the past 4 kyr (a time interval with a compara-
tively small meltwater contribution to GMSL change) 
along the US East Coast was used to explore the spatial 
variability of GIA over the late Holocene132. By resolving 

the subsidence due to the collapse of the proglacial fore-
bulge, it was possible to subtract the GIA signal from 
tide- gauge records to estimate a mean twentieth- century 
rate of sea- level rise for this region of 1.8 ± 0.2 mm  
per year.

The sedimentary record in tidal wetlands adjacent 
to subduction zones can reflect the VLM associated 
with the strain accumulation and release of the earth-
quake cycle133. Repeated sequences of organic- rich 
tidal- wetland soils formed during the interseismic 
period, sharply overlain by tidal mud deposited fol-
lowing decimetre- scale coseismic subsidence, record 
earthquakes over thousands of years134. Along the US 
Pacific Northwest Coast, where the Cascadia subduction 
zone is in the late stages of interseismic deformation135, 
gradual uplift of the overriding plate is causing an RSL 
fall of 1.5–3.0 mm per year (ref.136). However, strati-
graphic studies from Cascadia marshes that document 
repeated past coseismic subsidence along hundreds of 
kilometres of shoreline suggest that, at some point in the 
next few centuries, this trend of interseismic uplift will 
likely be reversed by sudden, decimetre- scale coseismic 
subsidence137, instantaneously dropping large swaths of 
coastal land below sea level138.

Subsidence patterns are more complicated in deltas, 
where both shallow and deep processes operate with 
different spatial and temporal signatures. Radiocarbon 
dating of sediment cores of the top of a late Holocene 
peat bed, assumed to be formed ~30 cm below current 
mean sea level, coupled with the cored depths of the top 
of the peat bed revealed millennial- scale compaction 
rates of up to 5 mm per year in the Mississippi Delta 
that could locally reach 10 mm per year over shorter 
timescales90. This finding has been corroborated by 
more recent research using different methods34. These 
rates are broadly comparable to those obtained in the 
Ganges–Brahmaputra Delta82 and Rhine–Meuse Delta, 
the Netherlands24.

Land- based instrumental methods. Levelling is among 
the oldest geodetic methods used for measuring sub-
sidence and uplift within a network of benchmarks, 
by carrying an elevation from a known (ideally stable) 
reference point to other points139,140 (fig. 2a). This tech-
nique uses a precisely levelled telescope to measure the 
elevation difference between two points, by summing 
incremental vertical displacements of a graduated rod 
(differential levelling) or by measuring vertical angles 
(trigonometric levelling)139. Levelling is one of the most 
precise geodetic tools for measuring elevation change, 
and historical levelling surveys provide multi- decadal 
observations141. Levelling is also used routinely to mon-
itor the local stability of tide gauges so that RSL change 
is determined relative to a network of benchmarks. 
Various factors determine the accuracy of levelling 
measurements, including the equipment, field proce-
dure, atmospheric conditions and corrections applied 
to field observations139. Random errors in levelling sur-
veys (in millimetres) are proportional to βL0.5, where L is 
the survey distance (in kilometres) and β is an empirical 
uncertainty that scales with distance and ranges from 
0.5 mm km−0.5 for the highest- order modern networks 
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to 6 mm km−0.5 for the lowest- order nineteenth- century 
networks142. Today, however, long- distance levelling is 
rare because it is time- consuming, labour- intensive and 
expensive.

Borehole extensometers can provide continuous 
measurements of the 1D changes in the thickness 
of various layers at (sub-)hourly sampling rates and 
millimetre- level precision141,143,144. Extensometers are, 
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at depth or using an engineered structure. Thus, the GNSS measurement of 
vertical land motion can miss compaction of sediments shallower than the 

anchoring depth. GNSS requires simultaneous observations to at least four 
satellites for positioning, whereas InSAR uses two observations to a satellite 
during a period of time to measure land- elevation change in the satellite 
line- of- sight. λ, wavelength; ΔR, range change between two SAR 
acquisitions; GMSL, global mean sea level; GPS, Global Positioning System; 
H, orthometric height; h, ellipsoid height; l, level; N, geoid height; R, range 
between satellite and receiver (for GPS) or ground cell (for InSAR); SAR, 
synthetic aperture radar; t, receiver clock error.
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thus, suitable for distinguishing between various factors 
that determine subsidence over a compacting aquifer 
and that act at different depth intervals145. To measure 
the compaction of layers at different depths within a sin-
gle borehole, an extensometer can include an array of  
spider magnets anchored at each depth, the readings 
of which refer to the top or bottom of the borehole146. 
Maintaining extensometers is often expensive, and per-
forming corrections for environmental artefacts (such 
as temperature and pressure changes) is challenging141. 
For the period that satellite observations are available, 
validation tests indicate a good agreement between 
extensometer observations and subsidence measured 
by InSAR and GNSS114.

The rod surface- elevation table (RSET) is an instru-
ment that was developed for measuring surface- elevation 
change owing to shallow subsidence in coastal 
wetlands16,147–149 (fig. 2b). It includes nine pins mounted 
on a horizontal arm, which is anchored by a rod with  
a typical length of 1–25 m (refs149,150). The pins slide 
downward to measure the surface elevation, and repeat 
surveys enable surface- elevation change to be deter-
mined. To obtain shallow subsidence rates, vertical accre-
tion must also be measured, which is often done through 
cryogenic coring to determine the sediment thick-
ness above artificial marker horizons151. In one study,  
274 RSETs and marker horizons were used to deter-
mine the present- day shallow subsidence rate in coastal 
Louisiana by subtracting the rate of surface- elevation 
change from the vertical- accretion rate34, yielding a 
shallow subsidence rate of 6.8 ± 7.9 mm per year over 
a 6–10- year period. Using the same methods, the vul-
nerability of mangroves to RSL rise throughout the 
Indo- Pacific region was examined98. The measured 
shallow subsidence rates of 8.2 ± 12.5 mm per year (up to  
49.5 mm per year) indicate that that the majority of the 
investigated mangroves receive insufficient sediment to 
keep up with present- day RSL rise.

In recent decades, distributed fibre- optic sensing 
(DFOS) has gained notable attention for monitor-
ing geotechnical structures and for use in geophysical 
studies152–157. In this approach, a fibre- optic cable and 
light waves are the sensor and signal carriers, respec-
tively. To measure a change in strain or temperature, 
DFOS relies on measurements of backscattered light that 
travels through the core of the fibre and interacts with 
imperfections within the core associated with changes in 
the properties of the surrounding medium158. DFOS has 
been used to detect time- dependent compaction of an 
aquifer system in Shengze, China157 and applied to sepa-
rate the compaction of an aquitard unit from that of the 
adjacent aquifer in Su- Xi- Chang, China159. Although not 
yet widely used, DFOS is a low- cost tool that can provide 
pointwise observations of a small system, such as a struc-
ture or an aquifer system. More expensive varieties of 
this technique that can record strain at micrometre- scale 
precision have become available more recently160.

Space- borne methods. Both GNSS and InSAR can be 
used to measure coastal land subsidence (fig. 2c). The 
Global Positioning System (GPS) is the GNSS system 
that is owned by the US Government and supports 

positioning, navigation and timing161 (fig. 2c). The first 
satellite was launched in 1978 and today’s constellation 
includes 32 satellites, orbiting the Earth every ~12 h 
(ref.162). The popularity of GPS for geodetic applica-
tions is due to its millimetre- level positioning accuracy, 
which is achieved by continuously tracking the phase 
of the carrier signals and either differencing between 
two nearby stations to remove satellite clock errors or 
using satellite clock estimates derived from a global 
network163,164. Currently, the International GNSS Service 
oversees the development of infrastructure for precise 
positioning at a global scale by distributing precise sat-
ellite orbital and clock data and maintaining several data 
and analysis centres.

figure 3 shows the current distribution of GNSS 
stations from all sources within 0.75° of the world’s 
shorelines, colour- coded by their VLM rate, based 
on solutions processed by the Nevada Geodetic 
Laboratory165. Note that these rates are a lower bound on 
the present- day subsidence rates in many low- elevation 
coastal zones where GNSS stations are often anchored at 
greater depths (~15 m)87 than typical (1–3 m). Therefore, 
these stations do not capture the subsidence attributed 
to processes occurring between the land surface and the 
anchor depth. A combination of GNSS with an RSET 
or other measurements of shallow subsidence could 
provide a complete estimate of the total subsidence 
rate. Another approach is to use GPS interferometric 
reflectometry to capture VLM above the foundation of 
the GPS anchor166. Time series and estimated velocities 
derived from GPS data are available from several analy-
sis centres, including UNAVCO, the Nevada Geodetic 
Laboratory and, specifically for GPS sites co- located 
with tide gauges, SONEL.

For nearly three decades, InSAR deformation maps 
have provided an all- weather, day- and- night monitor-
ing capacity at an unprecedented spatial coverage and 
resolution167–171. Currently, more than 15 synthetic aper-
ture radar (SAR) satellites are in orbit172–174. The InSAR 
technique uses microwave radar signals to illuminate 
the ground surface and then records the amplitude 
and phase of the signals backscattered from the surface 
(fig. 2c). Comparing the change in the phase of the signal 
between two SAR images acquired at different times over 
the same area from two nearby and precisely measured 
orbital positions enables the displacement of the ground 
surface towards or away from the sensor (a satellite or 
aeroplane) to be determined. The precision of the phase 
observations is often expressed in terms of the coherence 
between the two SAR images173,175, with values close to 
one indicating high- quality measurements. The phase 
coherence is a function of several factors176, including 
spatial baseline (the separation between satellite loca-
tions at the time of acquisition), temporal baseline (the 
period between two acquisitions) and thermal noise (due 
to changes in receiver characteristics). Also, the radar 
wavelength of the SAR instrument, atmospheric condi-
tions during each image acquisition and land cover can 
affect the interferometric coherence173,177. For example, 
the coherence decreases as the baseline increases, but the 
rate of decrease is slower for longer wavelengths (λ), such 
as L band (λ = 235 mm) versus C band (λ = 56 mm) and 
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X band (λ = 31 mm). Interferometric phase coherence 
substantially decreases over densely vegetated areas, 
for which the longer- wavelength L- band data generally 
yield higher coherence than C- band and X- band data. 
Moreover, changes in properties of the propagation 
medium (such as pressure, temperature and humidity, 
and total electron content) between the two acquisitions 
cause an additional phase contribution that does not 
affect the phase coherence but can be misinterpreted as 
phase delay due to VLM. Several remedies have been 
developed to overcome the limitations of InSAR (Box 1).

Challenges. There are several challenges associated 
with obtaining VLM measurements suitable for study-
ing RSL rise. The first and likely main challenge is to 
obtain these measurements in a global reference frame. 
Subsidence measurements from InSAR, RSETs, DFOS 
and extensometers are inherently provided in a local ref-
erence frame, whereas observations of VLM gathered 
from repeated geodetic levelling surveys and GNSS 
are referenced to a regional or global reference system  
(the ellipsoid in the case of GNSS and the geoid in the 
case of levelling). The International Terrestrial Reference 
Frame178 provides a geocentric reference frame for GNSS 
and other space- based techniques and motions meas-
ured through InSAR, levelling or other methods that 
can be linked to this reference frame through regional 
GNSS networks. The use of a geocentric global refer-
ence frame is essential for measuring quantities such as 
GMSL and allows for comparison between different sites 
along the coast. However, regional reference systems can 

be sufficient to measure spatial variations in VLM. The 
geocentre is the natural origin for a global frame, and 
such a definition makes it possible to determine whether 
a given location is rising or falling relative to the centre 
of the Earth. Therefore, levelling and GNSS observations 
are needed to link together locally referenced measure-
ments. Levelling measures changes in height with respect 
to the gravity field (that is, the geoid) and is tradition-
ally referenced to a mean sea- level datum. This datum 
would approximate the sea surface if it extended under 
the continents140, with the origin of that datum linked 
to one or more tide gauges to provide a sea- level refer-
ence. GNSS, however, is a purely geometric technique 
and measures geometric heights with respect to a non- 
gravitational reference frame (fig. 2c). Thus, the combi-
nation of GNSS and levelling heights must also account 
for temporal and spatial (~0.7%) variations in the gravity 
field. GNSS observations, such as those shown in fig. 3, 
are used to establish a global network of benchmarks on 
land. Spatial variation in VLM can be measured directly 
by differencing the observed motions of GNSS sites or 
of pixels within an InSAR- derived displacement map. 
However, these data need to be referenced to a global 
geocentric frame, such as the International Terrestrial 
Reference Frame, to determine absolute motions that 
can be compared with changes in the sea surface.

Defining the relationship between a non- gravitational 
reference frame (that is, the ellipsoid used for GNSS 
observations) and the geoid (suitable for sea- level studies)  
is challenging. Geometric heights are typically ref-
erenced to the best- fitting ellipsoid of revolution that 
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approximates the geoid140,141. However, the ellipsoid dif-
fers from the geoid by up to ~100 m (fig. 2). Nevertheless, 
rates of VLM measured relative to the ellipsoid or 
geoid can be combined, as long as the geoid–ellipsoid 
separation remains constant in time (or changes are 
accounted for). Changes in the geoid–ellipsoid separa-
tion result from changes in the gravity field associated 
with large- scale mass redistributions, mainly GIA.

In summary, to monitor coastal subsidence, various 
observation techniques should be used in concert, as 
exemplified by a ‘subsidence superstation’ that began 
operating in the Mississippi Delta in 2016 (ref.179) and 
that currently includes an RSET, GNSS and optical- fibre 
strainmeters160, along with detailed stratigraphic analysis 
of the study site. GNSS data (corrected for shallow sub-
sidence signals) and InSAR observations should be com-
bined to establish a global reference system and densify 
observations of VLM so that this spatially variable term 
in RSL rise is known97,180. Thus, there is an immediate 
need to develop frameworks that rigorously combine 
spatially dense SAR interferometric line- of- sight obser-
vations with measurements of the 3D displacement field 
at sparse GNSS networks to obtain an accurate meas-
urement of VLM at management- relevant resolution — 
that is, the minimum resolution (on the order of 101 m) 
needed for the development of hazard- management 
strategies — within a stable reference system. This 
framework must be able to account for the observation 
and reference- frame errors, and include a mechanism to 
propagate these errors to the final estimate of VLM and 
provide the associated uncertainties in the form of the 
formal variance–covariance matrix.

Modelling land subsidence
Various models are used to investigate the mecha-
nisms that drive land subsidence, to project forward 
the contemporary observations of subsidence rates and 
to obtain future estimates of VLM. In this section, we 

discuss several of these models and assess how reliably 
contemporary rates of motion can be projected forward 
in time.

To model the earthquake cycle, elastic181,182 and 
viscoelastic48,183 models are used, which relate the 
slip on the plate- boundary fault to the observed land 
subsidence48,52. Although these inverse models for 
coseismic slip can have non- unique solutions because of 
poor model resolution offshore184, they are usually quite 
good at predicting the VLM at the shoreline, as long as 
there are nearby data on land185. Additional constraints 
on the rate of land subsidence at subduction zones are 
provided through palaeoseismic and palaeo sea- level 
studies185–187. Although it is not possible to predict the 
slip distribution of future earthquakes, it might be possi-
ble to make probabilistic projections based on the record 
of the slip during past earthquakes.

figure 1a (and ref.188) shows an example of model 
predictions for the interseismic and coseismic vertical 
displacements for a hypothetical subduction zone182,189, 
using a fault buried in an elastic, isotropic, half- space 
medium. In many places, the downdip end of the inter-
seismic locked region and the downdip end of the coseis-
mic rupture are located close to the shoreline; therefore, 
the most common pattern along the coast is steady 
interseismic uplift, punctuated by abrupt subsidence 
during earthquakes, as vividly demonstrated during the 
1960 Chile and 1964 Alaska earthquakes190. The oppo-
site pattern can occur when the locked region extends 
well inland from the coast, for example, along the cen-
tral Chilean coast49,191,192 and at the Nicoya Peninsula of 
Costa Rica193,194. Many large subduction earthquakes are 
followed by additional postseismic uplift at the coast, 
due to afterslip on the fault zone and viscoelastic relaxa-
tion of the mantle195,196. Although it is not possible to pre-
dict the time of the next major subduction earthquake 
with any certainty, it is possible to project the first- order 
ongoing spatial and temporal patterns of interseismic 
VLM preceding that earthquake.

GIA models require the specification of the full load-
ing history, including the effects of gravitationally con-
sistent changes in sea level12,13,77. Most studies assume a 1D  
layered viscoelastic Earth model, with an ice history con-
strained mainly by mapped ice- sheet extents and RSL 
histories along palaeoshorelines. figure 4a shows the 
predicted present- day uplift and subsidence rates across 
North America for one such model: the ICE-6G_C ice  
model with the VM5a Earth model197. The pattern of 
vertical motion and RSL rise is intricate during and 
immediately after deglaciation for several reasons, 
including migration of the collapsing forebulge as the 
ice sheet dissipates and competition between rebound 
and the barystatic sea- level rise. As a result, RSL histories 
near the ice margin tend to feature periods of falling and 
rising RSL over time198, while far from the ice sheet, the 
barystatic sea- level rise dominates the signal.

The timescales for these variations depend on the 
extent of the load and the relaxation times of the vis-
coelastic layers; for large continental ice sheets, the pat-
tern in fig. 4a will remain steady for centuries, as the 
relevant mantle- relaxation times are on the order of 
103 years. Disagreements between competing models 

Box 1 | InSAR advances

loss of coherence can limit the coastal areas for which conventional interferometric 
synthetic aperture radar (InSar) can provide useful data. To overcome this limitation, 
one approach is to install corner reflectors in coastal wetlands282, as has been done in 
marshes in the venice lagoon, Italy. multitemporal InSar approaches, which combine 
several synthetic aperture radar (Sar) acquisitions, have also been developed to 
overcome some of the limitations of conventional InSar. These multitemporal 
approaches exploit large sets of Sar images acquired over the same area with a similar 
viewing geometry167,169,170,283–285. most InSar time series algorithms either implement a 
suite of filters to mitigate the impact of atmospheric delay on the obtained deformation 
time series and velocity167,169,285,286 or apply models informed by external data sets287–289.

InSar observations are 1D measurements of surface deformation in the line- of- sight 
direction175. To obtain an estimate of subsidence — that is, deformation in the  
nadir direction — several approaches have been proposed to combine line- of- sight 
observations with other data sets to generate maps of the 3D displacement field290.  
For measurements of coastal subsidence, the goal of these methods is to distinguish 
vertical from horizontal motions97. These supplementary data sets include azimuth-  
offset measurements291–293, the direction of the displacement field294–296 and global 
navigation satellite system observations97,297,298. In summary, to obtain high- resolution 
estimates of spatially and temporally variable subsidence at the precision and accuracy 
desired for studies of relative sea- level rise and flooding hazards, it is necessary to 
integrate observations from various Sar satellites with those obtained from global 
navigation satellite system stations. The increased redundancy improves the ability  
to adjust errors, yielding more accurate results.
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are mainly due to differences in assumed ice histories, 
the lithospheric thickness and the mantle- viscosity 
structure, including the effect of lateral variations in 
viscosity. Therefore, 3D Earth models are increasingly 
considered199–201, as well as probabilistic approaches to 
loading, owing to uncertain ice- sheet histories200,202. 
Regions with recent or ongoing deglaciation will expe-
rience additional VLM not accounted for in the example 
of fig. 4a. In areas with mantle viscosities typical of con-
tinental shields, such as Greenland, mantle- relaxation 
times are long, and, thus, the present- day ice losses 
are usually treated as an elastic load change and com-
puted separately from the viscoelastic effects76. In areas 
of low mantle viscosity, such as south- east Alaska77,203, 
Patagonia204,205, Iceland206 or the Antarctic Peninsula 
and West Antarctica75,207, a full viscoelastic computation 
including the load history over the past few decades to 
centuries is required because the relaxation times can be 
on the order of decades. The pattern of displacements for 
ongoing and recent deglaciation is similar to that shown 
in fig. 4b for Alaska, with uplift in the areas of current or 
recent mass loss. Uplift rates, however, can be as high as 
several tens of millimetres per year in regions of rapid ice 
loss, much greater than the rates attributed to GIA from 
the postglacial continental deglaciation. As the underly-
ing physics is the same, SIA modelling follows the same 
principles as used for GIA; studies80,83 show that subsid-
ence rates in major depocentres might be non- negligible 
and on the same order of magnitude as GIA.

Compaction of aquifer systems and hydrocar-
bon reservoirs has been investigated using rheolog-
ical models that invoke elastic, plastic and viscous 
rheologies for a solid medium, or a combination of 
them208–210; models addressing the solid–fluid interac-
tion through 1D consolidation109,211–213; or fully coupled 

3D models110,214–216. The first regional numerical model 
to simulate and predict coastal subsidence following 
groundwater extraction from an aquifer system was 
developed in the early 1970s for the city of Venice, 
Italy217,218, using a combination of 3D finite element 
flow and a 1D vertical subsidence model. Subsequent 
developments accounted for variable compressibility219, 
stress- dependent parameters220, changing interbed 
storage221 and the effect of viscosity222.

State- of- the- art poromechanical models account 
for the two- way coupling between solid and fluid, in 
which a change in the applied stress produces a change 
in fluid pressure, resulting in a change in the volume and 
mechanical properties of the porous medium110. As fluid 
mass changes following pumping, it creates a differential 
pore pressure, which drives fluid flow223 and modifies the 
stress field, causing deformation of the porous medium. 
The time dependence of fluid- pressure diffusion results 
in time- varying pore pressure, poromechanical stress 
and strain110,224. The role of geomechanics in land 
subsidence due to groundwater extraction and injec-
tions is further discussed in ref.101. Additionally, time-  
dependent viscous deformation of the porous medium, 
so- called creep (whereby the porous medium changes 
volume gradually at constant effective stress), often 
governs subsidence in strata underlying artificially 
made structures225–228. Anthropogenic VLM due to fluid 
extraction and injection can be modelled using several 
available codes based on both finite differences and 
finite elements, which invoke elastic, elastoplastic or 
visco- elasto- plastic rheologies99,106,119,229–235.

Groundwater level and compaction within the 
Shanghai aquifer system in China, comprising five 
confined aquifers (numbered sequentially from shal-
low to deep) underlying a shallow unconfined aquifer, 
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are monitored by 27 extensometer groups and more 
than 1,400 observation wells, some dating back to the 
1960s210. During the period 1949–1968, principally  
the second and third confined aquifers were exploited, 
and the yearly rate of subsidence during 1957–1961 was 
as high as 110 mm per year. Ensuing restrictions on 
groundwater extraction reduced subsidence during the 
1970s to the mid-1980s. Subsequently, increased ground-
water extraction from deeper aquifers led to increased 
compaction, particularly in the fourth confined aqui-
fer. figure 5a shows observations of the groundwater 
level and compaction of the fourth confined aquifer 
during the early 1980s to 2003 (ref.210). The observa-
tions are characterized by an annual cycle and a distinct 
period of decreased compaction and groundwater- level 
decline during the 1980s, followed by a period of 
increased compaction and groundwater- level decline. 
A double- yielding visco- elasto- plastic model performs 
well in simulating the temporally variable compaction 
of the aquifer unit and associated groundwater level210.

Natural hydrodynamic compaction of coastal sedi-
ments due to sediment loading can be modelled using 
a set of constitutive equations similar to those used for 
modelling aquifers and reservoirs93. There are several 
compaction–fluid flow models in the literature91,236–238. 
For example, a 1D model was used to establish an 
approximate relationship between the compaction of 
deep, pre- Holocene basin sediments (interbedded sand 
and mud at 50–700 m depth) and variable sediment 
loads in the Rhine–Meuse Delta93. This study demon-
strated the importance of hydrodynamically delayed 
(that is, delayed dissipation of fluid overpressure within 
the subsurface) compaction for sedimentary basins, with 
subsidence rates of >1 mm per year under favourable 
conditions. Using a novel numerical model that accounts 
for large compaction rates and the delayed pore- fluid 
equilibration238, it was possible to attribute contempo-
rary shallow (top ~20 m) compaction rates of several 
centimetres per year in the mud- dominated strata  
of the Mekong Delta to delayed natural compaction of 
Holocene deltaic deposits19.

Modelling coastal subsidence is a challenging task, 
owing to the contribution of various intertwined 
processes27,124,195,196. Thus, there is a need to invoke a 
wide range of mechanical models and rheologies to 
explain observations. Often, more than one mechanism 
affects observations at a given site. For example, a place 
on the Cascadia coast that usually experiences some 
uplift during the interseismic period165 might experience 
subsidence owing to the rapid compaction of aquifers 
caused by groundwater overdraft (generally, ground-
water extraction in excess of groundwater recharge). 
In coastal Louisiana, depending on the location, the 
observed VLM results from a combination of dominant 
shallow sediment compaction, plus GIA, SIA, hydrocar-
bon extraction and, possibly, growth faulting34,56,64,81,200,239. 
In these cases, and to explain the observation of land 
subsidence, elastic or viscoelastic models of fault slip 
should be combined with visco- elasto- plastic models 
of sediment and aquifer- system compaction. A 2016 
community paper179 highlighted the need for integrated 
models. However, in such models, parameters are often 

correlated, and their relationship to observations can be 
highly nonlinear.

Projections of land subsidence
Future projections of land subsidence are required for 
forecasting RSL rise and flooding hazards through the 
twenty- first century.

Sea- level projections are incorporated into US state-
wide or regional resilience plans, such as the Texas 
Coastal Resiliency Master Plan240 and the US National 
Climate Assessment. Projections of future sea- level rise 
and its effects have been generated in several regions, 
such as the US West Coast241, the Chesapeake Bay242 
and coastal Louisiana243. GIA models not only explain 
why, for example, the sea level is rising faster in the 
Chesapeake Bay region than in Florida but can also 
project the GIA- driven amount of RSL rise by the year 
2100 (ref.200). However, both geological and geodetic 
VLM data show substantial variation in subsidence in 
the Chesapeake Bay region244 at a spatial scale far smaller 
than that of the tide- gauge network245, and any VLM 
signals that are not adequately sampled by the available 
tide gauges will be missed in current projections. For 
example, projections for several sinking cities, such as 
Jakarta (Indonesia)246, Ho Chi Minh City (Vietnam)120 
and Manila (Philippines)247, would miss the rapid, local-
ized subsidence now observed using InSAR (mostly 
caused by groundwater extraction). A notable exception 
to this is the Houston–Galveston region248, where sub-
sidence monitoring, principally by the Harris–Galveston 
Subsidence District, has been conducted for decades, 
and the impact of historical and future subsidence on 
inland and coastal flooding, as well as RSL rise, can be 
better constrained.

Future projections of VLM related to plate- boundary 
earthquakes are challenging, owing to the unpredicta-
bility of earthquakes. figure 5b shows the simulated 
VLM due to the earthquake cycle at Washington’s 
Olympic Peninsula, USA, where the long- term uplift 
rate is ~2 mm per year; the gradual uplift leading up to 
the earthquake abruptly shifts to subsidence during the 
event. Knowing when gradual uplift turns into rapid 
subsidence requires predicting the time of the mega-
thrust earthquake135, although the interseismic uplift is 
expected to remain reasonably constant until that time. 
The rates of interseismic uplift and coseismic subsidence 
vary along the length of the subduction zone based on 
factors that influence fault slip, such as the geometric 
complexity of the plate interface249,250 and the frictional 
strength of the fault- zone material, which, in turn, 
depends on lithology251,252, temperature253 and pore- fluid 
pressure254–256. Estimates of contemporary surface defor-
mation can constrain kinematic models of interseismic 
deformation48 that allow VLM rates to be forecasted 
throughout the twenty- first century. These forecasts will 
have to be augmented by a range of scenarios to sim-
ulate VLM, owing to the variability in magnitude and 
distribution of potential coseismic displacements (and 
postseismic effects). For these scenarios, one can use 
estimates of maximum coseismic offset based on histori-
cal or geological records257 and interseismic deformation 
models258.
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The contemporary rate of GIA can be as high as a few 
millimetres per year outside formerly glaciated areas, 
and GIA from the deglaciation of continental ice sheets 
can be considered near steady over a century73,74. In 
areas undergoing present- day deglaciation, the rates and 
detailed spatial patterns of uplift will be more difficult to 
project, as they will depend on future ice- load changes. 
Greenland provides an excellent example because the 
mass loss has accelerated dramatically since the 1990s, 
and the spatial distribution of mass loss has changed 
over the past two decades76,259–262.

Land subsidence owing to aquifer- system and 
hydrocarbon- reservoir compaction is generally tem-
porally variable and applies to relatively small spatial 
scales (up to tens of kilometres)25,100,263, but may extend 

over larger areas when widespread extraction is taking 
place, as seen in the Mekong Delta119. For aquifer- system 
compaction, the subsidence rates can be high, up to  
hundreds of millimetres per year101,104,105,119,264, depend-
ing on surface- water supply, freshwater demand and 
drought conditions117,118. None of these factors are 
expected to remain constant in the future, which makes 
this contribution to land subsidence highly unpredict-
able; future changes in groundwater regulation and 
socioeconomic factors could also affect projections. 
Accounting for these uncertainties, projections of 
anthropogenic subsidence in the Mekong Delta through 
the twenty- first century have been developed based on 
plausible extraction scenarios38, which can be used to 
guide policy decisions.
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figure 5c shows a simulated scenario highlighting 
the potential elastic behaviour of an aquifer, similar to 
that of the Santa Ana Coastal Basin in California265, in 
which the groundwater table declines by as much as 
30 m until 2055 and then rises to the initial level by 2085,  
owing to variable pumping and replenishment of  
the aquifer system. The associated land subsidence  
of as much as 200 mm is simulated using a poro elastic 
model266. The land subsidence closely follows the pat-
tern of groundwater- level change, and the deformed 
aquifer system rebounds to almost its original thickness 
with groundwater recharge. figure 5d shows data from 
an aquifer in Yuanchang, Taiwan267, which compacted 
~250 mm between 2007 and 2012. A nonlinear poro-
elastic model was calibrated using observed compaction  
during 2007–2011 (a period of normal precipitation) 
to predict compaction in 2011–2012. Model predic-
tions were not successful, partly because 2011–2012 
was a dry year with reduced groundwater recharge 
and increased groundwater pumping, and, thereby, 
increased subsidence. The model calibrated for a period 
of normal precipitation, therefore, underestimated the 
subsidence.

Projections of the effects of aquifer- system and 
hydrocarbon- reservoir compaction can be simulated 
with appropriate poromechanical models and cal-
ibrated using contemporary observations of VLM. 
However, a crucial question is how key model bound-
ary conditions (that is, rates of fluid extraction and 
natural recharge) will vary over the twenty- first cen-
tury. Current climate models predict that droughts 
will become more intense and frequent in parts of the 
world, leading to decreases in surface- water availability 
and natural recharge, as well as increased demand for 
groundwater268. Some studies have assessed the effect of 
climate change on groundwater resources through its 
impact on projections of net recharge under different 
warming scenarios269–272. Despite their usefulness for 
understanding groundwater and surface- water availa-
bility throughout the twenty- first century, such models 
currently do not provide adequate spatial resolution to 
be used for investigating the deformation of individual 
coastal aquifers. Nevertheless, they are a good source of 
information for generating an ensemble of scenarios in 

which different projections of recharge rates are used to 
estimate aquifer- compaction rates.

Contributions to land subsidence from natural com-
paction of shallow sediments in response to loading can 
also show considerable spatial variation, depending on 
local sedimentary architecture and accretion rates34,96,238. 
Thus, employing an existing compaction model that is 
calibrated using observations (preferably both contem-
porary and geological) may enable projection into the 
future19. However, the loading conditions (for example, 
accretion rate and sediment type) could change over 
time, and, thus, compaction rates might not remain 
steady. Moreover, to model natural sediment compac-
tion separately, the observed VLM first needs to be cor-
rected for other contributions (such as contemporary 
rates of GIA, SIA and fluid extraction), although some 
of these corrections may be small.

Future perspectives
The frequency of flooding is projected to double across 
most US shorelines with just 100–200 mm of local RSL 
rise273 — levels that could be reached by mid- century 
under most GMSL projections. Accounting for land 
subsidence will result in these thresholds being exceeded 
sooner than projected based on GMSL rise only (fig. 6a), 
whereas local uplift would cause them to be reached later. 
Although individual flooding events will be triggered by 
storm surges or higher- than- normal tides, the long- term 
trend due to the combination of GMSL rise and land sub-
sidence will change the probability of flooding over time, 
in most cases, resulting in an increased hazard.

Worldwide, more than 600 million people live in 
low- lying, flood- prone coastal areas (<10 m)1, but is 
projected to surpass 1 billion this century2. The future 
flood risk to these communities is mainly controlled 
by the rate of RSL rise29,97,274. Future inundation- hazard 
maps for the San Francisco Bay Area (fig. 6b,c) show 
that sea- level rise alone poses a considerable inunda-
tion hazard to coastal urban areas and infrastructure, 
as well as ecologically valuable wetlands275. Considering 
the likely ranges of various sea- level- rise scenarios and 
VLM, it was estimated that, in the year 2100, an area 
of 98–218 km2 would be affected by RSL rise in the Bay 
Area97. The corresponding values for the case of sea-  
level rise only are in the range 51–168 km2. Even if 
sea- level rise was halted entirely, VLM alone would place 
45 km2 at risk. The contributions of VLM and sea- level 
rise are clearly evident in the estimated inundation of the 
San Francisco International Airport (fig. 6c).

In an era in which climate change and sea- level rise 
pose unprecedented threats to coastal populations and 
ecosystems, Earth observation data, such as those pro-
vided by InSAR and GNSS, will be essential to inform 
policy decisions40. Although Earth observation data 
with global coverage are publicly available, and it is 
technologically feasible to compute high- resolution 
maps of coastal VLM rates from combined analysis of 
GNSS and InSAR data97,180, this remains computationally 
demanding. Thus, to date, only limited areas have spa-
tially extensive maps of coastal subsidence with respect 
to a global reference frame at management- relevant res-
olution (~101 m). Furthermore, land- based subsidence 

Fig. 5 | Observed, modelled and predicted aquifer-system compaction and vertical 
land motion due to earthquake cycle. a | Compaction of the fourth confined aquifer 
unit at ~160–240 m in Shanghai, China, owing to groundwater volume change, and results 
from a double- yielding visco- elasto- plastic model used to simulate this observation. The 
time series of the groundwater level is also shown for the same period. b | Land subsidence 
and uplift due to the earthquake cycle simulated at the location of the global navigation 
satellite system station P403 (longitude: −124.141°, latitude: 48.062°) within the Olympic 
Peninsula, Washington, USA, where the long- term uplift rate is 2 mm per year. The coseismic 
land subsidence is assumed to be 0.515 m for the earthquake in 1700, which is marked by 
the arrow33. For the postseismic deformation, only an afterslip with a relaxation time of  
7 years is considered. c | Simulated scenario in which the Santa Ana Coastal Basin, California, 
USA, is considered as the reference and land subsidence due to possible variations of 
groundwater level throughout the twenty- first century is calculated, using the code  
in ref.279. d | The observed land subsidence at Yuanchang, Taiwan, the subsidence 
simulated using a nonlinear poroelastic model and the predicted land subsidence during  
2011 using the model calibrated for 2007–2010 (ref.267). Panel a adapted from ref.210, 
Springer Nature Limited. Data for panel b from the P403 station. Panel d adapted from 
ref.267, Springer Nature Limited.
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monitoring (such as the RSET method) is crucial to 
supplement Earth observation data because it can 
elucidate the depth- integrated nature of subsidence. 
Understanding where coastal subsidence occurs and 
its governing process(es) will be vital for devising effec-
tive subsidence- mitigation remedies. The availability 
of process- based numerical models, calibrated with 
contemporary observations, enables spatially and tem-
porally variable projections of subsidence38. Such projec-
tions facilitate testing and the development of effective 
management strategies to mitigate subsidence, such as 
regulating subsurface fluid extraction and/or, in the case 
of aquifer- system compaction, implementing artificial 
recharge or using imported surface- water supplies to 

reduce groundwater demand. Several examples from 
inland areas, including the Tucson Valley, Arizona103, 
the Houston–Galveston region, Texas112, and the  
Santa Clara Valley, California112, demonstrate successful 
subsidence- mitigation management efforts.

Future multidisciplinary work is needed to develop 
multi- objective models that integrate the underlying 
physical processes with socio- economic and climatic 
forcing, and are calibrated using contemporary observa-
tions of land- subsidence rates to forecast future changes 
in the rates due to the non- GIA subsidence processes. 
For such models to be useful for assessing hazards, they 
need to provide a reasonable forecast of uncertainties 
not only due to errors in calibration data but also due to 
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imperfect models and uncertainties in climate- change 
scenarios, as well as future water and energy demands.

Finally, it is important to emphasize that the resil-
ience of coastal lowlands does not just depend on 
sea- level rise and VLM — that is, RSL rise — but also 
on the ability of these areas to gain elevation through 
sediment accretion, both clastic and organic. In other 

words, a longer- term goal is to move away from ‘passive 
submergence’ or ‘inundation modelling’ to an approach 
that integrates the types of models discussed herein with 
surface- process models that account for the feedbacks 
between VLM and sediment dynamics.
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